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Summary  17 

Chitosan has attracted a growing attention as food preservative due to its versatility, non-18 

toxicity, biodegradability, and biocompatibility. This review aims to provide a critical 19 

appraisal of the limitations and opportunities of the use of chitosan as food preservative. 20 

Application of chitosan as food preservatives necessitates insights into mechanisms of 21 

chitosan-mediated cell death and injury, factors affecting chitosan activity and effects of 22 

chitosan on food safety and quality. Chitosan exert antimicrobial activity through 23 

perturbing the negatively charged cell envelope of microorganisms with its polycationic 24 

structure. Intrinsic characteristics, including molecular weight (MW) and degree of 25 

deacetylation (DD), and other ambient conditions, including pH, temperature, neighboring 26 

components, affect chitosan activity. Because the antimicrobial activity of chitosan is 27 

mainly based on ionic interactions with negatively charged components of the bacterial 28 

cell envelope, the food matrix can strongly interfere with the antimicrobial activity of 29 

chitosan. Despite of its limited antimicrobial efficacy, chitosan demonstrates both 30 

bactericidal and bacteriostatic effect in specific food products. Moreover, chitosan can also 31 

enhance the efficacy of commercial intervention technologies, such as heat and pressure 32 

treatment, and aid the preservation of food quality, including retardation of lipid oxidation, 33 

weight loss, and deterioration in sensory attributes.  34 

Keywords: Chitosan, food preservative, mode of action, antimicrobial activity. 35 
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Introduction 36 

Food safety and quality are fundamental concerns for consumers and the food industry. 37 

Current intervention and preservation technologies, however, do not prevent outbreaks of 38 

foodborne bacterial disease, or food spoilage and food waste (Hussain 2013). Moreover, 39 

the negative public perception of commercial preservatives prompts an increasing 40 

preference of consumers for replacement of chemical preservatives by “natural” 41 

alternatives that are derived from biological systems (Amit et al. 2017; Román et al. 2017). 42 

To meet the consumers’ demand for “natural preservatives” including essential oils 43 

extracted from plants (Sanchez-Maldonado et al. 2015; Pandey et al. 2017), bacteriocins 44 

from lactic acid bacteria (LAB) such as nisin or pediocin PAß1-AcH and bacteriocin-45 

producing protective cultures such as Carnobacterium maltaromaticum UAL307 (Micocin 46 

®  (Liu 2014; Barbosa et al. 2017) are used commercially as food preservatives. Further 47 

improvement of food safety and quality, however, necessitate the development of other 48 

antimicrobials from natural resources. 49 

Chitosan is a linear polysaccharide consisting of β-(1→4)-linked glucosamine and 50 

N-acetyl-D-glucosamine that has been proposed for use as food preservative. Chitosan is 51 

prepared by deacetylation of chitin, which is present in the exoskeleton of crustaceans and 52 

insects and in the cell walls of most fungi and some algae (Ma et al. 2017; Muxika et al. 53 

2017). When the proportion of glucosamine exceeds the proportion of N-acetyl 54 

glucosamine, corresponding to a degree of deacetylation (DD) of more than 50%, the 55 

polymer is termed chitosan (Khor and Lim 2003; Ramírez et al. 2010). Owing to its positive 56 

charge and unique functional groups, including the amino/acetamido groups at the C-2 57 

position, and hydroxyl groups at the C-3 and C-6 positions, chitosan is a versatile 58 
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biopolymer with applications in the biomedical field, in wastewater treatment, agriculture, 59 

food protection, cosmetics, papermaking, and the textile industry (Ma et al. 2017; Muxika 60 

et al. 2017). While several reviews indicate the potential applications of chitosan as food 61 

preservative, challenge studies in food often report only a limited effect of chitosan on 62 

pathogens or spoilage organisms. This review aims to provide a critical appraisal of the 63 

challenges to food applications of chitosan that are imposed by the molecular structure of 64 

chitosan and its interactions with the food matrix, but also outline opportunities of the use 65 

of chitosan as food preservative.  66 

Preparation of chitosan  67 

Chitosan is prepared by purification, and deacetylation of chitin. Further enzymatic or 68 

chemical depolymerisation of chitosan yields water soluble chitosan-oligosaccharides 69 

(COS). To purify chitin from the shells of crustaceans, the shells are ground (Abdou et al. 70 

2008), processed with HCl to achieve demineralisation, and boiled in dilute NaOH to 71 

remove proteins (Puvvada et al. 2012; Arbia et al. 2013; Kumari et al. 2015). Deacetylation 72 

of chitin is achieved through alkaline treatment at more than 80 °C. The degree of 73 

deacetylation (DD) is dependent on the reaction conditions (Teng 2011; Yuan et al. 2011). 74 

Treatment with 12.5 mol L-1 NaOH at 95–100 °C deacetylates chitin within 2 h, yielding 75 

chitosan with DD of 87-90% and average MW of 160 -1600 kDa (Puvvada et al. 2012).  76 

Generally, chitosan is acid soluble and has antimicrobial activity only when the ambient 77 

pH is lower than its pKa, which ranges from 6.2 to 7.0 (Tsai and Su 1999; Helander et al. 78 

