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Abstract

Thyroid cancer has a high prevalence all over the world. Accurate thyroid nod-

ule detection and diagnosis in early stages leads to effective treatment and de-

creases the mortality rate. However, thyroid nodule detection and assessment

using ultrasound imaging is a very challenging task, even for experienced radi-

ologists, due to the ultrasound image characteristics and variations in thyroid

nodule sizes and appearances. Existing Computer-Aided Diagnosis (CAD) sys-

tems are not fully automated and also have limited performances. This thesis

presents a fully automated thyroid CAD system to assist radiologists. The

proposed CAD system consists of four components: nodule detection, nodule

segmentation, thyroid segmentation, and nodule classification from thyroid ul-

trasound scans acquired through ultrasound examination of the thyroid. For

nodule detection, a novel one-stage detection network, TUN-Det, is proposed,

which introduces Residual U-blocks (RSU) to built the TUN-Det backbone,

and presents a newly designed multi-head architecture comprised of three par-

allel RSU variants to replace the plain convolution layers of both the classifica-

tion and regression heads. Residual blocks enable each stage of the backbone

to extract both local and global features, and the multi-head design embeds

the ensemble strategy into one end-to-end module to improve the accuracy and

robustness by fusing multiple outputs generated by diversified sub-modules.

TUN-Det achieves very competitive results against the state-of-the-art mod-

els on the overall Average Precision (AP ) metric and outperforms them in

terms of AP35 and AP50. For nodule segmentation, a residual dilated U-Net,
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resDUnet, is proposed, which has a residual structure, and also dilated con-

volution layers are embedded in the bottleneck part of the network. Residual

connections lead to consistent training and dilated convolution layers generate

richer multi-scale features. Our resDUnet achieves a high Dice score and much

smooth visual results. For thyroid gland segmentation in ultrasound sweeps,

LSTM-UNet is proposed, which uses time-distributed convolution blocks and

bidirectional convolutional LSTM in the U-Net. The building blocks extract

spatial-temporal information and consider the inter-frame correlation of con-

secutive frames. LSTM-Unet avoids the under-segmentation problem, which

is a common issue in thyroid segmentation methods. For the nodule classifica-

tion component, two rule-based classifiers are proposed for nodule composition

and nodule margin, which use different image processing techniques and de-

cide based on the pre-defined rules. The rules are defined based on the clinical

definitions. All Experimental results indicate the promising performance of

the proposed CAD system in clinical applications.

iii



Preface

This study was approved by the health research ethics board of the University

of Alberta.

iv



Acknowledgements

First, I would like to thank the industrial collaborator, Medo.ai, and Dr.

Dornoosh Zonoobi to support me and give me the chance to work on their

valuable project. I learned a lot from their amazing AI team and I am so

grateful that I could be part of that.

I would also like to thank my supervisors Dr. Kumar Punithakumar

and Dr. Pierre Boulanger, and Servier Virtual Cardiac Centre director, Dr.

Michelle Noga. They steered me in the right direction all the time and without

their passionate help and support, this project could not have been successfully

conducted.

Finally, I especially thank my lovely family who always encourages and

supports me to accomplish my goals and follow my dreams.

v



Table of Contents

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Challenges and Goal . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 6

2.1 Feature-based Methods . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Clinical Features . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Hand-crafted Features . . . . . . . . . . . . . . . . . . 7

2.2 Conventional Methods . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Thyroid Nodule Detection . . . . . . . . . . . . . . . . 7

2.2.2 Thyroid and Nodule Segmentation . . . . . . . . . . . 8

2.3 Deep Learning Methods . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Thyroid Nodule Detection . . . . . . . . . . . . . . . . 8

2.3.2 Thyroid and Nodule Segmentation . . . . . . . . . . . 9

2.4 Object Detection Methods . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Two-stage methods . . . . . . . . . . . . . . . . . . . . 9

2.4.2 One-stage methods . . . . . . . . . . . . . . . . . . . . 10

2.4.3 Anchor-free methods . . . . . . . . . . . . . . . . . . . 11

2.5 Object Segmentation Methods . . . . . . . . . . . . . . . . . . 11

3 Proposed Methods 13

3.1 Thyroid Nodule Detection . . . . . . . . . . . . . . . . . . . . 13

3.1.1 TUN-Det Architecture . . . . . . . . . . . . . . . . . . 14

vi



3.1.2 Multi-head Classification and Regression Module . . . 15

3.1.3 Supervision . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Thyroid Nodule Segmentation . . . . . . . . . . . . . . . . . . 18

3.2.1 resDUnet Architecture . . . . . . . . . . . . . . . . . . 19

3.2.2 Supervision . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Thyroid Gland Segmentation . . . . . . . . . . . . . . . . . . 20

3.3.1 LSTM-UNet Architecture . . . . . . . . . . . . . . . . 21

3.4 Thyroid Nodule Classification . . . . . . . . . . . . . . . . . . 23

3.4.1 Nodule Composition . . . . . . . . . . . . . . . . . . . 24

3.4.2 Nodule Margin . . . . . . . . . . . . . . . . . . . . . . 24

4 Experimental Results 27

4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Thyroid Nodule Detection . . . . . . . . . . . . . . . . 27

4.1.2 Thyroid Nodule Segmentation and Classification . . . . 28

4.1.3 Thyroid Gland Segmentation . . . . . . . . . . . . . . 28

4.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Average Precision . . . . . . . . . . . . . . . . . . . . . 28

4.2.2 Dice Score . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.3 Hausdorff Distance . . . . . . . . . . . . . . . . . . . . 29

4.2.4 Root Mean Square Error . . . . . . . . . . . . . . . . . 30

4.2.5 Confusion Matrix and Kappa Score . . . . . . . . . . . 30

4.2.6 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Thyroid Nodule Detection . . . . . . . . . . . . . . . . . . . . 31

4.3.1 Implementation Details . . . . . . . . . . . . . . . . . . 31

4.3.2 Ablation Study . . . . . . . . . . . . . . . . . . . . . . 31

4.3.3 Comparisons against State-of-the-arts . . . . . . . . . . 32

4.4 Thyroid Nodule Segmentation . . . . . . . . . . . . . . . . . . 34

4.4.1 Implementation Details . . . . . . . . . . . . . . . . . . 34

4.4.2 Comparisons against other segmentation models . . . . 34

4.5 Thyroid Gland Segmentation . . . . . . . . . . . . . . . . . . 35

4.5.1 Implementation Details . . . . . . . . . . . . . . . . . . 35

vii



4.5.2 Comparisons against other segmentation models . . . . 36

4.6 Thyroid Nodule Classification . . . . . . . . . . . . . . . . . . 36

4.6.1 Nodule Composition . . . . . . . . . . . . . . . . . . . 37

4.6.2 Nodule Margin . . . . . . . . . . . . . . . . . . . . . . 37

5 Conclusion and Future Works 40

5.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

References 42

viii



List of Tables

4.1 Ablation on different backbones and heads configurations. . . 31

4.2 Comparisons against the state-of-the-arts. . . . . . . . . . . . 32

4.3 Comparisons against U-Net and UNet++. . . . . . . . . . . . 34

4.4 Comparisons against the state-of-the-arts. . . . . . . . . . . . 36

4.5 Nodule composition confusion matrix. . . . . . . . . . . . . . . 37

ix



List of Figures

1.1 Thyroid ultrasound TRX and SAG views. . . . . . . . . . . . 2

1.2 Challenging nodule examples. . . . . . . . . . . . . . . . . . . 3

1.3 Block diagram of the proposed CAD system . . . . . . . . . . 4

3.1 Architecture of the proposed TUN-Det. . . . . . . . . . . . . . 15

3.2 Multi-head classification and regression module. . . . . . . . . 16

3.3 Schematic architecture of the proposed resDUnet. . . . . . . . 20

3.4 Schematic architecture of the proposed LSTM-UNet. . . . . . 21

3.5 Block diagram of BiConvLSTM. . . . . . . . . . . . . . . . . . 22

3.6 TIRADS five nodule characteristics and their definitions. . . . 23

3.7 Rule-Based thyroid nodule composition classifier. . . . . . . . 25

3.8 Rule-Based thyroid nodule margin classifier. . . . . . . . . . . 26

4.1 Qualitative comparison of thyroid nodule detection methods. . 33

4.2 Boxplot of Dice scores of thyroid nodule segmentation methods

on three nodule sizes. . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Qualitative comparison of thyroid nodule segmentation methods. 35

