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Abstract

Battery energy storage systems (BESSs) are vital for improving the sustainability, efficiency,

and resiliency of smart distribution systems (SDSs). With the proper energy management,

BESSs can provide a wide range of applications for both demand-side and grid-scale ser-

vices in SDSs. However, there are various elements in SDSs with randomnesses, such as

renewable energy sources (RES) power output, load demand, electricity price, and the mo-

bility of residential electric vehicles (EVs) and electric buses (EBs), which can significantly

affect the performance of energy management of BESSs. Moreover, due to the highly cou-

pled cyber and physical systems in SDSs, the cyber-physical attacks that leverage common

cyber attacks to stealthily cause cascaded physical failures seriously threaten the effective

and reliable energy management of BESSs. In this thesis, the stochastic energy manage-

ment and cyber-physical security of BESSs in SDSs are investigated from four main aspects

to improve BESS integration in SDSs.

Firstly, to improve the performance of BESSs in demand-side electricity usage cost re-

ductions under randomness, the stochastic energy management of demand-side BESSs is

investigated with its application in greenhouses. Specifically, a stochastic multi-timescale

energy management scheme for greenhouses with RES and electrical/thermal energy stor-

age systems is proposed. The optimal energy management problem is formulated as a

multi-timescale Markov decision process (MMDP) to address the randomness of RES and

the outside weather conditions. In particular, a fast-timescale (FTS) process is used to

model the rapidly changing electrical process with fine granularity, while a slow-timescale

(STS) process is used to model the gradually varying thermal process to reduce the com-

putational complexity. The exact solution of the optimal energy management problem is

derived to minimize the greenhouse operating cost. Then, an approximation solution is

developed to reduce the computational complexity further. The proposed energy man-

agement scheme is evaluated by case studies based on a commercial greenhouse struc-

ture from Bonnyville Forest Nursery Inc. for spruce and real data of weather conditions,

photovoltaic (PV) generation, combined heat and power (CHP) unit, and energy storage
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systems.

In SDSs, the highly penetrated demand-side BESSs that are driven by the objective of

electricity usage cost reductions can unintentionally induce residential electricity usage to

negatively impact power system operations. In the second work, the stochastic energy

management of residential BESSs at high penetration levels in SDSs is studied. A hierar-

chical and decentralized stochastic energy management scheme is proposed. This energy

management problem is formulated in a two-layer hierarchical architecture and is solved

in a decentralized manner. In the lower layer, individual BESS’s energy management prob-

lem is formulated as a Markov decision process (MDP) to minimize the electricity usage

cost. In the upper layer, the solutions of individual BESS energy management problems

are used by the system operator to minimize the line losses and maintain the voltage lev-

els within the required range, which is formulated as a decentralized partially observable

MDP (POMDP) and is solved through dynamic programming with exhaustive backups.

A heuristic search and pruning method is proposed to reduce the computational complex-

ity for practical applications. The case study results based on IEEE 5-bus test feeder and

IEEE European low voltage test feeder have validated the effectiveness and efficiency of

the proposed energy management scheme.

The EVs and EBs with vehicle-to-grid (V2G) and bus-to-grid (B2G) capabilities can

function as mobile BESSs to provide energy storage capabilities. However, the mobility

of EVs and EBs introduces great challenges to efficient energy management. In the third

work, the stochastic energy management of electric bus charging stations (EBCSs) for EBs

with B2G capabilities that function as mobile BESSs is investigated. The RES with in-

tegrated BESSs are included for the sustainable charging of EBs with reduced costs. By

treating B2G-enabled EBCSs as flexible energy prosumers, the day-ahead dynamic prices

are used to mitigate charging impacts on SDSs. This problem is formulated as a distribu-

tionally robust MDP (DRMDP) to address the inaccuracies of probability density function

estimations of random variables. An event-based ambiguity set with combined statistical

distance and moment information is developed to achieve minimax-regret criterion for ro-

bust solutions that are less conservative. To facilitate practical applications and reduce the

computational complexity, a heuristic regret function is proposed for tractable solutions,

based on which the day-ahead dynamic prices are determined. Case studies based on real

EB data from St. Albert Transit and IEEE test feeder indicate that the proposed method can

minimize EB charging costs with mitigated impacts on SDSs.

For the cyber-physical security analysis, the understanding of attack structure is es-
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sential as it provides helpful guidance for the development of effective countermeasures.

Thus, in the fourth work, the mechanisms of cyber-physical attacks against BESSs in SDSs

are analyzed. More specifically, a numerical model of false data injection attacks (FDIAs)

against distribution system states estimation (DSSE) of SDSs is developed, which is used

to construct stealthy cyber attacks targeting system information integrity of SDSs. In the

developed FDIAs, the three-phase feeder model is leveraged to consider the unbalanced

loads and unsymmetrical line parameters of practical SDSs. The virtual self admittance is

added to address the missing phase(s) in practical multiphase SDSs. Further, based on the

developed FDIAs, the mechanism of FDIAs against the state of charge (SoC) estimation of

BESSs in SDSs is studied. The results of the case study based on real data of the modified

IEEE 13 bus test feeder and parameters of Lithium-ion battery pack show that an adver-

sary can use the well-constructed FDIAs to cause significant errors in SoC estimation of

BESSs that will not be detected. Also, the scalability of the proposed FDIAs against SoC

estimation in SDSs is validated using the IEEE 37 bus test feeder.
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1
Introduction

In this thesis, the stochastic energy management and cyber-physical security of battery en-
ergy storage systems (BESSs) in smart distribution systems (SDSs) are investigated. For
the stochastic energy management of BESSs in SDSs, the main focus is on the development
of efficient stochastic energy management algorithms for effective BESSs operations un-
der various uncertainties. By investigating the cyber-physical security of BESSs in SDSs,
the main focus of this thesis is on the exploration of the vulnerability of BESSs to severe
cyber-physical attacks to provide theoretical guidelines for the development of effective
countermeasures.

1.1 Background

To better accommodate the ever-increasing load demand and environmental concerns, the
conventional power distribution systems are undergoing massive shifts towards the more
efficient, reliable, sustainable, and intelligent systems, i.e., the SDSs [1]. Under the context
of SDSs, a large number of renewable energy sources (RES), such as solar, wind, hydro,
biomass, and geothermal, are being integrated.

However, due to the intermittent and fluctuating nature, most RES provide variable
and non-dispatchable generation, which, at high penetration level, impose significant chal-
lenges for the distribution system operators (DSOs) in maintaining power quality, secu-
rity, and reliability of SDSs. For example, the conventional generation must be increased
rapidly around the time of sunset to compensate for the loss of solar generation, which
results in a high ramping rate of generators. Also, the time and amount of RES generation
can hardly match that of load demand, and the peak of RES output can cause congestion,
which eventually leads to a system overload. Further, the fluctuation of RES requires ad-

1
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ditional balancing power. As shown in [2], to maintain the stability of system operation, a
2% to 4% balancing generation is required for every 10% penetration of wind generation.
Also, the proliferation of residential electric vehicles (EVs) and electric buses (EBs) in SDSs
introduces new energy consumption patterns, leading to more random and concentrated
loads with high power. This will cause severe impacts on the efficiency and stability of
SDS operation, e.g., line congestion, generation cost increment, and voltage issues. Thus,
there is an urgent need to develop practical solutions to facilitate the development of SDSs.

Due to the high versatility, energy density, and efficiency, the integration of BESSs in
SDSs has been seen as a promising solution [3–5]. With proper energy management, the
optimally sized and located BESSs can provide a wide range of services, e.g., arbitrage,
operating reserves, and ancillary services, for DSOs to improve the power quality, secu-
rity, and reliability of SDSs. For example, the BESSs can store the energy during off-peak
periods and supply demand during on-peak periods for peak shaving and system up-
grading deferral. The high peak of RES generation can be stored by the BESSs, instead
of being transported by the system, which can release the congestion and avoid over-
loading. The BESSs can also provide balancing power to limit the fluctuations of feed-in
RES generation. For the operation of electric vehicle charging stations (EVCSs) or elec-
tric bus charging stations (EBCSs), the BESSs can be utilized to support energy resource
allocations and charging demand shifting to fulfill the charging requirements of massive-
diffused EVs or EBs with reduced charging costs and mitigated impacts on SDSs. Also,
the EVs/EBs equipped with bi-directional power inverters can function as mobile BESSs
to provide vehicle-to-grid (V2G)/bus-to-grid (B2G) and vehicle-to-home (V2H)/bus-to-
building (B2B) functions. Further, the BESSs can store or feed in energy to balance the
supply and demand instantaneously to maintain the frequency. The BESSs can also feed
in energy when the voltage is low and store energy when the voltage is high for voltage
control. Moreover, the BESSs can benefit small and medium-size customers through time-
shift for self-consumption, time-shift for feed-in via “storing-selling-consumption” trading
to local utility [6].

The typical architecture of an SDS with BESSs is shown in Fig. 1.1. The BESSs are inte-
grated into different systems within SDSs to provide different types of services. Within the
household/building energy systems (HESs/BESs), the BESSs can store the energy from
RES, e.g., photovoltaics (PV), and supply the demand of electrical appliances, EVs, and
building automation systems. Within HESs and BESs, the home area networks and build-
ing area networks, via the Z-wave, Wi-Fi, or ZigBee technologies, are constructed for com-
munications among different devices, based on which the energy management systems
(EMSs) are used for optimal energy management. Within the distributed energy systems
(DESs), the BESSs are controlled by the EMSs through distributed energy resources (DER)
local area networks to regulate the feed-in power of RES. Within the EVCSs and EBCSs,
the EMSs control the charging processes of EVs and EBs via EV charging networks or EB
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Figure 1.1: The typical architecture of an SNS with integrated BESSs.
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Figure 1.2: The diagram of a BESS.

charging networks, respectively. The EV charging networks can also be established among
the EVs of households within secondary distribution networks to coordinate the charging
among EVs. The communication links, via power-line communication (PLC), digital sub-
scriber line (DSL), coaxial cable, or radiofrequency (RF) mesh technologies, are established
among different HESs/BESs based on the geographical locations, to form neighborhood
area networks. Within the SDSs, the data aggregator units (DAUs), remote terminal units
(RTUs), smart meters, intelligent electronic devices (IEDs), and other information and com-
munication technology (ICT) devices communicate with the distribution supervisory con-
trol and data acquisition (SCADA) systems and the distribution EMSs based on field area
networks. Also, in the field area networks, the BESSs within the HESs, BESs, DESs, EVCSs,
and EBCSs can be managed by the DSO to improve the stability and sustainability of the
systems. As shown in Fig. 1.2, within individual BESS, the controller area network (CAN)
or Internet of Things (IoT) network is constructed for the communications among battery
management system (BMS), battery packs, DC-DC converter, and smart inverter, which
helps to achieve the real-time monitoring and control of BESSs.

With the wide deployments of the advanced monitoring and control devices and well-
established communication networks, the SDSs are becoming complicated cyber-physical
systems, which improve the observability of SDSs for improved system operation. Also,
the proliferation of BESSs in SDNs requires more advanced BMSs to ensure the safety, reli-
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ability, and optimal performance of BESSs with more accurate SoC estimation. Also, BMS
developers have focused on minimizing cost, weight, size, and manufacturing complexity
of BMSs [7]. To better meet these requirements, the BMSs are undergoing massive revolu-
tions to integrate Internet of Things (IoT) technologies and cloud computing services [8,9],
and the BESSs are becoming complex cyber-physical systems (CPSs) with communica-
tions with the external communication systems and the internet [11, 12]. However, this
exposes the SDSs and BESSs to severe cyber-physical attacks [7, 13–15]. Unlike pure cyber
attacks, the cyber-physical attacks are based on cyber attacks; however, they are restricted
by the physical constraints and can have severe impacts on the physical systems based on
these constraints. Compared with physical attacks, the cyber-physical attacks are typically
stealthy and can last for a long time. Nowadays, cyber-physical attacks have been recog-
nized as one of the major threats to power systems. For example, the cyber-physical attacks
targeting the SCADA systems of Ukrainian power grid opened circuit breakers and caused
a power outage of 225,000 customers [16]. Also, some incidents related to BESSs have re-
vealed the impacts of cyber-physical attacks on the operation of BESSs which imposes new
security and safety issues. For example, in 2011, a security researcher hacked the firmware
of a smart battery by penetrating the communication channel and alternating the BMS to
report low SoC [17]. The attacked BESSs may operate in conditions violating both mechan-
ical and electrical safety requirements and threaten the physical safety of BESSs, especially
maliciously intending to explode batteries. For example, in 2019, the counterfeit BMSs
caused several BESSs in Korean on fire [8].

To fully explore the benefits of integrated BESSs in SDSs, it is critical for the energy
management of BESSs to consider the RES generation, the demand of households and
commercial buildings, EVs with V2G and V2H capabilities, EBs with B2G and B2B capa-
bilities, and operating rules of power systems and battery devices in SDSs. The energy
management problem of BESSs in SDSs is generally formulated as a sequential decision-
making problem [18, 19]. However, there are different sources of randomness in SDSs, for
example, the demand of households and commercial buildings, RES generation, mobil-
ity of EVs and EBs, which can significantly affect the performance of energy management
of BESSs in SDSs. In literature, there are numerous research works related to addressing
the randomness in the energy management of BESSs in SDSs by using stochastic dynamic
programming (SDP) approaches. In [20], the SDP approach is used to formulate the en-
ergy management of BESSs under randomness in HESs, based on a non-homogeneous
Markov chain model. The Markov decision process (MDP) is also utilized to solve the
stochastic energy management problem of BESSs in SDSs in [21, 22]. However, the SDP
approaches in [20–22] suffer from high computational complexity for practical applica-
tions as more control variables (e.g., for HESs or BESs that involve the control of thermal
appliances [23]) or BESS units (e.g., for a high penetration level of residential BESSs and
EVs at dispersed locations) are involved [24]. Also, it is commonly assumed that the prob-
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ability distribution functions (PDFs) of random variables can be estimated precisely for
SDP. The estimation errors of PDFs will degrade the performance of the stochastic energy
management of BESSs in SDSs by using SDP approaches. Moreover, with the develop-
ment of SDSs, an increasing number of ICT devices are being embedded, as shown in Fig.
1.1 and 1.2. The stochastic energy management of BESSs relies heavily on the real-time
system information obtained through the ICT devices, which makes the stochastic energy
management of BESSs in SDSs prone to cyber-physical attacks. In literature, several works
have revealed the vulnerability of BESSs to cyber-physical attacks, such as unauthorized
source code changing, unauthorized access to data, and insecure network protocol [8–10].
This imposes great threats to the data integrity of BESSs [25]. It has been shown in [8]
that the tampered real-time terminal voltage measurement can lead to overcharging and
cause permanent damage to the battery. As an important function in DSSE, bad data de-
tection (BDD) can detect bad measurements introduced by various sources, including the
data tampering induced by cyber-physical attacks [26, 27]. The BDD can easily detect the
cyber-physical attacks that target the measurements within BESSs. However, a class of
cyber-physical attacks named false data injection attacks (FDIAs) that can stealthily tam-
per measurements in SDSs still imposes great threats to the SoC estimation [28]. The FDIAs
in power systems have been studied extensively. In [29], the FDIAs against the operation
of the deregulated electricity market is investigated. Considering the load redistribution
in security-constrained economic dispatch, the FDIAs driving the power system to oper-
ate on an uneconomic state is studied in [30]. With the high penetration level of DER, the
FDIAs targeting the distributed energy routing processes are analyzed in [31]. In [33], the
authors investigate the coordinated cyber and physical attacks, and the FDIAs designated
to compromise the launched physical attacks are considered. A novel FDIA that aims at
causing induced cascade failure of physical systems is studied in [34]. However, to the au-
thors’ best knowledge, the vulnerability analysis of FDIAs against SoC estimation of BESSs
in SDSs has been barely studied. Moreover, there are strong temporal correlations among
battery pack terminal voltage measurements at different time slots due to the inherent re-
lationship between terminal voltage and SoC of a battery [35]. The FDIAs in [29–31,33,34]
are mainly investigated targeting one snapshot, i.e., single time slot, and they have not
considered the temporal correlations of measurements. This type of FDIAs can be detected
using the temporal correlation of measurements [36]. Although the FDIAs considering the
temporal correlation of measurements is studied in [36–38], the constructed FDIAs result
in the modifications on measurements with small values and have the least impacts on
power systems [39].

In summary, extensive research efforts are still required for the stochastic energy man-
agement and cyber-physical security enhancement of BESSs in SDSs. In particular, the
following four topics will be discussed in this thesis.

1. Stochastic energy management in greenhouses with RES and energy storage systems;
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2. Stochastic energy management of BESSs at high penetration level in SDSs;

3. Stochastic energy management of electric buses charging stations with B2G capabil-
ities;

4. Cyber-physical security analysis of BESSs in SDSs.

1.2 General Terms and Definitions

In this section the important terms used in this thesis are defined to clearly identify the
scope of work done in this research.

1.2.1 Quality of Supply Voltage

In low-voltage distribution networks, the quality of supply voltage implies the compli-
ance of the voltage magnitude and frequency with statutory limits, resilience to continual
fluctuation within those statutory limits, uninterrupted power supply, except for sched-
uled maintenance shutdowns, and preservation of a near-sinusoidal waveform. In this
thesis, the maintenance of voltage magnitude in the statutory limit is mainly considered
in preserving the quality of supply voltage in SDSs. Most national standards recommend
that the low-voltage electrical appliances be designed to have a satisfactory performance
within the limits of ±5% of nominal voltage. Then, this leaves a margin of 5% allowable
voltage drop/rise at the service point of consumers along the feeder under the worst con-
ditions. Thus, there is a statutory obligation to maintain the level of voltage at the service
point within the limits of ±5% of the nominal value.

1.2.2 Stochastic Dynamic Programming

The energy management problem of BESSs, which is a typical sequential decision-making
problem, is usually formulated and solved using the multistage stochastic programming
approach, to address the impacts of random perturbations, e.g., RES generation, load de-
mand, and electricity price, in the future [40]. However, due to the non-anticipative con-
straint, the multistage stochastic programming often suffers from the curse of dimension-
ality, which makes it computationally intractable [41]. One way to address this issue is
to compress the information of non-anticipative constraints inside a state. Then, the mul-
tistage stochastic programming problem can be reformulated dynamically as a sequence
of time-decomposed subproblems and is solved recursively. This technique was initially
introduced by Richard E. Bellman [42] in 1957 as stochastic dynamic programming (SDP).
The solution of an SDP problem is formally defined as a policy, which is a look-up table
prescribing how to act optimally in response to random perturbations. The SDP can be
solved optimally by using backward recursion or forward recursion algorithms based on
the Bellman equation’s formation. To improve the computational efficiency of SDP, the
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memorization technique in computing has been widely applied. Also, there are numerous
research works on reinforcement learning (RL) for model-free problems and approximate
dynamic programming (ADP) in large or continuous-space, infinite-horizon problems, to
reduce computational complexity and facilitate the practical application of SDP.

1.2.3 Markov Decision Process

An MDP is featured as a stationary and discrete-time stochastic control process. MDP is a
particular class of stochastic dynamic programs in which the underlying stochastic process
is an extension of the Markov chain. Different from the Markov chain, the outcomes of
an MDP partly depend on the endogenous Markov property and partly depend on the
actions of decision maker. MDP is a helpful model of random processes in SDP and RL,
which has been widely studied and applied in different disciplines, such as automatic
control, economics, and manufacturing. At each time step, the MDP is in some state, and
the decision maker may choose any feasible action in this state. Then, the MDP will transit
to a new state following a random process with defined transition probabilities and receive
a reward according to the defined immediate reward function at the next time step.

1.2.4 Distributionally Robust Markov Decision Process

For an MDP, it is commonly assumed that the parameters, e.g., transition probabilities and
immediate reward function, are estimated accurately. However, in practice, there may be
a significant deviation of the estimated parameters from actual values, which introduce
significant uncertainties into the parameters and significantly degrade the performance of
obtained policy [43]. In order to address this issue, many research works have devoted
significant efforts in minimizing the performance variation by using robust MDP [44–46].
In the context of robust MDP, the solution is defined as the optimal policy against the worst
case of the realizations of all possible parameters of an MDP. However, due to the lack of
consideration of the statistical information of uncertainties of parameters, the solutions of
robust MDP are usually overly conservative. In contrast to robust MDP, the distribution-
ally robust Markov decision process (DRMDP), which considers the statistical information
of uncertainties of MDP parameters, has been widely studied, recently [47]. Instead of
considering all the possible parameters arising from estimation deviation as determinis-
tic events, the DRMDP treats them as random variables with an ambiguous probability
distribution function that belongs to an ambiguity set described by a priori statistical infor-
mation. The DRMDP has been studied as a successful approach to address the neglect of
probability cognitive bias, whose solutions are robust and less conservative.

1.2.5 Power System State Estimation

For most power system energy management functions, e.g., the stochastic energy manage-
ment of BESSs, the complete and consistent real-time power system operating condition
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is required. The power system state estimation techniques, which were first proposed by
Fred Schweppe in 1969 [49], have been widely studied to obtain the operating conditions
of power systems based on the current set of measurements. The power system state esti-
mation is generally referred to as static state estimation (SSE) to consider the quasi-steady
state operating conditions of power systems, in which only the static states, e.g., system
bus angles and magnitudes, are considered, and the dynamic characteristics of systems
are not involved. However, the stochastic nature of demand and generation, integration
of DER, and complex demand-response technologies have resulted in significant concerns
about the increased uncertainties of the power system dynamics. The SSE is unable to
capture these dynamics in operating conditions of power systems. Thus, based on differ-
ent dynamic phenomena in power systems at multiple timescales, different extensions of
SSE have been made to capture the dynamics in operating conditions for power system
state estimation [37]. For the transient operating conditions of power systems, the dy-
namic state estimation (DSE) is adopted, in which the dynamic state variables, e.g., rotor
angles and angular speeds of generators, are considered. For quasi-steady-state operating
conditions that involve the changes in operating conditions caused by smooth and slow
load/generation changes, the forecasting-aided state estimation (FASE) has been devel-
oped. In FASE, the state-transition model is used to capture the dynamics of quasi-steady-
state operating conditions due to smooth evolution.

1.2.6 Battery State of Charge Estimation

The state of charge (SoC) is a critical battery parameter that reflects the amount of available
energy stored in a battery. For optimal utilization and protection of the battery, the accurate
information of SoC in important [12]. Due to the complex and nonlinear electrochemical
reactions within a battery, the SoC is typically estimated, instead of being directly mea-
sured [50]. In literature, the methods for battery SoC estimation can be mainly classified
into three categories, i.e., book-keeping estimation, data-driven estimation, and model-
based estimation approaches [51]. The book-keeping estimation approach keeps tracking
the charging/discharging currents and computes the accumulated charges in the battery.
The book-keeping approach is low-cost and easy to implement; however, it is sensitive
to the accumulated errors of current measurements and initial SoC estimation, which re-
quires frequent calibrations during operation. The data-driven approach uses techniques
such as fuzzy logic, artificial neural network, and support vector machines to extract SoC
estimation information from data and automatically adapt to changing battery operating
conditions, without relying on the configuration of complex electrochemical reactions in
a battery. However, the data-driven approach is currently limited to experimental usages
due to the high requirements for computational capabilities in data processing. The most
used approach for battery SoC estimation is the model-based estimation, which utilizes
the real-time measurements of battery, e.g., terminal voltage, current, and temperature,
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to estimated battery SoC based on battery equivalent circuit model [52]. Considering the
nonlinear property of battery, the Kalman filter’s nonlinear variants, e.g., extended Kalman
filter (EKF) and central difference Kalman filter (CDKF), are usually used for model-based
SoC estimation [53].

1.2.7 Cyber-Physical System Security

The cyber-physical system (CPS) is an integrated system that consists of computing units
and physical objects that are deeply intertwined through the network [13], where the SDSs
and the BESSs are typical examples of CPSs. The integration of cyber and physical systems
enhances the performance of CPS operation and control. However, it also introduces a
new security threat, i.e., the cyber-physical security threat, to CPS [14]. The cyber-physical
security threat combines both information security threats to the cyber system and engi-
neering security threats to the physical system. Since the physical systems are typically
closed and have well-established engineering security protection schemes, they are usu-
ally assumed to be resilient to a variety of cyber and physical threats. However, due to the
requirements for efficiency and compatibility, the engineering physical systems typically
lack proper information security protection schemes. With the deep interaction between
cyber and physical systems in CPS, cyber intrusion will have significant impacts on the en-
gineering security of the physical system. Also, conventional engineering security protec-
tion schemes in the physical system are mainly designed against naturally occurred faults.
However, in CPS, the well-coordinated cyber-physical attacks are stealthy and can easily
bypass these protection schemes [15]. Also, in CPS, the cyber-physical attacks are well
constructed based on the physical system’s property and can lead to devastating physical
effects. In the CPS security analysis, it is crucial to consider the interaction between cyber
and physical systems.

1.3 Research Definition and Literature Review

In this section, the research problems will be defined for the four research topics in this
thesis. Moreover, the existing research works in literature will be discussed.

1.3.1 Stochastic Energy Management in Greenhouses with RES and Energy
Storage Systems

In this research, the stochastic multi-timescale energy management of commercial green-
houses with RES, including a PV system, combined heat and power (CHP) unit, and en-
ergy storage systems, is studied. The objective of this studied optimal energy management
problem is to minimize the operating cost of commercial greenhouses, while precisely con-
ditioning plant environments.
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In literature, commercial greenhouses’ energy management problems are addressed
in [56–65]. In [56–58], the authors investigate the energy usage reductions of greenhouses
by increasing the efficiency of energy generation facilities, upgrading the architectures of
greenhouses to reduce energy losses, and optimizing the inside greenhouse environment.
However, the research works have not involved the optimization of the greenhouse con-
trol, based on the mathematical models of greenhouses, which are critical for greenhouse
energy management [59]. Approaches are proposed to optimize the control of commer-
cial greenhouse energy-consuming facilities based on the mathematical greenhouse mod-
els [59–61]. However, the approaches in [59–61] are deterministic approaches, such that the
randomness of the weather conditions can degrade their performance. In [62], a model-
based energy management system is developed for greenhouses to optimize energy uti-
lization. Moreover, the randomness of the weather conditions is addressed by considering
the forecasting results. However, this work does not consider the utilization of RES and
energy storage, which, in [63–65], has been proven to be an effective way towards the
sustainable development of commercial greenhouse industry. However, in [63–65], the
utilization of renewable energy is limited to solar energy, and the research works focus
on redesigning the shape of the greenhouses and introducing thermal/solar curtain into
the greenhouses. To the best of our knowledge, there is no existing research work inves-
tigating the optimal energy management strategy for greenhouses with RES and energy
storage. On the other hand, the integration of RES results in greater randomness, and
the traditional forecasting-based optimization method can degrade the performance of en-
ergy management in real-time control. As a result, the uncertainty in weather conditions
and RES must be considered in a dynamic way for more efficient real-time control [66].
However, by considering the stochastic greenhouses energy management as a dynamic
problem, the computational complexity increases significantly due to the high dimension
of the solution caused by the great number of controllable loads for electrical and thermal
appliances and time slots in the period of optimization [67]. In [23], the timescale charac-
teristics of home thermal and electrical energy management are investigated. The results
indicate that, given the two-dimensional (thermal and electrical) energy pathway, the com-
putational complexity can be potentially reduced by considering different timescales for
each of the two pathways.

In summary, the existing methods for stochastic energy management of greenhouses
are subject to the curse of dimensionality, due to the large number of controllable loads
and time slots. Although the usage of different timescales for each of the two pathways
can significantly reduce the computational complexity, the interaction between these two
processes at different timescales in a greenhouse environment still needs to be investigated.
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1.3.2 Stochastic Energy Management of BESSs at High Penetration Level in
SDSs

To mitigate the impacts of residential BESSs at high penetration level on the reliable oper-
ation of SDSs, the hierarchical and decentralized stochastic energy management for SDSs
with high BESSs penetration is studied in this research. The objective of this studied en-
ergy management problem is to improve the overall social welfare by jointly minimizing
the electricity usage cost for residential customers and the operating cost associated with
line losses for DSO while maintaining the voltage levels within the required range.

In literature, considerable works have been devoted to the stochastic energy manage-
ment of BESSs in SDSs [68–76], which consider the stochastic energy management of BESSs
from both DSO and customers perspectives for demand-side electricity cost reduction with
mitigated impacts on SDS operation. In [68] and [69], decentralized energy management
approaches are investigated. The Lyapunov approach [68] and the Lagrangian multiplier
method [69] are used to solve these problems through the economic duality between de-
centralized and centralized control. However, the proposed decentralized schemes mainly
consider the total cost minimization of customers under the distribution system opera-
tional constraints. Moreover, in the planning of decentralized schemes, the DSO still re-
quires all the information of individual BESSs [70]. SDS stochastic energy management
schemes in a hierarchical structure are proposed in [70] and [71], which are designated to
reduce the costs of both DSO and customers, while maintaining the power quality. How-
ever, these hierarchical approaches rely on the predetermined setpoints of powers of the
DSO, and if the information of all the individual BESS is unknown by the DSO, the solu-
tions of individual BESS cannot be guaranteed to be optimal.

The decentralized or hierarchical approaches proposed in [68–71] consider the stocha-
stic energy management of BESSs from both DSO and customer perspectives. However,
these approaches either consider the optimization problem of DSO or customers as the
main problem, and the overall benefit of DSO and customers has not been considered. In
the future energy system, different entities, e.g., the transmission system operator (TSO),
DSO, demand side management participants, and operators of distributed energy resources,
are supposed to coordinate with each other to improve the system overall benefit [72]. It
has been well studied that, by considering the joint optimization of TSO and DSO, the
overall benefit of TSO and DSO can be significantly improved through the coordination
between TSO and DSO [73]. With the integration of BESS, the customers are becoming
more active in distribution system energy management, and the coordination between
DSO and customers will be beneficial, in social cost and technical aspects, for smart dis-
tribution system energy management [74–76]. In [75] and [76], the energy management of
multiple customers in a smart distribution system is investigated. The centralized energy
management schemes are proposed for the coordination between DSO and customers,
considering the joint cost of DSO and customers, to minimize the overall electricity usage
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and generation cost for the improvement of the distribution system overall benefit. How-
ever, the centralized schemes require all the computations being performed at a central
unit of DSO, which significantly increases the computational complexity of DSO at high
BESS penetration.

In summary, the existing decentralized or hierarchical approaches either consider the
optimal utility of DSO or customers. They have degraded performance in improving the
overall social welfare, which requires a joint utility optimization of both DSO and cus-
tomers. Although the hierarchical approaches with complete information about customers
and the centralized schemes can jointly optimizing the utilities of both DSO and customers,
they cannot be applied in SDSs with high BESS penetration practically due to the high
computational complexity.

1.3.3 Stochastic Energy Management of Electric Bus Charging Stations with
B2G Capabilities

In this research, the stochastic energy management of EBCSs is investigated, where the RES
with integrated BESSs and B2G capabilities are considered. The objective of the stochastic
energy management is to minimize the charging costs of EBs while mitigating the charging
impacts of EBCSs on SDSs.

