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Abstract 

Cancer cachexia is a multifactorial syndrome characterized by involuntary 

weight loss, wasting of skeletal muscle driven by reduced food intake and 

abnormal metabolism. Cachexia has a negative impact on quality of life, response 

to chemotherapy and survival. Cachexia research is undeveloped with respect to 

understanding molecular changes involved and its classification / diagnostic 

criteria (there are no clinically useful predictors and diagnostic tests). The purpose 

of this research was to take advantage of gene expression (transcriptomic) and 

metabolite (metabolomic) profiling to address these gaps. 

Patients with cancer consented to provide skeletal muscle biopsy (n=134) 

for gene expression array or plasma and urine (n=93) for nuclear magnetic 

resonance spectroscopy and mass spectrometry.  Omic data output was examined 

in relation to different dimensions of cachexia phenotype; gene expression was 

examined in relation to weight loss, muscle mass and muscle radiation attenuation 

and metabolites were examined in relation to muscle loss, muscle and fat mass, 

metabolic rate and food intake. Statistical analysis included standard statistical 

tests and machine learning methods. 

Muscle gene expression varied strongly in relation to muscle attenuation, 

and to a much lesser degree with weight loss and muscle mass. Differential 

expression suggests low attenuation muscle has persistent inflammation, increased 

degradation, altered energy metabolism, increased extracellular matrix 

components and altered growth signalling. Urinary metabolites reflected muscle 

mass and to a lesser extent fat mass, and could be used to predict muscle mass and 



rate of muscle loss with 98% and 82% accuracy, respectively. Urinary metabolites 

related to muscle mass and muscle loss were associated with amino acid and ATP 

synthesis. 

Overall, transcriptomics work revealed a molecular signature for low 

muscle attenuation, which parallels many gene expression changes observed 

during aberrant muscle repair and metabolic syndrome. This explorative 

transcriptomic study provides multiple potentially crucial pathways that have yet 

to be studied in detail in cachexia. Metabolomics work revealed that urine 

metabolites are most reflective of muscle mass and its change. This work suggests 

that it may be possible to develop a metabolomics-based tool to assess skeletal 

muscle mass in cancer. Validation of urine metabolomics to predict muscle mass 

loss is warranted. 
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CHAPTER 1: Introduction and literature review 

 

1.1 Purpose 

The purpose of this chapter is to provide an overview of cancer associated 

changes in body composition, with a focus on skeletal muscle, and to describe 

how a better understanding of molecular and metabolic changes involved may 

improve patient outcome. 

1.2 Introduction 

Cancer is currently the leading cause of death in Canada; approximately 

one in four Canadians will die of cancer (1). Cancer cachexia is a syndrome that 

accompanies cancer and results in a poorer response to treatment (2), quality of 

life (3) and prognosis (4). Recently, an international panel of experts in cancer 

cachexia research participated in a formal consensus process and published the 

following consensus definition “cancer cachexia as a multifactorial syndrome 

defined by an ongoing loss of skeletal muscle mass (with or without loss of fat 

mass) that cannot be fully reversed by conventional nutritional support and leads 

to progressive functional impairment. Its pathophysiology is characterised by a 

negative protein and energy balance driven by a variable combination of reduced 

food intake and abnormal metabolism” (5). Currently in oncology clinics, cancer 

cachexia is rarely recognized or assessed (6) and treatment options are limited (7). 

This can be attributed to lack of fast and easily accessible screening tools and 

incomplete knowledge of molecular mechanisms involved in cancer cachexia 

development and progression.  
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1.3 Cancer cachexia 

Cachexia has been recognized as a paraneoplastic syndrome for a long time 

(8).  Much like tumor progression, cachexia develops progressively through 

various stages of severity: precachexia, cachexia and lastly refractory cachexia 

(5). Not all patients traverse through all three stages. Patients with precachexia 

would have early clinical and metabolic signs that may occur prior to involuntary 

wasting (e.g. anorexia) (5). Patients with cachexia would present with muscle 

depletion (defined in detail below) and be actively losing energy stores (5). 

Finally, patients with refractory cachexia would have a life expectancy of less 

than 3 months (i.e. have very advanced cancer) (5). Wasting becomes exponential 

during the last 3 months of life (9). Ideally, by identifying patients in early stages 

the syndrome can be managed prior to reaching the refractory / untreatable stage.  

Severe muscle depletion, termed sarcopenia, is a result of aberrant control 

of muscle mass and denotes a muscle mass less than 2 standard deviations below 

that of typical healthy adults (of the same sex) (10). Sarcopenia is directly 

responsible for functional impairment (11), increased risk of fractures (12), 

increased length of hospital stay (13) and shorter survival (14) in non-malignant 

disease. Various conditions lead to sarcopenia including aging, disuse, starvation, 

denervation, and cancer cachexia. In malignancy, sarcopenia has been associated 

with shorter time to tumour progression (15) and dose-limiting toxicities from 

several different types of chemotherapy resulting in dose-reduction or termination 

of treatment (15-17). Weight loss (≥ 5% loss over the past 6 months in the 

absence of simple starvation) and low body mass index (BMI <18.5kg/m
2
 or 
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<20kg/m
2
) are commonly used to diagnose cancer cachexia in the clinic. These 

criteria would easily identify a stereotypical cachectic patient who is emaciated 

upon examination but would ignore obese patients or those losing muscle while 

gaining fat or retaining water and therefore appear weight stable. Indeed, it is 

body composition that needs to be assessed to detect muscle depletion and 

ongoing loss.  

