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ABSTRACT

The first part of the paper establishes some characterizations of £; spaces
in terms of p-summing or p-nuclear norms of the identity operator on the given
space E. In particular, for an n-dimensional Banach space £, 1<p<2, Eis
isometric to £ if and only if m,(E*) = n# and E* has cotype p’ with the constant
one. Furthermore, €3 spaces are characterized by inequalities for p-summing norms
of operators related to the ellipsoid of maximal volume contained in the unit ball
of E.

The aim of the second note is tc show a rather general construction of Banach
spaces with no unconditional basis. As a corollary, for example, one obtains a
weak Hilbert space with no unconditional basis. The novelty of the preset general
approach consists of the use of a tree of partitions. It is strong . aough to construct

spaces which contain subspaces with no unconditional basis.
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NOTATION

Ay = (ElmlP)/»

d(X,Y) = the Banach-Mazur distance

dp = d(E,dF

|S| = the cardinality of the set S

Xs = the version of the 2-convexified Tsirelson space
Cy(X) = the cotype constant

D(X,®- & Xm)

It

the diagonal subspace

¥i = the standard Gaussian random variables
E¢ = the expected value of £

span () = the linear span of §

span(S) = the norm closed livear span of S

7p(S) = the p-summing norm of S

vp(S) = the p-nuclear norm of §

r; = the Rademacher functions

unc (X) = the unconditional constant of X

unc (Z )k = the unconditional constant of (Zx)x



INTRODUCTION

In this dissertation we discuss two separate topics from the theory of Banach
spaces. One comes from the local theory of finite dimensional spaces, and the other
concerns certain structure properties of infinite dimensional Banach spaces.

The first topic, studied in Chapters 1 and 2, is concerned with relationships
beiween geometric properties of finite dimensional normed spaces and operator
ideal properties of certain natural operators acting on them. We use techniques
of vector valued random variables and of p-summing operators; both of them are:
ratural in this context.

The second topic, described in Chapter 3, is devoted to rather general con-
structions of infinite dimensional Banach spaces with no unconditional basis. In
fact, we identify several large classes of Banach spaces such that for a space in one
of these classes we show how to construct a subspace with no unconditional basis.
It is clear that the construction is more difficult if a space is close, in a sense, to
a Hilbert space. One of classes we identified contains spaces which are very close
indeed to £,; in particular, it contains the best known examples of so-called weak
Hilbert spaces, 2-convexified Tsirelson space and its dual.

Now we pass to more detailed description of a background material and of
the results of the thesis.

In Chapter 1 we establish characterizations of £5-spaces in terms of ideal
norms of certain natural operators related to an n-dimensional Banach space E.
These characterizations generalize several known results for £f and €2, ([D], [FJ],
[G1], [N], [PT)]). Some characterizatious are given by conditions on p-summing

and p'-nuclear norms of the identity operator on E, combined with assumption



on the cotype of the space. Others involve operators determined by the John's
ellipsoid of maximal volume contained in the unit ball of E. In particular we
show that some inequalities for these norms characterize €.

In arguments, the most important results are established in Proposition 2.1
and Theorem 3.1. In the first, we obtain an upper estimate of the p-summing
norm by the p-th moment of a related vector valued Gaussian random variable.
In the second, we prove that if 1 < p<2 and EF is an n-dimensional Banach

space such that mp(id: E — E) > n%, then there exist vectors e;,...,e, in E

such that, for every sequence of scalars a;,...,an one has
n n , i/p’
gl < | e < (L 1a)
=1 =1
(here 1/p+ 1/p' = 1). It turns out that the vectors e,,...,c, are the contact

points of the unit ball Bg of E with the John's ellipsoid.

In Chapter 2 we present some consequences of our results from Chapter 1
for subspaces of L,. We also prove that if 2 < p < oo, then an n-dimensional
subspace of L, with the maximal Euclidean distance is isometric to £;. This
complements a result obtained in [BT] for 1 < p < 2. The proof is based on a
well-known result of D. R. Lewis [L] which establishes the existence of good bases
in finite dimensional subspaces of L,.

Let us describe the content and a background of the next part of the thesis
which is presented in Chapter 3.

A useful and widely studied class cf Banach spaces consists of spaces with
an unconditional basis. The existence of such a basis gives many information on
the structure of the space. However, there are spaces which do not satisiy such
a nice property. To construct or to show the existence of such spaces is not very

easy. Difficulties are caused by the fact that “to be unconditional” is not a local
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property; that is, it can not be described in terms of finite dimensional subspaces.
However, there are some techniques which help to justify whether a given Banach
space has or does not bave an unconditional basis.

The literature on this particular problem is very extensive and varies. Some
new parameters were introduced and some new arguments were presented. Equally
important constants which are very closely related to unconditionality are: the
Gordon-Lewis constant ¢f(X) and the lecal unconditional siructure constant
lu.st(X).

The first one which was introduced by Y. Gordon and D. R. Lewis {(1974)
relates the existence of an unconditional structure in a Banach space X to
L,-factorizations of 1l-summing operators frora X into a Hilbert space. This
parameter became an indispensable tool in the study of unconditional structures
of Banach spaces. Y. Gordon and D. R. Lewis [GL] gave the first examples of Ba-
nach spaces without G-L property. In particular, they studied the Schatten classes
C; of operators acting in £3 obtained the estimate g€(Cp) = cenl3™ 31, valid for
all 1 < p < oo, where ¢ > 0 is a universal constant. Later T. Figiel, 3. Kwapien
and A. Pelczynski in 1977 [FKP] and then T. Figiel and W. B. Johnson in 1980
[FJ], by using a random technique, have shown that there exist finite-dimensional
spaces for which ¢g€(X) and unc(X) have indeed the largest possible order. It
follows that L,-spaces, for p > 2, contain subspaces without G-L property;
hence without unconditional basis.

The second parameter is a localization of the notion on unconditional basis,
and more generally, of a Banach lattice. The definition of l.u.st(X) (see [GL], c.f.
e.g. [T-J]) which is used in studing Banach spaces in the present time allows us to
look at the problem locally. In fact, it cliffers from the definition first introduced,

and it is more suitable in the context.



In this dissertation, we do not discuss properties ¢g¢ and lLu.st. Our ap-
proach is based on techniques first introduced by W. B. Johnson, J. Lindenstrauss
and G. Schechtman [JLS] for studying the Kalton-Peck space [KP]. These tech-
niques were refined by T. Ketonen [K] and later generalized further by A. Borzysz-
kowki [B]. The Kalton-Peck space was the first example of a Banach space with-
out an unconditional basis which is an unconditional sum of two dimensional
subspaces. Every space constructed in this dissertation has such a property. The
essential idea, contained in above papers, is summarized in Proposition 2.1 (Chap-
ter 3), which is a versicn of Proposition A in [B] and Lemma 3.1 in [K]. We give
the proof of Proposition 2.1 as it contains a necessary estimation and it is slightly
different and shorter than those which are presented in [B] and [K].

The novelty of a more general situation discussed here consists of the use of a
familty of partitions of a basis. This concept appears in all our constructions. It is
strong enough to give a general procedure of the construction of subspaces in many
Banach spaces, including well-known examples of weak Hilbert spaces, which have

no unconditional basis (Theorem 2.2, Propositions 4.2 and 4.3, Theorem 5.1 in

Chapter 3).



CHAPTER 1

CHARACTERIZATIONS OF ¢3-SPACES IN TERMS
OF OPERATOR IDEALS

1.1. Notations. Let (E,|-||) be a finite dimensional Banach space over either
R or C, andlet |-]j; denote the Euclidean normon E induced by the ellipsoid
of maximal volume contained in the unit ball of E. Let (-,-) denote the induced
inner product, let ||-]l. be thenormon E, dual to the original norm ||-}|, andlet
i2e : (B Il2) = (B, |I'}) and igz = (i2e)~! be the formal identity operators.

