
 

Automated Rod Length Measurements on Radiographs and 

Sonograms in Children with Early Onset Scoliosis  
 

by 

Mohammad Humayun Kabir 

 

 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

Master of Science 

in 

Software Engineering and Intelligent Systems 

 

 

 

 

 

 

 

 

Department of Electrical and Computer Engineering 

University of Alberta 

 

 

© Mohammad Humayun Kabir, 2024                                



` 

ii 
 

Abstract 

Early Onset Scoliosis (EOS) is a medical condition that is defined as a lateral curvature of the 

spine with vertebral rotation in children under age 10. Approximately 2-3% of children 

worldwide have scoliosis. Surgical intervention is the most effective management to treat these 

children who have severe scoliosis. Currently, the magnetically controlled growing rods 

(MCGR) surgery which can gradually extend externally to straighten the curve is the most 

cost-effective method to treat EOS. Radiographs are taken at every visit twice, once before the 

rod length adjustment and once after, to measure manually the rod length change.  

The existing manual measurement techniques face various obstacles, including inconsistencies 

between different raters, poor quality of radiographs, patients’ motion, and their different 

postures during radiography taken, and disparities in image resolution. In addition, taking 

radiography exposes children to harmful ionizing radiation. Therefore, the ultrasound (US) 

imaging method has also been reported in the literature to image the MCGR for measuring the 

change of the growing rods.  

The objective of this work was to develop machine learning (ML) algorithms to automatically 

measure the rod length adjustment on both radiographs and US images at each visit. Clinical 

data were collected, and studies were conducted to validate both algorithms for radiographs 

and sonograms. 

Driven by the imperative for accuracy, this study utilized ML algorithms to construct an 

autonomous system. Both radiography and US automated systems were developed using Mask 

Regional Convolution Network (Mask RCNN) techniques, which were widely recognized and 
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commonly used in the field of computer vision for object detection and instance segmentation. 

The application of Mask RCNN was implemented utilizing the Detectron2 framework.  

Instead of using absolute measurements, a calibration technique was applied. Three ML 

models: rod model, 58mm fixed length model, and head-piece model were developed to extract 

the rod length from radiographs. Three-hundred and eighty-seven radiographs were used for 

model development, and 60 radiographs with 118 rods were used for testing. The radiography 

automated system eventually demonstrated an acceptable inter-method correlation coefficient 

of 0.90 and a mean absolute difference (MAD) of 0.98 ± 0.88 mm when compared to manual 

adjustment measurements.  

In the US imaging system, similar ML algorithms were developed. Two ML models: the 

Boundary model and the Rod model, were developed. A study that included 90 US images 

acquired from 23 EOS patients was conducted. Among the 90 images, 70 images were used for 

model development, and 20 images were used for testing. The MAD between the Artificial 

Intelligence (AI) measurements versus the manual measurements was 1.2 ± 1.46 mm and the 

reliability of the inter-method correlation coefficient was 0.96.  

In summary, this thesis reported a new and automated approach to measuring rod adjustments in 

children who have MCGR installation. The automated approaches were accurate to measure the 

adjustments in a faster way, saving time of clinicians, while reducing the chance of error made 

by the traditional manual approach.  
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Chapter 1 Introduction 
 

1.1 Background 

 

Scoliosis is a medical condition characterized by an abnormal lateral curvature of the spinal 

column with vertebral rotation. The condition exhibits a range of severity levels and has a 

global prevalence of approximately 2-3% [1]. If the degree of lateral spinal curvature, known 

as the Cobb angle, in the patient exceeds 10 degrees, it is indicative of scoliosis [2], [3]. In 

general, a curve is considered severe when it is over 45 degrees. Early onset scoliosis (EOS) 

refers to the condition of a child exhibiting a spinal curvature before the age of ten [4]. There 

are three types of management: a) observation, b) conservative treatments include both 

exercises and bracing, and c) surgical treatment. Treatment decision depends on the age and 

the severity of the spinal curvature. 

Conservative medical therapies such as casting and bracing are commonly employed in the 

management of the condition. The utilization of casting or bracing techniques can contribute 

to the enhancement of flexibility, muscular strength, and posture. The aforementioned 

procedures have the potential to yield positive outcomes for the spine and enhance overall 

spinal well-being [5]. When the degree of spine curvature becomes larger, Cobb angle >45°, 

conservative treatment become ineffective and surgical interventions are required. Currently, 

surgical treatments encompass the Traditional Growing Rod technique (TGR) and the 

Magnetically Controlled Growing Rod (MCGR) technique [4], [5]. In the absence of surgical 

intervention, the patient's spinal deformity may progress, leading to further physiological 

consequences, including cosmetic disfigurement [6]. 

The discovery of the TGR approach occurred throughout the late 1990s and early 2000s, 

serving as the initial way for surgical therapy in children with EOS. To accommodate the child's 

growth, rods along the spine are surgically placed and then gradually extended over time. At 

each time, operation is performed. The rod extension operation halts or controls the 

deterioration rate  of the curve progression while allowing for continuing growth of the child 
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[7]. Various types of implants can be utilized, including single rods, dual rods, and Vertical 

Expandable Prosthetic Titanium Ribs (VEPTR) [7], [8].  Given the higher pace of growth 

observed in children compared to adolescents, the rod extension procedure is continued at 

regular intervals until the end of the treatment regimen. Numerous surgical procedures might 

result in notable physiological repercussions due to their inherent involvement in the creation 

of wounds [9], [10]. The technique is characterized by its high cost and inherent difficulties. 

The efficacy of the VEPTR approach in the treatment of children with EOS who do not exhibit 

rib abnormalities has been demonstrated [11]. To achieve stabilization, growth, and 

improvement of lung development in pediatric patients diagnosed with thoracic insufficiency 

syndrome associated with EOS, the utilization of VEPTR devices has been implemented. 

These devices consist of expandable rods that are surgically attached to either the ribs or the 

spine [12]. A study found that people with congenital scoliosis, rib fusion, and expansion 

thoracostomy with VEPTR implantation exhibited a decrease in hemoglobin levels [13]. The 

utilization of VEPTR in pediatric patients with EOS has been found to be accompanied by 

some complications [12], [14], [15], [16] . 

A cost-effective and non-invasive growing rod technique has been developed as an alternative 

to conventional growing rods. The new approach uses the MCGR technique [17], [18]. This 

technique can be controlled externally without requiring surgery. Due to its non-invasive 

nature, this approach is more cost-effective and presents less challenges for patients. Multiple 

studies have demonstrated the therapeutic effectiveness [17], [19], and economic feasibility 

[20] of this intervention. The studies [16], [19], [21] demonstrated that MCGR was better than 

both TGR and VEPTR. Despite the presence of certain complexities associated with the 

MCGR approach [22], [23], [24], [25], it still demonstrated to be better in terms of number of 

complications and the associated cost of treatment when compared to the previously employed 

invasive growing rod technique [26], [27]. One significant benefit is the reduction of surgeries 

required. After the installation of the rod, the MCGR technique allows for a higher frequency 

with safer extension compared to typical growing rod techniques.  

Although the rod can be lengthened externally, an immediate assessment of the rod length is 

needed. A precise estimation of the 'rod-length' of the implanted rod is crucial because the rods 
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used in the process have a limited length. Once the rod reaches its extension limit, rod 

replacement surgery may be needed if the child still has growth left.  

In each visit, a radiograph is taken before the rod lengthening process, and one is taken right 

after. Difference between the two rod lengths from these pre and post images provides the 

required adjustment length to the clinicians. That length helps the clinicians to keep a record 

of the length of the rod and its extension limit. Until now, the length from the radiograph 

images has been measured manually, which may lead to human errors in measurement and 

eventually misjudged the treatment planning. Hence, there is a need to detect the adjustment 

length accurately to eradicate the existing issues. 

Recently, another imaging technique, known as ultrasound (US) has emerged as an alternative 

in different medical diagnosis. One notable advantage of this approach is the absence of 

radiation, rendering it particularly advantageous in medical contexts involving women and 

children. Moreover, the measurement of US image reliability is notably high when utilizing 

the radiograph rod adjustment measurement technique [28], [29]. Similarly, human 

measurement errors also exist because the rod lengths are measured manually. The manual 

approach for conducting these measurements, however, has encountered inherent inaccuracies, 

resulting in significant clinical complexities. 

 

1.2 Motivation 

 

Clinicians have been actively seeking a precise and automated method to measure rod length 

modifications accurately from both x-ray and US images in children who have MCGR. The 

requirement is influenced by several factors. 

Firstly, the clinicians experience affects the measurement accuracy. Secondly, the quality of 

image exhibits significant variation. In certain scenarios, the edge of the rod is difficult to 

identify. The accurate rod length measurement is difficult to achieve. Thirdly, the unstable body 

posture during image acquisition may affect the scale or focus of the images. This poses 
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challenges in maintaining measurement consistency. Finally, the scale of the radiographs, 

specifically the number of pixels per centimeters may affect the measured results.  

In addition, manually measuring the rod length on radiographs and sonograms also takes up 

clinicians’ time. Hence, an automated method is needed. Furthermore, the use of US imaging 

to eliminate the radiation exposure is a novel image approach. Automatically measuring the 

rod length on US images is another motivation in this thesis study.  

 

1.3 Objectives 

 

The objectives of this study were:  

a) To develop machine learning (ML) algorithms to automatically extract features from 

radiographs to assist rod length measurements. 

b) To evaluate the accuracy, reliability, and speed of the developed algorithms on in-vivo 

radiograph data.  

c) To develop ML algorithms to automatically extract features from sonograms to assist rod 

length measurements.  

d) To evaluate the accuracy, reliability, and speed of the developed algorithms on in-vivo US 

data. 

 

1.4 Contribution 

 

This dissertation presents a significant contribution to the field of EOS surgical treatment. New 

and novel ML algorithms were developed for both radiographs and sonograms to automatically 
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extract the rod length of MCGR. With providing precise rod length measurements, clinicians 

can make surgical planning more precisely and optimally. 

 

1.5 Thesis Outline 

 

This thesis is divided into 5 chapters.   

Chapter 1 provides a succinct overview of the problem at hand in its introductory section. 

Subsequently, the rationale for conducting the study and the objectives of the investigation are 

provided. This chapter also includes the thesis outline.  

Chapter 2 provides an overview of the historical context and background of EOS, various 

treatment modalities and traditional rod length measurement method. Subsequently, different 

studies in applying artificial intelligence (AI) to assist measurements on radiographs and 

sonograms for scoliosis and other medical conditions are reported.  

In chapter 3, the development of an AI system to automatically extract the rod length of MCGR 

on radiographs are presented.  An in-vivo study has been conducted to determine the accuracy, 

reliability and the speed of the developed algorithms.  

In chapter 4, the development of an AI system to automatically extract the rod length of MCGR 

on sonograms are provided. The validation was performed by comparing the AI measurements 

with manual measurements which were conducted by an experienced rater.  

In chapter 5, a summary of the thesis is reported. Future work and recommendation are also 

provided. 
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Chapter 2 Background and Literature Review 
 

2.1 Overview 

 

In this chapter, sections 2.2 to 2.7 provide a summary on the cost, risks, obstacles, and 

complications experienced for children with EOS using different surgical treatment methods. 

Different image modalities which can be used to monitor the post surgical treatment outcomes 

are reported. Section 2.8 reports some studies that incorporates ML and AI in the field of 

medical imaging. Especially, this section discusses some of the studies that laid the foundation 

to choose the ML model and the framework of this study. 

 

2.2 Background of EOS 

 

EOS is a three-dimensional spinal disorder which occurs mostly in children under 10 years 

old. The lateral curvature of spine which is defined as the Cobb angle is the most common 

method to diagnose the severity of scoliosis. The Cobb angle is made by drawing lines along 

the top and bottom of the vertebrae that exhibit the most tilt in the curve. The angle created by 

the point of intersection of these two lines is the Cobb angle which is usually measured on 

posteroanterior radiographs. This angle aids clinicians in evaluating the extent of the spinal 

curvature, deciding treatment, and tracking any progression over time.  

