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Abstract

Modern effort in radiotherapy to address the challenges of tumor localization and mo-

tion has led to the development of MRI guided radiotherapy technologies. Accurate

dose calculations must properly account for the effects of the MRI magnetic fields.

St-Aubin et al. (2015, 2016) have investigated the accuracy of a deterministic linear

Boltzmann transport equation (LBTE) solver that includes magnetic field, but not

the stability of the iterative solution method. This thesis performs a stability analysis

of this deterministic algorithm including an investigation of the convergence rate de-

pendencies on the magnetic field, material density, energy, and anisotropy expansion.

The iterative convergence rate of the continuous and discretized LBTE including mag-

netic fields is determined by analyzing the spectral radius using Fourier analysis for

the stationary source iteration (SI) scheme. The spectral radius is calculated when

the magnetic field is included 1) as a part of the iteration source, and 2) inside the

streaming-collision operator. The non-stationary Krylov subspace solver GMRES is

also investigated as a potential method to accelerate the iterative convergence, and an

angular parallel computing methodology is investigated as a method to enhance the

efficiency of the calculation. SI is found to be unstable when the magnetic field is part

of the iteration source, but unconditionally stable when the magnetic field is included
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in the streaming-collision operator. The discretized LBTE with magnetic fields using

a space-angle upwind stabilized discontinuous finite element method (DFEM) was

also found to be unconditionally stable, but the spectral radius rapidly reaches unity

for very low-density media and increasing magnetic field strengths indicating arbi-

trarily slow convergence rates. However, GMRES is shown to significantly accelerate

the DFEM convergence rate displaying only a weak dependence on the magnetic field.

In addition, the use of an angular parallel computing strategy is shown to potentially

increase the efficiency of the dose calculation.

Keywords: linear Boltzmann transport equation, magnetic field, dose calculation,

MRI guided radiotherapy, finite element analysis, GMRES, stability analysis
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Chapter 1

Introduction

1.1 Radiotherapy Dose Calculations

Dose calculation algorithms are an essential part of successful treatments in radiation

therapy. Absorbed dose is a parameter that allows for the estimation of the effective-

ness of a prescribed treatment. The development of dose calculation methodologies

has a long history beginning in the 1950s. Due to the growing knowledge about the

interaction of radiation with matter, and the rapid development of computational

capabilities, dose calculations have progressed from basic correction-based methods

(Clarkson, 1941; Cunningham, 1972; Khan et al., 1973), up to advanced Monte Carlo

(Fippel, 2013) and deterministic methods (Lewis and Miller, 1993; Vassiliev et al.,

2010). Two essential requirements for 3D radiotherapy dose calculations are 1) a high

degree of accuracy and, 2) low calculation times for rapid transitions from treatment

planning to treatment. Accuracy is required to be able to correlate tumor responses

1
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in a patient with a delivered dose for a better understanding the biological response

mechanisms in radiotherapy, and to predict future outcomes. Fast calculation speeds

ensure that treatment planning is completed within a reasonable time span that does

not disrupt the clinical flow.

All radiotherapy treatment planning algorithms aim to solve or approximate the

solution to the integro-differential linear Boltzmann transport equation (LBTE) which

describes radiation interaction with matter. Despite the linearity, the LBTE is a com-

plex equation and is challenging to solve in general. Its solution provides a macro-

scopic description of the propagation of ionization radiation in matter by specifying

the position and momentum probability distribution of a radiation field. As many

different particles generally make up a full radiation field (e.g. photons, electrons,

positrons, etc.), a full description is obtained from the solution of a system of coupled

integro-differential LBTE equations. In this manner each equation describes the in-

teraction process for a given particle which is then coupled to the equations of other

particle types by through the process of secondary particle generation (Lewis and

Miller, 1993).

Existing dose calculation methods can be divided into three categories based on

their approach to solve the coupled LBTE equations; correction-based, model-based,

and principle-based algorithms (Lu, 2013). The first methods employed in radio-

therapy planning were empirical correction-based algorithms. These methods were

developed under the assumption that patients are essentially water and radiation dose

deposition in patients can be described by radiation ionizations in a homogeneous wa-

ter medium (Schoknecht, 1967). Dose determination to a point was obtained by means

of dose functions (e.g. percent depth dose, tissue-phantom ratio, etc.) obtained via
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direct measurements in a water phantom (Clarkson, 1941; Cunningham, 1972; Khan

et al., 1973). To account for changes based on tissue inhomogeneities, various cor-

rection algorithms are applied (Ahnesjö and Aspradakis, 1999; Batho, 1964; Sontag

and Cunningham, 1978). For example, the simplest method is the equivalent path

length method, that uses a multiplicative correction factor to a water based calcula-

tion. The correction factor is the ratio of tissue air ratio (TAR) or tissue phantom

ratio (TPR) dose functions, where the depth to a calculation point is replaced by

effective (radiological) depth equal to the thickness of water-equivalent tissue that

would attenuate the radiation by the same amount. This method does not account

for the size and the distance to an inhomogeneity. To account for position of the

inhomogeneity, the power-law correction (Batho correction) is used. The correction

factor, which is the ratio of TAR (or TPR) dose functions, is raised to a power that

depends on the electronic density of surrounding material. To account for 3D shape

of the inhomogeneity, an equivalent tissue air ratio (ETAR) correction can be used.

This correction was developed by Sontag and Cunningham (1978) who proposed that

in the correction factor of the ratio of TAR dose functions, both the depth and the

size of the field at calculation point be appropriately scaled.

The advantage of these methods is their simplicity and speed. On the other hand,

these early correction-based algorithms do not provide 3D dose information, and in

complex cases of heterogeneous media, these methods can produce significant error

due to an inability to account for lateral scattering (Papanikolaou, 2004).

The next level of sophistication is achieved in model-based algorithms, also known

as convolution/superposition algorithms (Ahnesjö, 1989; Mackie et al., 1985; Oelkfe

and Scholz, 2006). In their dose calculation, these models explicitly consider macro-
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scopic physical processes of energy deposition within a patient. This is done by

introducing various dose kernels – the distribution functions that describe energy

transport and dose deposition originating from photon-tissue interactions. The dose

kernels are usually derived from more accurate Monte Carlo simulations.

Convolution/superposition algorithms, which can provide a 3D dose distribution,

simulate the dose deposition in several stages. The initial stage requires a model of

the radiation field emerging from a medical linear accelerator. This radiation field

serves as an input for the next stage, where the absorption of primary photons in a

patient is quantified in terms of the total energy released per unit mass (TERMA),

(Ahnesjö et al., 1987). Finally, dose kernels are used to simulate the process of electron

energy transport and deposition based on the calculated TERMA.

One type of dose kernel often used in calculations is the point-spread kernel. It

describes the distribution of energy in a medium if it was released locally at specific

point due to the interaction of primary photons of energy E. The 3D dose distribution

is calculated by superposition of TERMA volume with energy deposition kernel. The

total dose in the patient is calculated by adding the contribution of all point-spread

kernels in the target region.

Computational load is significantly reduced in the case of a homogeneous medium

where point-spread kernel becomes translationally invariant (Oelkfe and Scholz, 2006).

Physically the most rigorous 3D dose calculations are principle-based methods

which include stochastic Monte Carlo methods as well as deterministic methods that

directly solve the integro-partial differential LBTE. These particle transport based

methods can be used for problems of practically any complexity appearing in clinical



Chapter 1. Introduction 5

RT practice.

Monte Carlo is a stochastic approach based on tracing the individual tracks of

primary and secondary particles as they propagate and interact with matter via fun-

damental physical processes (Fippel, 2013). Each type of interaction is modeled by a

random sampling of cross section distributions attributed to a particular interaction.

Similar to the model-based methods, Monte Carlo also requires a model of radiation

field emerging from linear accelerator, typically stored as a six-dimensional particle

phase space describing the particle momentum and position.

The uncertainty of Monte Carlo simulations depends on the inverse square root

of the number of particle histories (Jeraj and Keall, 2000). This typically makes

Monte Carlo simulations rather time consuming as a very large number of histories

is required to be calculated. However, recent advances in Graphics Processing Unit

(GPU) and Central Processing Unit (CPU) computing, and the application of vari-

ous radiotherapy specific assumptions and acceleration techniques have significantly

reduced Monte Carlo dose calculation time (Hissoiny et al., 2011). This makes Monte

Carlo feasible for use in clinical treatment planning systems such as the XVMC al-

gorithm used in the Elekta Monaco treatment planning system (Fippel, 1999). Due

to its high accuracy, validated through comparison with experimental measurements,

Monte Carlo algorithms are also often used for benchmarking the accuracy of other

dose calculation algorithms (Tertel et al., 2010).

As opposed to stochastic algorithms, deterministic methods, also known as grid-

based Boltzmann solvers (Vassiliev et al., 2010), calculate the dose distribution by

solving a system of linear equations obtained by discretizing the six-dimensional phase
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space variables of the LBTE. The six-dimensional phase space variables (typically

space, angle and energy) can be discretized using various techniques including finite

element methods, discrete ordinates methods, and Multigroup methods (Gifford et al.,

2006; Lewis and Miller, 1993). Acuros XB is a principle-based grid-based Boltzmann

solver developed by Varian Medical Systems which has been shown to have equivalent

accuracy to Monte Carlo calculations for external photon beam treatment planning in

complex heterogeneous cases (Failla et al., 2010; Han et al., 2011). Acuros XB explic-

itly solves the LBTE with accuracy comparable to advanced Monte Carlo methods.

In fact, Acuros XB was developed as a faster alternative to Monte Carlo methods

(Failla et al., 2010).

1.2 Magnetic Resonance Imaging (MRI) Guided

Radiotherapy (RT) Technologies

Modern efforts in radiotherapy to address the challenges of tumor localization while

sparing radiation sensitive organs has led to the development of magnetic resonance

imaging (MRI) guided radiotherapy (RT) technologies. MRI-guided RT systems add

a requirement that magnetic fields be properly accounted for in the dose calculations.

In radiotherapy, the dose to a tumor that kills cancer cells is deposited by a flux

of charged particles (primary or secondary) such as electrons, protons, carbon ions,

etc. The presence of the magnetic field alters primary and secondary charged particle

trajectories due to the Lorentz force and influences the final dose distribution. The

magnitude of the effect in the final dose depends on a set of parameters including the

MRI magnetic field strength, tissue density and mutual orientation of the MRI field
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and radiation beam.

The main dose effects observed in simulations and experiments for magnetic fields

perpendicular to the radiation beam include the reduction of build-up (surface) dose,

asymmetry of lateral profile perpendicular to the magnetic field and dose increase at

tissue-air interfaces due to returning electrons (Raaijmakers et al., 2005, 2007). In

strong parallel magnetic fields lateral confinement of secondary electrons is observed

which can be used to increase the dose delivered to a tumor (Bielajew, 1993; Kirkby

et al., 2010). It also increases the skin dose due to confinement of contaminant

electrons (Keyvanloo et al., 2016).

There are currently several MRI-guided RT systems that have the capacity to be

used in the clinical environment. One of the first MRI-guided RT projects began

at the Cross Cancer Institute in Edmonton Alberta, Canada by coupling a 6 MV

linear accelerator to a bi-planar MRI. In 2008, the Alberta group demonstrated the

first simultaneous MR imaging and linac irradiation on head-size phantoms (Fallone

et al., 2009). In 2013, the Alberta group began installing a whole body 0.5 T high

temperature superconducting bi-planar MRI coupled to a 6 MV linac1. The world’s

first images of a human volunteer were obtained on this system in July 20141. In this

linac MR system the magnetic field is parallel to the radiation beam. Lateral confine-

ment of electrons in the parallel magnetic field helps avoid significant dose increase

at tissue-air interfaces inside the patient and at beam exit. The lower strength of the

magnetic field allows for the usage of a cryogen-free high temperature superconducting

magnet which reduces the overall cost of radiation vault design and installation. On

the other hand, the lower magnetic field results in lower signal-to-noise ratio (SNR)

1Linac-MRI records first human images: http://medicalphysicsweb.org/cws/article/opinion/58572
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of the MRI images.

Elekta has also developed the Unity MR-linac platform using a 7 MV linac source

coupled to a 1.5 T superconducting solenoid MRI (Raaymakers et al., 2009). The high

magnetic field strength allows better quality MRI images. This platform utilizes ge-

ometry where the radiation beam is perpendicular to the magnetic field. This reduces

the entrance dose due to contaminant electrons, but creates large dose perturbation

caused by electron return effect at tissue-air and tissue-lung interfaces (Kirkby et al.,

2010).

The first commercial MRI-guided RT system (MRIdianTM) was developed by

ViewRay Inc., which coupled three radioactive 60Co sources to a 0.35 T split solenoid

MRI (Dempsey et al., 2005). It is the first MRI RT system to clinically treat patients.

The SNR of this system is also reduced due to the lower magnetic field strength. The

use of 60Co sources provides lower mean energy of 1.25 MV, and was initially used

to avoid radiofrequency (RF) and magnetic coupling between the linac and MRI.

However, it was shown previously that the linac and MRI can be magnetically and

RF decoupled quite simply (Santos et al., 2012; St-Aubin et al., 2010). The quality

of IMRT treatment plans produced by ViewRay MR-guided radiotherapy system was

assessed by the scientists from Washington University School of Medicine, St. Louis,

Missouri (Wooten et al., 2015). Although additional tests are still in progress, the

group concluded that the 60Co MR-IGRT device can prepare IMRT treatment plans

comparable in quality to linac IMRT for various disease sites. Currently, ViewRay is

developing a new linac based MRI-guided RT system (Low et al., 2016) with 6 MV

linac and the 0.35 T MRI technology.
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1.3 Thesis Motivation

Historically, Monte Carlo was the only option to include the effects of magnetic

fields in the calculation of absorbed dose. The MRIdianTM radiation therapy sys-

tem from ViewRay Inc. developed a commercial Monte Carlo based algorithm which

incorporates the effect of magnetic fields on charged particle transport (http://www.

viewray.com/treatment), as did Elekta with GPUMCD in the Monaco treatment

planning system (Hissoiny et al., 2011).

However, in addition to traditional Monte Carlo methods, it was shown recently

that grid-based Boltzmann solvers were capable of accurately incorporating magnetic

fields into a deterministic solution of the LBTE (St-Aubin et al., 2015, 2016). In

the 2015 publication by St-Aubin et al., very accurate results were shown comparing

deterministic dose calculations in magnetic fields to Monte Carlo calculations, but it

was stated that the iterative solution method used, coupled with the discretization

method, produced an unstable iterative scheme in low density media with magnetic

fields. In 2016, St-Aubin published a space-angle discontinuous finite element dis-

cretization with magnetic fields that was shown to alleviate the iterative instability

of the 2015 work (St-Aubin et al., 2016). The motivation for this work stems from

the fact that a rigorous iterative stability analysis for these novel methods including

magnetic fields has not been presented. In this work, a Fourier stability analysis is

performed to rigorously determine the iterative stability of the numerical approaches

presented by St-Aubin et al. (2015, 2016).
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1.4 Thesis Outline

The structure of this thesis is as follows. Chapter 2 introduces many of the im-

portant theoretical definitions required for this thesis. It starts with the theoretical

background of the LBTE including magnetic fields followed by an outline of the the-

ory of iterative methods for solving systems of linear equations in general. The source

iteration method specifically discusses as it is often applied to solve the linear Boltz-

mann transport equation and is used in the methods presented by St-Aubin et al.

(2016). The Fourier analysis method, central to this work, is then presented as a

method to calculate the spectral radius of the iterative solution. As explained in this

chapter, the spectral radius is the key metric to determine whether or not a station-

ary iterative scheme, such as source iteration, is stable. A thorough description of

the various discretization techniques is then described beginning with the multigroup

method for the energy discretization. Discrete ordinate method is then described as

a means of discretization of angular variable, and serves as a prelude to the more

suitable angular discretization by the Finite Element Method (FEM) for the LBTE

in the presence of magnetic fields. The necessary theoretical basis of the FEM is thus

presented for both spatial and angular variables. Finally, application of the Discon-

tinuous Finite Element Method (DFEM) to the LBTE in the presence of magnetic

fields is presented.

Chapter 3 uses the theoretical foundation built in chapter 2 to apply the Fourier

analysis method to the continuous LBTE in infinite medium as a means of calculat-

ing the spectral radius. The calculations begin with analysis of the LBTE with no

magnetic fields to serve as a benchmark. Then, the spectral radius is extracted for
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two situations of interest where magnetic field operator is a part of iteration source

on the right side of the equation, and when it is a part of the streaming-collision op-

erator on the left side. The detailed analysis of the dependence of the spectral radius

on various system parameters such as magnetic field strength, material density and

degree of anisotropy is provided.

In chapter 4 furthers the analysis presented in chapter 3 by calculating the spectral

radius for the DFEM discretized LBTE. In particular, the effects of anisotropy are

studied using the Heyhey-Greenstein model for electron differential cross sections.

Different regimes of scattering and material density are controlled by varying the

scattering ratio and total cross section. The dependence of the spectral radius on

the magnetic field is revealed and the necessity of more advanced solver than the

stationary source iteration scheme is stressed.