Tet 1< p< oo, andlet X and Y be Banach spaces. For an operator
S:X —Y set mp(S) = infc, where the infimum is taken over all constants ¢
such that

a1 QoUszlPy P <e sup (3 Kzsn=miP)?
i i
for all finite sequences (z;) in X; if no such a c exists, then #p(5) = co. If
7,(S) < 0o, then S issaidtobe p-summing and m,(S) is called the p-summing
norm of S. For p =00 put w(S) = ||S|l-
Next, an operator S: X — Y is called pnuclear if S can be written in

the form

S=Zz;®yj’
J



where (z}) in X* and (y;) in Y satisiy Np((z}),(y;)) < co. Here

Np((2), ) = (3 lies) (sup lwsll) forp=1,
2

’ N
Np((5), ) = (3oleslr)” sup (2o lwsw™))” for1<p<oo,
J = J

Hy*li1

Np(@), ) = (supli=il) ewp (3 I(v3,3")) for p = oo.

hy*li<1

Each such representation of S is called a p-nuclear representation. The

p-nuclear norm, v,(S), is denoted by
(1.2) vp(S) = inf Np((3).(y5))>

where the infimum is taken over all p-nuclear representations of S.
Let 1 < p < co. It is well known, ?{"2: +hc -summing norm w, and
the p'-nuclear norm vy are in trace duality. It n:cans that if u is an operator

(u: X —Y), then

(1.3) np(u) = sup{|traceuw||w:Y — X, vy(w) <1}

(cf. eg. [T-J)], p- 52).
Now, let us state a fundamental characterization of p-summing operators

given by Pietsch in 1967 [Pch) (cf. also, {T-J}, p. 47).

THEOREM 1.1. Let 1 < p< oo. Let X and Y be Banach spaces. Let
K = {z* € X* | ||=*|]| £ 1}, equipped with the compact topology o(X*,X).



(i) Let u: X —Y bea p-summing operator; let C = wp(u). There exists a

probability measure p on K such that

(1.4) lluz|l < c( [ I(:r,f)l’dn(ﬁ))% for = € X.

ii) Conversely, any operator u : X — Y satisfying (1.4) with some constant
Y P

C is p-summing and wp(u) < C.

The next proposition establishes a factorization of p-nuclear operators (cf.

[T-3], p. 41).

PROPOSITION 1.2. Let 1 < p < oo. Let X and Y be Banach spaces.
An operator u : X — Y is p-nuclear if and only if v has a factorization

u = vAv; :

(1.5) X —lo —r b, — Y,

where A is a diagonal compact operator. Moreover,

vp(u) = inf [juz || |A]] loall,

where the infimum is taken over all factorizations (1.5).

Sometimes, in the case when FE is an n-dimensional Banach space, we will

use the following abbreviations:

wp(E) = 7p(id : E — E),

vp(E) = vp(id : E — E).



For a real valued random variable { on a probability space (2,P), E¢
denotes the expected value of €£.

Let 71,...,7n, denote real or complex standard Gaussian random variables
on (Q,P). For s > 1 set A, =(E|1:|*)}/*. Fer any orthonormal basis (e;) in
€3, let X denote the €3-valued random variable defined by

(1'6) x = E'yge;.

i=1
Notice that the distribution of X does not depend on a choice of the basis
(e:)-
Finally, for isomorphic Banach spaces X and Y, the quantity d(X,Y) =
inf [|T|| |IT*||, with the infimum taken over all isomorphisms from X onto Y,
is called the Banach-Mazur distarce.

In the case when F' is an n-dimensional Banach space, we will use the

following abbreviation: dr = d(F, ¢£3).

1.2. Preliminaries on p-summing norms. We start by stating a simple ob-
servation which will be often used throughout the chapter. It follows directly from
the definition (1.1) of the p-summing norms {(cf. e.g., [T-J]) or from Theorem 1.1.

PROPOSITION 2.1. Let 1 <p < oco. Let T be an operator between two Banach

spaces X and Y.

(i) Suppose that there are functionals z},z3%,--- € X* such that
HTz||? < Z =3, z) P forall ze€ X.
J

«iip)1
Then mp(T) < (T fl=31IP) /7.
2



(ii) Let ¢ be a random variable on a probability space (2, P) with values in
(X*,0(X*,X)). Suppose that |[Tz||? < E|{{,z){? for all £ € X. Then
mp(T) < (E||€]IP)/7.

Recall that X is the ¢3-valued random variable defined in (1.6). It is easy

to calculate that

1/s

(2.1) llzllz = A7 (E|{X, z)|*) for s>1.

Now, let us give some simple conclusions from Proposition 2.1 which we will

need further.

PROPOSITION 2.2. The following equalities are true.
(i) mp(id: €5 — £3) = A7 (EIX|B)?,  1<p<oo,
(i) 7p(id: €5 — ) =n'/?, 1<p<2,
(iii) wp(id: €5 — £p) = nl/?, 1<p< oo,
(iv) mp(id: €8 > )=nl/?, 1<p<2,

(v) mp(id: €0 — €2 )=n'/?, 1<p<oco.

Equality (i) was proved, in a slightly different formulation by D. J. H. Garling
[G2] (cf. also, [T-J], p. 60).
Other equalities are well-known to specialists. For sake of the completeness,

we give the proof.

PROOF:(i) The upper estimate follows from (2.1) and Proposition 2.1 (ii). For the

lower estimate, it is enough to observe that

(EUIXIE)'/? = AZHEIX|E)/P - sup (Elz*,X)IP)"/".

z*|j2=1

9



(ii) For fixed z* € €}, one has
) n 1/p
lidelle < (3 lasealr)
=1

By using Proposition 2.1 (i), we conclude that =,(id: €3 — £3) < nl/p
On the other hand, we have

n . 1/p iy n i/p
Zuzd(e.-)uz) — !/ sup (Zuy,e.-)lp)
i=1 lvli,=1 \ 355

which concludes the proof of (ii).
(iii) Fix z € €5. Then [lid(z)||, = (3 [{z,e:}|P)?; hence
i=1

mp(id : € — €3) < n'/P,
Next, observe that
(BIXIE)'" =nilr sup (El(y,X)?)"'".
(iv) Fix z € £;. Then
kd@l=( ¥ slwar)”

r=(+1,...,+1)

n times

(X sl=ar)”.

€=(£1,...,41)

)

Again, by Proposition 2.1 (i), we obtain

. ! 1 —un’ 1/p' ’
wpr(id : £y — £3) < (z_u > EE)"” =nt
T=(£1,...,£1)



Conversely,

(o ted)" =" s (S Hw,ear)”

— Hyllpr=1

(v) Similarly as before, for = € £,, one has

n llp
lid(@)lloo < il = (Zuz,e.-w*) :
=1
thus

wp(id : €3 — £2)) < nt/P,

The opposite inequality follows from the equation:

(Zuzd(e.)u::o) —wife sup (3 Iz, eadl?) 2.

i=1 lzlls=1 =1

O

As an interesting counsequence, we get an isometric characterization of £3

as follcws.

COROLLARY 2.3. Let 1 < p < 0o. An n-dimensional Banach space E is

isometric to €3 if and only if

mp((i2E)*) = mp(id : €5 — £3).

PROOF:By (2.1) and Proposition 2.1 (ii), we obtain

7p((i2E)*) < A;“(E"x“v)l/p.

11



Since ||z|| < [|z]l2 for every = € E, by Proposition 2.2 (i), it follows that
AFHENX|IP)P < A (E|IX|IE)!?

= Wp(id . 1?;‘ ~> E;‘) = ﬂp((izp;)‘).

Combining the two estimates, we see that ||X(w)|| = ||X(w)||2 almost everywhere.
Hence, by the continuity, [[X(w)]| = ||X(w)llz for every w € €, completing the
proof. O

REMARK. For an n-dimensional Banach space E one has w2((i2g)*) <
Vvr|l(¢2e)*]l = v/n. Corollary 2.3 says in particular that if the 2-summing norm

of the operator (i2g)* is maximal, then FE is isometric to £3.

1.3. Characterizations of ¢} in terms of ideal norms of the identity
operator. In this section, we present characterizations of €3 in terms of
p'-summing and p-nuclear norms of the identity operator on the space.

The definition of type p and cotype g constants, T, and Cj, respectively,
used here, differ from the usual ones by replacing the L.-Rademacher averages
by the L,- and L,-averages respectively (cf. e.g. [T-J], p. 14). Namely, for
1<p<2=<g<oo, wedefine T;, C; to be the smallest constants such that,

for arbitrary vectors zj,...,z, in a given Banach space X, one has

T  J 1/p n 1/p
([|Zroa) @) <n(Cier)
0 It j= j=1
1 n q 1/q n 1/q
el [ Srsws| @) = (Thaate) ™
\ 0 j=1 j=1

The main result of the section states:

12



THEOREM 3.1. Let E be an n-dimensional Banach space. Let 1 < p < 2.
The following are equivalent:

(i) mp(E) 2 n'/?,

(ii) there exist vectors ey,...,e, € E such that, for every choice of scalars

a,...,an, one has

= = ? l/P,
Jmax ol < |l < (X lail®)

i=1 =1

(iii) vy (E) < nd/¥',
Furthermore, E is isometric to €5, if and only if E satisfies one of the

above conditions, and C,,(E) = 1.

For p = 1, implication (i) == (ii) was proved in [D] and [G1]; implication
(iii) = (ii) is the isometric version of a classical P, probiem, proved by Nachbin
{N].