2001; Devlieghere et al. 2004). For food applications, chitosan is either dissolved in acetic 79 

acid to a concentration of 1 – 2%, or applied as chitosan-based packaging film (Jovanović 80 

et al. 2016; Muxika et al. 2017; Zhao et al. 2018). Chitosan has also been converted to 81 
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chitosan nanoparticles or microparticles (CN/CM) through ionic crosslinking with 82 

polyanionic sodium triphosphate (TPP) (Chávez et al. 2011; Zhao et al. 2011). CN/CM 83 

were reported to be effective food preservatives (Fang et al. 2015; Pilon et al. 2015 ; 84 

Chouljenko et al. 2017; Paomephan et al. 2018), however, there is no evidence that CN/CM 85 

have superior antimicrobial activity when compared to chitosan solutions. Chitosan can 86 

also be depolymerized by chitosanases and chitinases (Aam et al. 2010). COS have higher 87 

solubility and lower antimicrobial activity when compared to high molecular weight 88 

chitosan (Fernandes et al. 2008; Mellegård et al. 2011). 89 

Mode of action and factors affecting the antimicrobial activity of chitosan 90 

Chitosan, exhibits bacteriostatic or bactericidal effects against a wide range of 91 

microorganism (Devlieghere et al. 2004). The mode of action of chitosan relates to 92 

alterations of the cell envelope and a compromised integrity of the cytoplasmic membrane. 93 

The mode of action of chitosan against Gram negative and Gram positive bacteria is 94 

depicted in Figure 1 and described in more detail below.   95 

Polycationic chitosan disrupts the integrity of the Gram-negative outer membrane (Fig. 96 

1A). Outer membrane damage caused by chitosan was demonstrated through use of the 97 

fluorescent dye N-phenyl-1-naphthylamine (NPN), which is solubilized in membrane of 98 

Gram-negative bacteria only when the outer membrane is damaged (Träuble and Overath 99 

1973; Loh et al. 1984). Chitosan at the concentration of 0.01 to 5 g L-1 increased in NPN 100 

fluorescence in E. coli, indicating permeabilization (of the outer membrane (Liu et al. 2004; 101 

Mellegård et al. 2011). Similar chitosan-induced permeabilization of the outer membrane 102 

was also observed in Salmonella (Helander et al. 2001).  103 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Ch%C3%A1vez%20de%20Paz%20LE%5BAuthor%5D&cauthor=true&cauthor_uid=21498764
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Chitosan also permeabilizes cytoplasmic membrane (Fig. 1A and B). Quantification of the 104 

transmembrane potential with the lipophilic dye [3H] tetraphenylphosphonium bromide 105 

([3H]TPP+) demonstrated that addition of 10 mg L-1 chitosan to suspensions of 106 

Staphylococcus simulans reduced the membrane potential from 110 mV to 30 mV, 107 

indicating dissipation of membrane potential and perturbation of membrane integrity 108 

(Raafat et al. 2008). In addition, chitosan also initiated a progressive efflux of K+ and UV-109 

absorbing cellular components in S. simulans, S. aureus, E. coli and Bacillus cereus, further 110 

supporting an increased permeability of cytoplasmic membrane (Helander et al. 2001; Liu 111 

et al. 2004; Raafat et al. 2008; Mellegård et al. 2011).  112 

A pmrA negative mutant of Salmonella Typhimurium with a more positively charged 113 

lipopolysaccharide (LPS) was more resistant to chitosan than its parent strain (Helander et 114 

al. 2001), and S. aureus mutants lacking teichoic acids (TA) or lipoteichoic acid (LTA) 115 

were also more resistant to chitosan than wild type S. aureus (Raafat et al. 2008). These 116 

finding suggest that the electrostatic interactions between positively charged chitosan and 117 

negatively charged LPS (Fig. 1A), TA or LTA (Fig. 1B) contribute considerably to the 118 

chitosan-mediated cell death and injury. 119 

The degree of acetylation and the molecular weight impact antimicrobial activity of 120 

chitosan through altering the charge density of chitosan. Chitosan with higher degree of 121 

deacetylation has a higher positive charge density, allowing for a stronger electrostatic 122 

interaction with negative charged cell surface and leading to an enhanced antimicrobial 123 

activity (Chung et al. 2004; Mellegård et al. 2011; Younes et al. 2014; Chien et al. 2016). 124 

The minimum molecular weight of chitosan with DD of 84% for observation of 125 

antimicrobial activity was 2.3 kDa and the activity increased with increasing molecular 126 
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weight. With chitosan of a DD of 52%, antimicrobial activity was observed only at a 127 

molecular weight of 11.9 kDa and higher (Mellegård et al. 2011). The higher antimicrobial 128 

activity of chitosan with higher DD and molecular weight may be attributed to the higher 129 

positive charge density and the more intensive interaction with cell envelope. In food 130 

application, COS with MW of <5 kDa has no antibacterial activity while chitosan with 131 