Cachexia progression depends on: cancer type, stage and response to 

anticancer therapy, the presence of systemic inflammation, and low food intake 

(5). Cancer cachexia appears to be most prevalent amongst patients with solid 

tumors (e.g. lung and gastrointestinal cancers) (18). Further, it is well established 

that advanced stage, multiple sites of metastasis and progressive disease are risk 

factors for weight loss (9). Tumor tissue is metabolically demanding (estimated 

200-300 kcal/day per kg of tumor tissue). If caloric intake is not increased to meet 

the increased resting metabolic rate, mobilization of fat and protein from energy 

stores (adipose and muscle tissue) is a likely outcome. Systemic inflammation 

also results in increased metabolic rate and is common in cancer cachexia (19, 

20). As detailed in later sections, inflammatory cytokines also play roles in 

activating muscle catabolism and inhibiting muscle anabolism. Finally, reduced 

food intake is also common in cancer cachexia (21). Reduced food intake may be 

due to a decreased central drive to eat (which may be altered by inflammation) 

(22, 23), taste and smell changes (24) and decreased gastrointestinal tract motility 

(21). Because of multiple pro-wasting factors that exist in cachexia, cancer 

cachexia is said to be a “multifactorial syndrome” (5).   
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Most previous attempts at treating cachexia have focused on unimodal 

approaches which address one factor at a time. For example, progestational agents 

(25) and cortecosteroids (e.g. dexamethasone) (26) have been used to improve 

appetite and oral nutritional supplements to increase intake (27). However, none 

of the unimodal approaches have been shown to prevent or reverse muscle 

wasting, the key feature of cancer cachexia. Due to multiple factors promoting 

wasting, experts suggest a multimodal approach is needed to treat cancer cachexia 

(28). Currently, there is no standardized treatment for cancer cachexia. This may 

be attributed to incomplete understanding of molecular mechanisms responsible 

for wasting (28, 29). Though helpful, most studies aimed at understanding 

mechanisms have been conducted on animal models and focused on a handful of 

genes and proteins at a time. In fact little is known about what is happening in 

human tissues in response to cancer cachexia. It is necessary to validate what is 

found in animal models in humans, a step which is complicated by the 

heterogeneity of humans.  

Though cancer alone can result in muscle loss, many patients have other 

conditions that further aggravate wasting. The typical cancer patient is elderly (1), 

has 3 comorbid conditions (30) (e.g. cardiovascular disease, hypertension and 

insulin resistance), is sedentary (31), and is overweight or obese (10). Exclusive 

of cancer, all these conditions are associated with skeletal muscle wasting and / or 

changes in muscle tissue composition associated with negative outcomes (32-36) 

and therefore add levels of complexity to diagnosing, understanding molecular 

mechanisms and treating cancer cachexia.   



 

 

   5 

 

1.4 Skeletal muscle  

As emphasized above, muscle loss is central in cancer cachexia. Skeletal 

muscle is the largest organ and protein store in the body. In addition to its roles in 

mobility, skeletal muscle plays a central role in the control of whole-body 

metabolism; it accounts for 80% of glucose disposal, and in the rested state 

skeletal muscle fatty acid oxidation contributes about 90% of the energy 

requirements (37). These two roles (functional and metabolic) are intimately 

linked and determine composition, turnover rates, contractile proteins and energy 

usage. Protein turnover, the balance between protein synthesis and protein 

degradation rates, plays a major role in maintaining adult muscle mass (38). 

Cellular turnover appears to play a minor role (39). Most details about the 

pathways involved in protein and cellular turnover in cancer are the result of work 

conducted on animal models.      

1.4.1 Protein turnover: control of protein synthesis 

Although investigations of signaling pathways controlling synthesis and 

degradation are ongoing, certain pathways are known to be involved (Figure 1-1 

(synthesis) and Figure 1-2 (degradation)). Insulin like growth factor 1 (IGF-1) and 

insulin are among the most studied growth promoting factors in muscle (40). 

Ligand binding to IGF-1 receptors results in downstream activation of 

phosphatidylinositol-3,4,5-triphosphate kinase  (PI3K)/Akt/mammalian target of 

rapamycin (mTOR) signaling (41). mTOR complex 1 (mTORC1) is currently 

recognized as the major pathway regulating protein synthesis in adult muscle (38). 

Activated mTOR results in increased protein synthesis by ultimately activating 
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eukaryotic translation initiation factor 4E (eIF-4E). In addition to activating 

protein synthesis, Akt signaling is suggested to inhibit induction of atrophy 

signaling by phosphorylating the atrophic Forkhead box O proteins (FoxO) family 

of transcription factors thereby excluding them from the nucleus. When 

chronically deactivated, this pathway plays a role in muscle atrophy by reducing 

protein synthesis (42). In cancer cachexia, often associated with insulin resistance, 

activity of PI3K is decreased and inhibition of FoxO and expression of 

components of the ubiquitin-proteosome system are increased. 

Androgens also promote protein synthesis and muscle growth. Androgens 

diffuse to skeletal muscle and bind to androgen receptors (AR) (43). Ligand 

bound ARs then homodimerize and bind to androgen response elements on the 

genome to affect rates of transcription of various genes (43, 44). Anabolic steroids 

also increase AR mRNA and IGF-1 production (45-47) and may reduce systemic 

pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin 6 

(IL-6) and interleukin 1 beta (IL-1β) (48, 49). Post menopause testosterone 

depletion can lead to decreases in bone mass, bone marrow activity and muscle 

strength in both men and women (50, 51). Evidence suggests that patients with 

advanced cancer often have low androgen levels and this is associated with 

cachexia (52).  