4.4 Qualitative comparison of thyroid gland segmentation methods. 37

4.5 Trade off between solid and mixed solid cystic categories. . . . 38

4.6 Difficult thyroid nodule margin examples. . . . . . . . . . . . . 39

x



Acronyms

Computer Aided Diagnosis (CAD)

Convolutional Neural Network (CNN)

Feature Pyramid Network (FPN)

Fine Needle Aspiration (FNA)

Fully Convolutional Network (FCN)

Long Short-Term Memory (LSTM)

Non-Maximum Suppression (NMS)

Recurrent Neural Network (RNN)

Region Proposal Network (RPN)

Region Of Interest (ROI)

Residual Dilated UNet (resDUnet)

ReSidual U-blocks (RSU)

Sagital (SAG)

Support Vector Machine (SVM)

Thyroid Ultrasound Nodule Detection (TUN-Det)

Thyroid Imaging, Reporting, and Data System (TIRADS)

Transverse (TRX)

Ultrasound (US)

Weighted Boxes Fusion (WBF)

xi



Chapter 1

Introduction

1.1 Overview

Over the last few decades, the incidence of thyroid cancer has rapidly increased

all over the world [85], [92]. In 2019, United States reported almost 52,070

adults (37,810 women, 14,260 men) diagnosed with thyroid cancer, which re-

sulted in a total of 2170 deaths [85]. Canadian Cancer Statistics has also re-

ported 230 deaths among 8200 adults (6100 women and 2100 men) who were

diagnosed with thyroid cancer [10]. According to these statistics, women are

more likely to develop thyroid cancer than men, and its prevalence increases

with age. A thyroid nodule is the main concept in thyroid cancer. When cells

grow abnormally within the thyroid gland, they form thyroid nodules that can

be benign or malignant (cancerous) [3]. As part of clinical workflow in thyroid

sonography, thyroid nodules are measured, and their sizes are monitored over

time as significant growth could be a sign of thyroid cancer. Thyroid nodules

are most common in the general population and occur up to 71% of people [97].

Based on epidemiological studies, the prevalence of thyroid nodules detected

by high-resolution ultrasound varies from 19% to 68% in a random popula-

tion[33]. Almost 90% of these nodules are benign and are unlikely to grow in

size and become cancerous, even if they grow [28]. However, if they become

malignant, they lead to a high mortality rate [42]. The mortality rate could

be reduced if these nodules are diagnosed and treated in the early stages.
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1.2 Challenges and Goal

Thyroid nodules larger than 1 cm are considered suspicious based on their

echogenic texture, and they are recommended for biopsy via Fine Needle As-

piration (FNA). However, FNA is highly invasive, costly, and sometimes in-

conclusive. When combined with the low specificity of physical examinations,

this results in over-diagnosis and over-treatment of thyroid nodules, which is

a frequent source of anxiety for the patient and clinician, and meanwhile, a

major financial burden on healthcare systems.

Ultrasound (US) is the primary diagnostic modality for thyroid examina-

tion (for both the detection and characterization of thyroid nodules), which

is performed in both transverse (TRX) and sagittal (SAG) orientations using

an ultrasound probe (Figure. 1.1). In addition to being non-invasive, safe,

(a) TRX (b) SAG

Figure 1.1: Thyroid ultrasound TRX and SAG views.

portable, inexpensive, and fast (in terms of acquisition time) for thyroid ex-

amination, many thyroid nodules are detectable in ultrasonography, even if

they are too small to be detected by palpation [101](high sensitivity). How-

ever, ultrasound images have variable spatial resolutions and heavy noises such

as speckle noise, which make the detection, segmentation, and classification

tasks complicated. Thyroid nodules have diverse sizes, shapes, and appear-

ances and they sometimes look very similar to the thyroid tissues and hard

to be defined by clear boundaries (e.g . ill-defined nodule). Some nodules have

heterogeneous patterns due to diffuse thyroid disease, which makes these nod-

ules hard to differentiate from each other and their backgrounds. Besides, the

2



occasional occurrence of multiple thyroid nodules within the same image, and

large thyroid nodules with complex interior textures, which could be consid-

ered internal nodules, further increase the difficulty of the nodule detection

task. Figure. 1.2 shows some challenging thyroid nodules. To reduce subjec-

tive errors by experts, avoid unnecessary biopsies and surgeries, and precise

rapid diagnosis in thyroid ultrasound images, there is an urgent need for a

thyroid Computer-Aided Diagnosis (CAD) system to assist radiologists and

increase the survival rate [14].

Figure 1.2: Challenging nodule examples.

1.3 Thesis Contributions

In this thesis, we propose a fully automated thyroid CAD system (Figure. 1.3).

Our contribution consists of three folds:

1. Nodule detection: CAD systems require preliminary finding Region of

Interest (ROI) of nodules for further processing. In traditional CAD sys-

tems, the ROIs are manually defined by experts, which is time-consuming

and highly relies on the experiences of the radiologists and sonographers.

To address this limitation, the first component of our proposed CAD sys-

tem is automatic thyroid nodule detection, which predicts the bounding

boxes of thyroid nodules from ultrasound images and plays a very im-

portant role in computer-aided thyroid cancer diagnosis.

2. Nodule and Thyroid segmentation: Thyroid nodule assessment requires a

precise segmentation of the nodule’s boundary and thyroid gland. Since

nodules boundaries are often blurred due to noises and artifacts, man-

ual segmentation of nodules is time-consuming, tedious, and it leads to
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Figure 1.3: Block diagram of the proposed CAD system

intraobserver or interobserver variability. Moreover, the pixel intensity

distribution inside the nodule varies considerably depending on the nod-

ule composition, which makes the manual segmentation more difficult.

Besides, to analyze the characteristics of the thyroid for nodule assess-

ment and also filter the false detected nodules outside of the thyroid

gland, it is important to segment the thyroid gland as well. Therefore,

the next components of our CAD system are nodule and thyroid seg-

mentation modules, which respectively segments nodules and thyroid,

to eliminates all the mentioned shortcomings.

3. Nodule classification: Thyroid nodule diagnosis is conducted by nodule

characteristics classification. Since ultrasound is subject to high variabil-

ity in interpretation, in order to standardize the reporting and charac-

terization of thyroid nodules, the American College of Radiology intro-

duced the Thyroid Imaging Reporting and Data System (TIRADS) [31],

which is based on five characteristics of the nodule including echogenic-

ity, composition, shape, margin, and presence of calcification. Various

modifications of the TIRADS, such as the Korean Society of Thyroid Ra-

diology TIRADS [84], have also been proposed. Although these modified

TIRADS reduce the variability in reporting nodules, the fundamental

limitation is that individual characteristics of the nodule are determined

manually, and this makes the assessment subjective. Based on the orig-

inal TIRADS definition, composition and margin of nodules need to
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be determined for fast and reliable risk stratification of them. Hence,

the last component of the proposed CAD system is nodule classification

which classifies the composition and margin of the segmented nodule.

1.4 Outline

This thesis includes 5 chapters:

• Chapter 2 reviews previous works in thyroid nodule detection, segmenta-

tion, and assessment. It also provides the literature on object detection

and segmentation.

• Chapter 3 proposes our new fully automated thyroid CAD system in-

cluding nodule detection, nodule and thyroid segmentation, and nodule

classification.

• Chapter 4 presents the datasets that we used, the evaluation metrics,

and our experimental results.

• Chapter 5 concludes the thesis with a summary and presents a direction

for the future work.
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Chapter 2

Literature Review

In this chapter, we look into the previous CAD systems for thyroid ultrasound

nodule assessment, including nodule detection, segmentation, and classifica-

tion. We also provide the literature on object detection and segmentation

methods.