EOS can result from a variety of causes. Congenital abnormalities can lead to malformations 

that affect the growth of the spine. Neuromuscular conditions like cerebral palsy and muscular 

dystrophy can contribute to the development of EOS. Idiopathic scoliosis refers to cases where 

the actual cause is often unknown. It can result from a combination of genetic, environmental, 

and developmental factors. Figure 2.1 depicts the physical appearance of a severe conditioned 

EOS patient in radiographs. The Cobb angle of the curve is around 81o which is significantly 

over the surgical treatment threshold of 45o.  
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Figure 2.1 Radiograph of an EOS patient, Adapted from [30] 

 

Early diagnosis is very important to manage EOS. This way it is possible to work on preventing 

progression of the Cobb angle and minimize the impact of EOS. A study [31] reported a 

multidisciplinary approach of management of EOS. The management team includes orthopedic 

surgeons, pediatricians, pulmonologists, physical therapists, and other specialists. Children 

who have mild EOS with Cobb angle ≤ 25° are usually put under observation to monitor 

regularly until the curvature changes to moderate. When the spinal curvature becomes 

moderate in between 25° to 45°, conservative treatment like casting and bracing are used to 

halt the further curvature progression. Unfortunately, if the conservative treatment is 

ineffective, the spinal curvature exceeds 45o, surgical treatment is the final option. Traditional 

growing rod surgery to treat EOS was introduced in 1990.  

 

2.3 TGR Complications for EOS 

 

When the TGR was introduced, it came as a blessing for children with EOS were happy since 

the body growth could be compensated by adjusting the rod length. The basic growing rods 

comprise of a rod connected to the spine and anchors (hooks, screws, or wires) to the vertebrae. 

The rod might be composed of stainless steel, titanium alloy, or alternative materials. Due to 
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the rapid growth in young patients, it is necessary for the rods to adjust and expand along with 

the child's spine. Therefore, this method requires regular spinal surgeries. During each surgery, 

the back of the spine is opened. The rod is manually adjusted using a wrench or equivalent 

equipment based on specific requirements and factors such as age, growth pattern, and curve 

progression. Due to the inclusion of operations at each visit, the technique exhibited a 

significantly elevated incidence of post-surgical complications. Numerous studies have been 

conducted on this topic[8], [32], [33].  

Initially, it is important to acknowledge that the use of growing rod approaches presents certain 

challenges that necessitate solution. Despite the observed efficacy of rod lengthening in 

achieving desired outcomes, empirical investigations have revealed an associated escalation in 

the likelihood of postoperative problems following the implementation of this technique in 

growing rod surgery. Given the frequency of the procedure and the likelihood of post-operative 

problems, the maintenance of this technique poses challenges for both children and their 

parents. The patients endure significant pain and stress due to these wounds and complications. 

Managing the cost and stress during this process is often challenging for the family. 

In a study conducted by Akbarnia et al., it was suggested that the rod length adjustment surgery 

should be operated on a biannual basis [8]. According to a study conducted by Thompson et 

al., it was reported that dual rods exhibited enhanced strength and stability when compared to 

a single rod operation. This characteristic lead to superior initial correction and maintenance 

of correction [34].  

Although utilization of growing rods helps to minimize the spinal curvature of the patient and 

provide stability to the spine, complications may still occur. A study conducted by Sankar et 

al. (2010) addressed the challenges encountered by EOS patients who underwent implantation 

of several types and styles of growing rods [32]. The patients in this study were divided into 

three groups: Standard Growing Rods, Hybrid Growing Rods, and Vertical Expandable 

Prosthetic Titanium Rib (VEPTR). Standard growing rods are the basic growing rods 

mentioned above. Hybrid growing rods were constructed using traditional spinal implants with 

hooks functioning as rib anchors. The VEPTR was used mostly on the EOS patients who had 
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thoracic insufficiency. VEPTR is not directly attached to the spine, unlike conventional 

growing rods. It extends over the chest wall and ribs, offering support and enabling regulated 

expansion of the thoracic chamber. Figure 2.2 presents radiographs of EOS patients 

undergoing VEPTR, TGR, and MCGR treatment approach.  

 

(a)       (b)         (c) 

Figure 2.2 (a) A radiograph of VEPTR growing rod for EOS treatment [15], (b) A traditional growing 

rod [35] , and (c) A MCGR for EOS treatment [36] 

 

The mean age at the time of the initial implantation was 4.8 years, whereas the mean duration 

of follow-up was 51 months, ranging from 24 to 117 months. The reported study comprised of 

a sample size of 36 participants, but 26 participants (constituting 72% of the patient cohort) 

experienced the need for at least one unforeseen surgical procedure or encountered a notable 

complication over the entire duration of the follow-up period. A total of 72 unplanned surgeries 

were required. Out of the total sample size, 18 cases needed revisions due to rod fracture, 31 

cases required operations to address loose implants, and 18 cases necessitated irrigation and 

debridement for the treatment of infections. Two young individuals required to undergo the 

extraction of an implanted rod because of the neurological complications they experienced. 

The patients who received standard growing rods exhibited an average of 2.3 problems per 
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patient. In contrast, the patients who received hybrid growing rods experienced a lower 

complication rate of 0.86 per patient, while VEPTR patients had a little higher complication 

rate of 2.37 per patient.  More studies have been reported that using standard growing rods for 

the treatment of EOS [10], [14], [15] showed a large number of complications.  

The risk factors associated with problems in children with EOS were published by Watanabe 

et al. in 2013, specifically focusing on the use of TGRs [33]. This study involved a total of 88 

participants, with ages ranging from 1.5 to 9.8 years old. The overall follow-up time spanned 

from 2 to 12 years, with a mean duration of 3.9 ± 2.6 years. The intervals between the rod-

lengthening treatments had an average duration of 6.6 ± 2.1 months, ranging from 5 to 12.5 

months. Multiple factors associated with complication were considered throughout the 

planning phase of the investigation. Variables such as age, gender, the number of lengthening 

rods utilized, and the Cobb angles of the thoracic and lumbar curves were among the factors 

considered. Approximately 57% of the patients experienced problems. Also, each patient 

might have multiple surgeries which ended up with 538 surgeries. Among a total of 538 

surgeries, it was observed that 119 of them experienced complications accounting for 

approximately 22% of the total. Among the cases examined, a significant proportion of 72% 

were found to have experienced implant failures. This was followed by 19 instances of 

infections, accounting for 16% of the total cases. Additionally, there were 3 reported cases of 

neurological diseases and 11 miscellaneous abnormalities. The reported study also employed 

Kaplan-Meier analysis and demonstrated that an increase in complication rate was associated 

with the number of rod lengthening surgeries. Based on the findings of this study, three 

significant risk factors associated with problems. These factors include undergoing six or more 

surgeries for rod-lengthening, experiencing an increase of 20° Cobb angle when comparing 

with the preoperative thoracic curve, and encountering a 20° increment in preoperative thoracic 

kyphosis. The above studies provided the foundation for exploring an improved surgical 

method to treat children with EOS. 
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2.4 Magnetically Controlled Growing Rod (MCGR) 

 

To resolve the several existing issues of TGR, researchers and surgeons aimed to develop 

newer and better approaches. An important achievement in this area was the development of 

MCGR, designed to reduce the necessity for frequent surgeries and minimize the related 

difficulties. This non-invasive approach for spinal development modulation was developed in 

the late 2000s. The first instance of its use was documented in 2009 on a patient with scoliosis. 

The TGR approach includes surgical procedures during the initial implantation phase and any 

subsequent replacements of the developing rod, if necessary.  

MCGR systems are comprised of a magnetic mechanism connecting two telescopic rods. An 

external controller is positioned close to the patient's spine during every visit, ensuring that the 

controller is in alignment with the internal magnet inside the rod. An operator is then set up 

the desired length adjustment that would like to achieve. Once the controller provides the 

electromagnetic field to the internal magnet, the rods will extend according to the setup. By 

extending the headpiece in this manner, progressive spinal growth is facilitated. The precise 

regulation of the magnetic force by the external control unit guarantees gradual and controlled 

elongation, which is of utmost importance to minimize patient distress and optimize spinal 

alignment. 

MCGR technology makes it possible to external lengthening modifications without invasive 

surgery. This novel method enables non-invasive lengthening treatments to be performed in an 

outpatient clinic, providing increased convenience for patients and caregivers. 

 

2.5 Cost Analysis and Complication Rate Analysis Between TGRs and 

MCGRs 

While the MCGR approach addresses several significant shortcomings of the TGR approach, 

it is not a complication-free approach either. Numerous investigations and study endeavors 

were conducted to ascertain the extent of challenges associated with these two methods [16], 
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[17], [21], [23], [37]. The following studies reported a comparison of the costs and 

complications associated with the MCGR and TGR techniques.  

In 2012, a pioneering study was undertaken by Cheung et al., wherein five patients underwent 

the installation of MCGR [17]. These individuals were diagnosed with EOS and participated 

in monthly interventions for a consecutive period of two years. This study provided evidence 

supporting the non-invasive nature and increased frequency of the rod adjustments unaffecting 

patients’ life. The average Cobb angle of the participants was 67° prior to the commencement 

of the trial, and after a duration of two years, the average of Cobb angle was 29°. The study 

revealed that patients did not experience any pain, and no complications were noted. 

Subsequently, other investigations were conducted to examine several facets of MCGR in the 

context of EOS treatment. 

Peiro-Garcia et al. conducted a study which revealed that the MCGR method exhibited a 

significantly lower incidence of early complications compared to VEPTR [16]. There were 35 

participants in the study. 15 of them were undergoing MCGR approach, and 20 of them were 

under VEPTR approach. After a 2-year research, it was found that VEPTR had significantly 

higher complication rates (approximately 5 times) and reoperation rates (around 4 times) 

compared to MCGR. 

A comparative analysis of the surgical procedures required for TGRs and MCGRs based on 

their research findings was conducted  [23]. The duration of the trial spanned a period of two 

years. The selection of participants for this study was conducted with careful consideration of 

multiple factors. Besides the patients should be under 10 years old, the inclusion criteria 

included: a) the Cobb angle had to equal to or exceed 30 degrees, b) the body height between 

T1-T12 (Thoracic 1-12) had to less than 22 cm, and c) the patient had no history of prior spine 

surgery. Out of the total sample size of 17 potential participants, 12 participants met the 

inclusion criteria of the study. In which, five participants were male, while the remaining seven 

were female. The growth patterns of both groups were found to be similar. Furthermore, the 

primary adjustment made in both approaches were same. During that period, the MCGR 

patients had 57 fewer surgeries when compared to the TGRs. The total number of open 
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procedures conducted for TGRs was 73, with a specific subset of 56 surgeries dedicated solely 

to the purpose of lengthening. In contrast, a mere 16 surgeries were necessitated for MCGRs, 

whereas a total of 137 non-invasive lengthening procedures were conducted. Based on the 

analysis of the available evidence, the authors reported that MCGR was superior to TGR due 

to its reduced complexity, decreased occurrence of unforeseen procedures, and more frequent 

utilization of non-invasive lengthening techniques. 

Apart from the number of complications and surgeries, the consideration of cost has 

significance in the selection of the way of treatment. Several studies have been conducted to 

compare the cost of TGR with MCGR. The cost neutrality analysis of a particular study in 

2016 revealed a treatment duration of six years [21]. On this investigation, Polly et al. provided 

further evidence supporting the notion that MCGRs exhibit a higher initial cost compared to 

TGRs during the initial implantation phase. The direct medical expenses were compared within 

the context of the integrated healthcare delivery system in the United States. A study including 

a sample size of 1,000 patients over a span of 6 years demonstrated that the utilization of 

MCGR resulted in a statistically significant reduction of 270 surgical infections and 197 

revisions compared to TGR. At the conclusion of the six-year research period, the TGR and 

the MCGR incurred direct expenditures amounting to $149,234 and $149,295, respectively. 