Protein synthesis is also negatively regulated by myostatin, a member of 

the tumor growth factor β (TGF- β) family which is expressed and secreted 

mainly in skeletal muscle (53). Myostatin influences MyoD expression, a major 

growth transcription factor in muscle, via inhibition of Smad2/3 transcription 
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factors (54). Furthermore, myostatin antagonizes protein synthesis by regulation 

of the Akt-FoxO pathway (55). In tumor bearing animals, myostatin expression 

and bioactivity are upregulated (56) and levels of follistatin, a myostatin inhibitor, 

are reduced (57). Notably, IGF-1 dominantly blocks effects of myostatin in vitro 

(58) providing another pathway by which insulin resistance may be blunting 

protein synthesis.  

1.4.2 Protein turnover: control of protein breakdown  

The following pathways are available for protein breakdown in muscle: 

ubiquitin-proteasome, lysosomal, calcium dependent and caspase dependent 

pathways. The ubiquitin (Ub)-proteasome pathway is the main mechanism of 

muscle protein breakdown in cancer cachexia (59, 60). This system consists of 

concerted actions of enzymes that link chains of polypeptide co-factor, Ub, onto 

proteins to mark them for degradation. A multicatalytic protease complex, the 26S 

proteosome, degrades ubiquitinated proteins into peptides. Three enzymatic 

components are needed to ubiquitinate proteins: E1 (Ub-activating ezyme), E2 

(Ub-carrier or conjugating proteins), and E3 (Ub-protein ligase). E3 is the key 

enzyme in this group and varies among tissues and physiologic states. E3 

recognizes a specific protein substrate and catalyzes the transfer of activated Ub to 

it. Muscle Atrophy F-box (MAFbx) and Muscle Ring Finger1 (MuRF1), are 

specific constituents of muscle and their expression increases dramatically (eight 

– to- 20 fold) in cancer cachexia (60, 61). Knockdown of both MAFbx and 

MuRF-1 in tumor-bearing animals results in decreased muscle mass loss (62). 

Inflammation appears to an important trigger of the Ub-proteosome system. 
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Evidence from animal models suggests that inhibiting pro-inflammatory cytokines 

(e.g. IL-6 and TNF-α) results in downregulation of the Ub-proteasome system and 

reduced muscle protein loss (63).   

Although skeletal muscle contains few lysosomes, the lysosomal system 

contributes to muscle protein breakdown via macroautophagy (64). Autophagy is 

required for a variety of homeostatic functions such as clearance of protein 

aggregates, turnover of ribosomes, mitochondria and endoplasmic reticulum and 

plays a role in programmed cell death (apoptosis) (65). Lysosomal processes are 

stimulated during cancer cachexia (59, 64, 66) partly due to pro-inflammatory 

cytokines TNF-α and IL-6 (64, 67). Furthermore, suppression of the IGF-

1/AKT/FoxO pathway activates autophagy (68).  

Calpains are non-lysosomal, calcium-dependent cysteine proteases 

inactive under basal conditions. Activated calpains cleave myofibrillar 

cytoskeletal proteins resulting in disruption of the sarcomere and release of 

myofilaments that are subsequently ubiquitinated and degraded by the 26S 

proteosome (69). Activated calpains also inhibit Akt activity, which in turn results 

in activation of FoxO transcription factors (70). Like the Ub-proteasome system, 

calpains are influenced by inflammatory factors; calpain activity is reduced when 

activity of pro-inflammatory cytokine TNF-α is blocked (63).  

Caspases are proteins involved in apoptosis and possibly breakdown via 

non-apoptotic pathways. It remains unclear what role caspases play in cancer 

associated wasting. It is possible that a limited form of apoptosis of nuclei without 

cell death may be activated in effort to preserve size of myonuclear domains 
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within atrophied myofibrils (65). It may also be possible that apoptosis is a 

driving pathological process in muscle atrophy (65). 

As suggested above, pro-inflammatory cytokines can directly activate 

catabolism via different proteolytic pathways in muscle (71). Binding of TNF-α, 

IL1- β and IL-6 to surface receptors can act via various downstream pathways 

which ultimately activate nuclear factor κB (NF-κB), by inactivation/degradation 

of inhibitors of NF- κB (IκBs). Active NF-κB translocates to the nucleus and 

alters expression of MyoD (suppressed), Ub-proteosome pathway proteins, tissue-

degrading enzymes such as metalloproteinases (72).  Inhibition of NF- κB 

prevented muscle loss in tumor bearing animals (73).  

1.4.3 Cellular turnover 

It is well established that cellular turnover plays a major role during 

muscle development in embryo. During development, mononucleated muscle 

progenitors fuse to form nondividing multinucleated myofibers. Some progenitors 

remain associated to adult myofibers as satellite cells (i.e. skeletal muscle stem 

cells) located beneath the basal lamina of myofibers (74). In adult muscle, satellite 

cell nuclei account for 3-6% of all nuclei contained within the basal lamina. These 

remain mitotically quiescent and activate for regeneration (after injury), 

hypertrophy or atrophy (75-78). However, what role satellite cells play in wasting 

conditions remains controversial and requires further study (79).    

1.5 Adipose tissue 

Lipid metabolism and mobilization are altered in cancer cachexia (80). 