MW of >80 kDa at a concentration of 0.5 % (w/v) was bactericidal in milk and 132 

bacteriostatic in cheese. Compared with chitosan, the higher reactivity and stronger 133 

interaction of COS with food components, such as protein and lipid, account for the loss 134 

of COS in food systems (Ausar et al. 2002; Fernandes et al. 2008).   135 

The ambient conditions, including pH, temperature, divalent metal ions also affect 136 

antimicrobial activity of chitosan. A low pH favors protonation of chitosan and thus 137 

increases its antimicrobial activity (Tsai and Su 1999; Helander et al. 2001; Devlieghere et 138 

al. 2004). Divalent metal ions, including Zn2+, Ba2+, Ca2+, Mg2+, at a concentration of 25 139 

mmol L-1 in medium weaken the inhibitory activity of chitosan, probably through shielding 140 

of negative charges on the cell envelope (Tsai and Su 1999; Chung et al. 2003). The 141 

ingredients present in different food products, including NaCl and proteins, may also 142 

decrease chitosan activity by shielding positive charges of chitosan (Devlieghere et al. 143 

2004).  144 

Antimicrobial activity of chitosan is also dependent on the target microorganisms. Since 145 

media composition highly influences the in vitro activity of chitosan, it is not possible to 146 

conclude on differences in resistance between microorganisms unless the target strains 147 

were assessed in the same medium. Few studies indicated certain Gram-negative bacteria, 148 

including E. coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Salmonella Typhi, 149 
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were more susceptible to chitosan than certain Gram-positive bacteria, including S. aureus, 150 

B. cereus, Enterococcus faecalis and Micrococcus luteus (Younes et al. 2014). Similarly, 151 

chitosan also exhibited a higher activity against E. coli when compared to B. cereus 152 

(Mellegård et al. 2011). When cells were suspended in buffer containing 0.5% chitosan at 153 

pH 5.4, the decrease of cell counts of E. coli induced by chitosan was more than 3 154 

log(cfu/mL) higher when compared to S. aureus (Liu et al. 2004). The reasons for these 155 

species-specific differences in resistance to chitosan are still unclear. The loss of teichoic 156 

acids (TA) and modification of LPS altered the susceptibility to chitosan in S. aureus and 157 

S. Typhimurium, respectively (Helander et al. 2001; Raafat et al. 2008; Mellegård et al. 158 

2011). These studies highlight that the difference in charge distribution on the cell surface 159 

may account for the species- and strain specific differences in resistance to chitosan.  160 

Challenge studies with pathogens to evaluate the use of chitosan as food preservative 161 

A summary of challenge studies with chitosan, chitosan nanoparticles or chitosan-based 162 

films in food is provided in Table 1. In most cases, the lethality of chitosan is limited to a 163 

2.5 log (cfu g-1) decrease of cell counts irrespective of the food matrix and the form of 164 

application (Table 1). A reduction of more than 5 log (cfu g-1) of Listeria monocytogenes 165 

was observed on apples and grapes coated with 2% w/v chitosan solution (Anacarso et al. 166 

2011). This high antilisterial activity may be attributed to the smooth surface of apples and 167 

grapes, resulting in a high local concentration of chitosan and an intense interaction of 168 

bacterial cells with chitosan. Other studies observed bacteriostatic rather than bactericidal 169 

effects of chitosan in artificially contaminated food. Coating eggs with 2% chitosan 170 

solution was not lethal to Salmonella Enteritidis when chitosan solution was applied on 171 

egg shells and dried prior to the inoculation of bacterial cells, but offered a protective 172 
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barrier reducing the penetration of Salmonella (Leleu et al. 2011). Similarly, chitosan films 173 

were not bactericidal but delayed the growth of Listeria monocytogenes on slices of ready-174 

to-eat sausages (Moradi et al. 2011). Incorporation of chitosan powder into bread at 0.6% 175 

w/w inhibited the growth of B. cereus and rope formation during storage at 30 °C for 3 176 

days (Lafarga et al. 2013). Taken together, the disparity in lethality of chitosan shown 177 

among different reports may be attributed to the variation in chitosan property, food matrix 178 

and approaches of chitosan application. 179 

Surface application of chitosan is the most frequent form of application (Table 1); only few 180 

studies directly compared the efficacy of chitosan solutions to nanoparticles or packing 181 

films. Chitosan solution exhibited stronger bactericidal activity against L. monocytogenes 182 

on black radish when compared to a chitosan packaging film (Jovanović et al. 2016). After 183 

coating of chitosan solution, samples are often drained or dried (Kanatt et al. 2013; 184 

Jovanović et al. 2016). With water evaporation, chitosan becomes more concentrated than 185 

the original chitosan solution, resulting in a higher local concentration of chitosan on the 186 

sample surface and a more intensive interaction with target cells.  187 

Application of chitosan as food preservatives to control spoilage organisms 188 

Studies that monitored the development of the non-pathogenic microbiota of food, 189 

including aerobic mesophilic bacteria, psychrotrophic bacteria, lactic acid bacteria, 190 

Brochothrix, Pseudomonas spp, Enterobacteriaceae, or yeast and molds are summarized in 191 

Table 2. In these cases, un-inoculated food samples were treated with chitosan solution, 192 

chitosan nanoparticles, or with chitosan-based films, followed by refrigerated storage and 193 

microbiological analysis during storage. Bacteriostatic effect of chitosan ranged from 1 to 194 