In literature, the stochastic energy managements of EBCSs [81–83] and EVCSs [84–86]
are usually formulated using SDP, which assumes that the PDFs of random variables can
be accurately estimated [87]. As EBs have fixed routes and schedules, they are more statis-
tical, and the PDF estimations of random EB energy consumption and charging duration
are more accurate compared with EVs [88]. This makes SDP a suitable method for stochas-
tic energy management of EBCSs. However, different from EVs with relatively constant
loads, the bus loads of EBs vary significantly over time and are highly random, signifi-
cantly affecting the accuracy of PDF estimation of EB energy consumption [89]. To address
this issue, several methods have been proposed to incorporate PDF estimation of random
bus loads for stochastic energy management of EBCSs [90]. However, due to varying real
situations, such as weather and activities of passengers, the PDF estimation of random
bus loads is usually inaccurate, which introduces significant errors to PDF estimation of
EB energy consumption [91]. This results in degraded performance of stochastic energy
management of EBCSs using SDP, or even cause reliability issues of public transit systems,
as it has no robustness to PDF estimation errors [92]. To guarantee the reliability of transit
services, the application of robust stochastic dynamic programming (RSDP) to stochastic
energy management of EBCSs has been studied in [93]. In which only the support of ran-
dom bus loads is considered, and the solution against the worst-case bus loads is obtained.
Compared with SDP, RSDP is more robust and has a better guarantee of the reliability of
public transit systems. However, without considering the statistical information of ran-
dom variables, RSDP admits broad unrealistic single-point distribution on the support set,
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with overly-conservative solutions [94].
The distributionally robust SDP (DRSDP) has been extensively studied as an interme-

diate method between SDP and RSDP. DRSDP uses ambiguity set to address the PDF es-
timation errors while considering the statistical information for robust solutions that are
less conservative [43]. DRSDP has wide applications in power system disciplines, includ-
ing unit commitment [95], optimal power flow [96], and system planning [97]. However,
its application to stochastic energy management of EVCSs and EBCSs has not been studied.
In [95–97], the objective functions are based on minimax criterion, where the consideration
of the worst case usually gives conservative solutions [98], such as the newsvendor prob-
lem in [99]. To address this issue, the minimax-regret criterion (i.e., worst-case conditional
value at risk of regret) has been extensively studied for RSDP [100, 101]. However, its ap-
plication to DRSDP usually results in an NP-hard problem with intractable solutions [98].
Also, the ambiguity sets used in [95–97] are either based on moment or statistical distance
information. The moment-based ambiguity set usually leads to conservative solutions, as
all the distributions with the same moment are considered. The statistical distance-based
ambiguity set leverages the reference PDF obtained from empirical data for good robust-
ness and controllable conservatism [43]. However, the lack of consideration of moment
information may result in overly conservative solutions [47]. Moreover, in [95–97], the
uncertainties of approximated statistical information used for the ambiguity set have not
been considered, which may result in solutions with less robustness [48].

In summary, the SDP approaches based on PDF estimations are commonly used for the
stochastic energy management of both EBCSs and EVCSs in literature. However, due to
varying real situations, the PDF estimations of the random variables, such as RES gener-
ation, charging demands, and charging availability, usually have significant errors, which
will affect the energy management performance. Although the RSDP and DRSDP have
been extensively studied to improve the energy management performance by considering
the PDF estimation errors in the formulation of stochastic optimization problems using
ambiguity set, they usually result in an NP-hard problem that cannot be solved analyti-
cally, and their solutions are usually either overly conservative or less robust.

1.3.4 Cyber-Physical Security Analysis of BESSs in SDSs

In this research, the cyber-physical security of BESSs in SDSs is studied by investing the
vulnerability of SoC estimation of BESSs in SDSs to typical cyber-physical attacks, i.e., the
FDIAs, through a series of two research topics. For the first research topic, the construction
principle of FDIAs in practical SDSs is investigated, where the objective is to numerically
construct FDIAs that can tamper the targeting measurements while bypassing the existing
measurement residual-based BDD schemes in practical SDSs. Then, the mechanism of
FDIAs against SoC estimation of BESSs in SDSs is investigated based on the construction
principle proposed in the first research topic, and the objective is to stealthily tamper the
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measurements of BESSs in SDSs using FDIAs to maximize the SoC estimations errors.

The Construction Principle of False Data Injection Attacks in SDSs

In literature, the FDIAs for power transmission systems have been investigated exten-
sively. The FDIAs are explicitly designed against the SSE to corrupt the outcome of power
system controls. Moreover, the study on impacts of FDIAs in power transmission systems
has been well-conducted [105]. As concluded in [105], in power transmission systems,
the FDIAs attacks can inject malicious data stealthily, without being detected by the BDD
function of transmission system state estimation (TSSE), and affect the outcome of system
controls. Based on the well-constructed FDIAs attack models in power transmission sys-
tems, different countermeasures are proposed to protect the power transmission systems
from FDIAs by protecting a small subset of the measurements [34, 106–108]. In [107], an
intrusion detection method is proposed to detect the anomalous power flows in power
transmission systems by using the optimal power flow functions. By leveraging the linear
FDIAs attack models in power transmission systems, the authors in [34] propose a fast
screening method to detect the high-risk line in power transmission systems that is more
vulnerable to FDIAs. Moreover, in [108], a corrective dispatch scheme is proposed for dis-
patching generators in power transmission systems to mitigate the impacts of FDIAs. In
the future SDSs, as there is more reliance on the measurements deployed at dispersed loca-
tions, the potential impacts of FDIAs on SDSs need to be investigated extensively. Further-
more, the numerical models of potential FDIAs in SDSs are required for the deployment
of effective and efficient countermeasures.

Also, due to the limited number of real-time measurements in power distribution sys-
tems, the system observability cannot be achieved unless the pseudo measurements are
used. For example, the pseudo power injection measurements that are determined using
customer billing information and typical load profiles or defined as Gaussian distributions
with their means at half the transformer ratings [33]. However, due to the uncertainty in
load demand, these pseudo measurements obtained based on load forecasts or histori-
cal data are much less accurate than real-time measurements [110]. These low-accuracy
pseudo measurements may degrade the performance of DSSE. The benefits of introduc-
ing more accurate real-time measurements such as phasor measurement units (PMUs),
IEDs, and advanced metering infrastructure (AMI) systems to improve system observabil-
ity have been well demonstrated [109]. Unlike power transmission systems, the dimension
of power distribution systems in terms of the number of measurement points is typically
very high, so it is impractical to telemeter all points using the expensive real-time measure-
ment devices. The optimal placement of real-time measurements, concerning system ob-
servability improvement and state estimation error minimization in DSSE, has been well
studied in [111]. However, the optimal placement of real-time measurements for DSSE
considering the vulnerability of DSSE to FDIAs still requires extensive research [27]. This
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is mainly due to the lack of numerical models of FDIAs in power distribution systems.
In [112–114], the FDIAs against linear power system SSE are proposed, in which the SSE

investigated is formulated based only on the bus voltage measurements. Since the devel-
oped SSE is linear, it facilities the attackers to construct an FDIAs attack against SSE. How-
ever, with the development of smart grid measurement infrastructures, different types of
measurements are being deployed in both transmission and distribution systems. The in-
tegration of more real-time measurements, especially the power measurements, leads to
the generally nonlinear SSE, making the FDIAs based on linear SSE infeasible.

Due to the nonlinearity of general SSE, it is difficult for the attacker to construct an
FDIA by analyzing the complicated nonlinear system numerically. In the transmission
system, the authors in [115–117] analyze the construction of FDIAs against nonlinear TSSE
based on the AC model of the transmission system. The FDIAs is constructed by finding
a fixed system state set after the injection of FDIAs that does not change the measurement
residuals during each iteration. However, these methods require that the attackers have
the information of the entire estimated system states for each iteration, or the convergence
of iterations cannot be guaranteed [118]. Also, the attackers cannot find the fixed system
state set numerically. Thus, in power transmission systems, the nonlinear TSSE is usually
relaxed to linear TSSE as in [119–122]. This relaxation is based on the observation that,
in transmission systems, the x/r ratio of transmission lines are typically high. Then, the
voltage phase angle differences can be approximated by using the real power flow, and the
voltage magnitude differences can be estimated based on the reactive power flow. How-
ever, this relaxation cannot be implemented in DSSE directly due to the low x/r ratio of
distribution lines. We believe that the difficulty in dealing with the nonlinear DSSE has
limited the research on FDIAs against DSSE.

Recently, the authors in [33] investigate the FDIAs against DSSE in a smart distribution
system. The nonlinearity of the DSSE is relaxed based on the observation that, within a
distribution system, the changes of voltage phase angles are typically small, and the volt-
age drops are usually much smaller than the nominal voltages. Then, the FDIAs against
nonlinear DSSE can be obtained based on power flow or injection measurements without
too much effort. However, the investigated distribution system model is simplified to a
single-phase feeder model. In practice, the distribution systems are typically constructed
with three-phase lines. Also, the distribution systems usually have unbalanced load dis-
tributions and unsymmetrical line parameters, which cause the coupling among the three
phases. Moreover, there are one- and two-phase branches in most distribution systems.
Due to the complex system model of distribution systems and the coupling among three
phases, it seems difficult for the attackers to construct FDIAs against DSSE in an SDS with
varying measurements.
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False Data Injection Attacks Against State of Charge Estimation of BESSs in SDSs

In the discipline of power systems, the mechanisms of FDIAs have been studied exten-
sively. In [29], the mechanism of FDIAs against the operation of the deregulated electricity
market is investigated. Considering the load redistribution in a security-constrained eco-
nomic dispatch, the mechanism of FDIAs that drive the power system to operate on an un-
economic state is studied in [30]. With the high penetration level of DER, the mechanism of
FDIAs targeting on affecting the distributed energy routing processes is analyzed in [31].
In [33], the authors investigate the coordination between cyber and physical attacks, and
the mechanism of FDIAs designated to compromise the launched physical attacks is con-
sidered. Recently, a novel FDIA that aims at causing induced failure of physical systems is
proposed, and the corresponding mechanism is studied in [34].

However, to the best of our knowledge, the mechanism of FDIAs against SoC estima-
tion of BESSs in SDSs has been barely studied. Moreover, there are strong temporal cor-
relations among battery pack terminal voltage measurements at different time instances
due to the inherent relationship between terminal voltage and SoC of a battery [35]. The
mechanisms of FDIAs in [29–31, 33, 34] are mainly investigated targeting one snapshot,
i.e., single time instant, and have not considered the temporal correlations of measure-
ments. This type of FDIAs can be detected by considering the temporal correlations of
measurements [36]. Although the mechanism of FDIAs considering measurement tempo-
ral correlations is studied in [36–38], the constructed FDIAs result in the modifications on
measurements with small values and have the least impacts on power systems [39].

In summary, the existing research works on the construction principles of FDIAs are
mainly studied for the power transmission systems. However, due to the low x/r ratio in
SDSs, the construction principles of FDIAs in power transmission systems cannot be di-
rectly applied to SDSs. Although some methods have been proposed to construct FDIAs in
SDSs with low x/r ratio, they have not considered the existence of one- and/or two-phase
branches, unbalanced load distributions, and unsymmetrical line parameters in practical
SDSs. Moreover, the existing FDIAs targeting on one snapshot of SE can be easily detected
by considering the temporal correlations of measurements for SoC estimation of BESSs. Al-
though the impacts of temporal correlations of measurements on FDIAs have been studied
for some works, the proposed FDIAs in these works usually result in the least impacts of
FDIAs, which has less practical meaning.

1.4 Thesis Motivation and Contributions

As discussed above, the development of stochastic energy management of BESSs in SDSs
still faces great challenges. On the demand side, the stochastic energy management of
BESSs is subject to high computational complexity, especially for the application in large-
scale facilities, e.g., the commercial greenhouses that contain a large number of control



Chapter 1. Introduction 17

variables arising from coupled electrical and thermal processes and time slots. Also, the
lack of consideration for the BESS charging/discharging impacts on SDSs in stochastic en-
ergy management of residential BESSs at a high penetration level can significantly affect
the economics and stability of SDS operation. Moreover, for the stochastic energy manage-
ment of B2G-enabled EBCSs with BESSs and RES integration, the PDF estimation errors
of random variables can degrade the performance of energy management, or even affect
the reliability of public transit services. Although some stochastic energy management
approaches for BESSs leverage the robust optimization methods to address the impacts
of PDF estimation errors on the reliability on public transit services, the consideration of
the single-point distribution of extreme condition in robust optimization usually results in
overly conservative solutions, which will significantly affect the economics of stochastic
energy management of BESSs. Further, the implementation of a variety of ICT devices
in SDSs leads to the development of SDSs and BESSs towards CPSs, which greatly facil-
itate the efficient and reliable management and operation of BESSs in SDSs. However, it
also exposes the physical systems of SDSs and BESSs to severe cyber-physical attacks and
results in new cyber-physical security threats to SDSs and BESSs. Therefore, exploring
the efficiency, reliability, and security of stochastic energy management of BESSs in SDSs
constitutes the main motivation of this thesis. This thesis proposes the novel approaches
of the multi-timescale Markov decision process (MMDP) with interactions, hierarchical
and decentralized management scheme using Dec-POMDP, and a distributionally robust
Markov decision process (DRMDP) are proposed for effect and optimal energy manage-
ment of BESSs. Also, an equivalent measurement-based method for constructing FDIAs
against DSSE and a novel sequential FDIA is proposed. Moreover, the finished research
works also have significant contributions in the case studies, where experiments and tests
based on real industrial data are conducted. The detailed motivation and contributions of
this thesis are described as follows:

• Stochastic Multi-Timescale Energy Management of Greenhouses
For the stochastic energy management of demand-side BESSs, the optimization prob-
lem is usually formulated in a single timescale. However, for the application in
commercial greenhouses, the consideration of both electrical and thermal processes
using the fastest timescale will increase the number of control variables and time
slots involved and results in high computational complexity. The usage of the slow-
est timescale can significantly reduce the number of time slots; however, it results
in degraded performance of stochastic energy management for the energy process
with faster timescale. In this thesis, a novel stochastic multi-timescale energy man-
agement scheme of BESSs with application in greenhouses with RES integration is
proposed to address this issue. In this proposed scheme, the energy management
problem is formulated as a MMDP, consisting of two coupled MDPs with different
timescales for the electrical and thermal processes. More specifically, the MDP with
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a fast timescale is defined for the electrical process that changes rapidly, while the
MDP with a slow timescale is defined for the gradually varying thermal processes.
In this way, the number of control variables and time slots in the optimization period
for each process will be less, and the dimension of the solution can be reduced, which
can help reduce the computational complexity.

• Hierarchical and Decentralized Stochastic Energy Management of BESSs
The approaches for stochastic energy management of residential BESSs in SDSs from
both DSO and customer perspectives can be mainly classified into centralized, decen-
tralized, or hierarchical approaches. Compared with the centralized approaches, the
decentralized and hierarchical approaches are more efficient in large-scale systems.
However, the existing stochastic energy management of BESSs in SDSs using decen-
tralized or hierarchical approaches either considers the optimization problem of DSO
or customers as the main problem, and the overall benefit of DSO and customers has
not been considered. In this thesis, a hierarchical and decentralized stochastic en-
ergy management scheme is proposed to address the aforementioned issues. The
energy management problem of smart distribution systems is formulated based on
a two-layer architecture and is solved in a decentralized manner. In this way, most
of the computations are processed by the end-users, which will significantly reduce
the DSO’s computational complexity. Simultaneously, the hierarchical control struc-
ture allows the DSO to regulate the energy management decisions of end-users with
simple instruction signals.

• Distributionally Robust Stochastic Energy Management of BESSs
For SDP approaches, the errors in random variable PDF estimations can significantly
affect the performance of stochastic energy management of BESSs in SDSs. To ad-
dress the errors of random variable PDF estimation, the usage of robust optimiza-
tion method in SDP approaches has been well studied to improve the robustness of
solutions to extreme conditions. However, considering the single-point distribution
of extreme conditions will lead to overly conservative solutions that can affect the
economics of stochastic energy management of BESSs. In this thesis, the stochastic
energy management of B2G-enabled EBCSs with RES and integrated BESS is inves-
tigated to address the errors in PDF estimations of random RES power output and
EBs that are highly statistical. This problem is formulated as a DRMDP with uncer-
tain parameters, i.e., transition probabilities and costs, to consider both the highly
statistical random RES and EBs with fixed routes and schedules for less conservative
solutions, and random bus loads with inaccurate PDF estimation for improved ro-
bustness. To utilize both the approximated reference PDF and moment information
obtained from empirical data, while considering the uncertainties of this approxi-
mated information, an event-based ambiguity set with combined statistical distance
and moment information is developed to achieve minimax-regret criterion for robust
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solutions that are less conservative. Moreover, a heuristic regret function is proposed
to obtain tractable solutions, based on which the day-ahead dynamic prices, used for
the mitigation of EB charging impacts, are derived from the optimality conditions of
reduced mixed-integer linear programming (MILP) problems.

• Vulnerability Analysis of Cyber-Physical Security of BESSs in SDSs
Along with the development of ICTs in SDSs and BESSs, the future SDSs and BESSs
will become typical CPSs, which can facilitate the development of efficient and effec-
tive stochastic energy management of BESSs in SDSs. However, this also exposes the
BESSs in SDSs to severe cyber-physical attacks and cause new cyber-physical threats,
where the FDIAs that targets on the system information integrity has been seen as
one of the most severe threats. Thus, there is an urgent need to develop adequate
protection and countermeasures against the new cyber-physical threats, where a bet-
ter understanding of the construction principles and mechanisms of cyber-physical
threats to BESSs in SDSs is essential. In this thesis, the vulnerability analysis of BESSs
in SDSs to FDIAs is conducted. More specifically, the construction principle of prac-
tical FDIAs in SDSs is investigated. The existing DSSE is extended to multiphase and
unbalanced linear DSSE, based on the local states (i.e., the complex voltage of local
bus) only. Then, the construction of three-phase coupled FDIAs, considering the cou-
pling among phases, is introduced. To reduce the number of required measurements,
the weak three-phase coupling for DSSE is investigated, which decouples the mul-
tiphase systems into independent single-phase systems. Moreover, the construction
of perfect three-phase decoupled FDIAs is developed. For DSSE with strong three-
phase coupling, which cannot be decoupled into independent single-phase systems,
the probabilities of successful three-phase decoupled FDIAs is derived numerically,
which can be used to find an FDIA against DSSE with the least efforts. Further, the
mechanism of FDAIs in SDSs targeting on the SoC function of BESSs is studied. The
mechanism of static FDIAs targeting on one snapshot of SoC estimation of BESSs
is analyzed, which can significantly affect the accuracy of SoC estimation without
being detected by the conventional measurement residual-based BDD in DSSE. Ac-
cording to temporal correlations of real-time terminal voltage measurements within
BESSs, a detection method based on the innovation test of measurements is devel-
oped to detect the static FDIAs against SoC estimation. Next, the mechanisms of
sequential FDIAs against SoC estimation of BESSs is studied. The proposed sequen-
tial FDIAs can bypass the conventional measurement residual-based BDD and in-
novation test-based detection, with significant impacts on SoC estimation accuracy.
Further, an online approach is proposed for the practical construction of a sequential
FDIA. From the vulnerability analysis of cyber-physical security of BESSs in SDSs,
it can be observed that for practical sequential FDIAs, there is an assumption about
the insignificant changes of lumped parameters. Thus, one of the possible directions
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for countermeasures against sequential FDIAs is to insert watermarks to alternate
the lumped parameter by leveraging the concept of coordinated parameter variation
defense (CPVD). However, there still exist great challenges in designing optimal wa-
termarks that can cause significant variations of lumped parameters while imposing
the least impacts on the performance of SoC estimation.

1.5 Thesis Outline

In this thesis, the stochastic energy management and cyber-physical security of BESSs in
SDSs are studied. For the stochastic energy management of BESSs, the MDP-based tech-
niques, which are inherently developed for sequential decision-making problems under
randomness, are mainly considered. Firstly, the energy management of single demand-
side BESS, with a specific application in greenhouses, is studied for electricity usage cost
reductions. In this study, the MMDP is used to accommodate the multiple energy path-
ways with distinct timescale characteristics in greenhouses. Then, inspired by the MDP-
based stochastic energy management of individual BESS, a hierarchical and decentralized
energy management scheme using Dec-POMDP for stochastic energy management of mul-
tiple BESSs is proposed to mitigate the impacts of BESSs on quality of supply voltage
in SDSs. Moreover, by considering the EBs with B2G capabilities as mobile BESSs, the
stochastic energy management of EBCSs is studied to reduce EB charging costs with miti-
gated charging impacts on SDSs. In this study, the DRMDP is leveraged to address the high
degree of randomness caused by the mobility of EBs for robust solutions that are less con-
servative. Considering the dependency of effective energy management of BESSs on the
communication networks in SDSs and the vulnerability of SDS communication networks
to common cyber attacks, the cyber-physical security of BESSs in SDSs is analyzed by in-
vestigating the mechanism of typical cyber-physical attacks, i.e., FDIAs, against BESSs in
SDSs. More specifically, this thesis consists of six chapters and is organized as follows:

• Chapter 1: Introduction - The research background is first introduced in this chapter
to address the importance of this research. Then, the general terms used in this thesis
are described to highlight the scope of the research. Also, the research problems
are defined, followed by a review of relevant literature to highlight each research
problem’s research challenges. In the end, the motivation and contributions of this
thesis are presented.

• Chapter 2: Stochastic Energy Management in Greenhouses with RES and Energy
Storage Systems - This chapter presents a stochastic multi-timescale energy man-
agement scheme of greenhouses with RES and energy storage systems. An optimal
energy management problem is formulated using MMDP, where both the optimal so-
lution and approximation solution with less computational complexity are derived.
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The performance of this proposed energy management scheme is evaluated using
case studies based on real data.

• Chapter 3: Stochastic Energy Management of BESSs at High Penetration Level
in SDSs - This chapter presents a hierarchical and decentralized stochastic energy
management scheme for smart distribution systems with high BESS penetration. An
energy management problem is formulated based on a two-layer hierarchical archi-
tecture and an energy management scheme based on Dec-POMDP is proposed to
solve the formulated problem in a decentralized manner. Also, a heuristic search
and pruning method is proposed to reduce the computational complexity. The per-
formance of the proposed scheme is evaluated using case studies based on IEEE 5-
bus test feeder and IEEE European low voltage test feeder.

• Chapter 4: Stochastic Energy Management of Electric Bus Charging Stations with
B2G Capabilities - In this chapter, the stochastic energy management of EBCSs with
RES, BESSs, and B2G capabilities, using day-ahead dynamic prices is investigated,
where the problem is formulated as a DRMDP with an event-based ambiguity set to
achieve minimax-regret criterion for robust solutions that are less conservative. Fur-
ther, a heuristic regret function is proposed for tractable solutions with less computa-
tional complexity. The performance of the proposed method is evaluated using case
studied based on real EB data and IEEE test feeders.

• Chapter 5: Cyber-Physical Security Analysis of BESSs in SDSs - This chapter
presents the construction principle of FDIAs in multiphase and unbalanced SDSs.
The construction of three-phase coupled FDIAs is introduced. To reduce the num-
ber of required measurements, the perfect three-phase decoupled FDIAs are investi-
gated with the probabilities of successful attacks derived numerically. Based on the
proposed construction principle of FDIAs in SDS, the mechanism of FDIAs against
SoC estimation of BESSs in SDSs is studied by considering the temporal correlations
of BESS measurements. The analytical results are verified by simulations.

• Chapter 6: Conclusions and Future Works - The contributions of this thesis and the
future works are summarized in this chapter.



2
Stochastic Energy Management in

Greenhouses with RES and Energy Storage
Systems

In this chapter, the stochastic energy management of demand-side BESSs is studied with
its application in commercial greenhouses. In commercial greenhouses, the CHP units and
electric heaters are generally equipped to reduce the overall energy costs. The stochas-
tic energy management of commercial greenhouses needs to consider the coupled electri-
cal and thermal processes. In practice, the electrical and thermal processes have distinct
timescale characteristics, due to different response times [23].

This phenomena is very common in CHP systems with cogeneration of electrical and
thermal powers [123]. For the energy management of CHP systems, the distinct timescale
characteristics are addressed by formulating two coupled optimization problems with dif-
ferent timescales for electrical and thermal processes, receptively. Then, based on the op-
erating mode, i.e., the thermal-demand leading mode or electrical-demand leading mode,
either the optimal thermal power dispatch or electrical power dispatch is determined pri-
marily [124]. Then, the dispatch of the rest power will be performed according to the
feasible operation region of CHP. However, this approach cannot guarantee the optimality
of the energy management for the whole energy system [125]. The optimal dispatches of
CHP systems can be achieved by formulating these two processes into one process in either
the slow timescale of thermal process or the fast timescale of electrical process. However,
by considering these two processes in a slow timescale, the dispatch for electrical process
usually results in high electrical generation, due to the fluctuation of electrical demand. On
the other hand, the usage of fast timescale for both processes will increase the computa-
tional complexity significantly [126,127]. In this chapter, a novel stochastic multi-timescale

22
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energy management scheme of greenhouses with RES and electrical/thermal storage sys-
tems is presented, where the electrical grid, PV system with dual-axis solar trackers, and
CHP unit are used as the energy sources. A comprehensive mathematical model is devel-
oped for a greenhouse with the integration of electrical/thermal energy storage systems
and RES to investigate the coupling between the electrical and thermal processes with dis-
tinct timescale characteristics. A stochastic multi-timescale energy management problem is
formulated by using MMDP, which involves two energy processes at different timescales,
i.e. a fast-timescale (FTS) process for electrical process and a slow-timescale (STS) process
for thermal process. And these two energy processes are coupled to consider the interac-
tion between the electrical and thermal processes. An approximation method is proposed
by considering the monotonicity of daily MMDP problem and the homogeneity of optimal
policy from day to day, to increase the computational efficiency of the energy management
problem for large-scale facilities.

2.1 System Model

Aluminum Shutter

Circulation Fans

Exhaust Fans

Wind

Circulation Fans

High Pressure Sodium Lamp

High Pressure Fogging 

System

Artificial 

Light

Air Flow

Air Flow

Mist

Monitoring System

 Inside Temperature

 Inside Humidity

 Inside Light Intensity

 Inside CO2 Level

Local Meteorological 
Station

 Temperature

 Humidity

 Solar Irradiation

 CO2 Concentration

 Wind Velocity

Liquid Convection Heater

Electric Heater

Electrical 
Energy

Thermal 
Energy

External Energy 
Generation Module 

Electrical 
Grid

PV Systems

CHP Systems

Energy Storage/ 
Recovery Module

Electrical 
Energy Storage

Thermal Energy 
Storage

Electrical Energy

Thermal    Energy

Commercial Greenhouses

Energy Conversion Module

Figure 2.1: The architecture of energy management system.

A typical greenhouse structure from [62] is shown in Fig. 2.1, where the inside envi-
ronment and weather conditions are monitored and recorded. Exhaust fans, aluminum
shutters, high pressure sodium (HPS) lamps, high pressure fogging (HPF) system, and
electric and liquid convection heaters are implemented to regulate the inside environment.
To service and manage such electrical and thermal demands, an external energy system
consisting of generation, storage and recovery components is integrated. For generation,
a PV system and CHP unit are used to increase the energy efficiency of the greenhouse
[63]. Thermal and electrical energy storage is used to respond to the real-time greenhouse
demands and recover underutilized heat and power. The system is further connected to
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Figure 2.2: An illustration of the thermal and electrical processes.

the electrical grid for the stability of operation. An illustration of the interaction between
thermal and electrical processes is shown in Fig. 2.2. The proposed energy management
system consists of three sectors. Sector I is for the electrical process, in which the electri-
cal grid and PV systems, combined with the electrical energy storage, provide electrical
power for the electrical devices, i.e. HPS lamp, aluminum shutter, circulation fans, HPF
system, and exhaust fans, to regulate the inside light intensity, humidity, and CO2 level.
Sector II represents the thermal process, where the CHP systems are utilized, together with
the thermal energy storage, to supply thermal power for the thermal devices, i.e. liquid
convection heaters, to regulate the inside temperature. The paths a− g enclosed by sector
III indicate the interaction between the thermal and electrical processes. In particular, path
a represents the interaction between thermal and electrical supply caused by the cogener-
ation property of CHP systems. Path b indicates that the electric heaters consume electric
power to generate thermal power, which also introduces the interaction between the ther-
mal and electrical processes. Paths c − g represent the interaction caused by the thermal
effects of the operations of HPS lamp, aluminum shutter, circulation fans, HPF system,
and exhaust fans. In the rest of this section, the mathematical models of each components
and the interaction between thermal and electrical processes are discussed. For analytical
tractability, the time horizon is divided into consecutive time slots with equal duration
∆t. In this section, the timescale characteristics of electrical and thermal processes are not
considered and ∆t is used for both electrical and thermal processes.

2.1.1 The Mathematical Model of Greenhouses

The mathematical model of the inside greenhouse environment, i.e., temperature, humid-
ity, light intensity, and CO2 concentration, is presented. The discrete first-order heat equa-
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tion is used to describe the inside temperature as follows [62]:

(T int+1 − T int )ρaircairV gh = (qext + qeht + qhpst + qsolart − qcont − qplantt − qhpft

− qventt )∆t, (2.1)

where the term (T int+1 − T int )ρaircairV gh represents the total thermal energy required to
increase the inside temperature of a greenhouse with volume V gh, from T int to T int+1. This
amount of thermal energy is provided by the external heat supply qext and the thermal
power of electric heaters qeht , at time slot t. It is also affected by the thermal power of
HPS lamps qhpst , solar irradiation qsolart , thermal loss through cover and ground qcont , heat
absorption by plants qplantt , evaporation heat of HPF system qhpft , and the heat exchange
through natural and forced ventilation qeft . The heat absorption by plants depends on
the inside light intensity, temperature, and humidity [57]. In a greenhouse with a large
air space, the natural ventilation is affected by the forced ventilation, variable (on or off)
of shutters, and wind velocity, while the forced ventilation depends mainly on the fan
staging [145]. The inside humidity, light intensity, and CO2 concentration are modeled
based on the agricultural practices and greenhouse structural properties described in [57].

The inside humidity is evaluated by the inside temperature and air water content, and
the inside air water content is determined by

(W in
t+1 −W in

t )V gh = (Ẇ vent
t + Ẇ hpf

t + Ẇ plant
t )∆t, (2.2)

where the total inside water content change (W in
t+1 −W in

t )V gh of a greenhouse with vol-
ume V gh is determined based on the water content exchange rate between the inside and
outside air through the natural and forced ventilation Ẇ vent

t and the water content gener-
ation rate of the HPF system Ẇ hpf

t . Also, the plants will increase the inside water content
at the rate of Ẇ plant

t , through the transpiration process. The plants transpiration rate is a
function of the plants weight, inside temperature and air water content [57]. The plants
weight is modeled by using the plants CO2 generation rate as in [146]. The inside light
intensity received by the plants during time slot t depends on the solar irradiation and the
light intensity of HPS lamps for time slot t, as

Lint = ηsolarLt + Lhpst . (2.3)

Based on the mass balance of open system, the inside CO2 concentration is calculated as

(Cint+1 − Cint )V gh = (Ċventt + Ċplantt )∆t, (2.4)

where the total amount of CO2 change (Cint+1−Cint )V gh for a greenhouse with volume V gh,
depends on the CO2 mass exchange rate between the inside and outside air through the
natural and forced ventilation Ċventt and the CO2 generation rate of the plants Ċplantt . For
all the time periods t, the following constraints are applied,

Mmin ≤Mt ≤Mmax, (2.5)
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Figure 2.3: The simulation results of inside temperature and humidity in comparison with
measurement data.

where M denotes T in, H in, and Cin. Also, the daily light integral (DLI) has to be met [56],
which is expressed as, for all time t within one day,∑

t

(max{0, Lint − Linmin}) ≥ LinDLI . (2.6)

The above equation indicates that the aggregated useful light intensity, that is greater than
or equal to a threshold Linmin (i.e., the minimum light intensity that can activate the pho-
tosynthesis process of plants) should be greater than or equal to the required DLI (LinDLI )
to guarantee the yield of plants. Different from the other research works on greenhouses
energy management [59–62], which only consider the attribution of the botanical char-
acteristics of the plants to the inside CO2 concentration (i.e. Ċplant), in this work, we also
consider the attributions of the plants to the inside temperature qplant and humidity Ẇ plant.
As shown in Fig. 2.3, by considering the attributions of the plants to the inside tempera-
ture and humidity, the model accuracy can be improved, which will further improve the
accuracy of proposed energy management scheme. The details of the parameters used in
this case study are presented in Section 2.4.
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2.1.2 The Load Model of Greenhouses

For a well-controlled greenhouse, the electrical power demand arises from the power con-
sumption of the electric heaters, the exhaust fans, the shutters, the HPS lamps, and the
HPF system. While the thermal power demand is from the required external and electric
heaters thermal power supply. The total electrical and thermal demand of a greenhouse
can be expressed, respectively, as

pt = peht + peft + phpft + psht + phpst (2.7)

qt = qext + qeht . (2.8)

In this work, we consider a typical setup of commercial greenhouses, such as the one used
by Bonnyville Forest Nursery Inc. In particular, due to the consideration of the capital costs
of greenhouses construction, the exhaust fans and aluminum shutters are not equipped
with variable-frequency drives (VFDs). This makes the control variables of the exhaust
fans and aluminum shutters to be either on or off. Also, the high-pressure sodium lamps
are controlled to be turned on/off simultaneously to guarantee the even distribution of
light intensity within greenhouses [56]. The existing high-pressure fogging systems for
greenhouses usually uses the pressure from the city water system, and the only power
consumption is to move the fogging systems horizontally at a constant speed. So, in our
study, for the exhaust fans, pef is zero if they are off, and pef equals to the rating power of
exhaust fans if they are on. In addition, psh equals to the shutter motors rating power, when
the aluminum shutters are controlled to be fully opened from fully closed, and vice versa.
Currently, all the HPS lamps are controlled simultaneously to be turned on or off, and phps

represents the total power of all the HPS lamps if they are turned on. The HPF system uses
the city water pressure to generate the water content, and the only power consumption is
the motor used to move the fogging pipes horizontally at a constant speed, when the HPF
system is turned on. Some recent research works indicate that, the energy efficiency of
greenhouses operation can be improved by adding VFDs. And with the implementation
of accurate Photosynthesis Activation Radiation (PAR) sensors, the high-pressure sodium
lamps can be controlled individually to further improve the energy efficiency of green-
houses [147]. An extension to consider the control of exhaust fans and aluminum shutters
with VFDs and the individual controls of HPS lamps for different PAR sensor monitored
areas is left for future work.