Adipose tissue loss is common in cancer patients (81, 82). Similar to skeletal 
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muscle, the prevalence and severity of adipose tissue loss increases approaching 

death (81). Free fatty acids (FFAs), derived mainly from triglyceride stored in 

adipose tissue are the main energy source for muscle at rest. In addition to its fuel 

storage function adipose tissue is an active endocrine organ. Adipose tissue 

derived pro-inflammatory and anti-inflammatory molecules (adipokines) act 

systemically participating in physiologic and pathologic processes. The role of 

adipose tissue in cross-talk with skeletal muscle during cachexia is unknown.  

1.6 Ongoing study of molecular mechanisms in wasting 

As mentioned there are gaps in our understanding of molecular 

mechanisms involved in cancer cachexia in human muscle. Until a decade and 

half ago, work was done in a “top-down” manner: novel proteins were isolated, 

followed by extensive biochemical purification, and protein and DNA sequencing. 

Therefore, insights occurred one gene at a time. Development of gene expression 

profiling using high-throughput microarray-based methods allow for concurrent 

analysis of the expression level for thousands of genes in a sample. Microarray 

technology is a potentially crucial tool for understanding mechanisms involved in 

regulating the pathological changes in muscle. 

1.6.1 Gene expression microarray 

Array technology evolved from Southern blotting, where fragmented DNA 

is attached to a substrate and then probed with a known DNA sequence. At the 

very basic level, array technology follows the central dogma of biology: a gene 

(DNA) encodes an mRNA, which in turn encodes a protein. Thus, altered 

expression of mRNA would translate to changes in amounts of protein present and 
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available for biological activity (unless altered by post translational 

modifications). In the mid 1990s, as the database of complementary DNA 

(cDNA) sequences was expanding, efforts to develop methods for determining 

expression of many sequences simultaneously ultimately resulted in the first 

microarray (83).  

Microarray experiments typically have the following objectives: to identify 

differentially expressed oligonucleotide sequences (features which are segments 

of gene transcripts) or to identify molecular markers that can be used as tools for 

disease diagnosis and prognosis or as predictors of clinical outcomes. Most 

microarray studies focus on the former objective in efforts to identify genes / 

pathways involved in a particular phenotype and to discover potential molecular 

targets for treatment development.  

Soon after this technology was introduced researchers began applying it to 

muscle tissues in wasting conditions (59, 84-86). The study by Lecker et al. was 

the first to examine muscle gene expression from preclinical models of cancer 

cachexia (59). These early studies had limitations: at the time there were no rat 

microarray chips (cancer cachexia models used were rat models) and microarray 

chips contained fewer sequences (16K compared to 40-60K in today’s chips). 

Nearly a decade passed until microarray analysis of muscle in cancer was 

revisited. The study by Stephens et al. was the first to examine global gene 

expression in human skeletal muscle from patients losing and not losing weight 

(87). This group suggested that available preclinical models do not accurately 

reflect the molecular characteristics of human muscle from cancer cachexia 
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patients (87). They found no significant differences in expression of the ubiquitin 

ligases MURF1 and MAFbx; however weight loss may not be reflective of muscle 

catabolism per se. 

1.6.2 Gene expression microarray: methodological considerations  

Despite almost immediate application after microarray introduction, 

methodological issues related to microarray chips, sample preparation, data 

normalization and data analysis are still being worked out. Consequently, results 

from different studies are inconsistent and irreproducible. As articulated by 

Abdullah-Sayani and colleagues “the quantity of articles that document the 

discovery of new gene profiles is as plentiful as the number of publications that 

scrutinize their interpretation” (88). None of the steps in the microarray 

experimental process (chip production, probe hybridization, image quantification, 

normalization and data interpretation) have an agreed upon, standardized protocol.  

Modern microarrays are commercially produced by several companies 

(e.g. Agilent and Affimetrix), each using different manufacturing techniques, 

labeling methods, hybridization protocols, probe lengths, and probe sequences 

(89). All of these factors may affect microarray performance (89). Since platforms 

do not share the same set of probe sequences, data obtained from different 

platforms cannot be directly compared. Lack of intra-platform standardization 

protocols is particularly problematic when trying to re-use data made available in 

public databases such as Gene Expression Omnibus (GEO) (90). While various 

groups have presented cross-platform normalization methods (89), this is still an 

active area of research.  
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The value of microarray is the ability to measure gene expression for 

thousands of genes simultaneously; however, it is this highly dimensional output 

that presents the biggest obstacles. As with all experiments, it is important to start 

with a good study design: adequate sample sizes, matched experimental variables 

of cases and controls, biologically homogenous sample populations, and samples 

handled uniformly through the course of the entire experiment. Due to large 

amounts of data produced, typical sample size calculations cannot be used (91). 

Further, little is known about the consequences of using different sample sizes on 

statistical analysis of microarray data (92). Previously conducted microarray 

studies of human muscle during cancer-associated atrophy had sample sizes 

ranging from n=18 to n=21 (87, 93). It remains unclear what an appropriate 

sample size is, particularly for a free living human population.     

 Development of new methods to analyze microarray data is an active area 

of research in the fields of bioinformatics, biostatistics and computing science. To 

identify differentially expressed genes, the most common goal of microarray 

studies, fold-change and t-test results are most commonly reported (94). These 

methods are not without criticism: arbitrary cutoffs are used to determine what is 

considered significantly differentially expressed, low gene expression may result 

in large fold changes despite having no biological significance, genes with low 

variability may be missed (when calculating fold-change) and results are rarely 

tested for robustness or validated. To make predictive models, expression data is 

used to predict what class (e.g. disease versus healthy) patients belong to. This is 

called a classifier. This classifier can be built using different algorithms such as 
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support vector machines (SVM) and least absolute shrinkage selection operator 

(LASSO). SVM and LASSO are machine learning algorithms; machine learning, 

a branch of artificial intelligence in the field of computing science, plays an 

important role in the development of microarray data analysis methods.  