6 log (cfu g-1), depending on dosage and intrinsic characteristics of chitosan food matrix 195 
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and storage condition (Table 2). In addition to the enumeration of microbial populations, 196 

the observation of microbial spoilage of vegetables and fruits allows assessment of the 197 

effectiveness of chitosan. Coating treatment with 1% (w/v) chitosan solution reduced the 198 

decay of sweet pepper by 20% after storage at 8 °C (Xing et al. 2011). Pre-harvest spray 199 

with 0.1% (w/v) chitosan solution or post-harvest coating with 1% (w/v) chitosan solution 200 

significantly reduced the decay index of chitosan-treated grape fruits after storage for 16 d 201 

at 20 °C or 42 d at 0 °C (Meng et al. 2008). To investigate the mechanisms of chitosan-202 

mediated reduction of spoilage of fruits and vegetables, artificially wounded fruits were 203 

first coated with chitosan solution then inoculated with indicator fungal strains (Chien et 204 

al. 2007), or artificially wounded samples, inoculated, and then coated with chitosan (Shao 205 

et al. 2015). Independent of the sequence of inoculation with fungi and chitosan 206 

application, chitosan treated samples reduced the decay incidence when compared to 207 

controls (Chien et al. 2007; Shao et al. 2015). Chitosan also inhibited spore germination, 208 

germ tube elongation and mycelial growth of many phytopathogens (Ben-Shalom et al. 209 

2003; Liu et al. 2007). The antifungal activity of chitosan in combination with the 210 

mechanical barrier provided by a chitosan coating probably contribute to the decreased 211 

decay incidence through inhibiting growth of indigenous microorganisms and protecting 212 

samples from exogenous infection.  213 

Use of chitosan to enhance the efficacy of other antimicrobial hurdles. 214 

Chitosan potentiates the efficacy of commercial intervention technologies, such as heat and 215 

high hydrostatic pressure. Chitosan is generally applied as dilute solution in acetic acid. 216 

Those studies that used a solvent control demonstrated, however, that the carry-over of 217 

acetic acid or acetate, 1 – 20 mg kg-1 , does not impact the antimicrobial activity of chitosan 218 



11 
 

(Table 1 and 2). Addition of chitosan to a concentration of 0.01%w/w enhanced the thermal 219 

inactivation of E. coli O157:H7 (EHEC) in ground beef by 1.5 log (cfu g-1) (Surendran 220 

Nair et al. 2016). Chitosan at a concentration of 0.1% (w/v) acted synergistically with 221 

pressure treatment of apple juice to inactivate E. coli (Kumar et al. 2009). The combined 222 

application of chitosan and pressure demonstrated synergistic effects in elimination of S. 223 

aureus and E. coli in buffer, and in controlling bacterial growth in apple juice and minced 224 

pork during refrigerated storage (Malinowska-Pańczyk et al. 2009). 225 

Application of chitosan to improve quality of food products. 226 

Chitosan also exerts other beneficial effects on food quality that are independent of its 227 

antimicrobial activity and include retardation of lipid oxidation, retention of color and 228 

nutrients, maintaining freshness and sensory attributes. The effects on food quality are 229 

dependent on the food matrix and are summarized in Table 3.  230 

Meat and seafoods. Application of chitosan significantly reduced the rate of lipid 231 

oxidation, which is usually indicated by thiobarbituric acid reactive substances and 232 

peroxide value on meat and seafood (Table 3). The ability of chitosan to control lipid 233 

oxidation relate to scavenging of reactive radicals (Kim and Thomas 2007; Wan et al. 234 

2013), forming stable complex with volatile aldehydes derived from decomposition of lipid 235 

(Shahidi et al. 1999), and to providing a barrier to oxygen diffusion (Sathivel et al. 2007).  236 

The color of specific foods strongly affects purchasing decisions of consumers (Gao et al. 237 

2013). Chitosan treatments in different forms retarded the color alteration in sausage, pork 238 

meat patties, and pacific white shrimp (Table 3). Metmyoglobin (MetMb) is the major 239 

factor causing the browning of fresh meat (Bekhit et al. 2007). The color retention caused 240 
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by chitosan was achieved through decreasing MetMb concentration, and may also relate to 241 

the anti-oxidative activity of chitosan (Qin et al. 2013).  242 

Melanosis is a type of spoilage specific for crustaceans. During post-mortem storage of 243 

crustaceans, microbial compounds, including peptidoglycan binging protein (PGBP) 244 

produced by Gram positive bacteria, lipopolysacharide and β-(1→3)-glucan binding 245 

protein (LGBP) produced by Gram negative bacteria, and β-(1→3)-glucan binding protein 246 

(BGBP) produced by fungi, accumulate and activate polyphenoloxidase (PPO). PPO 247 

oxidizes monophenols, particularly tyrosine, into quinones, followed by non-enzymatic 248 

polymerization of quinones to form dark pigments called melanin. The accumulation of 249 

melanin incurs the formation of black spots on carapace, namely, melanosis, thus 250 

substantially decreasing the commercial value of crustacean products (Garcia-Molina et al. 251 

2005; Amparyup et al. 2013; Gonçalves et al. 2016). Coating shrimps with 1-1.5% chitosan 252 

solution significantly retarded melanosis in shrimps (Huang et al. 2012; Yuan et al. 2016), 253 

and the protective effect against melanosis likely relates to its anti-oxidative activity and 254 

antimicrobial activity (Huang et al. 2012). 255 

The texture profiles is a widely used freshness indicator for seafood products (Cheng et al. 256 