2.1.3 The Stochastic Models of Weather Conditions

In the energy management problem of greenhouses with RES, the randomness arises from
the PV system, which uses the solar irradiation to generate electricity, and the greenhouses
load caused by the inside environment regulation, which is affected by the weather con-
ditions, i.e. the outside temperature, humidity, solar irradiation, wind speed, and CO2
concentration. Then, the randomness of the RES and greenhouses can be addressed by
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a proper stochastic model of the weather conditions. The Markov chain with nonhomo-
geneous state transition probabilities [148] is used to model the stochastic outside tem-
perature, humidity, solar irradiation, wind speed, and CO2 concentration, individually.
Then, by using the segmentation methods [149], one day can be divided into several time
segments, with homogeneous state transition probabilities for each of them. While, for
different time segments, the state transition probabilities are nonhomogeneous. And the
nonhomogeneous state transition probabilities of the weather conditions are denoted as
Pt(Tt+1|Tt), Pt(Ht+1|Ht), Pt(Lt+1|Lt), Pt(vt+1|vt), and Pt(Ct+1|Ct), respectively. Instead of
forecasting the weather conditions ahead, in our research work, we use the Markov deci-
sion process to include the randomness of the weather conditions in the formulation of the
stochastic energy management problem, which will be discussed in detail in Section 2.2.

For an arbitrary time segment o, the intra-segment homogeneous transition probability of
state X , P (X ′|X), can be calculated by using the historical data, through the maximum
likelihood estimation [148], where the maximum likelihood estimation for the homoge-
neous transition probability can be obtained through either parameter elimination or La-
grange multiplier method, which is given as [150]

P (X ′ = xo,2|X = xo,1) =
No,12

No,1
, (2.9)

where No,12 is the total number of occurrences of the transitions from state xo,1 to xo,2,
and No,1 is the total number of occurrences of the transitions from state xo,1, within the
time segment o. For the inter-segment transition from time segment o to time segment
o + 1, the state at the end of time segment o is the state at the beginning of time segment
o+ 1. The transition probability of the state at the end of time segment o should follow the
intra-segment transition probability of time segment o+1 [149], which is the inter-segment
nonhomogeneous transition probability, and can be expressed as

Pto,end(X
′ = xo+1,2|X = xo,1) =

No+1,12

No+1,1
, (2.10)

where to,end is the time slot at the end of time segment o, No+1,12 is the total number of
occurrences of the transitions from state xo,1 to xo+1,2, and No+1,1 is the total number of
occurrences of the transitions from state xo,1, within the time segment o+ 1.

2.1.4 The Models of Energy Conversion Module

In this work, the multi-stage steam turbine CHP is considered, in which the feasible com-
binations of electrical power and thermal power are enclosed by the conceptual feasible
region [151]. The combined electrical and thermal outputs of the multi-stage steam tur-
bine CHP can be expressed in piece-wise function as

BLli(q
chp) ≤ pchp ≤ BLui (qchp), for qchp ∈ qchp

i . (2.11)
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The above equation indicates that the extractable electrical power from a multi-stage tur-
bine CHP pchp, which runs at qchp thermal power output, can be any value between the
lower boundary BLli(q

chp) and upper boundary BLui (qchp). Then, the cost of the CHP for
the generation of feasible amounts of electrical and thermal powers is given by [152]

Dchp = Dcp(pchp, qchp) +Dch(qchp), (2.12)

where the electrical generation cost isDcp(pchp, qchp) = [a1p
chp+a2(pchp)2+a3p

chpqchp]D̄fuel

∆t and the thermal generation cost isDch(qchp) = [a4q
chp+a5(qchp)2]D̄fuel∆t. The thermal

generator ramping model is defined in [153].
The Lithium-ion battery can be modeled based on the state of health (SoH), depth of

discharge (DoD), and state of charge (SoC) [154]. Based on Peukert’s law, the battery effec-
tive discharging power, pbat < 0, is given by

pbatt = ψtUC̄[
∆t

Y
]
τ−1
τ (ωtη

bat)
1
τ . (2.13)

This equation indicates that the effective discharging power depends on the DoD ωt, SoH
ψt, and the real discharging time ∆t. The effective charging power pbat > 0 can be deter-
mined based on Coulomb’s law, given by pbatt = UC̄ωtY/∆t. For each discharging/charging
cycle, the SoH is reduced, due to the degradation of battery lifetime, as

ψt′ = ψt − [e(s̄t−0.5)κ]/[b1|ωt|b2 + b3], (2.14)

where the average SOC s̄t =
st′+st

2 , and st′ = st + ωt. Also, b1|ωt|b2 + b3 is the battery
lifetime degradation function for average SOC resides at 50%, and e(s̄t−0.5)κ compensates
for the varying average SOC. The cost due to battery lifetime degradation is expressed as

Dbat(st, ωt) = D̄bat(
e(s̄t−0.5)κ

b1|ωt|b2 + b3
). (2.15)

The available thermal energy stored in kWh, of the thermal storage devices depends
on the injected thermal power and extracted thermal power [155], and is determined as

sht′ − sht = qht ∆t, (2.16)

where qh < 0 and qh > 0 represent the thermal power extracted from and injected into
the storage device, respectively. The PV system with dual-axis solar tracker is modeled
with combined efficiency, which includes the PV module and power inverter efficiencies,
system losses, and tracking efficiency. At time t, the electrical output of the PV system is
given by

ppvt = ηpvApvLt. (2.17)
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2.2 Formulation of the Stochastic Multi-timescale Energy Man-
agement Problem

Greenhouses’ energy management problem with integrated RES and energy storage sys-
tems is essentially a sequential decision-making problem under uncertainties, which can
be formulated as an SDP problem. Also, for the modeling of stochastic weather forecasting
and battery degradation, the Markov chain model is well studied and has a good perfor-
mance [156–159]. Moreover, the state transitions in the SDP problem of greenhouse energy
management are partly random due to the uncertainties of RES and weather conditions,
and partly under the control of energy storage systems and other environment regulating
devices. So, the stochastic greenhouse energy management can be better formulated using
Markov decision process (MDP). The conventional MDP only considers a single timescale.
However, in practical greenhouse energy management problem, the regulation of inside
environment usually refers to multiple timescales. The operation of heating equipment al-
ways needs to consider the slow ramping rate of the temperature change. And the opera-
tion of electricity equipment usually happens in a relatively faster process. By considering
all these processes in a single fast timescale, the dimension of solution is too high to be
valid in practice [160]. And the electricity process modeling is less accurate if a single slow
timescale is considered. So, it is necessary to consider multiple timescales for different
processes, and formulate the greenhouse energy management problem in a MMDP.

Inspired by the multi-timescale problem of real-time operation and long-term planning
in processing industry [161], we formulate the stochastic multi-timescale energy manage-
ment problem of greenhouses as a MMDP, to account for the different timescales of electri-
cal and thermal processes, and the stochastic RES and weather conditions. Due to the
interaction between thermal and electrical processes, different from traditional MMDP
problem, the formulated MMDP consists of two coupled single-timescale MDPs, i.e. an
STS MDP and an FTS MDP for thermal and electrical processes, respectively. The tradi-
tional MMDP considers the solving of the STS MDP first, then the FTS MDP is solved for
each time slot of the STS MDP. This solution will be valid if the solution of the STS MDP
is independent of the solution of the FTS MDP. However, in our case, the regulation of the
inside temperature, which is of the STS MDP, will also depend on the operation of all the
electrical devices in the FTS MDP. So, the proposed MMDP formulation considers the STS
and FTS MDP as two parallel processes that have interaction.

2.2.1 Slow-timescale Thermal Process

Typically, the thermal process varies gradually due to the relatively slow heat exchange
and CHP ramping. Therefore, a STS MDP is used to model the thermal process. The
time horizon is divided into consecutive time slots with equal duration ∆ts, and the time
slots are denoted by n = [0, 1, 2, · · · ]. Then the STS thermal process is defined as a single-
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timescale MDP that operates at timescale ∆ts with finite state space Ss and finite action
space Js. In this work, since the energy storage systems are considered to be operated at
rated powers with discrete values, for the simplicity of analysis with analytical solutions,
the MDP-based energy management problem states and actions are segmented into dis-
crete values [162]. The actions can be easily discretized based on the rated powers. To
effectively discretize the states, the state space is first transformed into grids with the ver-
tices representing the discrete states. Then, the transition process of continuous states can
be simplified to the states’ transitions at the nearest vertex or the neighboring vertices [156].
Since the usage of neighboring vertices has better performance in many experiments for
our problem, the state space is discretized based on neighboring vertices in this work. At
an arbitrary time n, the state and action are vectors of variables in the form of

• Ssn =< T inn , Tn, Ln, s
h
n >, Ssn ∈ Ss;

• Jsn =< qchpn , qhn, q
eh
n >, Jsn ∈ Js,

where qexn = qchpn − qhn. And, by taking the action Jsn with state Ssn at time n, the STS MDP
has a bounded immediate cost Rsn(Jsn) = Dch

n (qchpn ), and the STS MDP nonhomogeneous
state transition function P sn(Ssn+1|Ssn, Jsn) is defined as

P sn(Ssn+1|Ssn, Jsn) =

{
Pn(Tn+1|Tn)Pn(Ln+1|Ln), if (2.1) and shn+1 − shn = qhn∆ts hold
0, otherwise.

(2.18)

In the STS process, the T inn+1 is determined by Ssn and Jsn. Also, the following constraints
applied, for any time n ≥ 0:

qchpn−1 − q
chp
ramp∆t

s ≤ qchpn ≤ qchpn−1 + qchpramp∆t
s (2.19)

shmin ≤ shn ≤ shmax (2.20)

qhmin ≤ qhn ≤ qhmax (2.21)

T inmin ≤ T inn ≤ T inmax, (2.22)

where the constraint (2.19) implies the ramping rate constraint of thermal generator. The
constraints (2.20) and (2.21) are the constraints of the thermal energy storage capacity and
operating limits, respectively. The constraint (2.22) represents the regulation requirement
of inside temperature.

2.2.2 Fast-timescale Electrical Process

The electrical process usually has a short response time of operation. Therefore, a FTS
MDP is used to model the electrical process. The discrete time slots, with equal duration
∆tf , are denoted as t = [t0, t1, t2, · · · ]. It is assumed that one time slot of the STS process
contains m time slots of the FTS process, i.e. ∆ts = m∆tf . And the time slot tnm of the
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FTS process denotes the same real time as time slot n of the STS process. Then, within each
time slot of the STS process, the FTS process is defined as a finite-horizon MDP with length
m, finite state space Sf and action space Jf . The state and action of the FTS MDP at time t
are defined as

• Sft =< ψt, st, T
in
t , Ht, H

in
t , Lt, L

in
t , vt, Ct, C

in
t , pgt >, Sft ∈ Sf ;

• Jft =< ωt, p
chp
t , peft , p

hpf
t , psht , p

hps
t >, Jft ∈ Jf ,

where T intnm = T inn and pgt is the peak demand before time t. By definition, within one time
slot of the STS MDP, the state and action of the STS MDP will remain unchanged, and
the power of electric heaters depends on qehn , which is the action of STS MDP. Then, the
bounded immediate cost of the FTS MDP is given by

Rft (Sft , J
f
t , J

s
n) = Dcp(pchpt , qchpn ) +Dbat(st, ωt) + D̄el(pt − ppvt − p

chp
t + pbatt )∆tf

+ D̄peakmax{0, pt − ppvt − p
chp
t + pbatt − p

g
t } (2.23)

where D̄el is the electricity price, D̄peak is the peak demand electricity rate, and pt is the
same as (2.7) with peht replaced by pehn . And, the nonhomogeneous state transition function
of the FTS MDP is denoted as P ft (Sft+1|S

f
t , J

f
t , S

s
n, J

s
n) with the following expression:

P ft (Sft+1|S
f
t , J

f
t , S

s
n, J

s
n) =

Pt(Ht+1|Ht)Pt(Lt+1|Lt)Pt(Ct+1|Ct)Pt(vt+1|vt), if st+1 = st + ωt, p
g
t+1

= max{pgt , pt − p
pv
t − p

chp
t + pbatt }, (2.1)-(2.4), and (2.14) hold

0, otherwise

(2.24)

which states that the state transition of FTS MDP depends on the state and action of the
STS MDP.

Based on the discussion above, it can be concluded that the FTS MDP is, inherently, in-
duced by the STS MDP. We define a nonhomogeneous policy for the FTS MDP as πft (Sft , S

s
n

, Jsn) = Jft , with Sft ∈ Sf , Ssn ∈ Ss, Jsn ∈ Js, and Jft ∈ Jf . For all time slots t within STS
MDP time slot n, the FTS MDP is subjected to the following constraints:

BLli(q
chp
n ) ≤ pchpt ≤ BLui (qchpn ), for qchpn ∈ qchp

i (2.25)

smin ≤ st ≤ smax (2.26)

pbatmin ≤ pbatt ≤ pbatmax (2.27)

Mmin ≤Mt ≤Mmax, (2.28)

where the constraint (2.25) is the constraint of the CHP electrical power at a specific ther-
mal power output. The constraints (2.26) and (2.27) are the constraints of the electrical
energy storage capacity and operating limits, respectively. The constraint (2.28) represents
the regulation requirement of inside temperature, humidity, CO2 concentration, and light
intensity.



Chapter 2. Stochastic Energy Management in Greenhouses with RES and Energy Storage
Systems 33

…… 
FTS MDP

STS MDP

𝑡 = 𝑡ଵ

𝑡 = 𝑡଴
𝑡 = 𝑡௠ିଵ

𝑡 = 𝑡௠

𝑛 = 0
𝑛 = 1

𝑃଴
௦(𝑆ଵ

௦|𝑆଴
௦, 𝐽଴

௦)
𝑆଴
௦

𝑆ଵ
௦

𝑃௧బ
௙(𝑆௧భ

௙ |𝑆௧బ
௙ , 𝐽௧బ

௙ , 𝑆଴
௦, 𝐽଴

௦)

𝑅௧బ
௙
(𝑆௧బ

௙
, 𝐽௧బ
௙
, 𝑆଴

௦, 𝐽଴
௦)

𝑆௧బ
௙

𝑆௧భ
௙

𝑅଴
௦(𝐽଴

௦)

𝑞଴
௘௛ 𝑞଴

௖௛௣
𝑞ଵ
௖௛௣ 𝑞ଵ

௘௛

Figure 2.4: An illustration of the evolving process of MMDP.

2.2.3 The Formulation of Stochastic Multi-timescale Energy Management Prob-
lem as a MMDP

As shown in Fig. 2.4, the STS MDP and FTS MDP evolve simultaneously in a MMDP. And
for an MMDP, over one time slot of the STS MDP, the total cost consists of the STS MDP
immediate cost and them−slot cost of the FTS MDP. Therefore, a functionR can be defined
such that for all n ≥ 0 and t = tnm, · · · , t(n+1)m−1, Sft ∈ Sf , Ssn ∈ Ss, Jsn ∈ Jf , and πft , we
have

Rn(Sf , πfnm, S
s
n, J

s
n) = Rsn(Jsn) + E[

t(n+1)m−1∑
t=tnm

Rft (Sft , π
f
t , J

s
n)|Sftnm = Sf ], (2.29)

where Sf is the initial state of this m−horizon FTS MDP, πfnm is a sequence of FTS MDP
nonhomogeneous policies within the horizon from nm to (n + 1)m − 1, i.e. πfnm = {πftnm ,
πftnm+1

, · · · , πft(n+1)m−1
}, and the expectation term represents the expected total cost of the

m−horizon FTS MDP with given Sf and πfnm. Also, the cost incurred at time n + 1 of the
STS MDP is considered only in the next time slot of STS MDP. Therefore, R is an induced
cost function of the MMDP, through the coupling of the FTS MDP iterations that occur
during a single STS MDP time step. The above discussion implies that by following a se-
quence of FTS MDP nonhomogeneous policies, the initial state of the FTS MDP can affect
the cost, R. Then, we define the nonhomogeneous policy of the STS MDP, πsn, as a func-
tion πsn(Sftnm , S

s
n) = Jsn for each time n. Next, we formulate the stochastic multi-timescale

energy management problem as a finite-horizon MMDP with a period of one month, and
value function defined as

V (Sf , Ss) = E
{∑

n

[
Rsn(πsn) + E

( t(n+1)m−1∑
t=tnm

Rft (Sft , π
f
t , π

s
n)
)]∣∣∣Sft0 = Sf , Ss0 = Ss

}
, (2.30)

with the objective to minimize the total expected cost of the MMDP over infinite horizon
with constraints (2.6), (2.19) - (2.22), and (2.25) - (2.28).
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2.3 Solution of the Stochastic Multi-timescale Energy Manage-
ment Problem

For the proposed stochastic multi-timescale energy management problem, which is formu-
lated as a MMDP, the solution is the optimal policy sets for STS and FTS processes, at each
time slot, for a definite time horizon. We would like to emphasize that the time horizon
required for the optimization can be adjusted based on the electricity pricing scheme of
utility company, the accuracy of weather forecasting, and the computational complexity.
The corresponding MMDP only needs to adapt the length of the definite time horizon re-
quired for optimization. For the commercial greenhouse considered in this work, a popu-
lar industrial electricity pricing scheme called demand billing is used. The demand billing
contains three components for distribution-connected customers, i.e., customer charge, de-
mand charge, and energy charge. The customer charge is charged at $/day for customers
with distribution services connected to. The demand charge at $/kW and energy charge
at $/kWh are charged over a monthly billing period [163]. Accordingly, the time horizon
required for the optimization is selected as one month. Then, based on the definition of the
policy for MDP, as described in Section 2.2, the optimal policy sets can be used in real-time
operation, i.e., for each time slot in real time. The corresponding optimal action can be
determined based on the actual state vectors and the optimal policy sets of this time slot.
In the rest of this section, the derivation of the optimal solution for the proposed MMDP
problem will be presented.

From (2.30), it can be observed that for any given Ssn ∈ Ss and Jsn ∈ Js at time n, the
m−horizon FTS MDP has a total expected cost Rfnm for a nonhomogeneous policies set
πfnm and initial state Sf , in the form

Rfnm(Sf , πfnm, S
s
n, J

s
n) = E[

t(n+1)m−1∑
t=tnm

Rft (Sft , π
f
t , J

s
n)|Sftnm = Sf ]. (2.31)

Based on the principle of optimality [164], the m−horizon FTS MDP with any policy set
πfnm, has a backward recursion of the value function, and the corresponding Bellman equa-
tion for the FTS MDP, given Ssn ∈ Ss and Jsn ∈ Js, can be defined for t = t(n+1)m−2, · · · , tnm
as

V πfnm∗
t (Sft , S

s
n, J

s
n) = min

πft

{
Rft (Sft , π

f
t , J

s
n) +

∑
Sft+1∈Sf

[P ft (Sft+1|S
f
t , π

f
t , S

s
n, J

s
n)

V πfnm∗
t+1 (Sft+1, S

s
n, J

s
n)]
}
. (2.32)

For t = t(n+1)m−1, the Bellman equation is given by

V πfnm∗
t (Sft , S

s
n, J

s
n) = min

πft

{
Rft (Sft , π

f
t , S

s
n, J

s
n)
}
. (2.33)

Since the FTS process is a finite-horizon MDP at given Ssn ∈ Ss and Jsn ∈ Js, with a simple
adaption of MDP theory [165], the following theorem holds.
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Theorem 1. For given Ssn ∈ Ss and Jsn ∈ Js the nonhomogeneous policies set πf
∗
nm that satisfies

V πf
∗
nm

tnm = V πfnm∗
tnm , ∀Sftnm ∈ Sf (2.34)

is an optimal nonhomogeneous policies set for the nth m−horizon FTS MDP.

And this finite-horizon FTS MDP can be solved by using a backward induction algorithm
as follows [161].

Definition 1. (Initial state transition function) in the form of P fsn (Sft(n+1)m
|Sftnm , π

f
nm, Ssn, J

s
n)

defines the initial state transition function between consecutive m−horizon FTS MDPs.

Starting with initial state Sftnm of the nth m−horizon FTS MDP and Ssn and Jsn of the STS
MDP, the nth FTS MDP behaves under πfnm as a Markov chain. This results in a deter-
ministic state and action of the FTS MDP at time t(n+1)m−1. Then, the distribution of FTS
MDP states at time t(n+1)m, which is the initial state of next m−horizon FTS MDP, can be
obtained from the transition function P ft(n+1)m−1

.
It should be noted that, for finite-horizon MDP, the value function of the starting point

is the reward-to-go function of this finite-horizon MDP, i.e. V πfnm
tnm (Sftnm , S

s
n, J

s
n) = Rfnm(Sf ,

πfnm, Ssn, J
s
n) given Sftnm = Sf . Then, the cost function (2.29) can be rewritten as

Rn(Sftnm , π
f
nm, S

s
n, J

s
n) = Rsn(Jsn) + V πfnm

tnm . (2.35)

Then, the finite-horizon MMDP has the corresponding Bellman equation in the form

V ∗n (Sftnm , S
s
n) = min

πfnm,πsn

{
Rsn(πsn) + V πfnm

tnm +
∑

Sft(n+1)m
∈Sf

∑
Ssn+1∈Ss

{P fsn (Sft(n+1)m
|Sftnm , π

f
nm, S

s
n, π

s
n)

P sn(Ssn+1|Ssn, πsn)V ∗n+1(Sft(n+1)m
, Ssn+1)}

}
. (2.36)

Due to it’s nonhomogeneity, it should be noticed that V ∗n (Sf , Ss) 6= V ∗n′(S
f , Ss) for n 6= n′.

With the expression of the Bellman equation of the MMDP in (2.36), this finite-horizon
MMDP can be solved by using backward induction algorithm for a horizon of N , which
represents one month, with the FTS MDP being computed in parallel. The computational
complexity of the FTS MDP is O(m|Jf |(|Sf |)2) for each given pair of Ss ∈ Ss and Js ∈ Js.
And the total computational time for the finite-horizon MMDP isO(Nm|Jf ||Js|(|Sf ||Ss|)2).
The computational complexity is acceptable for growers with a single or a small number
of greenhouses. However, in order to find the optimal energy management policies for a
large number of greenhouses, the computational complexity still needs to be reduced. To
this end, an approximated solution method is proposed in the following.

From (2.24) and (2.29), it can be observed that by expressing the peak demand pg and
peak demand cost at any time t as pgt = max{pgt−1, pt−p

pv
t −p

chp
t +pbatt } and D̄peak max{0, pt−

ppvt − p
chp
t + pbatt − p

g
t }, respectively. We can use the peak demand and peak demand cost at

the end of one day to represent the peak demand and peak demand cost occurred over this
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day. Also, the final states of one day should be the initial states of the next day. The energy
and peak demand cost decreases as ppv and pg increase. The battery has lower degradation
cost at higher SoC, but faster SoH changes at either higher SoC or deeper DoD. Based on
these properties, the MMDP problem for one-day energy management has a monotone
optimal policy set [166]. This means that by giving the initial states of one day, the final
states of this day are unique. Further, based on the cyclical changes in day to day weather
conditions, we assume that the unique optimal policy set for any initial states is homoge-
neous from day to day. Then, with the unique optimal daily value function V ∗ and policy
set {πf∗, πs∗} for a month with K days, an approximated solution method, as shown in
Algorithm 1, can be used to find the minimal total monthly cost VK . In Algorithm I, the
same daily optimal value function V ∗ is used for all days within the same month. For a
given peak demand, pg1,1, and the first time slot of the first day of a month, the optimal
daily cost for the first day is V ∗1 (pg1,1) = V ∗(pg1,1). The peak demand for the first time slot
of the next day, pg1,2, can be determined and is unique, given by V ∗2 (pg1,2) = V ∗(pg1,2). The
same process can be applied to the remaining days of the same month. Then, the object is
to find the value of pg1,1 that minimizes the summation of the daily costs within a month.

Algorithm 1 Approximation method (for a month with K days)

Input: V ∗ and {πf∗, πs∗} obtained by using backward induction algorithm
Output: the optimal initial value of pg1,1

1: for all pg1,1 do
2: V ∗

K(pg1,1) = 0
3: for j = 1 · · ·K do
4: V ∗

K(pg1,1) = V ∗
K(pg1,1) + V ∗(pg1,j)

5: pg1,j+1 is determined based on {πf∗, πs∗} and pg1,j
6: end for
7: end for
8: return pg1,1 that has the minimum value of V ∗

K(pg1,1).

2.4 Case Study

The case study is performed based on a commercial greenhouse structure from Bonnyville
Forest Nursery Inc. [167]. The structure of this greenhouse, the electrical data measurement
and recording system for panel A, and the PV system with dual-axis solar tracker from
Pomphrey Industries Corporation [168], are shown in Fig. 2.5. Originally, this greenhouse
was operated with 24 natural gas unit heaters with a nominal thermal power of 300,000
BTU/hr for each unit heater, 24 horizontal ventilation fans, 96 HPS lamps, 12 aluminum
shutters with a total area of 20m2, and 3 exhaust fans with 1720cfm air flow each at rated
power. The inside humidity is regulated by the natural and forced ventilation. In our case
study, the horizontal ventilation is designed to operate routinely to guarantee the uniform
distribution of air content inside greenhouse. Spruce botany data is considered. And for
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Figure 2.5: The greenhouse for case study.

Figure 2.6: The measured response of inside temperature.

spruce, the minimum light intensity required by the photosynthesis is 1850µmoles/m2/s.
The desired DLI is 75moles/m2/day. The inside temperature is regulated between 12C◦

and 22C◦, while the inside humidity and CO2 are desired within the ranges of 65% −
68% and 330ppm − 1000ppm, respectively. A 1.5MW CHP is selected based on the peak
heat demand of this greenhouse which is 1055kW . And the ramping rate of the CHP
thermal heater is 15kW/min. The parameters of the battery are obtained by using the
curve-fitting method as in [169]. The electricity rate structure from BC Hydro for General
Service [170] is used, which is composed of an energy charge at 0.08$/kWh and demand
charge at 5.81$/kW over one billing period. And the flat rate 0.024$/kWh of natural gas
from ATCOEnergy [171] is used. For the timescale, we choose ∆tf = 30sec and ∆ts =

10∆tf = 5min.
The selection of the above time slot duration for FTS process is because the supervisory

control and data acquisition (SCADA) system, used to monitor and control the greenhouse
inside environment, has the finest resolution of 30 seconds. To determine the time slot du-
ration for the STS process, it can be observed from Fig. 2.6 that the measured temperatures
of the three areas, i.e. the west center area, southeast area, and center area, of the green-
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house under study, have relative slow variations due to the large space of the greenhouse
and the time that the heat transfer needs to reach different areas. From Fig. 2.6, we can
approximate the time required for all three area of this greenhouse to response to the same
scenario of heater operation and solar irradiation. It can be observed that the fastest heat
transfer comes from the solar irradiation, due to the even distribution of the solar irradia-
tion over the greenhouse space. It takes about 5 minutes, as shown in Fig. 2.6, to increase
the temperature of the entire greenhouse space. The time required to increase the tem-
perature of the entire greenhouse space by heaters is much slower, which is about 7-10
minutes, as shown in Fig. 2.6. To reduce the computational complexity of MMDP while
maintaining acceptable accuracy of inside environment regulation results, we can set the
time slot duration of the STS process as ∆ts = 5min.

The on-site weather conditions are monitored and used. As an example, the weather
conditions for a winter day and a summer day are shown in Fig. 2.7. We can see that the
fluctuations of temperature are relatively small for both winter and summer days. How-
ever, the solar irradiation, humidity, CO2 concentration, and wind speed have large fluc-
tuations. Due to the low temperature and solar irradiation in winter, which results in
high energy consumption, the case study is performed for the planting of spruce in winter.
The Fig. 2.8 shows the inside environment regulated by the proposed stochastic multi-
timescale energy management with an approximation solution. It can be observed that the
inside environment is regulated properly within the desired ranges. At night, the temper-
ature is regulated to a low value, which intends to reduce the heat losses caused by the
difference between the inside and outside temperatures. Also, the low temperature can
reduce the transpiration rate of plants which reduces the fluctuation of inside humidity
and CO2 concentration.

The corresponding operations of the greenhouse equipment are shown in Fig. 2.9, and
the energy consumption is shown in Fig.2.10. It can be observed that the HPS is turned
on during the time periods of high temperature. The main reason is that during high
temperature time periods, the heat requirement is low or close to zero. Accordingly, the
CHP, PV system, and battery can be used to reduce the peak electricity demand. Also,
the HPS is controlled to be turned on when the solar irradiation is less than but close to
1850µmoles/m2/s, which increases the utilization of solar radiation for plants photosyn-
thesis. And the total photosynthesis time is reduced from 12 hours to 8 hours, with a DLI
of 75.012moles/m2/day. The exhaust fans and aluminum shutters are used only for the
cooling at noon. While the HPF system is operated to increase the humidity when venti-
lation is on and/or temperature is high. Due to the flat electricity pricing rate, the battery
is controlled to shift the PV generation, which increases the utilization of RES. Also, the
battery is used to provide thermal power through electric heaters for time period with
low heat demand, since a high degradation cost is incurred if the battery is discharged at
a high power for a long period of time. On the other hand, the battery is used for peak
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Figure 2.7: Weather conditions for a summer day and a winter day.
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Figure 2.8: Regulated inside environment for a winter day.
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Figure 2.9: Optimal control strategies for a winter day.

demand reduction for a short duration. So, the battery is mainly used during the time pe-
riods when the electrical devices are operated, which may cause high peak demand. The
battery is only charged by using the excessive PV and CHP electrical power. And it is not
necessary to charge the battery by using the grid power to maintain a high SoC at the end
of a day, for the next day usage. Similarly, the thermal storage shifts the wasted thermal
energy (produced when the CHP is operated to reduce peak demand) to night time. Fur-
ther, it can be observed that the CHP always tries to provide thermal power by combining
the direct heat supply and the heat supplied by electric heaters, due to the fact that CHP
has higher efficiency than thermal generator.

To further evaluate the performance of our proposed method, the following cases are
considered for comparison:

• Case 0: The greenhouse does not have the RES and is controlled based on setpoint
manually setup by the greenhouse grower;

• Case 1: The greenhouse with RES is controlled based on the setpoint;

• Case 2: The greenhouse with RES is controlled by using the forecasting-based method
in [62], and is formulated as a single FTS process;

• Case 3: The greenhouse with RES is controlled by using our proposed stochastic
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Figure 2.10: Electricity and natural gas consumption for a winter day.

method, and is formulated as a single FTS process;

• Case 4: The greenhouse with RES is controlled by using our proposed stochastic
method, and is formulated as a single STS process;

• Case 5: The greenhouse with RES is controlled by using our proposed stochastic
method with approximation solution, and is formulated as a multi-timescale process.

• Case 6: The greenhouse with RES is controlled by using our proposed stochastic
method with exact solution, and is formulated as a multi-timescale process.

• Case 7: The greenhouse with RES is controlled by using the stochastic multi-timescale
method in [23], with approximation solution.