The numerical data presented in this ]study substantiates the assertion of cost neutrality. 

However, a lingering inquiry remains: what would be the outcome if a patient were to require 

a treatment duration exceeding six years?  

To answer this question, Wong et al. conducted a cost-analysis study and indicated that the 

MCGR method exhibited higher precision and cost-effectiveness when compared to the TGR 

for the treatment of EOS [37]. This study aimed to compare various growth rod treatments 

employed for the treatment of EOS, yielding commendable results. A hypothetical case 

analysis was used. Assuming a 5-year-old patient diagnosed with EOS. During the experiment, 

two distinct types of MCGR and TGR were utilized. There were two kinds in each, comprising 

fours different types of growing rods in total. In general, the initial cost of implementing 

MCGRs was higher when compared to TGRs. However, as the MCGR treatment was more 

advance and considering a 4-year cycle was needed and completed, the overall cost of the 
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MCGR was comparable to that of the TGR. After that, the cost of MCGR went down to than 

that of TGR. The findings of this study clearly demonstrated that the use of MCGR has a 

superior cost-effectiveness when compared to TGR. 

 

2.6 Measurement of the MCGR Rod Adjustment  

 

As described in the section 1.2, clinicians currently measure the rod length manually at the 

scoliosis clinics. The measurements are performed on radiographs. However, due to the manual 

measurement, there are some factors that affect the accuracy of the rod length measurement. 

Diverse level of competence among the raters, poor radiograph quality, excessive patient 

movement, and resolution discrepancies within the images are the reasons behind the 

inaccuracies. This inability to measure the rod length accurately eventually hampers proper 

treatment planning, unplanned surgeries, complications and so on. Hence, clinicians have been 

looking for a universal and accurate approach to perform this measurement.  

 

2.7 Drawbacks of Radiography and Emerging US for EOS Applications 

 

To diagnose and monitor the progression of scoliosis, radiographs are taken at every clinic 

visit. However, taking a radiograph means exposing a patient to ionizing radiation. Children 

with EOS are diagnosed under the age of 10. Several studies have demonstrated that repeated 

exposure of ionizing radiation to children can significantly facilitate the proliferation of cancer 

cells in them [38]. Various types of cancer, such as leukaemia, thyroid cancer, breast cancer, 

brain cancer, skin cancer, and other malignancies, have the potential to develop later in their 

lives. A study which was conducted in 1962 was designed to investigate the relationship 

between prenatal exposure to X-rays and the occurrence of cancer in children [39]. A total of 

734,243 children born during the period from 1947 to 1954 which were recruited from 37 

hospitals were included in the analysis. Among all the children that participated, 556 cancer-
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related deaths observed, but 85 cases (15.3%) were associated with exposure to X-rays during 

intrauterine development. The study's conclusion indicated that children who received X-ray 

examinations had a 40% higher cancer death rate compared to those who did not have X-ray 

examinations. Findings indicate that cancer death rates were estimated to be around 40% 

higher among individuals who underwent X-ray examinations. Hence, due to the radiation 

exposure MCGR treatment approach had some limitations and drawbacks for which the 

researcher community was looking for alternatives. 

The US imaging approach is an innovative imaging modality that utilizes high-frequency 

sound waves to generate dynamic visual representations of the inside anatomical structures of 

the human body. The primary advantage of this approach lies in its complete absence of 

radiation emission. As previously mentioned, the present utilization of this intervention 

extends to the management of pregnancy, with the aim of preventing life-threatening 

complications and treating fusions. Moreover, it demonstrates efficacy in seeing and analyzing 

soft tissues. Typically, practitioners specializing in the field of Scoliosis choose to utilize US 

techniques as an alternative to radiography, hence eliminating the necessity for patients to 

undergo X-ray procedures. In 2014, a study was conducted to examine if US could be used to 

image the MCGR in children with EOS [28]. The study recruited six participants (4F, 2M), 

aged between 8 to 16 years old, who were undergoing MCGR treatment for their scoliosis. 

From that study, researchers were able to measure the rod length manually. A high level of 

reliability and accuracy were reported, which lead the authors to report US as an alternative of 

radiography. 

However, one issue faced by the US images is the clarity of the image.  Usually, a curve object 

which scans using US technique may have fuzziness at the curve area. Hence, manually 

measuring the length of the rod in an unclear image is highly dependent on the experience of 

the rater. Due to the fuzziness and the need of automatic measurement, AI approach is 

suggested.   

  



` 

16 

 
 

2.8 Literature of Applying AI in Medical Imaging   

 

In recent years, AI has emerged as a significant facilitator in enhancing the quality of human 

existence by streamlining and augmenting several aspects of daily life. ML falls within the 

domain of AI. Numerous algorithms have been created within the subject of ML research to 

effectively address various objectives [40], [41]. Due to the varying requirements and 

advantages associated with different types of algorithms, their utilization is limited to specific 

applications. Deep Learning (DL) has significantly transformed the field of image analysis in 

a wide range of domains [42], [43], [44], [45], [46]. It has demonstrated impressive 

effectiveness in deciphering complex patterns within medical images, enabling accurate 

diagnosis and treatment planning. Moreover, DL, along with ML techniques, has been 

successfully applied to address various image-related challenges in diverse applications 

beyond the medical domain [47], [48]. Especially, a Convolutional Neural Network (CNN), 

an ML technique, and its potential applications in the field of medical imaging were reviewed.  

 

2.8.1 CNN in Medical Images 

As mentioned in the section 2.8, different ML algorithms include diverse attributes that make 

them suitable for specific applications. CNNs are commonly employed in the field of computer 

vision for the purposes of object detection and segmentation [49], [50], [51], [52]. Multiple 

CNN architectures have been identified for the purpose of computer vision tasks. Several 

examples of CNNs commonly used in computer vision tasks include the Regional 

Convolutional Neural Network (RCNN), Fast RCNN, Faster RCNN, Mask RCNN, YOLO 

(You Only Look Once), and SSD (Single Shot Multibox Detector). Some of the breakthrough 

studies [53], [54], [55], [56] that have laid the foundation for the use of CNNs have been 

reviewed. 
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In the year 2022, Zhang et al. introduced a novel approach for the placement of a Spine model 

using an RCNN-based methodology [53]. The authors of the study used radiographs as the 

primary data source. Following a comprehensive discussion on the various models including 

a) RCNN, b) Fast RCNN, c) Faster RCNN, and d) Mask RCNN, the decision was made to 

employ Mask RCNN for the purpose of conducting detection and segmentation operations. 

The use of a feature pyramid network (FPN) in Mask RCNN serves as an enhancement to 

Faster RCNN, enabling the mitigation of region transformation limitations, enhancement of 

algorithm performance, and effective utilization of pixel-level position information from 

training data image labels. Furthermore, the proposed approach replaces Region of Interest 

pooling (RoIPool) with RoI alignment, hence mitigating the loss of data during the training of 

the model. The utilization of a mask surrounding the outcome of the Region of Interest (RoI) 

alignment enables its application in object prediction and segmentation, specifically in 

conjunction with a bounding box. The training process utilized two graphics processing units 

(GPUs), with the RestNet-50 architecture serving as the foundational basis for the model. The 

models exhibited outstanding accuracy, with an average accuracy of 97.4% for detection boxes 

and 96.8% for segmentation. 

Mask RCNN had also been employed in the context of patients with scoliosis [54]. In the year 

2021, Cui et al. conducted a study to employ CNN to quantify the Cobb angle in patients with 

scoliosis [55]. The U-net framework was utilized in this study for the purpose of object 

detection, yielding significant advantages. Mask RCNN was employed for the purpose of 

segmenting and labeling the different components that required detection. In this study, 609 

images were original obtained; with applying augmentation technique to increase the size of 

training set, a total number of 5772 images were used. Given that the validation and training 

loss graphs exhibited a decline in performance after the 4000 data point. The decision was 

made to limit the number of epochs or iterations to 4000. The researchers reported that the 

maximum error on the Cobb angle measurement was 4.7°, while the average error was 3.0°. 

The analysis yielded a significant finding in the form of the Symmetric Mean Absolute 

Percentage Error (SMAPE), which was calculated to be 21.7%. 
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Another study in applying Deep Neural Network (DNN) for spinal applications was reported 

in [56]. The investigation analyzed a total of 40 radiographs in spine phantom models and 65 

radiographs (14M, 51F) in in-vivo data. The average age of the participants was 12.5 ± 3.6 

years old. The results reported that the ML method to automatically measure the Cobb angle 

had a high accuracy measurement (mean absolute difference ≤ 5o) and excellent reliability 

(both intra and inter-observer ICC > 0.9). These studies established the groundwork for the 

utilization of Mask RCNN in the context of object detection for medical images. 

2.8.2 Detectron2 

In the year 2018, the Facebook AI Research (FAIR) community introduced a framework 

named Detectron, that has the capability to perform object detection and instance segmentation 

tasks. In due course, it garnered significant acclaim among the computer vision community, 

emerging as a widely adopted paradigm. In the latter part of 2019, FAIR unveiled Detectron2 

as the successor to its previous iteration. The revised version of the framework acknowledged 

and sought to overcome the constraints identified in the previous version, while also providing 

a more user-friendly and streamlined approach. Detectron2 possesses the notable capability of 

accommodating unique datasets and models, in addition to its ability to incorporate many 

widely used pre-trained models for computer vision tasks. The approach exhibits superior 

efficiency compared to traditional algorithms, enabling rapid processing. Moreover, it offers a 

robust codebase that is conducive to conducting object detection research with a high level of 

accuracy and precision.  

A study conducted in 2023 reported the utilization of Detectron2 for the purposes of identifying 

objects and image manipulation. The COCO dataset served as the fundamental dataset for the 

development of models. In this study [57], a pre-existing model with a default architecture and 

Mask RCNN was utilized. Prior to being inputted into the model, the images underwent 

preprocessing techniques such as Gaussian blurring, Median blurring, sharpening with a 2D 

convolution kernel. Overall, they achieved notable success in developing exemplary models 

for the tasks of instance segmentation and object detection.  
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There is existing research that assesses the effectiveness and precision of object detection 

algorithms by utilizing a dataset containing two distinct weed species [58]. The two species 

are Convolvulas and Phalaris Paradoxa. Four separate models were employed to evaluate the 

detection, then subject to comparison according to a predetermined set of criteria. The models 

encompassed in this study comprised EfficientDet, Faster R-CNN, YOLOv5, and Detectron2. 

In all cases, the COCO dataset was utilized, employing a range of Average Precision (AP) 

values across various Intersection over Union (IoU) thresholds. The study utilized several 

augmentation techniques. Upon careful examination of the results, it was shown that 

Detectron2 exhibited the highest AP among all the applied methodologies, achieving an 

impressive 97%. Hence, Detectron2 became familiar for its utility in the construction of object 

detection algorithms that achieve enhanced levels of accuracy. 

Detectron2 has also been employed for the purpose of object detection and segmentation in the 

domain of medical imaging. A recent study published in 2021 employed the detectron2 

architecture in conjunction with Mask RCNN to effectively detect and separate breast cancer 

lesions from medical images [59]. The development of the model involved the utilization of 

the public dataset INbreast. The segmentation of the lesion was performed utilizing the Mask 

RCNN architecture, which furthermore yielded the bounding box. Mammogram images were 

employed in this study. A total of 115 individuals underwent 410 full digital mammograms. 

90% of them were allocated for the purpose of model training and validation. The remaining 

10% were specifically reserved for model testing. To leverage the superior performance of 

RCNN bounding boxes and masks, the researchers choose to utilize pre-trained models, 

specifically R101-FPN and X101-FPN. The suggested strategy exhibited a high level of 

accuracy, with a value of 95.87%. Additionally, the F1 score, a metric used to evaluate the 

model's performance, reached 81.05.  