2014). Myofibrillar and connective tissue proteins are the major elements maintaining the 257 

textural properties of shrimps and fish. Microbial and endogenous proteases lead to 258 

softening of the texture during storage (Hultmann and Rustad 2004; Yuan et al. 2016). In 259 

some cases, surface application of chitosan solution retarded the softening during storage 260 

of fish, presumably through inhibition of microbial spoilage or interactions with 261 

myofibrillar proteins to form the compact structure (Huang et al. 2012; Yang et al. 2015; 262 

Yuan et al. 2016).  263 
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Eggs. Coating treatment with chitosan solutions also preserved the freshness and enhanced 264 

the commercial value of eggs (Table 3). The protective barrier formed by chitosan coating 265 

on eggshell surface may offer all these benefits through decreasing transfer of carbon 266 

dioxide and water vapor through the eggshell pores, eventually enhancing storability of 267 

eggs (Robinson 1987; Williams 1992; Wardy et al. 2014; Suresh et al. 2015). 268 

Vegetables and fruits. During the storage of vegetables and fruits, metabolism and 269 

respiration of plant tissue leads to weight loss, oxidation of vitamin C, and a continual 270 

decline in fruit firmness (Lazan and Ali 1993; Zhu et al. 2008; Ali et al. 2011; Xing et al. 271 

2011; Hong et al. 2012; Han 2014). Coating with chitosan solution significantly reduced 272 

the rate of vitamin C loss in Guava and sweet pepper (Xing et al. 2011; Hong et al. 2012). 273 

Vitamin C loss is favoured by the presence of O2 (Ayranci and Tunc 2004) and coating of 274 

fruits with chitosan solution significantly reduced O2 diffusion into plant tissue (Ali et al. 275 

2011). Chitosan coatings delayed the ripening process and tissue softening of guava (Hong 276 

et al. 2012), litchi fruit (Dong et al. 2004), papaya (Ali et al. 2011) and grapes (Meng et al. 277 

2008). 278 

In addition to performing direct protective effect, coating treatment with chitosan solution 279 

also enhanced the activities of peroxidase (POD) and superoxide dismutase (SOD), plant 280 

defensive-enzymes that aid self-detoxification under stress (Jahnke et al. 1991; Meng et al. 281 

2008; Xu et al. 2009), in sweet pepper and guava fruits, concomitantly resulting in a 282 

decreased membrane injury (Xing et al. 2011; Hong et al. 2012). These findings suggest 283 

that chitosan can also promote protection of vegetables and fruits through acting as a 284 

defensive-enzyme enhancer (Xing et al. 2011; Hong et al. 2012). 285 

Concluding remarks 286 
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Chitosan has antimicrobial activity only if it is in the polycationic form at pH values below 287 

the pKa. Antimicrobial activity of chitosan depends on the electrostatic interactions 288 

between polycationic chitosan molecules and negatively charged cell envelopes. Food 289 

components, including NaCl, proteins and starch, adversely affect chitosan activity if 290 

positive charge of chitosan is neutralized. Therefore, inactivation of pathogens by chitosan 291 

on food is typically limited to a decrease of 1 - 2 log (cfu g-1), which provides a significant 292 

challenge to the application of chitosan as general food preservative. In specific 293 

applications, however, provide opportunities for the use of chitosan as effective 294 

preservative. First, surface application of chitosan on smooth fruits and vegetables 295 

concentrates chitosan and allows effective microbiocidal activity. Second, chitosan can 296 

potentiate the efficacy of other intervention technologies, including heat and pressure 297 

treatments, to become part of an effective hurdle concept. Third, chitosan improves food 298 

quality independent of its antimicrobial activity in some cases, e.g. by retardation of lipid 299 

oxidation, plant metabolism, or melanosis, which may favour chitosan applications even if 300 

the antimicrobial effect is limited. Chitosan is thus a promising food preservative in 301 

specific applications.  302 
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Figure legends 572 

Fig 1. Mode of action of chitosan against Gram negative bacteria (Panel A) and Gram positive 573 

bacteria (Panel B): When the ambient pH is lower than pKa of chitosan, chitosan is polycationic 574 

chitosan molecules, which enables electrostatic interactions with negatively charged structures of 575 

the cell envelope, including the lipopolysaccharide (LPS) in the outer membrane of Gram negative 576 

bacteria (A), lipoteichoic acid and wall teichoic acids of Gram positive bacteria (B), and the 577 

cytoplasmic membrane.  These electrostatic interactions can disrupt the integrity of cell envelope, 578 

subsequently cause dissipation of membrane potential, leakage of cells, leading to cell death 579 

(Helander et al. 2001; Liu et al. 2004; Raafat et al. 2008; Mellegård et al. 2011).  580 

 581 
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Table 1. Bactericidal effect of different forms of chitosan on artificially contaminated foods  

Chitosan preparation and application 
Lethality (logN0/N) 

Product 

(reference) 

Meat products 

Surface 

application 
0.5% w/v; 350 kDa; 0.5 (S. Typhimurium) Chicken skin[1]  

 

2% w/v 

2 (S. aureus) 