2.1 Feature-based Methods

These methods extract features from ultrasound images (or the nodule area)

and then classify them using a classifier to evaluate the nodule.

2.1.1 Clinical Features

These methods use sonographic features (i.e., size, aspect ratio, shape, mar-

gin, echogenicity, internal composition, calcification, peripheral halo, capsule,

cervical lymph node, and vascularity) to diagnose thyroid malignancy. Zhang

et al. [110] feed a set of 11 features, collected from thyroid US examination,

and one feature from Real-time Elastography (RTE) into the nine well-known

machine learning classifiers to estimate malignancy of a nodule. Based on

their experiments, the Random Forest classifier has the highest performance

among the other classifiers. [68] compares the performance of three classifiers:

Random Forest, Support Vector Machine (SVM) and Logistic Regression, on a

feature set. In [103] the most discriminative sonographic features are selected

using the Relief feature selection method and fed into Extreme Learning Ma-

chine (ELM) classifier to identify malignant nodules.
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2.1.2 Hand-crafted Features

The pipeline of these traditional methods includes feature extraction from nod-

ule ROI, an optional feature selection technique, and a classifier to discriminate

the malignant nodules from the benign ones.

Here, hand-crafted features refer to spatial and frequency textural features,

shape features, and statistical features. Textural features include Gray-Level

Co-occurrence Matrix (GLCM) [12], [15], [26], [93], Gray-Level Run Length

Matrix (GLRLM) [12], [15], [109], Spatial Gray-Level Dependence Features

(SGLDF) [72], fractal textures [72], [109], Local Binary Patterns (LBP) [49],

Gabor transform [3] Discrete Wavelet Transform (DWT) [4], Wavelet features

[12], [95], Fourier Power Spectrum [109], and local Fourier coefficient [12].

Shape features include morphological features [95], [109]. Statistical features

include Statistical feature matrix [12], [109], first-order statistics [6], [26], [109],

Grey-Level Histograms (GLH) [68], and Higher Order Spectral (HOS) entropy

[73].

Some feature selection techniques that have been used in this field are

k-fold [12], Relief-F [3], and minimum redundancy–maximum relevance [26].

Classifiers include SVM [3], [12], [15], [26], [49], [72], [73], [93], [95], [109],

Random Forest [70], K-Nearest Neighbor (K-NN) [3], Fuzzy KNN [56], Neural

Networks [3], [95], Decision Tree [3], and Adaboost [4]. Due to the complex

structure of thyroid nodules and the existing noise in ultrasound images, these

methods can not achieve satisfactory results because they need very high dis-

criminative local and global features from different scales to determine nodule

malignancy. Moreover, overfitting usually happens to the classifiers due to

insufficient features.

2.2 Conventional Methods

2.2.1 Thyroid Nodule Detection

There are a few conventional methods for automatic nodule detection. Kerami-

das et al. [40] define thyroid ROI and extract LBP features from the ROI
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patches and classify these patches as normal thyroid or nodular tissue using

a K-NN classifier. In [41], they extract Fuzzy LBP (FLBP) and Fuzzy GLH

(FGLH) features and use SVM and K-NN classifiers.

2.2.2 Thyroid and Nodule Segmentation

There are several conventional methods for thyroid and nodule segmentation.

Illanes et al. [38] extract texture features from US image patches using Con-

tinuous Wavelet Transformation(CWT) and parametrical modeling, then seg-

ment thyroid patches by K-means clustering. In [13], Radial Basis Function

(RBF) neural network is used to segment thyroid by classifying US image

patches based on the extracted textural and statistical features. Narayan et

al. [65] perform speckle patch similarity estimation to segment thyroid. Tsan-

tis et al. [94] create a hybrid multi-scale model (HMM) combined with wavelet

edge detection and Hough transform to segment nodules. [36], [62], [66], [80]

and [69] use active contours to segment nodules and thyroid, respectively.

Variable Background Active contour (VBAC) based on Active contours with-

out edges (ACWE) model [79], and Genetic-algorithm VBAC (GA VBAC)

[37] have been proposed for nodule segmentation. In [47] Spatial neutrosophic

clustering and level-set are used to segment nodules. Graph cut and Itera-

tive random walks solver are used for thyroid segmentation in [69] and [22],

respectively.

2.3 Deep Learning Methods

2.3.1 Thyroid Nodule Detection

Recently, few studies have proposed automatic thyroid nodule detection based

on deep learning. Song et al. [88] propose a multi-scale SDD-based network

embedded by nodule prior distribution guided layers. Liu et al. [53] propose

multi-scale region-based detection by combining Feature Pyramid Network

(FPN), Faster-RCNN, and a prior distribution for size and shape of nodules.

[100], [111], [106], and [1] use YOLOv2, YOLOv3, SSD, and Mask-RCNN,

respectively for nodule detection.
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2.3.2 Thyroid and Nodule Segmentation

Several deep models have been proposed for thyroid and nodule segmentation

[16]. Deep Convolutional Neural Network (CNN) models with multiple inter-

mediate layers [59], [60], eight-layer Fully Convolutional Network (FCN) [50],

deep VGG19 based model [108], and U-Net based model [113] have been ap-

plied for nodule segmentation. In [69], a 3D-UNet model is applied to segment

the entire thyroid gland.

2.4 Object Detection Methods

In the past decades, large number of object detection approaches have been

proposed [118]. Early approaches mainly use hand-crafted features to detect

specific targets like faces [98], [99], humans [25]. Later, detection models have

been extended to detect more general targets based on different features in-

cluding image gradients (BING [21]), edges (EdgeBox [117]), image structures

(Selective Search [96]), etc. However, due to the large variations of targets,

traditional methods suffer from lack of accuracy and robustness.

In recent years, with the rapid development of machine learning and deep

learning, object detection has achieved great improvements by introducing

machine learning and deep learning techniques. These methods can be mainly

categorized into the following groups: (1) Two-stage models; (2) One-stage

models; (3) Anchor-free models.

2.4.1 Two-stage methods

In these detectors, regions of interest are generated by a region proposal

method or a region proposal network, then these candidate regions are sent to

the main pipeline for detection and classification. pioneer RCNN [30] uses an

offline selective search as the first stage. In the second stage, it uses a CNN

to extract features from the wrapped region proposals and classifies them by

SVM. However, RCNN is very slow. Spatial pyramid pooling network (SPP-

net) [34] was proposed to accelerate RCNN. SPP-net shares convolutional fea-

ture computation to avoid over-computation. It feeds an entire image to CNN
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once and then extracts proposal features from feature map regions. Then,

Fast-RCNN [29] was proposed to speed up training and testing even more

and improve detection performance by using single-stage training. Similar to

SPP-net, the computation sharing strategy is also employed. Although Fast-

RCNN was significantly faster, the fixed region proposal algorithm was still a

major bottleneck. Faster-RCNN [77] addresses this problem by proposing Re-

gion Proposal Network (RPN), in which proposals are predicted from features

through a separate convolutional network. It utilizes multi-task loss to train

RPN and detection networks together. In R-FCN [24], the computations after

the ROI pooling layer are shared and moved after the last convolutional layer.

Position-sensitive score maps were created in the following to increase detec-

tion accuracy. Since no region sub-network is applied on each ROI, R-FCN

is faster than Faster-RCNN. Cascaded-RCNN [9] is another Faster-RCNN ex-

tension, which addresses overfitting problem during training and quality mis-

match issue at inference time by increasing IoU thresholds to train a sequence

of detectors.

2.4.2 One-stage methods

In these detectors, there is no region proposal preliminary stage, and the whole

pipeline happens in a single stage, which makes these methods faster. OverFeat

[83] is one of the pioneers in one-stage detectors, which uses image pyramid

and multi-scale sliding window within a CNN and combines their predictions.