These cases are compared in terms of the natural gas and electricity energy consumption,
peak demand, energy cost, demand cost, and computation time. In this work, a PC with
Intel CORE i7-4770 3.4 GHz CPU and 8 GB DDR3 RAM is used as a test platform. The
results are shown in Table 2.1. By comparing the results of Case 1 and the Case 0, it can be
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Table 2.1
THE COMPARISON RESULTS OF EIGHT CASES

Gas
(GJ)

Electricity
(kWh)

Peak Demand
(kW)

Energy Cost
($)

Peak Demand
Cost ($)

Case 0 126.46 672.66 126.29 896.88 733.77
Case 1 89.89 230.89 109.72 615.71 637.49
Case 2 52.36 229.65 59.18 367.43 343.84
Case 3 44.32 194.37 30.27 310.99 175.88
Case 4 48.14 445.75 47.93 356.59 278.46
Case 5 48.18 225.45 31.12 339.20 180.80
Case 6 45.32 198.77 31.12 318.03 180.80
Case 7 50.18 220.11 46.45 352.17 269.88

Energy Cost
Reduction (%)

Peak Demand
Reduction (%)

Total Cost
Reduction (%)

Computation
Time (Hr)

Case 0 0.00 0.00 0.00 0.00
Case 1 31.35 13.12 23.15 0.00
Case 2 59.03 53.14 56.38 2.16
Case 3 65.32 76.03 70.14 14.42
Case 4 60.24 62.05 61.05 2.67
Case 5 62.18 75.36 68.11 2.74
Case 6 64.54 75.36 69.41 7.05
Case 7 60.73 63.22 61.85 2.71

observed that by adding RES, the total cost can be reduced to 23.15%. However, the peak
demand cost is only reduced by 13.12%, due to the low ramping rate of CHP. Moreover,
the energy cost reduction is only 31.35%, and this reduction is less than the price difference
of natural gas and electricity which is 70%, this is due to the inefficient operation of CHP.
From the comparison between Case 2 and Case 1, we can see that by using the forecasting-
based optimization method, the total cost reduction is improved. However, by comparing
Case 2 and Case 3, it can be observed that the forecasting-based optimization has low per-
formance than stochastic method, in terms of both energy cost reduction and peak demand
reduction. And the stochastic method has obvious advantage in peak demand reduction,
since the forecasting typically has higher accuracy in long term and a relative low accuracy
in short term. However, the stochastic method consumes more computation time than the
forecasting-based method. From the comparison between Case 3 and Case 4, by increasing
the time slot duration, i.e. change the process from single FTS process to single STS process,
the computation time is reduced significantly. However, the performance of energy and
peak demand cost reductions is worse, although it is still better than the forecasting-based
method. The results of Case 5 indicate that by using a multi-timescale process, the energy
cost and peak demand cost reductions are as good as Case 4, and the computation time is
reduced by 81%. The time saving is significant for growers with multiple greenhouses. The
comparison between Case 5 and Case 6 indicates that the approximation solution method
has total cost reduction that is close to the reduction by using exact solution method, and
the relative difference is about 1.87%. However, the time consumption reduction, by using
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Figure 2.11: The January wind speed data.

the approximation method, is about 61.13%. The peak demands of Case 5 and Case 6 are
the same, while the only differences are the gas and electricity consumption, which are
caused by the decision of the devices’ operating duration. As an example, from the mea-
surement data of wind speed in January (as shown in Fig. 2.11) it can be observed that, the
general statistics/trends of wind speed is similar from day to day. However, some days
may have unusually high wind speed at several time slots. The exact solution method is
able to consider the contribution of such unusual wind speed and reduce the duration of
the operations of exhaust fans and/or aluminum shutters. However, this will not affect
the occurrences and values of peak demands, since the operation duration reduction only
affects the opening percentage of the aluminum shutters and the on-time duration of the
exhaust fans. The peak demand occurs at the moment when the aluminum shutter motor
and/or the exhaust fans are turned on. Also, by comparing the results of Case 5 and Case
7, it can be observed that the method in Case 7 can reduce the total energy cost by 60.73%,
which is close to the cost reduction of our proposed method that is 62.18%; however, the
performance on peak demand reduction of the method in Case 7 is inferior to our method,
and the difference is about 16%.The main reason is that the method in Case 7 does not
consider the interaction between the STS and FTS processes by simply decoupling them
into to two independent processes. On the other hand, a main contribution of our work
is to formulate the stochastic multi-timescale energy management problem by using an
MMDP which involves two coupled energy processes at different timescales. Accordingly,
the total cost reduction of Case 7 is smaller than that of our method by about 9%, while the
computation time is almost the same.

Also, from the results of Cases 1-7, it can be observed that all the energy cost reductions
are less than 70%, which is due to the tradeoff between energy cost reduction and peak
demand cost reduction. The peak demand cannot be reduced to zero, since the power
provided to reduce the peak demand has to last for certain duration. If the time duration
is long enough, it is more economic to increase the peak demand. Also, we compare the
inside temperature regulated by using a single FTS process and a multi-timescale process,
and the results are shown in Fig. 2.12. We can see that the variations of inside temperature
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Figure 2.12: The inside temperature error caused by using multi-timescale process.

are low, and the maximum error is limited to 1.42%. The main reason is that the electrical
process can affect the thermal process; however, the impact is limited.

2.5 Summary

This chapter presents a multi-timescale stochastic energy management scheme for large fa-
cility with RES integration and energy storage systems, with its application in commercial
greenhouses. This proposed multi-timescale stochastic energy management scheme is able
to reduce the computational complexity significantly by formulating the whole optimiza-
tion problem into two coupled optimization problems for electrical and thermal processes,
respectively. In this way, the number of control variables and time slots in optimization
period can be reduced, which results in low dimension of solution.



3
Stochastic Energy Management of BESSs at

High Penetration Level in SDSs

The grid-tied residential BESSs with bidirectional power flows can benefit the customers
through time-shift for self-consumption, time-shift for feed-in of arbitrage service, smooth-
ing of RES feed-in, and other functionalities [172]. However, with the proliferation of res-
idential BESSs in SDSs, the stochastic energy management of BESSs that is lack of proper
regulation may cause active power loss increase, voltage profile variation, and other im-
pacts on the efficiency and stability of SDS operation [173]. For example, at high pene-
tration level, the energy management of BESSs based on pricing incentives may cause the
loss of load diversity or even cause new peak during the off-peak period. Thus, there is an
urgent need to investigate the stochastic energy management of BESSs at high penetration
in SDSs, which considers both the economics of demand-side electricity energy usages and
the efficiency and stability of SDS operation.

In the literature, the existing approaches for stochastic energy management of BESSs
at high penetration level can be classified into centralized, decentralized, and hierarchi-
cal approaches. As the most direct, the centralized energy management of BESSs in SDSs
can be easily implemented and can achieve the joint optimization of DSO and customers,
simultaneously [73]. However, at high penetration level, the large amount of residential
BESSs will increase the number of control variables significantly, which will cause high
computational complexity issue for centralized approaches. To reduce the computational
complexity, the decentralized approaches and hierarchical approaches have been proposed
and evaluated to distribute the computation to different agents in SDSs [68–71]. However,
due to the limitation of information in these two approaches, i.e., for the decentralized
approaches, the local agents are not aware of the system information or only have partial
system information, while for the hierarchical approaches, the agents in the top layer do

45
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not have the complete information of the agents in the next-level layers. Then, the de-
centralized approaches or hierarchical approaches for stochastic energy management of
BESSs either consider the optimization problem of DSO or customers as the main prob-
lem, and the overall benefit of DSO and customers has not been considered. Recently, the
analysis of hierarchical and decentralized control methods in the applications of battery
pack management [174] and frequency control [175] indicates that the hierarchical and de-
centralized control methods can achieve the coordination among different power system
devices at a low computational complexity. This property is particularly desirable for the
efficient energy management of residential BESS, for the joint optimization of DSO and
customers, at a high penetration level. However, how to apply it to the energy manage-
ment for smart distribution systems still requires extensive research. Also, to the best of
our knowledge, no research works have considered the nonhomogeneous stochastic re-
newable power generation and residential load during the formulations of optimal energy
management problems at the distribution system level.

In this chapter, an energy management scheme that can reduce the computational com-
plexity of DSO while considering the joint optimization of DSO and customers is proposed.
In the lower layer, the stochastic information of individual BESS is processed locally to re-
duce the computational complexity of DSO, and optimal policies are generated for the
minimization of customers electricity cost. In the upper layer, based on the optimal poli-
cies of individual BESS, the DSO minimizes the line losses while maintaining the voltage
levels within required range. System state information is generated to regulate the decen-
tralized control of individual BESS. A heuristic search and pruning method is proposed to
further reduce the computational complexity for SDSs with high BESS penetration.

3.1 System Model

An illustration of the smart distribution system considered is shown in Fig. 3.1. In partic-
ular, a group of households connected to the same service transformer form a secondary
distribution system. Three types of households in terms of Configurations I, II, and III,
respectively, are considered [176]. The definitions of these three configurations are:

• Configuration I: The node with grid-tied PV is modeled as PQ node with capabilities
of drawing/injecting power;

• Configuration II: The node with residential load only is modeled as PQ node, which
can only draw power;

• Configuration III: The node with grid-tied BESS is modeled as adjustable PQ node,
where the drawing/injecting active power can be controlled by EMS.

We consider a typical configuration of communication links for smart distribution sys-
tems [129]. Two-way communication links are established within the smart distribution
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Figure 3.1: An illustration of the smart distribution system.

system between the individual households and DSO through the DAUs. Within a sec-
ondary distribution system, the EMS for households with BESS and smart meters for
households without BESS communicate with the DAU through communication link 1©.
And the DAU can broadcast system information to the EMS through communication link
2©. Also, the DAU communicates with DSO through communication links 3© and 4©. In

a hierarchical and decentralized energy management framework, the feedback from DSO
to DAU is general system information such as the system voltage levels, rather than the
direct control signals for each EMS. In this way, the computational complexity at DSO can
be significantly reduced [177]. For the tractability of analysis, the time is partitioned into
time slots with equal duration T . The electricity price γ varies over time and is known a
priori. In the rest of this section, the detailed models of the distribution system, battery, PV
system, and residential load are presented.

3.1.1 Distribution System Model

In this research, we consider the smart distribution system as a balanced system which
can be represented by an equivalent single-line diagram. The equations in [178] are used
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to calculate the voltage levels and line losses. The relationship between the magnitudes
of primary-side voltages vi and vj of service transformers i and j, respectively, can be
expressed as

v2
j − v2

i =
(r2
ij + x2

ij)(p
2
i + q2

i )

v2
i

− 2(pirij + qixij), (3.1)

where pi and qi are, respectively, the effective active and reactive powers from service
transformer i flowing through branch ij that connects service transformers i and j. And
rij and xij are the resistance and reactance of branch ij, respectively. The active power loss
of branch ij can be calculated as

plossij = rij(p
2
i + q2

i )/v
2
i . (3.2)

3.1.2 Battery Model

In this research, the battery is modeled based on the degradation cost and effective charg-
ing and discharging powers. The charging and discharging processes are considered hav-
ing equivalent degradation effect but opposite power flow directions [179], i.e., negative
for charging and positive for discharging. The charging/discharging processes cause the
degradation of battery lifetime, and the battery lifetime degradation is quantified by the
degradation factor (E) which is the percentage of lost active capacity to the nominal ac-
tive capacity. For an arbitrary time slot t, the degradation factor can be calculated base on
Millner’s model [154] as

Et = (α|ωt|β + µ)−1e|st+
ωt
2
−0.5|κ × ψt, (3.3)

where the parameters α, β, and µ can be calculated by using the curve-fitting method. And
the parameter κ for Lithium-ion battery is 3.446 [154]. The state of charge (SoC) and SoC
change are denoted by s and ω, respectively, while ψt is the remaining active capacity. The
battery degradation cost (Cdt ) is calculated asCdt = ε×Et, where ε is the unit cost of battery
in $/Ah. And, for the next time slot t + 1, values of s and ψ are updated, respectively, as
st+1 = st + ωt and ψt+1 = ψt − Et/ψt. Based on Peukert’s law, the effective discharging
power pd, for given ψ and w, is given by

pd = f(ψ, ω) = ψUC̃
(
H/T 2

) 1−ι
ι (|ω|τ)

1
ι , (3.4)

where U is the battery terminal voltage, C̄ is the nominal battery capacity, H and T are,
respectively, the nominal and actual discharging time. Also, ι is the Peukert’s constant,
and τ is the round-trip efficiency of battery. The charging processes of residential batteries
in a short duration can be represented by constant voltage processes [180]. So, the power
pc, required to increase the SoC by w, is calculated as

pc = g(ω) = UC̃|ω|/T. (3.5)

For a given ψ, (3.4) and (3.5) are monotonous with respect to ω. This allows us to calculate
ω from pd and pc by using the inverse functions f−1 and g−1, respectively.
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3.1.3 PV System and Residential Load Model

In this research, the PV power generation is considered as a function of the solar irradi-
ation, and the equation in [181] is utilized. At time slot t, the PV power generation can
be calculated as pst = σAξt, where σ is the efficiency of PV system, A is the total area
of PV panels, and ξ is the solar irradiation in kW/m2. The stochastic solar irradiation is
modeled by nonhomogeneous Markov chain model [182]. For each time slot, the solar
irradiation is denoted as a state of the Markov chain. And the Bayesian approach can
be used to estimate the state transition probability P (ξt+1|ξt) of solar irradiation. To deal
with the nonhomogeneity of the solar irradiation, one day is partitioned into several time
segments, for each time segment the solar irradiation is treated as homogeneous Markov
chain [182]. So, the time-partitioned solar irradiation transition model can be expressed as
Pt(ξt+1|ξt). Moreover, the state transition probability of the PV power generation can be
determined as Pt(pst+1|pst ) = Pt(p

s
t+1 = σAξt+1|pst = σAξt) = Pt(ξt+1|ξt), which indicates

that the transition of the PV power generation follows the nonhomogeneous Markov chain
model of solar irradiation. In [134], it has been discussed that the residential load is asso-
ciated with the nonhomogeneous stochastic activity of daily life, which is modeled by the
Markov chain. So, the time-partitioned homogeneous Markov chain model is also used
to model the residential load with the nonhomogeneous transition probability Pt(plt+1|plt),
where pl is the residential load.

3.2 Problem Formulation

In this research, the stochastic energy management problem is formulated based on a
two-layer hierarchical architecture. In the lower layer, each BESS has its own policy for
stochastic BESS management to minimize the electricity cost. The battery power is deter-
mined locally by the EMS based on the policy, PV power generation, residential load, and
system information. In the upper layer, the DSO considers the aggregated power at each
service transformer and tries to minimize the line losses while maintaining the voltage lev-
els within required range. The BESS are controlled in a decentralized manner with partial
communications among the households within a smart distribution system, and there are
no control signals sent by DSO directly to any BESS. Next, the detailed formulations of the
hierarchical and decentralized stochastic energy management problem will be presented.

3.2.1 BESS Energy Management

The BESS can be implemented by the customers to increase the efficiency of installed PV
systems and reduce the electricity costs [184]. In this configuration, the PV power gener-
ation supplies the residential load first, and the surplus can be fed back to the electrical
grid or stored in the battery. Then, at time slot t, the power balance equation is given by
plt = pst + pbt + pgt . The cost Cgt for buying/selling energy from/to the electrical grid is



Chapter 3. Stochastic Energy Management of BESSs at High Penetration Level in SDSs 50

given by Cgt = pgt γt = (plt − pst − pbt)Tγt. As discussed in Subsection 3.1.2, with the given
values of ψt and pbt of battery, the SoC change ωt can be calculated by using the inverse
functions of (3.4) and (3.5). Also, we have st+1 = st + ωt and ψt+1 = ψt − Et/ψt. So, the
values of st+1 and ψt+1 at time slot t + 1, and the battery degradation cost Cdt at time slot
t can be determined explicitly from st, ψt, and pbt of time slot t. For notation clarity, we
define the battery state transition function as P (st+1, ψt+1|st, ψt, pbt) and battery degrada-
tion cost function as cb(st, ψt, pbt). Then, the immediate cost at time slot t, by taking action
pbt with state vector $t = {pst , plt, st, ψt}, is the summation of Cgt and Cdt , and can be ex-
pressed as Rt($t, p

b
t) = (plt − pst − pbt)Tγt + cb(st, ψt, p

b
t). Also, at time slot t + 1, the state

vector transits to $t+1 = {pst+1, p
l
t+1, st+1, ψt+1} with probability Pt(p

s
t+1|pst )Pt(plt+1|plt),

since PV power generation and residential load state transition processes are independent,
and the transition of battery state is determined deterministically by transition function
P (st+1, ψt+1|st, ψt, pbt). Based on the discussion above, the immediate cost and state transi-
tion of the stochastic BESS energy management problem can be described explicitly by the
current states and action taken. This allows the usage of MDP to formulate the stochastic
BESS energy management problem. For time slot t, with state vector $t and action pbt , the
total expected cost function Ct($t, p

b
t), i.e., the cost-to-go function for time slot t, can be

calculated as

Ct($t, p
b
t)

= Rt($t, p
b
t) +

∑
pst+1,p

l
t+1

Pt(p
s
t+1|pst ))Pt(plt+1|plt)P (st+1, ψt+1|st, ψt, pbt)Ct+1($t+1, p

b
t+1),

(3.6)

where ct+1($t+1, p
b
t+1) is the cost-to-go function for time slot t + 1. The objective is to

minimize the total expected cost, given by

min
pbt

Ct($t, p
b
t), (3.7)

and the constraints of this problem are related to the battery SoC, current, and SoC change,
respectively, given by

SoCmin ≤ st ≤ SoCmax (3.8)

−
∣∣Īc∣∣ < pbt/U <

∣∣∣Īd∣∣∣ (3.9)

0 ≤ |ωt| ≤ 1. (3.10)

3.2.2 Hierarchical and Decentralized Stochastic Energy Management BESSs in
SDSs

In this research, the decentralized partially observable Markov decision process (Dec-
POMDP) with a stochastic controller (SC) [183] is implemented to reformulate the general
Dec-POMDP to consider the stochastic information of individual households. We define
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each household as a single SC. The system state (St) is defined as the set of PV power gen-
eration, residential loads, and battery states of all households, i.e., St = {· · · , ps,nt , pl,nt , snt ,

ψnt , · · · , p
s,N
t , pl,Nt , sNt , ψ

N
t , · · · , p

s,m
t , pl,mt , · · · , ps,Mt , pl,Mt }, where n is the nth household with

BESS, m is the mth household without BESS, and N + M is the total number of house-
holds. Also, we define the action vector (pbt) of the system as the set of actions taken
by all the households with BESS, given by pbt = {· · · , pb,nt , · · · , pb,Nt }. Further, we define
Pt(St+1|St,pbt) and R(St,p

b
t), respectively, as the nonhomogeneous system state transi-

tion function and system immediate cost. As discussed in [75], to reduce the operating
cost of smart distribution systems through the coordination between the DSO and cus-
tomers, the system cost includes the electricity usage cost and electricity generation cost.
The electricity usage cost is the cost of purchasing the total net energy from the grid, i.e.,
γT [
∑L

l=1 p
loss
l +

∑N
n=1(pl,n−ps,n−pb,n)+

∑M
m=1(pl,m−ps,m)], where L is the number of total

lines and plossl is the line loss of single branch calculated in (3.2). Since we only consider
the renewable power generation, the electricity generation cost contains only the battery
degradation cost cb. Then, the immediate cost of system with electricity price γ can be
calculated as

R(S,pb) = γT

L∑
l=1

plossl + γT

M∑
m=1

(pl,m − ps,m) + γT

N∑
n=1

(pl,n − ps,n − pb,n) +

N∑
n=1

cb,n

= γT
L∑
l=1

plossl +
N+M∑
y=1

Ry($, pb). (3.11)

In centralized energy management scheme, the DSO controls the individual BESS di-
rectly which results in high computational complexity. To reduce the computation com-
plexity by using decentralized energy management scheme, we define a virtual battery
state (ν) as system information given by the DSO to individual BESS. The battery state
given in ν may or may not be the same as the actual battery state, and the actual battery
state is the constraint of BESS energy management problem. Further, we define P (νt+1|νt,
pbt) as the virtual battery state transition function. Then, the system total expected cost
function of this formulated energy management problem is given by

Ct(St,νt) =
∑
pbt

Π(pbt |νt)[R(St,p
b
t) +

∑
St+1

P (St+1|St,pbt)P (νt+1|νt,pbt)Ct+1], (3.12)

where Π(pbt |νt) is the set of distributions of actions for BESS with given ν. And the objec-
tive function is given by

min
νt,P (νt+1|νt,pbt)

Ct(St,νt), (3.13)

with the following constraints applied to:

1. The voltage magnitude of each service transformer has to be within required voltage
range [vmin, vmax];

2. BESS energy management constraints (3.8) - (3.10).
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Figure 3.2: The solution procedures of proposed scheme.

3.3 The Energy Management Scheme with Exhaustive Backups

In this section, we derive the solution of the proposed energy management problem for
smart distribution systems based on dynamic programming method with exhaustive back-
ups. An illustration of the solution procedures is shown in Fig. 3.2. In the lower level, each
SC determines the policy for optimal BESS energy management at given initial distribution
of system information, e.g., the initial virtual battery states and the system voltage levels.
Then, the power and cost determined by individual SC are aggregated at the DAU. In the
upper level, the aggregated power from different DAUs are used by the DSO to calculate
the line losses and voltage levels. Then, the system total expected cost is calculated based
on the aggregated cost and system line losses. The exhaustive backups are performed, with
updated distribution of system information, to find the minimized system total expected
cost under constraints and the perspective distribution of system information, i.e., the opti-
mal distribution of system information. The optimal distribution of system information is
used by individual BESS to determine the actual battery power based on the local informa-
tion, i.e., the actual battery states, PV power generation, and residential load. To address
the inaccuracy of long-term forecasting and guarantee the convergence of nonhomoge-
neous MDP and Dec-POMDP for smart distribution system energy management [185], a
discount factor, η ∈ (0, 1), is introduced to update the recursive cost Ct+1, in (3.6) and
(3.12), as ηCt+1.

As discussed in Subsection 3.2.1, the solution of individual BESS energy management
problem, for given state$, is the action pb∗ that minimizes the total expected cost C($, pb).
The dynamic programming with exhaustive backups is operated on Ct($t, p

b
t), for all pos-

sible $t, to find pb∗t that minimizes Ct($t, p
b
t) for perspective state $t, while subjecting

to the constraints (3.8)-(3.10). We define Π∗(pb|$) as the policy of BESS energy manage-
ment problem that maps the optimal battery action with respect to the BESS state, i.e.,
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the local information. As discussed in Subsection 3.2.2, for the decentralized coordina-
tion among BESS, each BESS is defined as a SC with virtual battery states ν. In conven-
tional Dec-POMDP, the policy Π(pb|ν) for individual SC is unknown and has to be solved
for. However, in this research work, the formulation of smart distribution systems energy
management problem in a two-layer hierarchical architecture with the individual BESS
functioning as a SC allows us to use the policy of individual BESS to represent the policy
of individual SC, and the policy of individual SC can be rewritten as Π∗(pb|ps, pl, ν), which
considers both the local information and system information ν. For a given set of initial
virtual battery states νt = [ν1

t , · · · , νnt , · · · , νNt ], each household has the corresponding bat-
tery power based on Πn∗(pb,nt |p

s,n
t , pl,nt νnt ) as discussed above. At the service transformer,

the powers are aggregated by the DAU based on the battery power, PV power generation,
and residential load. For example, the aggregated power pkt at time t of service transformer
k is pkt =

∑
n,m∈k(p

l,n
t − p

s,n
t + pl,mt + ps,mt )−

∑
n∈k p

b,n
t . Then, equations (5.7) and (3.2) are

used to calculate the voltage levels and line loss, respectively, based on the aggregated
power. Due to the independence among households and the dependence of battery state
transition on current battery states and action taken, the nonhomogeneous system state
transition P (St+1|St,pbt) can be expressed as

P (St+1|St,pbt) =
∏

m,n∈k
P (ps,nt+1|p

s,n
t )P (pl,nt+1|p

l,n
t )P (ps,mt+1|p

s,m
t )P (pl,mt+1|p

l,m
t )

P (snt+1, ψ
n
t+1|snt , ψnt , pnt ), (3.14)

where K is the total number of service transformers. Due to the decentralized formulation
of energy management problem for smart distribution systems, there is no system belief
state for the coordination among BESS [186]. In this research work, a correlated controller
Qc is formulated as nonhomogeneous random variables with variable qc, to coordinate
BESS based on the information of system voltage levels, and is given as

Qct(q
c
t ) =


P c,lt , if qct = Vl

P c,ht , if qct = Vh

P c,st , if qct = Vs

(3.15)

where P c,lt + P c,ht + P c,st = 1. The events Vl, Vh, and Vs are

• Vl = [min{v1
t+1, · · · , vkt+1, · · · , vKt+1} < vmin];

• Vh = [max{v1
t+1, · · · , vkt+1, · · · , vKt+1} > vmax];

• Vs = [∀k ∈ K, vkt+1 ∈ [vmin, vmax]].

Then, the virtual battery states transition function in (3.12) is now revised to Pt(νt+1|νt,
pbt , q

c
t ) to consider the information of system voltage levels. Different from the conven-

tional dynamic programming that updates the cost function, in our problem, we solve
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Figure 3.3: An illustration of the algorithm for exhaustive backups.

the proposed hierarchical and decentralized stochastic energy management problem by
solving the nonhomogeneous variables for distribution of system information, i.e., x(νt),
x(Qct) = Qct(q

c
t ), and x(Pt) = Pt(νt+1|νt,pbt , qct ). Further, in our problem, x∗(νt) is deter-

mined by x∗(Pt−1). Then the variables to be solved at time slot t are reduced to x(Qct) and
x(Pt), and the objective function is now given as minx(Qct ),x(Pt)Ct(St, x

∗(νt)). Note that
the same constraints as in (3.13) are also applied here. The optimal distributions of x(Qct)

and x(Pt) can be solved by performing dynamic programming with exhaustive backups
as shown in Fig. 3.3, for an example of a simplified system with two households. The Itera-
tion I is designed to search all possible expected total cost,Ct(St, ν1

t , ν
2
t ), for different x(P 1)

and x(P 2). After the convergence of dynamic programming, we have x∗(P 1
t ) and x∗(P 2

t )

that minimize Ct(St, ν1
t , ν

2
t ), which is the joint optimal distributions of x(P 1

t ) and x(P 2
t )

for ν1
t , ν

2
t , and x(Qct) at given St. Then, Iteration II is performed for an exhaustive search

on all possible distributions of x(Qc), by changing the variables P c,l, P c,h, and P c,s dis-
cretely, with repeated Iteration I. And Iteration II returns [x∗(P 1

t ), x∗(P 2
t ), x∗(Qct)], which is

the joint optimal distributions of x(P 1
t ), x(P 2

t ), and x(Qct) for ν1
t and ν2

t , at given St. Finally,
Iteration III finds the joint optimal distributions of x(P 1

t ), x(P 2
t ), and x(Qct) for all possible

sets of ν1
t and ν2

t at given St. By applying the exhaustive backups, the optimal solution can
be found with a computational complexity of O(N3|x(ν)||x(P )||x(Qc)|ε|$||pb|2), where ε
is the iterations the dynamic programming takes, and it is upper bounded by the value of
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1
1−η log

η2

1−η [183]. As we can see, this algorithm has a high computational complexity for
the DSO, especially with high BESS penetration level, i.e., when the value of N is large.

3.4 Energy Management Scheme with Heuristic Solution

In order to reduce the computational complexity, we firstly reduce the size of virtual bat-
tery states needed to be searched by exhaustive backups, i.e., the value of |x(ν)|, which is
based on the convexity of a discounted Dec-POMDP with denumerable states [187]. The
linear programming is used to find the approximated piecewise linear convex function of
the Dec-POMDP, for all νn

′
t , which is given as

Ct(St, ν
n
t , ν

n′
t )|(x∗(Pt),x∗(Qct )) + % ≤

∑
ν̂nt

x(ν̂nt )Ct(St, ν̂
n
t , ν

n′
t )|(x∗(Pt),x∗(Qct )), (3.16)

where
∑

ν̂nt
x(ν̂nt ) = 1 and for all νn

′
t , x(ν̂nt ) > 0, where νn

′
t is the initial virtual battery

states at time slot t for all BESS except for n. Solving the linear program in (3.16) for each
household by finding the maximum value of %, an approximated piecewise linear convex
distribution, x(ν̂nt ), can be found. This prunes initial battery states at each time slot, and
replaces the original distribution by piecewise linear convex function, and for an arbitrary
BESS n, |x(ν̂nt )| ≤ |x(νt)|. Due to the coordination among BESS, the computational com-
plexity of exhaustive backups is in the power of three of the BESS penetration level. So,
we further reduce the computational complexity for high BESS penetration by using the
heuristic search method. According to our definition, the virtual battery states transition
function Pt(νt+1|νt,pbt , qct ) depends on the information of system voltage levels Qc, and
the coordination of BESS can be achieved by adjusting the distribution function of Qc.
Then, the heuristic search method is conducted by performing Iteration I and the pruning
method, described by (3.16), on each SC, i.e., the BESS, independently by keeping the x(P )

and x(vn
′
) of other SC unchanged. This approach reduces the computational complexity

to O(N |x(ν)||x(P )||x(Qc)|ε|$||pb|2), which is linear with respect to the BESS penetration
level.

3.5 Case Study

In this work, a PC with Intel CORE i7-4770 3.4 GHz CPU and 8 GB DDR3 RAM is used
as a test platform. And the case study is performed based on the IEEE 5-node test feeder
(Case I) and IEEE European low voltage test feeder (Case II) [188]. For both cases, the
residential loads are considered as distributed load with data obtained from the Australia
government open-data center [189]. The solar irradiation data, over four years, are ob-
tained from NREL for Colorado south park mountain [190]. In this work, the sizes of the
defined action space and state space are 56 and 630, respectively. For the BESS, we con-
sider two types of batteries, i.e., the Tesla Powerwall [191] and Samsung SDI [192]. The
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round-trip efficiency τ of these two batteries are 92% and 95%, respectively. And the unit
cost ε of these two batteries are 0.25$/Ah and 0.23$/Ah, respectively. The Time-of-Use
electricity pricing scheme in [189] is used. For summer time, the on-peak period is 11:00
to 17:00, the mid-peak periods are 7:00-11:00 and 17:00-19:00, while the off-peak period is
19:00-7:00. The electricity rate for on-peak, mid-peak, and off-peak periods are 13.2, 9.5,
and 6.5 ¢/kWh, respectively. Based on ANSI C84.1 standard [193], the National Steady
State Voltage Regulation requires ±5% voltage variations for electricity distribution ser-
vice. To analyze the performance of proposed energy management scheme, four existing
energy management schemes are considered for comparison:

1. The energy management scheme proposed in [133], which considers only the maxi-
mization of customers’ utilities. This scheme does not involve the coordination be-
tween the DSO and customers;

2. The decentralized energy management scheme proposed in [68], which maximizes
the customers’ profits with the voltage regulation as a constraint;

3. The hierarchical energy management scheme proposed in [70]. In this scheme, the
DSO predetermines the power set points, based on the statistical information of PV
power generation and residential load, to minimize the line losses while maintaining
the voltage levels within required range. The optimization problem of individual
BESS is solved based on the predetermined power set points;

4. The centralized energy management scheme proposed in [75], in which the DSO co-
ordinate the BESS for cost reduction of both DSO and customers. And the stochastic
information of individual BESS is processed at the DSO.

Slack Bus 1

4

2

3

5

Original PQ load

PQ load with PV integration

PQ load with BESS integration

1 42 3

5

G

Figure 3.4: IEEE 5-node test feeder (Case I).

Table 3.1
NUMBER AND TYPES OF LOADS CONNECTED

Bus ID
1 2 3 4 5

Loads with PV - 6 4 3 5
Loads with BESS - 4 4 1 3

Conventional PQ loads - 2 1 1 1
Total loads - 12 9 5 9
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(b) Proposed scheme with heuristic search and pruning

Figure 3.5: The comparison of SoC profiles for three households at bus 5 (Case I).