2.5 for B. cereus; 

1 for E. coli; 

0.5 for P. fluorescens 

Chicken or mutton 

seekh kabab[2]  

 
2% w/v; 340 kDa 

2 (E. coli O157:H7); 

1 (Salmonella) 
Fresh turkey meat[3]  

Packaging film 0.389 mg chitosan/cm2;  

150 kDa 
0.8 (Listeria innocua) 

Ready-to-eat turkey 

meat[4]  

 
150 mg chitosan/g starch;  

190–310 kDa 

1 (spoilage bacteria cocktail of  Brochothrix 

thermosphacta, Carnobacterium maltaromaticum, 

Leuconostoc gelidum and Lactobacillus sakei) 

Ham[5]  

Seafood  

Microoparticles 

(CM) 

 

Surface application of 0.5% w/v 

CMs solution from chitosan with 

50-190 kDa  

1.9-3.9 (V. vulnificus); 

1.9-2.6 (V. parahaemolyticus) 
Live oysters[6]  

Vegetables and fruits 

Nanoparticles 

(CN)  

 

Washing  samples with 800 mg/L 

CNs solution, which was produced 

from chitosan with 30 or 2100 kDa  

1 (E. coli) 

1 (S. Typhimurium) 
Fresh vegetables[7]  

Solution 

2% w/v; 150 kDa 

1.5 on zucchini, corn and radishes; 

2 on mixed salad, carrots and zucchini; 

> 5 on apples and grapes  

(L. monocytogenes) 

Zucchini, corn and 

radishes; 

mixed salad, carrots 

and zucchini; 

apples and grapes[8]  

 2% w/v; 150 kDa;  1 (Salmonella) Cantaloupe[9]  
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 1% w/v; 1600 kDa 0.5 (L. monocytogenes) Broccoli florets[10]  

Solution coating 

or packaging film 

Solution: 1% w/v;  

Film: 0.5% w/w; 

190-310 kDa. 

2.5 (L. monocytogenes) with solution; 

1.0 (L. monocytogenes) with packaging film 
Black radish[11]  

Lethality: Reduction of log (CFU/g) or log (CFU/mL); MW: Molecular weight; the degree of deacetylation was > 75% for all studies 

included in this table.  

[1] Menconi et al. 2013 [2] Kanatt et al. 2013 [3] Vardaka et al. 2016 [4] Guo et al. 2014 [5] Zhao et al. 2018 [6] Fang et al. 2015  

[7] Paomephan et al. 2018 [8] Anacarso et al. 2011 [9] Chen et al. 2012 [10] Severino et al. 2014 [11] Jovanović et al. 2016 
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Table 2. Effect of chitosan on the microbial quality of food  

Chitosan preparation and application Effect of chitosan Products (reference) 

Meat products 

Surface 

application 0.5% w/v; 350 kDa 

Psychrotrophic spoilage bacteria in samples treated with 

chitosan remained below detectable levels during storage at 

4 °C. 

Chicken skin[1] 

 

1.0% w/v 

Cell counts of mesophilic and psychrotrophic bacteria, 

lactic acid bacteria, and yeast and mold were lower than 

controls after storage at 4 °C for 60 d by 3 – 6 log (cfu/g). 

Sausage[2] 

 

1.5% w/v; 340 kDa 

Total plate counts and cell counts of spoilage organisms 

including Pseudomonas spp., Lactic Acid Bacteria, 

Brochothrix thermosphacta, coliforms and yeasts-moulds, 

were lower than controls by 1-2 log (cfu/g) after storage at 4 

°C for 12 days, extending the microbial shelf-life by more 

than 9 days. 

Chicken breast meat[3] 

Turkey meat[4] 

Ready to cook chicken 

product [5] 

 

1 % w/v; 800 kDa 

Cell counts of pseudomonads, lactic acid bacteria, and 

coliforms were lower than controls after 6 d of storage at 4 

°C by 3.9-4.9 log (cfu/g). 

Chicken breast fillets[6] 

 

2% w/v; 897 kDa 

Total viable count and cell counts of psychrotrophic 

bacteria were lower than controls by 1 log after storage at 4 

°C for 25 days. 

Cooked pork sausages[7] 

Integration of 

chitosan to 

product 

formula 

Chitosan (1674 kDa) at 2 mg g-1 

in minced pork 

Total bacterial count and psychrotrophic counts were lower 

than controls by 1 log (cfu/g) after storage of minced pork 

at 5 °C for 8 days 

Minced Pork[8] 

Chitosan (490 kDa) at 1% w/w 

in pork sausage. 

Total viable counts, and cell counts of Lactic acid bacteria, 

Pseudomonas spp., Brochothrix thermosphacta, 

Enterobacteriaceae, yeasts and moulds were lower than 

controls by 0.5-1 log (cfu/g) after storage at 4 °C for 28 

days. 

Fresh pork sausages[9] 

Packaging film Prepared from 2% w/v chitosan 

(100 kDa) 

 

Total viable cell counts, cell counts of lactic acid bacteria, 

and yeasts and molds were lower than controls by 1.5-5 log 

(cfu/g) after storage at 4 °C for 20 days. 