To overcome the slow convergence issues related to source iteration of the dis-

cretized LBTE with magnetic fields, chapter 5 introduces the non-stationary Krylov

subspace method (GMRES) as an alternative. This method is applied to estimate

the convergence properties of the solution of LBTE in homogeneous medium vs mag-

netic field based on the eigenvalue dynamics of Krylov the operator. The efficiency

of GMRES is numerically quantified based on the number of iterations required to

achieve a prescribed accuracy. This efficiency is compared with the source iteration

method.

As an additional method to speed up calculations, a methodology of parallel com-

puting in angular domain is partially described in chapter 6 as a part of future work.

This method complements the benefits of the Krylov subspace solver GMRES pre-
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sented in chapter 5. A semi quantitative explanation of the conditions for efficient

parallelization is presented followed by the result of the simulations for different de-

grees of parallelization.

Chapter 6 concludes the thesis with the reciting of this work’s objectives, a con-

densed description of obtained results, and potential future work.



Chapter 2

Methods

2.1 Linear Boltzmann Transport Equation

This chapter begins with the derivation of the Linear Boltzmann Transport Equation.

The derivation is along the lines presented in (Lewis and Miller, 1993). Even though

the equation is derived with the electron transport in mind, this approach is quite

general and can be applied to neutral particles transport (photons, neutrons) or other

charged particles (positrons, protons, etc.).

As many fundamental equations of mathematical physics, the LBTE is a conse-

quence of particle conservation. The dynamics of one particle is described by its time

dependent position 
r and velocity 
v. Alternatively, it can be described in terms of

spatial position 
r, direction of propagation 
Ω = 
v/v, and energy E. A transport

equation is usually formulated for a quantity that describes a macroscopic picture

from the motion for many particles. Let’s first consider a particle density distribution

13
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N(
r, 
Ω, E, t). This function depends on seven independent variables: space, angle,

energy and time. For an infinitesimally small spatial volume dV with its center at 
r,

it physically denotes the number of particles at time t propagating in the direction 
Ω

within the solid angle dΩ with energy inside the interval dE around E,

dN(
r, 
Ω, E, t) = N(
r, 
Ω, E, t) dV dE dΩ. (2.1)

The density distribution N(
r, 
Ω, E, t) is a fundamental dependent variable which

can be used to derive other dependent variables. In radiation transport, a more

convenient dependent variable is an angular flux ψ(
r, 
Ω, E, t),

ψ(
r, 
Ω, E, t) ≡ vN(
r, 
Ω, E, t) (2.2)

where v is the particle speed. A transport equation can be found by considering the

processes leading to the change in the total number of particles inside dV . For our

purposes we focus on the following: (a) streaming of particles across the boundary of

volume dV , (b) collisions inside dV that send particles outside the interval dE around

energy E and outside the solid angle dΩ around direction 
Ω, (c) collisions inside dV

that scatter particles with energy E
′
and direction 
Ω

′
into the energy interval dE

around E, and into the solid angle dΩ along 
Ω, and (d) a source of particles inside

dV with energy E in the direction 
Ω.

Consider the streaming of particles through the physical volume dV . Since all

the particles travel in the same direction, it is convenient to choose the shape of dV

symmetric with respect to 
Ω, for example a cylindrical shape of dV = dAdu as shown

in Fig. (2.1), where dA and du are the area of the ends and the height of the cylinder.
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For this shape of dV we can be sure that particles cross only the ends of the cylinder,

but not its sides. The change of dN in dV due to streaming is equal to the difference

X

Y

Z

Figure 2.1: The element of infinitesimal physical volume dV .

in the number of particles entering dV at 
r and leaving dV at 
r + d
u,

[
N(
r + d
u, 
Ω, E, t)−N(
r, 
Ω, E, t)

]
dA vdt dE dΩ. (2.3)

Due to the small values of dΩ and dE it is assumed that even one collision is enough

for a particle to acquire a different energy E
′
and/or move in a different direction d
Ω

′

so it contributes to a decrease in particle density dN . To find the number of such

particles we use a probabilistic interpretation of total cross section σ(
r, E) (Lewis and

Miller, 1993) as the probability for a particle to experience a collision per unit path

length. The total distance traversed by all particles in dV with energy E along 
Ω

is N(
r, 
Ω, E, t) dAdu dE dΩ vdt. Then, the total number of collisions contributing to

change in dN is

σ(
r, E) vN(
r, 
Ω, E, t) dAdu dE dΩ dt. (2.4)
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There is an opposite process when a particle inside dV with energy E
′
propagat-

ing in direction 
Ω
′
scatters into the state with (E, 
Ω) after a collision. This process

increases the value of the particle density dN . Like the total cross section, the differ-

ential cross section σs(
r, E
′ → E, 
Ω

′ · 
Ω) dE dΩ is a probability per unit path length

for a particle to scatter from state (E
′
, 
Ω

′
) to (E, 
Ω). The angular dependence 
Ω

′ · 
Ω
means that scattering potential depends only on the mutual orientation of 
Ω and 
Ω

′
.

Using this definition for differential cross section, the total number of particles inside

dV that scatter into state (E, 
Ω) is

[∫ ∞

0

dE
′
∫

dΩ
′
σs(
r, E

′ → E, 
Ω
′ · 
Ω) vN(
r, 
Ω

′
, E

′
, t)

]
dAdu dE dΩ dt. (2.5)

Another term, contributing to the increase of particle density, is due to a source

and can be written as

S(
r, 
Ω, E, t) du dAdE dΩ dt. (2.6)

Finally, the total change in density distribution dN over time dt is

dN(
r, 
Ω, E, t+ dt)− dN(
r, 
Ω, E, t) =[
N(
r, 
Ω, E, t+ dt)−N(
r, 
Ω, E, t)

]
du dAdE dΩ. (2.7)

The total change in dN with time is a result of all the processes described by
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Eqs. (2.3 – 2.6)

[
N(
r, 
Ω, E, t+ dt)−N(
r, 
Ω, E, t)

]
du dAdE dΩ = −

[
vN(
r + d
u, 
Ω, E, t)

− vN(
r, 
Ω, E, t)
]
dAdE dΩ dt− σ(
r, E) vN(
r, 
Ω, E, t) du dAdE dΩ dt

+
[ ∫ ∞

0

dE
′
∫

dΩ
′
σs(
r, E

′ → E, 
Ω
′ · 
Ω) vN(
r, 
Ω

′
, E

′
, t)
]
du dAdE dΩ dt

+ S(
r, 
Ω, E, t) du dAdE dΩ dt. (2.8)

The transport equation for the angular flux ψ = vN(
r, 
Ω, E, t) is obtained from

Eq. (2.8) by dividing left and right sides by du dAdE dΩ dt,

dψ(
r, 
Ω, E, t)

dt
= −
[

Ω · 
∇r + σ(
r, E)

]
ψ(
r, 
Ω, E, t)

+

∫ ∞

0

dE
′
∫

dΩ
′
σs(
r, E

′ → E, 
Ω
′ · 
Ω)ψ(
r, 
Ω′

, E
′
, t) + S(
r, 
Ω, E, t). (2.9)

For stationary problems the total time derivative is zero, and time independent

LBTE is written as

[

Ω · 
∇r + σ(
r, E)

]
ψ(
r, 
Ω, E) =∫ ∞

0

dE
′
∫

dΩ
′
σs(
r, E

′ → E, 
Ω
′ · 
Ω)ψ(
r, 
Ω′

, E
′
) + S(
r, 
Ω, E). (2.10)

To provide a description of the full radiation field, we need to express Eq. (2.10)

for photons, electrons, and positrons. This full description will include the coupling
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between each of the particle types through the generation of secondary particles.

[

Ω · 
∇r + σγ(
r, E)

]
ψγ(
r, 
Ω, E) = Qγγ +Qpγ +Qeγ + Sγ (2.11)

[

Ω · 
∇r + σe(
r, E)

]
ψe(
r, 
Ω, E) = Qee +Qγe +Qpe + Se (2.12)

[

Ω · 
∇r + σp(
r, E)

]
ψp(
r, 
Ω, E) = Qpp +Qγp +Qep + Sp. (2.13)

where indices γ, e, and p denote photons, electrons and positrons respectively.

The generic form of the scattering integral Qxy has the form,

Qxy =

∫ ∞

0

dE
′
∫

dΩ
′
σxy
s (
r, E

′ → E, 
Ω
′ · 
Ω)ψx(
r, 
Ω

′
, E

′
). (2.14)

The differential scattering cross section σxy
s is the probability per unit path length

for a particle of type x to create a particle of type y, and ψx is the angular fluence of

particle of type x.

The common approximation in radiotherapy calculations is to treat positrons on

the same footage as electrons. This effectively removes the equation for positron

fluence. Another important approximation is that there is no Bremsstrahlung pro-

duction of photons by electrons. Therefore, σeγ
s is set to zero. It is assumed that

all the energy due to Bremsstrahlung radiaton is deposited locally. This assumption

enormously simplifies the dose calculations without affecting the final result since

the probability of Bremsstrahlung and annihilation photon production in the clinical

range of electron energies is very small (Gifford et al., 2006).

With this approximations, the systems of Eqs. (2.11–2.13) is reduceeed to the
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following system,

[

Ω · 
∇r + σγ(
r, E)

]
ψγ(
r, 
Ω, E) = Qγγ + Sγ (2.15)

[

Ω · 
∇r + σe(
r, E)

]
ψe(
r, 
Ω, E) = Qee +Qγe + Se. (2.16)

The deposited dose is calculated as

D(
r) =

∫
dE

∫
dΩ

σED(
r, E)

ρ
ψe(
r, E, 
Ω), (2.17)

where, σED is the energy deposition cross section, and ρ is the density of the material.

We will be dealing with slightly modified version of the electron transport Eq.(2.16).

For convenience, we drop sub-index e for electron fluence ψe and electron source Se

(assuming that ψe = ψ and Se = S). In a clinical range of energies, secondary electron

deposits its energy predominantly by interacting with the electrons of the medium.

The result of these interactions is the loss of the electron’s energy and change in the

direction of propagation. The majority of interactions are soft collisions (as opposed

to hard collisions) and result only in a small energy change. To facilitate the calcula-

tions, the soft collisions are separated from the hard collisions in the electron-electron

collisional integral Qee in Eq. (2.16). For this reason, the integration over energy in

Qee is split into two integrals, one of which describes hard collisions, and the other

takes into account soft collisions.

Morel applied the Fokker-Planck approximation to the soft collisions of Qee (Morel,

1981) and showed that this part of the collisional integral can be represented by a
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simpler expression of the form

∫ ∞

0

dE
′
∫

dΩ
′
σee
s (
r, E

′ → E, 
Ω
′ · 
Ω)ψ(
r, 
Ω′

, E
′
) ≈

α

2

∂

∂μ

(
(1− μ2)

∂

∂μ
ψ(
r, 
Ω, E)

)
+

∂

∂E

(
βr(
r, E)ψ(
r, 
Ω, E)

)

+
1

2

∂2

∂E2

(
γr(
r, E)ψ(
r, 
Ω, E)

)
(2.18)

This type of approximation is used whenever the majority of the scattering pro-

cesses result in a small energy loss and/or small scattering angle. Small enery loss

or small deviation in angle serve as parameters for a Taylor expansion of the integral

Boltzmann scattering operator.

The coefficients α, βr, and γr are the momentum transfer, restricted mass stopping

power, and restricted mean-square stopping power respectively. In an external beam

photon radiotherapy case, the coefficients α and γr are approximated as zero with al-

most negligible error to the final solution (Gifford et al., 2006). In this approximation,

the soft collisions electron-electron scattering integral becomes

∫ ∞

0

dE
′
∫

dΩ
′
σee
s, soft(
r, E

′ → E, 
Ω
′ · 
Ω)ψ(
r, 
Ω′

, E
′
) ≈ ∂

∂E

(
βr(
r, E)ψ(
r, 
Ω, E)

)
.

(2.19)

The mass stopping power βr is defined as the ratio of energy dEc lost due to

collisions with other electrons over the distance dl, divided by the density of the

medium ρ. The energy transferred to other electrons of the medium is restricted

by Δ; that is, dEc ≤ Δ. The term on the right-hand side of Eq. (2.19) is called

continuous slowing down (CSD) operator, and Boltzmann equation containing this
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term is called CSD linear Boltzmann transport equation, or CSD-LBTE,

[

Ω · 
∇r + σ(
r, E)

]
ψ(
r, 
Ω, E)− ∂

∂E

(
βr(
r, E)ψ(
r, 
Ω, E)

)
=

∫ ∞

0

dE
′
∫

dΩ
′
σee
s (
r, E

′ → E, 
Ω
′ · 
Ω)ψ(
r, 
Ω′

, E
′
) + S(
r, 
Ω, E). (2.20)

The integral on the right-hand side of Eq. (2.20) represents hard collisions, while

the integral on the left-hand side of Eq. (2.19) describes soft collisions. Despite the

identical form, they describe the energy exchange processes on different scales.

The photon-electron scattering intergral Qγe depends only on photon angular flux.

In the absence of Bremsstrahlung production, the photon angular flux is calculated

first, and for electron angular flux calculations Qγe is assumed to be a known function.

For convenience, Qγe is included into the electron source S in Eq. (2.20) and all

subsequent CSD-LBTE equations in this thesis. Also, for brevity, we will drop the

superscript ee on the differential cross section as we will solely be considering electron-

electron interactions in the scattering integral.

The scattering cross section σs(
r, E
′ → E, 
Ω

′ · 
Ω) only depends on the scattering

angle 
Ω
′ ·
Ω (and not separately on the values of 
Ω

′
and 
Ω). One can use this symmetry

to expand differential scattering cross section over Legendre polynomials,

σs(
r, E
′ → E, 
Ω

′ · 
Ω) =
∞∑
l=0

(2l + 1) σl(
r, E
′ → E)Pl(
Ω

′ · 
Ω). (2.21)

Legendre polynomials are related to spherical harmonics by

Pl(
Ω
′ · 
Ω) = 1

2l + 1

l∑
m=−l

Y ∗lm(
Ω
′
)Ylm(
Ω). (2.22)
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Expansion in Eq. (2.22) transforms the differential cross section in Eq. (2.21) to

the following form,

σs(
r, E
′ → E, 
Ω

′ · 
Ω) =
∞∑
l=0

l∑
m=−l

σl(
r, E
′ → E)Y ∗lm(
Ω

′
)Ylm(
Ω). (2.23)

One can eliminate the integration
∫
dΩ

′
in scattering integral in Eq. (2.20) by

expanding the angular flux ψ over angular flux moments φlm

ψ(
r, 
Ω
′
, E

′
) =

∞∑
l′=0

l
′∑

m′=−l′
φl′m′ (
r, E

′
)Yl′m′ (
Ω

′
), (2.24)

where angular flux moments are found according to

φl′m′ (
r, E
′
) =

∫
dΩ

′
ψ(
r, 
Ω

′
, E

′
)Y ∗

l
′m′ (
Ω

′
). (2.25)

By plugging Eqs. (2.23) and (2.24) under the integral in Eq. (2.20) and using

orthogonality condition for spherical harmonics

∫
dΩ

′
Y ∗lm(
Ω

′
)Yl′m′ (
Ω

′
) = δll′δmm′ (2.26)

one obtains CSD LBTE in the form

[

Ω · 
∇r + σ(
r, E)

]
ψ(
r, 
Ω, E)− ∂

∂E

(
βr(
r, E)ψ(
r, 
Ω, E)

)
=

∞∑
l=0

l∑
m=−l

∫ ∞

0

dE
′
σl(
r, E

′ → E)φlm(
r, E
′
)Ylm(
Ω) + S(
r, 
Ω, E). (2.27)

For practical calculations, the Legendre coefficients σl and angular flux moments
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φlm are truncated to an expansion order lmax (Lewis and Miller, 1993).

One of the first publications that incorporated a magnetic field into the LBTE

was by St-Aubin et al. (2015, 2016). In these papers the authors used reasonable

assumptions valid for radiation transport in clinical radiotherapy and the relativistic

relation between Lorentz force and particle acceleration to derive the magnetic field

terms added to the CSD-LBTE,

[

Ω · 
∇r + σ(
r, E) +

q

|
p | 
τ(

Ω, 
B) · 
∇Ω

]
ψ(
r, 
Ω, E)− ∂

∂E

(
βr(
r, E)ψ(
r, 
Ω, E)

)
=

∞∑
l=0

l∑
m=−l

∫ ∞

0

dE
′
σl(
r, E

′ → E)φlm(
r, E
′
)Ylm(
Ω) + S(
r, 
Ω, E). (2.28)

The electron charge is denoted by q, and 
p is the relativistic electron momentum.

The magnetic field term in Eq.(2.28) has the form of an angular streaming operator

with the vectors 
τ and 
∇Ω defined as follows (St-Aubin et al., 2016),


τ(
Ω, 
B) =
(
Ω× (
Ω× 
B))z√

1− μ2
ϕ̂− (
Ω× 
B)z√

1− μ2
θ̂, (2.29)


∇Ω =
1√

1− μ2
ϕ̂

∂

∂ϕ
+ θ̂

∂

∂θ
, (2.30)

where μ = cos θ and 
B is the magnetic field.

It should be noted that the term containing the energy derivative on the left-

hand side of Eq. (2.28), upon discretization using a diamond difference approxima-

tion (Morel, 1985), can be absorbed into scattering term on the right-hand side of

Eq. (2.28), and will not appear explicitly in further discussions below. A vacuum
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boundary condition is applied to Eq. (2.28) in the solution of the CSD-LBTE,

ψ = 0, 
Ω · 
n < 0 (2.31)

where the vector 
n is an outward unit normal that is perpendicular to the boundaries

of the system.