2.9 Summary 

 

In summary, MCGR is the most used surgical tools for the treatment of EOS. Due to its cost-

effectiveness, minimal complications, and non-invasive nature, MCGR has become an 
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extensively utilized method for treating EOS. To measure the rod length changes on both 

radiographs and sonograms, clinicians have suggested to use automatic methods to eliminate 

human measurement errors, save time, and increase the reliability. Among many ML methods, 

Mask RCNN models and Detectron2 may have a potential to develop a model to automatically 

measure the rod length.  
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Chapter 3 Automated Rod Lengthening Measuring 

Technique on Radiographs 
 

3.1 Overview 

 

This chapter provides a detailed report regarding the development of the automated system for 

measuring the rod length of MCGR on radiographs. An in-vivo data study was conducted to 

determine the accuracy, reliability, and speed of the developed ML algorithms.  

The materials in this chapter are mainly exported from the manuscript which has been 

submitted to the Journal of Medical & Biological Engineering and Computing in Feb 2024. 

M. H. Kabir, M. Reformat, S. S. Hryniuk, K. Stampe, and E. Lou, "Validity of Machine 

Learning Algorithms for Automatically Extract Growing Rod Length on Radiographs in 

Children with Early Onset Scoliosis", Medical & Biological Engineering & Computing. 

 

3.2 Introduction 

 

EOS refers to a condition characterized by the presence of a lateral curvature of the spine 

exceeding 10o in children who are under 10 years old. Surgical intervention is recommended 

when the degree of curvature exceeds 60 [60] or shows a significant progression after 45o. 

Surgical intervention is the most effective way to stop and reduce spinal curvature; however, 

if families decline to perform the spinal surgeries, the deformity may subsequently lead to other 

physiological consequences, including the manifestation of cosmetic disfigurement, as well as 

respiratory inefficiencies [6], [12], [61]. The TGR technique was developed to address the 

gradual correction needed for spinal curvature in children with EOS [8], [62]. According to 

Akbarnia et al. [62], it was recommended to do the rod adjustment process should be performed 

biannually to account for the growth rate disparity between children and adolescents. However, 
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each surgical procedure leads to the formation of wounds and scars, and a substantial number 

of surgeries are associated with notable immediate and post-surgical complications [10], [34], 

[63], [64]. In addition, spinal surgery is a expensive and rigorous procedure [20]; hence an 

excessive number of procedures is unfavorable. Therefore, a new non-invasive method known 

as the MCGR was developed and aimed to minimize the number of surgeries [18], [24], [27]. 

Rod length adjustment of the MCGR can be performed externally. To increase the length of 

the rod, clinicians can set a desired adjustment on an external remote controller. It has been 

reported that the MCGR method was an efficient and cost-effective approach to treat children 

with severe EOS [21], [22], [23], [32], [34].  

To measure the rod length, clinicians perform the measurements on the pre-rod and post-rod 

adjustment radiographs. The manual measurement process can introduce human measurement 

errors and is time-consuming. The imprecise measurement affects future surgical planning as 

the rod has maximum distraction capacity. Figure 3.1 shows a titanium growing rod, a 

radiograph with MCGR installed in an EOS child, and an external controller machine is held 

at the back of an EOS child.  

 

ML, a subset of AI, is defined to use data and algorithms to replicate the learning processes 

observed in humans. Among many ML algorithms, the DL technique is the most widely 

adopted for image-related applications [42], [43], [44], [45], [46]. CNN under the DL are 

extensively employed in the field of medical imaging for object detection and image 

segmentation [50], [51], [55], [56]. From the literature, the Regional Convolutional Neural 

Network (RCNN) had been utilized in spinal applications [53], [54]. Liu et al. employed a 

Faster RCNN model to perform automated measurement of spinal curvature on US spine 

images through the detection of vertebral laminae [65]. Pham et al. also employed two CNN 

models, namely inception ResNet v2 and mobileNet v2, to measure the severity of hip 

displacement automatically in children with cerebral palsy [52]. The Mask RCNN represents 

an enhanced version of the RCNN, specifically designed to detect and segment objects present 

in an image, and hence generating masks [59], [66], [67]. 
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Figure 3.1 (a) shows an actual titanium rod in practice, (b) represents how a radiograph of an EOS 

patient looks like, and (c) is showing how the clinicians hold the remote controller at the back of the 

patient while doing the process 

 

Detectron2 is also a DL method developed by Facebook AI Research (FAIR) that encompasses 

many object identification algorithms, including the Mask RCNN. The utilization of 

Detectron2 was extensively applied in several studies for object detection and segmentation 

[57], [58], [68] which provided excellent results. Ammar et al. introduced a computerized 

approach to detect the existence of COVID-19 on chest radiographs. Their method also 

employed Detectron2 and Faster RCNN [69].  

 

The objective of this study was to report the development and validation of a Detectron2 Mask 

RCNN algorithms to automatically detect the MCGR rod length before and after the rod 

adjustment on radiographs.  
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3.3 Methods 

 

3.3.1 Dataset  

 

This study received the local health research ethics board approval (Pro00109499). Prior the 

participation, parental or guardian consents were duly signed. A cohort of 24 children 

diagnosed with EOS underwent spinal radiography, resulting in a total of 449 radiographs. The 

inclusion criteria were children with EOS who a) had MCGR rod instrumented, and b) required 

rod length adjustment at the clinic. Each participant would have two radiographs (pre-rod and 

post-rod adjustments), but 1 subject was accidently taking 3 radiographs, at the clinic visit. 

Among the 24 participants, only 1 participant had a single rod and the rest had 2 rods installed.  

 

3.3.2 Overview of the Automated Rod Length Measurement  

 

Figure 3.2 depicts a flowchart illustrating the sequential steps commencing from radiograph 

input until reporting the automated measurement of rod length.  

Three ML models were developed to detect and segment features. Before inputting radiographs 

into the model, the original radiograph underwent preprocessing to enhance the image quality. 

The first model was to detect the implanted rods. The subsequent model identified a designated 

segment of the MCGR rod, measuring 58mm in length, that served the calibration purpose. 

The head-piece of the rod within the MCGR rod was discovered by the third model. Figure 3.3 

shows all the different portions of a MCGR rod that need to be detected in different ML models 

in the system. 
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Figure 3.2 Overview of the process 
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Figure 3.3 Visual representation of different parts of the rod in radiograph. (a) shows the whole 

radiograph, (b) is the ‘58mm’ and ‘head-piece’ segment of the rod after detecting the rod, (c) detected 

‘head-piece’ and (d) detected ‘58mm’ portion 

 

3.3.3 Input Radiograph Preprocessing 

 

3.3.3.1 Filters 

 

After a spinal radiograph was input into the program, two filters were applied in the 

preprocessing stage. The first filter was called the unsharp mask and the second filter was 

Contrast Limited Adaptive Histogram Equalization (CLAHE). The unsharp mask filter was to 

enhance the edges and details in the images by emphasizing high-frequency components [70], 

[71], [72] and the CLAHE filter was used to improve the images quality by enhancing their 

contrast [73], [74]. To increase the sharpness along the edges of images, two parameters, 

“radius” and “amount”, could be controlled. The radius defined the size of the local region 
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around each pixel to apply the mask. The amount was to define the degree of sharpening 

impact. Regarding the contrast, the adjustable parameters in the CLAHE filter include 

'cliplimit' and 'tilegridsize'. The cliplimit is the contrast limit for localized changes in contrast. 

The tilegridsize is to determine the size of the contextual zone for histogram equalization. 

Figure 3.4 displays the (a) original and (b) filtered radiograph of the same participant. 

 

 

 

Figure 3.4 (a) A raw radiograph and (b) The radiograph after passing through the combination of filter 

 

3.3.3.2 Annotation and Augmentation of Training Dataset 

 

Among 449 radiographs, only 387 radiographs were used for models’ development and 

validation. For the rod model, the 387 radiographs were divided into 327 for training, 50 for 

validation and 10 for testing. After the preprocessing of the input radiographs, the training 

dataset underwent annotation and feature labeling. To label the rod, the outline of each rod was 

identified by putting 15-20 points along the edge of each individual rod. This labeled area was 

thereafter designated as the “rod” region. The annotation task was facilitated by employing a 

software application called LabelMe [75]. Subsequently, the second and third models were 
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annotated using the outputs obtained from the first model, employing the similar technique, 

annotating the 58 mm rod length region and the head-piece region. However, on each 

radiograph, only 1 rod was annotated. Hence, 387 rods were used for the rod model 

development. For the remaining 2 models, since 9 of the 387 radiographs were failed to be 

used, the last 2 models only had 378 segmented datasets. Hence, 313 was used for the models’ 

training, 50 for models’ validation, and 15 for models’ testing.  

Historically, DL models have conventionally necessitated a considerable volume of training 

data. The research conducted by Shorten et al. [76] examined the effects of picture data 

augmentation on model performance and overfitting, revealing its beneficial effects. The 

utilization of data augmentation has proven to be advantageous in the domain of DL. Hence, 

the 180-degree flipping as well as mirroring strategies were applied separately to increase the 

training datasets for all 3 models. Using the proposed strategies, the number of training datasets 

were increased by three times. 

 

3.3.4 Detectron2 with Mask RCNN Models 

 

3.3.4.1 Backbone of the Models 

 

The framework employed for each model utilized the Detectron2 with the mask RCNN 

technique. Each algorithm generated an item mask together with the corresponding class, 

labels (rod, 58mm, and head-piece), and bounding boxes (outline of the features’ region). 

Figure 3.5 shows the sequential steps involved in the Mask RCNN models.  

The first step of the mask RCNN was to process the input images through a fusion of the 

Residual Network (ResNet-50) and the Feature Pyramid Network (FPN). This combination of 

networks was utilized to extract feature maps from radiographs at different scales, sizes, and 

placements. The second step of the model was to apply the Region Proposal Network (RPN), 

which was tasked with creating a proposed region of interest (ROI). Following selecting the 

ROI, the process of pooling features from the FPN was carried out at specified locations using 

the technique known as ROI Align. The data acquired using ROI Align was consolidated and 
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subjected to processing utilizing a Fully Connected Network (FCN) to generate final 

predictions about the class label and enhance the precision of the bounding box coordinates. 

 

 

Figure 3.5 Mask RCNN structure with RestNet-50 and FPN 

 

 

3.3.4.2 Model Optimization 

 

Prior to finishing the models, a critical step involves the fine-tuning of the hyperparameters. 

The parameters for the model were selected by employing a trial-and-error methodology and 

analyzing the loss plots generated by the training and validation datasets. The factors 

encompassed in this study consist of the learning rate, batch size per image, the number of 

data-loader workers, the number of epochs or iterations, and the number of images per batch.  

In this study, the hyperparameters for the first ML model were selected using the following 

approach: The learning rate employed in the experiment was set at 0.00025. The number of 

epochs or iterations utilized during the training process was 7800. A batch size per image 128 
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was chosen, and the data loader number of worker was 2. Once the training of the model was 

completed, a confidence score threshold of 0.45 was chosen for this model. 

The 58 mm model exhibited a disparity in the quantity of radiographs available for analysis. 

In this study, a total of 378 images were utilized, as certain images were found to be 

undetectable in the rod model. Subsequently, to augment the training dataset, the same 

augmentation technique was applied. The hyperparameters were modified through a process 

of trial and error, resulting in the creation of many models. The model that was chosen for this 

study was configured with a set of specific hyperparameters. The learning rate utilized in the 

experiment was set to 0.00050. The number of epochs or iterations performed throughout the 

training process amounted to 2800. Additionally, a batch size per image of 256 was chosen. 

The number of dataloader workers in this model was also 2. Once the training of the model 

was completed, a confidence score threshold of 0.70 was chosen for this model. Table 3.1 

summarizes the hyperparameters used for finalizing all three different models. 