The single-line diagram of Case I is shown in Fig. 3.4. The number and types of loads
connected to each bus are shown in Table 3.1. The bus 1 connected to the main grid is
selected as the slack bus. The Fig. 3.5(a) shows the SoC profiles of three households at
bus 5 for 5 days by using scheme 1). It can be observed that, for the maximization of
customers’ profits, the BESS strategies of these three households are similar. The BESS
charges the battery during off-peak periods and discharges the battery during mid-peak
and on-peak periods, which maximizes the customers’ revenue from selling power. Also,
for some off-peak time, the BESS discharges the battery to supply residential load. This
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Figure 3.6: Voltage profile of bus 3 (Case I).

Table 3.2
ELECTRICITY COST REDUCTION (CASE I)

Customers DSO Total
Energy management scheme 2) 32.1 -19.01 25.95262
Energy management scheme 3) 29.1 26 29.83178
Energy management scheme 4) 46 25 44.62617

Proposed scheme with
exhaustive backups 45.96 22 44.39252

Proposed scheme with
heuristic search and pruning 45.28 21.61 43.7315

is due to the fact that the PV surplus during mid-peak periods can be used to charge the
battery. The decision of charging the battery using PV power generation during mid-peak
periods is to maximize the revenue of selling power by shifting the PV surplus to on-peak
period which has the highest selling price. This results in the similar SoC profiles, which
leads to the concentrated power injections/drawings to/from the grid. This is the main
reason for the significant drops and rises of voltage levels with high BESS penetration. It
can be observed from Fig. 3.5(b) that, by using the proposed scheme with heuristic search
and pruning, the SoC profiles of these three BESS are differentiated from each other. This
can avoid the concentrated power injections and drawings.

As shown in Fig. 3.6, with energy management scheme 1), due to the concentrated
power injections to the grid during on-peak periods, the voltage level is greater than the
upper bound (1.05 p.u.) of required voltage variations. By using the energy management
scheme 2), the voltage levels follow the similar trend of the voltage levels of scheme 1), and
it regulates the voltage levels only when they are out of the required range. On the con-
trary, the energy management scheme 3) regulates the voltage levels with less fluctuations
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Figure 3.7: The computation time for Case I.

to minimize the line losses. The voltage profile after using our proposed schemes, with
exhaustive backups and heuristic search and pruning, are almost the same as the voltage
profile of energy management scheme 4). This indicates that the performance of our pro-
posed schemes in terms of voltage regulation is close to the centralized scheme, i.e., scheme
4), which is the optimal one. Also, from Table 3.2, it can be observed that, due to the lack
of the consideration of stochastic PV power generation and residential load, schemes 2)
and 3) have much lower total cost reduction, compared with scheme 4) and our proposed
schemes. Also, the scheme 2) can achieve a higher customer cost reductions compared
with scheme 3). However, it results in the significant line losses increment. By compar-
ing the results of our proposed schemes with the results of the scheme 4), our proposed
schemes can achieve almost the same results as that of scheme 4). This indicates that our
proposed schemes have the similar cost reduction performance as that of the centralized
scheme. Also, the performance of our proposed scheme with heuristic search and pruning
is close to the one with exhaustive backups. With regard to the computational complexity,
we study the above schemes at different BESS penetration levels. The results are shown in
Fig. 3.7. It can be observed that, as the penetration level increases, the computational times
of scheme 4) and 3) increase dramatically, with that of the scheme 4) being the highest one.
And the computational time of the decentralized scheme, i.e., scheme 2), is the lowest one.
Compared with scheme 2), our proposed scheme with exhaustive backups requires signifi-
cantly longer computational time; however, it requires significantly shorter computational
time than schemes 4) and 3).

The single-line diagram of Case II is shown in Fig. 3.8. For Case II, we consider 20
buses, out of the total 55 buses, having customers with BESS installed. And each of these
20 buses has 5-15 customers connected to, with 4-8 customers being equipped with BESS.
Since the solar irradiation data are measured at discrete stations, we assign the solar irra-
diation based on areas, according to the locations of measurement stations, as illustrated
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Figure 3.8: IEEE European low voltage test feeder (Case II).
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Figure 3.9: Voltage profile of bus 45 (Case II).

in Fig. 3.8. From Fig. 3.9 and Table 3.3, it can be observed that our proposed schemes
with exhaustive backups and heuristic search and pruning, for a larger case, have simi-
lar performance as the optimal centralized scheme 1). However, the computational time
of the centralized energy management scheme for a 30% penetration of BESS is around
1740 minutes, while that of our proposed scheme with exhaustive backups is 910 min-
utes, which is almost the half of the computational time required by centralized scheme.
By using the proposed scheme with heuristic search and pruning, the computational time
is further reduced to 407 minutes. It can be concluded that our proposed schemes can
achieve similar performances as that of the optimal centralized scheme, with significantly
reduced computational complexity.
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Table 3.3
ELECTRICITY COST REDUCTION (CASE II)

Customers DSO Total
Energy management scheme 4) 32.5 18.1 31.55794

Proposed scheme with
exhaustive backups 31.9 16.7 30.90561

Proposed scheme with
heuristic search and pruning 31.2 16.1 30.21215

3.6 Summary

In this chapter, the stochastic energy management of BESSs at high penetration level in
SDSs is investigated to mitigate the impacts of BESSs operations on SDSs. Comparing with
the existing approaches in literature, the hierarchical and decentralized stochastic energy
management approach proposed in this chapter is able to distribute most the computations
to local end-user EMSs, which can significantly reduce the computation burdens at the
DSO. Also, by leveraging the hierarchical structure, the decisions of end-user EMSs can
be well regulated by using system signals given by DSO. The integration of hierarchical
control structure and decentralized optimization is a promising solution to address the
stochastic energy management problems in large-scale energy systems.



4
Stochastic Energy Management of Electric Bus

Charging Stations with B2G Capabilities

In this chapter, the stochastic energy management of EBCSs with B2G capabilities is in-
vestigated, where the impacts of PDF estimation errors of random variables are consid-
ered and addressed by using distributionally robust optimization approaches. Due to the
high energy efficiency and zero-emission, EBs have attracted considerable attention for the
sustainable development of public transit systems [194]. As of 2017, there are more than
385,000 EBs in China, which is 17% of China’s public transit buses [195]. By 2025, Paris and
Amsterdam expect to achieve fully electrified public transit systems [196]. To further pro-
mote EBs’ adoption, the integration of RES with BESSs at EBCSs has been widely studied
for cost-effective and sustainable charging of EBs [81–83]. The publicly owned EBCSs of
EBs with B2G capabilities can function as mobile BESSs, which can help the EBCSs reduce
their operating costs through arbitrage services and provide a variety of ancillary services
DSO with extended flexibility and stability [199]. However, the randomnesses of RES gen-
eration and mobility of EBs, e.g., random charging duration and energy consumption, will
result in inefficient RES usage and unstable B2G capabilities. Also, the charging power
of EBs is usually several times higher than that of residential EVs, the uncoordinated EB
charging can have severe negative impacts, e.g., load fluctuations, generation costs incre-
ments, congestion, and voltage issues, on electric grids, especially in power distribution
systems. Thus, there is an urgent need to investigate the stochastic energy management of
EBCSs with B2G capabilities. However, in literature, there are no such works for EBCSs.

For EVs, the energy management of EVCSs are considered in market environments by
using price signals to relieve the congestion and regulate voltage levels [197, 198]. How-
ever, as discussed in [199], for the charging scheduling management and charging sta-
tion resource allocation, one of the issues is the multi-stage solutions, since the EV charg-
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ing requirements cannot be fulfilled in only one-time slot considering the distribution
system constraints. For the charging scheduling management involving multiple stages,
the stochastic and dynamic futures will significantly affect the current decisions. The
stochastic multi-stage quadratic programming [199] and chance-constrained multi-stage
optimization [200] are proposed to address the stochastic and dynamic futures with known
distributions of EV arriving and departures. However, the scenario tree of stochastic multi-
stage optimization often suffers from the curse of dimensionality, due to the consideration
of entire history [41]. Also, the linear interpolation is usually required for future expec-
tation value approximation and the solutions of multi-stage stochastic programmings are
usually intractable [201]. Recently, for the stochastic EV charging problems considering
multiple stages, the SDP has attracted great interests.

SDP requires accurate PDF estimation of random variables. Unlike residential EVs
with relatively constant loads, the varying bus loads can significantly affect the accuracy
of EBs stochastic models, especially for the power consumption estimation during regular
operation. As concluded in [89], the power consumption of standard EB in on-peak peri-
ods can be 2.3 times higher than that in off-peak periods. Due to multiple external factors,
such as weather, characteristics of time dimension, activities of individual passenger, and
regional demographics, the PDF of random bus loads cannot be precisely estimated [91].
The SDP is not risking aware of the large errors of PDF estimation of random bus loads.

RSDP for EV charging is investigated in [87], which shows that by considering high
degree of uncertainties introduced by wind generation, the SDP will cause a significant
reduction of the charging performance for EVs. However, the RSDP in [87] usually re-
sults in overly conservative solutions, due to the considering of single-point distribution
of extreme condition. Also, the solution in [87] is not tractable, and obtaining a global op-
timal solution is not guaranteed. Also, how to determine the price signals by considering
stochastic dynamic programming problem under large errors of PDF estimation still re-
quires intensive researches. To address the above issues, in this thesis, a stochastic energy
management approach for EBCSs with B2G capabilities is proposed based on the distribu-
tionally robust optimization methods.

4.1 System Model

The system architecture considered in this research is shown in Fig. 4.1. The EBCSs are
located at the depot and transit center. The photovoltaic (PV) and battery energy storage
systems (BESS) are considered for RES and ESS, respectively. Both EBs parking at EBCSs
and running on roads are considered. With B2G capabilities, the EBCSs connect to power
distribution system through bidirectional power flows and behave as energy prosumers.
With two-way communication links, EBs report their real-time information, e.g., locations,
velocities, and bus loads, to EBCSs for energy management. The EBCSs transmit informa-
tion of PV, BESS, and EBs to DSO for charging impact mitigation. For the tractability of
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Figure 4.1: System architecture for stochastic energy management of EBCSs in power
distribution system.

analysis, one day is divided into multiple time slots with equal length of ∆t. (an)n∈N is a
vector of R|N |×1 and 〈N〉 is a running index set. Next, the system models will be presented
in detail.

4.1.1 Battery Models for EBs and BESS

For both EBs and BESS, the LiFePO4 battery model in [154] is used, where charging and
discharging are equivalent processes with positive/negative values, respectively. The state
of charge (SoC) change θ with battery power P batt is determined as

θt+1 − θt = (P bt )τY τ−1/(cbC̄
τ∆tτ−1), (4.1)

where cb is Peukert’s constant, C̄ is nominal capacity, τ is round trip efficiency, and Y is
C-rate. Then. the battery degradation cost is calculated as

Cbatt (θt, P
bat
t ) = C̄be(κ|θ̄t−0.5|)/(b1|θt+1 − θt|b2 + b3), (4.2)

where average SoC θ̄t = (θt+1 + θt)/2. κ is estimated based on experimental lifetime data
with θ̄t = 50%, while b1-b3 are estimated from data with θ̄t varying from 50%.

4.1.2 Stochastic Modeling for Individual EB

Considering traffic conditions and shifted drivers, the segmented Markov velocity accel-
eration emission probabilities of EBs in [203] are considered. For EB i with driver d along
route l on road segment m, the emission probability from velocity ν to acceleration a′ in
time slot k is denoted as pi,d,lm,k(a′|ν), which is estimated using maximum likelihood. With
route information, the velocity, location, and energy consumption in next time slot are
estimated based on acceleration, respectively, as [204]

νit = νit−1 + ait−1∆t (4.3)

zit = zit−1 + νit−1∆t+ ait−1∆t2/2 (4.4)

P b,it = [cma
i
t(m̃+ m̄ιz)(a

i
t∆t

2 + νit) + cd(a
i
tcr + νit)

4/(21.15× 2ait)]∆tctrccon/2, (4.5)
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where cm is mass factor of rotating components, cd is aerodynamic constant, cr is rolling
resistance coefficient, and ctr and ccon are efficiencies of power transmission and battery
power conversion, respectively. EB mass m̃ and passenger weight m̄ are constant, while
location-dependent bus loads ιz is random. In this research, for given combination (zi)i∈I

of locations of all EBs, the route-level bus loads ιz = (ιi
zi

)i∈I , i.e., combination of bus loads
of all EBs, is defined. Battery power P bat of EB i depends on P b,i and charging power P b,i,x

at EBCS x.
In this work, the individual EB is modeled stochastically by considering the impacts of

traffic conditions on EB energy consumption using location-dependent aerodynamic con-
stant and rolling resistance coefficient based on the fixed route information of EBs. In the
real world, the traffic conditions, e.g., the congestion delay, also impact the velocity accel-
eration emission probabilities of EBs. In [205], the authors have investigated the impacts
of congestion delay on the modeling of trucks serving as mobile energy storage systems
(MESSs), in which a transition scenario-based transit delay model is proposed for the tran-
sit delay caused by congestion delay. However, in [205], it is assumed that the congestion
delay can be estimated, and a suboptimal solution is obtained through solving a deter-
ministic problem for the instant transition of a MESS. Extensive research is still needed to
model the transit delay stochastically by considering the uncertainties of traffic conditions
in the real world, which will be studied in future work.

4.1.3 Stochastic Modeling for EBCS with BESS and PV

PV generation P pv is calculated based on efficiency ηpv, area Apv, and solar radiation Lt as
P pvt = ηpvApvLt [256]. The random PV generation is modeled using segmented Markov
chain transition probability ppvw (P pv

′ |P pv), which is calculated using maximum likelihood
of solar radiation as in [207]. For B2G-enabled EBCS, P bat is the charging/discharging
power P b,x of BESS at EBCS x. The charging cost for EBCS consists of battery degradation
and electricity costs, which can be expressed as

Ccst =
∑
i

∑
x

[Cbatt (θit, σ
i,x
t P b,i,xt , P b,it ) + Cbatt (θxt , P

b,x
t ) + (σi,xt P b,i,xt + P b,xt + P pv,xt )

(hp,~t + hp,xt )], (4.6)

where the charging availability σi,xt ∈ [0, 1] of EB i at EBCS x depends on the location and
driving velocity [208]. hp,~t is the spot price for reference node and hp,xt is the dynamic price
for EBCS x connecting node which is used to regulate the demand of EBCS x to mitigate
the charging impacts on power distribution systems [200].
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4.1.4 Linearized AC Power Flow Model

The substation is selected as reference node ~. To have a tractable solution, the AC power
flow is linearized as [198]

Vı′ = V~ −
∑
ı

(Dı′ı
vpPı −Dı′ı

vqQı), (4.7)

F p` =
∑
ı

D`ı
lpPı, F q` =

∑
ı

D`ı
lqQı, (4.8)

where Pı/Qı and F p` /F
q
` are the active/reactive power injections at node ı and powers

in line `, respectively. Sensitivity (Dı′ı
vp/D

ı′ı
vq) and transfer (D`ı

lp/D
`ı
lq) factors represent the

impacts of power injection at node ı to voltage magnitude Vı′ at node ı′ and powers in line
`, respectively.

4.2 Problem Formulations

Under the market environment in [200], the objective of EBCSs energy management is to
minimize charging cost based on dynamic prices, which is determined by DSO to alleviate
congestion and support voltage levels with EBCSs as flexible energy prosumers. In this
section, the problem formulations of stochastic EBCSs energy management and security-
constrained optimal power flow (SCOPF) of DSO for dynamic price determination will be
presented.

4.2.1 Stochastic EBCSs Energy Management

In this research, a DRMDP with tuple < S,U ,p, r̃,Π > is defined for stochastic energy
management of EBCSs, where discrete state space S includes SoC, velocities, EB locations,
PV generation, and remaining time slots φ, i.e., s = (θi, νi, zi, θx, P pv,x, φ)i∈I,x∈X , where I
and X are the number of EBs and EBCSs, respectively. U is action space for battery powers
of EBs and BESS, i.e, u = (P b,i,x, P b,x)i∈I,x∈X . Us is the state-wise action set for s. p is state
transition probability vector with p = (ps)s∈S and ps = (ps′,s,u)u∈Us,s′∈S . r̃ denotes im-
mediate cost vector with r̃ = (r̃s)s∈S , where r̃s = (r̃s,u)u∈Us and r̃s,u is calculated through
(4.6). Π is policy set, πs,u is the probability of selecting u for s and πs = (πs,u)u∈Us . In this
research, the deterministic policy is considered. Also, due to the state-dependency feature
of policies, the state-wise dynamic price hp,xst is used.

For any given route-level bus loads ιz , parameter r̃s can be determined by calculating
r̃s,u through (4.6). Also, parameter ps can be determined explicitly by calculating ps′,s,u as

ps′,s,u =


∏
i p
i,d,l
m,k(ai

′ |νi)
∏
x p

pv,x
w (P pv,x

′ |P pv,x), if (4.1), (4.3), (4.4), and
(4.5) hold ∀i, and (4.1) holds ∀x

0, otherwise.

(4.9)
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However, since ιz is random, the parameters r̃s and ps are uncertain in our problem. To ad-
dress this issue, the uncertain parameters (ps, r̃s) ∈ R|S||Us|+|Us| is considered and whose
empirical data are obtained based on (4.6) and (4.9) using the empirical data of ιz . The
joint PDF of (ps, r̃s) is described by state-wise ambiguity set Ms. Since, for any s, there
is always a ιz giving the worst-case distribution of (ps, r̃s) from Ms, regardless of the
worst-case distributions for other states, which satisfies the s-rectangularity [267]. Then,
the ambiguity setMS for S is defined using Cartesian product [43]. Under minimax-regret
criterion in [100], the stochastic EBCSs energy management problem with ambiguity set
MS is expressed as

min
π

max
P∈MS

EP
(
EHpπs1

∑
t

r̃st,ut − EH
pπ̇
∗

s1

∑
t

r̃st,ut
)
⇐⇒

min
π

max
P∈MS

EP[v(p, r̃,π, s1)− v(p, r̃, π̇∗, s1)] (4.10)

subject to

1>πs = 1, ∀s ∈ S (4.11)

πs,u ∈ [0, 1], ∀u ∈ Us ∀s ∈ S, (4.12)

where s1 ∈ S is the initial state. π = (πs)s∈S is an arbitrary policy, while π̇∗ = (π̇∗s)s∈S is
the optimal policy under realization of (p, r̃). π̇∗ may not be equal to the optimal policy π∗

of (4.10). Hpπs1 and Hpπ̇∗s1 are probability measures on stochastic processes {(st, ut)} ∀t ≥ 1

for policies π and π̇∗, respectively. The optimal value v(p, r̃, π̇∗, s1) is obtained under
realization of (p, r̃). While the value v(p, r̃,π, s1) is obtained by taking π underMS [100].
The difference of them, i.e., the regret, measures the disappointment for not taking π̇∗ due
to the ambiguity set. Different π̇∗ can be taken for different realizations of (p, r̃), while
single π has to be taken.

4.2.2 An Event-Based Ambiguity Set with Combined Statistical Distance and
Moment Information

In this research, the ambiguity set Ms is constructed to include combined statistical dis-
tance, more specifically the Wasserstein distance, and moment information to leverage the
approximated reference PDF and statistical information obtained from empirical data for
robust solutions that are less conservative. Also, considering the uncertainties of approx-
imated reference PDF and moment information obtained from empirical data of (ps, r̃s).
An event-based ambiguity setME

s is developed based on the structure of lifted ambiguity
set [201], which is expressed as

ME
s =


P ∈
P0(R|S|
×R|Us|
×〈Ns〉)

((ps, r̃s), ñs) ∼ P
P[(ps, r̃s) ∈ Dns |ñs] = 1,
EP[(ps, r̃s)|ñs] = µns ,
EP[|1>((ps, r̃s)− µns)||ñs] ≤ ϕns ,
EP[||(ps, r̃s), (ps, r̃s)†ñs ||2|ñs] ≤ %ns ,
P[ñs] = $ns , ∀ñs ∈ 〈Ns〉


, (4.13)
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where P0(·) is Borel distribution. Each P ∈ ME
s can be expressed as P =

∑
ns
$nsPns ,

where Pns is any PDF that satisfies statistical information defined in (4.13). ñs ∈ Ns is
index of event, i.e., components in mixture of PDFs. On the realization of ñs, the second,
third, and fourth constraints are for finite support Dns , mean µns , and absolute deviation
from mean ϕns . The absolute deviation, instead of variance, is used to incorporate the
data-driven feature of Wasserstein metric [43]. The fifth constraint is Wasserstein metric in
the form of lifted ambiguity set using Euclidean norm [201] with reference PDF (ps, r̃s)

†
ñs

and radius %ns ∈ R+. $ns the probability of realization of event ns. As following typical
DR optimization, the parameters ofME

s is restricted to satisfy the conditions in [267] for
Slater’s condition.

4.2.3 SCOPF with EBCSs as Flexible Energy Prosumers

DSO determines day-ahead dynamic prices through minimizing system generation cost,
consisting of responsive cost of flexible generation/demand and electricity cost, using
SCOPF [210]. Since B2G-enabled EBCSs behave as energy prosumers to provide flexible
generation/demand, the responsive cost is the charging cost of EBCSs. The electricity cost
is calculated as hp,~t (

∑
ı P

d
ı,t +

∑
x P

x
st,ut) + hq,~t

∑
ıQ

d
ı,t [199], where P xst,ut =

∑
i σ

i,x
t P b,i,xt +

P b,xt + P pv,xt is flexible power injection at node EBCS x connecting to. P x
s = (P xs,u)u∈Us

is state-wise flexible power injections. P dı,t/Qdı,t are expected conventional demands [197].
Then. the system generation cost is calculated as r̂st,ut +

∑
ı(h

p,~
t P dı,t + hq,~t Qdı,t), where r̂ is

similar to r̃ in (4.10) without dynamic price hp,xs . Since hp,~t P dı,t + hq,~t Qdı,t is constant, it is
only considered in constraints. Then, with (4.7) and (4.8), the DRMDP problem for SCOPF
considering line congestion and voltage levels is expressed as

min
π

max
P∈ME

S

EP[v(p, r̂,π, s1)− v(p, r̂, π̇∗, s1)] (4.14)

subject to

V − Sıt ≤ −
∑
x

Dıx
vpP

x>
st πst ≤ V − S

ı
t, ∀ı ∀st ∀t (4.15)∑

x

α0
cD

`x
lpP

x>
st πst ≤ −(S`t + α2

cS
f
` ), ∀` ∀st ∀t (4.16)∑

x

β0
cP

x>
st πst ≤ −(S~

t + β2
cS

~
), ∀st ∀t (4.17)

constraints (4.11) and (4.12),

where Sıt = V~ −
∑

ı′(D
ıı′
vpP

d
ı′,t − Dıı′

vqQ
d
ı′,t), S`t =

∑
ı(α

0
cD

`ı
lpP

d
ı,t + α1

cD
`ı
lqQ

d
ı,t), and S~

t =∑
ı(β

0
cP

d
ı,t + β1

cQ
d
ı,t). α0−2

c and β0−2
c , for all c ∈ {1, · · · , 12}, are linear coefficients of polyg-

onal approximation [211] for quadratic constraints. Since πst is deterministic policy, dif-
ferent from violation risk constraints in [257], the solutions of (4.14) satisfy constraints
(4.15)-(4.16), certainly. With (4.17) that limits the power exchange with transmission sys-
tem, hp,~t /hq,~t can be treated as a prior [199]. It is worth noting that (4.14) is not constrained
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MDP, since constraints (4.15)-(4.17) do not involve conflicting objectives [213]. The con-
straints (4.15)-(4.17) restrain the set of feasible actions for all states and time slots. The
existence and optimality of the Markov policies for DRMDP has been proved in [43]. How-
ever, solving the DRMDP with minimax-regret criterion is typically NP hard.

4.3 Solutions based on Heuristic Regret Function

For (4.10) and (4.14), the sequential sub-problems do not exist, which make them NP-
hard [101]. To facilitate the practical applications and reduce the computational complex-
ity, in this section, a heuristic regret function is proposed to formulate (4.10) and (4.14)
into sequential subproblems with tractable solutions. Then, the dynamic prices hp,xs deter-
mined by DSO will be derived.

4.3.1 Tractable Solutions based on Heuristic Regret Function

The regret R(π), with regret function v(p, r̃,π, s1) − v(p, r̃, π̇∗, s1), cannot be evaluated
dynamically [101]. Inspired by simple regret [214], a state-wise heuristic regret function
r̃st,ust − r̃

∗
st with s-rectangularity is defined. Under a (pst , r̃st), r̃∗st depends only on state st

and is calculated as

r̃∗st = min
π′st

r̃stπ
′
st (4.18)

subject to

constraints (4.11) and (4.12),

and r̃∗sT = 0. With regret function r̃st,ust−r̃
∗
st , the regret is calculated asR(π) = v(p, r̃,π, s1)

−v∗1(πs1 , s1), where for all st ∈ S, v∗T (πsT , sT ) = 0, and for all t < T ,

v
∗
t (πst , st) =

∑
u

πst,u[r̃∗st +
∑
st+1

pst+1,st,uv
∗
t+1], (4.19)

where pst+1,st,u depends on policy π being evaluated. The difference between these two
regrets can is ∆R(π) = v

∗
1(πs1 , s1)−v(p, r̃, π̇∗, s1), where v∗1(πs1 , s1) is an MDP with state-

dependent immediate cost. Then, ∆R(π) can be seen as the distance between v∗1(πs1 , s1)

with policy π and v(p, r̃, π̇∗, s1) with policy π̇∗, i.e., it evaluates how similar these two
MDPs are for minimax-regret criterion. By considering the Hausdorff metric [215], ∆R(π)

can be evaluated as

∆R(π) = max
t

max{max
st

min
s′t

(|r̃∗st − r̃
∗
s′t,u̇
∗
t
|+ TK(π, π̇∗)),max

s′t

min
st

(|r̃∗st − r̃
∗
s′t,u̇
∗
t
|

+ TK(π, π̇∗))}, (4.20)

where TK(π, π̇∗) is Kantorovich distance between transition probabilities under π and
π̇∗ [215]. The worst ∆R(π) is at t, when v

∗
1(πs1 , s1) visits the state with lowest immedi-

ate cost and v(p, r̃, π̇∗, s1) visits the state with highest immediate cost with transition and
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corresponding action probabilities both equal one. Since the immediate cost is lower and
upper bounded, the worst ∆R(π) is bounded. Then, r̃st,ust − r̃

∗
st can estimate actual regret

with error bounded by (4.20).
By using the defined state-wise heuristic regret function, the Bellman equation of (4.10)

can be expressed as

ṽt(st) = min
πst

max
P∈ME

st

EP[r̃st − r̃∗st + ṽst+1pst ]
>πst , (4.21)

where ṽT (sT ) is zero for all sT . ṽst+1 ∈ R|S|×|S||Ust+1 | is a diagonal matrix with
(ṽt+1(st+1))st+1∈S)> on main diagonal. With auxiliary variable Z, (4.21) can be reformed
as

min−Z (4.22)

subject to

min
P∈ME

st

EP[−r̃st + r̃∗st − ṽst+1pst ]
>πst ≥ Z (4.23)

constraints (4.11) and (4.12).

For ambiguity set (4.13), the joint distribution of (ps, r̃s) and ñs is the marginal distribution
of ñs, i.e., P[ñs] = $ns , and conditional distribution Pns of (ps, r̃s). Then, the minimization
term in constraint (4.23) can be expressed as

min
∑

n∈〈Ns〉

$nEPn [−r̃st + r̃∗st − ṽst+1pst ]
>πst (4.24)

subject to

Pn[(pst , r̃
1
st) ∈ Dn] = 1, ∀n ∈ 〈Nst〉 (4.25)

EPn [(pst , r̃
1
st)] = µn, ∀n ∈ 〈Nst〉 (4.26)

EPn [|1>((pst , r̃
1
st)− µ)|] ≤ ϕn, ∀n ∈ 〈Nst〉 (4.27)

EPn [||(pst , r̃st), (pst , r̃st)†n||2] ≤ %n. ∀n ∈ 〈Nst〉, (4.28)

Based on the infinite-dimensional duality theory [216] and the strong duality of (4.24) un-
der Slater’s conditions [267]. By substituting dual problem of (4.24) with minimization
term in constraint (4.23), the (4.22) can be reformed as

min
∑

n∈〈Nst 〉

−$n(ηn + µ>nχn +ϕ>n ξn + %nζn) (4.29)

subject to

ηn + (pst , r̃st)
>χn + |1>((pst , r̃st)− µ0)|>ξn+

||(pst , r̃st), (pst , r̃st)†n||2ζn + (r̃st + ṽst+1pst)
>πst

≤ r̃∗st , ∀(pst , r̃st) ∈ Dn ∀n ∈ 〈Nst〉 (4.30)

ξn ≥ 0, ζn ≥ 0, ∀n ∈ 〈Nst〉 (4.31)

constraints (4.11) and (4.12),
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where η, χ, ξ, and ζ are dual variables. Since the sameMS is used for (4.10) and (4.14).
The optimization problem (4.14) for state st can also be formulated similarly as

min
∑

n∈〈Nst 〉

−$n(ηn + µ>nχn +ϕ>n ξn + %nζn) (4.32)

subject to

(4.30) with r̃∗st being replaced by r̂∗st (4.33)

constraints (4.11), (4.12), (4.15)-(4.17), and 4.31.

Then, for each state st ∈ S with t < T , the optimal policies can be solved through MILP
(4.29) and (4.32) for problems (4.10) and (4.14), respectively. By using backward induction,
the optimal policies for entire horizon can be obtained efficiently.

4.3.2 Derivations of State-Wise Dynamic Prices

In this section, the derivation of state-wise dynamic prices will be presented. r̂s,u can be
reformatted as r̂s,u = r̃1

s,u + r̂2
s,u, where r̃1

s,u = Cbt (θ
i
t, σ

i,x
t P b,i,xt , P b,it , θxt , P

b,x
t ) is uncertain

underME
s and r̂2

s,u = (σi,xt P b,i,xt +P b,xt +P pv,xt )hp,~t is independent onME
s . By considering

branch & bound method, the relaxed LP for MILP (4.32) is defined as

min
∑

n∈〈Nst 〉

−$n(ηn + µ>nχn +ϕ>n ξn + %nζn) (4.34)

subject to

πst,uk ≤ πst,uk ≤ πst,uk , ∀k (4.35)

constraints (4.15)-(4.17), and (4.30), (4.31),

where πst,uk and πst,uk are, respectively, the lower and upper bounds for integer variable
πst,uk , which are obtained from the last iteration in branch & bound method. By solving LP
(4.34), the solutions of (4.32) can be obtained [217]. The necessary and sufficient optimal-
ity conditions for LP (4.34) with the expressions of primal feasibility and complementary
slackness being omitted is [218]

ε̂+
0 − ε̂

−
0 + ε̂1 +

∑
ı,`,x,n,j

{[(ε̂ı−2 − ε̂
ı+
2 )Dıx

vp − ε̂`3α0
cD

`x
lp − ε̂4β

0
c ]P x>

st − ε̂
n,j
5 (r̃1

st + r̂2
st

+ ṽst+1pst)
>} = 0 (4.36)∑

j

ε̂n,j5 = $n,
∑
j

ε̂n,j5 (pst , r̃st) = $nµn,
∑
j

ε̂n,j5 |1
>((pst , r̃st)− µ0)|+ ε̂n6 = $nϕn

,
∑
j

ε̂n,j5 ||(pst , r̃st), (pst , r̃st)
†
n||2 + ε̂n7 = $n%n, ∀n ∈ 〈Nst〉, (4.37)

where ε̂1 =
∑

k∈〈Ust 〉
ε̂k+

1 −
∑

k∈〈Ust 〉
ε̂k−1 , and j ∈ 〈|Dn|〉. Multipliers ε̂0-ε̂7 are for con-

straints of (4.34). The optimality conditions of relaxed LP with constraints (4.11) and (4.12)
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being removed for (4.29) with multipliers ε̃0-ε̃7 are expressed as

ε̃+
0 − ε̃

−
0 −

∑
n,j

ε̃n,j5 (r̃1
st + r̃2

st + ṽst+1pst)
> = 0 (4.38)

(4.37) with ε̂5 − ε̂7 replaced by ε̃5 − ε̃7. (4.39)

From (4.37) and (4.39), it can be observed that
∑

j∈Dn ε̂
n,j
5 and ε̃n,j5 are probability measures

onME
st . Due to the independence of r̃2 and r̂2 onME

s , conditions (4.36) and (4.38) can be
reformatted, respectively, as

ε̂+
0 − ε̂

−
0 + ε̂1 +

∑
ı,`,x,n,j

[(±ε̂ı±2 Dıx
vp − ε̂`3α0

cD
`x
lp − ε̂4β

0
c )P x>

st − ε̂
n,j
5 (r̃1

st + ṽst+1pst)
>]

− r̂2
st = 0 (4.40)

ε̃+
0 − ε̃

−
0 −

∑
n,j

ε̃n,j5 (r̃1
st + ṽst+1pst)

> − r̃2
st = 0. (4.41)

Since, r̂2
st =

∑
x h

p,~
t P

x>
st , let r̃2

st is expressed as∑
x,ı,`

[
hp,~t ∓ (ε̂ı±2 Dıx

vp ∓ ε̂`3α0
cD

`x
lp ∓ ε̂4β

0
c )
]
P x>
st − ε̂1. (4.42)

Then, if ε̂n,j5 = ε̃n,j5 for all n and j, the solutions satisfying (4.41), with r̃2
st in the form of

(4.42), will also satisfy (4.40). This requires that the complementary slackness conditions
of constraint (4.30) for (4.10) and (4.14) are the same, i.e., r̃∗st = r̂

∗
st . For r̂∗st and r̃

∗
st , the

optimality conditions are, respectively, similar to conditions (4.36) and (4.38) without ε5.
Then, similar to (4.40) and (4.41), by using (4.42) for r̃2

st , the optimality conditions of r̂∗st
and r̃

∗
st will be equivalent. So, with r̃2

st in (4.42), the solutions of relaxed LP for (4.10) is
the integer solutions of (4.14). In (4.42), r̃2

st consists of a term for power injections, i.e.,
hp,~t −

∑
ı,`(±ε̂

ı±
2 Dıx

vp − ε̂`3α0
cD

`x
lp − ε̂4β

0
c ). Then, the DSO can choose the state-wise dynamic

price as hp,xt,st =
∑

ı,`(±¯̂εı±2 Dıx
vp− ε̂`3α0

cD
`x
lp − ε̂4β

0
c ), which corresponds to the electricity price

for system constraints. ε̂1 is the cost to guarantee that the system constraints are satisfied
certainly.