2.2 Stationary Iterative Schemes

2.2.1 Overview of Stationary Iterative Solvers

In many practical applications, numerical simulations boil down to finding the solu-

tion of systems of linear equations

Ax = b. (2.32)

The solution is usually found by applying direct or iterative methods. Direct

methods, such as direct factorization methods and the methods based on Gaussian

elimination, require n3/3 operations (Isaacson and Keller, 1994), where n is the order

of the square matrix A. These methods produce dense intermediate matrices and

become impractical for very large n. In addition, rounding errors of basic arithmetic

operations on a computer can grow large for large n (Isaacson and Keller, 1994).

Iterative methods are often used to solve large and sparse systems of linear equa-

tions. These methods generate a sequence of approximate solutions {x(t)}, t =
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0, 1, 2, . . . that, under conditions explained later in the text, converge to a true solu-

tion x = A−1b. To guarantee solvability, we assume that A is a regular (invertible)

matrix.

For such systems solved by iterative methods, matrix inversion operations are

abandoned and replaced by matrix-vector multiplication which are less computation-

ally expensive. As a result, iterative methods require fewer operations per iteration.

Another advantage of convergent iterative methods is that roundoff errors are “nat-

urally” damped out as the iteration continues (Isaacson and Keller, 1994).

The important characteristics of iterative methods are the convergence rate, the

number of computational operations per cycle, the amount of memory required, and

the memory access pattern. In what follows we discuss classical iterative methods

and address only the first of the characteristics — the rate of convergence. The

simplest iterative methods include Richardson’s method, the Jacobi method, and the

Gauss-Seidel iteration method.

For a wide class of iterative methods, the iterative form of Eq. (2.32) is often

expressed as

x(t+1) = Φ(x(t), b, A), t = 0, 1, . . . (2.33)

where Φ is some function that parametrically depends on b and A. Equation(2.33) is

a recurrence relation for two consecutive approximate solutions x(t+1) and x(t). The

exact solution represents a fixed point of the iterative Eq. (2.33),

x∗ = Φ(x∗, b, A). (2.34)
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The fixed point x∗ in Eq. (2.34), also known as an invariant point, is formally

defined as a point in the function’s domain that is mapped to itself. Therefore, by

definition the fixed point is a true solution of Eq. (2.34).

Linear iterations represent the core of iterative methods for linear systems. They

define next iteration as a linear function of a previous iteration. By rearranging

matrix A = M −N in Eq. (2.32) with the help of arbitrary nonsingular n×n matrix

M and matrix N , Eq. (2.33) can be written as

Mx(t+1) = Nx(t) + b, (2.35)

Each choice of M potentially generates an iterative method. The closer the M

matrix approximates the inverse of A, the faster the convergence.

Matrices M and N that result from the splitting of matrix A, can be expressed as

combinations of the diagonal matrix D, strictly lower and strictly upper triangular

matrices L and U respectively of the original matrix A = D + L + U . To avoid

computationally expansive matrix inversion, the system Mx̃ = b̃ should be easy to

solve. An additional restriction of non-singularity for M is required (detM �= 0).

Then, Eq. (2.35) generates a unique sequence {x(t)} for any initial guess x(0) and

constant vector b. The convergent sequence {x(t)} will converge to the true solution

x = A−1b for all initial vectors x(0).

An important property of every iterative method is the rate of convergence which

can be described in terms of the eigenvalues of the iteration matrix T ,

T = M−1N. (2.36)



Chapter 2. Methods 27

To see this, let’s introduce the definition of the iterative error,

e(t) = x(t) − x. (2.37)

After subtracting the exact solution x from both sides in Eq. (2.35), one obtains

Me(t+1) = Ne(t) (2.38)

or,

e(t+1) = M−1Ne(t) = Te(t) = T te(0). (2.39)

The convergence is controlled by the behavior of T t as t → ∞ (T t is a t-th power

of matrix T ). As can be seen from Eq.(2.39), for convergence to happen the iterative

error e(t+1) should asymptotically approach zero, which is equivalent to the condition

that T t → 0. One can show that the asymptotic behavior of T t is determined by the

largest eigenvalue of T . The initial error in Eq.(2.39) can be expanded over the basis

of eigenvectors ξ of matrix T : e(0) =
∑n

i=1 αiξi(T ), where Tξi(T ) = λiξi(T ), and αi

are the expansion coefficients.

Using e(0) in the expansion in Eq. (2.39) results in the following expression for the

(t+ 1) iterative error

e(t+1) = T te(0) =
n∑

i=1

αi λ
t
i ξi(T ). (2.40)

To achieve convergence, all the terms in Eq. (2.40) are required to approach zero

in the limit t → ∞. This condition is satisfied when the eigenvalues |λi| < 1.

Therefore, assuming that M is not singular, convergence of Eq.(2.35) to x = A−1b

for all initial guessed solutions x(0) is equivalent to the requirement that the spectral
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radius, defined as the modulus of the largest eigenvalue of iteration matrix T , is

strictly less than one (Isaacson and Keller, 1994),

ρ(T ) < 1 (2.41)

where,

ρ(T ) = max{|λ| : λ ∈ σ(T )}. (2.42)

In addition to defining the iterative stability, the spectral radius also serves as an

indicative of a convergence rate of the iteration. The spectrum σ(T ) is a set of all

the eigenvalues of matrix T .

Sometimes the spectrum of an iteration matrix T is not easily accessible. In that

case, the spectral radius can be quantified based on the properly chosen consistent

norm‖T‖. For vector-generated (natural) matrix norms, from Eq. (2.39) one obtains

‖e(t+1)‖ = ‖T te(0)‖ ≤ ‖T t‖·‖e(0)‖ ≤ ‖T‖t ·‖e(0)‖. (2.43)

The inequality in Eq. (2.43) follows the sufficient condition for convergence,

lim
t→∞

‖T‖t = 0, (2.44)

which is equivalent to the condition ‖T‖ < 1.

Norm ‖T‖ is also known as a contraction number of the iteration. Together with

the spectral radius, it determines the quality of an iterative method.

In summary, the two conditions that an iterative method should possess are (a) the
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inverse of M matrix, resulting from splitting A = M − N , should be easily com-

puted, and (b) the spectral radius of the iteration matrix must meet the condition

ρ(M−1N) < 1.

2.2.2 Source Iteration

In radiation transport, source iteration is the fundamental iterative scheme for solving

the LBTE (Larsen E W, 2010; Lewis and Miller, 1993) and is a Gauss-Seidel iterative

scheme. SI treats some terms in the transport equation as an iterative source on the

right-hand side (RHS) of the equation, and calculates the unknown function on the

left-hand side (LHS) of the equation. As a simple example, consider the isotropic

LBTE in the absence of a magnetic field

[

Ω · 
∇r + σ

]
ψ(t)(
r, 
Ω) = σsφ

(t−1)(
r) + s(
r). (2.45)

The scalar flux φ(t−1) on the RHS is considered as a scattering source and is used

as an input in t-th iteration cycle to compute the angular flux ψ(t)(
r, 
Ω). The external

source s(
r) is assumed to be a known function. After the solution ψ(t) is found from

iteration t, it is used to update to the scalar flux φ(t)(
r) according to

φ(t)(
r) =

∫
dΩψ(t)(
r, 
Ω). (2.46)

The last equation completes the cycle of the SI procedure. The iterations continue

until the solution with a required accuracy is achieved. One of the stopping criteria
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used to terminate the iterative process in practical calculations is

‖φ(t+1) − φ(t)‖2
‖φ(t)‖2 ≤ 10−6, (2.47)

where ‖ · ‖2 is an l2 vector norm. Equations (2.45) and (2.46) define the unaccelerated

source iteration scheme, but accelerated schemes using diffusion synthetic acceleration

(DSA) has been applied successfully in the past to the LBTE with no magnetic fields

to effectively reduce the spectral radius (Warsa et al., 2004).

2.3 Fourier Analysis Method

When solving problems pertaining to radiation transport and dose deposition, the

method of Fourier analysis is a standard tool to investigate the spectral radius of

stationary iterative solutions (Golub and Loan, 2012). It is equally applicable to

continuous and discrete problems. The usefulness of the Fourier analysis extends to

the many problems including those of higher spatial dimensions, and multiple phys-

ical variables such as angle, time, and energy. It is capable of not only accurately

predicting the spectral radius of an iteration scheme before actual implementation,

but also serves as a means for convergence improvement or convergence failure anal-

ysis. Regardless of whether the problem is continuous or discrete, Fourier analysis is

applied to the equations formulated in terms of the iterative error of the solution f ,

δf (t)(
r) = f(
r)− f (t)(
r) (2.48)
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where f(
r) and f (t)(
r) are the exact solution and the solution at iteration (t) respec-

tively. As suggested by Eq. (2.48), this representation is obtained by the subtraction

of the iteration equation from the original one.

For continuous problems with an infinite domain a Fourier integral representation

for the iterative error takes the form

δf (t)(
r) =

∫ ∞

−∞
a(t)(
λ) ei

�λ�r d
λ. (2.49)

The iteration equation is then reformulated in terms of coefficients a(t)(
λ) of a single

Fourier mode

a(t+1)(
λ) = ω(
λ) a(t)(
λ). (2.50)

The factor ω(
λ) is called an iteration eigenvalue (Larsen E W, 2010). It is analytically

or numerically optimized (maximized) over the Fourier wave number 
λ. The obtained

maximized value characterizes the effectiveness of the iterative procedure. The term

‘eigenvalue‘ applied to ω(
λ) is a bit misleading since for continuous equations there

is no iteration matrix. Once the iterative equation is discretized, ω(
λ) becomes a

matrix, whose largest eigenvalue will define the convergence. Practical applications

require the discrete form of the transport equation where the function of interest is

defined on a grid — discrete set of points within the domain of the problem definition.

The Fourier ansatz in this case assumes that the error function has a form of a Fourier

mode,

δf�λ(
r) = δf̃�λ ei
�λ�r. (2.51)

In this discrete form, an infinite medium can be simulated, by periodically trans-

lating an original grid volume element along the coordinate axes X, Y , Z to fill all
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the space. For functions with discontinuities on the boundaries, the boundary values

inside the translated elements are defined in terms of the boundary values of the

original volume element. For example, in a one-dimensional case the left boundary

value of translated volume element positioned immediately to the right of the original

volume element is defined according to the formula

δfλ(L
+) = eiλL δfλ(0

+), (2.52)

where L+ = limε→0(L+ ε), ε > 0. Similar definition is applied to 0+. The parameter

L is the size of original element.

For discrete problems, the iterative convergence of the solution is obtained by

finding the modulus of the largest eigenvalue (spectral radius) of the iteration matrix

T (Isaacson and Keller, 1994). The iteration matrix is thus defined by the relation

f
(t+1)
i = Tij f

(t)
j , (2.53)

where fi designates the components of the discretized solution on the grid.

Practical simulations tend to generate large systems of linear equations for which

an evaluation of the spectral radius by finding the largest eigenvalue can be computa-

tionally expensive. For these problems, another approach is used where the spectral

radius is estimated as a limiting ratio of successive iterative errors under the assump-

tion of linear convergence to the true solution f according to (Hackbusch, 2016),

ρ = lim
t→∞

‖e(t)‖
‖e(t−1)‖ = lim

t→∞
‖f − f (t)‖
‖f − f (t−1)‖ . (2.54)
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For sufficiently large t → ∞, Eq. (2.48) can be modified to a practical expression

of the form,

ρ = lim
t→∞

‖f (t) − f (t−1)‖
‖f (t−1) − f (t−2)‖ . (2.55)

In this work, Eq. (2.55) is used to evaluate the spectral radius independently of

the Fourier Analysis method and is used to verify the convergence of the systems of

equations investigated in this work using previously published code described in (St-

Aubin et al., 2015, 2016). This code itself was successfully validated against Monte

Carlo methods with 98.9% of points analyzed passing a 2%/2mm gamma criterion

(Low et al., 1998) for clinically realistic radiation transport problems.

2.4 Multigroup Method

An analytical approach to calculating the spectral radius is good for simple confined

geometries and infinite homogeneous media. These models provide a good general

understanding of the spectral radius of the iterative procedures. However, in practical

cases where numerical discretization of the independent variables is used to solve

problems with complex spatial geometries, convergence can depend on the numerical

procedure. Thus, for the evaluation of the discretized equation spectral radius, we

apply a multigroup discretization method in energy (Lewis and Miller, 1993).

The multigroup energy method is a simple discretization method for the energy

variable. According to this approach, the domain of the energy variable is divided into

a finite number of energy groups (bins) Emin = EG < · · · < Eg < Eg−1 < · · · < E0 =

Emax (Fig.2.2). The upper limit for the energy variable Emax is picked large enough,
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downscatter upscatter

Eg E0

E

Eg-1Egmax
Figure 2.2: Representation of the discretization of the energy variable.

so that the probability of finding a particle with energy exceeding Emax is practically

zero. The goal of the multigroup method is to reformulate LBTE in terms of group

angular fluxes. The solution of the transport equation is obtained for each energy

group separately starting from the highest energy group and sequentially moving to

the lowest energy group.

The assumption of the multigroup method is that the solution ψ inside every energy

group can be represented as a product of two functions ψ(
r, 
Ω, E) ≈ fg(E)ψg(
r, 
Ω),

where fg(E) is the weighting function normalized to
∫ Eg−1

Eg
dE fg(E) = 1, and ψg(
r, 
Ω) =∫ Eg−1

Eg
dE ψ(
r, 
Ω, E) is called a group angular flux. The multigroup form of the trans-

port equation is obtained upon integration of LBTE over the energy variable inside an

energy group
∫
g
dE =

∫ Eg−1

Eg
dE. The weighting function f allows the redefinition of

the medium and the source parameters of the problem as energy averaged as follows,

σg(
r) =

∫
g

dE σ(
r, E)fg(E), (2.56)

σgg′ (
r) =

∫
g

dE

∫
g′
dE

′
σs(
r, E

′ → E)fg(E
′
), (2.57)

Sg(
r, 
Ω) =

∫
g

dE S(
r, 
Ω, E). (2.58)
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The multigroup method is realistic only for slow variations of energy dependent

functions within a group. The distribution function fg(E) can then be approximated

by piece-wise constant function. With normalization to unity, it acquires the form

fg(E) = 1/(ΔEg) and Eqs. (2.56), (2.57) are re-written as

σg(
r) =

∫
g

dE σ(
r, E)/ΔEg , (2.59)

σgg′ (
r) =

∫
g

dE

∫
g′
dE

′
σs(
r, E

′ → E)/ΔEg. (2.60)

With these notations, the multigroup energy formulation of the LBTE with mag-

netic fields acquires the form

[

Ω · 
∇r + κg
τ(
Ω, 
B) · 
∇Ω + σg(
r)

]
ψg(
r, 
Ω) =∑
g′

∑
lm

σl,gg′ (
r)φlm,g′ (
r)Ylm(
Ω) + Sg(
r, 
Ω). (2.61)

The parameter κg in Eq. (2.61) is an energy discretization parameter based on the

multigroup method applied to the magnetic field term in Eq. (2.28) (St-Aubin et al.,

2016), and is expressed as

κg =
qc

Eg − Eg+1

ln

(
Eg +m0c

2 +
√
(Eg +m0c2)2 − (m0c2)2

Eg+1 +m0c2 +
√
(Eg+1 +m0c2)2 − (m0c2)2

)
, (2.62)

where the electron charge is denoted by q, c is the speed of light in vacuum, and m0 is

the electron mass. When solving the transport Eq.(2.61), the angular flux solution is

solved for a single energy group at a time starting from the highest energy group. For

brevity, the subscript ‘g’ denoting the energy group will be omitted in all subsequent

discussions, unless its inclusion is required for clarity.



Chapter 2. Methods 36

2.5 Discrete Ordinates Method

In this section, we describe the angular discretization technique known as the Discrete

Ordinates method (DOM). Although this method is not used in our calculations, it is

still one of the main methods of angular discretization and is used in some commercial

applications (Lewis and Miller, 1993) for dose calculations and was used in the work

of St-Aubin in the initial calculations of the LBTE with magnetic fields (St-Aubin

et al., 2015). At the end we will discuss why we decided to use another approach for

angular discretization.

The simple idea of this technique is to solve the integro-differential form of the

LBTE at specific angular directions. This method is straightforward to apply when

the transport equation does not involve derivatives over the angular variables such

as the standard LBTE with no magnetic or electric fields. Below we apply the DOM

to the LBTE without magnetic fields, however we refer to the reader to the work of

St-Aubin et al. (2015) for the use of the DOM with magnetic fields. With no magnetic

fields, the LBTE using the DOM becomes

[

Ωn · 
∇r + σ(
r)

]
ψ(
r, 
Ωn) =

∑
lm

σl(
r)φlm(
r)Ylm(
Ωn) + S(
r, 
Ωn). (2.63)

The index n enumerates the angles for which the equation is solved.