 

Table 3.1 Hyperparameters used in the mask RCNN models with radiographs  

Model Name Learning rate Number of 

epoch 

Batch size 

per image 

Data-loader 

num workers 

Confidence 

threshold 

Rod 0.00025 7800 128 2 45% 

58mm 0.00050 2800 256 2 70% 

Rod-head 0.001 3400 512 2 80% 

 

The third model, referred to as the head-piece detection model, had a comparable distribution 

of images for both training and validation, mirroring the 58mm model. The hyperparameters 

that were chosen are as follows: The learning rate used in the experiment was set to 0.001. The 

number of epochs or iterations performed during the training process was 3400. A batch size 

per image of 512 was used. The number of workers for the dataloader in this model was also 

2. In this model, a confidence score threshold of 0.80 was chosen. 
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3.3.4.3 Evaluation Metrics 

 

The entire structure and the AI system were implemented using Google Colab®. To assess the 

efficacy of the model before finalization, several metrics were considered, including 

Intersection over Union (IoU), Average Precision (AP), and the training loss-validation loss 

plots. The Intersection over Union (IoU) metric is utilized to measure the degree of overlap 

between the bounding boxes generated by the ground truth and the prediction, thereby 

providing a quantitative assessment of their proximity. The ratio between the area of junction 

and the aggregate area of the boxes is being referred to IoU. 

 

IoU=Area of Overlap / Area of Union      ……………  (1) 

 

On the other hand, the AP is utilized as a quantitative metric within the Mask RCNN framework 

to evaluate the effectiveness of the model. The computation of the integral of the precision-

recall curve is used to determine this. The metric of precision (P) is computed by dividing the 

count of true positive (TP) instances by the overall count of positive occurrences (TP+ FP). On 

the other hand, recall (R) is found by dividing the count of true positive (TP) instances by the 

whole count of positive instances (TP+FN) in the ground truth. The total count of positive cases 

in the ground truth can be determined by adding the number of real positive instances and the 

number of false negative instances. The computation of the AP involved the evaluation of 

different intersection over union (IoU) thresholds, which spanned from 0.50 to 0.95, 

incrementing by 0.05. 

 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑝
⋅ 100%     …………… (2) 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑛
⋅ 100%      …………… (3)  

          𝐴𝑃 = ∑ (𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛𝑛          …………… (4)  

 

Where Pn and Rn are the precision and recall at the nth threshold. 
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The loss plots from training loss and validation loss were another performance model finalizing 

metric for evaluating the performance of the models. The loss functions for the Mask RCNN 

could be defined as 

 

                L= Lclass + Lbox + Lmask   …………… (5) 

 

The plots depicting training loss and validation loss exhibit a relation with equation 5. In each 

iteration of the training process, the model computes the overall loss (L) by aggregating the 

various losses (Lclass, Lbox, Lmask). The trend of the metric first exhibits a decline as the 

number of epochs grows, but then demonstrates an upward trajectory when the model is 

subjected to over-training. To enhance the performance of the algorithms, hyperparameters 

which consisted of the learning rate, batch size per image, the number of data-loader workers, 

the number of epochs or iterations, and the number of images per batch were iterated based on 

analyzing the plots of the losses and AP. The number of epochs or the criterion for halting the 

epochs were determined using the minimum between the training and validation loss, and 

simultaneously achieving around the maximum AP.  

When considering DL algorithms, the hyperparameters of the model were optimized by 

analyzing the plots of the losses and AP, leading to the finalization of the models. The number 

of epochs or the criterion for terminating epochs were determined using these two criteria as 

well. The objective of the epoch was to conclude at the specific place where the discrepancy 

in loss is minimal and the AP attains its greatest or near-maximum value. The presence of 

overfitting or underfitting in the model was also observed through the examination of the loss 

plots. 

Although 62 radiographs were left for testing, 2 radiographs had poor image quality. Therefore, 

only 60 radiographs which consisted of 118 rods (58 x 2 rods and 2 x single rod) were finally 

used. An individual rod length extracted from each radiograph and the overall rod length 

adjustment were measured using the AI and manual methods. An experienced rater having 25 

years of scoliosis experience did the manual measurements twice with a minimum of 1 week 

apart to reduce memory bias. An intra-rater reliability ICC[2,1] and mean absolute 
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difference(MAD) ± standard deviation (SD) between the 2 sessions’ measurements were 

analyzed. To determine the reliability, the inter-method interclass correlation coefficient 

(ICC[2,1]) with 95% confidence interval was used. To determine the agreement and bias 

between the manual and automatic measurements, a Bland-Altman analysis was employed. In 

all comparison, the length adjustment between the post-rod and pre-rod length was used. 

 

3.4 Result 

  

Figure 3.6 illustrates the training loss and validation loss plots of the ‘head-piece’ model from 

0 to 8000 epochs. After the 8000 epochs, the validation loss started rising, meaning the model 

started overfitting. Hence, the final training model was stopped at 7800 epoch point. Table 3.2 

presents the APs associated with each model.  

 

 

Figure 3.6 Training loss and validation loss plots of a ‘rod’ model 
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Table 3.2 AP for the mask RCNN models with radiographs 

Model AP 

Rod model 67.7% 

58mm model 94.8% 

Head-piece model 86.3% 

 

Figure 3.7 illustrates the sequential stages of the process starting from the original radiograph 

until both the 58 mm and the head-piece outputs.  

 

Figure 3.7 Sequential stages from raw image to detecting and measuring the desired length 

 

For the 60 testing radiographs, the AI method exhibited a great rod model detection accuracy 

of 98.3% (116/118). Among the 116 rods (58 pre-rod and 58 post-rod adjustment), there were 

2 post rods which were not able to report the measurements from the rod-head model. Hence, 

56 rod length adjustments were used for final evaluation.  

Table 3.3 shows a summary of a comparison between the AI and manual rod length adjustment 

measurement.  
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Table 3.3 Statistical comparison of rod measurements between AI and manual approach in 

radiographs 

Method of 

measurement 

Average 

length of 

adjustments 

(mm) 

Inter-

method 

correlation 

coefficient 

(ICC [2,1]) 

MAD (mm) Bland 

Altman 

analysis 

agreement 

Adjusted 

MAD (mm) 

AI 3.20±2.94 
0.902 0.98 ± 0.88 >90% 0.93 ±0.80 

Manual 3.17 ± 2.73 

 

methods were 3.20 ± 2.94 mm and 3.17 ± 2.73 mm, respectively. The MAD±SD between the 

AI and manual of the rod length adjustment was 0.98 ± 0.88 mm, which was within the 

clinically acceptance error ± 1.5 mm. Moreover, a significant proportion of the detections, 

precisely 87.5% (49 out of 56), fell within this specified range, indicating a high degree of 

precision exhibited by the AI model while comparing to the manual method. Figure 3.8 gives 

an illustration of the datapoints of all the adjustment difference between the automatic and 

manual approach.  

           

Figure 3.8 Data points from the 56 adjustments 
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Inter-method correlation coefficient (ICC 2,1) between the automatic adjustment measurement 

and the manual adjustment measurement was determined to be 0.902, demonstrating great 

reliability between the two techniques of measurement. The Pearson Correlation Coefficient 

between two approaches, was determined to be 0.89, which also indicates extremely excellent 

reliability. From Figure 3.9, we can see the correlation trendline to be positive and linear. 

 

 

Figure 3.9 Correlation of AI and Manual measurement 

 

In-term of the rater measurement accuracy and intra-rater reliability, the MAD±SD and the 

ICC[2,1] were 0.37 ± 0.30 mm, 0.98, respectively. The rater’s measurements also showed 

excellent accuracy and reliability. Figure 3.10 shows a Bland-Altman plot between the AI and 

human measurements. From the plot, there is no bias (mean = 0.02 mm) and only 4/56 points 

are outside the 95% confidence interval.  
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Figure 3.10 Bland Altman analysis showing agreement between AI and Human measurement for the 

adjustments 

 

3.5 Discussion 

 

Currently, the MCGR is the most commonly used surgical technique for children who have 

severe EOS. Setting external remote controller to adjust the rod length changes does not 

accurately correspond to the actual rod length extension. A study from 11 EOS patients 

validated the statement [77]. On the other hand, manual measurement of the rod length changes 

on radiographs also introduces errors.  In addition, during the X-ray taken, the posture of the 

EOS children may vary between pre-rod and post-rod adjustment radiography. This means the 

sagittal tilt angle relative to the coronal plane is different. The projection of the rod onto the 

coronal plane affects the rod length measurements. This extra error is different from the human 

measurement error. In this study, there are 4 cases, which showed negative manual rod length 

changes with values for -0.35mm, -0.01mm, -0.76mm, -0.03mm. In this study, the developed 

AI method is based on calibration approach. A 58 mm rod length is used as a calibration feature.  
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The AI measurements from these 4 rods are 1.11mm, 0.98mm, -0.59mm, and -0.13mm. 

Another factor which may affect measurements is the image quality of the original radiograph. 

The low-dose or micro-dose configuration of the EOS X-ray system (EOS Imaging Inc., Paris, 

France) impacts the clarity of the image. A rod length adjustment of less than 1 mm may not 

be able to detect accurately. Further investigation will be conducted in the next study.     

 

In this study, the rod model exhibits a comparatively lower AP of 67.6% when comparing with 

the 58 mm and rod-head models (94.8% and 86.3%). One possible explanation is that the whole 

rod covers the entire length of the radiograph, it has a higher chance to contain superfluous 

pixels and areas. Hence outlining a perfect rod region is much more difficult than the other 2 

features.  

 

Furthermore, the developed method has shown a significant improvement in the time needed 

to measure the length of the rod. With the manual approach, it usually takes up to 100 seconds 

to measure both rods. Using the AI system, it only takes 6 seconds per rod, which is 

approximately 15 times faster than the manual approach. This offers a great relief to clinicians 

especially when they are at a busy clinic. 

 

Regarding the limitation, there are only a small number of participants, 24. Although these 24 

participants have been followed for a few years and generated over 400 radiographs, there is 

still limited variation on these radiographs. Using augmentation method is able to increase the 

size of the training dataset, but it is not as good as more variation cases.    

 

This study represents the first use of AI in this specific activity, which makes it difficult to 

compare with other AI models because there is no previous research available. Nevertheless, 

utilizing precise human measures from skilled raters facilitated significant comparisons with 

the newly constructed AI system in this research. In the future, I expect to see additional 

comparisons based on the recommendations. The new AI system has a notable speed 

advantage, being approximately 15 times faster than manual measuring procedures, providing 

substantial time-saving advantages in a clinical environment. 



` 

39 

 
 

Chapter 4 Automated Method for Growing Rod 

Length Measurement on Ultrasound  

 

4.1 Overview 

 

This chapter provides a detailed report regarding the development of the automated system for 

measuring the rod length of MCGR on sonograms. An in-vivo data study was conducted to 

determine the accuracy, reliability, and speed of the developed ML algorithms.  

The materials in this chapter are mainly exported from the manuscript is submitted to the 

Journal of Ultrasound in Medicine and Biology. 

M. H. Kabir, M. Reformat, S. S. Hryniuk, K. Stampe, and E. Lou, " Automated Method for 

Growing Rod length Measurement on Ultrasound Images in Children with Early Onset 

Scoliosis”," Ultrasound in Medicine and Biology. 