The proof of the theorem is based on several results of independent interest.
Proposition 3.2 below is crucial for further investigation. It involves the operator

tg2 associated to the ellipsoid of maximal volume. Case p = 1 was proved in

[FJ] (cf. also, [T-J], p. 266).

PROPOSITION 3.2. Let 1<p< 2. Let E be an n-dimensional Banach space
such that

nmp(iE2) 2 n/?,

Then there exists an orthonormal basis (e;)7—; in (E,||-||2) such that |e;|| =

leilla = llejllz =1, 7=1,...,n.

13



PROOF OF PROPOSITION 3.2: By the well-known John’s result (cf., e.g., [T-3],

p. 118), there exist a positive integer N, vectors r,,....rn in E and positive
N
scalars ci,...,cn such that |lz;ll =|lzll. =1 (=1,...,N), ¥ 2;=n and
j=1
N

z =) ci(z,z;)z; for z € E.

=1
We need the following Lemmas.

LEMMA 3.3. Assume that z,,...,zNy and c;,...,cn are as above. Let M C

{1,...,N} be asubset such that Y c;j =m, for some positive integer, and that
JEM

(zs,z;) =0 for s ¢ M, j € M.

Let Fp = span(zj)jem and let P : (E,||-|lz2) — (E,||-li) be the orthogonal
projection onto Fpg. If 7,(Pigp) > ml/", then there is a subset J C M with

|J| = m such that (zi,z;) =0 for i # 3, i,5 € J.

Obviously, Proposition 3.2 follows from Lemma 3.3 applied for M = {1,...,N}

and m =n.

LEMMA 3.4. Let 1<p<2. Let X be a Banach space, let H be a Hilbert
space, and let T : X — H be a linear operator. Suppose that A and B are

orthogonal subspaces of H, and that P, Q are arthogonal projections on A
and B, respectively. Then

7 (P + Q)T) < («B(PT) + =2(QT))"/”.

PROOF OF LEMMA 3.4: Fix z;,...,z, € X. We have

(z": Iw Q)Tz.-ﬂ”)l/p = (g (IPTz|? + |QTz:|12)"/? )l/"

=1

14



n 1/p
< (X 1Pz=r + QT

i=1
i/p = - 1/»
< (x2(PT) + =5(QT)) " '? - P (Z {z ,:z:;)|") .
z'€;° =1
Using the definition of p-summing :orm (see (1.1)), we conclude the required

inequality. O

PROOF OF LEMMA 3.3: Proceeding by induction, we assume that m > 1 and that

the Lemma is true for m—1. Pick a vector y € Fp such that a = Y c;|{y,z;)}?

JEM
is a maximal subject to Y c;|{y,z;)|P = 1.
JEM
. 2 ol 2 N 2—p
Since ||y]|3 = Zicjl(y, z;)? < }:lcj|(y, z;)Pllyllz "7, it follows that a < 1.
J= J=

On the other hand, for every £ € E one has

IPzll2 = (3 ;l(Pz,2;)%)"? < a/?(Y ¢;l(Pz,z;)IP) /7

JEM JEM

< a2(3 ¢jl(z, z;)P) 7

JEM

hence

1
m!/? < my(Pigs) < al/z( E Cj) ”_ a/?m!/P  and a=1.
jeEM

. 1/2
Next,since ( 3 ¢;l(y,z;)I?) 2~ (T i ly,z;)P) /P =1 and |(y,z;)| <
JEM JEM

1, it foliows that there exists a subset K C M such that

1 for s€e K
I(y,x,-)lz
0 for s€(1,...,N)\K.

15



Let ko € K. Then for every k € K, z; = exxg, with |ex] = 1. Indeed, for

ke K and k # ko, define a functional ¢ on E as follows
y P —_—

Y= E((yv .'Bk) zk + (y’xko) xko)'

Then
1
1= (y,») < llvllz llellz < §(i|$k||2 + Iz ll2) = 1.
This implies that
Wy, ze) 21 + (¥, Tio) Zrollz = Iy, 26) zell2 + (¥, Tho )Tk ll2-

Hence (y,zx,) zko = (y,Zr) zx and

T = €k Tk with lexl =

We may assume that y = zg,.

Put M; = M\ K. Then (y,z;) =90 for ¢ € M;. In addition, (r,,zx) =0

for seM;, k ¢ My, and Y ci=m-—1.
i€M,
Finally, if Q : ) — (E,|l |l2) is the orthogoual projection onto

Fary, = span (z;)iem,, then
Tp(@igz) = (m —1)'/7.

Indeed, for every = € E one has

N 1/2
1P = @)zllz = (2 & (P — Q)z,z,-n’)

i=1
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= ( 3 el(P - Q)r,zj)F)m

JEM

< a”’( D el - Q)z,z,w) ”

JEM

< (Z le(m,mj)l”)l/p-

JEK

By applying Proposition 2.1(i), we get

7 ((P — Q)ipz) < (Z Cj)llp = 1.

JEK

Moreover, by Lemma 3.4, we have
mp(Pigz) < (mp((P — Q)igz)” + mplQiE2)?) " /";

which shows the required inequality.

The inductive hypothesis applied to the subset M; and the projection Q
yields: there is a subset Jo C M; with |Jp| = m — 1 such that (zj,z;) =
bij, 1,7 € Jo. Then JyU {ko} obviously satisfies the condition of Lemma 3.3.

O

In order to prove the next proposition we require the following lemma.

LEMMA 3.5. Let 1<p<qg< oo andlet (E,||-|) be a normed space. Then

for every choice of vectors z,,...,z, € X the following inequality holds

n 1/q n n 1/p
(3.1) (Zuzsn’) < (a3 ledle +ﬁ||§:wil|”) ,
=1

=1 =1

where a=2P/1"1 znd B=1—a.
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PROOF:The lemma is obvious for n = 1. Proceeding by induction assume that
the lemma is true for n — 1. Without loss of generality, we may assume that

n
l<p<g<oo, Y |z:]l?=1 and 0 < |lz;1f] £ --- < ||zn|l. To prove (3.1) it is

=2

enough to check the following stronger inequality:

G (Shed?)"" s (« D ol + lteatl =0 =l)

i=1

Next, let us introduce the following notations:

(w)® = sign (w) - jw|® for s>1, weR,

A=Yzl

=2

n
a= =l

=2

llz:ll = ¢ € [0, 1).

Observe that, in the above terms, the following formulas are true:
d -1 -1
SholP =p(w)P  and  w(w) = |wp.
Finally, we can rewrite the inequality (3.2) in the following way:
(3.3) 0 < f(t) = a(tP + A) + Blt —a|? — (17 +1)P/9, where t € [0,1].
To prove (3.3) observe that f(0) > 0 (by inductive hypothesis) and

f(1) = a1+ A) + Bl — afP — (1 +1)?/¢

> 2q —2P/9 = 9.92°/7-1 _9or/1 - ¢

18



(since A >1).
Let us suppose the contrary. There exists t € (0,1) such that f'(t) =0
and f(t) < 0. Then
0=p'(t —a) F(¥)

= (t —a)at? ! + Bt — a)Pt -t (2 + 1)?/9-1)

= a(t — a)t?~! — a(#® + A) + f(t) + (7 + 1)P/7 — 1971 (t — a)(¢9 + 1)P/7!

< —al(at? ! + A) + (17 + 1)/ 1 + 19714}

< (74 1P/ [—atPd — A+ 1+ t71a] (since (7 + 1)?/97! < @)

< (9 4+ 1P/ 1g(t97 —tP7 1),
Summarize, 0 < (#9+1)P/91g(t9~1 —¢P—1) which gives 197! > ¢t?~! and p > g.

This is contradictory to the assumption and completes the proof of the lemma.

O

PRoPOSITION 3.6. Let (E,|-||) bean n-dimensional Banach spaceandlet 1 <
p < g < co. Suppose that there exist vectors, €;1,...,e, € E and ej,....e} €
E*, such that (e},e;) = 6;; and |lei]l = |lefl| =1, i =1,...,n. Consider x
E the £2 norm, say |||lg, induced by the basis (e)i-,. Let ipq denote the
formal identity operator from (E,||-||) to (E,|l-lig)-

If np(iEq) = nl/?  then for every a;,...,an € C one has

-



PROOF:We suppose that g < co. in the case ¢ = oo, the proof is similar

we will show that

(3.4) fp(TiEq) = (i laiip)llp, where T = i a.-e: X e;.

=1 =1

Fix z € E. Then ||Tig.zllq < (X |a,~|’|(:1:,e,?)|")llp; hence
=1

(35) wo(Tig) < (3 lait?) .

=1

To see opposite inequality, choose g; € C (i =1,...,n) such that
max las] = (lail? + [g:17)/7.