The specific angles chosen are dictated by known quadrature integration rules to

allow for the calculation of the angular flux moments,

φlm(
r) =

∫
dΩψ(
r, 
Ωn)Y

∗
lm(
Ωn). (2.64)
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Equation (2.64) involves an integration over polar and azimuthal angles, θ and ϕ

respectively ∫
dΩ =

∫ π

0

d(cos θ)

2

∫ 2π

0

dϕ

2π
. (2.65)

Integration over Ω can be performed using various quadrature sets, but the work

of St-Aubin specifically used square symmetric quadrature sets Sn contain total of

2n2 angular directions, with n polar values and 2n azimuthal values. Examples of

other quadrature sets are triangular and rectangular quadrature sets that derive their

names after the shapes that ordinates form on the unit sphere.

To apply this numerical quadrature, the continuous integrals in Eq. (2.65) are

transformed to a suitable canonical form

∫
dΩ =

1

2π

∫ 1

−1
dμ

∫ 1

−1

dξ√
1− ξ2

. (2.66)

The integration over the polar angle in Eq. (2.66) is done using a Gauss-Legendre

quadrature rule (Abramowitz and Stegun, 1965; Hildebrand, 1974)

∫ 1

−1
f(μ) dμ ≈

n∑
i=1

ωi f(μi). (2.67)

The function f(μ) is evaluated at the roots of Legendre polynomial Pn(μ). For an

example S4 quadrature set, the roots of P4(μ) are μ1 = −μ4 = 0.86113 63115 94053,

and μ2 = −μ3 = 0.33998 10435 84856. The weights ωi are evaluated according to the

following formula

ωi =
2(

1− μ2
i

)[
P ′
n(μi)

]2 , (2.68)

and for S4 are equal to ω1 = ω4 = 0.34785 48451 37454, and ω2 = ω3 = 0.65214 51548 62546.
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The integration over the azimuthal angle is performed by applying Chebyshev-

Gauss method (Abramowitz and Stegun, 1965; Hildebrand, 1974),

∫ 1

−1

f(ξ) dξ√
1− ξ2

≈
n∑

i=1

ωif(ξ1). (2.69)

The function f(ξ) is evaluated at the roots ξi of the Chebyshev polynomial of the

first kind Tn(ξ), where

ξi = cos

(
2i− 1

2n
π

)
, i = 1, n. (2.70)

The weight, associated with point ξi is ωi = π/n. There are two angles corre-

sponding to the root ξi: ϕi = π(2i−1)/(2n) and 2π−π(2i−1)/(2n). This effectively

doubles the number of azimuthal angles on the sphere, making the total number of

angular directions at which angular flux ψn is evaluated 2n2. Because ωi is a constant

weight independent of index i, the final formula for S4 quadrature integration in angle

is ∫
dΩψ(θ, ϕ) =

4∑
i=1

8∑
j=1

ωμ
i

16
ψ(μi, ξi), (2.71)

where ωμ
i are Gauss-Legendre quadrature weights.

The benefits of discrete ordinate method are its simplicity and low computational

complexity. On the other hand, this method can produce inaccurate solutions due to

ray effects and false scattering (Chai et al., 1993). False scattering can be attributed

to the insufficient spatial discretization of the domain where the angular flux is dis-

continuous and results in a smearing the intensity distribution. The ray effects are

caused by the finite discretization of the angular variables. The DOM has a limited

resolution of θ and ϕ coordinates. It can be eliminated only for the case with a very
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high number of directions used.

2.6 Finite Element Method

The Finite Element Method (FEM) has become a standard method for discretizing the

spatial variables of the LBTE (Wareing et al, 2001). The FEM applied to the angular

variables has gained increasing traction in recent years as a method to overcome the

ray effects of the DOM. The FEM originated as a cumulative effort of many scientists

over the period of 70 years. Originally, it was proposed by Courant in the 1940s

to solve problems of equilibrium and vibration (Jin, 2014). FEM, as we know it

today, was formulated by M.J. Turner in 1950–19621. Significant contributions to

this method were done by other pioneers, such as B.M. Irons, R.J. Melosh, and

E.L. Wilson, all coming from the aerospace industry where they spent some parts of

their scientific careers1. Popularization and encouragement to use FEM for solving

a wider class of engineering problems is attributed to J.H. Argyris, R.W. Clough,

H.C. Martin, and O.C. Zienkiewicz1. The FEM has been applied to the problems of

elasticity, structural analysis, electromagnetics, and a variety of transport problems

arising in fluid mechanics, heat transfer, radiations transfer, etc.

Finite element analysis is a powerful method of solving partial differential equations

with boundary conditions that describe the behavior of various physical systems. It is

based on the general approaches of solving boundary value problems by substituting

global basis functions with basis functions of local support.

1Introduction to Finite Element Methods: https://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/
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The general outline of the method is discussed as follows. First, consider a bound-

ary value problem defined by a differential equation in operator form (Zohdi, 2014),

Lu = q in domain D, (2.72)

subject to problem specific boundary conditions

Bu = 0 on domain boundary ∂D. (2.73)

In particle transport two kinds of boundary conditions are used. The explicit

boundary conditions that specify explicitly the particle flux distribution on the bound-

ary and implicit boundary conditions which relate incoming and outgoing fluxes and

are used to reflect various symmetries of a physical problem.

The operator L is usually a differential or integro-differential operator acting on

a sought-for-function u, and q is a known source or driving function. If finding the

exact solution of Eq. (2.72) is problematic or impossible, one can attempt to get an

approximate solution as a linear combination of predefined approximation functions

λi(x),

uN =
N∑
i=1

ai λi(x). (2.74)

Various conditions are imposed to determine the unknown coefficients ai in Eq.(2.74)

and, as such, these conditions define the method of finding the approximate solution.

Substitution of the approximate solution uN into Eq. (2.72) does not in general turn

it into an equality. The difference between the effect of L on approximate solution
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uN and the exact solution u is called the residual,

rN(x) = q − L(uN). (2.75)

One way to find the unknown coefficients ai is to minimize the residual rN with

respect to some norm ‖rN‖. An arbitrary function u(x) is defined by its values at

every point in the problem domain as such a pointwise match of such a function by the

approximate solution would require a large number (in principle infinite number) of

approximation functions. With some assumptions about smoothness of the solution

u(x), it can be closely approximated by a moderate number of λi(x) without imposing

too much computational burden. One may wish that uN(x) match the exact solution

u(x) “on average” by minimizing the square of the L2 norm of the residual defined

as

‖rN‖2 =
∫
D(x)

r2N(x) dx. (2.76)

Minimization of this norm with respect to ai results in the system of equations,

∫
D(x)

2rN
∂rN
∂ai

dx = 0, i = 1, N. (2.77)

This method is called the method of least squares. In another approach, one can

require that the approximate solution be equal to the exact solution at finite number

N of discrete points xi of the solution domain. That is,

rN(xi) = 0, i = 1, N. (2.78)

Under these conditions, the method is referred as collocation method and can be
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rewritten as ∫
D(x)

rN(x) δ(x− xi) dx = 0. (2.79)

The discrete ordinate method is a form of collation method. Formal definition of

these and similar methods is based on the condition that the integral of the residual

rN(x), weighted by a specific function ω(x) over the solution domain D(x), is zero.

The function ω(x) is called a weight, and the general name for these methods is the

method of weighted residuals.

One important representative of the family of weighted residuals is the Galerkin

method, where the weight function ω(x) is picked from the set of basis functions used

to approximate the solution. This is one of the most popular methods applied to a

wide variety of problems in science and engineering. The rationale behind this method

can be understood by the following example. Consider the error eN(x) = u(x)−uN(x)

between the true and approximate solutions respectively. If one thinks of u(x) and

uN(x) as vectors in potentially infinite dimensional vector space, then the expansion

of uN(x) over a finite number of basis functions confines uN(x) to lie in a subspace of

{λi(x)}, i = 1, N (Fig.2.3). The set of basis functions {λi(x)} acts as approximation

functions for uN(x) in Eq. (2.74).

If the true solution also belongs to this subspace, then it is possible to find the

expansion coefficients ai, so that uN(x) = u(x). If u(x) does not belong to subspace

{λi(x)}, then one attempts to minimize the error eN(x) by requiring that, as a vector,

eN(x) be orthogonal to the subspace {λi(x)}. In other words, 〈eN , λi〉 = 0. Because

the eN(x) is not known in advance, the best option would be to try to orthogonalize

rN(x) = L(eN) with respect to {λi(x)}. This gives N equations to find the expansion
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Figure 2.3: Orthogonality of approximate solution and solution error.

coefficients ai

∫
D(x)

rN(x)λi(x)dx =

∫
D(x)

(
q − L(uN)

)
λi(x) dx = 0. (2.80)

One flaw of the Galerkin approach is that it does not specify a clear way of choosing

basis functions, which is related to the problem of possible irregularity of the solution.

Finite element analysis, based on the Galerkin approach, solves this by reformulating

the differential equation so that the space of the admissible solutions, apart from

regular functions, includes functions with less strict differentiability requirements.

This is done because many problems of interest possess non-smooth or discontinuous

solutions and direct application of Galerkin method as it is described above is not

valid. For these problems differentiability of the solution is too restrictive. One of the

ways around this is to weaken the regularity requirement. The weak formulation of a

boundary value problem is constructed in such a way that it automatically includes

regular solutions if they exist.
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To derive the weak formulation of a boundary value problem one multiplies Eq.(2.72)

by smooth test function ν(x) and integrates over the solution domain D(x),

∫
D(x)

(
q − L(u)

)
ν(x) dx =

∫
D(x)

r(x) ν(x) dx = 0. (2.81)

Note that Eqs. (2.80) and (2.81) despite similar look, have different meanings.

Equation (2.80) is the orthogonality condition that minimizes the residual rN with

respect to basis functions {λi(x)}, while Eq. (2.81) is a formulation of the week form

of a boundary value problem where function ν(x) is arbitrary.

Below is an example of a week form of simple boundary value problem. Let’s

assume that operator L(u) = (d2/dx2)u. Then using the divergence theorem, one can

rewrite Eq. (2.81) as

∫
D(x)

du

dx

dν

dx
dx+

∫
D(x)

qν dx− du

dx
ν

∣∣∣∣
∂D(x)

= 0. (2.82)

It is obvious that in this form the condition of two times differentiability of the

solution has been weakened and now requires the existence of only the first derivative.

The next step in the development of FEM is to expand the solution and test

function over the basis functions,

u(x) ≈
N∑
i=1

ai λi(x), (2.83)

and

ν(x) ≈
N∑
j=1

bj λj(x). (2.84)
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Using Eqs.(2.83), (2.84) in Eq.(2.82) will result in the system of linear equations

KA = R, (2.85)

where matrix K and vectors R and A are defined as

Kji =

∫
D(x)

dλj

dx

dλi

dx
dx− λj

dλi

dx

∣∣∣∣
∂D(x)

, (2.86)

Rj = −
∫
D(x)

qλj dx, (2.87)

Ai = ai. (2.88)

It should be noted that function ν(x) is arbitrary. Therefore, ∀ν(x) → ∀bj. Inde-
pendence of bj coefficients is used to obtain matrix Eq. (2.85) from,

N∑
j=1

bj

(
N∑
i=1

Kji ai −Rj

)
= 0. (2.89)

As can be concluded from Eq. (2.89), coefficients bj do not enter Eq. (2.85).

It was mentioned that Galerkin method does not provide a systematic way of

choosing the basis functions λi. In our derivations above it is implicitly assumed that

the test functions λi are defined globally over the whole domain D(x). More often

than not, finding global basis functions with the desired behavior on the boundaries

and for a given degree of smoothness is not feasible. Finite element analysis elimi-

nates this problem by utilizing basis functions with local support. These functions,

though defined globally, vary in a piecewise manner and differ from zero only inside

a subdomain of the entire domain, also known as a finite element. Usually, λi are

chosen to be low degree piecewise polynomials that form a simple nodal basis with
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the following conditions ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λi(xj) = 0, (i �= j)

λi(xi) = 1,∑N
i=1 λi(x) = 1.

(2.90)

Basis functions satisfying properties in Eq.(2.90) are also known as Lagrange basis

functions.

Here we will provide an example of building a nodal basis in one dimension. This

method will be applied later to construct basis in 2D and 3D when solving the LBTE

in the space-angle domain. Assume that we are looking for the solution to be a real

valued function u(x) of a real valued independent variable x ∈ D(x) = [a, b]. We

partition D(x) into N sufficiently small intervals by N + 1 node points {xi}Ni=0 such

that a = x0 < x1 < x2 · · · < xN−1 < xN = b and assume a linear approximation of

the solution u(x) on the interval Ii[xi−1, xi],

ũi(x) = c0 + c1x, x ∈ Ii, c0, c1 ∈ R (2.91)

For simplicity, we write ci0 = c0, and ci1 = c1. In Eq. (2.91), ũi(x) is uniquely

represented in the monomial basis {1, x} by specifying constants c0, c1. There are

other ways to uniquely specify the behavior of linear function by providing its values

in two different points. In finite element analysis, a linearly approximated function is

defined by the values it acquires at the end points of interval Ii : αi−1 = u(xi−1) and

αi = u(xi). This method is preferable because the function is specified by its nodal

values. Accordingly, the corresponding basis is called a nodal basis {λi−1, λi}. In this
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basis, the approximate solution is represented as

ũi(x) = αi−1λi−1(x) + αiλi(x). (2.92)

Each basis function λi(x) is a linear function on Ii with the properties

λj(xi) =

⎧⎪⎨
⎪⎩

1, i = j

0, i �= j
(2.93)

where i, j = 0, 1. The nodal basis on Ii can be defined through the nodal points as

follows

λi−1(x) =
xi − x

xi − xi−1
, λi(x) =

x− xi−1
xi − xi−1

. (2.94)

In the whole domain D(x) the approximation of exact solution u(x) is represented

by a piecewise linear function ũ(x) (see Fig.2.4).

Figure 2.4: Piecewise linear approximation ũ(x) of the solution u(x).

The nodal values ui become the degrees of freedom adjusted to find the best

approximation of u(x). The function λi(x) for node xi has a local support and is

defined on Ii∪Ii+1, except the leftmost and rightmost basis functions that are defined

only on I1 and IN respectively. In summary, approximation ũ(x) is sought in the form
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of linear expansion

u(x) ≈ ũ(x) =
N∑
i=0

ui λi(x) (2.95)

over the basis functions

λi(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x− xi−1
xi − xi−1

, x ∈ Ii

xi+1 − x

xi+1 − xi

, x ∈ Ii+1

0, otherwise

(2.96)

The hat-shaped basis functions λi(x) are depicted in Fig. (2.5).

Figure 2.5: Hat-shaped basis functions used in linear piecewise approximation.

In the application of finite element analysis to solve Linear Boltzmann transport

equation with magnetic field our numerical simulations follow the procedure:

1. Generate mesh in solution domain. This is required to discretize the continuous

solution domain into finite elements where the discrete solution is found at the

nodes of the elements.

2. Select and construct basis functions.

3. Reformulate LBTE in a weak form.
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4. Represent LBTE in a matrix form.

The solution of the matrix equation will be addressed in chapters 4 and 5. We

restate LBTE here again for convenience. The angular flux in a magnetic field is

found by solving the following equation,

[

Ω · 
∇r + κ
τ(
Ω, 
B) · 
∇Ω + σ(
r)

]
ψ(
r, 
Ω) =

∑
lm

σl(
r)φlm(
r)Ylm(
Ω) + S(
r, 
Ω) (2.97)

The connection between angular flux ψ and angular flux moments φlm is given by

φlm(
r) =

∫
dΩψ(
r, 
Ω)Y ∗lm(
Ω). (2.98)

Here we would like to state the definition of the integration norm over the solid

angle dΩ and the normalization for spherical harmonics. We use the convention where

the integration over unit sphere produces unity,

∫
dΩ

∫ 2π

0

dϕ

2π

∫ 1

−1

dμ

2
= 1, (2.99)

where μ = cos θ. With this convention spherical harmonics do not contain 1/
√
4π in

their normalization factor.

For a particular energy group, the angular flux depends on five independent vari-

ables: two angular variables θ and ϕ, and three spatial components of radius vector

x, y, and z. The solution is defined on R
3 × S

2, where S
2 is a two-dimensional unit

sphere, and R
3 is a three-dimensional real space. The solution is first found within a

finite cube L3 = {(x, y, z) ∈ R
3 | 0 ≤ x, y, z ≤ L}. To model an infinite domain, the

finite cube is then periodically extended over all space R
3.
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2.6.1 Angular Domain Discretization

Following the first step of our procedure of the previous section, we partition the

solution domain into finite elements. The meshing of the angular domain S
2 is done

in two steps. First, the unit sphere is tessellated into spherical triangles (Fig. 2.6),

which tessellation is then unwrapped onto a flat 2D grid (St-Aubin et al 2016). In

constructing a grid, one should pay attention that all the finite elements are connected

to each other only by their vertices. Also, the grid should not contain any gaps. In

practical calculations the angular grid is chosen to be the same for the entire spatial

domain regardless of possible variations in the medium density.

X Y

Z

Figure 2.6: An example tessellation of the angular domain on the unit sphere. This
tessellation contains 512 elements.

The angular mesh used in this work is composed of 40 triangles on the flattened

grid (Fig.2.7). This number of finite elements was verified to be sufficient to correctly

calculate the spectral radius for homogeneous medium while minimizing matrix size

and calculation time.
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polar( )

azimuthal( )

Figure 2.7: A 40 element tessellation is unwrapped onto a flat 2D surface with some
points added at the poles θ = 0, π.