OverFeat suffers from poor detection accuracy. YOLO (v1, v2, v3, v4, v5)

[7], [74]–[76] and SSD [54] were proposed later to leverage the accuracy and

meanwhile, improve the speed. They grid input image, consider a set of de-

fault boxes (anchor boxes) for each grid cell, and fed them all to a CNN once

to score the presence of objects in these boxes. Here, there is no independent

computation per region. extended versions of YOLO (v2, v3, v4, v5) [7], [75],

[76] focus on achieving higher detection accuracy and faster speed. Unlike

YOLO, SSD applies multi-scale feature maps to detect objects in different

scales. Retinanet [51] is another representative model in the one-stage cate-

gory, which achieved a high speed and detection accuracy by addressing the
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extreme imbalance issue between foreground (contains object) and background

(without object) classes during model training. A new Focal loss, introduced

in Retinanet, puts more weight on a sparse set of hard misclassified examples

and less weight on easy well-classified ones.

2.4.3 Anchor-free methods

Since both two-stage and one-stage methods are based on pre-defined anchor

boxes, they are called anchor-based methods. The number of anchor boxes,

their sizes, and aspect ratios highly affect detection performance in anchor-

based methods. Therefore, they need to be determined carefully. Moreover, a

large number of anchor boxes is required to guarantee a sufficient overlap with

ground truth and as most of these boxes are labeled as background, it causes an

imbalance issue between foreground and background during training. In order

to overcome the aforementioned limitations in anchor-based detectors, anchor-

free methods were proposed recently, which can be keypoint-based or center-

based. In key-point based approaches, each object bounding box is represented

by a set of keypoints, which are predicted through a CNN. CornerNet [48],

CenterNet [27], ExtremeNet [114] and RepPoints [107] are from this category.

Center-based approaches consider central points, such as FoveaBox [46], or

region points, such as FCOS [91], inside the object bounding box as foreground

and predict the distance to the box borders.

2.5 Object Segmentation Methods

Object segmentation problem has been studied for decades in medical and nat-

ural images [64]. Early approaches use various conventional techniques such

as thresholding, edge detection, graph cut [8], active contours [11], level-set

[61], and superpixels [2] to determine target boundaries [82]. However, these

approaches perform well only when the target boundaries are clear and well-

defined. Motivated by the success of deep learning in image segmentation

tasks, recent approaches focus on deep learning techniques. FCN [58] is one

of the pioneers which uses convolutional layers to generate the segmentation
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mask for an input image. In FCN all fully-connected layers are replaced by

fully-convolutional layers to covert classification scores to segmentation out-

put. To produce more accurate segmentation, feature maps from shallow and

deep layers are combined together through skip connections. Due to the large

receptive field of FCN, it ignores global information and some useful seman-

tic context. To address this issue, several methods use graphical models to

feed semantic context into FCN [17], [57], [81], [112]. ParseNet [55] also adds

global features to local feature maps by using global average pooling to make

the segmentation much refined. Pyramid scene parsing network (PSPNet)

learns global context information by extracting different patterns from an in-

put image and feeding these feature maps into a pyramid pooling module to

fuse features from different pyramid scales. DeepLab family [17]–[20] captures

global context information from different scales by applying several dilated

(atrous) convolutions with different dilation rates.

Another well-known deep learning segmentation framework is encoder-

decoder architecture, such as SegNet [5], V-Net [63], W -Net [104], HRNet

[89], U-Net [78] and its versions, including UNet++[116], Dense-UNet [32],

Res-UNet [105], Attention-UNet [67], and U2-Net [71]. U-Net based models

are the most popular methods in medical image segmentation. Their encoder

(contracting) and decoder (expanding) paths are almost symmetric. The en-

coder is responsible for extracting features from inputs and capturing their

contexts. The decoder makes localization precise and leads to a smooth seg-

mentation. Skip connections append high-resolution feature maps from the

encoder part to the corresponding up-sampled feature maps at the same level

in the decoder part to keep pattern information.
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Chapter 3

Proposed Methods

In this section, we will discuss each module in the proposed end-to-end pipeline

of the fully automated thyroid CAD system. Modules include automatic thy-

roid nodule detection, automatic segmentation of nodule and thyroid gland

boundaries, and nodule classification.

3.1 Thyroid Nodule Detection

Thyroid nodule detection in ultrasound images is a very challenging task in

both medical image analysis and computer vision fields. As mentioned in

Chapter 1, different characteristics of ultrasound images from natural images,

and also thyroid nodules characteristics lead to high inter-observer variability

among human readers, and analogous challenges for machine learning tools,

which often lead to inaccurate or unreliable nodule detection. To address the

above issues, the utilization of multi-scale features is very important. There-

fore, we propose a novel one-stage thyroid ultrasound nodule detection model,

called TUN-Det, whose backbone is built upon the ReSidual U-blocks (RSU)

[71], which is capable of extracting richer multi-scale features from feature

maps with different resolutions [71]. In addition, we design a multi-head ar-

chitecture for both the nodule bounding boxes classification and regression

in our TUN-Det to predict more reliable results. Each multi-head module is

comprised of three different heads, which are variants of the RSU block and

arranged in parallel. Each multi-head module outputs three separate outputs,

which are supervised by losses computed independently in the training process.
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In the inference step, these outputs of each multi-head module are fused by the

Weighted Boxes Fusion (WBF) algorithm [87], which is similar to the ensemble

strategy. This strategy is able to greatly improve the detection performance.

3.1.1 TUN-Det Architecture

Feature Pyramid Network (FPN) is one of the most popular architectures

in object detection. The FPN architecture is able to efficiently extract high-

level and low-level features from deeper and shallow layers, respectively. As we

know, multi-scale features play very important roles in object detection. High-

level features are responsible for predicting the classification scores while low-

level features are used to guarantee the bounding boxes’ regression accuracy.

The FPN architectures usually take existing image classification networks,

such as VGG [86], ResNet [35], and so on, as their backbones. However,

each stage of these backbones is only able to capture single-scale features

because image classification backbones are designed to perceive only high-level

semantic meaning while paying less attention to the low-level or multi-scale

features [71]. To capture more multi-scale features from different stages, we

build the TUN-Det upon the RSU, which was first proposed in salient object

detection U2-Net [71]. Our proposed TUN-Det is also a one-stage FPN similar

to RetinaNet [51].

Figure 3.1 illustrates the overall architecture of our newly proposed TUN-

Det for ultrasound thyroid nodule detection. As we can see, the backbone of

our TUN-Det consists of five stages. The first stage is a plain convolution layer

with stride of two, which is used to reduce the feature map resolution. The

second to the fifth stages are RSU-7, RSU-6, RSU-5 and RSU-4, respectively.

There is a maxpooling operation between the neighboring stages. Compared

with other plain convolutions, the RSUs are able to capture both local and

global information from feature maps with arbitrary resolutions[71]. There-

fore, richer multi-scale features {C3, C4, C5} can be extracted by the backbone

built upon these blocks for supporting nodule detection. Then, an FPN [51]

is applied on top of the backbone’s features {C3, C4, C5} to create multi-scale

pyramid features {P3, P4, P5, P6, P7}, which will be used for bounding boxes
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Figure 3.1: Architecture of the proposed TUN-Det.

regression and classification.

3.1.2 Multi-head Classification and Regression Module

After obtaining the multi-scale pyramid features {P3, P4, P5, P6, P7}, the most

important step is regressing the coordinates of bounding boxes and predicting

their probabilities of being nodules. These two processes are usually imple-

mented by a regression module BBOXi = R(Pi) and a classification module

CLASi = C(Pi), respectively. The regression outputs {BBOX3, BBOX4, ..., BBOX7}

and the classification outputs {CLAS3, CLAS4, ..., CLAS7} from different fea-

tures are then fused to achieve the final detection results by conducting non-

maximum suppression (NMS).