Define an operator

S:E—E, S=Zg;e:®e,—.

=1

Then for every z = (z1,-..,%n) € €] one has

n rl/q
max |a;[?||z||% = (Z(la-'zfl” + '9""")"")

=1
n . rlaq n " r/q
< (Ela,-xd""’) * (Zlgiz;lp.p)
=1 i=1
= ||Tz||§ + [|S=|l} -
Hence
1
(3.6) max |ai| ||zll, < (IT=lI3 + |S=l2) /"

20
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Next, using definition (1.1) and (3.6), we obtain
. . . 1
max |a;|7p(ige) < (w:(Tqu) + r,?(Squ)) /e,

By above estimation, and by (3.5) for T and S, respectively, we have the fol-

lowing;:

n'/P max |a;| < max lailmp(Eg) < [w":(TiEq) + w’?(SiEq)]I/”

n r 1/p
= [ZIa,-P’ + Elgslp] = n'/P max |a;|;

=1 =1

thus (3.4) holds as required.

By using Lemma 3.5, it follows that

i1Zl, = (3 KT, e:nq)l”

=1

n

;(Tm, e:)lp)lz’p

< (a > KTz, el +8

=1

n n P\ 1/p
=(aZIael”l(m,e?)l"+ﬂ(z,zaie’.") ) -

=1 =1

Finally, the condition (3.4) and Proposition 2.1(i) show

n n P\ 1/p n 1/p
(aZla.~|"+ﬂ > aie} ) z«»(Tz‘sq)=(Zlasl")

=1 i=1 * =1

completing the proof. |

Now, we are able to prove Theorem 3.1.
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PRrROOF OF THEOREM 3.1: The fact that (1) implies (ii) follows from: Proposition

3.6 for ¢ = 2, Proposition 3.2, and the inequality
mp(ig2) = mp(E) > nl/P,

Next, condition (ii) implies that the following factorization holds

with vp(E) < [[Va]l [lA]] [|V2]] < n'/P (see Proposition 1.2). Finsally, since
n = trace(id : E — E) < 7p(E)vp (E),

it follows that (iii) implies (i). Note that n, and v, are in trace duality (see
(1.3)).

Beforé\wg pass to the second part of the theorem, observe that
C}',,(E) =1 iff T, (E*)=1.

This can be checked directly for two vectors, and by induction for more vectors.

Suppose that w,(E) > n'/P; so, my(igz) > n'/P. By using Proposition 2.1(ii)
and (2.1), we obtain

n'/? < m(ip) < AF(E|X|I2)V/P
1, n p i/p
= A;l (E‘/0 ”Zri(t)‘y.'eilL dt)
=1

n 1/p
<4 (EY h,-vue.-u:) = nils,

N o=l
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Therefore, A;'(E||X||5)Y/? = n'/?P = AZ'(E|X||E)}/P. Since |zl < |lz|l« for

every z € E, it follows that ||-|, = ||- ||+, as in the proof of Corollary 2.3. O

1.4. The ellipsoid of maximal volume and other characterizations of ¢;
spaces. In this section, we give some characterizations of £ space in terms of
p-summing norms of an operator associated with the ellipsoid of maximal volume
contained in the unit ball of E.

Before we start, let us introduce some new notations. Let ‘g : (E, |-||) —
(E,|I-llcc) denote the formal identity operator, where the norm |[|-||eo is given by a
fixed Auerbach system on E. Similarly, we define ig.o : (E*, |I-]ls) = (&, ||-l|loo)-
Finally, let

ipeg = (izE)' and i2g. = (iEz)‘-

THEOREM 4.1. Let 1 <p<2. Let E be an n-dimensional linear space. The
following are equivalent:
(i) E* is isometric to 3,
(ii) mp(ip2) 2 n'?  and  wy(igez) > /P,
(iii) wp(igz) = nl/P and wy(izpe) < /P,
Moreover, for 1 < p < oo, condition (i) is equivalent to

(iv) mp(iEco) > nl/P and Tpr(Es00) = n/P,

PROOF:By Proposition 2.2, we see that the condition (i) implies (ii), (iii) and (iv).

First, suppose that

wp(iE2) = nl/p,
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By Proposition 3.2 and Proposition 3.6, we conclude that
(4-1) lzll < llzlly  for z € E.

Now, assume that
wp(ig-2) 2 nt/?,

Applying (4.1) and Proposition 2.1(ii) to (2.1) for s = p', it follows that

nM < mp(ipes) < AZLEIX|IP )P

-1 P’\1/p' _ L 1/p
< AZNE|X|)E)YP = nt/P,

Hence ||-lipr = l|I-ll, as in the proof of Corollary 2.3.

Next, let us suppose that (iii) holds. Again, by (2.1) for s = p, we obtain
(4.2) n!/P < mp(im2) < AT (E|IX|I)P.

By using Theorem 1.1, one can find a probability measure g on S7™' = {z :

liz]l2 = 1} such that

. 1/p
H=*ll« < n'/? [y, z*)|Pdu(y) for z* € E*.
sp-t

By (4.2) and the above inequality, it follows that
1 1 1 1 1/ 1
wlr < A @I s nlragt (€ [ K xorauw) =it
2

Therefore, E||X|% = E||X]|i5 and I« = lI-llp, as before.
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Finally, by using Proposition 3.6 for ¢ = oo, we cenclude from (iv) that
l=*llp < lz*lie  for 2% € E%
hence

lzlly <llzll for ze€kFE.

This implies that E is isometric to £;, completing the proof.



CHAPTER 2

FINITE DIMENSIONAL SUBSPACES OF L,

In this chapter, we apply Theorem 3.1 from Chapter 1 to subspaces of L,.
We also get a characterization of n-dimensional subspaces of L, with the max-

imal Euclidean distance.

COROLLARY 1.1. Let E be an n-dimensicnal subspace of Lp(2,u). Then E
is isometric to £, ifandonly if wp(E) 2 nl/? for 2 < p < oo or w(E*) > nl/P

for 1<p<2.

The corollary follows immediately from Theorem 3.1 and the fact that
T;,(LP(Q,,u)) = 1.

PROPOSITION 1.2. Fix n and 2 < p < oo. Then any n-dimensional subspace
E of L,(RQ,p) whose Euclidean distance is maximal, i.e., d(E,€}) = n!/2-1/p,

is isometric to 8;,‘.

For 1 < p <2, an analogous result was proved in [BT].

The proof of Proposition 1.2 is based on well-known result of D. R. Lewis
[L] which states:
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PROPOSITION 1.3. Fix n and 1 < p < oo. Then for any n-dimensional

subspace E ot Lp(SY,p) there exist vectors fi,...,fn = * such that
. n 2\ 1/2
1.1) /f.-f,-F”‘2dy = &j, where F = (}: il ) .
i=1

PROOF OF PROPOSITIOE 1.2: Fix an arbitrary n-dimensional subspace E of
Ly(2,u). First, we follow Lewis’ argument from [L]. Observe that (1.1) implies
the following

/

n

2 n
Frrdp= Y oy [FT PR du= Y ol

z": a;fi

=1 i,j=1 i,5=1
and
n= /Ef.?.- FP2dy = /F" dp.
i=1

Summarizing,

n 2 n
1.2 [ X as| r2au=3lar,

i=1 =1
(1.3) IFllp = n'/?.

Define un operator T : E — La(Q,u) by Tf = sz;J', for f € E. By using

Haélder’s inequality for £, we obtain

1Tz < WFUG NEFIE2.
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Indeed,

17518 = [ £2Fr2 du

<(/f Ifl")m ([ Fo-ns =

= Il IFHE=2.

Thus, by (1.3), ||T|| < nt/2-/r.

On the other hand, by (1.2) and Cauchy-Schwarz inequality, we see that for

every h= 3 aifi € E one has

=1

(1.4) RlIZ = /Igaiﬂ'lz |'§:_; aif.'lp-zd#
1S5l [ #]

=1 =1
n 2 n
- (Ehilz) jzaifilep—zd#
=1 §=1
n r/2 3 n rp/2
= (Z |“i|2) = le Gifile”"zd#] = [|Thli3-
=1 i=1

Thus ||T7!'|| <1, and so,
(1.5) dg < n'/2-1/P,

Now, we proceed by induction in n. Assume that the proposition is valid
for (n — 1)-dimensional -subspaces.

Let E C Ly(Q,u), dmE =n, dg =n!/2-Y/P, Then ||T7!||=1. Fix h€
E such that ||h||, = ||TEllz2 =1 and h = En: e;f; for some scalars ay,...,an,

=1
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where fi,...,fn are as in Proposition 1.3. Since all the inequalities in (14)
become equalities, it follows that |h] = F a.e. in the support A of h.