1.7 Measuring body composition 

Proper assessment of body composition and body composition changes are 

essential for diagnosing, staging and ultimately managing cancer cachexia. There 

are essentially three types of methods that can be used to measure or estimate the 

amount of fat and /or muscle in the body: anthropometrics, image-based methods 

and metabolically-based methods. As previously mentioned, anthropometrics such 

as weight, BMI and skinfold measures are convenient, non-invasive and 

inexpensive but inadequate because they do not differentiate between different 

components (muscle and fat).  

1.7.1 Measuring body composition: image-based methods  

Dual energy X-ray absorptiometry (DXA) (95), computerized tomography 

(CT) imaging analysis (2) and magnetic imaging resonance (MRI) can 

differentiate between lean and fat mass. These are considered gold-standard 

methodologies for body composition assessment due to low precision error of 2% 

(96), but they do have limitations. DXA cannot distinguish between different lean 

tissues (muscle, organs, skin and tumor) or different fat tissue depots 

(intramuscular, visceral and subcutaneous). CT and MRI imaging can 

discriminate muscle, adipose tissue depots, bone, organs and tumor (87). 

However, both MRI and CT imaging instruments are expensive to purchase and to 
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use, and CT exposes participants to radiation. Further, these methods are less 

useful for assessment of body composition change than of tissue mass per se. 

Tissue mass change may be subtle on a daily basis but additive over time. For 

example, a loss of body fat of 2% in one month, is in fact a catastrophic rate of 

loss, because if sustained it would add up to a 24% loss of whole body fat in one 

year.  A loss of 2% in a given month is however undetectable within the precision 

error of even the most precise techniques available (CT, MRI or DXA) (9). 

In the oncology setting, diagnostic imaging using CT and MRI is part 

clinical care; these are used for diagnostic and follow up purposes to assess tumor 

progression and response to therapy. Body composition researchers have taken 

advantage of routine imaging to estimate body composition from as few as one 

cross-sectional image (typically at the level of the 3
rd

 lumbar vertebrae (L3) (9, 

17, 97). However, despite availability of CT and MRI images in the clinic, image-

based body composition assessment has not transitioned into clinical practice or 

been incorporated into clinical trials. In fact, body composition is rarely, if ever, 

assessed in the oncology clinic.     

1.7.2 Measuring body composition: metabolically-based methods 

Most body composition efforts have focused on imaging techniques. 

However, easily accessible biofluids, such as urine and plasma, have also been 

used to predict certain elements of body composition. This method uses 

knowledge of biochemical pathways and relatively simple analytical techniques to 

measure metabolites indicative of body components. Use of biofluids is 

particularly appealing because it is relatively non-invasive. 
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In 1919, Burger suggested that total daily urinary creatinine excretion was 

proportional to body muscle mass (98). Since then, close correlations between 

creatinine and muscle mass have been confirmed and validated, r
2
 of 0.72 to 0.90 

in healthy individuals (99-101). Metabolites resulting from tissue catabolism are 

also likely to be sensitive indicators of the initiation of a catabolic state.  Tissues 

normally undergo turnover with a low daily rate of synthesis and breakdown.  

During catabolic conditions, when tissue mobilization occurs, characteristic 

metabolites of lipid and muscle protein catabolism are produced and represented 

in various biological pools, such as plasma and urine. For example, normal adults 

fasted for 24 h, demonstrate large changes in plasma concentrations of -

hydroxybutyrate (2 fold-increase), acetetoacetate, acetone, free fatty acids and 

glycerol (102). Similarly, muscle catabolism generates free amino acids, including 

also a post –translationally methylated histidine (3 – methylhistidine) that is 

unique to actomyosin, many secondary metabolites of these compounds, urea and 

creatinine (103-105). Despite documented relationships between metabolite 

concentrations in easily accessible biofluids and body composition, this has not 

been exploited in studying or assessing cancer cachexia.  

1.7.2.1 Metabolic profiling  

The idea that metabolite changes in biological fluids are indicative of 

changes in metabolism has been around for centuries (106). Advancements in 

instrumentation and quantification methods now allow researchers to measure 

hundreds of metabolites simultaneously. These advances include: increased 

sensitivity of nuclear magnetic resonance (NMR) spectroscopy and mass 
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spectrometry (MS) and development of multivariate data analysis methods (106). 

With these technologies we are now able to glimpse into the metabolome (the 

complete set of small-molecule metabolites in a biological sample) to study 

changes in tissues and fluids.  Metabolite profiling, termed metabolomics, may 

provide a valuable tool for studying body composition and its change.  

Much like microarray analysis, metabolomic analysis was applied soon 

after its introduction despite unresolved issues. First studies focused on toxicology 

(107) but quickly expanded to other fields such as diabetes (108), exercise (109) 

and tumor development (110). Like microarray analysis, there are no standardized 

methods for metabolomic studies. Studies looking at the same disease / problem 

may use different: biofluids (urine, plasma, serum, saliva, bile, cerebral spinal 

fluids, etc.), platforms (NMR or MS based), and statistical analysis methodology. 

Prior to using metabolomics as a tool for body composition assessment it is 

necessary to identify the best platform, biofluid and statistical method for the task. 