To further reduce the False Positives (FP) and False Negatives (FN) in

the detection results, a multi-model ensemble strategy [115] is usually con-

sidered. However, this approach is not preferable in real-world applications

due to high computational and time costs. Hence, we design a multi-head

(three-head) architecture for both classification and regression modules to ad-

dress this issue. Particularly, each classification and regression module consists

15



Figure 3.2: Multi-head classification and regression module.

of three parallel-configured heads, {C(1), C(2), C(3)}, and {R(1), R(2), R(3)}, re-

spectively. Given a feature map Pi, three classification outputs, {C(1)(Pi),

C(2)(Pi), C
(3)(Pi)}, and three regression outputs, {R(1)(Pi), R

(2)(Pi), R
(3)(Pi)},

will be produced. In the training process, their losses will be computed sep-

arately and summed to supervise the model training. In the inference step,

the Weighted Boxes Fusion (WBF) algorithm [87] are introduced to fuse the

regression and classification outputs of generated different heads. This design

embeds the ensemble strategy into both the classification and regression mod-

ule so that it is able to improve the detection accuracy while avoiding training

multiple models, which is a standard procedure in common ensemble methods.

Architectures of R(i) and C(i) are the same except for the last convolution

layer (Figure. 3.2). To increase the diversity of the prediction results and hence
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reducing the variance, three variants, CBAM RSU-7, CoordConv RSU-7, and

BiFPN RSU-7, of RSU-7 are developed to construct the multi-head modules.

The first head is CBAM RSU-7, in which a Convolutional Block Attention

Module (CBAM) [102] block is added after the standard RSU-7 block to refine

features by channel (Mc) and spatial (Ms) attention maps. The formulation

can be described as:

Fc = Mc(Fin)⊗ Fin,

Fs = Ms(Fc)⊗ Fc,
(3.1)

where Fin is an input feature map, Fc and Fs are feature maps after refine-

ment by the channel attention map and the following spatial attention map,

respectively. Channel and spatial attention maps are computed as follows:

Mc(Fin) = σ(MLP (AvgPool(Fin)) +MLP (MaxPool(Fin))),

Ms(Fc) = σ(f 7×7([AvgPool(Fc);MaxPool(Fc)])),
(3.2)

The second head is CoordConv RSU-7, which replaces the plain convolution

layers in the original RSU-7 by Coordinate Convolution [52] layers to encode

geometric information. CoordConv can be described as:

conv(concat(Fin, Fi, Fj)), (3.3)

where Fin ∈ R(h×w×c) is an input feature map, Fi and Fj are extra row and

column coordinate channels, respectively.

The third head is BiFPN RSU-7, which expands RSU-7 by adding a bi-

directional FPN (BiFPN) [90] layer between the encoding and decoding stages

to improve multi-scale feature representation. BiFPN layer has a ∩-shape

architecture consisted of bottom-up and top-down pathways, which helps to

learn high-level features by fusing them in two directions. Here, we use a four-

stage BiFPN layer to avoid complexity and reduce the number of trainable

parameters.

3.1.3 Supervision

As shown in Figure 3.1, our newly proposed TUN-Det has five groups of clas-

sification and regression outputs. Therefore, the total loss is the summation
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of these five groups of outputs:

L =
5∑
i=1

αiLi, (3.4)

where αi and Li are the weight and the loss of each group, respectively. all αi

values are set to 1.0 here. For every anchor, each group produces three classifi-

cation outputs {C(1), C(2), C(3)} and three regression outputs {R(1), R(2), R(3)}.

Therefore, the loss of each group can be defined as

Li =
∑3

j=1λ
C(j)

i LC(j)

i +
∑3

j=1λ
R(j)

i LR(j)

i , (3.5)

where LC(j)

i and LR(j)

i are the corresponding losses for classification and regres-

sion outputs, respectively. λC
(j)

i and λR
(j)

i are their corresponding weights to

determine the importance of each output. We set all the λ weights to 1.0 in

our experiments. LC(j)

i is the focal loss [51] for classification. It can be defined

as follows:

LC(i)

i = Focal(pt) = βt(1− pt)γ × BCE(pc, yc),

pt =

{
pc if yc = 1

1− pc otherwise
, βt =

{
β if yc = 1

1− β otherwise,
(3.6)

where pc and yc are predicted and target classes respectively. β and γ are focal

weighting factor and focusing parameter, respectively that are set to 0.25 and

2.0, respectively.

LR(j)

i is the Smooth-L1 loss [29] for regression, which is less sensitive to

outliers than L2 loss and it helps to avoid exploding gradients [29]. Smooth-

L1 is defined as:

LR(j)

i = Smooth-L1(pr, yr) =

{
0.5(σx)2 if |x| < 1

σ2

|x| − 0.5
σ2 otherwise,

, x = pr − yr (3.7)

where pr and yr are predicted and ground-truth bounding boxes respectively.

σ splits loss into L2 and L1 regions by defining the point where the regression

loss changes from L2 to L1 loss. It is set to 3.0 in our experiments.

3.2 Thyroid Nodule Segmentation

After finding ROI by our proposed thyroid nodule detection model TUN-Det,

the next key module in the CAD system is the precise segmentation of nodule
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boundaries. As mentioned in Chapter 1, thyroid nodule segmentation in ultra-

sound images is also challenging due to the wide range of nodule textures and

sizes, and also ultrasound images characteristics. Here, we propose residual

dilated U-Net model, called resDUnet, to generate a segmentation mask for

each nodule based on its ROI. Our resDUnet has a residual structure, which

improves its learning ability, and accelerates the convergence. The additional

dilated convolution layers are also applied to generate multi-scale features to

map the encoding to decoding path of the U-Net.

3.2.1 resDUnet Architecture

The U-Net architecture uses a series of convolution and maxpooling opera-

tions in the encoding path to learn image features. The spatial and contextual

information of these features is reconstructed in the decoding path through

transposed convolutions and skip connections from the encoder. The newly

proposed resDUnet improves the segmentation result by adding residual short-

cut connections [35] in the building blocks and embedding dilated convolution

layers in the bottleneck part of the network. Figure 3.3 illustrates the overall

architecture of the proposed resDUnet for ultrasound thyroid nodule segmen-

tation. Residual connections intend to eliminate vanishing and exploding gra-

dient problems and lead to consistent training [35]. Dilated convolution layers

apply 3× 3 convolution with different dilation rates, which can be defined as:

(F ∗l k)(p) =
∑
s+lt=p

F (s)k(t), (3.8)

where ∗l is the dilated convolution operator. F and k are discrete function and

discrete 3×3 filter, respectively. Considering that dilated convolution increases

receptive field while keeping the resolution, and also different dilation rates

apply different receptive fields, more robust features are extracted in different

scales.
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Figure 3.3: Schematic architecture of the proposed resDUnet.

3.2.2 Supervision

Our proposed resDUnet is trained with Dice coefficient loss function, which is

defined as:

Dice(p, y) = −2 ∗ (p ∩ y) + ε

(p+ y) + ε
, (3.9)

where p and y are the predicted segmentation mask and ground-truth mask,

respectively. ε is added to ensure that the function is always defined.

3.3 Thyroid Gland Segmentation

Thyroid gland segmentation plays an important role in analyzing thyroid char-

acteristics for nodule assessment and also filtering the false detected nodules

outside of the thyroid gland. Moreover, it assists in detecting thyroid ab-

normalities. A thyroid ultrasound scan consists of a series of thyroid picture

frames, which is called a sweep. Thyroid segmentation is also a challenging task

because the thyroid gland is more sensitive to ultrasound image quality, noise

and artifacts due to its size, which usually causes the under-segmentation prob-

lem. To address this issue, we propose LSTM-UNet which considers the inter-

frame correlation information of consecutive frames by using time-distributed

convolution blocks and embedding bidirectional convolutional LSTM (BiCon-

vLSTM) in the U-Net.
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Figure 3.4: Schematic architecture of the proposed LSTM-UNet.

3.3.1 LSTM-UNet Architecture

There is a correlation between consecutive temporal frames in the sweep. Since

sequential data can be processed using successful Recurrent Neural Networks

(RNNs), we integrate time-distributed convolution blocks and BiConvLSTM

into the U-Net to make its predictions more robust. The intuition behind

using these building blocks is exploiting spatio-temporal correlation of consec-

utive frames due to the fact that the consecutive frames represent correlated

features. Figure 3.4 shows the overall architecture of our proposed LSTM-

UNet for ultrasound thyroid gland segmentation. As we can see, when input

sequence length is 3 with sample rate 1, each frame in the sweep is fed to the

network along with its previous and next frames as a 3D input sub-sequence to

predict its segmentation mask. Time-distributed is a wrapper that applies a

convolution layer to each temporal frame of the input sequence independently.