To reduce numerical errors, a Delaunay triangular is performed such that the

triangles of the mesh to maximize the inner angles (Jin, 2014). For this reason,

several points were added to the poles at θ = 0, and π. Despite the fact that there

is no one-to-one mapping between the surface of the unit sphere S
2 and rectangle

{(ϕ, θ), 0 ≤ ϕ ≤ 2π , 0 ≤ θ ≤ π} in R
2, addition of these points to the mesh does not

affect the results of simulation.

In our simulations, we use a linear angular basis based on what was performed

previously (St-Aubin et al., 2016). That is, on every finite element the unknown

function is approximated by a plane,

f p(ϕ, θ) = ap + bpϕ+ cpθ (2.100)

where ap, bp, and cp are unknown coefficients. Higher order polynomial basis finctions

can also be used as a means to reduce the number of finite elements and/or to increase

the accuracy of calculations.
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Transition from a degree 1 polynomial basis to nodal basis employs the following

relations as an intermediate step,

f p
i = ap + bpϕi + cpθi, i = 1, 2, 3. (2.101)

The matrix form of the system of equations shown in Eq. (2.101) is

⎛
⎜⎜⎜⎜⎝
1 ϕ1 θ1

1 ϕ2 θ2

1 ϕ3 θ3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
ap

bp

cp

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
f p
1

f p
2

f p
3

⎞
⎟⎟⎟⎟⎠ (2.102)

Here, (ϕi, θi) are the coordinates of i-th node in the p-th element. Inverting the

system of Eqs. (2.101) with respect to ap, bp, and cp allows the expression of f p(ϕ, θ)

in a nodal basis,

fp(ϕ, θ) =
3∑

i=1

f p
i γ

p
i (ϕ, θ). (2.103)

In Eqs. (2.101–2.103), f p
i is a function’s value at node i, and γp

i (ϕ, θ) is the basis

function, associated with the same node,

γp
i (ϕ, θ) =

1

2Ap
(api + bpiϕ+ cpi θ), i = 1, 2, 3 (2.104)

where Ap designates the area of the p-th element expressed by the formula

Ap =
1

2
det

⎛
⎜⎜⎜⎜⎝
1 ϕ1 θ1

1 ϕ2 θ2

1 ϕ3 θ3

⎞
⎟⎟⎟⎟⎠ . (2.105)

The coefficients (api , b
p
i , c

p
i ) of the basis functions in Eq. (2.104) depend on coordi-
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nates of the nodes in the following way,

ap1 = ϕp
2θ

p
3 − ϕp

3θ
p
2, bp1 = θp2 − θp3, cp1 = ϕp

3 − ϕp
2,

ap2 = ϕp
3θ

p
1 − ϕp

1θ
p
3, bp2 = θp3 − θp1, cp2 = ϕp

1 − ϕp
3,

ap3 = ϕp
1θ

p
2 − ϕp

2θ
p
1, bp3 = θp1 − θp2, cp3 = ϕp

2 − ϕp
1.

(2.106)

The basis functions in Eq. (2.104) for element p are depicted in Fig. (2.8).

Figure 2.8: Basis functions γp
i (ϕ, θ) represent pieces of 2D plane in 3D and acquire

unity at node i and zero at opposite side of triangle.

2.6.2 Spatial Domain Discretization

In the spatial domain, the cube L3 is divided into six tetrahedral elements of equal

volume. It is the minimal number of spatial elements consistent with the condition

of periodic translation. Figure (2.9) shows the main L3 cube at the origin with one

of the elements highlighted in grey.

In complete analogy with the angular domain, in the spatial domain we utilize a

linear approximation for the unknown function inside a tetrahedral element k,

F k(x, y, z) = ak + bkx+ cky + dkz. (2.107)
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X

Y

Z

Figure 2.9: Partition of L3 cube into spatial 3D finite elements.

To find the nodal representation, one derives unknown coefficients ak, bk, ck, and

dk by inverting matrix Eq. (2.108),

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak

bk

ck

dk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F k
1

F k
2

F k
3

F k
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.108)

For ak, bk, ck, and dk one obtains,

ak =
1

6V k
det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F k
1 F k

2 F k
3 F k

4

xk
1 xk

2 xk
3 xk

4

yk1 yk2 yk3 yk4

zk1 zk2 zk3 zk4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1

6V k

(
ak1F

k
1 + ak2F

k
2 + ak3F

k
3 + ak4F

k
4

)
, (2.109)
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bk =
1

6V k
det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

F k
1 F k

2 F k
3 F k

4

yk1 yk2 yk3 yk4

zk1 zk2 zk3 zk4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1

6V k

(
bk1F

k
1 + bk2F

k
2 + bk3F

k
3 + bk4F

k
4

)
, (2.110)

ck =
1

6V k
det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

xk
1 xk

2 xk
3 xk

4

F k
1 F k

2 F k
3 F k

4

zk1 zk2 zk3 zk4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1

6V k

(
ck1F

k
1 + ck2F

k
2 + ck3F

k
3 + ck4F

k
4

)
, (2.111)

dk =
1

6V k
det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

xk
1 xk

2 xk
3 xk

4

yk1 yk2 yk3 yk4

F k
1 F k

2 F k
3 F k

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1

6V k

(
dk1F

k
1 + dk2F

k
2 + dk3F

k
3 + dk4F

k
4

)
, (2.112)

where V k denotes the volume of the finite element k,

V k =
1

6
det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

xk
1 xk

2 xk
3 xk

4

yk1 yk2 yk3 yk4

zk1 zk2 zk3 zk4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.113)



Chapter 2. Methods 56

In this nodal basis, the F k function is expressed by

F k(x, y, z) =
4∑

i=1

F k
i Lk

i (x, y, z), (2.114)

where the nodal basis functions Lk
i (x, y, z) are defined as

Lk
i (x, y, z) =

1

6V k

(
aki + bki x+ cki y + dki z

)
. (2.115)

2.6.3 Discontinuous Galerkin Finite Element Method

Even though conventional Galerkin method can be applied to broader class of equa-

tions that includes self-adjoint and non-self-adjoint equations, its use in the latter case

must done with care. Differential operators of odd order equations are not self-adjoint

(such as the LBTE). In practice, application of the Galerkin method to this class of

equations is unsuitable and leads to numerical oscillations in the solution, and can

even lead to instability (Jiang, 1998). The use of a discontinuous Galerkin method

has been shown to stabilize the LBTE and accurately model discontinuities in the

angular flux due to discontinuities in the material and density in the patient. Dis-

continuities are accounted by removing spatial and angular derivatives using Gauss

theorem and applying proper boundary conditions at the border of each finite ele-

ment. Stabilization is achieved when the solution is found by sweeping through the

mesh in the direction of transport propagation – a process also known as upwind

stabilization (Lewis and Miller, 1993).

In this section we apply the discontinuous Galerkin FEM (DFEM) to the LBTE
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with magnetic fields. To obtain the weak form of the LBTE with magnetic fields

in the DFEM formulation, we need to form the scalar product of Eq. (2.97) with

the combined basis γp
α(ϕ, θ) ⊗ Lk

i (x, y, z) which for simplicity we will write as γp
α L

k
i

assuming proper arguments. The integration of the scalar product is over the volume

V k and the area of the angular element Ap. We also assume a homogeneous medium,

so that the material total and differential cross sections are constants over the spatial

domain. Thus the FEM applied to Eq. (2.97),

∫
V k

∫
Ap


Ω ·
(

∇r ψ(
r, 
Ω)

)
γp
α L

k
i dV dA

+

∫
V k

∫
Ap

κ
τ(
Ω, 
B) ·
(

∇Ω ψ(
r, 
Ω)

)
γp
α L

k
i dV dA

+ σ

∫
V k

∫
Ap

ψ(
r, 
Ω) γp
α L

k
i dV dA

=

∫
V k

∫
Ap

∑
lm

σl Ylm(
Ω)

∫
dΩ

′
ψ(
r, 
Ω

′
)Y ∗lm(
Ω

′
) γp

α L
k
i dV dA

+

∫
V k

∫
Ap

S(
r, 
Ω) γp
α L

k
i dV dA. (2.116)

We now expand the unknown function over the same basis γp
α L

k
i ,

ψ(
r, 
Ω) =
4∑

i
′
=1

3∑
α
′
=1

ψp,k

α′ ,i′ γ
p

α′ L
k
i
′ . (2.117)

To apply the DFEM to Eq. (2.116) we apply Gauss’s theorem to the first term in

Eq. (2.116) (spatial streaming term), and integration by parts to the second term in

Eq. (2.116) (magnetic field angular streaming term). In this way possible solution

discontinuities can be properly incorporate on the boundaries through the integration

over the surface of the spatial finite elements and edges of the angular elements.

The detailed description of Gauss’s theorem to the (first) spatial streaming term in
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Eq. (2.116) and its matrix formulation is presented below,

∫
V k

∫
Ap


Ω ·
(

∇r ψ(
r, 
Ω)

)
γp
α L

k
i dV dA =

−
∫
V k

∫
Ap

ψ(
r, 
Ω) γp
α

Ω ·
(

∇r L

k
i

)
dV dA+

∫
∂V k

∫
Ap

ψ(
r, 
Ω) γp
α L

k
i

Ω · d
S dA

= −
4∑

i
′
=1

3∑
α
′
=1


Ck
ii
′ 
Ap

αα′ ψ
p,k

α′ ,i′ +
4∑

i
′
=1

3∑
α
′
=1


Bk
ii
′ 
Ap

αα′ ψ
p,k

α′ ,i′ (2.118)

where matrices 
Ap

αα′ , 
Bk
ii
′ , and 
Ck

ii
′ are defined as follows


Ap

αα′ =

∫
Ap

γp
α γ

p

α′ 
Ω dA, (2.119)


Bk
ii
′ =

∫
∂V k

Lk
i
′Lk

i d

S, (2.120)


Ck
ii
′ =

∫
V k

Lk
i
′

(

∇rL

k
i

)
dV. (2.121)

In a similar way to Eq. (2.118), the magnetic field angular streaming (second)

term in Eq. (2.116) can be rederived using integration by parts, and all terms can be

placed in a matrix form, so that final discretized LBTE (in matrix operator form) is

4∑
i
′
=1

3∑
α
′
=1

[

Bk
ii
′ 
Ap

αα′ − 
Ck
ii
′ 
Ap

αα′ + κDk
ii
′F p

αα′ − κDk
ii
′Hp

αα′ + σDk
ii
′Gp

αα′
]
ψp,k

α′ ,i′ =

4∑
i′=1

3∑
α′=1

∑
lm

σl

Np̃∑
p̃=1

Dk
ii
′Jp

α

(
J p̃
α

)∗
ψp̃,k

α′
,i
′ + Sp,k

α,i , (2.122)



Chapter 2. Methods 59

where the definition of other matrices is

Dk
ii
′ =

∫
V k

Lk
i
′Lk

i dV, (2.123)

Gp

αα′ =

∫
Ap

γp
α γ

p

α′ dA, (2.124)

F p

αα′ =

∫
∂Ap

γp
α γ

p

α′ 
τ(
Ω, 
B) d
Γ, (2.125)

Hp

αα′ =

∫
Ap


∇Ω

(

τ(
Ω, 
B)γp

α

)
γp

α′ dA, (2.126)

Jp
α =

∫
Ap

γp

α′ Ylm(
Ω) dA, (2.127)

Sp,k
α,i =

∫
V k

∫
Ap

S(
r, 
Ω)Lk
i γ

p
α dV dA. (2.128)

In Eqs.(2.119–2.121) and (2.123–2.128) integration
∫
∂V k [·] d
S is over the surface

of the volume element V k, and integration
∫
∂Ap [·] d
Γ is over the contour of the 2D

finite element Ap on the sphere. The final discontinuous description of the discrete

form of LBTE with magnetic fields is accompanied by the boundary conditions in

spatial domain,

ψip,k =

⎧⎪⎨
⎪⎩

ψinc
α,i ,


Ω · 
ni ≤ 0

ψα,i, 
Ω · 
ni > 0
(2.129)

and in the angular domain,

ψip,k
′ =

⎧⎪⎨
⎪⎩

ψinc
α,i , 
τ(
Ω, 
B) · 
nα ≤ 0

ψα,i, 
τ(
Ω, 
B) · 
nα > 0
. (2.130)

The boundary conditions for a spatial element in Eq.(2.129) are expressed in terms of

outward normal 
ni on face i and is related to the d
S surface element in Eq.(2.120) as

d
S = 
ni dS. Similarly, 
nα in Eq. (2.130) expresses the outward normal to the edge α
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of angular element and is related to d
Γ in Eq.(2.125) by d
Γ = 
nα dΓ. The superscript

inc on the angular flux for the boundary conditions in Eqs. (2.129), (2.130) denotes

incoming angular flux flowing through a spatial face, or angular edge.

Equations (2.119–2.130) constitute the boundary value problem for discrete LBTE,

the iterative solution of which is discussed in chapters 4 and 5.



Chapter 3

Analysis of the Spectral Radius in

an Infinite Medium — Continuous

LBTE

3.1 Continuous LBTE with no Magnetic Fields

The spectral radius of the iterative solution of the continuous LBTE in a homogeneous

medium in the presence of a magnetic field is investigated first. For an infinite domain,

it is possible in some cases to extract an analytical expression for the spectral radius

as a function of external parameters such as magnetic field strength, material density,

and degree of anisotropy as expressed by the maximum Legendre expansion order

lmax.

To establish a solid ground for calculations with magnetic fields, we first derive the

61
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spectral radius for the case of an infinite medium with zero magnetic field and com-

pare it with previously published results. The starting point is the time-independent

transport equation with no magnetic field for an energy group g,

[

Ω · 
∇r + σg

]
ψg(
r, 
Ω)−

NG∑
g′=1

∫
dΩ

′
σs,gg′ (


Ω · 
Ω′
)ψg′ (
r,


Ω
′
) = Sg(
r, 
Ω). (3.1)

For an isotropic problem, which we consider first, the scattering probability is the

same in all directions. Physically this usually happens for low particle energies. Under

these conditions, there is no angular dependence for the group-to-group differential

cross section σs,gg′ (

Ω · 
Ω′

) → σs,gg′ or the external source Sg(
r, 
Ω) → Sg(
r). The

summation index g
′
is over all NG energy groups. Integration over Ω

′
in Eq. (3.1)

results in a simplified transport equation in terms of angular flux ψ and scalar flux φ

dependent variables,

[

Ω · 
∇r + σg

]
ψg(
r, 
Ω) = σs,gg φg(
r) + sg(
r), (3.2)

φg(
r) =

∫
dΩψg(
r, 
Ω), (3.3)

where,

sg(
r) =

NG∑
g′ �=g

σs,gg′ φg′ (
r) + Sg(
r). (3.4)

In what follows we will consider the transport equation for a particular energy

group and, therefore as before, drop the energy group index to simplify our notations.

To obtain the solution of Eq. (3.2) through an iterative solution technique, we

regard the scattering term (first term on the right-hand side of Eq. (3.2)) as a known

iterative source that is used to calculate the unknown values on the left-hand side of
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equation. According to the multigroup approach, the solution is first found for the

highest energy bin and then proceeds in the direction of lower energy bins. For a

particular energy bin g, the solution in higher energy bins (Eg′ > Eg) is known and

does not change during within-group iterations. Therefore, the term sg(
r) in Eq.(3.4)

is constant and does not possess an iteration index.