4.4 Case Studies

The case studies are performed using Matlab with YAMILP and OpenDSS on PC with Intel
Core i7-4770. An illustration of the St. Albert transit systems [219] studied in this research
is shown in Fig. 4.2, from which a total of 7 routes and 6 EBs with data are selected. These
data include drivers’ IDs, schedules, velocities, accelerations, locations, and passengers’
boarding and alighting. The solar irradiation data for Colorado park mountain are used
[220]. The IEEE 123-node test feeder [221] is used. The single-line diagram of the modified
test feeder with integrated EBCSs is shown in 4.3. The configurations of EB, BESS, and
PV are listed in Table 4.1, where the battery round trip efficiency is 0.91. The day-ahead
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Figure 4.3: Modified IEEE 123-node test feeder with integrated EBCSs.

spot prices of the reference node are obtained from IESO Canada [224] and are shown in
Fig. 4.4. The data of 360 days in spring and summer are used. The data of the first 300
days are used to generate optimal policies, while the data of the last 60 days are used for
performance evaluations. The k-MLE [225] is used to cluster the empirical data of (p, r̃)

into different events. The probability distribution of events is assumed to follow uniform
distribution [43]. The ϕns is set to be 0.3µns for all events.

Firstly, the impacts of EB charging on power distribution systems are analyzed, in
which the number of events and the radius of Wasserstein metric are selected as 3 and
1.2, respectively. From Fig. 4.5, it can be observed that without using dynamic prices, the
EBCS demand at the depot is extreme high for time slots with low spot prices, and the
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Table 4.1
CONFIGURATION PARAMETERS FOR EB, BESS, AND PV

EB (BYD) [222] BESS [223] PV
Battery capacity 280kWh
Charging power 60kW
Unit cost 145$/kWh
Passenger capacity 58
cm, cd, cr, ctr, ccon [204]
EB weight 13,800kg
Passenger weight 62kg

Capacity 360kWh/unit
Max. power 120/kW
Unit cost 145$/kWh
Quantity: 2 for depot,
1 for transit center

Area: 2000m2

for depot, 800m2

for transit center
Efficiency 0.82 [220]
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Figure 4.4: Spot prices for reference node ~.

voltage level at node 32 drops below 0.95 p.u. Between 11 am and 3 pm, most of the EBs
require recharging at the transit center, which increases the demand and causes congestion
in line 54-57. Unlike EVs whose charging demand can be shifted, the BESS is supposed to
reduce demand by discharging; however, the BESS discharges between 4 pm and 7 pm
when the spot prices are high. As shown in Fig. 4.6, with dynamic prices that increase
the spot prices of node at the depot for 1-4 am to the spot price for 5 am, partial charg-
ing demand is shifted to 1 am and 5 am for voltage level supporting. For time slots with
line congestion, the spot prices of node at the transit center are increased to the spot price
for 4 pm, which shifted partial BESS discharging power between 6 pm and 7 pm for line
congestion relief. From Fig. 4.7, it can be observed that, to mitigate charging impacts, the
charging cost under dynamic prices increases slightly by 9.2%. By comparing with the
stochastic policies obtained based on violation risk constraints in [257] with 95% risk, the
cost ε̂1 for guaranteed satisfaction of constraints increases the cost slightly by 1.9327%.

To evaluate the performance regarding to robustness and conservatism of proposed
approach, the out-of-sample performance [99] for last 60 days is considered for following
cases:

• Case 1: Proposed approach with minimax-regret criterion, event-based ambiguity set
with moment and statistical distance information, and heuristic regret function;

• Case 2: Case 1 with min-max criterion.

• Case 3: Case 1 without statistical distance information.
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Figure 4.5: EBCS demand without using dynamic prices.

• Case 4: Robust approach in [87] with system constraints.

The event-based ambiguity set is used to address the uncertainties of reference distri-
bution and moment information obtained from empirical data. It can be observed from Fig.
4.8 that, as the number of events increases, the standard deviation reduces. This indicates
that the robustness is improved. However, the mean increases significantly, which gives
overly conservative solutions. As shown in Fig. 4.8, in our problem, when the number of
events is 3, the solutions have acceptable robustness and are less conservative. As shown
in Fig. 4.9, as the radius of Wasserstein metric increases, the robustness can be improved.
However, a larger radius gives overly conservative solutions with a significantly increased
mean of charging cost. When the radius reaches 1.2, the mean has not increased signifi-
cantly, after which the mean increases significantly, and the robustness improves slightly.
Also, from Fig. 4.9, it can be observed that without considering the moment information,
the robustness for all radius is improved slightly; however, it results in solutions with a
significantly high mean and are overly conservative. The DRMDP reduces to empirical-
based MDP when the radius is 0 [226], and the random bus loads are assumed to follow
the empirical distribution. As shown in Fig. 4.9, the empirical-based MDP has low robust-
ness, which indicates that inaccurate PDF estimation of random bus loads has significant
impacts on stochastic energy management of EBCSs.
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Figure 4.6: EBCS demand with dynamic prices.
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Figure 4.7: Charging cost for one day.

As shown in Fig. 4.10, by considering different cases, it can be observed that, for EBCS
energy management under uncertainties, the usage of min-max criterion in Case 2 gives
a higher mean than using minimax-regret criterion, and the robustness has not been im-
proved significantly. Also, for the ambiguity set with only moment information in Case
3, the robustness has been improved significantly, but the mean also increases, which in-
dicates that only considering moment information results in conservative solutions in our
problem. Moreover, for Case 4, the usage of a robust approach can give high robustness;
however, the solutions are overly conservative. Also, it can be observed in Fig. 4.9 and 4.10
that when the radius is 2, the solutions obtained without considering moment information
are almost the same as Case 4 and the solutions obtained with moment information are
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Figure 4.9: Out-of-sample performance for different radius.
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Figure 4.10: Out-of-sample performance for different cases.

close to Case 3, which indicates that when the radius is larger than 2 the DRMDP becomes
robust MDP, which is consistent with the conclusion in [226]. Further, it can be observed
from Table 4.2 that the out-of-sample performance of solutions obtained by using heuristic
regret function is comparable to the of solutions obtained by using original regret func-
tion, especially for the standard deviation. Also, the usage of heuristic regret function can
reduce computational complexity.
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Table 4.2
PERFORMANCE OF PROPOSED HEURISTIC REGRET FUNCTION

Mean ($) Standard deviation ($) Time (hr)
Case 1 20.832 1.282 2.2

Case 1 with
conventional regret function 18.913 1.114 14.5

4.5 Summary

In this chapter, a stochastic energy management scheme for EBCSs with B2G capabilities
is proposed. To address the errors in PDF estimations, the energy management problem
is formulated as a DRMDP with uncertain transition probabilities and costs using event-
based ambiguity set is formulated. The ambiguity with combined statistical distance and
moment information is used with minimax-regret criterion for robust solutions that are less
conservative. A heuristic minimax-regret function is proposed to express the formulated
DRMDP problem dynamically and allow for the usage of backward induction manner.
The dynamic prices for EBCS operation with mitigated impacts on SDSs are derived based
on the unique structure of immediate cost in the formulated problem.



5
Cyber-Physical Security Analysis of BESSs in

SDSs

In this chapter, the cyber-physical security of BESSs in SDSs is analyzed with specific atten-
tion to cyber-physical attacks against system information integrity in SDSs, i.e., the FDIAs.
As defined by National Institute of Standards and Technology (NIST) [227], the future
smart distribution system consists of the physical power system and cyber system. The cy-
ber system collects, transmits, and processes the physical power system data, and enhances
the optimization and automatic control of the physical power system. This constitutes one
of the most complicated CPS in the history. However, the CPS exposes the future smart
distribution system to severe cyber-physical attacks [228]. As a confirmed cyber-physical
attack targeting on the distribution system, the Ukraine power grid cyber-physical attack
took place in 2015 left about 230,000 people without electricity [229]. The FDIAs, as one
of the most severe cyber-physical attacks, can result in energy theft on the customers, false
dispatch on the power distribution, and power generation breakdown [103]. For example,
the results in [104] show that the FDIA on local energy trading in residential distribution
system can cause a benefit reduction up to 94%.

Also, BESSs are becoming vital for improving sustainability, efficiency, and resiliency
of SDSs [230]. To fully exploit these benefits, the accurate SoC estimation of BESSs is im-
portant [50]. With the advancement of BMSs and the emerging IoT technology, the BESSs
are becoming CPSs and the SoC can be estimated accurately using real-time battery pack
terminal voltage and current measurements [12]. However, this also exposes SoC estima-
tion to severe cyber-physical attacks [7, 13–15]. Promoting countermeasures is vital for
the security protection of SoC estimation of BESSs, where the study on the mechanism of
cyber-physical attacks against SoC estimation is essential. In this chapter, the mechanism
of FDIAs against SoC estimation of BESSs in SDSs is investigated. This chapter consists

79
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of two parts for the cyber-physical security analysis of BESSs in SDSs, where the first part
is focused on the general construction principle of practical FDIAs in SDSs. The second
part is more about the investigation of the mechanism of FDIAs against SoC estimation of
BESSs in SDSs.

In power transmission systems, the FDIAs against SSE have been well studied. How-
ever, due to the unique features of power distribution systems including the low x/r ratio,
existence of one- and/or two-phase branches, unbalanced load distributions, and unsym-
metrical line parameters, the research on FDIAs in SDSs is still open. Although, the vul-
nerability of terminal devices in BESSs to cyber-physical attacks have been revealed in
literature. However, the analysis of cyber-physical threat to CPS-based BESSs that focuses
on the mechanism of the penetration of the cyber-physical attacks launches at terminal
devices into the physical operation of BESSs has not been well studied. In this chapter,
the construction principle of FDIAs in practical SDSs that are characterized by low x/r ra-
tio, mutiphase branches/laterals, unbalanced load distributions, and unsymmetrical line
parameters is firstly investigated. Then, based on the construction of FDIAs in practical
SDSs, different mechanisms of FDIAs against SoC estimation of BESSs are studied and
evaluated.

5.1 The Construction Principle of False Data Injection Attacks in
SDSs

In this section, the construction principle of practical FDIAs in multiphase and unbalanced
SDSs will be studied. Also, the feasibility and limitations of performing FDIAs based on
equivalent measurements in practice will be discussed with insights being provided.

5.1.1 Local State-Based Linear DSSE for Multiphase and Unbalanced Smart
Distribution Systems

In order to construct the FDIAs numerically, the linear expression of DSSE is required. And
the linear DSSE should base on the local state only, so that the FDIAs can be constructed
with the least information of system states. In this section, the modeling of three-phase
and unbalanced distribution systems is presented first. Then, the DSSE for three-phase
and unbalanced distribution systems based on the method in [231] is introduced. Finally,
the local state-based linear DSSE for multiphase and unbalanced distributions systems will
be presented.

The Modeling of Three-Phase and Unbalanced Distribution Systems

Due to the unbalanced loads and unsymmetrical line parameters in three-phase distribu-
tions systems, a 3 × 3 matrix is required to represent the line admittance Ykl [232]. The
transformers in distribution systems can be modeled as distribution lines, and the details
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can be referred in [232] and [233]. The ∆−connected loads are modeled as equivalent
Y−connected current sources as in [234]. Based on KVL and KCL, in rectangular form, we
have

[Iakl re, · · · , Ickl im]T = Ykl[V
a
k re − V a

l re, · · · , V c
k im − V c

l im]T , (5.1)

where Ikl = Ikl re + jIkl im and Vk = Vk re + jVk im. For bus k, the bus current injections
can be expressed as

[Iak re, · · · , Ick im]T = Yk[Vk1, · · · ,Vk(N−1),VkN ]T , (5.2)

where Yk is the equivalent bus primitive admittance matrix in rectangular form, and Vkl,
for l = 1 · · ·N , is the voltage drop.

Smart Distribution System Measurements

HV/MV 

MV

Subtransmission

Feeder

Distributer

Customers

LV

Substation

SCADA 
Data concentrator

Smart meter

Feeder head
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RTU

RTU

PMU

VT

CT

RTU

RTU

Labels:

Power flow
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Figure 5.1: A single-line diagram of smart distribution system with different types of
measurements.

Different from power transmission systems, which are covered by a large amount of
real-time measurements, the conventional distribution system monitoring relies mainly on
the distribution SCADA system with most real-time measurements originated at the high-
to-medium voltage (HV/MV) substations and limited real-time measurements at lines and
nodes along the medium-voltage (MV) feeders. This causes the measurements paucity of
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DSSE, and the power distribution systems are typically underdetermined. To address this
issue, in both industry and academia, the pseudo measurements, which are the estima-
tions of load profiles based on historical data, are involved to increase the redundancy
of distribution system measurements [235] [110]. Further, with the development of smart
distribution systems, new sources of data have been created at remarkable volumes [236].
By leveraging IEDs such as automated feeder switches, circuit breakers, digital relays, and
smart inverters of DER, more real-time system topology information and power, current,
and voltage measurements of MV distribution systems can be obtained [118]. Also, the de-
ployment of PMU, especially the µPMU with low capital cost, is rolling out in most power
distribution systems [237] [238]. All these sources of data can be utilized to improve the
power distribution system observability. Recently, the utilization of AMI systems installed
at medium-to-low voltage (MV/LV) transformers and smart meters employed in LV dis-
tribution systems has been investigated to provide near real-time measurements for the
quality improvement of pseudo measurements [239].

The measurements of a typical smart distribution system are illustrated in Fig. 5.1. At
the HV/MV substation, the distribution SCADA collects data from the system and uses
the collected data for substation, feeder, and end user load controls. At the feeder head,
the current transformer (CT) and voltage transformer (VT) are used to measure the current
of each feeder and the voltage at the substation. These measurements are firstly collected
by the RTU, in which the local vector quantities of current and voltage are computed.
Then, the local vector quantities are converted to the magnitudes of voltage and real and
reactive power [240], which are transmitted by the RTU through local area network (LAN)
to the SCADA. Also, in the MV distribution system, the CT and VT are used to measure
feeder current flow and feeder-end or DER voltage [239], respectively, and the IED with
PQ features can provide the feeder real and reactive power flow measurements [241]. Sim-
ilar to CT and VT, the IEDs communicate with RTU to transmit measurements, through
FAN, to the SCADA. The PMU/µPMU installed at some critical points in MV distribution
system can provide the synchronized voltage, current, and power phasor measurements,
which are transmitted to the SCADA through FAN. Also, nowadays, many IED and RTU
have been upgraded to provide synchronous phasor measurements [242]. Based on the
AMI system, the real and reactive power consumption data, collected by the individual
smart meters in LV distribution systems, can be aggregated, through the NAN, by data
concentrator to provide the near real-time bus power injection measurements of the MV
distribution systems. These measurements are transmitted to the SCADA through FAN.
For large-scale power distribution systems with a large number of measurement points, it
is impractical to telemeter all points through real-time measurement devices. To guarantee
the observability, the pseudo measurements generated at the SCADA, based on historical
customer load profiles, can be used as bus power injection measurements.
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The DSSE for Three-Phase and Unbalanced Distribution Systems

Consider a general linear weighted lease square (WLS)-based state estimation in the form
of z = Hx+e, where z is the set of measurements,H is the measurement function matrix,
which is determined based on the power flow equations and the jth element relates the
jth measurement to states, and x is the set of system states. The vector e is the set of
measurement errors. If the measurement errors are normally distributed with zero mean,
there is a closed-form solution in the form of

x̂ = (HTWH)−1HTWz, (5.3)

where x̂ are estimated states. The weight matrixW = R−1 withR denoting the covariance
matrix of measurement errors.

In this research, in order for the power distribution systems to be fully observable, we
choose the measurements in a way such that the number of measurements is sufficiently
larger than the number of states to formulate an overdetermined DSSE problem. More
specifically, the real-time voltage, current, and power measurements obtained from RTU,
IED, PMU/µPMU, and AMI are assumed to be available in a power distribution system,
and the optimal placement of these real-time measurement devices is left for our future
work. The pseudo measurements obtained from historical load data, by using the method
in [110], are leveraged to improve measurement redundancy. In general, the DSSE con-
siders three-phase measurements in rectangular forms of complex branch current flows
Ibr mea, complex branch power flows Sbr mea, complex bus power injections Sbus mea ob-
tained from the real-time measurements and pseudo measurements, complex bus voltage
measurements Vbus mea, and bus voltage magnitude measurements |V |bus mea. For the
current measurements, i.e., Ibr mea and Ibus mea, the measurement functions can be rep-
resented by (5.1) and (5.2), respectively. The measurement functions of Vbus mea can be
expressed as [V a,b,c

k mea]
T = U [V a,b,c

k ]T , where U is an identity matrix. Traditionally, the
bus voltage magnitude measurements |V |bus mea are converted to equivalent complex bus
voltage measurements Vbus equ based on the phase angle of the nearest bus with phasor
measurements. The complex power measurements Sbr mea and Sbus mea are converted to
equivalent currents as

Ikl equ = (Skl mea/Ṽk)
∗, Ik equ = (Sk mea/Ṽk)

∗, (5.4)

where Ṽbus is the estimated bus voltage. And the system-based measurement functions for
the power measurements can be expressed by using (5.1) and (5.2). Then, the DSSE for a
three-phase and unbalanced distribution system is expressed as

[Vbus equ,Vbus mea, Ibr mea, Ibr equ, Ibus equ]T = [U ,U ,Ybr,Ybr,Ybus]
TV + e, (5.5)

where the matrices Ybr and Ybus are the constant measurement functions of the branch
current flow and bus current injection measurements. The vector V is the set of system
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states, which are typically selected as the bus voltages in rectangular form to handle distri-
bution systems with different topology [243]. As discussed in [244–247], the variances of
the equivalent current measurements follow the same distributions of that of power mea-
surements, and the matrix R stays the same. Then, the DSSE is solved iteratively. During
each iteration, the values of Vbus equ, Ibr equ, and Ibus equ are updated based on the state
estimation solution calculated from previous iteration by using (5.3). The DSSE discussed
above is designed for three-phase and unbalanced distribution systems. And, in order to
calculate Vbus equ for a bus with voltage magnitude measurement, the states of the nearby
buses are required. This increases the efforts of the attackers.

The Local State-Based Linear DSSE for Multiphase and Unbalanced Distribution Sys-
tems

For the one-line and two-line feeders in practical distributions systems, the virtual line(s)
is(are) added to the missing phase(s). In the admittance matrix, the corresponding diago-
nal element(s) of missing phase(s) is(are) assigned with arbitrary number(s) yvv to avoid
the singularity of constant matrix H of DSSE. Consider line kl with phase b and c as an
example. By adding a virtual line, we have

Ykl =

yvvkl 0 0
0 ybbkl ybckl
0 ycbkl ycckl

 , (5.6)

where the mutual admittance between an existing phase and a missing phase is set to
zero for the validity of Ohm’s law. For the missing phases, the corresponding current and
power measurements are set to zero, while the corresponding voltage measurements are
set to the estimated bus voltages of the nearest upstream bus with the missing phases.

Different from power transmission systems, the synchronous phasor measurements are
limited in power distribution systems, and most of the buses have only voltage magnitude
measurements. The voltage magnitude measurements introduce nonlinearity to the mea-
surement functions. In conventional DSSE, for a bus with voltage magnitude, the voltage
magnitude measurement function is linearized by approximating the phase angles of this
bus with phase angles of a nearby bus that has phasor measurements, or the phase angles
are assumed to be the same as that of the voltages at substation. However, from the per-
spectives of attackers, this increases the number of required measurements that attackers
need access to. To reduce the efforts of the attackers, the linearization of the voltage mag-
nitude measurement function of a bus with voltage magnitude measurement should rely
solely on the complex bus voltage states of this bus, i.e., the local information. In order to
allow the attackers to use the local information only to reduce the number of required mea-
surements, the Alpha Max and Beta Min [248] method is used. This method approximates
the magnitude of the complex voltage based on the local states only. And the approxima-
tion can be expressed as |V |l mea ≈ αmax{|V |l re, |V |l im} + βmin{|V |l re, |V |l im}, where
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the parameters α and β depend on the value of arctan(Vim/Vre). For distribution system,
at the slack bus, the bus voltage phase angles are 0◦,−120◦, and 120◦ for phases a, b, and c,
respectively. And the deviations of bus voltage phase angles are typically small [234]. So,
for any buses at the downstream, the real and imaginary parts of voltages satisfy

• V a
re > 0, V a

im < 0, and |V a
re| > |V a

im|,

• V b
re < 0, V b

im < 0, and |V b
re| < |V b

im|,

• V c
re < 0, V c

im > 0, and |V c
re| < |V c

im|.

Then, the measurement function of |V |bus mea can be expressed as

[|V |a,b,cl mea]
T = M [V a

l re, V
a
l im, · · · , V c

l re, V
c
l im]T , (5.7)

where the matrixM is a constant matrix in the form of

M =

α −β 0 0 0 0
0 0 −β −α 0 0
0 0 0 0 −β α

 . (5.8)

The local state-based DSSE for a multiphase and unbalanced distribution system can
be expressed as

[|V |bus mea,Vbus mea, Ibr mea, Ibr equ, Ibus equ]T = [M ,U ,Ybr,Ybr,Ybus]
TV + e. (5.9)

After the convergence of iteration, the DSSE is in the form of z̃ = Hx + e, where z̃ is
the set of equivalent measurements after convergence. If the attackers have access to or
can approximate the vector z̃, the attackers can construct FDIAs numerically based on
the linear DSSE in the form of (5.9). In the next section, the principles of practical FDIAs
against DSSE, without knowing the entire system states, by using the linear DSSE z̃ =

Hx+ ewill be discussed.

5.1.2 The Principles of FDIAs Against DSSE

In order to conduct cyber-physical attacks in power distribution systems, the attackers
need to know the strategies of the distribution system automation controls and determine
which and how the measurements are to be compromised. For example, if the attackers
wish to attack on the LTC transformers to reduce the energy efficiency by increasing the
system operating voltage level, the attackers need to know the total number of taps and the
voltage change caused by one tap change of the LTC transformers. If the attackers aim at
disrupting the power distribution systems stability by manipulating the voltage controlled
distributed generators (VC DG) to inject excessive power, the attackers are required to
know the control schemes of the VC DG, to determine the change on the bus voltages
where the VC DG is connected. In this research, without loss of generality, the attackers are
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assumed to have the full knowledge on the strategies of the system controls and are able
to identify the targeting measurements and determine how the targeting measurements
should be compromised, in order to affect the outcome of system controls. We focus mainly
on the methodology for constructing a vector of compromised measurements, including
the targeting measurements, for the FDIAs against DSSE, to fundamentally analyze the
vulnerability of smart distribution systems to the FDIAs. In particular, an FDIA injects
malicious data into the measurements by constructing an attack vector a, where ai 6= 0 for
i belonging to the targeting measurement set. The targeting measurement set contains the
measurements that are predetermined by the attackers based on the strategies for different
attacking scenarios. Also, the targeting measurement set contains the measurements that
are determined based on the proposed FDIA, in such a way that the compromises on the
attacks’ predetermined measurements can bypass the BDD mechanism, i.e., without being
detected.

Generally, in TSSE and DSSE, the BDD is based on the measurement residual r =

z −Hx̂. One of the methods used for the BDD is the Chi-square (χ2) test. The χ2 test is
performed based on the assumption that the measurement errors are uncorrelated, and the
measurement residuals r

diag(R) are all in standard normal distributions. And the distribu-
tion of the l2-norm of the measurement residuals r

diag(R) is in a χ2 distribution. However,
in power distribution systems, due to the usage of pseudo measurements, the assumption
of measurement residuals determined by r

diag(R) makes the χ2 test inaccurate [250]. Then,
the normalized residual test which considers the residual covariance matrix is adopted.
The normalized measurement residual vector rN = |r|√

diag(SR)
is used to test the existence

of bad measurements, where S is the measurement sensitivity vector, and S = I−K with
hat matrix K = H(HTWH)−1HTW . And if max rN > λ, there exists at least one bad
measurement.

In this research, the proposed local state-based linear DSSE is adopted by the attackers
to construct FDIAs numerically with least information of system states. For the system
operators, different types of nonlinear WLS-based DSSE methods, such as node voltage
based DSSE methods and branch current based DSSE methods, can be used. In order to
use the proposed local state-based linear DSSE for the construction of FDIAs against the
original nonlinear DSSE, the following condition needs to be satisfied.

Remark 1. The linear DSSE z̃ = Hx + e with equivalent measurement set z̃ can be used to
construct an FDIA against the original nonlinear DSSE with original measurement set z, if (z +

∆z)|xa = z̃ + a, where ∆z is a constant vector and xa is the system state set after the FDIA a.

For different WLS-based DSSE methods, if all the measurements with nonlinear mea-
surement functions can be converted to the equivalent measurements with linear mea-
surement functions. The WLS-based DSSE estimators can be expressed in a linear form of
z̃ = Hx̃ + e [110], where z̃ is the equivalent measurement set with all the measurements
with nonlinear measurement functions replaced by the equivalent measurements with lin-
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ear measurement functions under the estimated system state set x̃. Then, by injecting an
FDIA a against the linear DSSE z̃ = Hx̃ + e, we have z̃ + a = Hxa + e, where xa is the
new system state set after the FDIA a. If the attackers can guarantee that, after the injec-
tion of FDIA a, the attacked original measurement set z can be converted to the equivalent
measurement set z̃ + a with the new system state set xa, and the proposed FDIAs based
on the local state-based linear DSSE can be conducted on different types of original non-
linear WLS-based DSSE. After the FDIA, in general, for the original nonlinear DSSE with
original measurement set z, z + a 6= h(xa) + e, due to the difference between the linear
measurement functionsH and the nonlinear measurement functions h(·). However, if for
the new system state set xa, there exists a constant set ∆z that gives (z + ∆z)|xa = z̃ + a,
and the original measurements are compromised based on ∆z, instead of a. Then, after
the convergence of original nonlinear DSSE to the new system state set xa, the original
nonlinear DSSE becomes z̃ + a = Hxa + e. Thus, if the FDIA a can bypass the LNR test
based on linear DSSE, the attack vector ∆z is an FDIA for the original nonlinear DSSE.

In the rest of this section, we will present the principles of three-phase coupled FDIAs
against the proposed local state-based linear DSSE with equivalent measurement set z̃ in
details. In order to decouple the multiple phases into independent single phases to reduce
the number of required measurements, the method used to construct three-phase decou-
pled FDIAs will also be introduced. Then, the modifications on original measurements,
i.e., ∆z, for the FDIAs against the original nonlinear DSSE will be discussed.

FDIAs Against the Linear DSSE

In this subsection, the principles of the proposed three-phase coupled and decoupled
FDIAs against the proposed local state-based linear DSSE will be presented.

A Three-phase Coupled FDIA Based on the linear DSSE in the form of z̃ = Hx+e, after
the injection of FDIA a, the compromised measurement residual ra can be expressed as

ra = z̃a −Hx̂a = z̃ + a−H[x̂+ (HTWH)−1HTWa]

= z̃ −Hx̂+ a−H(HTWH)−1HTWa. (5.10)

If we let a = Hc, where H is the measurement function set with the consideration of
coupling among phases and c is an arbitrary constant vector. The compromised measure-
ments residual ra can be rewritten as

ra = z̃ −Hx̂+Hc−H(HTWH)−1(HTWH)c

= z̃ −Hx̂+Hc−Hc = z̃ −Hx̂ = r. (5.11)

So, the compromised measurement residual ra after FDIA a = Hc is the same as the
measurement residual r before FDIAs. Since the measurement residual r can bypass the
LNR test, the compromised measurement residual ra with malicious data can also bypass
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the LNR test for the linear DSSE. By considering the three-phase coupling in the attack
vector, the FDIA a = Hc can always bypass the LNR test successfully. However, due
to the coupling among phases, the modification on one phase will affect the other phases,
which increase the number of required measurements to be compromised by the attackers.

A Three-phase Decoupled FDIA In order to reduce the number of required measure-
ments, the three-phase modeling of the distribution system is decoupled into three inde-
pendent single-phase models, by using the current compensation method, as follows:

[Iakl, I
b
kl, I

c
kl]
T = Ykl[V

a
k − V a

l , V
b
k − V b

l , V
c
k − V c

l ]T = (Y d
kl + Y c

kl)[V
a
k − V a

l , V
b
k − V b

l

, V c
k − V c

l ]T , (5.12)

where the decoupled admittance matrix Y d
kl contains only the diagonal elements of matrix

Ykl, while the compensation admittance matrix Y c
kl contains only the off-diagonal elements

of matrix Ykl. Consider branch kl phase a as an example. For the measurement errors in
the three-phase decoupling process, we have

σ2(Idec akl ) = σ2(Iakl equ − yabkl (Ṽ b
k − Ṽ b

l )− yackl (Ṽ c
k − Ṽ c

l )) = σ2(Iakl equ). (5.13)

This indicates that the consideration of the three-phase decoupling by the attacker will not
affect the measurement error covariance matrix R. Then, for the three-phase decoupling,
the measurement function vector is decomposed into H = Hd + H ′d, where Hd is the
measurement function set with Y being replaced by Y d. The attack vector a is set to
a = Hdc, such that the number of required measurements can be reduced. Let E =

(HTWH)−1HTW , which is the pseudo inverse of the matrix H , and EH = I , where I
is an identity matrix, then

ra = z̃a − (Hd +H ′d)x̂a = r + (K − I)H ′dc, (5.14)

where the matrix K is the hat matrix in the form of K = H(HTWH)−1HTW . It can be
observed that in order to reduce the total number of required measurements, the measure-
ment residual ra after attack increases by ∆ra = (K − I)H ′dc. For different constructions
of FDIAs, the increment in the measurement residual can be different, and this will be
discussed in Subsection 5.1.3.