BiConvLSTM is a forward and backward ConvLSTM, which its LSTM fully-

connected layers have been replaced with convolutional layers to maintain spa-

tial information and improve the prediction of image sequences. ConvLSTM
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is defined as:

it = σ(Whi ∗Ht−1 +Wxi ∗Xt) + bi)

ft = σ(Whf ∗Ht−1 +Wxf ∗Xt) + bf )

C̃t = tanh(Whc ∗Ht−1 +Wxc ∗Xt) + bc)

Ct = ft � Ct−1 + it � C̃t

ot = σ(Who ∗Ht−1 +Wxo ∗Xt) + bo)

Ht = ot � tanh(Ct),

(3.10)

where σ is the sigmoid function, ∗ is convolution operator, � is element-wise

multiplication. The input {X1, X2, ..., Xt} updates hidden states {H0, H1, ..., Ht−1}

and cell states {C1, C2, ..., Ct}. {Whi,Whf ,Whc,Who} and {Wxi,Wxf ,Wxc,Wxo}

are convolution kernels corresponding to the hidden state and the input, re-

spectively. {bi, bf , bc, bo} are corresponding bias terms. Figure 3.5 shows Bi-

ConvLSTM, which includes two directions ConvLSTM.

Figure 3.5: Block diagram of BiConvLSTM.

The LSTM-UNet is trained with Dice coefficient loss defined in Equa-

tion 3.9.
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3.4 Thyroid Nodule Classification

The last component of the proposed CAD system is thyroid nodule classifica-

tion. As mentioned in Chapter 1, TIRADS is the baseline for thyroid nodule

classification. Figure 3.61 illustrates the five nodule characteristics based on

TIRADS including Shape, Margin, Composition, Echigenicity, and Echogenic

foci.

Figure 3.6: TIRADS five nodule characteristics and their definitions.

1Photo credit: ePosters - Pictorial Review of TI-RADS Scoring System for Thyroid
Nodules
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In this thesis, we only focus on composition and margin. Using the nodule

predicted segmentation mask and pixel information in the original image, two

rule-based classifiers are developed to categorize the composition and margin

of the segmented nodule to estimate its malignancy risk.

3.4.1 Nodule Composition

Nodule composition is defined as the proportion of cystic (fluid) and solid (soft

tissue) components. TIRADS classification defines composition categories as

cystic, spongiform, mixed solid cystic, and solid:

• Cystic: When almost the entire nodule is filled by cystic components.

• Spongiform: When there are predominant small cystic spaces.

• Mixed solid cystic: When the nodule includes a fair ratio of cystic and

solid components.

• Solid: When entirely or nearly entirely of the nodule is solid and only a

few small cystic spaces might exist.

The proposed composition classifier has been designed based on the clinical

rules. Figure 3.7 shows our rule-based classifier. It consists of five different

image processing based stages including (1) morphological erosion to remove

peripheral calcification, (2) hard thresholding to find solid percentage, (3)

adaptive histogram equalization for image enhancement, (4) Isodata thresh-

olding to find dark regions, and (5) morphological closing to find the number

of liquid blobs. Results of these stages are compared to the pre-defined rules

and the final decision about the composition category is made.

3.4.2 Nodule Margin

Nodule margin is described as the border of the nodule, which can be smooth,

ill-defined, irregular or lobulated, and extra-thyroid extension based on the

TIRADS definition:
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Figure 3.7: Rule-Based thyroid nodule composition classifier.

• Smooth: When the nodule border is well-defined, smooth, and curvilin-

ear.

• Ill-defined: When there is no clear boundary for the nodule.

• Irregular: When a part of or the entire nodule border is jagged, specu-

lated, or with sharp angles.

• Lobulated: When the nodule border includes single or multiple protru-

sions.

• Extra-thyroid extension: When the nodule invades beyond the thyroid

gland.

The proposed margin classifier has been designed based on the clinical mar-

gin definitions. Figure 4.6 illustrates our rule-based classifier, which includes

different image processing techniques. (1) morphological closing is applied on

the segmentation mask of the nodule to remove probable peripheral calcifica-

tion. (2) after finding the nodule contour, (3) Convex Hull and (4) best fit

ellipsoid are computed for the contour. (5) Sobel edge detection is used to

find image gradient. Results of these modules are compared to the pre-defined

rules and the final decision about the margin category is made.
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Figure 3.8: Rule-Based thyroid nodule margin classifier.
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Chapter 4

Experimental Results

In this chapter, we evaluate the performance of the proposed modules in our

automatic CAD system through the experimental results. We first introduce

datasets that we have used for each module and present the evaluation metrics

for each task. Due to the availability of ground truth, different datasets have

been used for nodule detection, nodule segmentation, and thyroid segmenta-

tion tasks as described in the following section.

4.1 Datasets

4.1.1 Thyroid Nodule Detection

To validate the performance of our newly proposed TUN-Det on ultrasound

thyroid nodule detection task, we built a new thyroid nodule detection dataset.

The dataset was retrospectively collected from 700 patients aged between 18–

82 years who presented at 12 different imaging centers for a thyroid ultrasound

examination. Our retrospective study was approved by the health research

ethics boards of the participating centers. There are a total of 3941 ultra-

sound images, which were extracted from 1924 transverse (TRX) and 2017

sagittal (SAG) scans. These images were split into three subsets for training

(2534), validation (565), and testing (842) with 3554, 981, and 1268 labeled

nodule bounding boxes, respectively. All nodule bounding boxes were manu-

ally labeled by five experienced sonographers (with ≥ 8 years of experience in

thyroid sonography) and validated by three radiologists.
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4.1.2 Thyroid Nodule Segmentation and Classification

The ultrasound image data used for training and testing our newly proposed

resDUnet on ultrasound thyroid nodule segmentation task was obtained retro-

spectively from our data collection center after obtaining ethics approval. The

data comprises SAG and TRX cine-sweeps acquired using Philips and GE

ultrasound scanners. The training set includes a total of 4266 ultrasound im-

age slices containing thyroid nodules which have been acquired from 63 SAG

and TRX sweeps of 41 patients. The test set includes a total of 352 ultra-

sound images from 141 patients. The boundary of each nodule was manually

delineated by experienced sonographers. Using the segmentation masks, we

generated ROIs around the nodule which are used as the input to the net-

work. In order to account for variability in the manually selected ROI, we

randomly changed the centroid and dimensions of the ROI which generated

an augmented dataset including 12798 images. Regarding the nodule classifi-

cation task, nodules were categorized based on their composition and margin

by medical experts.

4.1.3 Thyroid Gland Segmentation

To train and evaluate the performance of the proposed LSTM-UNet on the

thyroid gland segmentation task, the dataset was retrospectively collected from

105 patients after obtaining ethics approval. There are a total of 1050 ultra-

sound SAG scans, which were split into training (824 sweeps of 86 patients)

and testing (226 sweeps of 19 patients). All ground-truth masks were manually

labeled by experienced sonographers.

4.2 Evaluation metrics

4.2.1 Average Precision

To evaluate the performance of our TUN-Det against other models, Average

Precision (AP), which is one of the most frequently used metrics in object

detection [51], has been used as the evaluation metric. To calculate AP, we
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first need to determine whether the predicted bounding box is True Positive

(TP ), False Positive (FP ), or False Negative (FN) using Intersection over

Union (IoU), which is defined as:

IoU =
P ∩G
P ∪G

, (4.1)

where P and G indicate the predicted bounding box and ground-truth bound-

ing box, respectively. When IoU >specified threshold, it is considered as TP .