Based on knowledge of metabolism and prior experiments looking at 

single metabolites (creatinine, 3-methylhistidine, free fatty acids, and glycerol) 

urine and plasma are good candidates for studying body composition and its 

change. Though it is currently impossible to measure all metabolites using a 

single platform, NMR and MS are the most often used and accessible. MS is 

attractive due to its high sensitivity; however sample preparation and analysis will 

destroy samples. Kits to analyze samples for metabolomics studies using MS are 

commercially available (currently only from Biocrates by Life Sciences 

(http://www.biocrates.com/)). Most metabolites identified with these kits are lipid 
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molecules and may therefore be more suited to study plasma. NMR is not as 

sensitive (concentrations > 1 µM) but requires minimal sample preparation, is 

nondestructive and is fast (about 5 minutes per sample). Proton NMR is 

particularly appealing for urine analysis because it can be used to quantify 

creatine and creatinine, many amino acids, amino acid derivatives, tricarboxylic 

acid cycle (TCA cycle) intermediates, urea cycle intermediates and sugars (i.e. 

metabolites that may be produced by muscle).  

Due to large amounts of data generated by metabolomic analysis, typical 

statistical methods cannot be used. Researchers have integrated multivariate 

statistical methods originally used in engineering and economics, as well as 

machine learning algorithms to analyze metabolomic data. What analysis is 

conducted depends upon what the goal of the metabolomics experiment is. The 

goal may be to determine what metabolites are correlated with the outcome (e.g. 

what metabolites are related to losing or not losing muscle); in which case the 

output would provide valuable biological insights relating to what pathways may 

be at play. The goal may be to build a predictor (e.g. predict if future patients are 

losing or not losing muscle) which could act as a screening or diagnostic tool that 

could be used in the clinic.  

To add another level of complexity to metabolomics research, it is 

important to note that biofluids are very complex. The identity and concentration 

of metabolites in such fluids is dictated by exogenous and endogenous sources. 

Exogenous sources, such as nutrient intake, can vary greatly in a population of 

free-living individuals (111). Endogenous sources, such as resting energy 
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expenditure and rates of protein turnover can also vary, particularly in the cancer 

population (5, 9). It remains to be determined what potential sources of variation 

in are present in different biological pools.  

1.8 Summary 

From this review it is evident that cancer cachexia is a complex and 

multifactorial syndrome.  At the very basic level there is a need to study 

molecular mechanisms involved in cachexia development and progression in 

humans. Gene expression microarray is a potentially useful tool to accomplish 

this. However, it is clear that there are methodological issues that need to be 

addressed before this technology can be used properly.  

Research also shows that despite the prevalence and negative outcomes 

associated with cachexia it is seldom assessed and diagnosed. This is partly due to 

the lack of body composition assessment tools in the clinical setting. It may be 

possible to use knowledge of metabolism and metabolic profiling technology to 

develop a useful screening tool that could be used in the clinical setting. Like 

microarray technology, before metabolomics can be used for this purpose it is 

necessary to address methodological issues.  
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Figures 

Figure 1-1. Simplified pathways involved in protein synthesis 
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Growth factors (GF), insulin like growth factor 1 (IGF-1), myostatin and 

androgens all ultimately regulate protein synthesis. Mammalian target of 

rapamycin (mTOR)/target of rapamycin complex 1 (TORC1) signaling is a major 

regulation point for protein synthesis. IGF-1 also inhibits upregulation of proteins 

involved in protein breakdown (MAFbx and MuRF). Conversely, upregulation of 

MAFbx and MuRF inhibit protein synthesis via mTOR/TORC1.  
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Figure 1-2. Simplified pathways involved in protein degradation 
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Inflammatory cytokines interleukin 1β (IL-1β), interleukin 6 (IL-6) and tumor 

necrosis factor (TNF-α) all ultimately regulate protein degradation. Nuclear factor 

κB (NF-κB) signaling is a major regulation point for protein degradation leading 

to upregulation of ubiquitin-proteasome pathway proteins MuRF and MAFbx. 

MuRF and MAFbx are involved in ubiquitination of various proteins including 

MyoD which is involved in regeneration and protein synthesis. TNF-α also 

inhibits protein synthesis by inhibiting AKT activation.  
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CHAPTER 2: Research plan 

 

2.1 Rationale and overall hypothesis 

 Cancer cachexia is a common syndrome characterized by muscle wasting. 

Wasting in cachexia is associated with immobility and mortality. Development of 

proper management strategies and treatment development is hampered by: 1) 

unknown mechanisms involved in humans and 2) lack of fast, accurate, non-

invasive and clinically available screening tools in the clinical setting to diagnose 

cachexia. The overall hypothesis that unites this work is that high throughput 

technologies, namely gene expression profiling and metabolomic profiling, can be 

used to detect altered transcription and metabolite concentrations in patients with 

cancer to ultimately improve patient care. Various methodological considerations 

were addressed throughout this work in order to properly use these technologies.  

   

2.2 Objectives and Hypotheses 

Investigated in Chapter 3: Effects of sample size on differential gene 

expression profiles, robustness criteria for top ranked genes and 

discriminative models using human skeletal muscle as an example 

The objective was to assess how sample size affects microarray data analysis. 