Cooked pork sausages[10] 
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Prepared from 2% w/v chitosan 

Total viable cell counts were lower than controls by 1 log 

(cfu/g) after storage at 4 °C for 12 days. 
Pork meat patties[11] 

Seafood 

Surface 

application 
1% w/v; 320 kDa 

Inhibition of H2S-producing organisms during storage at 4 

°C. 
Shrimp[12] 

 
1% w/v; 25 kDa 

Total aerobic plate counts were lower than controls by 2 log 

(cfu/g) after 10 days of iced storage. 
Pacific white shrimp[13] 

 

2% w/v; 450 kDa 

Total viable counts and psychrotrophic counts were lower 

than controls by 1-3 log (cfu/g) after storage at 4 °C for 16 

days. 

Rainbow trout[14] 

 

3% w/v; 

Total viable cells and cell counts of psychrotrophic bacteria 

were lower than controls by 1 log (cfu/g) after storage at 4 

°C for 12 days. 

Ready-to-eat peeled 

Shrimps[15] 

 

3% w/v; 149 kDa 

Total plate counts were lower than controls by 4 log (cfu/g) 

after vacuum or modified atmosphere packaging storage at 2 

°C for 14 days. 

Lingcod (Ophiodon 

elongates) fillets[16] 

 1.0% w/v; 

1800, 960 or 660 kDa 

Total viable counts were lower than controls by 2 log (cfu/g) 

after storage for 12 days at 4 ± 1 °C. 

Herring and Atlantic 

cod[17] 

Incorporation 
Chitosan (10 kDa) insurimi at 

2% w/w. 

Aerobic plate counts were lower than controls by 1 log 

(cfu/g) after storage at 4 °C for 12 days. 

Surimi gel made from 

African catfish (Clarias 

gariepinus)[18] 

Coating with 

solution or 

nanoparticles 

Solution: 1% w/v; 300 kDa; 

DD 65 %; 

Nanoparticles: 1% w/v; DD 

20% 

Cell counts of Aerobic bacteria were lower than controls by 

more than 1 log (cfu/g) after storage at 4 °C for 24 days. 

Conventional solution was more bacteriostatic than 

nanoparticles solution. 

Shrimp Muscle[19] 

Vegetables, fruits and juice 

Surface 

application 1.5%w/v; 

Total viable counts and cell counts of yeast and mold were 

lower than controls by 0.5-1 log (cfu/g) after storage at 4 °C 

for 7 days. 

Pears[20] 

 

1% w/v; 190 to 310 kDa; 

Cell counts of mesophilic aerobic bacteria, yeast and molds 

were lower than controls by 1 log (cfu/g) after storage at 10 

°C for 7 days. 

Fresh Blueberries[21] 

 
1.0% w/v Lower decay incidence by 20% after at 8 °C for 35 days. 

Sweet pepper (Capsicum 

annuum L.)[22] 
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 Pre-harvest spray with 0.1% 

w/v or coating with 1% w/v 

solution 

Lower decay index after storage for 16 days at 20 °C or 42 

days at 0 °C. 
Grape fruit[23] 

Incorporation 
Solution (0.4% w/v; 1674 kDa) 

in apple juice at 2 g/L. 

Total bacterial counts, cell counts of psychrotrophic bacteria, 

yeast and mould were lower than controls by 0.5-3.0 log (cfu 

g-1) after storage at 5 °C for 15 days. 

Apple juice[24] 

Coating with 

solution or 

nanoparticles 
0.2% w/v; 71 kDa 

Cell counts of mesophilic and psychrotrophic bacteria were 

lower than controls by 3 log (cfu g-1) after storage at 5 °C for 

10 days. Solution and nanoparticles exhibited comparable 

bacteriostatic effect. 

Fresh-cut apples[25] 

Bakery products 

Incorporation Chitin(124±10 kDa; DD 19%) 

in bread at 1%. 

Delay of mold growth in bread during storage of 3 days at 30 

°C. 
Bread[26] 

Packaging film: 
Prepared form 1.5% w/v 

chitosan 

Delay of time to visible mould growth by 3 days and cell 

counts of mould were lower than controls by 2 log (cfu/g) 

after storage for 8 days at room temperature (about 25 °C). 

Butter cake [27] 

Eggs 

Surface 

application 1 % w/v 

Total aerobic cell counts chitosan-coated eggs were under 

detection limit while those of non-coated eggs increased 

to 20 cfu/ml after 5-weeks of storage at 22±1 or 32±1 °C. 

Eggs[28] 

The degree of deacetylation of chitosan was higher than 75% unless otherwise noted.   

[1] Menconi et al. 2013 [2] Bostan and Mahan 2011 [3] Petrou et al. 2012 [4] Vasilatos and Savvaidis 2013 [5] Giatrakou et al. 2010 

[6] Latou et al. 2014 [7] Lekjing 2016 [8] Malinowska-Pańczyk et al. 2009 [9] Soultos et al. 2008 [10] Siripatrawan and Noipha. 2012 

[11] Qin et al. 2013 [12] Arancibia et al. 2015 [13] Yuan et al. 2016 [14] Ojagh et al. 2010 [15] Carrión-Granda et al. 2016 [16] Duan 

et al. 2010 [17] Jeon et al. 2002 [18] Amiza and Kang 2013 [19] Chouljenko et al. 2017 [20] Cé et al. 2012 [21] Sun et al. 2014 [22] 

Xing et al. 2011 [23] Meng et al. 2008 [24] Malinowska-Pańczyk et al. 2009 [25] Pilon et al. 2015 [26] Lafarga et al. 2013 [27] 

Sangsuwan et al. 2015 [28] Suresh et al. 2015 

 



32 
 

Table 3. Effect of chitosan on food quality  

Chitosan preparation and application Effect of chitosan Products (reference) 

  Meat products  

Surface application 1.0% w/v Brighter and more attractive color. Sausage[1] 

 

1.5% w/v; 340 kDa Improvement in sensory attributes. 