If IoU <specified threshold or it is a duplicated bounding box, it is considered

as FP . When a target is missing, FN happens. Each predicted bounding box

has a confidence score, which is used in ranking it. The next step is calculating

precision and recall over the test dataset, which are defined as:

Precision =
TP

TP + FP
, (4.2)

Recall =
TP

TP + FN
. (4.3)

Then, the area under the Precision-Recall curve is computed as AP.

4.2.2 Dice Score

To evaluate the performance of our proposed segmentation models (resDUnet

for nodule segmentation and LSTM-UNet for thyroid gland segmentation)

against other architectures, Dice Score has been used, which is one of the

most popular evaluation metrics in object segmentation and it is defined as:

Dice =
2 ∗ |P ′ ∩G′|
|P ′|+ |G′|

, (4.4)

where P ′ and G′ indicate the predicted segmentation mask and ground-truth

mask, respectively.

4.2.3 Hausdorff Distance

Hausdorff Distance (HD) is another metric that has been used for evaluating

the nodule segmentation model. HD measures the distance between the pre-

dicted segmentation mask contour points (P ′c) and ground-truth mask contour

points (G′c). It is defined as:
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HD(P ′c, G
′
c) = max

{
max
p∈P ′

c

min
g∈G′

c

‖p− g‖2, max
g∈G′

c

min
p∈P ′

c

‖p− g‖2
}
. (4.5)

4.2.4 Root Mean Square Error

Root Mean Square Error (RMSE) is also a distance metric for segmentation

evaluation which is defined as:

RMSE(P ′c, G
′
c) = 0.5 ∗ (

1

n

n∑
i=1

‖p− g̃‖2 +
1

m

m∑
i=1

‖p̃− g‖2), (4.6)

where p ∈ P ′c and g ∈ G′c. P̃ ′c and G̃′c are sub-sample of P ′c and G′c contours.

p̃ ∈ P̃ ′c and g̃ ∈ G̃′c.

4.2.5 Confusion Matrix and Kappa Score

To evaluate the performance of the nodule composition classifier, Confusion

Matrix (error matrix), which is the popular metric for statistical classification,

has been used. Rows and columns in the confusion matrix correspond to

ground-truth and predicted class. Kappa score measures inter-rater reliability,

which means how much ground-truth and classifier agree with each other.

Kappa is defined as:

κ =
Po − Pe
1− Pe

, (4.7)

where Po and Pe are probability of agreement (confusion matrix diagonal) and

probability of random agreement, respectively.

4.2.6 Accuracy

Accuracy is another metric for classification, which is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
. (4.8)

Accuracy has been used to evaluate the performance of the nodule margin

classifier.
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4.3 Thyroid Nodule Detection

4.3.1 Implementation Details

Our proposed TUN-Det was implemented in Tensorflow 1.14 and Keras. The

input images are resized to 512 × 512 and the batch size is set to 1. The

model parameters are initialized by Xavier and Adam optimizer [45] with

default parameters is used to train the model. Both our training and testing

processes were conducted on a 12-core, 24-thread PC with an AMD Ryzen

Threadripper 2920x 4.3 GHz CPU (128 GB RAM) with an Nvidia GTX 1080

Ti GPU (11GB memory). The model converged after 200 epochs and took 20

hours in total. The average inference time per image (512 × 512) was 94 ms.

4.3.2 Ablation Study

To validate the effectiveness of our proposed architecture, ablation studies are

conducted on different configurations and the results are summarized in Ta-

ble 4.1. AP35, AP50, AP75 are average precision at the fixed 35%, 50%, 75% IoU

thresholds, respectively. AP is the average of AP s computed over ten different

IoU thresholds from 50% to 95% [AP50, AP55, · · · , AP95]. The first two rows

show the comparison between the original RetinaNet and the RetinaNet-like

detection model with our newly developed backbones built upon the RSU-

blocks. As we can see, our new adaptation greatly improves the performance

against the original RetinaNet. The bottom part of the table illustrates the ab-

lation studies on different configurations of classification and regression mod-

ules. It can be observed that our multi-head classification and regression

modules, CoordConv-CBAM-BiFPN, shows better performance against other

configurations in terms of the AP , AP35 and AP50.

Table 4.1: Ablation on different backbones and heads configurations.
Model AP AP35 AP50 AP75

RetinaNet w/ ResNet-50 backbone (baseline) [51] 39.50 74.03 69.07 41.39
w/ RSU backbone 40.73 79.56 74.81 41.62
w/ RSU + CBAM-RSU heads 42.63 80.92 75.49 45.58
w/ RSU + CoordConv-RSU heads 41.85 79.62 75.24 43.55
w/ RSU + BiFPN-RSU heads 41.70 80.11 74.20 43.54
w/ RSU + CoordConv-CBAM-BiFPN MH (Our TUN-Det) 42.75 81.22 75.66 45.53
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4.3.3 Comparisons against State-of-the-arts

Quantitative Comparisons.

To evaluate the performance of our newly proposed TUN-Det, we compare our

model against six typical state-of-the-art detection models including (i) Faster-

RCNN [77] as a two-stage model; (ii) RetinaNet [51], SSD [54], YOLO-v4 [7]

and YOLO-v5 [39] as one-stage models; and (iii) FCOS [91] as an anchor-free

model. As shown in Table 4.2, our TUN-Det greatly improves the AP , AP35,

AP50 and AP75 against Faster-RCNN, RetinaNet, SSD, YOLOV4 and FCOS.

Compared with YOLO-v5, our TUN-Det achieves better performance in terms

of AP35 and AP50 but produces inferior results in terms of AP and AP75. It

is worth noting that 35% and 50% are usually selected as the threshold in

our practical applications to achieve balanced results. Because higher or lower

score usually generates very unbalanced precision and recall scores (one of

them is close to 100% and the other one is close to 0%). Therefore, we believe

higher scores on AP35 and AP50 are preferable, while AP (AP50:95), AP75 and

AP computed with higher IoU threshold are usually reported to show the

average performance, which is not practically useful.

Table 4.2: Comparisons against the state-of-the-arts.
Model Backbone AP AP35 AP50 AP75

Faster-RCNN [77] VGG16 0.91 42.13 29.65 2.58
SSD [54] VGG16 19.05 40.10 36.55 18.10
FCOS [91] ResNet-50 33.15 62.74 58.67 32.44
RetinaNet [51] ResNet-50 39.50 74.03 69.07 41.39
YOLO-v4 [7] CSPDarknet-53 40.43 78.21 72.48 42.04
YOLO-v5 [39] CSPNet 45.19 78.71 74.74 50.90
TUN-Det RSU 42.75 81.22 75.66 45.53

Qualitative Comparisons.

Figure 4.1 shows the qualitative comparison of our TUN-Det with other SOTA

models on sampled SAG scans (first 2 rows) and TRX scans (last 2 rows). Each

column shows the result of one method. The ground-truth is shown with green

and detection result is shown in red. Figure 4.1 (1st row) shows that TUN-Det
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(a) Faster RCNN (b) FCOS (c) RetinaNet (d) YOLOv5 (e) Our TUNDet

Figure 4.1: Qualitative comparison of ground-truth (green) and detection re-
sults (red) for different methods. Each column shows the result of one method.

can correctly detect the the challenging case of a non-homogeneous large hypo-

echoic nodule, while all other methods fail. The 2nd row demonstrates that

TUN-Det can detect big, and partially visible nodules. The 3th row illustrates

that TUN-Det performs well in detecting nodules with ill-defined boundaries,

while others miss them. The 4rd, 5th and 6th rows highlight that our TUN-

Det successfully excludes the false positive and false negative nodules. The

last column of Fig.4.1 signifies that our TUN-Det produces the most accurate

nodule detection results.
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4.4 Thyroid Nodule Segmentation

4.4.1 Implementation Details

Our proposed resDUnet was implemented in Keras with Tensorflow backend.

The input images are resized to 128 × 128 and the batch size is set to 1.

The model has been trained with the Dice coefficient loss function and Adam

optimizer with an initial learning rate of 10−5. Keras EarlyStopping strategy

is used to avoid over-fitting. Both our training and testing processes were

conducted on the same system as the nodule detection task. The total number

of trainable parameters of resDUnet is 1741833.