The Modifications on Original Measurements

For now, we have discussed the principles of three-phase coupled and three-phase de-
coupled FDIAs against linear DSSE. In the linear DSSE, the attack vector a compromises
the measurements in the equivalent measurement set z̃, which includes the bus voltage
measurements and equivalent current measurements Ibr equ and Ibus equ. However, as dis-
cussed in Remark 1, in order for the FDIAs constructed based on the linear DSSE to be



Chapter 5. Cyber-Physical Security Analysis of BESSs in SDSs 89

able to launch on the original nonlinear DSSE, the attackers need to know the required
modifications on the original measurement set, i.e., the ∆z.

In this subsection, the method to obtain ∆z based only information of compromised
measurements will be discussed. For the original complex power measurements P + jQ,
we need to find the required changes ∆z (i.e., the ∆P and ∆Q) for the corresponding attack
vector a. Accordingly, for the system complex bus voltage states after attack V̂a = V̂ +∆V ,
where V̂ is the estimated system state set before FDIA, and ∆V is the set of modifications
on the system states introduced by the FDIA, we have(z+ ∆z)|V̂a = z̃+a, as discussed in
Remark 1. Then, we have

(
P + jQ+ ∆P + j∆Q

V̂a,re + jV̂a,im
)∗ = z̃ + a = (Iequ,re + jIequ,im) + (Ia,re + jIa,im), (5.15)

where V̂a,re and V̂a,im are, respectively, the real and imaginary parts of the local voltage
state of the bus with the compromised measurement. And Iequ,re and Iequ,im are the real
and imaginary parts of the equivalent current measurements before the FDIA, respectively.
While Ia,re and Ia,im are, respectively, the real and imaginary parts of malicious data in-
jected by the attackers on the equivalent current measurements. Since the bus voltage
magnitude in distribution system is close to 1 p.u., for the real part of this complex num-
ber, we have

(P + ∆P )(V̂re + ∆Vre) + (Q+ ∆Q)(V̂im + ∆Vim) ≈ Iequ,re + Ia,re, (5.16)

where V̂a,re = V̂re + ∆Vre is the real part of the local voltage state after FDIA, and Ia,re

belongs to the attack vector a. Similarly, for the imaginary part, we have

(P + ∆P )(V̂im + ∆Vim)− (Q+ ∆Q)(V̂re + ∆Vre) ≈ Iequ,im + Ia,im. (5.17)

Since (PV̂re +QV̂im) ≈ Iequ,re and (PV̂im −QV̂re) ≈ Iequ,im, we can derive

P∆Vre + ∆PV̂re + ∆P∆Vre +Q∆Vim + ∆QV̂im + ∆Q∆Vim ≈ Ia,re (5.18)

P∆Vim + ∆PV̂im + ∆P∆Vim −Q∆Vre −∆QV̂re −∆Q∆Vre ≈ Ia,im. (5.19)

By solving (5.18) and (5.19), ∆P and ∆Q can be determined as

∆P =
ce+ df

c2 + d2
, ∆Q =

de− cf
c2 + d2

, (5.20)

where c = (V̂re + ∆Vre), d = (V̂im + ∆Vim), e = Ia,re − (P∆Vre + Q∆Vim), and f =

Ia,im − (P∆Vim − Q∆Vre). In order to determine the values of ∆P and ∆Q, the local
information of the corresponding bus (i.e., Ia,re, Ia,im, Vre, Vim, ∆Vre, ∆Vim, P , and Q) is
required. The methods to obtain these values are summarized as belows:

• The values of Ia,real and Ia,imag are based on the attack vector a.
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• The values of Vre, Vim, P , and Q can be obtained through the methods in [33], or
measured directly.

• The values of ∆Vre and ∆Vim can be determined from Ea, which does not require
the estimated system states.

So, in order to construct an FDIA against the original nonlinear DSSE by using the pro-
posed linear DSSE, only the local information about Vre, Vim, P , and Q are required.

Remark 2. If the attacker changes some states by using a = Hc (for three-phase coupled FDIA), or
a = Hdc (for three-phase decoupled FDIA), the number of measurements required by the original
nonlinear DSSE is the same as that required by the linear DSSE.

For the FDIAs, in order to change the targeted states stealthily, the measurements have
to be compromised coordinately. In three-phase coupled case, the modifications ∆V on
the system states can be determined as ∆V = Ea = (HTWH)−1HTWa, and the at-
tack vector a = Hc. Then, we have ∆V = c. For the three-phase decoupled case, the
attacker assumes that H = Hd and uses the attack vector a = Hdc, we have ∆V = c.
However, this introduces ∆ra to the measurements residual, as discussed in Subsection
5.1.2. Without considering the ∆ra, the FDIA only changes the targeted states. So, for
the buses, excluding the ones with the targeted states, ∆V = 0. Therefore, if Ia = 0, the
corresponding original power measurements are not required to be compromised. For the
targeting buses without power measurements, there is no need to compromise any power
measurements on these buses. So, the only original power measurements need to be com-
promised are the equivalent current measurements in a with non-zero values. In other
words, the FDIAs based on the proposed linear DSSE only need the corresponding local
states of the compromised power measurements to be able to launch successfully against
the original nonlinear DSSE. However, the FDIAs based directly on the original nonlinear
DSSE require the information of the entire system states, which is extremely difficult for
the attackers to obtain in practice.

5.1.3 The Construction of Attack Vectors

As discussed above, the attackers can firstly construct an FDIA vector a based on the pro-
posed local state-based linear DSSE. Then, the required modification ∆z, i.e., the FDIA vec-
tor on the original nonlinear DSSE can be derived using the methods in Subsection 5.1.2.
In this section, the construction of attack vectors for the proposed three-phase coupled
and decoupled FDIAs against the proposed local state-based linear DSSE are presented in
detail.

Three-Phase Coupled Random FDIA

If the attacker wishes to construct random FDIAs with the consideration of three-phase
coupling, the attack vector is given by a = Hc, as discussed in Subsection 5.1.2. Let A =
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H(HTH)−1HT , which is a square matrix. The equation a = Hc for arbitrary constant c
can be rewritten as

Aa = AHc⇔ Aa = Hc⇔ Aa = a⇔ (A− I)a = 0, (5.21)

which means that the random attack vector a has to satisfyBa = 0, whereB = (A−I), in
order to bypass the LNR test. Let a = [· · · , ai, · · · , aj , · · · , 0, · · · , ak, · · · ]T , where ai, · · · , ak
are the non-zero variables that the attacker wishes to inject on the corresponding meters
and k is the total number of measurements that the attacker can compromise. Then,Ba =

0 is equivalent to B′a′ = 0, where B′ contains only the i− kth column vector of matrix B
and a′ contains only the i − kth elements of vector a. So, the random attack vector can be
constructed by solving B′a′ = 0, and there is at least one non-zero solution, if and only if
the rank ofB′ is less than k. Also, a′ can be solved as a′ = (I −B′+B′)d, whereB′+ is the
Moore-Penrose matrix inverse of matrixB′, and d is an arbitrary non-zero vector.

Three-Phase Decoupled Random FDIA

Perfect Three-Phase Decoupled Random FDIA

Remark 3. A perfect attack vector for three-phase decoupling is a attack vector a = Hdc, with the
constant vector c that satisfiesH ′dc = Hb, where the vector b is an arbitrary constant vector. The
perfect three-phase decoupled attack does not change the measurement residual after FDIAs.

From (5.14), if we letH ′dc = Hb, where b is an arbitrary constant vector, then

∆ra = (K − I)Hb = HEHb−Hb = 0, (5.22)

which means that, if H ′dc = Hb, then the attack vector a = Hdc does not change the
measurement residual and the compromised measurement residual ra is the same as the
measurement residual before FDIA. And the three-phase decoupled FDIA a = Hdc with
H ′dc = Hdb can always bypass the LNR test, which is a perfect three-phase decoupled
FDIA. To remove the arbitrary constant vector b, we rewriteH ′dc = Hb as

H ′dc = Hb⇔ AH ′dc = AHb⇔ AH ′dc = H ′dc. (5.23)

Let C = (HT
dHd)

−1HT
d . We have

a = Hdc⇔ Ca = CHdc⇔ Ca = c. (5.24)

By substituting (5.24) into (5.23), we can obtain that the attack vector a has to satisfy

AH ′dCa = H ′dCa⇔ (AH ′dC −H ′dC)a = 0, (5.25)

to construct a perfect three-phase decoupled FDIA. Similarly, with the three-phase coupled
random attack, we define a = [· · · , ai, · · · , aj , · · · , 0, · · · , ak, · · · ]T , and a′ contains only the
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i−kth elements of vector a. Let matrixD = (AH ′dC−H ′dC), and matrixD′ contains only
the i− kth column vectors of matrix D. The perfect three-phase decoupled random FDIA
is obtained by solvingD′a′ = 0. In order to have non-zero solutions, the rank ofD′ has to
be less than k.

The perfect three-phase decoupled random FDIA has advantages than the three-phase
coupled random FDIA, if and only if, for a given value of k which represents the number
of measurements that can be compromised by the attackers, the smallest rank ofD′ for all
the possible attack vector a is less than k, while the smallest rank of A′ for all the possible
attack vector a is larger than or equal to k. This means that the attackers can construct
an FDIA with a smaller number of required measurements by using perfect three-phase
decoupled random FDIA than using three-phase coupled random FDIA. This depends on
the topology and the locations and types of measurements in a specific distribution system.
Indeed, the equationH ′dc = Hb indicates how strong the coupling among the three phases
in a specific distribution system is. If in some distribution systems the equationH ′dc = Hb

cannot be satisfied strictly, the attacker can approximate it by usingH ′dc = Hb+ δ, where
δ is a vector containing the measurement residual increments caused by approximating
the multiphase and unbalanced distribution systems with three-phase decoupled model.
Then the measurement residual changes ∆ra = (K−I)δ. If the largest value of vector δ is
very small, e.g., in the order of 10−11, the measurement residual changes will be negligible
comparing to the nominal measurement errors, which are typically 10−2 − 10−3 [246]. In
other words, an attacker still has the confidence to launch the attack a = Hdc, in order to
reduce the number of measurements required.

Imperfect Three-Phase Decoupled Random Attack If there is no solution for D′a′ =

0, and the largest value of δ is significantly large, the measurement residual increases
significantly, and no perfect three-phase decoupled FDIAs can be constructed.

Remark 4. If the attacker uses the three-phase decoupled attack with significantly large value of
max δ, to reduce the number of required measurements, the measurement residual changes signif-
icantly. This is an imperfect three-phase decoupled FDIA, for which the probabilities of successful
attacks can be derived numerically.

The measurement residual after the injection of an imperfect attack vector a = Hdc is

ra = r + (K − I)H ′dc = (I −K)e+ (K − I)H ′dc. (5.26)

Since the measurement errors are ei ∼ N (0,Rii) for all i, the mean of ra can be derived as

µra = (K − I)H ′dc = −SH ′dc, (5.27)

where S = (I −K). The covariance of ra can be derived as

Ωra = E(rar
T
a ) = E((r + (K − I)H ′dc)(r + (K − I)H ′dc)

T ) = E(rrT ), (5.28)
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where E donates the operation of expectation. Without the injection of attack vector, the
distributions of measurement residuals are r ∼ N (0,SR) [251]. After the injection of an
imperfect attack vector a = Hdc, the distributions of measurement residuals are ra ∼
N (−SH ′dc,SR), and ra√

diag(SR)
∼ N (

−SH′dc√
diag(SR)

,1). Then, the normalized measurement

residuals with bad data injection (i.e., the rNa ) are folded normal distributions with the cu-
mulative distribution function (CDF) of the measurement residual, Fi(y), for measurement
i, expressed as

Fi(y) = Pr(rNa,i ≤ y) =

{
1
2 [erf(

y+µra,i√
2

) + erf(
y−µra,i√

2
)], for µra,i 6= 0

erf( y√
2
), for µra,i = 0,

(5.29)

where erf() represents the error function. The probability Pr(success) that the imperfect
attack vector a = Hdc can bypass the LNR test, i.e., the max rNa ≤ λ, can be expressed as

Pr(success) = Pr(max rNa ≤ λ) =
M∏
i=1

Fi(y ≤ λ), (30)

where M is the total number of measurements. For an imperfect three-phase decoupled
attack, the attacker needs to find a constant vector c that compromises the desired num-
ber of measurements while having the largest probability of success, i.e., maximizing the
probability Pr(success).

In order to derive the successful probability for imperfect three-phase decoupled FDIA,
as discussed above, and calculate the modifications on original measurements, as dis-
cussed in Subsection 5.1.2, the attacker is required to have knowledge about the matrix
R. A potential solution to this problem is to approximate this matrix by using the name-
plates of the measurement devices.

5.1.4 Case Study

To evaluate the performances of proposed FDIAs, the case studies are conducted using
IEEE 13 Bus Test Feeder (Case I) and IEEE 37 Bus Test Feeder (Case II). In the case studies,
the standard deviations of real-time measurements are considered to be 0.5% for phasor
measurements and 1% for magnitude measurements. The pseudo measurements are con-
sidered to have 30% standard deviations [249]. The standard deviations of measurements
of missing phases are set to be 1× 10−6. The threshold for the iteration process of the pro-
posed linear DSSE is set to be ε = 1× 10−5. The LNR test threshold is λ = 3 [250]. For the
voltage magnitude approximation, the value of parameters α and β for each phase, are
given as α = 0.9992 and β = 0.0561 for phase a, α = 0.8160 and β = 0.5791 for phase b,
andα = 0.8759 and β = 0.4841 for phase c [248]. The systems topology and measurements
of Cases I and II are shown in Fig. 5.2 and 5.3, respectively. For the IEEE 13 Bus Test Feeder,
the buses 671 and 692, with the switch closed, are combined to bus 671. Bus 632 is selected
as the slack bus. For the IEEE 37 Bus Test Feeder, bus 701 is selected as the slack bus. In
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Figure 5.2: IEEE 13 Bus Test Feeder (Case I)

this research, without loss of generality for the investigation on vulnerability of DSSE to
FDIAs, the optimal placement of real-time measurement devices is not considered. It is
assumed that for all the buses without real-time complex power injection measurements,
the pseudo measurements based on AMI data and/or historical data are always available.
Thus, the systems are considered to be fully observable with enough measurements.

The estimation errors of proposed linear DSSE for Case I, under no attacks, are shown
in Fig. 5.4. It can be observed that the mean estimation error is 0.16148%. For Case II,
the mean estimation error is 0.2832%. The mean estimation errors for traditional nonlinear
DSSE proposed in [252], with the same measurements, of these two cases, are 0.160025%

and 0.2805%, respectively. The differences are small for both cases and are caused by the
assumptions of 1 p.u. voltage magnitudes and the approximations of bus voltage magni-
tude measurements. To evaluate the performance of the proposed FDIAs in real applica-
tion, different FDIAs are constructed based on the proposed method with the adoption of
local state-based linear DSSE. And the constructed FDIAs are conducted in the WLS-based
nonlinear DSSE in [252] to perform the LNR test. The LNRs of DSSE under no attacks, for
Cases I and II, are shown in Fig. 5.5 and Fig. 5.6, respectively. It can be observed that the
LNRs of 100 Monte Carlo (MC) simulations are all below the LNR test threshold for both
cases. Then, for Cases I and II, we test simple attacks on phase c voltage magnitude of
bus 611 and phase b voltage magnitude of bus 728, respectively. The results are shown in
Fig. 5.5 and Fig. 5.6 for Cases I and II, respectively. It can be observed that simple attacks
can always be detected in both cases. For Case I, we construct a three-phase coupled FDIA,
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Figure 5.4: The estimation results under no attacks.

based on the method proposed in Subsection 5.1.3, targeting the phase c state of bus 611.
The voltage profile after this FDIA is shown in Fig. 5.7, from which it can be observed that
only the voltage at bus 611 has been changed. The LNR results are shown in Fig. 5.5. It
can be observed that the LNRs for all MC simulations of this FDIA are all below 3. And it
is almost the same as the LNR results for DSSE under no attacks. For Case II, a three-phase
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Figure 5.5: The LNR results for 100 MC simulations (Case I).
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Figure 5.6: The LNR results for 100 MC simulations (Case II).

coupled FDIA on phase b state of bus 728 is constructed. As shown in Fig. 5.6, similar to
Case I, the proposed three-phase coupled FDIA can also bypass the LNR test for all MC
simulations in Case II.

Further, more attack scenarios are performed on both Case I and II to show the per-
formance of the proposed FDIAs. In Case I, we conduct four more different FDIAs on the
states of bus 633 phase a, bus 646 phase b, bus 652 phase a, and bus 675 phase c. The
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Figure 5.7: The bus voltage profile under attacks for Case I (The lines in blue are for the
voltage profile under no attacks, and the boxplots in red are for the voltage profile under

attacks).

corresponding results of these four FDIAs for Case I are shown in Fig. 5.8. For the Case
II, the four more FDIAs conducted are on the states of bus 741 phase a, bus 731 phase c,
bus 725 phase b, and bus 729 phase b. And the results of these four FDIAs for Case II are
shown in Fig. 5.9. It can be observed from Fig. 5.8 and Fig. 5.9 that for both cases, the LNR
test results of simple FDIA are always above the LNR test threshold, which means that the
simple FDIA can always be detected. For the proposed three-phase coupled FDIAs, for
both cases, the LNR test results of these four FDI scenarios are always below the LNR test
threshold, and they are similar to the LNR test results under no attacks.

To compare the proposed three-phase coupled and perfect three-phase decoupled FDIAs,
the phase b state of bus 645 and phase b state of bus 720 are selected as targeting states for
Cases I and II, respectively. Firstly, the max δ is set to be zero, which corresponds to the
perfect three-phase decoupled FDIAs that give no measurement residual changes. The
number of required measurements by the three-phase coupled and three-phase decoupled
FDIAs, for both cases, are the same. This means that for the IEEE 13 and 37 Bus Test Feed-
ers, the three phases cannot be decoupled completely with current measurements. Next,
we set max δ = 10−11, which gives negligible measurement residual changes comparing
with the nominal measurement errors. For Case I, the number of required measurements
by the three-phase coupled FDIA is 20, while that of the perfect three-phase decoupled
FDIA is 10. Moreover, for Case II, the number of required measurements for three-phase
coupled and perfect three-phase decoupled FDIAs are 24 and 19, respectively. For both
cases, the number of required measurements has been reduced by using the proposed per-
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Figure 5.8: The LNR results for 100 MC simulations of Case I.

fect three-phase decoupled FDIAs. The corresponding LNR results for Cases I and II are
shown in Fig. 5.10 and Fig. 5.11, respectively. It can be observed that, for both cases, the
proposed three-phase decoupled FDIAs give almost the same LNR results as the three-
phase coupled attacks, and they are all below the LNR test threshold. Also, we perform
a brute search for the measurements of Case I and find out that the largest rank of matrix
A, for three-phase coupled FDIA, is 66, which is the total number of states. If all the three
phases are completely decoupled, the theoretical value of the largest rank of matrixD, for
perfect three-phase decoupled FDIA, should be 33, which is one-third of the completely
coupled three phases. However, in the case study, the largest rank of the matrix D is 42,
which means that for the IEEE 13 Bus Test Feeder, only partial measurements are weakly
three-phase coupled.

The imperfect three-phase decoupled FDIA is compared with the three-phase coupled
FDIA by selecting different number of randomly attacked states. The numbers of required
measurements, for Cases I and II, are shown in Fig. 5.12 and Fig. 5.13, respectively. It can
be observed that, for both cases, the numbers of required measurements of the imperfect
three-phase decoupled FDIA are always smaller than that of three-phase coupled FDIA.
For both cases, the number of required measurements are converged to specific values as
the number of randomly attacked states increases. This is due to the limits of real-time
measurements that can be compromised. The probabilities of successful imperfect three-
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Figure 5.9: The LNR results for 100 MC simulations of Case II.
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Figure 5.10: The LNR results for 100 MC simulations under attacks (Case I).

phase decoupled random attacks, for both cases, are calculated, based on exact matrix R
and approximated matrixR. The results are shown in Fig. 5.14 and Fig. 5.15, respectively.
It can be observed that the calculated probabilities are close to the obtained through the
MC simulations for both cases. And the errors introduced by approximating the matrixR
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Figure 5.11: The LNR results for 100 MC simulations under attacks (Case II).

2 4 6 8 10 12 14 16

Number of Randomly Attacked States

0

10

20

30

40

50

60

N
um

be
r o

f M
ea

su
re

m
en

ts
 C

om
pr

om
is

ed

Three-phase coupled FDI attack

Imperfect three-phase decoupled FDI attack
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using nameplates are small.
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Figure 5.14: The probabilities of successful imperfect three-phase decoupled random
attack (Case I).

5.2 False Data Injection Attacks Against State of Charge Estima-
tion of BESSs in SDSs

In Section 5.1, the construction principle of FDIAs in SDSs has been studied, where the fea-
sibility of practical FDIAs in the future SDSs has been discussed with insights. From the
results in Section 5.1, it can be concluded that an adversary with limited capabilities is able
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Figure 5.15: The probabilities of successful imperfect three-phase decoupled random
attack (Case II).

to launch FDIAs against system information integrity of SDSs. As important system infor-
mation of the stochastic energy management of BESSs in SDSs, the SoC of battery packs
may also be prone to this kind of attack. In this section, the mechanisms of FDIAs against
SoC estimation of BESSs in SDSs will be studied to provide guidelines for the develop-
ment of countermeasures and stochastic energy management of BESSs that is resilient to
this kind of attacks.

5.2.1 System Model
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Figure 5.16: A typical architecture of SDSs with BESSs.

As shown in Fig. 5.16 [230], for an SDS with BESSs, the ICT devices collect measure-
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ments, control electronic devices, and communicate with the control center located at sub-
station through two-way communication links. The BESS connects at point of common
coupling (PCC) through three-phase AC-DC voltage source converter (VSC), transformer,
and filter with bidirectional power flows. The BESS controller determines the three-phase
control variables of magnitude modulations mabc and phase-displacement angles ∆θabcpm ,
based on active and reactive power setpoints given by the control center. The BMS col-
lects battery pack measurements, e.g., temperature, terminal voltage, and current, and es-
timates battery pack statuses, e.g., SoC and state of health (SoH), for battery pack monitor-
ing and control [253]. The BESS measurements and statuses are transmitted to the control
center by smart inverter for energy management. The potential FDIAs can be launched at
ICT devices and smart inverter/BMS. In this research, the system steady states for discrete-
time slots with equal length of ∆t are considered. The model errors of DSSE and SoC es-
timation are not considered [25, 29]. The complex variables are in polar coordinates, while
x̄, x̂, and x̃ denote the measurement, estimation and prediction of variable x, respectively.

Modeling for SDSs with BESSs

SDSs have phase imbalances and require for three-phase models. As shown in Fig. 5.16,
the π model of feeder section ij of a solidly grounded SDS consists of 3 × 3 series ad-
mittance matrix yabcij and shunt admittance matrix ysij [254]. The current injections Iabc =

[Iabc1 , · · · , Iabci , · · · , IabcN ]T , where N is the total number of buses and Iabci = [Iai , I
b
i , I

c
i ], is

calculated as

Iabc = Y abcV abc, (5.30)

where V abc = [V abc
1 , · · · , V abc

i , · · · ,V abc
N ]T and V abc

i = [V a
i , V

b
i , V

c
i ]. Y abc is the nodal

admittance matrix with diagonal entry Y abc
ii and off-diagonal entry Y abc

ij , for i 6= j, being
calculated, respectively, as Y abc

ii =
∑

j∈Ai(y
abc
ij +ysij) and Y abc

ij = Y abc
ji = −yabcij , whereAi is

the set of buses adjacent to bus i. As shown in Fig. 5.16, for each BESS, the transformer and
filter are modeled as admittance matrix yabcmp . The VSC is modeled using control variables
mabc and ∆θabc, AC-side resistor Rac, and DC-side resistor Rdc [102]. Also, for mα and
∆θα in phase α, the following equations hold for VSC:

mα =
√

2|V |αmVdc; ∆θαpm = θαm − θαp , (5.31)

where |V |αm is the voltage magnitude in phase α of AC-side bus, i.e., busm in Fig. 5.16, and
Vdc is the DC-side voltage. θm and θp are the corresponding phase angles. The following
power balance equation holds for BESS with VSC losses:∑

α={a,b,c}

Pαmp + (|I|αmp)2Rac + VdcIdc + V 2
dcRdc = 0, (5.32)

whereP abc
mp and Iabcmp relate toV abc

m andV abc
p throughY abc

mp . The DC-side voltage and current
are assumed to be equivalent to battery pack terminal voltage and current, as in [255].
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Measurements in SDSs with BESSs

The typical real-time measurements for SDSs are magnitudes of bus voltage |V̄ | and branch
current |Ī|measured by IEDs and other RTUs of SCADA systems and voltage phasor mea-
surement θ̄ from µPMUs [257]. Also, pseudo measurements for bus active P̄ and reactive
Q̄ power injections are widely used [27]. For each BESS, the battery pack terminal volt-
age V̄dc and current Īdc, and AC-side voltage magnitude |V̄ |ac, active P̄ac and reactive Q̄ac
power, and current flow magnitude |Ī|ac are measured [102]. The control variables m̄ and
∆θ̄ are also considered as real-time measurements. By inserting virtual admittance with
arbitrary nonzero values for missing phases, the missing phases are analogous to zero-
injection phases [256]. Then, for both missing and zero-injection phases, the corresponding
voltage variables are eliminated [257].

DSSE for SDSs with BESSs

For SDSs with BESSs, the system state vector x is defined as x = [|V |abc1 ,θabc1 ]T , where
|V |abc1 and θabc1 are the magnitudes and phase angles of all bus voltages including the VSC
AC-side bus voltages [102], except for missing and zero-injection phases. The phase an-
gle of slack bus is selected as reference. The measurement vector z = [|V̄ |, |Ī|, θ̄, P̄ , Q̄,
V̄dc, Īdc, |V̄ |ac, |Ī|ac, P̄ac, Q̄ac, m̄,∆θ̄]T relate to x through measurement functions h(·) as
z = h(x) + δ, where h(·) are derived based on (5.30), (5.31), and (5.32) using the forma-
tions in [258]. δ are independent random measurement noises following normal distri-
butions with zero means. The corresponding weighted least square (WLS)-based DSSE is
formulated as an optimization problem as below:

x̂ = arg min
x

(z − h(x))TW (z − h(x)), (5.33)

where x̂ are the estimated system states andW is the weight matrix for measurements. In
this research, the wide choice for W = diag{σ−2

1 , · · · , σ−2
k , · · · , σ−2

M }, where σ2
k is the vari-

ance of kth measurement noise and M is the total number of measurements, in [27] is con-
sidered. Optimization problem (5.33) is solved iteratively using Gauss-Newton method.

Measurement Residual-based BDD in DSSE

In DSSE, bad measurements may be introduced from various sources e.g., meter reading
failures or cyber-physical attacks. As an important function of DSSE, the system operators
consider the geographical correlations and statistics of measurement noises for BDD based
on measurement residual ||∆ẑ||2 = ||z−ẑ||2, where ẑ is the estimated measurements calcu-
lated from h(x̂) using estimated system states x̂. For normally distributed measurement
noises δ, the squared measurement residual ||∆ẑ||22 follows chi-square (χ2) distribution
with (|z|− |x|) degrees of freedom, where |z| and |x| represent the cardinalities of z and x,
respectively. The hypothesis test is used to determine threshold τ with significance level
λ, such that ||∆ẑ||2 > τ indicates bad data with false alarm probability of λ [102].
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Extended Kalman Filter for SoC Estimation of BESSs
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Figure 5.17: Unit model of battery pack.

The battery pack of a BESS typically consists of multiple cells for voltage and power
requirements [259]. The consideration of estimated SoCs of all cells for precise SoC esti-
mation of BESSs usually results in high computational complexities and implementation
costs [260]. In practice, the unit model of battery pack is generally adopted for SoC estima-
tion [53], where the cell screening is used for improved cell balancing [53]. Then, the unit
model as shown in Fig. 5.17 consists of lumped parameters of battery resistor Rb, R-C pair
for first-order dynamics, terminal voltage Vdc, current Idc, and OCV g(Φ) as a nonlinear
function of battery pack SoC Φ. These parameters are estimated by recursive least-square
(RLS) filter as in [53]. Based on the unit model, the extended Kalman filter (EKF) has been
widely used for SoC estimation [52]. Based on this, SoC is estimated with predict and up-
date. The predicted SoC Φ̃t is obtained with estimated SoC Φ̂t−1 and current measurement
Īt−1
dc using Coulomb counting method as

Φ̃t = Φ̂t−1 +
∆t

Cbat
Īt−1
dc , (5.34)

where C is the battery pack nominal capacity. The predicted variance P̃t of estimation error
is calculated as P̃t = P̂t−1 + Q, where Q is the variance of Gaussian white process noise
with zero mean. Then, Φ̃t is updated based on terminal voltage measurement V̄ t

dc for time
slot t as follows:

Φ̂t = Φ̃t +Kt(V̄
t
dc − Ṽ t

dc), (5.35)

where Ṽ t
dc is the predicted terminal voltage and is calculated based on Φ̃t, and Kt is the

Kalman gain given by Kt = ∂g(Φ)
∂Φ |Φ̃tP̃t[(

∂g(Φ)
∂Φ |Φ̃t)

2P̃t + R], where R is the assumed mea-
surement noise variance. Also, the variance of estimation error is updated as P̂t = (1 −
Kt

∂g(Φ)
∂Φ |Φ̃t)P̃t. In practice, the initial SoC estimation, i.e., Φ̂0, is obtained when the battery

pack has been staying in open circuit for a few hours [12].

Construction Principle of FDIAs against SoC Estimation of BESSs in SDSs

The vulnerability of BESSs to FDIAs has been widely studied by exploiting the security of
communication networks [28]. However, there is a lack of analytical analysis of the vulner-
ability of BESSs to FDIAs. In this section, the construction principle of FDIAs against SoC
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estimation is analyzed through the construction of static FDIAs targeting on one snap-
shot of SoC estimation. Based on this, the vulnerability of SoC estimation of BESSs to
FDIAs is investigated analytically through the theoretical derivation of SoC estimation er-
rors caused by FDIAs. Also, a detection method based on an innovation test is proposed
to analyze the temporal correlation characteristics of measurements in SoC estimations of
BESSs.