Specifically, to examine how sample size variation from n= 10 (5 per group) to 

n=120 (60 per group) affects the significance and rank order assigned to top 

differentially expressed genes and the ability to build a classifier to predict the 

phenotype of future samples. Sex was chosen as the phenotype because it is an 

unambiguous variable that remains unchanged despite environmental factors or 
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pathological states. It was hypothesized that sample sizes previously used (n= 2 to 

30) to analyze human skeletal muscle gene expression using microarray result in 

inconsistent and unreliable rank order which may explain the lack of concordance 

between differentially expressed gene lists generated in different studies looking 

at the same phenotype.  

 

Investigated in Chapter 4: Skeletal muscle in cancer cachexia is 

characterized by features of wasting, pathological lipid infiltration, 

inflammation and aberrant regeneration processes 

Decreased muscle mass, decreased muscle attenuation (an indicator of increased 

fat infiltration) and increased weight loss are associated with negative outcomes in 

cancer. The objective of this chapter was to explore skeletal muscle gene 

expression from cancer patients with altered muscle characteristics and weight 

maintenance. It was hypothesized that expression of genes encoding proteins 

involved in growth, inflammatory signaling and degradation would be altered in 

the studied phenotypes. 

 

Investigated in Chapter 5: Prediction of skeletal muscle and fat mass in 

patients with advanced cancer using a metabolomic approach 

The objective was to determine how wide variations of lean and fat mass, dietary 

intake, metabolic rate and fuel metabolism present in patients with advanced 

cancer alter the urinary and plasma metabolome. It was hypothesized that urinary 

and plasma metabolomes are defined, in part; by varying mass of tissues (e.g. 
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adipose and skeletal muscle) as these produce tissue-specific metabolites in the 

course of their turnover / metabolism.  

 

Investigated in Chapter 6: Learning to predict cancer-associated skeletal 

muscle wasting from ¹H-NMR profiles of urinary metabolites 

The objective was to determine if a random spot urine sample could be used to 

detect if patients were losing or not losing muscle using a metabolomic approach. 

A second objective was to determine what classification algorithm would be most 

appropriate for analyzing the multivariate data that results from metabolomic 

analysis. It was hypothesized that metabolites produced from tissue breakdown 

are likely to be a sensitive indicator of muscle wasting and may provide a new 

diagnostic approach.  
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CHAPTER 3: Sex and sample size affect skeletal muscle gene expression 

microarray experiments 

 

3.1 Introduction 

Microarray technology has been adopted to gain a comprehensive picture 

of gene expression differences.  In human studies, the sample size is often limited 

because microarray technology is quite costly and the required tissue biopsies 

may be invasive.  For example, in the quest to understand sexual dimorphism in 

human skeletal muscle gene expression, the early report by Roth et al. (1) studied 

pooled samples from 5 men and 5 women on 4K arrays (Invitrogen).  Later, 

several other groups studied samples from 6 to 15 participants per sex on 45K 

arrays (Affimetrix) (2-4). Such sample sizes are not unusual in gene array studies 

on human tissues (5).  

A lack of concordance is evident in gene lists generated in studies that 

compared the same phenotypes.  For example, amongst the top 20 - 30 

differentially expressed genes reported in the two studies cited above (by Welle et 

al. and by Maher et al.), only 5 were common to both lists: ALDH4A1, DAAM2, 

INSR, IRX3, TPD52. The issue of poor overlap of gene lists across studies has 

raised doubts about their reliability and robustness of gene signatures in general 

(6).   
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Microarray studies are conducted either: (1) to identify differentially 

expressed genes between groups (e.g. towards understanding underlying 

biological mechanisms) and/or (2) to identify patterns of gene expression that can 

be used to develop a predictor with high accuracy (e.g. for diagnosis of a disease) 

(7). Researchers typically report the top differentially expressed genes and these 

are often credited with high importance, however reproducibility of the identity 

and rank order (i.e. 1st or 50th most differentially expressed) is usually not 

addressed.   

Sample size is proposed to be an important determinant of the number of 

differentially expressed genes reliably detected as well as the accuracy of a 

predictor (8-12).  Some prior studies have considered what sample size is required 

to ensure that genes associated with a phenotype can be discovered with a 

minimal false discovery rate (13); others explore effects of sample size on the 

overlap of gene lists (8, 9); and yet others have investigated the effect of sample 

size on the likelihood of identifying true associations among the top ranked genes 

(14). In general, these analyses consider various sub-samples of a given large 

initial dataset, to determine how well each size of subsamples approximates 

findings made using the entire dataset.  Because of a general paucity of large 

datasets, authors either used computer-simulated datasets (8, 9), or created data 

pools by combining independent datasets (8, 15). However, simulated data does 

not necessarily reflect biological variation and pooling of data from different 

studies by different investigators introduces batch effects and thereby increase 

variability (5, 16).  We can avoid these problems by using a single large dataset 



 

 

38 

 

acquired on the same platform, lab and experimental condition.  It is also 

important that the class label (phenotype) be unambiguous. An objective class 

label (e.g. male vs. female) rather than subjective (e.g. estrogen receptor status, 

subject to measurement error and based on the subjective opinion of an individual 

pathologist (17)) would be ideal. A subjective class label may contaminate the 

dataset with incorrectly labeled instances and therefore introduce variation.    

Here, we used sexual dimorphism in human skeletal muscle gene 

expression using a single large (n=134) dataset with 41K Agilent arrays, as a 

model to assess effects of sample size on differential expression, rank order and 

prediction tasks.  For the association analyses, our goal was to determine 

consistency of the rank orderings of genes, from one size-n sample to another; this 

is different from other studies that attempt to determine how many of the top 

biomarkers are “correct” (14). 