Chicken breast meat[2] 

Turkey meat [3] 

Chicken product[4] 

 1 % w/v; 800 kDa Retardation of decline in odor and taste scores. Chicken breast fillets[5] 

 
2% w/v; MW: 897 kDa 

Retardation of lipid oxidation, change in color and 

sensory attributes. 
Cooked pork sausages[6] 

Packaging film: 

 

Prepared from 2% w/v chitosan 

(100 kDa) solution. 

Retardation of lipid oxidation, changes in color, texture, 

and sensory characteristics. 
Cooked pork sausages[7] 

 Prepared from 2% w/v chitosan 

solution 

 

Retardation of lipid oxidation and increase in MetMb 

content, as well as improvement in sensory attributes. 
Pork meat patties[8] 

Incorporation Chitosan (490 kDa) in sausages at 

1% w/w 
Retardation of lipid oxidation Fresh pork sausages[9] 

  Seafood  

Surface application 

1% w/v; 25 kDa 

Retardation of increase in melanosis and improvement 

in the texture parameters and sensory attributes. 

 

Pacific white shrimp[10] 

 

2% w/v; 450 kDa 

Retardation of increase in peroxide value and total 

volatile base nitrogen. 

 

Rainbow trout[11] 

 
2% w/v; 

Retardation of lipid oxidation and improvement in 

sensory attributes. 
Fresh Channa Argus[12] 

 
3% w/v; 149 kDa 

Retardation of lipid oxidation under vacuum or modified 

atmosphere packaging. 

Lingcod (Ophiodon 

elongates) fillets[13] 
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1.5% w/w 
Retardation of increase in melanosis and loss in 

freshness and sensory quality. 

Whiteleg shrimp 

(Litopenaeus vannamei) 

[14] 

 1.0% w/v of chitosan with 1800, 

960, or 660 kDa 

 

Retardation of lipid oxidation. 
Herring and Atlantic 

cod[15] 

Incorporation 
Chitosan (10 kDa) in surimi at 

2% w/w. 

Retardation of lipid oxidation, extension of shelf life by 

4 days. 

Surimi gel made from 

African catfish (Clarias 

gariepinus)[16] 

  Vegetables and fruits  

Surface application 

1.0% w/v 

Reduction of cell injury in plant tissue, retention of 

vitamin C content, and enhancement of self-defence 

system. 

Sweet pepper (Capsicum 

annuum L.)[17] 

 1% w/v Retardation of loss in weight Grape fruits[18] 

 

0.5, 1.0 or 2.0% w/v; 50–190 kDa 

Retardation of loss in firmness, weight, chlorophyll and 

vitamin C, as well as reduction of cell injury in plant 

tissue and enhancement of self-defence system. 

Guava (Psidium guajava 

L.)[19] 

 
1.0%, 1.5% or 2.0% (w/v) 

Retardation of loss in weight, firmness and changes in 

the peel colour. 
Papaya[20] 

  Sauce  

Incorporation Chitosan (310 or 123 kDa) in 

mayonnaise at 100 mg kg-1. 

Improvement in odor and taste attributes, and 

retardation of lipid oxidation. 
Mayonnaise[21] 

  Eggs  

Surface application 

1 % w/v 

Retardation of loss in weight, increase in air space, and 

decline in Haugh Unit value, yolk index, shell strength 

and quality grade. 

Eggs[22] 

 
3% w/v 

Retardation of loss in weight, decline in Haugh unit and 

yolk index. 
Eggs[23] 

 1% w/v; 1110 kDa. 

 
Retardation of loss in weight and decline in Haugh unit. Eggs[24] 

The degree of deacetylation of chitosan was higher than 75% unless otherwise noted.   



34 
 

[1] Bostan and Mahan 2011 [2] Petrou et al. 2012 [3] Vasilatos and Savvaidis 2013 [4] Giatrakou et al. 2010 [5] Latou et al. 2014 [6] 

Lekjing 2016 [7] Siripatrawan and Noipha 2012 [8] Qin et al. 2013 [9] Soultos et al. 2008 [10] Yuan et al. 2016 [11] Ojagh et al. 2010 

[12] Yang et al. 2015 [13] Duan et al. 2010 [14] Huang et al. 2012 [15] Jeon et al. 2002 [16] Amiza and Kang 2013 [17] Xing et al. 

2011 [18] Meng et al, 2008 [19] Hong et al. 2012 [20] Ali et al. 2011 [21] García et al. 2014 [22] Suresh et al. 2015 [23] Caner and 

Cansiz 2007 [24] Wardy et al. 2014 
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