Defining (t) to be an iteration index, this transforms Eqs. (3.2),(3.3) to the itera-

tive form of the source iteration procedure as described in (subsection 2.2.2),

[

Ω · 
∇r + σ

]
ψ(t+1)(
r, 
Ω) = σs φ

(t)(
r) + s(
r), (3.5)

φ(t)(
r) =

∫
dΩψ(t)(
r, 
Ω). (3.6)

Next, we construct the iterative differences for angular and scalar flux variables,

δψ(t+1)(
r, 
Ω) = ψ(t+1)(
r, 
Ω)− ψ(t)(
r, 
Ω), (3.7)

δφ(t+1)(
r) = φ(t+1)(
r)− φ(t)(
r). (3.8)

Reformulation of Eqs. (3.5), (3.6) in terms of δψ and δφ produces the following

system of equations, used to find the spectral radius,

[

Ω · 
∇r + σ

]
δψ(t+1)(
r, 
Ω) = σs δφ

(t)(
r), (3.9)

δφ(t)(
r) =

∫
dΩ δψ(t)(
r, 
Ω). (3.10)

As was mentioned in section 2.3, in Fourier analysis both δψ and δφ functions are
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sought in the form of Fourier modes,

δψ(t)(
r, 
Ω) =

∫ ∞

−∞
a(t)(
λ, 
Ω) ei

�λ�rd
λ, (3.11)

δφ(t)(
r) =

∫ ∞

−∞
b(t)(
λ) ei

�λ�rd
λ. (3.12)

Application of Eqs.(3.11), (3.12) together with the mutual independence of Fourier

modes transforms Eqs.(3.9), (3.10) to the following system of integro-algebraic equa-

tions

[
i 
Ω · 
λ+ σ

]
a(t+1)(
λ, 
Ω) = σs b

(t)(
λ), (3.13)

b(t)(
λ) =

∫
dΩ a(t)(
λ, 
Ω). (3.14)

This system can be converted to an eigenvalue problem by solving for a(t) in

Eq. (3.13) and substituting into Eq. (3.14),

b(t)(
λ) =

[∫
dΩ

σs

i 
Ω · 
λ+ σ

]
b(t−1)(
λ) = ω(
λ) b(t−1)(
λ). (3.15)

The expression for ω(
λ) is defined as,

ω(
λ) =

∫
dΩ

σs

i 
Ω · 
λ+ σ
, (3.16)

which is interpreted as an eigenvalue of the iterative operator that corresponds to

the eigenfunction exp(i
λ
r). As explained in section 2.3, the spectral radius ρ, by
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definition, is the modulus of the largest eigenvalue,

ρ ≡ sup
�λ

∣∣ω(
λ)∣∣. (3.17)

To evaluate the integral in Eq. (3.16), we split it into real and complex parts,

ω(
λ) = σs

∫
dΩ

σ

σ2 +
(

Ω · 
λ)2 − σs

∫
dΩ

i 
Ω · 
λ
σ2 +

(

Ω · 
λ)2 . (3.18)

Without loss of generality, we can assume that 
λ points along the positive direction

on the z-axis. In this case the scalar product of 
Ω and 
λ is 
Ω · 
λ = cos θ = μ. Using

the normalization for the angular integration of Eq. (2.65) introduced in section 2.5,

∫
dΩ =

∫ π

0

dμ

2

∫ 2π

0

dϕ

2π
(3.19)

one can easily see that the complex part of integral in Eq. (3.18) is zero since the

integrand is an odd function integrated over symmetric limits. The real part of

Eq. (3.18) is evaluated to

ω(
λ) =
σs

σ

∫ 1

−1

dμ/2

1 + (aμ)2
=

σs

σ
· tan

−1 a
a

, (3.20)

where a =
∣∣
λ∣∣/σ. The value of a that maximizes

∣∣ω(
λ)∣∣ in Eq. (3.20) is equal to

a = 0. As a result, the spectral radius for the isotropic problem using a fixed source

iteration scheme is,

ρ ≡ sup
�λ

∣∣ω(
λ)∣∣ = σs

σ
, (3.21)

which is a well-known result (Larsen E W, 2010; Valougeorgis et al., 1988).
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Now we add a bit of complexity to our problem and consider the case of anisotropic

scattering. We begin by expanding the group-to-group differential scattering cross

section in Eq. (3.1) in Legendre polynomials,

σs,gg′ (

Ω · 
Ω′

) =
∞∑
l=0

(2l + 1) σl,gg′ Pl(
Ω · 
Ω′
). (3.22)

where the Legendre coefficients in Eq. (3.22) are defined as

σl,gg′ =

∫ 1

−1
σs,gg′ (


Ω · 
Ω′
)Pl(
Ω · 
Ω′

)
d(
Ω · 
Ω′

)

2
. (3.23)

with the orthogonality condition for Legendre polynomials

∫ 1

−1
Pl(μ)Pl′ (μ) dμ =

2

2l + 1
δll′ . (3.24)

Using this information, we can simplify the transport Eq. (3.1) for anisotropic

scattering if we perform the integration over the Ω
′
variable. First we decouple 
Ω

and 
Ω
′
variables in Eq. (3.23) using the relation between Legendre polynomials and

spherical harmonics,

Pl(
Ω · 
Ω′
) =

1

2l + 1

l∑
m=−l

Y ∗lm(
Ω)Ylm(
Ω
′
). (3.25)

Substituting Eq. (3.25) into Eq. (3.22) transforms it to

σs,gg
′ (
Ω · 
Ω′

) =
∞∑
l=0

l∑
m=−l

σl,gg
′ Y ∗lm(
Ω

′
)Ylm(
Ω). (3.26)
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In addition, we expand the angular flux over the spherical harmonics basis,

ψg(
r, 
Ω) =
∞∑
l=0

l∑
m=−l

φlm,g(
r)Ylm(
Ω), (3.27)

where the angular flux moments φlm,g are found using orthogonality conditions for

spherical harmonics ∫
dΩYlm(
Ω)Y

∗
l
′m′ (
Ω) = δll′ δmm′ , (3.28)

producing,

φlm,g(
r) =

∫
ψg(
r, 
Ω)Y

∗
lm(
Ω) dΩ. (3.29)

Thus, with the definitions provided in Eqs. (3.26), (3.27) and using the orthog-

onality of Eq. (3.28), the iterative form of the transport Eq. (3.1) for anisotropic

scattering potential becomes

[

Ω · 
∇r + σg

]
ψ(t+1)
g (
r, 
Ω) =

∑
lm

σl,gg φ
(t)
lm,g(
r)Ylm(
Ω) + sg(
r, 
Ω), (3.30)

where the source sg(
r, 
Ω) is defined by expression

sg(
r, 
Ω) =

NG∑
g
′ �=g

∞∑
l=0

l∑
m=−l

σl,gg′ φlm,g′ (
r) + Sg(
r, 
Ω) (3.31)

The second equation of iterative cycle, that accompanies Eq. (3.30) is

φ
(t)
lm,g(
r) =

∫
dΩψ(t−1)

g (
r, 
Ω)Y ∗lm(
Ω). (3.32)

Similar to the isotropic case, we omit the index g for clarity, always assuming a

particular energy group. The iterative differences and their Fourier expansions are
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defined by Eqs. (3.7), (3.8) and Eqs. (3.11), (3.12) with minor modifications where

the scalar flux is substituted by the angular flux moments: δφ → δφlm. Reformulation

of Eqs.(3.30), (3.32) in terms of δψ and δφlm, and after Fourier mode decomposition,

produces the following system of integro-algebraic equations,

[
i 
Ω · 
λ+ σ

]
a(t+1)(
λ, 
Ω) =

∞∑
l=0

l∑
m=−l

σl b
(t)
lm(


λ)Ylm(
Ω), (3.33)

b
(t)
lm(


λ) =

∫
dΩ a(t)(
λ, 
Ω)Y ∗lm(
Ω). (3.34)

As before, solving for a(t) from Eq. (3.34) and substituting into Eq. (3.33) results in

an iterative problem of the form,

b
(t)
lm(


λ) =
∞∑

l′=0

l
′∑

m′=−l′
σl′

∫
dΩ

Y ∗lm(
Ω)Yl′m′ (
Ω)

i
Ω · 
λ+ σ
b
(t−1)
l
′m′ (
λ). (3.35)

Equation (3.35) can also be presented in operator form,

b(t+1)(
λ) = Tb(t)(
λ), (3.36)

where the vector b(t) is defined by its components b
(t)
lm(


λ). Note, that (lm) is a vector

multi-index and the matrix T is defined by

T(lm)(l′m′ ) = σl′

∫
dΩ

Y ∗lm(
Ω)Yl′m′ (
Ω)

i 
Ω · 
λ+ σ
. (3.37)

It is the largest eigenvalue of T in Eq. (3.37) that defines the convergence of the

iterative solution. A closer look at Eq. (3.37) suggests further simplifications to

the matrix T can be performed by integration over the azimuthal variable ϕ due to
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orthogonality of the spherical harmonics. Once again, without loss of generality, we

choose our coordinate system such that the direction of 
λ and positive z-axis coincide.

Then 
Ω · 
λ = λμ, where μ = cos θ. The relation between spherical harmonics and

associate Legendre polynomials is expressed by

Ylm(
Ω) = Ylm(μ, ϕ) =

√
(2l + 1)(l −m)!

(l +m)!
Plm(μ) e

iϕm. (3.38)

Thus, integration over ϕ in Eq. (3.37), gives simpler representation of iteration

matrix T,

T(lm)(l′m′ ) = δmm′ Cm
ll
′ σl′

∫ 1

−1

dμ

2

Plm(μ)Pl′m(μ)

iλμ+ σ
. (3.39)

The coefficients Cm
ll
′ are defined by the formula

Cm
ll
′ =

√
(2l + 1)(l −m)!

(l +m)!

√
(2l′ + 1)(l′ −m)!

(l′ +m)!
(3.40)

In practical calculations, summation over l always has a finite upper limit lmax. It

is easy to verify that in the case of isotropic scattering where lmax = 0, Eq. (3.37)

reduces to the isotropic result in Eq. (3.16).

As an example, Eq. (3.39) is used to analytically obtain the spectral radius for the

simplest nontrivial anisotropy of lmax = 1. In this case, the iterative matrix T is a

2×2 matrix, and the eigenvalues are easily extracted using the relation (Valougeorgis

et al., 1988),

ω1,2 =
1

2

[
Tr(T)±

√(
Tr(T)

)2 − 4 detT

]
. (3.41)

After optimization over λ in a similar fashion as to what was performed for the

isotropic scattering case, the spectral radius for this system is equal to that of the
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isotropic system ρ = σ0/σ.

For larger degrees of anisotropy (lmax > 1), exact formulas become excessively

complex. Below we prove the same result for higher orders of anisotropy using a

semi-numerical approach. For this reason, we slightly rearrange Eq. (3.39) in the

following way,

T(lm)(l′m′ ) =
1

σ
δmm′ σl′ T̃

m
ll
′ , (3.42)

where the structure of T̃m
ll
′ is deduced from Eq. (3.39),

T̃m
ll
′ = Cm

ll
′

∫ 1

−1

dμ

2

Plm(μ)Pl′m(μ)

iμ(λ/σ) + 1
. (3.43)

The reason for pulling out the factor σ−1 will become clear soon.

Due to the restrictionm = m
′
that arose from the spherical harmonic orthogonality

condition (Eq.3.28), only few elements ofT are non-zero. After appropriate swapping

of columns and rows and using the symmetry property T̃−m
ll
′ = T̃m

ll
′ , one obtains a

block-diagonal matrix of the form,

T =
1

σ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

[m = 0] 0 · · · 0

0 [m = 1] · · · 0

...
...

. . .
...

0 0 · · · [m = lmax]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.44)

Each block in this matrix contains elements with specific value m. Matrix indices
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l and l
′
range from m to lmax. For example, the block with m = 1 looks as follows,

Tm=1
ll
′ =

1

σ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1T̃
1
11 σ2T̃

1
12 · · · σlmaxT̃

1
1 lmax

σ1T̃
1
21 σ2T̃

1
22 · · · ...

...
...

. . .
...

σ1T̃
1
lmax 1 · · · · · · σlmaxT̃

1
lmax lmax

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.45)

The block-diagonal form of Eq. (3.44) simplifies the determination of the spectral

radius since the optimization of the largest eigenvalue is performed separately for

each block. We performed these optimizations in Wolfram Mathematica 10. Our

numerical simulations reveal that the largest eigenvalue for each block is evaluated to

ωm = σl′=m/σ. (3.46)

Therefore, the spectral radius for the system is equal to the highest value of

σl′=m/σ. For physical problems the isotropic differential cross section σ0 is the largest

one in the Legendre expansion. This proves that the convergence of anisotropic non-

magnetic systems is the same as that of the isotropic case and is equal to ρ = σ0/σ.

3.2 Continuous LBTE with Magnetic Fields

One of the first works that incorporated the magnetic field into LBTE was published

by St-Aubin et al. (2015, 2016). We restate this equation here for convenience in the
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energy multigroup approximation (section 2.1),

[

Ω · 
∇r + κg
τ(
Ω, 
B) · 
∇Ω + σg

]
ψg(
r, 
Ω)−

NG∑
g′=1

∫
dΩ

′
σs,gg′ (


Ω · 
Ω′
)ψg′ (
r,


Ω
′
) = Sg(
r, 
Ω). (3.47)

The magnetic field term κg
τ(
Ω, 
B) · 
∇Ω, with components defined by Eqs. (2.29,

2.30, 2.62), accounts for magnetic field effects for arbitrary magnetic field orienta-

tions. In infinite homogeneous medium the specific direction of the magnetic field

is irrelevant. Thus, we assume an orientation of the magnetic field along the z-axis

which simplifies the calculations significantly. Such a simplification allows us to ob-

tain the expression of the spectral radius in an analytical form that is amenable for

further analysis. For 
B = Bẑ magnetic field term simplifies to,

κg
τ(
Ω, 
B) · 
∇Ω = κgB
∂

∂ϕ
. (3.48)

Without loss of generality, we will again suppress the group index g in all subse-

quent equations, and consider a one group problem.

Since the energy discretization parameter κ and the magnetic field strength B al-

ways appear together, and their total combined magnitude is what affects the spectral

radius, these parameters are investigated together. For brevity, in the discussion that

follows, the combined parameters κB will be termed the magnetic field parameter.

As explained in section 2.5, source iteration is implemented as a Gauss-Seidel

iterative method for solving systems of linear equations. This technique leaves some

degree of freedom to decide how to solve the magnetic field operator. We first explore
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the possibility where magnetic field term is moved to the right side of Eq.(3.47) to be

a part of an iterative source. The position of magnetic field term in iterative equation

can affect the overall stability and convergence of iterative solution which in general

depend on the parameters in the system. If the solution is convergent, the desired

accuracy is acheived by appropriate number of iterations until the relative error falls

below specified value. To ensure that the obtained solution is physically correct, the

method should be tested against well known experiemnts, and/or against other dose

calculation codes (e.g. Monte Carlo codes such as Geant4, EGSnrc, etc.).

To minimize the effort, we exploit the results obtained for the non-magnetic

anisotropic case. The effect of the differential operator in Eq. (3.48) on the angular

flux in Eq. (3.27) is

κB
∂

∂ϕ
ψ(
r, 
Ω) =

∞∑
l=0

l∑
m=−l

imκB φlm(
r)Ylm(
Ω). (3.49)

Combining Eq. (3.49) with the scattering term on the right side of Eq. (3.30)

results in the following iterative equation,

[

Ω · 
∇r + σ

]
ψ(t+1)(
r, 
Ω) =

∑
lm

(
σl − imκB

)
φ
(t)
lm(
r)Ylm(
Ω) + s(
r, 
Ω). (3.50)

We note, that Eq. (3.50) can be obtained from Eq. (3.30) by formal substitution

σl →
(
σl − imκB

)
. This allows us to immediately write down the expression for the

iteration matrix T, analogous to that of Eq. (3.39),

T(lm)(l
′
m

′
) = δmm

′ Cm
ll
′
(
σl

′ − imκB
) ∫ 1

−1

dμ

2

Plm(μ)Pl′m(μ)

iλμ+ σ
. (3.51)
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Since the structure of the integrals in Eq. (3.39) and Eq. (3.51) are identical, we

can right down the eigenvalue of each m-block Tm
ll
′ with the largest absolute value in

the form Eq. (3.46) by applying substitution σl →
(
σl − imκB

)
,

ωm =
σl′=m − imκB

σ
. (3.52)

An analysis of the eigenvalue expression in Eq. (3.52) clearly shows that, as the

value of the magnetic field parameter grows in magnitude, the spectral radius can

become larger than unity, which leads to divergence of the iterative scheme. It can

also be seen from Eq. (3.52) that a higher degree of anisotropy (leading to a larger

Legendre expansion order lmax) also makes the eigenvalues increase in magnitude

and hampers the convergence when the spectral radius approaches unity, or leads to

instability when it exceeds unity. Thus, treating the magnetic field term as a part of

the iterative source leads to an unstable source iteration technique.

The behavior of spectral radius as a function of magnetic field parameter κB for

σ = 1.0 cm−1 is shown in Fig. (3.1). Here we reinforce our results by estimating

spectral radius according using the numerical approach of Eq. (2.55) from previously

published work (St-Aubin et al., 2015). Figure (3.1) shows that Eq. (3.52) correctly

reproduces the spectral radius dependence on magnetic field. The difference between

analytical and numerical values shown in Fig. (3.1) is less than 10−4 %.

For low values of κB, the largest eigenvalue of iterative matrix is found for the

m = 0 block. As the magnetic field parameter increases, the spectral radius remains

constant until the largest eigenvalue from block m = lmax becomes dominant. From

that point, spectral radius becomes a linear function of κB and leads to divergence
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for sufficiently large κB.

Analytical dependence
Numerical values

Instability region

Stability region

Figure 3.1: Spectral radius as a function of magnetic field parameter as predicted
by Eq. (3.52) (solid line), and extracted numerically according to Eq. (2.55) using
previously published code (St-Aubin et al., 2016).

We also consider the alternative situation where the magnetic field is treated as

an operator (i.e. no iteration on the magnetic field term). In this case, the error form

of LBTE for energy group g (index is omitted) looks as follows,

[

Ω · 
∇r + κB

∂

∂ϕ
+ σ
]
δψ(t+1)(
r, 
Ω) =

∑
lm

σl δφ
(t)
lm(
r)Ylm(
Ω), (3.53)

δφ
(t)
lm(
r) =

∫
dΩ δψ(t)(
r, 
Ω)Y ∗lm(
Ω). (3.54)

To apply the Fourier analysis technique to Eqs. (3.53), (3.54), we use Eq. (3.11)

in a slightly modified form adding to it a Fourier series expansion over the azimuthal
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variable ϕ that is periodic on the sphere with period 2π,

δψ(t+1)(
r, 
Ω) =
∞∑

p=−∞

∫
d
λ a(t+1)

p (
λ, θ) ei
�λ�reipϕ. (3.55)

Eqs. (3.55), (3.12) into Eq. (3.53) yields,

∞∑
p=−∞

[
i 
Ω · 
λ+ iκBp+ σ

]
a(t+1)
p (
λ, θ) eipϕ =

∑
lm

σl b
(t)
lm(


λ)Ylm(
Ω). (3.56)

Equation (3.54) is transformed to the following,

b
(t)
lm(


λ) =

∫
dΩY ∗lm(
Ω)

∞∑
m′=−∞

a
(t)

m
′ (
λ, θ) e

im
′
ϕ (3.57)

In Eqs. (3.56), (3.57) we applied the previously used definition of Fourier modes

independence and omitted the exponents exp(i
λ
r) on both sides. To find the coef-

ficients a
(t+1)
p we multiply Eq. (3.56) by exp(im

′
ϕ) and integrate over

∫ 2π
0

dϕ/(2π).