Moreover, there exists a functional ¢ suzh that f; = ¢a; a.e.

Since the f;’s are linearly independent, there exists #o € {1,... ,n} such
that a; = 8;;,. Without loss of generality, assume that i = 1. Therefore, |k| =
|fi] a.e. and fo = fa=---= fon =0 a.e. on A. Next, observe that for any
f € E, therestriction f-x, of f to A belongs to the one-dimensional subspace
[R] of L,(S,u) generated by k.

Summarizing, E = [h] ®p E1 where
E,={fe€E: f(w)=0 a.e.on A}.
We shall show that
(1.6) dg < (14 dT=TF) /2P,

Observe that, by (1.5) for the space E; and above, we obtain that
dg, = (n— 1)1/2-1/s.

By (1.6) and by using the inductive hypothesis, we conciude the proof. To
see (1.6) fix € > 0. Choose an operator H : E; — £3™! such that |[H7 [ =1

and ||H|| < dg, +¢€. Consider the following diagram

[k ®p Ey = E
is IH
lea] @2 77 = £3,
where S :[h] — [e1] is a linear operator defined by S(h) = e;.
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Pick g € E such that ||glis == 1. Choose f € E, and scalars )\, £ such
that ||fll, =1 and ¢ = Ak + £f. Since h and f have disjoint supports, it
follows that AP 4- £ = 1. Moreover,

IS @ H(g)ll2 = l|Aex + EH(F)ll2 = (A? + || H(F)||2)"/?
< (A2 4+ H|P)V?

S (W +e)MP (14 | HIPE )BT

Since (£)' = ;25 and [|H|| < dg, +¢, we have

1 1/p—1/p
(.7) IS® Hl| < (1+(dp, +e)7=m)

On the other hand, by similar calculation as above, we have

I(S®T) M| < sup (WP +¢?H P/
A24g2=1

= sup (AW+£&P)/P< sup (A24€%)/2=1
A2+€2=1 A2+£2=1

Combining the last estimation with (1.7), we obtain

1/2-1/p
de < IS@ TS & T)| < [1+(ds, +€)7T7775 .

Since € > 0 is arbitrary, it shows (1.6). O
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CHAPTER 3

GENERAL CONSTRUCTIONS OF SPACES
WITH NO UNCONDITIONAL BASIS

3.1. Notations. The aim of this chapter is to show a rather general construc-
tion of Banach spaces with no unconditional basis. The idea of the construction is
based on some techniques first introduced by W. B. Johnson, J. Lindenstrauss and
G. Schechtman [JLS] for studying the Kalton-Peck space [KP]. These techniques
were refined by T. Ketonen [K] and later generalized further by A. Borzyszkowski
[B]. The Kalton-Peck space was the first example of a Banach space without an
unconditional basis which is an unconditional sum (even a symmetric sum) of two
dimensional subspaces.

The standard notations from the Banach theory used throughout Chapter 3
can be found, e.g., in [P} and [T-J].

Let us recall some fundamental definitions. A basis (e;) in a Banach
space X is called unconditional if there exists a constant K such that, for

every = = ) a;e; in X one has
:

“ ZE*“"C"" <Kzl forall g =1%1, i=12,....
s

The smallest X is called the unconditional basic constant and is denoted by
unc ((e;)). For a Banach space X with an unconditional basis, we set unc(X) =
inf{unc((e;)) | (e;) is an unconditional basis in X}.
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If X has no unconditional basis, we set unc(X) = oco. A basis (e;) is
called 1l-unconditional if unc((e;)) = 1.

If (Z2;)§2, is a family of finite dimensional subspaces of a Banach space
X, then the unconditional constant of (Zx)g,, denoted by unc(Zi)$2,, is the
infimum of numbers K > 0 such that, for all finite sequences of vectors (zx)x,

with z; € Zi, and for all choices of signs (ex), the following holds

[ SCevee] < K

Moreover, if span(Zx)r = X, then we say that X has finite dimensional decom-
position. If unc(Z;)x is finite (equal to one), we call (Zi)§2, an unconditional

(1-unconditional) decomposition.

If A is a subset of the positive integers, we denote span ({e;}ica) in X

by X|a.

DEFINITION 1.1. A Banach space X with a normalized 1-unconditional basis
(e:) is said to satisfy an upper, respectively, lower 2-estimate if there exists a

constant K < oo such that, for every choice of scalars (a;), and every n =

1,2,3,..., one has

n n 1/2
(%) " Zaiei" < K(Z |ai|2) ,
i=1 =1
respectively,
n n 1/2
(%) " Zaiei“ > K™ (Z |ai|2) .
=1 =1

The smallest constant K satisfying (%) or (*#) is called the upper, respectively,

lower 2-estimate constant of X.
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DEFINITION 1.2. Let X be a Banach space with a normalized 1-unconditional
basis. We say that X contains €3 ’s uniformly on subsequences if there exists a
constant K < oo such that, for every subsequence (e,) of the basis, and every

k, there exists a subsequence ny,...,ni of indexes such that

(Zlaqz‘ 1/2 < ",Z:;a‘e"‘“ < K(g l042)1/2

=1

for all scalars e;.

Let X and Y be two Banach spaces with a normalized 1-unconditional
basis {ex). The natural identity operator acting between X and Y we denote
by 1id.

3.2. Spaces with no unconditional basis and with a finite dimensional
decomposition. The following result is essential in the construction of Banach
spaces with no unconditional basis. T. Ketonen [K] and 4. Borzyszkowski {B] used
this approach for the £,-space, 1 < p < 2. Our argument is slightly different and
shorter than those which are presented in [B] and [K]. Therefore, for the sake of

completeness and to obtain some estimations, we will give the proof.

PropoSITION 2.1. Let (Y,|i-|) be a Banach space of finite cotype g, and
let C,(Y) be the cotype constant of Y. Suppose that unc (Y) < oo, and that
Y has a l-unconditional decomposition (Z)r. Assume that dimZ; = 2 for
each k. Then there exist an operator T : Y — Y and an increasing function
fo : [1,00) — [1,00) such that

(i) T(Zx) C Zx for each k,

(@) TN < fo(unc(Y) - Cy(Y)),

(iii) (T — Mid)|z,|| 2 3 foreach A€R, k=1,2,3,....
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Before we start the proof, we recall some necessary information.

Let X be a Banach space with a 1-unconditional basis (ez). Let =4,...,7,
be a finite sequence in X. Let (z:x)x be the coordinates of z; so that z; =
Y.k Tiker. We denote by

(5wr)"

the element of X defined as follows

()" = (et

~i=1

Recall (see {LT] Theorem 1.d.6 and Corollary 1.£.9) that if X is of co-

type g < co, then there exists a constant M such that

e B e < (1)
for all finite sequences (z;) in X.

Note that M irn (2.1) depends only on the cotype constant, and in fact, it
can be considered as an increasing function of Cy(X).
oC
Kecall that in finite-dimensional spaces a series »_ z; converges uncondi-
=1

o0
tionally if a1:d only if it converges absolutely, i.e. 3 ||zi|| < co. More precisely,
i=1

if X is an n-dimensional Banach space, then
1 .
(22)  sup "2”“ > ;aniu forall z; € X, i =1,2,....
Indeed, let (ex,e})}_, be an Auerbach system for the space X. Then

3 B PIETEN B9 BE LN
t ¢ k=1 =1 s
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_ Z ex( Z sign (CZ(-T;‘))-'B:')
k=1 i

PROOF OF PROPOSITION 2.1: Let (e;) be an unconditional basis for Y. Denote

D = unc((e;)). Weintroduce on Y the equivalent norm |||-|l| to ||-|| as follows:
[ Zied] = sup, || S esased].

Then -l < lii- Il £ Dji-ll, and (ei) becomes a normalized 1-unconditional ba.is

for (Y, |l - lID-

Let P;. be the natural projection from Y onto Z;, and let A; be an
operator defined as follows: A::Y — Y, Az = 3 cief ®e;, where (ef) is the
biorthogonal system associated with the basis (e;), € = (€1,€2,...), €i = £1.

For every k pick &, = (%1,%1,...) such that

o«

(2.3) 7P 0, \PehePe — Nid|| < inf || Pebs, Pe — Nid].

Deﬁne T = Ek PEAE,‘PJ,.
Observe that (i) follows directly from the definition of T. To see (ii) fix an
z in Y such that |z|| = 1. By (2.1) and since unc(Zi)i = 1, we have

1Tzl = |E( X repe) (3 rete Pe() |
k k
< v | Eer] £ e puia)|
k

< M"K; lAs, Pk(z)l")m"l
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=m|(Zimor) ™|

= ]| (& Erer@|) |

< vau||g| 3 repo|

< VaME|| bt

< vVZMDE|| ;ncpk(x)“ = VZMD|jz].