Construction of Static FDIAs against SoC Estimation

The construction principle of static FDIAs targeting on one snapshot of DSSE in [256]
is considered. The attack vector ε on measurement data that can bypass measurement
residual-based BDD in Subsection 5.2.1 is determined strategically as

ε = h(x̂+ ϑ)− h(x̂), (5.36)

where ϑ are manipulations on estimated states introduced by ε. Intuitively, the objective
of a FDIA against SoC estimation is to maximize the absolute difference between the ac-
tual and estimated SoC. Based on (5.34) and (5.35), the estimated SoC Φ̂t is determined
recursively with measurements V̄dc and Īdc as

Φ̂t = Φ̂t−1 +
∆t

Cbat
Īt−1
dc +Kt(V̄

t
dc − Ṽ t

dc), (5.37)

where the measurement value V̄ t
dc and predicted value Ṽ t

dc of battery pack terminal voltage
are expressed, respectively, as

V̄ t
dc = g(Φt) + V t

rc + ItdcRbat + δtV̄dc (5.38)

Ṽ t
dc = g(Φ̃t) + V̂ t

rc + (Itdc + δtĪdc)Rbat, (5.39)

where δV̄dc and δĪdc are measurement noises of battery pack terminal voltage and current,
respectively. Since the variance of R-C pair voltage for measurement noise is minimal,
V t
rc = V̂ t

rc [263]. Then, the term V̄ t
dc − Ṽ t

dc in (5.37) can be expressed based on (5.38) and
(5.39) as

V̄ t
dc − Ṽ t

dc = g(Φt)− g(Φ̃t)−RbatδtĪdc + δtV̄dc , (5.40)

where, based on (5.34), g(Φt)− g(Φ̃t) can be determined as

g(Φt)− g(Φ̃t) = g(Φt−1 +
∆t

Cbat
It−1
dc )− g(Φ̂t−1 +

∆t

Cbat
(It−1
dc + δt−1

Īdc
))

= β(∆Φt−1 −
∆t

Cbat
δt−1
Īdc

), (5.41)

where ∆Φt−1 = Φt−1 − Φ̂t−1 is the SoC estimation error for time slot t − 1 caused by
measurement noises. The second equality holds due to that, for proper range of SoC esti-
mation, g(Φ) can be linearized with constant slope β > 0 [264]. Then, by combining (5.37),
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(5.40), and (5.41), ∆Φt can be evaluated as

∆Φt = Φt − Φ̂t = (1− βKt)∆Φt−1 − (1− βKt)
∆t

Cbat
δt−1
Īdc

+Kt(Rbatδ
t
Īdc
− δtV̄dc). (5.42)

By injecting attack vector εt on measurements for time slot t, the difference between
actual and estimated SoC becomes ∆Φεt which can be expressed as

∆Φεt = (1− βKt)∆Φt−1 − (1− βKt)
∆t

Cbat
δt−1
Īdc

+Kt(Rbatδ
t
Īdc
− δtV̄dc +Rbatε

t
Īdc
− εtV̄dc)

= Kt(Rbatε
t
Īdc
− εtV̄dc) + ∆Φt, (5.43)

where εt
V̄dc

and εt
Īdc

are tampers on measurements V̄dc and Īdc, respectively. From (5.43),
it can be observed that by injecting εt, ∆Φεt will deviate from ∆Φt. Then, the optimiza-
tion problem of an adversary for maximizing the absolute difference between actual and
estimated SoC can be expressed as

max
εt
|∆Φεt | (5.44)

subject to

εt = h(x̂t + ϑt)− h(x̂t) (5.45)

eTm̄α(zt + εt) ≤ m, ∀α ∈ {a, b, c} (5.46)

− Idc ≤ eTĪdc(zt + εt) ≤ Idc (5.47)

Vdc ≤ eTV̄dc(zt + εt) ≤ Vdc (5.48)

eTP̄ac(zt + εt) = P setac ; eTQ̄ac(zt + εt) = Qsetac , (5.49)

where e{·} is standard basis vector and m is the upper limit of magnitude modulation for
stable operation. Also, Idc is battery pack current limit, while Vdc and Vdc are battery pack
voltage limits. Constraint (5.49) is for the active and reactive power setpoints. After the
compensation of initial SoC variation that is typically achieved in a few steps [265], the
EKF becomes time-invariant and asymptotically stable. The EKF estimation error vari-
ance P̂ reaches a steady-state value with a constant K ∈ (0, 1/β) [267]. It is assumed that,
before the attack, the EKF is already in a steady state with constant gain. The objective
function maxϑt |∆Φεt | can be relaxed to maxϑt ∆Φεt for underestimation or minϑt ∆Φεt for
overestimation. Without loss of generality, in the rest of this thesis, only the case of un-
derestimation is considered, and the results of which can be easily applied to the case of
overestimation.

Detection of Static FDIAs against SoC Estimation

Due to constraint (5.45), the attack vector obtained from (5.44) can bypass the BDD in Sub-
section 5.2.1. In this section, the detection of this kind of static FDIA against SoC estimation
using EKF innovation test on measurement V̄ t

dc will be discussed. The innovation ∆Ṽ t
dc of

EKF-based SoC estimation is the difference between measurement and predicted values of
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terminal voltage [14] and is expressed as ∆Ṽ t
dc = V̄ t

dc− Ṽ t
dc. Based on (5.40) and (5.41), ∆Ṽ t

dc

can be derived as

∆Ṽ t
dc = β(∆Φt−1 −

∆t

Cbat
δt−1
Īdc

)−RbatδtĪdc + δtV̄dc , (5.50)

where, based on (5.42), ∆Φt−1 is determined recursively as

∆Φt−1 =

t−1∏
l=1

(1− βKl)∆Φ0 −
t−1∑
l=1

{
t−1∏

l′=l+1

(1− βKl′)[(1− βKl)
∆t

Cbat
δl−1
Īdc

+Kl(Rbatδ
l
Īdc

− δlV̄dc)]}, (5.51)

where ∆Φ0 follows normal distribution with zero mean and variance P0 [268]. Then, the
mean of ∆Φt−1 is zero. As t→∞, the steady-state variance σ2[∆Φt−1], by considering the
constant Kalman gain K in Subsection 5.2.1, converges to

σ2[∆Φt−1] =
[(( 1

K − β) ∆t
Cbat )

2 +R2
bat]σ

2
δĪdc

+ σ2
δV̄dc

2β/K − β2
. (5.52)

Since the i.i.d. random variables ∆Φ0, δĪdc , and δV̄dc follow normal distributions, ∆Φt−1

also follows normal distribution with zero mean and variance (5.52). Then, ∆Ṽ t
dc follows

normal distribution with zero mean and variance expressed as

σ2[∆Ṽ t
dc] =

[(( 1
K − β) ∆t

Cbat )
2 +R2

bat]σ
2
δĪdc

+ σ2
δV̄dc

2/βK − 1
− [(β

∆t

Cbat
)2 +R2

bat]σ
2
δĪdc

+ σ2
δV̄dc

. (5.53)

By injecting attacks εV̄dc and εĪdc , the deviation of innovation is−(RbatεĪdc−εV̄dc). Based
on (5.43), for any successful static FDIA against SoC estimation, i.e., ∆Φεt 6= ∆Φt, the term
RbatεIdc − εVdc 6= 0, which modifies the value of innovation ∆Ṽ t

dc. Based on innovation
squared test statistic [269], the square of attack-free ∆Ṽ t

dc follows central χ2 distribution
with a freedom of 1. With a specified false alarm probability λekf , a threshold τ ekf can be
defined as in [102]. Then, a static FDIA against BESS SoC estimation will be detected if
||∆Ṽ t

dc||2 > τ ekf with false alarm probability of λekf .

5.2.2 Sequential FDIAs against SoC Estimation of BESSs within SDSs

In Subsection 5.2.1, the innovation test-based detection for static FDIAs against SoC esti-
mation is discussed. In [36], the construction of FDIAs against innovation test is studied,
where a FDIA that can bypass the innovation test is constructed as

−
√
τ ekf ≤ V̄ t

dc − Ṽ t
dc + εtV̄dc −Rbatε

t
Īdc
≤
√
τ ekf . (5.54)

However, the feasible solutions of εt
V̄dc

and εt
Īdc

for (5.54) are relatively small, which results
in insignificant impacts of static FDIAs against SoC estimation constructed based on (5.54)
[39]. It can be observed from (5.37) that, besides tampering V̄ t

dc and Ītdc, the tampers on



Chapter 5. Cyber-Physical Security Analysis of BESSs in SDSs 109

measurements for time slot t − 1 also misleads the SoC estimation for time slot t. Then, a
sequential FDIA against SoC estimation is proposed, where the adversary at current time
slot t−L+ 1 constructs a sequence of attack vectors ~εLt = [εt−L+1, · · · , εl, · · · , εt] targeting
on SoC estimation for future time slot t.

Mechanism of Sequential FDIA with Post-Attack Compromising against SoC Estima-
tion

With the moderate temperature and estimation horizon, the R-C pair dynamics and battery
degradation do not vary significantly [35]. Then, with a moderate attacking horizon L, i.e.,
from t − L + 1 to t, there are no significant changes on lumped parameters, and the EKF-
based SoC estimation is approximated as an RLS filter [270]. Then, with L time-series
measurements V̄ L t

dc and ĪL t
dc from time slot t−L+ 1 to t, Φ̂t is obtained from the following

optimization problem [271]:

Φ̂t = arg min
Φt

1

2

∑
l∈L

(V̄ l
dc − fl(Φt))

2, (5.55)

where fl(Φt) recursively relates Φt to V l
dc for time slot l using Coulomb counting method

and is expressed as

V l
dc = fl(Φt) = g(Φt)−

t−1∑
l′=l

β∆t

Cbat
I l
′
dc + V l

rc + I ldcRbat, (5.56)

where β is the constant slope defined in Subsection 5.2.1. Similarly, considering the min-
imal variance of Vrc as in (5.40), the measurement residual ∆V̂ l

dc is calculated based on
(5.56) as

∆V̂ l
dc = V̄ l

dc − V̂ l
dc = fl(Φt)− fl(Φ̂t) = β∆Φt +

t−1∑
l′=l

β∆t

Cbat
δl
′

Īdc
−RbatδlĪdc + δlV̄dc . (5.57)

By substituting (5.57) into (5.55), ∆Φt is determined from optimality condition
∑

l ∆V̂
l
dc

∂∆V̂ l
dc/∂Φt = 0 for Φt = Φ̂t as

∆Φt =
1

βL

∑
l∈L

(Rbatδ
l
Īdc
− δlV̄dc −

t−1∑
l′=l

β∆t

Cbat
δl
′

Īdc
). (5.58)

By introducing sequential FDIA ~εLt , the difference between actual and estimated SoC
∆Φ

~εLt
t is expressed as

∆Φ
~εLt
t =

1

βL

∑
l∈L

(Rbatε
l
Īdc
− εlV̄dc −

t−1∑
l′=l

β∆t

Cbat
εl
′

Īdc
) + ∆Φt. (5.59)
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The optimization problem of an adversary with sequential FDIA ~εLt over SoC estimation
horizon L is expressed as

max
~εLt

∆Φ
~εLt
t (5.60)

subject to

|V̄ l
dc − Ṽ l

dc −RbeTĪdcεl + eTV̄dcεl| ≤
√
τ ekf , ∀l ∈ L (5.61)

constraints (5.45)-(5.49), ∀l ∈ [t− L+ 1, t],

where constraint (5.61) is for FDIA to bypass the innovation test following (5.54).
By injecting FDIA ~εL∗t obtained from (5.60) over the attacking horizon L, the estimated

SoC for time slot t deviates from the actual SoC by a large value. However, the inaccurately
estimated SoC for t results in a large innovation for t + 1, which alters the suspicious SoC
estimation. Therefore, the adversary needs to continue injecting attack vectors for post-
attack compromising of sequential FDIAs. More specifically, the post-attack compromising
of a sequential FDIA targeting on time slot t can be achieved by following the steps below:

1. Set l = t+ 1,

2. If |V̄ l
dc − Ṽ l

dc| ≤
√
τ ekf , go to 5); else, go to 3),

3. Solve the following problem for ε∗l and go to 4)

max
εl
|V̄ l
dc − Ṽ l

dc + eTV̄dcεl −Rbe
T
Īdc
εl|

subject to

constraints (5.45)-(5.49) and (5.61),

4. Inject ε∗l to compromise sequential FDIA ~εLt for time slot l, and repeat 2) - 4) with
l = l + 1,

5. End for post-attack compromising.

An Online Approach for Practical Construction of Sequential FDIAs

Since each ε of ~εLt modifies V̄dc and Īdc with small values and Vdc and Idc are within their
limits during normal operation [35], the range of εl under constraints (5.45)-(5.49) is not
affected by εl′ 6=l. Then, under constraints (5.45)-(5.49), the attack vectors of a sequential
FDIA are independent. However, according to (5.40), for any k + 1 ∈ L, constraint (5.61)
can be revised as

|∆Φk+1 + β(∆Φ~ε k
k −

∆t

C
εkĪdc)−Rbε

k+1
Īdc

+ εk+1
V̄dc
| ≤
√
τ ekf , (5.62)



Chapter 5. Cyber-Physical Security Analysis of BESSs in SDSs 111

where ∆Φk+1 = β(∆Φk − ∆t
C δ

k
Īdc

) − δk+1
Īdc

Rb + δk+1
V̄dc

is the SoC estimation error for time

slot k+ 1 caused by measurement noises, and ∆Φ~ε k
k is the SoC estimation error caused by

attack vectors up to k of a sequential FDIA, which is expressed as

∆Φ~ε k
k =

k∑
l=t−L+1

(
Rbε

l
Īdc
− εl

V̄dc

βL′
−
k−1∑
l′=l

β∆t

CL′
εl
′

Īdc
), (5.63)

whereL′ = k−t+L. According to (5.62) and (5.63), the range of εk+1 under constraint (5.61)
depends on attack vectors up to k. Since ~εLt is determined at time slot t−L+ 1, the system
states, active and reactive power setpoints, and measurements for time slot l > t − L + 1

are unknown. This results in great challenges on the construction of practical sequential
FDIAs. In this section, an online approach for practical construction of sequential FDIAs
is proposed. For any time slot k + 1, ∆Φ

~εLt
t can be reformulated using the expression of

∆Φ~ε k
k in (5.63) as

∆Φ
~εLt
t =

1

βL
{(β(k − t+ L)(∆Φ~ε k

k −
∆t

C
εkĪdc) + [Rb − (k − t+ L+ 1)

β∆t

C
]εk+1
Īdc
− εk+1

V̄dc

+ ∆Φ
~εk+2

t }+ ∆Φt, (5.64)

where ∆Φ
~εk+2

t depends only on attack vectors after time slot k+ 1. The optimal sequential
FDIA can be denoted as ~εL∗t = [~ε∗k, ε

∗
k+1, ~ε

∗
k+2 ], where ~ε∗k and ~ε∗k+2 are the components

of optimal sequential FDIA ~εL∗t for time slots [t − L + 1, k] and [k + 2, t], respectively. By
considering εk+1∗

V̄dc
= ∆εk+1∗

V̄dc
− β(∆Φ

~ε∗k
k −

∆t
C ε

k∗
Īdc

), ∆Φ
~εL∗t
t is determined following (5.64) as

∆Φ
~εL∗t
t = ∆Φt +

1

βL
[(β(k − t+ L+ 1)(∆Φ

~ε∗k
k −

∆t

C
εk∗Īdc) + ∆Φ

~ε∗k+2

t ] + max
∆εk+1

V̄dc
,εk+1
Īdc

1

βL

{[Rb − (k − t+ L+ 1)
β∆t

C
]εk+1
Īdc
− [∆εk+1

V̄dc
− β(∆Φ

~ε∗k
k −

∆t

C
εk∗Īdc)]}, (5.65)

and the constraint (5.61) can be reformulated following (5.62) with εk+1
V̄dc

= ∆εk+1
V̄dc
−β(∆Φ

~ε∗k
k

−∆t
C ε

k∗
Īdc

) as

|∆Φk+1 + β(∆Φ
~ε∗k
k −

∆t

C
εk∗Īdc)−Rbε

k+1
Īdc

+ ∆εk+1
V̄dc
− β(∆Φ

~ε∗k
k −

∆t

C
εk∗Īdc)| ≤

√
τ ekf

⇐⇒ |∆Φk+1 −Rbεk+1
Īdc

+ ∆εk+1
V̄dc
| ≤
√
τ ekf . (5.66)

From the above equation, it can be observed that the ranges of variables εk+1
Īdc

and ∆εk+1
V̄dc

depend only on ∆Φk+1 which is not affected by the attack vectors of other time slots. This
indicates that, for each time slot l ∈ L, the adversary only needs solve the optimization
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problem expressed as follows:

max
∆εl

V̄dc
,εl
Īdc

1

βL
[Rbε

l
Īdc
− (∆εlV̄dc − β(∆Φ

~ε∗l−1

l−1 −
∆t

C
εl−1∗
Īdc

))− (l − t+ L)
β∆t

C
εlĪdc ] (5.67)

subject to

eTV̄dcεl = ∆εlV̄dc − β(∆Φ
~ε∗l−1

l−1 −
∆t

C
εl−1∗
Īdc

) (5.68)

eTĪdcεl = εlĪdc (5.69)

constraints (5.45)-(5.49) and (5.66).

For the current time slot l, the adversary determines the optimal attack vector ε∗l by solving
(5.67), which only requires the information of system states, active and reactive power
setpoints, and measurements for l and the value of β(∆Φ

~ε∗l−1

l−1 −
∆t
C ε

l−1∗
Īdc

) depending on the
attack vectors for time slots preceding l. Then, the attack vector for each time slot within
the attacking horizon L can be determined dynamically.

For practical sequential FDIAs, the assumption about the insignificant changes of the
lumped parameters, which is feasible for regular BESS operation with a moderate estima-
tion horizon [35], is required. Thus, one of the possible directions for countermeasures
against sequential FDIAs is to leverage the concept of CPVD. In power systems, the appli-
cation of CVPD for the detection of FDIAs has been widely studied based on distributed
flexible AC transmission system (D-FACTS) [272]. For the BESSs that lack capability for
system typologies or parameters alternating, the inserting of watermarks [273] on the dy-
namics of R-C pairs can significantly alternate lumped parameters dynamically. However,
there still requires great challenges in designing optimal watermarks that can cause sig-
nificant variations of the dynamics of R-C pairs while imposing the least impacts on the
performance of SoC estimation.

5.2.3 Case Studies
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Figure 5.18: Modified IEEE 13 bus test feeder with BESS at bus 632.

In this section, the case studies based on the modified IEEE 13 bus test feeder in [256]
are performed to investigate the vulnerability of BESS SoC estimation to FDIAs in SDSs.
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Table 5.1
BATTERY PACK RATINGS

Nominal Capacity 571.9kWh/816Ah
Nominal Power 250kW
Nominal DC Voltage 700.8V
DC Voltage Range 595.2− 787.2V
Nominal DC Current 357A
DC Current Range −400− 400A
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Figure 5.19: Active power setpoints for BESS.

The system topology and measurement deployments are illustrated in Fig. 5.18, where the
bus 650 is selected as the slack bus. For all buses, the pseudo measurements for active and
reactive power injections are always available to have a fully observable SDS. Considering
the statistics of measurement noises, the case studies are performed under Monte Carlo
simulations with 100 scenarios. For real-time measurements, the standard deviations are
1% and 0.5% for magnitude and phasor measurements. The standard deviations of pseudo
measurements are 30% [274]. For measurement residual-based BDD and innovation test,
the measurement residuals and innovations are normalized using standard deviations.
The thresholds τ and τ ekf are selected, respectively, as 4.5854 and 1.960 for a confidence
level of 95%.

For BESS connecting at bus 632, the Lithium-ion battery pack with well-balanced cells
in [275] is considered, and the ratings are listed in Table 5.1. This battery pack consists
of 12 parallel racks, where each rack is formed by 12 modules connecting in series. For
each module, the 16 cells rating at 68Ah and 3.1 − 4.1V for each cell are connected in se-
ries. The BESS active power setpoints considered are shown in Fig. 5.19, and the reactive
power setpoints are assumed to be all zeros. The initial SoC of BESS is set to be 84%. The
experimental OCV data for Lithium-ion battery is obtained from [276] for ambient temper-
ature at 25◦C and SoC range of 14% − 100%. The operational SoC range is considered as
20%− 95%, within which the battery resistor is Rbat = 0.2816Ω for each rack and the slope
of OCV function is β ≈ 1.75V/1%SoC. Considering the impacts of dynamic R-C pair, the
battery pack model of Matlab/Simulink [277] is used for SoC estimation based on EKF,
in which the ambient temperature is 23C◦ and the temperature characteristics of all cells
are well balanced. It should be noted that, as discussed in Subsection 5.2.1 and 5.2.2, for
the construction of static and sequential FDIAs and detection of static FDIAs, the explicit
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R-C pair model is not required, due to the minimal Vrc variance caused by measurement
noises. For the EKF process, Q = 0.1 and R = 10. The attacking horizon in sequential
FDIAs is L = 60 with ∆t = 60s.
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Figure 5.20: Static FDIA against SoC estimation.
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Figure 5.21: Measurement residual under static FDIA.
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Figure 5.22: Innovation under static FDIA.

Firstly, a static FDIA against BESS SoC estimation for time slot 52 is constructed based
on the method in Subsection 5.2.1. The impact of this static FDIA against SoC estimation
is shown in Fig. 5.20, from which it can be observed that the static FDIA can cause a larger
deviation of SoC estimation from actual SoC for time slot 52, compared with the SoC esti-
mation under no attacks. After time slot 52, the impact of this static FDIA last for several
time slots; however, the impact diminishes as time goes on, due to the existence of Kalman
gain. Also, from Fig. 5.21, it can be observed that, for all the Monte Carlo simulation sce-
narios, the measurement residuals after static FDIA are the same with the measurement
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residuals before static FDIA and are always below the threshold τ for BDD. This indicates
that the constructed static FDIA can always bypass the BDD, if the measurements before
FDIAs are free of bad data, and will not be detected by the control center. It can be ob-
served from Fig. 5.22 that the innovations of battery pack terminal voltage before and
after static FDIA have the same patterns, since the variations of innovations are caused by
random measurement noises. However, the innovations after static FDIA deviate from the
innovations before static FDIA by a large value. This is caused by the static FDIA, and all
the innovations after static FDIA exceed the threshold τ ekf for the innovation test. This
means that the detection method in Subsection 5.2.1 can always detect the static FDIAs
against BESS SoC estimation with large values.
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Figure 5.23: Sequential FDIA against SoC estimation.
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Figure 5.24: Innovation under sequential FDIA.
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From Fig. 5.23, it can be observed that the proposed online approach can obtain the
same sequential FDIA as the one obtained using the method in Subsection 5.2.2, with the
assumption that the system states, active and reactive power setpoints, and measurements
for future time slots are available. Also, Fig. 5.23 indicates that different from static FDIA,
which causes a sudden change of SoC estimation for time slot 52, the sequential FDIA grad-
ually compromises the SoC estimation result for time slot 52, and it has the same impact as
that of static FDIA on SoC estimation. Also, from Fig. 5.24, compared with the static FDIA,
the sequential FDIA results in small innovations that are all below the threshold τ ekf . So,
from the results shown in Fig. 5.23 and 5.24, it can be concluded that the proposed se-
quential FDIA can achieve the same performance on compromising SoC estimation results
as that of static FDIA, and it can always bypass the innovation test. However, it can be
observed in Fig. 5.25 that, due to the large error of SoC estimation caused by sequential
FDIA for time slot 52, the innovation for time slot 53 becomes significantly large, which
will alter the existence of abnormal SoC estimation.

10 20 30 40 50 60 70 80 90 100
Time (min)

0

5

10

15

|
S

oC
| (

%
)

| SoC| under sequential FDIA for time slot 52
| SoC| under sequential FDIA with post-attack compromising for time slot 52

Figure 5.26: Sequential FDIA with post-attack compromising.
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Figure 5.27: Innovations for different time slots under sequential FDIA with post-attack
compromising.

Therefore, for a successful sequential FDIA against BESS SoC estimation, the adversary
is required to perform post-attack compromising to avoid the large innovations for time
slots after the sequential FDIA. By following the steps discussed in Subsection 5.2.2, the
results for a sequential FDIA with the corresponding post-attack compromising are shown
in Fig. 5.26. It can be observed that, compared with sequential FDIA, the sequential FDIA
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with post-attack compromising still injects attack vectors after time slot 52, which is aimed
at reducing the innovations of measurements after the sequential FDIA targeting on time
slot 52. From Fig. 5.27, it can be observed that by considering the post-attack compromis-
ing, the attack vectors, constructed by following the steps in Subsection 5.2.2, are injected
for time slots after sequential FDIA to avoid the innovations exceeding the threshold. Also,
it can be observed from Fig. 5.27 that the post-attack compromising ended at time slot 96.
So, in comparison with sequential FDIA, the sequential FDIA with post-attack compromis-
ing requires a longer attacking horizon.

5.3 Summary

In this chapter, the cyber-physical security vulnerability of BESSs in SDSs is investigated
with a specific focus on the typical system information integrity attacks, i.e., FDIAs. For
the cyber-physical security vulnerability, the construction principle of practical FDIAs in
SDSs is first studied to show that the FDIAs in SDSs are practically applicable. Also, the
feasibility and limitations of performing FDIAs in SDSs are discussed in detail. Based
on the construction principle of FDIAs in SDSs, the mechanisms of FDIAs against SoC
estimation of BESSs in SDSs are studied, which provide insights on the vulnerability of
BESSs in SDSs to cyber-physical attacks.



6
Conclusions and Future Works

To better accommodate the ever-increasing load demands and environmental concerns, the
conventional power distribution systems are undergoing massive shifts towards the more
efficient, reliable, sustainable, and intelligent SDSs. In the development towards SDSs, the
BESS has attracted a great amount of attention from researchers in both academia and in-
dustry. The BESS can support a wide range of applications in both demand-side and grid-
scale services due to the flexible control and fast response of battery devices. In addition
to the constant progress in battery technologies and power electronics, the development
of reliable and intelligent battery energy storage management schemes has been in an ur-
gent need in recent years. One of the most significant challenges in battery energy storage
management is the randomness in SDSs. In future SDSs, the active energy management
of BESSs relies heavily on efficient and reliable information transmission among different
entities. However, information transmission may be prone to severe cyber-physical at-
tacks. Thus, in this thesis, the stochastic energy management and cyber-physical security
of BESSs in SDSs are investigated.

To reduce the computational complexity for stochastic energy management of BESSs
that involve multiple energy pathways with distinct timescale characteristics, a novel stoc-
hastic multi-timescale energy management scheme is proposed with its application in
commercial greenhouses with RES. Then, for SDSs with high BESSs penetration, a hierar-
chical and decentralized stochastic energy management scheme is proposed to effectively
manage the BESSs within SDSs for joint cost minimization of both DSO and customers,
while maintaining the voltage levels within the required range. Also, the proposed hier-
archical and decentralized stochastic energy management scheme can significantly reduce
the computational complexity, making it suitable for complex and large-scale SDSs. The
stochastic energy management of EBCSs with EBs functioning as mobile BESSs is investi-
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gated in this thesis, where the problem is formulated as a DRMDP for the highly statisti-
cal random RES and EBs with fixed routes and schedules while considering the impacts
of random bus loads with inaccurate PDF estimation. With the formulated DRMDP for
stochastic EBCSs energy management, the solutions are robust to errors of PDF estima-
tions and are less conservative with better performance in minimizing the expected cost
of EBCSs operation. Further, the cyber-physical security of BESSs in SDSs is investigated
by analyzing the vulnerability of BESSs in practical multiphase and unbalanced SDSs to
classical FDIAs, which provides helpful guidance in designing countermeasures against
FDIAs targeting BESSs in SDSs. Also, a potential countermeasure using CPVD method is
highlighted.

In this thesis, different heuristic or approximated solution methods, such as heuristic
search and pruning, are proposed to reduce the proposed energy management schemes’
computational complexity to facilitate practical applications. However, for successful ap-
plications, besides the concerns on computational complexity, the reliability of the pro-
posed energy management schemes is also a major concern, which still requires extensive
studies.

6.1 Contributions of Thesis

The main contributions of this thesis can be summarized as follows:

• A stochastic multi-timescale energy management problem is formulated with cou-
pled STS thermal process and FTS electrical process. An approximation solution
method is proposed by considering the monotonicity of daily MMDP problem and
the homogeneity of optimal policy from day to day to facilitate practical applications
with less computational complexity.

• A hierarchical and decentralized stochastic energy management scheme for SDSs
with high BESS penetration is proposed for the joint optimization of DSO and cus-
tomers while regulating the voltage levels within the required range. An energy
management scheme based on exhaustive backups is proposed to solve the formu-
lated energy management problem in a decentralized manner. To reduce the compu-
tational complexity of DSO, a heuristic search with pruning scheme is proposed.

• A method for stochastic energy management of EBCSs is proposed using DRMDP
with an event-based ambiguity set with combined statistical distance and moment
information to achieve minimax-regret criterion for robust solutions that are less con-
servative. The day-ahead dynamic prices are derived to mitigate the EB charging
impacts on power distribution systems. A heuristic regret function is proposed to
obtain tractable solutions with reduced computational complexity.
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• A local state-based linear DSSE for multiphase and unbalanced distribution systems
is proposed from the perspective of attackers. The constructions of three-phase cou-
pled, perfect three-phase decoupled, and imperfect three-phase decoupled FDIAs are
analyzed with the probabilities of successful FDIAs derived numerically. The mech-
anism of FDIAs against SoC estimation in SDSs that can bypass both measurement
residual-based BDD and innovation test is proposed by considering the temporal
correlations of BESS measurements.

6.2 Directions for Future Work

The stochastic energy management and cyber-physical security of BESSs in SDSs is a broad
research area. Although several critical issues have been addressed in this thesis, there are
still many research issues to be investigated. The following topics are proposed for future
work:

• The applications of the proposed stochastic multi-timescale energy management sch-
eme to other energy systems with more complex multi-timescale characteristics, such
as the microgrids consisting of diversified energy carriers, i.e., multi-carrier micro-
grids, will be studied. Extensive research is still needed to reduce the computational
complexity of large-scale systems. Also, the optimal selection of timescales for each
energy pathway considering the requirements of different energy carriers and char-
acteristics of different energy sources, demands, and storage units, are still open is-
sues and require future research. A possible solution is to analyze the equivalence
between the single-timescale problem and the transformed multi-timescale energy
management problem. The equivalence should consider the lower bound of the ratio
between the time slot duration of different energy pathways, which gives the longest
time slot duration of the STS process, without violating the regulation requirements.
Adaptive timescale durations for dynamic weather conditions can be studied further
to reduce the computational complexity of the energy management problem.

• The energy management schemes for smart distribution systems with BESS based
on game theory, where, instead of coordination, the DSO and customer will try to
minimize their costs. Also, by adopting the concept of peer-to-peer (P2P) energy
transactions, the utilization of local energy generation can be potentially improved.
However, typical P2P energy transaction is mainly used for the profit maximization
of a peer, based on an objective function different from the proposed energy man-
agement scheme. Involving such P2P energy transactions in the hierarchical and de-
centralized stochastic energy management architecture is a fascinating research topic
and will be investigated in our future work.

• The extension of the MDP-based discrete stochastic control process model for BESS
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energy management problems to MDPs with continuous action and state spaces.
However, explicitly considering the continuous action and state spaces as imprac-
tical as solving an MDP requires computing all actions and states’ value functions.
One possible direction is to improve the existing nearest vertex of neighboring ver-
tices methods to have a more accurate approximation of the action and state spaces
using the discrete values. For example, the Kuhn triangulation could be a promis-
ing method to better approximate the true value functions using discrete values, as
it allows efficient determination of the vertices in a point’s barycentric coordinate
system with the convex interpolation weights. Moreover, to overcome the high com-
putational complexity issue of using MDP for large-scale systems, Q-learning im-
plementation to interpolate the MDP model using data-driven approaches with ex-
pressing the reward and transition functions explicitly. However, the same as most
machine learning applications in industry, the lack of training data set with a suffi-
cient amount of data impedes machine learning’s successful industrial applications.
To overcome this issue, one possible solution is to leverage the synthetic data that are
generated from experiments to train the real data-based MDP model through trans-
fer learning, which can eliminate the divergences between the synthetic data domain
and real data domain with different probability distributions.

• The PDF estimation errors of velocity and solar irradiation will also be considered
for the stochastic energy management of EBCSs. By considering these estimation er-
rors, the s-rectangularity may not be held. To address this issue, a possible solution
is to consider factored transition probabilities and costs, where the uncertainties of
transition probabilities and costs arising from several factors, such as bus loads, EB
velocities, and solar irradiation, and each of these factors may be assumed to follow
s-rectangularity. Currently, the mobility of EBs is treated as an exogenous random
process, and there is no consideration for the interaction with the transportation net-
work. In our future work, the development and usage of scenario-based and road-
segmented transportation network models based on information from the incorpo-
rated intelligent transportation systems will be studied to improve the performance
in modeling mobility of EBs.

• The countermeasures against cyber attacks targeting BESSs in SDSs will be inves-
tigated. Based on the discussions in this thesis, the difficulty of FDIAs in practical
distribution systems depends heavily on how unbalanced the distribution systems
are. More specifically, the more unbalanced the distribution systems are, the more
measurements the attackers are required to compromise. Then the fewer efforts the
DSOs need for the countermeasures. On the other hand, if the distribution systems
are well balanced, the attackers can launch FDIAs with fewer efforts. This makes
it difficult for the DSOs to perform countermeasures. The derived probabilities of
successful FDIAs can guide the DSOs to secure buses more efficiently for counter-
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measures. However, how to analyze it numerically still requires extensive research.
Instead of physically protecting selected devices, the application of CPVD methods,
specifically the watermarks for SoC estimation, is also a promising solution. How-
ever, extensive research is required to optimize the watermarks that will have the
least impact on the performance of SoC estimation under no attacks. Moreover, from
the standpoint of communication security, the leverage of encryption, authentication,
and tamper-proof features of Blockchain technologies to protect the BESSs in SDSs
against cyber-physical attacks will be investigated.
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