 

4.2 Introduction 

 

Any spinal abnormality in children under the age of 10 with lateral curvature greater than 10 

degrees is defined as EOS. In case the severity of scoliosis is significant, surgery is highly 

recommended [3], [4].  If spinal surgeries are not performed immediately, the spinal curvature 

is likely to worsen, which may lead to further physiological effects such as cosmetic deformity, 

and pulmonary and respiratory inefficiencies [1], [2], [5]. A surgical growing rod technique 

for treating EOS patients came to light in the late 1990s [3], [7]. This process is expensive [15], 

and is associated with post-surgical wounds and complications [11], [12], [13], [14]. To 

compensate for the growth of the children with EOS after surgery, the instrumented growing 

rod is adjusted every 6 to 12 months. Another spine surgery is required for every rod length 

adjustment. In the late 2000s, a novel non-invasive technique, which used a MCGR, was 
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introduced [16], [18], [24], [27]. This method only necessitates surgery during the rod 

installation. Safer rod lengthening is made externally by a machine. During every visit, an 

average of 3-6 months, a small rod length adjustment is made to reduce pain while getting the 

children's reaction in perfect harmony. If it hurts the patient too much during the process, it 

can be stopped. This growing rod modification aids in regulating spine abnormalities and 

significantly reduces the curvature of the spine.  

Currently, radiography is the most common image modality to capture the internal spinal 

structure with the growing rods. The change of rod length is measured on the pre-operative and 

post-operative rod length adjustment radiographs. Understanding the change in rod length can 

assist surgeons in planning for the next surgery when the rod length reaches its limit. In the last 

decade, the US imaging technique has been promoted by taking advantage of no ionizing 

radiation exposure and being portable. In 2015, Yoon et al. [29] conducted a study comparing 

the rod length measured on US images versus on radiographs.  They discovered that the 

interclass correlation coefficient (ICC) of the inter-method between radiography and US was 

0.992 [29]. Their pilot study also showed the US method had a high inter- and intra-rater 

reliability with ICC > 0.98. In another study [78] which was conducted by Karlen et al., it was 

discovered that the US reduced average patients’ radiation exposure by 83% when compared 

to both pre-rod and post-rod length adjustments radiographs. The patient wait time was also 

decreased by 64%, while the time required to complete the rod lengthening procedure was 

lowered by 50%. However, all X-ray and US measurements were performed manually, and the 

measurement time on US images was longer. Human measurement errors always exist. 

Furthermore, the experience and spinal knowledge of the rater affect the accuracy of 

measurements. The inaccuracy may affect the surgical planning which may influence patients’ 

quality of life. Hence, monitoring the rod length adjustments precisely may optimize the 

treatment planning.  

To reduce human measurement errors, ML algorithms, which is a subset of AI have been 

introduced in many applications [45], [46], [49], [50], [51].  Especially, Convolution Neural 

Network (CNN), a subset of ML, is commonly used for object recognition and segmentation 

in medical images. Recently, RCNNs have been applied in medical US images for spinal object 
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recognition, segmentation, and other studies    [65], [66], [79]. Liu et al. [65] employed the 

faster RCNN on US images to automatically quantify spine curvature. They discovered that 

the model's AP was 76.1%, and the MAD between the AI technique and the manual method 

was within the clinical acceptance error. Tamas et al. [80] also conducted a study in using CNN 

(U-net architecture) for scoliosis visualization and spinal transverse process angle estimation 

on US images. 

To ensure efficient model training and quick inference, ML algorithms have been implemented 

into Detectron2 framework for few studies [57], [59], [68]. Kumar et al. proposed in using a 

mask RCNN model with detectron2 for breast cancer cell identification on US images, they 

were able to  identify cancer cells accurately with an average accuracy of 97.9% [81].  

The objective of this study was to develop an ML system to identify and quantify the rod 

lengthening of the MCGR for children who have EOS surgeries. The reliability, accuracy, and 

speed of measurements were reported. 

 

4.3 Method  

 

4.3.1 Participants Selection 

 

The ethics approval of this study was granted by the local health research ethics board 

(Pro00109499). Parental consents and child assents were signed before participation. The 

inclusion criteria were children who a) were diagnosed with EOS, b) had spinal surgeries with 

MCGR rods, and c) required rod length adjustment at the local clinic.  A total of 23 participants 

(10 M, 13 F) with an average of 6.2 ± 1.4 years old were recruited from the local clinic. Among 

the 23 participants, 22 had dual rods installed, and one had a single rod.  
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4.3.2 Data Acquisition 

 

To acquire the US images, a linear phase array wireless Claris US scanner L15HD3 (BC, 

Canada) equipped with a 5-15 MHz high-frequency transducer and a maximum depth of 

penetration of 7 cm was chosen. A nurse practitioner, who was responsible for the rod length 

adjustment, used an external magnet to identify the internal magnet inside the rod. Then she 

marked the approximate area on the skin. A US operator then applied warmed ultrasound gel 

on the surface of skin to provide a coupling medium. The location of rod head was estimated 

based on the magnet region. Once the rod head image was displayed on the screen, the operator 

captured the image. The left and right rods in the dual rod case were captured separately into 

2 images. The practitioner then adjusted the rod length to an expected extension. The same US 

procedures were performed after the rod adjustment. Figure 4.1 shows a US image and an 

MCGR highlighted at the same area.   

 

 

Figure 4.1 a) An actual MCGR rod used in this study, b) the portion A-B which gets elongated 

through the process, and c) the A-B portion in a sonogram 
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4.3.3 Overview of Rod length Detection  

 

Figure 4.2 presents an overview of the developed system. The process commences with an 

initial unprocessed US image and culminates in the determination of the length of a specific 

segment of the rod. Filter was then applied to enhance the edge of the rod. After that, the 

‘Boundary model’ was employed to delineate a region of interest around the rod head area. The 

second ML model, ‘Rod model’, was then applied to identify the rod portion precisely.  Finally, 

the rod length was calculated. 

 

 

Figure 4.2 Overview of the process 

 

 

4.3.4 Data Preprocessing Using Filters 

 

US images are usually fuzzy at the edge of objects. To enhance the efficacy of model training, 

it was necessary to ensure the input images provide more clarity and sharper edges. A 3x3 

kernel was applied to the raw image, which underwent erosion, dilation, and bilateral filtering. 

Subsequently, the image underwent median filtering, followed using an unsharp mask filter to 

enhance edge sharpness and clarity. Figure 4.3 illustrates the process by which a raw image 

undergoes a series of filtering techniques to enhance its quality. 
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Figure 4.3 a) A raw unprocessed US image, and b) a filtered and processed US image 

 

 

4.3.5 Data Annotation and Augmentation 

 

The 90 images were distributed into three portions. Under the model development, 55 was used 

for training and 15 was used for validation. The last 20 images were used for testing. Prior to 

develop the model through training, it was crucial to annotate the training and validation 

datasets. To streamline the annotation process, 'LabelMe' [75] software was used to annotate 

the feature for both models. For the boundary model, a rater had been trained to identify the 

rod length region (A to B) from the US image (Figure 4.4a), then the region of interest (ROI)  

of the outermost points of the rod was selected using a rectangular box (Figure 4.4b). The 

boundary model provided delineation or demarcation for the rod. After the ROI was cropped 

(Figure 4.4c), a straight line was detected for the rod model (Figure 4.4d). The end goal of the 

automation was to measure the length of A-B. After annotation, each file was assigned a 

category and labeled accordingly. The file was saved with the file extension “. json".  

In the context of ML models that utilize images, datasets containing a substantial quantity of 

data are typically favored. The process of augmentation significantly contributes to the 
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expansion of data quantities in a remarkable manner [76], especially in image classification 

and segmentation [82], [83] applications. In this study, 180-degree horizontal flipping was 

applied to double the size for models training. 

 

 

Figure 4.4 a) Exported US image from clinic, b) the expected output of the boundary model, c) 

cropped version of the first model’s output, and d) expected output rod length from the rod model 

 

 

4.3.6 Mask RCNN Models 

 

Figure 4.5 presents the backbone architecture of the models. The two ML models which were 

developed used the Mask RCNN. The network was built with a Residual Network (ResNet-

50), a Feature Pyramid Network (FPN) and the Regional Proposal Network (RPF). After filters 

were applied to the original US images, the rendered images were sent to the ResNet-50 to 

extract feature maps at different scales. The FPN was followed to further improve feature maps 

by generating a pyramid of feature maps. The maps were then input into a RPN to generate 

region proposals. After developing the region proposals, ROI Align was used to gather the 
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features from the FPN at the indicated locations. Using the collected information from the ROI 

Align, a fully connected network (FCN) was employed to predict the class label and refine the 

bounding box coordinates for each region proposal. Detectron2 was used as the framework 

and google Colab®  was used for overall study involving ML algorithms. 

 

 

Figure 4.5 Backbone Architecture of the Mask RCNN models 
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4.3.7 Model Evaluation and Statistical Analysis  

 

There were several metrics applied to finalize the models. Intersection over Union (IoU) was 

one of them. IoU helped to measure the degree of overlap between the bounding boxes created 

by the ground truth and the predicted data. The ratio was calculated by dividing the area of 

intersection by the total area of the combined boxes. Then a metric called AP was used to 

evaluate the accuracy of object detection and segmentation. The calculation of the AP required 

assessing several IoU thresholds, ranging from 0.50 to 0.95, with an increment of 0.05. The 

loss plot from training loss and validation loss with the change in epochs was another metric. 

The epoch was used to identify the stop point at which the difference between the training loss 

and validation loss was minimum, and at the same time the AP value was close to maximum. 

The hyperparameters of the models were optimized using trial and error approach to find the 

best possible combination.  

 

This study involved two raters to measure the US images manually. An experienced rater 1 

(R1) with 13 years of experience on sonograms measured the rod length of MCGR which was 

considered as the ground truth. To evaluate the variation of the US measurement, the primary 

author of this manuscript worked as the rater 2 (R2) who has no US imaging experience also 

measured the length manually.  

 

The inter-method reliability of the interclass correlation coefficient (ICC[2,1]), and MAD±SD 

between the R1 and the AI system were compared. A Bland-Altman plot was used to determine 

the bias and agreement between the R1 and AI measurement. Furthermore, the inter-rater 

reliability (ICC[2,1]) and MAD±SD between R1 and R2 measurements were analyzed.  
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4.4 Result and discussion 

 

4.4.1 Results 

 

Figure 4.6 shows the sequential steps of an original US image passing through the stages of 

the system, and eventually providing the measured rod length.  

 

Figure 4.6 Loss plots of the rod model 

 

Table 4.1 provides a concise overview of the hyperparameters included in both models, and 

the AP values achieved by the models. The AP value of the ‘Boundary model’ was better than 

the ‘Rod model’.  
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Table 4.1 Hyperparameters used in the Boundary and Rod models and the AP values of both models 

Model 

Name 

Learning 

Rate 

Number of 

epochs 

Batch size 

per image 

Data-

loader num 

workers 

Confidence 

threshold 

AP 

Boundary 0.00025 4200 128 2 80% 88.5% 

Rod 0.001 1250 512 2 75% 60.2% 

 

Figure 4.7 displays the loss plots of the rod model throughout 0 to 4000 epochs. At the 1200 

epoch point, the model achieved the desired conditions of minimal loss difference and maximal 

AP.   

 

 

Figure 4.7 Sequential steps of the overall system to measure rod length 
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The average rod length measured from the AI system was 20.35 ± 7.33 mm, while the average 

length from the R1 was 20.33 ± 6.88 mm. The MAD ± SD between them was 1.2 ± 1.46 mm. 

Among the 20 test images, 16 (80%) were within the range of clinically accepted error of ±1.5 

mm. Figure 4.8 displays the data points representing the measurements obtained from both AI 

and manual measurements. This observation suggests that the AI model has a considerable 

level of accuracy when compared to the manual approach. 

 

 

Figure 4.8 Datapoints of measurements from 20 US test dataset 

 

 



` 

51 

 
 

The inter-method reliability of the interclass correlation coefficient (ICC[2,1]) was 0.96, 

demonstrating great reliability between the two techniques of measurement. Table 4.2 provides 

a clear summary of the test data analysis from the manual (R1) and AI measurements. 