Note that the constant M depends on C,(Y,]|| - lIl), and by renorming on
DCo (Y, II-})-

In order to prove (iii), we consider a 3-dimensional space B/By, where B
is a space of linear operators on Z; and By = span(id). For S € B let S be
the image of S under the quotient map.

Fix k. Define R; = Pi(e?! ® €;)Px. Observe that
~ 1
9 . — - R - el .
(2.4) Rl )l\léa [|R: — Ad|| > || Rsl|

This is trivially true for |A] < ||R;|l/2, and in the case |A| > ||R;||/2 it is sufficient
to notice that, since R;(Z;) is one-dimensional, there is an z € ker R; such that
lizll = 1. By (2.3), (2.4) and (2.2) for n =3, we have

. . 3 . .
J{Iela (T — Aid)|z, || = 1 Sl;P ilelf'; | PcAePi — Aid||
3
=300, | ek 2 ¢ 5 0

> -;-2 IRl > 5 ILACE, )P =zlidl. O
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The next theorem illustrates the use of Proposition 2.1. The idea of the
proof appears later in a more general setting, in the proof of Proposition 4.3. The
class of spaces presented in this theorem is very large. In particular, as we will see
in Section 5, it allows us to construct a weak Hilbert space with no unconditional

basis.

THEOREM 2.2. Let a>1. Let X;,...,X4s be Banach spaces of finite cotype
with a normalized 1-unconditional basis. Suppose that |lid: X141 — X;|| < o,
and that no subsequence of X; is equivalent to this in X;y4, ¢ =1, 2,3. Then

there exists a subspace Y in X; ®---@® X4 such that unc(Y) = oo.

PROOF:Let (é€;k)r be a normealized 1-unconditional basis in X;, 1 = 1, 2, 3, 4.

Let (Am)m and (Am,n)m,n be two partitions of the positive integers such that:

(2'5) IAmI = X, :Am,nl = S0, m,n = 1a 2a 3,"'7
and

o0
(26) Am = Am,n-

n=1

For k € Am,n define

T =e1x+ ez +2 ez,

Y = €2,k + 2_(m+")€4,k-

Put Z; = span(zi,yx), Y =5pan (Zx)s. We will show that unc(Y) = oo.
Assume on the contrary that unc(Y) < oo. Observe that unc(Z;)s = 1; and
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since
(2.7) max(|¢], |w]) < |tz + wyill < 3(|¢] + [w]),

it follows that =, yi, 2, y2, -.. 1is a basic sequence.

By Proposition 2.1 there exists an operator T : Y — Y such that (i), (ii) and
(iii) are satisfied. Let (2:‘: Z: ) be the matrix of T|z, with respect to (z&,yx)-
Observe that sequences (a%), (bx), (cx}, 7dx) are bounded. Put a; = aj — d;.
Let 73 :Y — Y be an uperator such that (:: b;) is the matrix of Th|z, with

respect to (zx,yi). We will show that Tj is bounded, and that for every k one
has

(2.8) max(|ax|, |bkl, lexl) > no,

where 7g is an absolute constant.

Indeed, let S:Y — Y be an operator such that (‘:: do,,) is the matrix
of S|z, with respect to (zk,ys). Since unc(Zi)i = 1, it follows that S is
bounded; hence T} = T'— S is bounded. Condition (2.8) follows from Proposi-
tion 2.1(iii) and (2.7).

Fix A . By (2.5) and since no subsequence of (e ) is equivalent to this
of (eax), it follows that there exists a sequence of scalars (Bx)kea,.,. such that
> Bres converges, but Y Bieqr does not converge.

We have [|S Bizll < 003 hence |Ty(E Aeze)ll = IS Blarzs + cavill <
co. It follows that 3 cxfBresr converges; so, infieca,, . lck|l = 0.

For every m, n pick kmn € Am,n such that

(2’9) Z Ickm,nl < 'lo'
m,n
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Let K be the set of such k’s.

Define an operator T3 : 5pan (Zx)kex — 5pan(Zr)rex such that (ao.. b;)
is the matrix of Ti|z, with respect to (zx,yix). By (2.7) and (29), T, is
bounded.

Fix A,,. Consider A,, N K. For k € A,, N K define n; such that

k € Ampn,. It follows from (2.6) that klim ng = oo. As before, choose
—+00

k€EAmNK
(Br)keAnnk such that > Brezx converges, but Y Bresr does not converge.

We have |3 Bevell < |12 Brez el + 20 2—(m+n)18, | < co; hence
E€EAmNK

3 ]| = | 3 b < oo

It follows that 3 Bibres i converges; so, infiea,.nk |b&|=0.

For every m pick k, € A, N K such that

(2.10) > 1bkm| < 70-

Let K' be the set of such k'’s.

Define an operator 73 : span(Zk)xek* — Span (Zk)rek’ such that (“; 2
is the matrix of T3]z, with respect to (zk,yx). As before ||T3|| is bounded, and
by (2.8), (2.9) and (2.10), |ax| > 70 for k € K'.

For k € K' define m; suchthat k € A,,,. Then klim mi = oo. Choose
—00

keK'
(Bi)x € K' such that Brey x converges, but Brez r does not converge. We
, , &

have

" Zﬂk(mk ‘—yk)" < " Zﬂkel,k“ +2 Z 2=k | B | < oo;
keK'’



thus

o (e | = | S v 2 g 1| v
> 'lo" Z ﬂkez,k” = 00.

This contradicts the fact that unc(Y) < co. Hence unc(Y’) = oo. O

3.3. Preliminary quantitative results. Let us introduce some new notations
important for the further argument.

Let X bea Banach space with a normalized 1-unconditional basis (eg). Let
(X:)™, be a sequence of subspaces in X with the basis (eix)s, : =1,...,m,
respectively. Assume that (eix)s, ¢ = 1,...,m, are disjoint subsequences of
(ex). By D(X; ®---® X,n) we mean the diagonal space in X; @ -+- & Xmm
(i.e., Spafi(eix + +-- + emk)k) with a normalized l-unconditional basis
((er,x + -+ + emu)/llere + - + emill) -

Suppose that I is any subset of the positive integers IN, and that A, A,
are any two partitions of I. We write A; > A, if for every A € Az, there
exists a family (B,) in A; such that A =|JB,.

In the construction, we will consider onl; four partitions. If necessary, mem-
bers of A are numerated and denoted by A = (A4,).

Let X and Y be two Banach spaces with a normalized 1-unconditional
basis (ex)xer- Let (A;) be afamily of partitions of I such that A; > Dy >---.
For every A€ A;, : =2,3,..., we define

(3.1) dA(X, Y) = inf "id . Xl(k,.) e 4 Yl(k,.)“,
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where the infimum is taken over all sequences (k,) in A such that k, €
B,, B, € A;,_;, and A =JB,.

The above para.meternis crucial for the construction of Banach spaces with
no unconditional basis. It will be used for the lower estima. . of the norm of the
operator T from Proposition 2.1; and hence, for the lower estimate of unc(Y’) as
well. Therefore, in all situations considered in here, we try to get d4 sufficiently
large.

The following lemma illustrates that, in some cases, we can obtain d4(X,Y")

as large as we wish.

LEmMMA 3.1. Let X; and X, be two Banach spaces with a normalized 1-
unconditional basis. Let A = (A,) be a partition of IN such that every An
is finite. Suppose that for every infinite subset A of the positive integers the

fo.owing holds
"2d . X2|A - XIIA" = OC.