4.4.2 Comparisons against other segmentation models

Quantitative Comparisons.

To evaluate the performance of the proposed resDUnet, we compare our model

with standard U-Net[78] and one of its variants, UNet++[116]. As we can see

in Table. 4.3, the average Dice score of resDUNet is 82% on the entire test set,

which is higher than U-Net and UNet++. To better realize the performance

of resDUnet on different sizes of nodules, we categorize the nodules into three

sub-groups based on their sizes (greater than 50k pixels, as large, 10k–50k

pixels, as medium and less than 10k pixels, as small nodules) and compare the

average Dice score in each sub-group. Our resDUnet improves the Dice score

of small nodules. Boxplot diagram of the Dice scores has been presented in

Figure 4.2.

Table 4.3: Comparisons against U-Net and UNet++.

Model
Large >50k pixels Medium 10k-50k pixels Small <10k pixels Total

51 images 150 images 151 images 352 images
Dice Dice Dice Dice HD RMSE

U-Net [78] 90% 87% 73% 81% 17.69 5.77
UNet++[116] 91% 87% 71% 80% 19.62 6.1
resDUnet 91% 87% 74% 82% 17.8 5.8

Qualitative Comparisons.

Figure 4.3 shows the qualitative comparison of resDUnet with U-Net and

UNet++, as a variant of U-Net. The ground-truth and segmentation result
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Figure 4.2: Boxplot of Dice scores of U-Net, UNet++, and resDUnet on three
categories of nodules (small, medium, and large), and the entire test set.

are shown in green and blue, respectively. The last column of Figure 4.3 illus-

trates that resDUnet segmentation result is closer to the ground-truth rather

than the two other networks. Moreover, it is able to delineate the nodule even

with a relatively large ROI.

(a) U-Net (b) UNet++ (c) Our resDUNet

Figure 4.3: Qualitative comparison of ground-truth (green) and segmentation
results (blue) for different methods. ROI has shown by a red rectangle.

4.5 Thyroid Gland Segmentation

4.5.1 Implementation Details

The proposed LSTM-UNet was implemented in Keras with Tensorflow back-

end. We set input sequence length to 3 with sample rate 1. Therefore, to
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predict the mask of each frame, that frame along with its next and previ-

ous frames are fed to the network as a 3D input. Each frame is resized to

128× 128 and the batch size is set to 1. The model uses Adam optimizer with

an initial learning rate of 10−5. Keras EarlyStopping strategy is used to avoid

over-fitting. Both training and testing processes were conducted on the same

system as the nodule detection task.

4.5.2 Comparisons against other segmentation models

Quantitative Comparisons.

To evaluate the performance of the proposed LSTM-UNet, We compare our

model with standard U-Net[78], 3D-UNet[23] and Residual 3D-UNet. As

shown in Table 4.4, LSTM-UNet achieves a better average Dice score (81%)

compared to the other models.

Table 4.4: Comparisons against the state-of-the-arts.
Model Model size (MB) Sequence size Dice Inference time (ms)
U-Net [78] 93.3 - 77% 2
Res 3D-UNet 67 32 77% 3
3D-UNet[23] 65.3 32 78% 1.5
LSTM-UNet 80 3 81% 17

Qualitative Comparisons.

Figure 4.4 shows the qualitative comparison of our LSTM-UNet with other

models. The ground-truth and segmentation result are shown in green and

blue, respectively. The last column of Figure 4.4 shows that LSTM-UNet tries

to segment the whole area and avoid the inferior result.

4.6 Thyroid Nodule Classification

Nodule composition and margin rule-based classifiers were implemented using

OpenCV 4.3.0 on the same system as the nodule detection task.
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(a) U-Net (b) 3D-UNet (c) Our LSTM-UNet

Figure 4.4: Qualitative comparison of ground-truth (green) and segmentation
results (blue) for different methods.

Table 4.5: Nodule composition confusion matrix.
Ground-truth\Prediction Solid Cystic Mixed Spongiform
Solid 146 1 29 0
Cystic 0 5 9 0
Mixed solid cystic 19 2 51 0
Spongiform 2 0 1 0

4.6.1 Nodule Composition

Table 4.5 displays the performance of our rule-based composition classifier

through the confusion matrix between the predicted class and ground-truth.

The dataset includes a total of 265 validated nodules: 176 solid, 14 cystic,

72 mixed solid cystic, and 3 spongiform nodules. The Kappa score is 51%,

which shows a relatively high agreement between the predictions and ground-

truth assessments by radiologists. It is worth mentioning that the agreement

between medical experts ranges between (0.59− 0.64) and the agreement be-

tween non-expert readers ranges between (0.18−0.36) for thyroid nodule com-

position[43], [44]. Therefore, the agreement of our classifier with an expert

radiologist is close to the medical experts’ agreement. Figure 4.5 shows the

limitation of the composition classifier, which is relatively subjective due to

the trade off between solid and mixed solid cystic categories.

4.6.2 Nodule Margin

Margin classification is very challenging due to the lack of agreement between

medical experts, which leads to low accuracy and inconsistencies in labeled

data. Another issue is that the nodule segmentation mask needs to be com-
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Figure 4.5: Trade off between solid and mixed solid cystic categories. The
predicted class is mixed solid cystic, but the ground-truth label is solid.

pletely perfect and captures all small sharp angles, jagged, and protrusions,

which barely happens, even when an expert annotates it manually. Figure 4.6

shows some difficult and challenging examples in each margin category. There-

fore, we tested the margin classifier on a small dataset including a total of 139

validated nodules: 43 smooth, 40 ill-defined, and 56 irregular or lobulated

nodules. The classifier correctly classified 27 smooth, 29 ill-defined, and 38

irregular or lobulated nodules. Hence, the accuracy is 68%.
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(a) Smooth (b) Ill-defined (c) Irregular (d) Lobulated

Figure 4.6: Difficult thyroid nodule margin examples.
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Chapter 5

Conclusion and Future Works

In this thesis, a fully automated thyroid CAD system has been presented to as-

sist radiologists in thyroid nodule detection and diagnosis in thyroid ultrasound

scans. The newly proposed CAD system consists of four modules: nodule de-

tection, nodule segmentation, thyroid segmentation, and nodule classification.

The proposed detection network, TUN-Det, includes a novel backbone built

upon the RSU blocks to extract richer multi-scale features, and a newly pro-

posed multi-head architecture for both classification and regression heads to

fuse outputs from diversified sub-modules and a further improvement in the

nodule detection performance. The proposed nodule segmentation network,

resDUnet, includes residual shortcut connections in the U-Net architecture to

make the training process consistent, and additional dilated convolution lay-

ers to extract more multi-scale features without losing the resolution. The

proposed thyroid segmentation network, LSTM-UNet, replaces the plain con-

volution layers in the U-Net by time-distributed convolution blocks and bidi-

rectional convolutional LSTM in U-Net to capture the spatial-temporal infor-

mation by considering the correlation between consecutive temporal frames

in the sweep. Two rule-based classifiers have been designed for nodule com-

position and nodule margin classification. They are based on several image

processing techniques.

Experimental results demonstrate that TUN-Det achieves very competitive

results against the state-of-the-art models on the overall Average Precision

(AP ) metric and outperforms them in terms of AP35 and AP50. The resDUNet
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achieves a high Dice score and much smooth visual results, compared to U-

Net and UNet++. LSTM-UNet outperforms U-Net and 3D-UNet in terms of

average Dice score.

5.1 Future Works

There is still a lot of room to improve the CAD system performance. In the

near future, we will focus on:

• Improving the detection consistency between neighboring slices of 2D

sweeps and exploring new representations for describing nodules merging

and splitting in 3D space.

• Improving nodule segmentation for big ROIs, ill-defined nodules, and

challenging textures.

• Registering nodules in 2D sweeps to improve the segmentation consis-

tency.

• Improving thyroid gland segmentation for challenging thyroid textures

in both SAG and TRX views.

• Decreasing inference time for all the models.

• Completing TIRADS classification.
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