Assuming the magnetic field is in z-direction and substituting 
Ω · 
λ → λμ we obtain,

[
iλμ+ iκBm

′
+ σ
]
a
(t+1)

m
′ (
λ, θ) =∑

l
′
=|m′ |,|m′ |+1,...

σl
′ b

(t)

l
′m′ (
λ)Cl

′
m

′ Pl
′
m

′ (μ), (3.58)

where the integration on the right side of Eq. (3.56) was performed using Eq. (3.38),

and Clm =
√

(2l + 1)(l −m)!/(l +m)!.
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Equation (3.58) is used to solve for a
(t+1)
m from Eq. (3.57),

b
(t)
lm(


λ) =

∫
dΩY ∗lm(
Ω)

∑
m′

a
(t)

m
′ (
λ, θ) e

im
′
ϕ

=

∫ 1

−1

dμ

2

∫ 2π

0

dϕ

2π
ClmPlm(μ) e

−imϕ
∑
l′m′

σl′ e
im

′
ϕ Cl′m′Pl′m′ (μ)

iλμ+ iκBm+ σ
b
(t−1)
l
′m′ (
λ)

=
∑
l′

σl
′

∫ 1

−1

dμ

2

ClmPlm(μ)Cl′mPl′m(μ)

iλμ+ iκBm+ σ
b
(t−1)
l
′m (
λ), (3.59)

or, in matrix form

b
(t)
lm(


λ) = Tll′ b
(t−1)
lm (
λ), (3.60)

with matrix Tll′ defined by

Tll′ = σl′ C
m
ll
′

∫ 1

−1

dμ

2

Plm(μ)Pl′m(μ)

iλμ+ iκBm+ σ
. (3.61)

The matrix in Eq. (3.61) is for a particular m value due to the block diagonal

matrix form. We can make this equation even more general and write down Eq.(3.61)

as follows,

T(lm)(l′m′ ) = σl′

∫
dΩ

Ylm(
Ω)Y
∗
l
′m′ (
Ω)

iλμ+ iκBm′ + σ
. (3.62)

This form of the iteration matrix T combines all the m-blocks and can be reduced to

Eq. (3.61) after integration over azimuthal angle ϕ.

Analytical expressions for the largest eigenvalue of Eq. (3.61) for block m can

be derived in principle, but will depend in a complex way on the magnetic field

parameter κB, azimuthal number m, and maximum Legendre expansion order lmax.

For simplicity, our investigations of Eq. (3.61) were performed numerically, and the
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dependence of the eigenvalues on various strengths of magnetic field and azimuthal

number m is shown in Fig. (3.2) for Legendre orders up to lmax = 3.
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Figure 3.2: (a) Eigenvalue modulus (|ω|) for various magnetic field parameter values
inside m = 1 block of iteration matrix T in Eq. (3.62) as a function of the Fourier
wave number λ, and (b) eigenvalue modulus as a function of the Fourier wave number
λ and block number m for the fixed magnetic field parameter value κB = 10 cm−1.

It should be noted that all the parameters that caused instability in the previous

case, end up being in the denominator for this iterative scheme. Simulations show that
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the spectral radius ρ of this source iteration scheme never exceeds unity regardless

of the magnitude of the magnetic field parameter, or maximum Legendre expansion

order. Figure (3.2(a)) depicts the dependence of the largest eigenvalue in the m =

1 block on the magnitude of the magnetic field parameter. As the κB parameter

increases, the maximal value of |ωm(λ)| becomes progressively smaller. A similar

behavior is observed in Fig. (3.2(b)) where the degree of anisotropy is varied for a

fixed magnetic field parameter. The tendency displayed is that for larger values of m,

the peak of the function that described |ωm(λ)| decreases. Based on these observations

we conclude that the spectral radius is equal to the isotropic non-magnetic field case

behavior in Eq.(3.21) (also seen in Fig.3.2(b) where the m = 0 eigenvalue is largest).

This has the important results that the magnetic field has no impact on the spectral

radius if treated as an operator, and that the iteration scheme is unconditionally

stable.



Chapter 4

Spectral Radius of the Discretized

Equations in Infinite Medium

In chapter 3 we performed a convergence analysis of the continuous LBTE with and

without magnetic field in an infinite homogeneous medium. In this chapter, we intend

to verify our findings and independently calculate spectral radius for the discretized

transport equation where the angular and spatial domains are approximated by grids.

The discrete form of transport equation is obtained using finite element analysis as

described in section 2.6.

We calculate the spectral radius numerically by obtaining the modulus of the

largest eigenvalue of iterative matrix and independently by applying Eq. (2.55) using

previously published code in (St-Aubin et al., 2016).

As seen previously, the spectral radius is a function of several parameters including

magnetic field, material density, and anisotropy of scattering potential. The degree of

80
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anisotropy dictates the maximum Legendre expansion order for accurate calculations.

To account for these degrees of freedom in a systematic way we utilize the Henyey-

Greenstein model (Ahrens, 2015; Henyey and Greenstein, 1941) for the differential

scattering cross section σs(
Ω · 
Ω′
), which takes the form

σs(
Ω · 
Ω′
) ≡ σHG

s (ν) =
Λ

4π

1− g2

(1 + g2 − 2gν)3/2
, (4.1)

where ν = cos θ
′
= 
Ω·
Ω′

. The parameters in this formula are used to model anisotropy

in a controllable way. The variable θ
′
is the polar coordinate denoting deviations

from the forward direction, and the parameter g in the Heney-Greenstein model is

a measure of the degree on anisotropy and varies in the limits −1 ≤ g ≤ 1. For

g = 1 all the scattering processes tend to be in a forward direction (highest degree

of anisotropy). When g = 0, the scattering is isotropic in nature. Negative values of

g are used to model varying degrees of backscatter. Finally, the parameter Λ is used

for normalization which is explained below.

In our simulations, we use two representative values for the anisotropy parameter

g: g = 0 for isotropic scattering, and g = 0.7 that models forward-peaked anisotropic

scattering (see Fig.4.1) (Ahrens, 2015).

For these values of g the differential scattering cross section is expanded in Legendre

polynomials,

σ̃HG
s (ν) =

lmax∑
l=0

(2l + 1) σl Pl(ν) (4.2)

with Legendre coefficients

σl =
1

2

∫ 1

−1
Pl(ν) σ

HG
s (ν) dν. (4.3)
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Figure 4.1: The Henyey-Greenstein function is used to model differential scattering
cross section σs(
Ω · 
Ω′

) for two values of anisotropy parameter g = 0 and 0.7.

The value of the spectral radius depends crucially upon the accuracy of finite approxi-

mation using Eq.(4.2). A finite approximation of the differential cross section σ̃HG
s (ν)

given in Eq. (4.2) is achieved by terminating the series expansion at lmax = 28. This

limit of expansion gives a relative error of 0.01% estimated according to,

% = 100 ·
√∫ 1

−1
[
σHG
s (ν)− σ̃HG

s (ν)
]2
dν√∫ 1

−1
[
σHG
s (ν)

]2
dν

. (4.4)

The effect of the density of material on the convergence in the presence of magnetic

fields is analyzed by allowing the total cross section σ to acquire several values in a

wide range. As with anisotropy, we choose representative values for total cross section

to be σ = 10−3, 100, 103 cm−1. Another important parameter in our simulations is

the ratio of the isotropic Legendre coefficient to the total cross section (not to be

confused with the speed of light in Eq. (2.62))

c =
σ0

σ
(4.5)
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The physical meaning of this ratio is that, regardless of the density of material, it

shows how fast secondary electrons at energy E leave their energy group or exit the

system (Lewis and Miller, 1993). For high values of c, significant numbers of particles

enter the phase volume with the same energy E as other particles leave it due to

scattering. This means that many collisions (and iterations for stationary methods)

are required for convergence. This happens, for example, when secondary particles at

energy E predominantly experience elastic scattering. On the other hand, if the ratio

c is small, then particles quickly lose energy (or acquire energy, if up-scattering is

present), which makes convergence fast. Thus, we test the dependence of the spectral

radius on the magnetic field for three values of c-ratio, 0.2, 0.8, and 0.99. The last

value is very close to unity where we expect poor convergence for the traditional

source iteration approach.

The value of the isotropic Legendre coefficient σ0 is derived in general from Eq.(4.3)

for l = 0. However, it is also independently defined as the product σ0 = cσ. There-

fore, the normalization parameter Λ is adjusted to make both values equal. Hence,

Λ = 4πcσ. (4.6)

In section 2.6 we applied a discontinuous finite element method in angle and space

to obtain a discretized form of the LBTE with magnetic field (see Eqs.2.122–2.128).

For the DFEM in angle, the unit sphere with angular variable 
Ω is tessellated into

triangles and unwrapped onto a 2-D grid (St-Aubin et al., 2016). As was mentioned

before, the angular grid is composed of 40 angular elements (section 2.6, Fig. 2.7).

The solution inside the angular finite element is a subject to the boundary conditions

in Eq. (2.130).
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For arbitrary magnetic field orientations, DFEM discretization and the sweeping

methodology for upwind stabilization (Lewis and Miller, 1993) can create complex

cyclic sweep conditions (St-Aubin et al., 2016). However, by performing a coordinate

transformation requiring the magnetic field to be situated along the z axis as in

Eq. (3.48), only a single cyclic sweep condition is obtained at the ϕ = 0 boundary

(St-Aubin et al., 2016) as shown in Fig. 13. The red shaded elements on the left-

hand border ϕ = 0 are solved first, followed by the yellow shaded elements. The

sweeping procedure continues up to the ϕ = 2π border according to the blue arrows

in Fig. (4.2). At the end of an iteration cycle, the value of the outgoing angular flux

at the 2π border is assigned as the incoming angular flux at the ϕ = 0 boundary.

That is, for iteration (t+ 1),

ψ
(t+1)
inc (θ, ϕ = 0) = ψ(t)(θ, ϕ = 2π). (4.7)

In discretizing the spatial domain, we followed the method outlined by Warsa et

al. (2004) and explained in section 2.6. For spatial variables, the main domain is a

cube which is subdivided into six tetrahedrons of equal volume (Fig.4.3) which make

up the spatial finite element domain discretization. As explained previously, such

a partitioning contains the minimal number of FEM tetrahedral volume elements to

simulate an infinite medium through a periodic repetition of the voxel with tetrahedral

element faces aligning between the element in the original voxel and the element in

the repeated voxel (Fig.4.3). Inside a spatial voxel the solution obeys the boundary

conditions expressed by Eq. (2.129).

For this work, we investigate an isotropic voxel which forms regular tetrahedrons,

and a rectangular voxel with aspect ratio of 8:1:1. The latter rectangular voxel forms
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Figure 4.2: Angular finite element mesh showing the direction of the magnetic field
operator 
τ and sweeping direction (arrows).

skewed tetrahedrons, and allows for the analysis on the spectral radius in this situ-

ation. Delaunay triangulation tries to limit the skewness of FEM tetrahedrons, but

based on geometry there will always be some non-regular tetrahedrons in a practical

FEM calculation.

Fourier analysis of the iterative convergence assumes a solution of the form Eq.(2.51),

δψ(
r, 
Ω) ∼ a(
λ) ei
�λ�r. (4.8)

The solution for spatial elements with faces on the domain boundary (i.e. external

surfaces) is defined using periodic boundary conditions. Figure (4.3) depicts two

voxels, the main domain (solid lines) and a fictitious repeated domain which is created

by the application of periodic boundary conditions (dashed lines). In Fig. (4.3), the

points A and A
′
lie on corresponding surfaces obtained by a periodic translation.
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A'

Z

X

Y

A

Figure 4.3: Spatial domain (cube) partitioned into six tetrahedrons. The main domain
(solid lines) is periodically translated (dashed lines) to simulate an infinite medium.

The arrows indicate that the values of the solution on the surface are obtained by

approaching A and A
′
from inside the elements. The boundary values at these points

are related as

δψ(
rA′ , 
Ω) = δψ(
rA, 
Ω) e
iλxΔX , (4.9)

where λx is the x-component of Fourier wave number, and ΔX is the period of the

main domain in x-direction. The same approach is used for the y- and z-directions.

For the discretized problem, the solution is defined only at the nodes (corners) of

the elements and the above boundary condition should be applied to every vertex of

every element with a surface corresponding to an external surface on the domain.

The numerical simulations, from the setup of the linear systems, to the maximiza-

tion of the eigenvalues of the iterative matrix over the Fourier wave number 
λ, were

performed using Wolfram Mathematica 10.

The Galerkin discontinuous FEM space-angle method converts the continuous
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integro-differential linear Boltzmann transport Eqs. (2.97), (2.98) into a system of

linear algebraic Eqs.(2.122–2.128) with boundary conditions in Eq.(2.129), (2.130).

This system of equations can be compactly expressed using matrix operator form in-

volving the angular flux and the angular flux moments errors δψ and δφ respectively

in the Fourier Analysis,

L δψ(t+1) = MΣ δφ(t). (4.10)

The 1D vector δψ(t+1) = ψ−ψ(t+1) has its components are defined on every vertex

in every element in the spatial and angular grids. Similarly, δφ(t) = φ − φ(t) is a 1D

vector of angular flux moments δφ
(t)
lm defined on every vertex in every element of the

spatial grid. The operator L represents the combined action of discretized spatial

streaming, collision, and angular streaming operators,

[

Ω · 
∇r + 
τ(
Ω, 
B) · 
∇Ω + σ

]⇒ L. (4.11)

The diagonal matrix Σ has on its diagonal the Legendre coefficients of the macro-

scopic differential electron scattering cross section σl,

Σ = diag(σ0, σ1, . . ., σlmax). (4.12)

Generally, the moment-to-discrete operator M represents the discretized version

of the expansion of the angular flux over the basis of spherical harmonics Ylm(
Ω),

ψ(
r, 
Ω) =
lmax∑
l=0

l∑
m=−l

φlm(
r)Ylm(
Ω) ⇒ ψ ≈ Mφ. (4.13)

It can also be formally viewed as a mapping of the vector of an angular flux
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moments φlm onto the vector of angular flux ψ. But, as noted in (Warsa et al.,

2004), ψ �= Mφ, mainly due to the truncation of the Legendre expansion. The

iterative expression in Eq.(4.10) is complemented by the discrete-tomoment operator

D defined as

φlm(
r) =

∫
dΩψ(
r, 
Ω)Y ∗lm(
Ω) ⇒ φ = Dψ. (4.14)

Equations (4.13), (4.14) between ψ and φ can help express the iterative Eq.(4.10)

purely in terms of the angular flux vector errors δψ, or the vector of angular flux

moment errors δφ. In the DFEM discretization of the LBTE with magnetic fields,

the angular boundary conditions are applied (Eqs. 2.130, 4.7 and Fig. 4.2). This

requires the iterative problem to be formulated in terms of angular flux, and not

angular flux moments since the boundary conditions are in terms of the angular flux.

Below we describe the non-trivial dependence of the iterative scheme to solve

Eq. (4.10) on the magnetic field, even though the magnetic field term is treated as

a part of the streaming-collision operator. The sweeping requirement to update the

angular flux at the boundary ϕ = 0 from the previous iteration changes the source

iteration procedure. The flow of the angular flux (shown with arrows in Fig. 4.2)

is determined by the vector 
τ(
Ω, 
B) which, with our choice for magnetic field in

Eq. (3.48), is in the azimuthal direction ϕ̂. For an interior finite element, boundary

conditions in Eq. (2.130) are applied such that ψ = ψinc at edges that meet the

condition 
τ(
Ω, 
B) · 
nα < 0, where ψinc is the solution flowing from the upstream

element and 
nα is the outward normal to the edge α of angular element. However, to

begin the next iteration (t+1), the solution for the nodes at ϕ = 0 is provided by the

angular flux at ϕ = 2π from the previous (t)-th iteration. Thus, the application of the

periodic boundary condition (PBC) is equivalent to part of magnetic field operator
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acting as an iterative source. As was shown previously, when the magnetic field is

part of the iterative source there is a detrimental impact on the spectral radius.

We model this adapted iterative procedure in our DFEM simulation by treating

the part of matrix L in Eq. (4.10) that is responsible for angular periodic boundary

conditions as an iterative source,

L̃ δψ(t+1) = MΣD δψ(t) − LPBC δψ(t), (4.15)

where L̃ = L− LPBC .

Next, we rewrite Eq. (4.15) in the form

δψ(t+1) = L̃−1
(
MΣD− LPBC

)
δψ(t) = T δψ(t). (4.16)

The spectral radius is obtained by finding the modulus of the largest eigenvalue

of the iteration matrix T obtained upon discretization of LBTE in space and angle

using DFEM,

T = L̃−1
(
MΣD− LPBC

)
. (4.17)

Figure (4.4) displays the effect of the magnetic field parameter on the spectral ra-

dius for various medium densities for a scattering ratio of c = 0.2 for the isotropic spa-

tial voxel (regular tetrahedrons). As seen in Fig. (4.4), there is very good agreement

between the spectral radius calculated via Fourier analysis for the DFEM discretized

equation and that estimated by the code from previously published work (St-Aubin

et al., 2016).