Table 4.2 Comparison of rod length measurements between AI and R1 (with 20 test points) 

Method of 

measurement (n = 20) 

Average length     

(mm) 

Inter-method 

correlation coefficient 

(ICC [2,1]) 

MAD (mm) 

AI 20.35 ± 7.33 
0.96 1.2 ± 1.46 

Manual 20.33 ± 6.88 

 

From the Bland-Altman plot as shown in Fig 4.9, the bias between the AI and the manual 

measurements (R1) was -0.02 mm which was almost close to zero. 18 out of 20 datapoints 

were within the 95% confidence interval of ±2SD.  

For the inter-rater analysis, the inter-rater reliability ICC[2,1] was 0.99 which meant the US 

measurements were reliable and independent of rater experience. Additionally, the MAD±SD 

between the two raters was 0.68 ± 0.47 mm. With 20 test data, the average length for the R1 

was 20.33 ± 6.88 mm, while the average length for R2 was 20.51 ± 7.03 mm. 



` 

52 

 
 

 

Figure 4.9 Bland Altman Analysis between AI and Manual measurements 

 

Table 4.3 presents the ICC[2,1] and the MAD±SD among R1 (main rater), R2 (secondary rater), 

and the AI measurement. Overall, the system displayed the results in 4.6 seconds after the US 

images were inputted.  

Table 4.3 Comparison of rod length measurements between AI and manual measurements 

from both raters 

 

 MAD ± SD (mm) Reliability (ICC[2,1]) 

R1 vs AI (n = 20) 1.2±1.46 0.96 

R2 vs AI (n = 20) 1.64±1.69 0.95 

R1 vs R2 (n = 20) 0.68 ± 0.48 0.99 
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Among the 3 comparisons, manual US measurements between raters had less discrepancy and 

highest reliability. This meant measuring the rod length on US images was quite reliable. 

Regarding the speed, the AI method displayed the results in an average of 4.6 seconds after the 

US images were inputted, the manual measurement requires about 60 seconds to calculate the 

result. It makes great difference for clinicians in a busy clinic.  

 

4.4.2 Limitation 

 

In this study, the major limitation is the data size. The training dataset only consists of 55 US 

images, and the rod lengths are mainly within 4 to 12 mm as shown in Figure 4.9. The number 

of training images is significantly lower than conventional DL models. ML models extract 

valuable information from the different characteristics and classifications found in the training 

images. The reduced quantity of images in the training dataset is recognized as a contributing 

element to the decreased AP, especially in the context of the rod model.  

 

4.4.3 Advantages of using US 

 

The US, being a non-ionizing imaging technology, has clear benefits compared to radiographic 

modalities, as it eliminates radiation exposure to patients. The lack of radiation hazard enables 

the acquisition of multiple images without jeopardizing patient well-being. This flexibility is 

helpful if clinicians decide to adjust the rod length more within the clinic to compensate for 

the rapid growing period.  Furthermore, similar to the study [78], it saves a lot of clinic time.  

Using a portable US machine, it is easy to capture the image within the clinical room without 

requiring the patients to walk to the X-ray acquisition room.  In a clinical setting, it is a 10-

minute walk between the examination area and the diagnostic imaging department.  

Furthermore, the MCGR occasionally encounters complications such as the slippage of the 

distraction mechanism, resulting in unsuccessful rod length extension attempts. The capability 
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of US to take repeated images combined with the precision of AI-driven measurements can 

provide immediate feedback within the clinic so that the overall clinical efficiency can be 

improved. 

 

4.4.4 Disadvantages of using US 

 

However, the US acquisition takes longer time to acquire an image when comparing with 

radiography. It usually takes 10-15 seconds for a technician to identify the location of the rod 

magnet and save the image. The body motion of patients affects the US image quality. 

Sometimes it may need multiple trials to get a high-quality image.  

 

4.4.5 Effect of Image Quality 

 

Upon further examination of the large discrepancy points (beyond the clinical acceptance 

range) between the AI and manual measurements, it has been discovered that 2 of those 4 

images exhibit a lack of clarity, which presents difficulties in identifying points A and B 

accurately. Since US images have the flexibility of taking multiple shots, the poor quality and 

unclear images could be avoided from analysis. There were 2 images of this type which was 

completely impossible to comprehend the A-B even with the naked eye. If the 2 unclear images 

were eliminated from this study, the revised average rod length from the AI system was 19.98 

± 7.44 mm, while the average length for the R1 became 20.10 ± 7.23 mm. The MAD ± SD 

between the AI model and R1 dropped to 0.86 ± 1.0 mm. In addition, the inter-method 

reliability (ICC[2,1]) improved from 0.96 to 0.98. After the elimination, there was just one point 

outside the 95% interval.  Table 4.4 provides a summary of the revised analysis after the 2 

fuzzy images were removed. Therefore, more training sets including some fuzzy images are 

required to improve accuracy and robustness.   
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Table 4.4 Comparison of rod length measurements between AI and manual methods after the 

fuzzy images were removed 

 

Method of 

measurement (n = 

18) 

Average length     

(mm) 

Inter-method 

correlation coefficient 

(ICC[2,1]) 

MAD  (mm) 

AI 19.98 ± 7.44 
0.98 0.86 ± 1.0 

Manual 20.10 ± 7.23 

 

With the adjusted test set on 18 images, the revised Bland-Altman plot is shown in figure 4.10. 

The bias between the AI and the R1 was 0.11 mm which was still very small. There were only 

1 datapoint outside the 95% confidence interval of ±2SD, means 94.4% datapoints were there 

within the confidence interval. 

 

Figure 4.10 Adjusted Bland Altman Analysis between AI and Manual measurements 
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4.5 Conclusion and Contribution 

 

Using US to monitor the rod length of MCGR has a significant benefit. Adding an AI system 

into a MCGR rod length adjustment clinic can further enhance its efficiency and cost saving. 

The AI-system developed in this study was the first reported automatic rod length measurement 

of MCGR on US images for children who have EOS surgeries. The reliability, accuracy and 

speed were good for clinical use. 

Moreover, this groundbreaking study represents the inaugural application of AI within EOS 

research with US images for detecting and measuring the length of the head-piece in MCGR 

treatment. Despite being a pilot study, it already demonstrates accurate detection and 

measurement capabilities, albeit with acknowledged limitations. With anticipated 

improvements addressing these limitations and implementing future recommendations, the 

study holds promise to significantly streamline clinicians' workflow while enhancing research 

accuracy in this domain.  
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Chapter 5  Conclusion and Future 

Recommendations 
 

5.1 Summary 

 

EOS refers to a condition that affects children who are under the age of ten. When it comes to 

treating severe EOS with high Cobb angles, the most widely acknowledged surgical method is 

known as MCGR. The occurrence of manual measuring errors during the MCGR rod 

lengthening process results in challenges for the child's treatment and consumes a significant 

amount of time of the clinicians in a busy facility. Utilizing radiographs for the MCGR rod 

lengthening procedure entails the risk of radiation exposure. This thesis introduces an 

innovative approach to automate the measurement of rod length and adjustment in children 

undergoing MCGR therapy for EOS, using both radiographs and sonograms. 

For radiographs, the system was developed using 449 radiographs. Initially, the training images 

were processed by using filters, then got annotated and augmented. Mask RCNN was used to 

build all the three different models and Detectron2 was used as the framework. The objective 

of the study was achieved by developing an automated ML system that could detect and 

measure the rod length of the MCGR from the radiographs. The system successfully detected 

98.3% of the total rods. While comparing the adjustment difference with the manual 

measurements, the AI measurements demonstrated a strong inter-method correlation 

coefficient (ICC[2,1]) of 0.902. The MAD between adjustment differences of the measurement 

methods was 0.98 ± 0.88 mm, with 87.5% falling within the clinically recognized error range 

of ±1.5mm. The study was proved to be accurate and 10 times faster than the manual approach.  

To reduce the radiation effect associated with the radiographs, there has been an introduction 

of US in the field of EOS lately. But the possibility of human measurement errors exists here 

as well. Hence, another study was conducted in this thesis that used ML to develop an 

automated measuring method for MCGR treatment in EOS using the sonograms. 90 sonograms 

were used in this study. The ML system provided inter-method correlation coefficient (ICC[2,1]) 
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of 0.96 when compared to rater 1 and 0.95 with rater 2. The inter-rater correlation coefficient 

(ICC[2,1]) was 0.99 between the raters. The system displayed measurement output in 4.6 

seconds only. 

 

5.2 Future Recommendations 

 

Although the detection algorithms have shown effectiveness, there is still significant room for 

improvement. Both radiograph system and US system exhibit potential for improving accuracy 

and AP. 

Here are some of the key future recommendations that I think would help to get a more accurate 

and even faster automated system: 

• The enhancement of system performance and effectiveness can be achieved by 

including a more extensive dataset. The number of images in the datasets was a 

limitation of this study, specially in case of sonograms. Increasing the number of 

overall images in the dataset would definitely help towards achieving a more a robust 

model. 

• Another way of improvement in this study is the annotation. In some images, it was 

really difficult to understand the ‘58mm’ portion in the radiograph, and the A-B portion 

in the US. With better annotation on a larger dataset would help to achieve a more 

precise model. 

• Augmentation is a way of increasing the image number in the datasets. Adding different 

types of augmentation would definitely be another way of increasing the size of the 

dataset. 

• ML algorithms are evolving with time. Even though Mask RCNN has been one of the 

fastest models for object detection and instance segmentation, applying more ML 

algorithms and experimenting with the hyperparameters would probably help to find 

better and faster models. 
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• The inability to get adjustment measurements in US images has hindered the ability to 

undertake a comparative analysis of AI adjustment data between the two imaging 

modalities. With a more accurate and faster model, the comparative analysis of the US 

length adjustment and the radiograph length adjustment would be possible. 

This work signifies a huge achievement in the realm of academic research, and its practical 

consequences are remarkable. While the software system is not yet fully developed, its 

application to newly captured images from a local clinic serves as a successful demonstration 

of its potential practical use for scoliosis patients who are having MCGR treatment. The 

utilization of this automated approach exhibits potential in facilitating accurate treatment 

planning, diminishing the probability of unforeseen surgical interventions, and ensuring the 

safety and reassurance of patients undergoing MCGR treatment for EOS patients. 
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Appendix 
 

This part of the thesis contains the source code used for the studies. Appendix A presents the 

source code for the rod detection model of using radiographs. However, only one complete 

source code is presented here, as they contain the similar things apart from the changes in 

hyperparameters. Appendix B contains the combination of three ML models which was used 

to determine the AI measurements with the help of test images. All the source codes are taken 

from google colab(.py) format. 