Then for every K > 1, there exists mi € IN such that, for every sequence
(kn)Ty, kn € A,, one has

llid : Xa|@,;m_, = Xal@kaym I} 2 K.

nel

In particular we have:

COROLLARY 3.2. Let X be a Banach space with a normalized 1-unconditional
basis. Let A = (A,) be a partition of IN such that every A, is finite. Suppose

that no subsequence of the basis in X satisfies an upper (respectively lower)
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2-estimate. Then for every K > 1, there exists m € IN such that, for every

sequence (k,)7.,, k, € A,, one has

"1d‘£¥‘—>X|(k" m ">K

ne=i -

(respectively |lid : Xk, )~  — €3'|| > K).

n=1

PROOF OF LEMMA 3.1: Assume on the contrary that there exists a constant K >

1 such that, for every m = 1,2,3,..., there exists a sequence (ko)™.,, k. € A,,

such that

llid : Xao|@ka)m_, = Xalga)m_ I < K.

n=1

By the standard Cantor diagonal process, we can extract an increasing se-

quence (k;)5%,, k;, € A, (r~te that each A, is finite) such that

n=1

flid = Xal(aryee | — Xilre)e || < K. This is impossible by our assumption. a
As an immediate consequence, from Corollary 3.2, we obtain:

COROLLARY 3.3. Let X be a Banach space with a normalized 1-unconditional
basis. Suppose that X contains €5 ’s uniformly on subsequences, and that for

every infinite subset A of the positive integers one has
lid : €2 — X|al| = o0

(i.e., no subsequence of the basis satisfies an upper 2-estimate).
Then for any choice of positive numbers (M; ), ¢ = 2,3,4, there exist

four disjoint subsequences (e;ir)r of the basis and four partitions A; = (Ain)n
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of IN, i =1,2,3,4, such that, setting X; = span(ei)x, the following conditions
are satisfied:

(i) Ay > --- > Dy,

(ii) there exists a constant « > 1 such that, for every 1 <i<j <4, and for

every A € A;, one has
llid : Xila — Xjlall < o,
(iii) for every Ain € A;, i =2,3,4, one has

dAi,n(Xi) Xi—-l) > Mi,n-

COROLLARY 3.4. Let X be a Banach space with a normalized 1-unconditional
basis. Suppose that X contains €3 ’s uniformly on subsequences, and that for
any basic sequence (fx) of the form: fr = €}, fx = €y + €3, or fi =
e}k + ey + €5y, where (e];), (e3;) and (e3,) are disjoint subsequences of

the basis, the following holds
llid : 5paz (fi) — £zl = o0

(i.e., (fi) does not satisfy a lower 2-estimate).

Then for any choice of positive numbers (M; z)n, i = 2,3,4, there exist
four disjoint subsequences (e;x)x of the basis and four partitions A; = (Ain)n
of N, i =1,2,3,4, such that, setting X; = span(e; x)k, the following conditions
are satisfied:

(1) Ay > - Ay,
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(ii) there exists a constant a > 1 such that, for every 1 <i < j <4, and for

every A € A;, one has
llid : Xila — Xjlall < o,
(iii) for every A;n € A, i = 2,3,4, one has

da;, (D(X1 ®--- @ Xi1),Xi) > M q.

PROOF OF COROLLARIES 3.3 AND 3.4: By induction, we can choose A; > --- >
Ay and Xi,...,X, in such a way, that for every A € A, ¢ = 1,2,3,4, the
space Xi|a is uniformly “close” to Elel; hence (ii) holds. Condition (iii) follows

immediately from the main assumption and Corollary 3.2. (I

3.4. Main estimates and quantitative results. In this section, we establish,
in Propositions 4.2 and 4.3, the general construction of Banach spaces with no
unconditional basis. This result is the most important in this part of the thesis.
The argument is very similar to that one which was presented in the proof of

Theorem 2.2. As a result we will obtain the following:

THEOREM 4.1. Let X be a Banach space of finite cotype with a normalized 1-
unconditional basis. Suppose that X contains €3 ’s uniformly on subsequences,
and that one of the following conditions is satisfied:

(i) no subsequence of the basis saticfies an upper 2-estimate,
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(ii) no basic sequence of the form: fx = €4, fk = €j + ey or fi =
e} x +ehy + ey, where (e} ,), (e3,) and (e3,) are digjoint supported
subsequences of the basis, satisfies a lower 2-estimate.

Then there exists a subspace Y in X such that unc(Y) = oo.

In the next two propositions, by  fo ” we denote the function established

in Proposition 2.1(ii).

PROPOSITION 4.2. Let X be a Banach space of finite cotype g, with the cotype
constant Cy(X). Suppose that X has a normalized 1-unconditional basis. Let
(eip)k, ¢ = 1,2,3,4, be disjoint subsequences of the basis. Let A,.. ., A4 be
partitions of IN such that A; > ---> A4. Let A€ Ay, =21, n21.

Setting X; = span(e;r)x, assume that
(4.1) da(D(X1®--- D Xi-1), Xi)>1n forall A€ Ain{Ao}, :=2,3,4,
aad
(4.2) llid : Xila — Xjlall < @ forall Ac A;N{A¢}, 1<:1<j< 4.
Then there exists a subspace Y in X; & ---® X4 such that

unc(Y) = Co(X)™ f 1 (10 *a" %),

PROPOSITION 4.3. Let X be a Banach space of finite cotype ¢, with the cotype
constant C,(X). Suppose that X has a normalized 1-unconditional basis. Let
(eik)k, t = 1,...,4, be disjoint subsequences of the basis. Let A;,...,04 be
partitions of IN such that Ay > --- >~ A4. Let Ag€ Ay, 21, 321,
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Setting X; = span(e; )k, assume that

(4.3) dA(.X,',Xi_l) >n forall A (S Ai N {Ao}, 7 = 2,3,4,
(44) |lid: Xi|la — Xjlall < @ forall A€ A;N{A4p}, 1<i<j<4,

(4.5) Y dp(X2, X))V + D dp(Xs, X2)"V? < 1.
BeA; BeAg

Then there exists a subspace Y in X, & ---® X, such that

unc(Y) = Co(X) ™' £ (107%™ 5 /2).

Assuming the truth of Propositions 4.2 and 4.3, we can easily prove Theo-
rem 4.1. I follows immediately from Corollaries 3.3 and 3.4. Notice that, by a
suitable choice of (M;,), and then by changing Ay in A4, we can obtain the
lower estimations in (4.1) and (4.3) as large as we wish.

Before we pass to the proof of Propositions 4.2 and 4.3, we discuss a general

idea of the use of Proposition 2.1.

‘We define

(4.6) Tk =y kerk + o+ agrear, Yk =Prrerk + -+ Barear,
where (i), (Bik)k, :=1,...,4, are any scalars such that
(4.7) max(|t], [w]) < |ltzx + wyill < 3(J¢] + [w]).

Put Z; = span(zi,yx) and Y = 5pan(Zix)i. Observe that for k # k' the
spaces Z; and Z,+ have disjoint supports; hence unc(Z;)x =1, and by (4.7),

it follows that xi,y1,72,¥2,... is a basic sequence.
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Suppose that unc(Y) < oo. By Proposition 2.1, there exists an operator

T:Y — Y such that conditions (i), (ii), (iii) are satisfied.

{ar by

kck dk
be the matrix of T'|z, with respect to the basis (zz,yx) (i.e., T(azis + Byr) =
(xar + Bbi)zi + (ack + Bdi)ys)-

Let

For simplicity, we introduce the following notations. Let S : Zy — Z; be
an operator, and let (: :) be the matrix of S with respect to (zi,yi). By
lIS|lI we mean the €4, norm of S, i.e. [||S||| = max{|al,]b|,|c|,|d]}. The norms
Il and |jI- |l are equivalent; in fact, ﬂl%u < ISl £ 3]|S]|. This is a consequence
of (4.7) and the fact that Z; is two-dimensional. Hence, by Proposition 2.1(iii),

we obtain
(4.8) 107? < max(jax — Al, |dk — Al ek, [0x1) for ali A €R.

In the proof of Proposition 4.2 (4.3} we will choose scalars (a; )k, (Bik)r in
(4.6) such that (4.7) and (4.8) are satisfied.

PROOF OF PROPOSITION 4.2: For € = 713, we have
(49) da(D(X,®---BXi),X:)> e™3 forall 4 € A; N {A,}, 1 =2,3,4.
Define zg, yx in (4.6) as follows:

— 2
T = ek +ce3 i + €%eq ks

2
Ye = €2,k +e%eq,k-
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‘We will show that
(4-10) Tl = 107%a~ et

Pick B € A; N {A¢}. By (4.9), there exists a sequence of scalars (Bi)ker

such that ||S>fBrerx| = 1 and |3 Brezill = €' (by continuality, we may
suppose that). By (4.2), we have

“ Z ﬂkﬂ—'k“ < “ E Bre k “ + 6" z Bres i “ + €* u z ﬂkﬂ,k“
ct o S s+ 2o S rna] <3

and

3aliTll > |T( 3 Beae)|| = || 3 Aetaras + exwn)|

2 !!Zﬁkcwrz,k“ > :Ielil; ICA-!!! Zﬂkeg,k!l =g ! :xeﬁt" lekl.

For every B € A; N {4y} pick k € B such that |ci| < 3ee||T||. Let K

be the set of such k’s. Suppose that [cx| < 535, for all k € K (if not, then
(4.10) holds).