From Fig. (4.4), it is clear that the DFEM sweeping approach (which makes the
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LPBC operator part of the iterative source on the right side of the equation) increases

the spectral radius.

published code
simulations

Figure 4.4: Spectral radius as a function of the magnetic field parameter for several
medium densities with c = 0.2. Details of implementation of published code can be
found in (St-Aubin et al., 2016).

The magnetic field parameter clearly has a dominant effect on the spectral radius

in low density medium σ = 10−3 cm−1. Thus, the DFEM sweeping approach to

solve the LBTE with magnetic fields worsens the spectral radius. The value of the

spectral radius becomes sufficiently close to unity, even for relatively small magnetic

field parameters, to make the source iteration approach impractical. It should be

noted that despite the worsening of the spectral radius, and the inefficiency of source

iteration, this scheme remains stable regardless of the strength of magnetic field (that

is, the spectral radius monotonically approaches unity with the increasing strength

of magnetic field). At the same time, the spectral radius for high density material

(σ = 103 cm−1) is virtually unaffected by an increasing magnetic field parameter.

This is thought to be due to the high density of scattering centers producing frequent
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collisions and reducing the effect of the magnetic field. Materials with intermediate

densities (σ = 1.0 cm−1) are partially affected by magnetic field with the spectral

radius approaching unity at larger magnetic field parameter values. We note that by

artificially keeping the operator LPBC on the left side of Eq. (4.15), this equation

reduces to the same iterative scheme investigated for the continuous LBTE, and

shows no dependence of the spectral radius on magnetic field as previously predicted

in chapter 3.

The other values of parameter c = 0.8, 0.99 (not shown here) shift the zero mag-

netic field spectral radius towards unity. For these cases of high scattering ratios, the

magnetic field increases the spectral radius in a similar fashion as shown in Fig. (4.4),

with the exception that the spectral radius values simply start at the set scattering

ratio (e.g. 0.8 or 0.99). Overall, for low density media with magnetic fields, or for

media with scattering ratios close to unity the convergence rate of source iteration

may be slow and other methods must be employed.

In addition, it was found that the spectral radius calculated with the high aspect

ratio voxels (8:1:1) differed from the isotropic voxel by at most 0.04%. Thus, the

aspect ratio (up to 8:1:1) of the spatial tetrahedrons has negligible impact on the

spectral radius of the source iteration procedure.



Chapter 5

Improving the Convergence Rate

via an Efficient Krylov-Subspace

Solver

As was discussed in chapter 4, optically thick problems with a scattering ratio close

to unity, and the discretized DFEM LBTE with magnetic fields in low density media,

cause source iteration to become time consuming and inefficient. Non-stationary

Krylov subspace methods for unsymmetrical matrices such as GMRES (Generalized

Minimal Residual Method) (Saad, 1986) can efficiently handle a much broader class

of matrix operators. GMRES has also been shown to accelerate the convergence rate

of the standard LBTE in the past (Warsa et al., 2004). GMRES belongs to the family

of Krylov subspace iterative numerical methods for solving large sparse systems of

linear equations. In the absence of rounding errors, the convergence is guaranteed in

no more than N steps, where N is the size of the matrix system. However, it has
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been shown in practice that for many practical problems, GMRES converges in much

less than the maximum N steps. However, due to the memory cost of storing all the

Krylov basis, the modified version of the algorithm GMRES(m) is used in this work,

where the iteration procedure to find the solution is restarted after m = 20 iterations.

To investigate the effectiveness of the restarted GMRES(m) to accelerate the LBTE

with magnetic fields, we analyze its impact on isotropic and anisotropic scattering,

and for sparse and dense media with both low and high scattering ratios.

As mentioned previously, a DFEM discretization of the LBTE results in a matrix

equation Ax = b with matrix operator A being neither symmetric, nor positive

definite. We can deduce the structure of the operator A from the source iteration

form of transport Eq. (4.16),

ψ(t+1) = L̃−1
(
MΣD− LPBC

)
ψ(t) + L̃−1S. (5.1)

Here, we intend to find the angular flux ψ by directly solving the iterative Eq.(5.1)

and operate in terms of the angular ψ (and not angular flux errors δψ which was

required for the Fourier Analysis). The variable S in Eq.(5.1) denotes the discretized

version of a source for this problem. The definition of other variables shown in

Eq. (5.1) is the same as in the previous chapter 4.

By omitting the iterative superscripts, we define the matrix equation Ax = b as,

A = I− L̃−1
(
MΣD− LPBC

)
, (5.2)
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and

b = L̃−1S. (5.3)

Matrix I in Eq. (5.2) is the identity matrix. In general, a rigorous quantification

of the theoretical efficiency GMRES(m) is difficult. One qualitative approach, that

allows to us make some conclusions about the convergence of the GMRES method,

considers the spectrum of eigenvalues for matrix A in Eq.(5.2) as well as its spectrum

dynamics under the change of the system’s parameters. It was observed by Warsa

et al. (2004) that if the eigenvalues of the matrix A cluster around the origin, it

negatively affects the convergence. The inverse is also true: if the spectrum of A

is distributed away from the origin, it signifies faster convergence. We note, that

the iteration processes for GMRES and SI are very different. The Krylov GMRES

method requires more computational work per iteration cycle compared to SI, but

the dramatic reduction in the number of iterations results in a decrease in the total

calculational time (Warsa et al., 2004). Another important aspect of the GMRES

solver is that the spectral radius is no longer an appropriate quantify to evaluate the

efficiency of the method.

Figure (5.1) displays the eigenvalue spectrum of the matrix operator A and its

dynamics under increased magnetic field parameter values.

At zero magnetic field (Fig.5.1(a)) the spectrum consists of two compact clusters

around unity. This distribution of eigenvalues results in the fastest convergence in

terms of iteration cycles. As the magnetic field parameter increases (Fig. 5.1(b,c)),

there is pronounced drift of the eigenvalues towards the origin. For very large mag-

netic field parameters (Fig. 5.1(d)) the spectrum is again composed of two clusters,

one of which is near the origin. Thus, in extreme cases of very high magnetic field
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(a)= 0 [cm  -1] = 1.0 [cm  -1] (b)

= 10 [cm  -1] (c) = 100 [cm  -1] (d)

Figure 5.1: Eigenvalue spectrum of the matrix A for various magnetic field parameter
strengths. As the magnetic field parameter increases, the eigenvalues tend to cluster
closer to zero, which is expected to have a negative impact on the convergence rate
of GMRES.

parameters the presence of a significant portion of eigenvalues around the origin is

expected to slow down the convergence rates of the GMRES(m) solver.

This discussion of effectiveness of GMRES in terms of dynamics of eigenvalues vs.

magnetic field parameter is illustrative, but lacks the quantitative element. Thus, we

also perform simulations in MATLAB 8.3 (The MathWorks Inc., Natick, MA, 2014)

to compare the speed of convergence for GMRES versus source iteration based on the

number of iterations required to achieve a desired accuracy dictated by the relative

residual,

ε =
‖ψ(t+1) − ψ(t)‖

‖ψ(t+1)‖ . (5.4)
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In clinical scenarios the κB value depends on both the strength of magnetic field

and energy via κ according to Eq. (2.62). In cases investigated here, κB = 10 cm−1

corresponds approximately to a magnetic field strength of 20 T. This value is well

beyond clinical MRI systems and was chosen to show the effectiveness of GMRES

algorithm even in this extreme scenario.

Surprisingly, we found that even for much larger values of κB = 100 cm−1 when

a substantial number of the eigenvalues of A cluster around the origin (Fig.5.1(d)),

the convergence of the solution to a relative error of 10−6 requires only five iterations

for the system under consideration. This indicates a significant robustness of the

GMRES method with respect to a wide range of magnetic field parameter values.

To complete the picture, we tested GMRES performance on the system with

anisotropic scattering as well as an optically dense system with high scattering ratio.

We found that inclusion of anisotropy for our system required only a few extra iter-

ations. Similarly, increasing the scattering ratio c from 0.2 to 0.99 for dense medium

requires less than 10 extra iterations.

This efficiency of the restarted GMRES solver is contrasted with that of the source

iteration approach (Fig. 5.2(a,b)) for a material cross section value σ = 10−3 cm−1

where the magnetic field was shown to have a dominant impact on the spectral radius.

Figure (5.2) shows that for κB = 10 cm−1 , the convergence of the source iteration

solution for isotropic low density, low scattering ratio medium with material cross

section σ = 10−3 cm−1 and c = 0.2 is four orders of magnitude slower than for

GMRES and requires 12,380 iterations to converge to a relative error of 10−6 while

GMRES(m) with a restart parameter of m = 20 required only 4 iterations (Fig. 5.2,
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Figure 5.2: Comparison of the effectiveness of GMRES and SI iterative methods.
[Curve #1: g = 0, c = 0.2, σ = 10−3 cm−1], [Curve #2: g = 0.7, c = 0.2, σ =
10−3 cm−1], [Curve #3: g = 0.7, c = 0.99, σ = 103 cm−1].

curve #1). The inclusion of anisotropy by setting g = 0.7 in the Heney-Greenstein

model Eq. (4.1) increases the number of GMRES(m) iterations to 10, and number

of iterations for source iteration up to 12,394 iterations (Fig. 5.2, curve #2). If, in

addition, the cross section ratio is set close to unity (c = 0.99) for optically thick

media σ = 103 cm−1, GMRES(m) converges after 13 iterations, but the number of

source iterations drops to 1,901 iterations (Fig. 5.2, curve #3). Thus GMRES(m) is

shown to effectively accelerate the convergence in all scenarios tested. It should be
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noted that although the restarted version of GMRES with a restart number of 20 was

used for this study, the number of GMRES iterations was below the restart number

and thus never restarted. The choice of infinite homogeneous medium of low density

material and high scattering ratio represent a worst case scenario. In practice, the

angular flux is calculated inside the finite region. In this case, convergence is reached

faster as many particles escape the region of iterest.

Additionally, although this work has focused on homogeneous media for simplicity,

a range of clinically relevant material cross sections were investigated representing a

six order of magnitude variation from 10−3 to 103. The convergence rate for an

inhomogeneous medium (e.g. patient anatomy) is expected to be limited by the

volume of material with the lowest cross section values.



Chapter 6

Conclusion and Future Work

Accuracy and speed of dose calculations are the cornerstones of any modern radia-

tion treatment planning system. Started as “näıve” correction-based methodologies,

dose calculation algorithms matured over time to advanced methods that account

for fundamental physical processes of radiation interaction with matter. The dose

calculation is based on the solution of linear Boltzmann transport equation where the

dose is extracted from the analysis of radiation field as a function of space, time and

energy variables (Eulerian approach employed by deterministic methods) or from the

analysis of the histories of large number of particles propagating through the medium

and interacting with its constituent atoms (Lagrangian approach via stochastic cal-

culations used by Monte Carlo methods).

In this thesis we performed a rigorous iterative stability analysis of the novel de-

terministic dose calculation approach in magnetic fields published by St-Aubin et

al. (2015, 2016). The effects of magnetic field, material density, energy, and anisotropy
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expansion on the convergence were studied and some approaches for efficiency im-

provements were investigated.

The stability of the source iteration technique was performed using the Fourier

analysis method. The analysis was done for the continuous LBTE with and without

magnetic fields in an infinite homogeneous medium, and for the discretized version of

LBTE with magnetic fields obtained using the discontinuous Galerkin finite element

method.

For the continuous LBTE with magnetic fields, we extracted analytical expressions

of the spectral radius for two source iteration models. The method which regards the

magnetic field term as a part of the iteration source was determined to be iteratively

unstable. The instability depended on the magnetic field strength, energy discretiza-

tion, and degree of anisotropy. The second method investigated treated the magnetic

field as part of the streaming-collision operator on the left side of the equation. The

convergence of this model was found to be unconditionally stable (independent of

the energy, magnetic field, or anisotropy expansion, lmax). In fact, for the continuous

LBTE with magnetic fields, the magnetic field had no impact on the spectral radius

whatsoever.

The numerical simulations of the discretized DFEM LBTE with magnetic fields

required an alteration to the iterative scheme used in the continuous formalism to

allow for upwind stabilization in angle as discussed in section 2.6. In this altered

iterative scheme, we confirmed the unconditional stability of the convergence for

discretized LBTE seen in the continuous case. However, the spectral radius of the

discretized DFEM equation possessed a non-trivial dependence on the magnetic field
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parameter that was rooted in the numerical procedure employed for obtaining the

solution. This dependence on magnetic field parameter was found to be important

for low density materials as the spectral radius of the system quickly approached

the unity even for weak magnetic fields parameter values resulting in a very poor

convergence rate for the source iteration procedure.

To improve the convergence rate, we used an advanced GMRES solver that belongs

to the class of nonstationary Krylov subspace methods that are known to be very ro-

bust when applied to iteration matrices with no symmetry. It was found that GMRES

outperformed the source iteration method by orders of magnitude and demonstrated

only a weak dependence on the magnetic field parameter.

In the future we would like to explore the possibility of using a different dis-

cretization method that would be completely unaffected by the magnetic field B.

Our analytical analysis revealed unconditional stability and complete insensitivity of

the spectral radius ρ to magnetic fields for the continuous LBTE when the magnetic

field terms was treated completely as an operator. However, the upwind stabilized

numerical solution obtained by applying the discontinuous Galerkin finite element

method changed the iterative scheme and caused a dependence on the magnetic field

parameter which increased the spectral radius. The poor convergence was caused by

the numerical sweeping technique in angle which is a common stabilization method in

DFEM for the first order equations to prevent unphysical and/or oscillatory solutions.

Thus, a potential solution to this is to investigate alternative stabilization strate-

gies for the LBTE with magnetic fields such as a least square finite element method

(LSFEM) and Streamline-Upwind/Petrov-Galerkin (SUPG) scheme. By going in
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this direction, we hope to significantly reduce or completely suppress ρ = ρ(B) de-

pendence. That, in turn, can potentially allow us to apply standard acceleration

techniques (such as diffusion synthetic acceleration) that are successfully used for

non-magnetic systems to speed up the convergence (Warsa et al., 2004).

We also would like to propose a simple parallelization strategy for the angular

domain. At the moment, our current results on this matter are incomplete. There-

fore, below we only outline the general idea and leave the rigorous justification and

testing of this method as a future work. Even though this discussion will focus on

the parallelization in angular domain, with some modifications this approach can be

applied to other variables.

In chapter 3 we observed that for nonzero magnetic fields, inclusion of the LPBC

operator as an iterative source increases the spectral radius which increases the num-

ber of source iterations (chapter 4, Fig. 5.2). Parallelization in the angular domain

introduces additional boundaries that will be included in the iterative source, and

thus is expected to further negatively affect the convergence by further increasing the

spectral radius and thus the total number of source iterations required. However, as

was seen in chapter 4, the non-stationary Krylov subspace method GMRES is rela-

tively insensitive to an increasing magnetic field parameter. Thus, it is hypothesized

that the use of GMRES as an iterative method would lessen the negative impact of

parallelization where more boundaries are included in the LPBC operator. Clearly, a

parallelization strategy is useful only if the negative effect of these additional bound-

aries is overpowered by the benefits of parallel calculations.

We begin by creating an angular discretization that can be broken into several
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symmetric regions. An example with eight symmetric regions is shown in Fig. (6.1)

(the grid itself is not shown). For each region, the red and blue colors denote entering

and exiting fluxes respectively which in turn indicates the angular sweep direction

defined by the direction of the 
τ vector from Eq. (2.29). Since the angular flux in

each region is calculated simultaneously, it would be expected that the total angular

flux over the whole angular space would be calculated eight times faster for a linear

parallelization speed up if no additional iterations were required. However, since

additional iterations is expected be required due to the additional boundary terms in

the iterative source, the effectiveness of the parallelization will be somewhat degraded.

1 2 3 4 5 6 7 8

(a)

n (degree of parallelization)

(b)

Figure 6.1: (a) Example of grid slab partitioning in the angular domain. Each slab is
presumed to be solved in parallel independently, and (b) dependence of the relative
number of GMRES iterations on the degree of parallelization.
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If we let Nn be the total number of iterations required for a parallelization factor n,

then in the case shown in Fig.(6.1(a)) where there are eight regions (n = 8), effective

parallelization would require the ratio N8/N1 to be less than eight (i.e. there is a less

than eight times increase in the number of iterations). If the inequality Nn/N1 < n

holds, parallelization is anticipated to be effective. The closer the ratio is to one the

more effective the parallelization. The Nn/N1 = n case is denoted by solid line in

Fig. (6.1(b)). Calculations were performed for parallelization factors of 2, 4 and 8,

and are shown as the points in Fig. (6.1(b)).

Our simulations show that for this parallelization strategy, parallelization is effec-

tive, but is degraded slightly due to the increasing number of iterations required as

more regions are parallelized. The true effectiveness of any parallelization strategy

would have to be verified for a given implementation. However, these results show

that there is a potential benefit to applying this parallelization strategy in addition

to the application of GMRES(m) as the solver.
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