Appendix A  

1. Mounting colab with google drive 

 

from google.colab import drive 

drive.mount('/content/drive') 

 

2. Installing dependencies for detectron2 and installing detectron2  

!pip install -U torch==1.5 torchvision==0.6 -

fhttps://download.pytorch.org/whl/cu101/torch_stable.html 

!pip install cython pyyaml==5.1 

!pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI' 

import torch 

TORCH_VERSION = ".".join(torch.__version__.split(".")[:2]) 

CUDA_VERSION = torch.__version__.split("+")[-1] 

print("torch: ", TORCH_VERSION, "; cuda: ", CUDA_VERSION) 

!pip install detectron2 -f 

https://dl.fbaipublicfiles.com/detectron2/wheels/$CUDA_VERSION/torch$TORCH_VERSI

ON/index.html 

https://download.pytorch.org/whl/cu101/torch_stable.html
https://dl.fbaipublicfiles.com/detectron2/wheels/$CUDA_VERSION/torch$TORCH_VERSION/index.html
https://dl.fbaipublicfiles.com/detectron2/wheels/$CUDA_VERSION/torch$TORCH_VERSION/index.html
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import detectron2 

from detectron2.utils.logger import setup_logger 

setup_logger() 

3. Importing common libraries 

import some common libraries 

import numpy as np 

import os, json, cv2, random 

from google.colab.patches import cv2_imshow 

from detectron2 import model_zoo 

from detectron2.engine import DefaultPredictor 

from detectron2.config import get_cfg 

from detectron2.utils.visualizer import Visualizer 

from detectron2.data import MetadataCatalog, DatasetCatalog 

import matplotlib.pyplot as plt 

from detectron2.structures import BoxMode 

from detectron2 import model_zoo 

from detectron2.engine import DefaultTrainer, DefaultPredictor 

from detectron2.config import get_cfg 

from detectron2.utils.visualizer import ColorMode, Visualizer 

 

4. Getting information on datasets (.json files) 

def get_data_dicts(directory, classes): 

    dataset_dicts = [] 

    for filename in [file for file in os.listdir(directory) if file.endswith('.json')]: 

        json_file = os.path.join(directory, filename) 

        with open(json_file) as f: 
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            img_anns = json.load(f) 

 

        record = {} 

        filename = os.path.join(directory, img_anns["imagePath"]) 

        record["file_name"] = filename 

 

        record["height"] = img_anns["imageHeight"] 

        record["width"] = img_anns["imageWidth"] 

        record["image_id"] = json_file 

        annos = img_anns["shapes"] 

        objs = [] 

        for anno in annos: 

            px = [a[0] for a in anno['points']] # x coord 

            py = [a[1] for a in anno['points']] # y-coord 

            poly = [(x, y) for x, y in zip(px, py)] # poly for segmentation 

            poly = [p for x in poly for p in x] 

 

            obj = { 

                "bbox": [np.min(px), np.min(py), np.max(px), np.max(py)], 

                "bbox_mode": BoxMode.XYXY_ABS, 

                "segmentation": [poly], 

                "category_id": classes.index(anno['label']), 

                "iscrowd": 0 

            } 

            objs.append(obj) 

        record["annotations"] = objs 

        dataset_dicts.append(record) 
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    return dataset_dicts 

 

5. Registering dataset and creating metadata 

classes = ['rod'] 

data_path = 'dataset directory' 

for d in ["train", "validation"]: 

    DatasetCatalog.register( 

        "category_" + d, 

        lambda d=d: get_data_dicts(data_path+d, classes) 

    ) 

    MetadataCatalog.get("category_" + d).set(thing_classes=classes) 

microcontroller_metadata = MetadataCatalog.get("category_train") 

 

6. Hyperparameters setting. 

cfg = get_cfg() 

cfg.merge_from_file(model_zoo.get_config_file("COCO-

InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) 

cfg.DATASETS.TRAIN = ("category_train",) 

cfg.DATASETS.TEST = ("category_validation",) 

#cfg.TEST.EVAL_PERIOD = 100 

cfg.DATALOADER.NUM_WORKERS = 2 

#cfg.SOLVER.CHECKPOINT_PERIOD = 600 

cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-

InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") 

cfg.SOLVER.IMS_PER_BATCH = 2 

#cfg.SOLVER.BASE_LR = 0.00025 

#cfg.SOLVER.CHECKPOINT_PERIOD = 10 

cfg.SOLVER.BASE_LR = 0.00025 
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cfg.SOLVER.MAX_ITER = 7800 

cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1 

cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128 

cfg.OUTPUT_DIR = "/directory/” 

 

7. Setting up losses and training the model 

from detectron2.engine import HookBase 

from detectron2.data import build_detection_train_loader 

import detectron2.utils.comm as comm 

class ValidationLoss(HookBase): 

    def __init__(self, cfg): 

        super().__init__() 

        self.cfg = cfg.clone() 

        self.cfg.DATASETS.TRAIN = cfg.DATASETS.TEST 

        self._loader = iter(build_detection_train_loader(self.cfg)) 

    def after_step(self): 

        data = next(self._loader) 

        with torch.no_grad(): 

            loss_dict = self.trainer.model(data) 

            losses = sum(loss_dict.values()) 

            assert torch.isfinite(losses).all(), loss_dict 

            loss_dict_reduced = {"category_validation" + k: v.item() for k, v in 

                                 comm.reduce_dict(loss_dict).items()} 

            losses_reduced = sum(loss for loss in loss_dict_reduced.values()) 

            if comm.is_main_process(): 

                self.trainer.storage.put_scalars(total_val_loss=losses_reduced, 

                                                 **loss_dict_reduced) 



` 

75 

 
 

 

os.makedirs(cfg.OUTPUT_DIR, exist_ok=True) 

trainer = DefaultTrainer(cfg) 

 

val_loss = ValidationLoss(cfg) 

trainer.register_hooks([val_loss]) 

# swap the order of PeriodicWriter and ValidationLoss 

trainer._hooks = trainer._hooks[:-2] + trainer._hooks[-2:][::-1] 

trainer.resume_or_load(resume=True) 

trainer.train() 

 

8. Saving the model 

import pickle 

cfg.MODEL.WEIGHTS = 'model path directory’ 

cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.45 

with open('directory for saving the model', 'wb') as f: 

  pickle.dump(cfg, f) 

f.close() 

 

9. Using evaluator to get AP  

predictor = DefaultPredictor(cfg) 

from detectron2.evaluation import COCOEvaluator, inference_on_dataset 

from detectron2.data import build_detection_test_loader 

#evaluator = COCOEvaluator("category_validation", 

distributed=True,tasks=None,output_dir='/content/output/') 
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#evaluator = COCOEvaluator('category_validation', ["bbox"], 

distributed=False,output_dir='/content/output/') 

evaluator = COCOEvaluator('category_validation', cfg,False,output_dir='/Output directory/') 

val_loader = build_detection_test_loader(cfg, "category_validation") 

inference_on_dataset(predictor.model, val_loader, evaluator) 

 

After these steps are done, next step is to inference and saving the cropped rod version. The 

stages are same for the other models too, using radiographs/sonograms. 

 

Appendix B 

On the appendix B section, the source code of the combined AI system to measure length from 

the radiographs are given. The initial steps from 1-3 are just the same since in these steps, the 

drive is mounted with the google colab, and the required dependencies are imported and 

detectron2 is installed. The following steps are given here for measuring the length of the 

MCGR rod. 

  4. Importing libraries for image processing 

import numpy as np 

import os, json, random 

import cv2 

from google.colab.patches import cv2_imshow 

from skimage.filters import unsharp_mask 

from skimage import img_as_ubyte 

from skimage.filters import sobel,scharr,prewitt,Roberts 
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5. Image processing 

a= cv2.imread("/directory/",0) 

plt.imshow(a) 

unsharped_image =unsharp_mask(a,radius = 3, amount =5) 

img_8bit = img_as_ubyte(unsharped_image) 

clahe= cv2.createCLAHE (clipLimit = 2.0, tileGridSize=(8,8)) 

cl_img= clahe.apply(img_8bit) 

b = img_as_ubyte (cl_img) 

img = cv2.cvtColor(b,cv2.COLOR_GRAY2RGB) 

plt.imshow(img) 

6. Loading the rod model, cropping the rod, and saving 

with open('directory of the saved  rod model', 'rb') as f: 

  testConfig = pickle.load(f) 

testConfig 

testPredictor = DefaultPredictor(testConfig) 

o = testPredictor(img) 

v = Visualizer(img[:, :, ::-1], 

                   #metadata=microcontroller_metadata, 

                   scale=0.5, 

                   instance_mode=ColorMode.IMAGE_BW # removes the colors of unsegmented 

pixels 

               ) 
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v = v.draw_instance_predictions(o["instances"].to("cpu")) 

plt.figure(figsize = (12,8)) 

plt.imshow(cv2.cvtColor(v.get_image()[:, :, ::-1], cv2.COLOR_BGR2RGB)) 

plt.show() 

from google.colab.patches import cv2_imshow 

import PIL 

from PIL import Image 

masks = np.asarray(o['instances'].pred_masks.to("cpu")) 

item_mask = masks[0] 

# Get the true bounding box of the mask (not the same as the bbox prediction) 

segmentation = np.where(item_mask == True) 

x_min = int(np.min(segmentation[1])) 

x_max = int(np.max(segmentation[1])) 

y_min = int(np.min(segmentation[0])) 

y_max = int(np.max(segmentation[0])) 

print(x_min, x_max, y_min, y_max) 

 

# Create a cropped image from just the portion of the image we want 

cropped = Image.fromarray(img[y_min:y_max, x_min:x_max, :], mode='RGB') 

plt.figure(figsize = (12,8)) 

plt.imshow(cropped) 

plt.show() 
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cropped.save("/content/rod.jpg") 

7. Loading the 58 model, cropping the 58mm part, and saving the ratio 

with open('/saved 58mm model directory/', 'rb') as f: 

  testConfig58 = pickle.load(f) 

testConfig58 

testPredictor58 = DefaultPredictor(testConfig58) 

img1 = cv2.imread("/content/rod.jpg") 

o1 = testPredictor58(img1) 

v1 = Visualizer(img1[:, :, ::-1], 

                   #metadata=microcontroller_metadata, 

                   scale=0.5, 

                   instance_mode=ColorMode.IMAGE_BW # removes the colors of unsegmented 

pixels 

               ) 

v1 = v1.draw_instance_predictions(o1["instances"].to("cpu")) 

plt.figure(figsize = (12,8)) 

plt.imshow(cv2.cvtColor(v1.get_image()[:, :, ::-1], cv2.COLOR_BGR2RGB)) 

plt.show() 

masks = np.asarray(o1['instances'].pred_masks.to("cpu")) 

item_mask = masks[0] 

 

# Get the true bounding box of the mask (not the same as the bbox prediction) 
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segmentation = np.where(item_mask == True) 

x_min1 = int(np.min(segmentation[1])) 

x_max1 = int(np.max(segmentation[1])) 

y_min1 = int(np.min(segmentation[0])) 

y_max1 = int(np.max(segmentation[0])) 

print(x_min1, x_max1, y_min1, y_max1) 

 

# Create a cropped image from just the portion of the image we want 

cropped1 = Image.fromarray(img1[y_min1:y_max1, x_min1:x_max1, :], mode='RGB') 

plt.figure(figsize = (12,8)) 

plt.imshow(cropped1) 

plt.show() 

print(y_max1-y_min1) 

ratio=58/(y_max1-y_min1) 

print(ratio) 

cropped.save("/content/58mm.jpg") 

 

8. Loading the magnet model, cropping the magnet, and measuring the length using 

ratio from 7. 

with open(‘saved magnet model directory', 'rb') as f: 

 testConfigmagnet = pickle.load(f) 
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testConfigmagnet 

testPredictormagnet = DefaultPredictor(testConfigmagnet) 

img2 = cv2.imread("/content/58mm.jpg") 

o2 = testPredictormagnet(img2) 

v2 = Visualizer(img2[:, :, ::-1], 

                   #metadata=microcontroller_metadata, 

                   scale=0.5, 

                   instance_mode=ColorMode.IMAGE_BW # removes the colors of unsegmented 

pixels 

               ) 

v2 = v2.draw_instance_predictions(o2["instances"].to("cpu") 

plt.figure(figsize = (24,16)) 

plt.imshow(cv2.cvtColor(v2.get_image()[:, :, ::-1], cv2.COLOR_BGR2RGB)) 

plt.show() 

masks = np.asarray(o2['instances'].pred_masks.to("cpu")) 

item_mask = masks[0] 

# Get the true bounding box of the mask (not the same as the bbox prediction) 

segmentation = np.where(item_mask == True) 

x_min2 = int(np.min(segmentation[1])) 

x_max2 = int(np.max(segmentation[1])) 

y_min2 = int(np.min(segmentation[0])) 

y_max2 = int(np.max(segmentation[0])) 
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print(x_min, x_max, y_min, y_max) 

 

# Create a cropped image from just the portion of the image we want 

cropped2 = Image.fromarray(img2[y_min2:y_max2, x_min2:x_max2, :], mode='RGB') 

plt.figure(figsize = (12,8)) 

plt.imshow(cropped2) 

plt.show() 

y_max2-y_min2 

length=ratio*(y_max2-y_min2) 

print(length) 

 

Using the same approach, the saved models for US system could be opened and loaded. And 

the length measurement could be done too. 

 

 

 