Pick C € Az N {Ao}. By (4.9), there exists (Bi)recnk such that

"Zﬂ"(n:::IZ::u)"=1 and || 32 Beessl| =7

As before, by (4.2), one has

" > ﬁkyk" < " > ﬂkez,k“ +é? " > ﬂke4,k"
<o T (Rarip)|| + ol o puess| < 3

ek + el
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and

3allTlf > |7( 30 Buwn) || = || 2 Betbazs + diva)|
>el| 3 Brbresa|| 2 et dnf _Ibel.

keKnC

For every C € A3z N {40} pick k¥ € CNK such that |bx] < 3eal||T|| anu
|be] < 535 (if not, then (4.10) holds as required). Let X' be the set of such k’s.
Finally, choose (Bi)rea,nk’ such that

" zﬂ"e""" =&~  and " 2B (||el’k Tk tol )" <L

e1x +e2.x + es

Thus we see that

" > Br(zk — yk)“ < " > Belere + ez, + 63,,‘)" < 3.

By (4.8), and since |ci| < 55, Ibz| < 5 for * € K', it follows that |ay —di| >

100 for k € K'. Hence

3TN > |73 Beter — o)
= “ Z.Bk[(ak — b)zr + (o — di)yi) "
>e? " Z Bel(ar — b)) + (& — dk)]€4,k||

> e_l

seinf | (lak —di| = lexl - bk 1)

-1 ( 1 1 1 e?
> € — —_ = —
- 100 400 400 200
Summearizing, ||T| > e = 10~*a~1n3, and by Proposition 2.1, we obtain

that unc(Y) > Cy(X)™!- f;7}(10~4a"1n}) as required. O
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PROOF OF PROPOSITION 4.3: Define zi, yr in (4.6) as follows:

for ke BNCnN Ay, where B € A,, C € A3, put
Tp = dC(X3,X2)—%62,k + e3x + €4k,
yx = dp(X2,X1) 21 + ek
The result will follow from Proposition 2.1 and the following esimation:
(4.11) Tl = 10~%a"n%.

Fix B € £; N {Ac}. In pasticular, |lid: X2lp — Xalsll = dp(X2,X1).
Choose (Bi)kep such that ||3 Biezell =1 and [|3 Brerxll = d(X2,X.). By
using (4.4), we see that |3 fizi]l < 3a and

3a||T| > ”T(Zﬁkzk) " = ” > " Br(arzi + Ckyk)”

ZdB(X2aX1)—%l

> Brcrere|| 2 dp(Xa, X2)} jnf leel-
For every B € Az N {Ao} pick k € B such that
(4.12) lcx] < 3adp(X2, X1)"H|T.

Let K be the set of such k’s. We numerate members of A; N {4} =
(Bik)rex such that k € Bg.

Suppose that |cx] < 1072 for k € K (if not, then (4.11) holds by (4.3)).
Define T) :span(Zi)rex — Span(Zi)iek such that

ag bk
0 d;
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is the matrix of Ti|z, with respect to (zk,yx). By (4.12) and (4.5), we see that

imi < i+ 3 | (2 D)l=zu+ 23| (2 )

< |7l + 36 T) D dp,(X2,X1)"% < 40a||T}.
keK
Hence
(4.13) NT1lf < 40a||T}|.
Next, for fixed C € A3 N {Ao}, we have

"id : Xslenx — X2|CnK" > dc(Xs, Xa2)-

Choose (ﬂk)keCnK such that "Z:Bkeii,k" = 1 and “Eﬂkez,k" > dc(Xg,Xg).
Thus, by (4.5), one has

" zﬂkykli = Z dBE(X?’Xl)—% |Bx| + " E .Bkes,k“ <2
keCnK *
hence, by (4.13),

80a||T|| = 2||Thll 2 “T1 (Zﬂkyk) “ = " Y Bu(brzi + dkyk)"

> dC(X3,X2)_%" Zﬂkbkez,k" > do(Xa, X2) ¥ keigf [bx|-

NK

For every C € A3N {Ao} pick k€ CNK (say C = C;) such that

(4.14) bx| < 80a||T|ldc, (X3,X2)~}.
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Let K' be the set of such k’s. As before, we may suppose that |bx| < 1072 for

k€ K'. Define 7T, :5pan (Zi)rek’ — Span(Zx)xek such that

arp O
0 d;

is the matrix of T3]z, with respect to (zi,yx). By (4.13), (4.14) and (4.5), we

have
0 b
iz <imi+z 3 (5 %))
kEK’
< 40a||T|| + 12- 80 - o|T|| D dc,(Xs, X2)™*
keK'
< 10%a||T||;
hence,
(4.15) IT2)| < 10°a| T}

By (4.8), and since |cz| < 1072, |bi| < 1072 for k € K', it follows that
(4.16) lag —d) > 1072 for ke K'.

Observe tha.t "ld M X4!A°n}{i — XSIAoﬁK’" _>__ dAo(X4,X3). ChOOSC (ﬂk)kernK'
such that |3 Bresr|l =1 and |3 Bres il = da (X4, X3). Again, by (4.5), we

have

"Z.Bk(zk—yk)ns S dp (X2, X1) Bl

k€EAoNK'

+ > dc, (X3, X2) " ¥ 18l + “ Zﬁke4,k“ <2

kEE€EANK'’
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hence by (4.15) and (4.16), we see that

2-10%|T 2 |72 (3 Ael - ve) |
= " Z Br(arzi — dkyk)“ > " Zﬂk(ak — dk)ea,k"

21072 3 rea,e|| 2 1072 (X4, Xs)-

Finally, the last inequality shows (4.11), and by using Proposition 2.1(ii), we obtain

the required estimation. O

3.5. Examples of spaces with no unconditional basis. In this section
we shall present some specific examples of Banach spaces with no unconditional
basis which are relatively “close” to £2. It is known that £,, for p # 2, contains
subspaces with no unconditional basis; however, for various other spaces such
examples were unknown.

As an illustration we will show that there cxists a weak Hilbert space with
no unconditional basis, thus answering a question raised some years ago by several
authors (c.f. e.g. [CS], [P])-

Next, we use some notations and facts contained in [CS] and [P].

Recall that a Banach space X is a weak Hilbert space if for every 0 < < 1,
there is a constant C; with the following property: every finite dimensional
subspace E C X contains a subspace F C E with dim F > §dim E such that
d(F, 5™ Fl) < C; and there is a projection P:X — F with ||P]| < Cs.

Let X; be a version of the 2-convexified Tsirelson space, presented in [CS]
and in [P] (Chapter 15). Then X5 (respectively X7) is a weak Hilbert space
(actually, X5 is of type 2 and any cotype ¢ > 2). The standard unit vector basis
is normalized and l-unconditional in X5 (in X7 respectively). Moreover, X;
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and X} contain £} ’s uniformly on subsequences and do not contain subsequences
equivalent to the unit vector basis of £;. In addition, in [J] we find that X; Jdoes
not contain any isomorphic copy of £3.

Let us state the main theorem of this section.

THEOREM 5.1. The space X (respectively X}) contains a subspace with a

basis, but not unconditional basis.

PROOF:First consider X}. Then Xj is of cotype 2, and since no subsequence
of the basis in X} is equivalent to ¢z, it follows that no subsequence of the
basis satisfies an upper 2-estimate. By Theorem 4.1(i), and since X; contains
£2 ’s uniformly on subsequences, there exists a subspace Y in X7 such that
unc{Y) = co. In fact, it follows from the construction of Y, that Y has a basis
Ty, Y1, T2y Y2y oc- -

Next consider Xs. Then X5 is of type 2. Since X5 does not contain any
isomorphic copy to £, it follows that condition (ii) in Theorem 4.1 is satisfied;

hence, there exists a subspace in Y in X; such that unc(Y’) = oco. a

REMARK 5.2. The existence of a weak Hilbert space with no unconditional basis
follows also from Theorem 2.2. It is a consequence of the fact (cf. [C]) that the
spaces X5 are all mutually non-isomorphic (i.e. if 6 # &', then X; and X
have non-isomorphic infinite dimensional subspaces) and the observation that a

direct sum of finitely many copies of weak Hilbert spaces is a weak Hilbert space.

REMARK 5.3. Recall that the class of weak Hilbert spaces can be character-
ized by a certain linear behaviour of various functions associated with the finite-
dimensional structure of Banach spaces. Such functions are, for instance, the

codimension of a nicely complemented Euclidean subspace in any n-dimensional
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subspace of X (cf. e.g. [P]), or, as sho. n in [JP], the uniformity function of the
uniform approximation property of X. It is well known ([P]) that for examples
related to the Tsirelson space, these functions have much slower growth than lin-
ear, and the same has been recently shown in [NT] for an arbitrary weak Hilbert
space with an unconditional basis. Obviously, for the weak Hilbert spaces without
unconditional basis, constructed by using Theorem 4.1, the first mentioned func-
tion, as well as many other functions discussed in [P], which do not necessarily

charecterize weak Hilbert spaces, has growth as slow as in the Tsirelson space.
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