 

3.2 Methods 

3.2.1 Ethics Statement 

This study was approved by the Alberta Cancer Research Ethics 

Committee.  Patients provided written consent. Tissues were stored at the Alberta 

Cancer Research Biorepository/Canadian Breast Cancer Foundation Tumor Bank 

and the University of Calgary HPB/GI Tumor Tissue Bank.   

3.2.2 Participants and acquisition of muscle samples 

Adult (>18 yrs) cancer patients underwent open abdominal surgery as part 

of their clinical care. Biopsies of rectus abdominis muscle (0.5 – 1 g) were taken 
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from the site of incision, at the start of surgery using sharp dissection and without 

the use of electrocautery. Biopsies were immediately frozen in liquid nitrogen and 

stored in liquid nitrogen vapor phase until analysis. Age and cancer type 

information were abstracted from medical charts.  

3.2.3 Computed tomography image analysis 

Digital axial computed tomography (CT) scans, completed for the purpose 

of planning the surgery, were used to quantify skeletal muscle area as in our prior 

studies (18).  Briefly, images at the 3
rd

 lumbar vertebra (L3) were analyzed for 

total muscle cross-sectional area (cm
2
) within a specified Hounsfield Unit range (-

29 to +150) using Slice-O-Matic software (v.4.3, Tomovision, Montreal, Canada). 

Muscle area was normalized for stature and reported as lumbar skeletal muscle 

index (SMI, cm
2
/m

2
). To express muscle in conventional units, whole body fat-

free mass (FFM) was estimated from a regression equation that has been applied 

in several different cancer populations (18-20):  

Whole body skeletal muscle volume = 0.166 * [skeletal muscle 5 cm above L4-L5 

(cm
2
)] + 2.142; r

2
=0.855  

To determine if there was a difference in muscle mass rate of change between 

men and women, we determined the mean tissue area for 2 consecutive images 

(taken ~ 100 days apart) prior to biopsy. We expressed this rate as percentage 

change per 100 days, to take into account minor variation in the number of days 

between scans for different individuals. 
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3.2.4 Microarray analysis 

Total RNA was isolated using Trizol (Sigma-Aldrich, Oakville, ON, CAN) 

and purified using Qiagen RNeasy columns (Mississauga, ON, CAN) according to 

the manufacturer’s protocols.  RNA was quantified using a NanoDrop 1000 

Spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA) and its 

integrity evaluated using a Bioanalyzer 2100 (Agilent Technologies, Santa Clara, 

CA, USA) according to manufacturer’s protocols. RNA samples with RNA 

Integrity Numbers (RIN) greater than 7.0 were used. 

RNA was subjected to linear amplification and Cy3 labeling and 

Hybridization to Agilent Whole Human Genome Arrays using Agilent kits (One 

Color Low RNA Input Linear Amplification Kit Plus, One Color RNA Spike-In 

Kit and Gene Expression Hybridization Kit) according to the manufacturer’s 

protocols. Arrays were scanned using an Agilent Scanner, the data was extracted 

and quality was evaluated using Feature Extraction Software 10.5.1 (Agilent). 

Data was normalized using GeneSpring GX 11.5.1 (Agilent). The data used in this 

publication have been deposited in the U.S. National Center for Biotechnology 

Information (NCBI) Gene Expression Omnibus25 and are accessible through 

GEO series accession number GSE41726.  

3.2.5 Statistical analysis 

There were a total of 41,000 oligonucleotide sequences (i.e. transcripts) on 

each microarray chip. This produces a dataset that describes each of 134 

participants (69 men and 65 women), using 41,000 transcripts (each a real 
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number) and sex (either M or F). Microarray intensity values were log 

transformed prior to analyses.  

3.2.5.1 Effect of sample size on differentially expressed gene lists 

For each sample size considered (n = 10 (5♀, 5♂), 20 (10♀, 10♂), … 120 

(60♀, 60♂)), we randomly selected a size-n subsample (containing equal numbers 

of men and women) from our dataset of n=134. For each of these size-n 

subsamples, we computed the t-test on the (log transformed) intensities over the 

set of males vs. the set of females. We repeated this procedure 50 times for each 

sample size n and then for each gene, averaged the p-values computed over these 

50 trials. Mean p-values were then sorted from lowest to highest to determine top 

100 transcripts for each sample size. We also evaluated how the specific rank 

order of top genes was affected by sample size. For each size n subsample we 

assigned a rank value (1 to 100) to each gene, based on its p-value. We then sorted 

the gene based on its mean rank (for each sample size), based on all 50 repeats. As 

our main focus was this ranking, we simply used the p-values from the t-tests, 

rather than any multiplicity-corrected variant (such as the Benjamini-Hogeberg 

correction (21)). If we had used a multiplicity correction, enforced monotonicity 

would have been required to ensure the ranking of adjusted p-values remain 

unchanged. A method of enforced monotinicity was presented by Yekutieli and 

Benjamini (22).   

3.2.5.2 Effect of sample size on prediction accuracy 

As XY chromosome transcripts (1,548 transcripts) are obviously highly 

related to sex, a single XY transcript may be sufficient to build a classifier that 
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could predict sex perfectly. To generate a more typically physiological prediction 

problem we therefore excluded these transcripts when building classifiers.  We 

used the LASSO algorithm (implemented using R, glmnet package) (23). Given a 

training dataset, LASSO produces a classifier that predicts the class label (sex) of 

a new patient from his/her microarray data.  In general, the quality of a classifier 

is its predictive accuracy (% correct classification) on novel subjects; we used 10-

fold cross validation to internally validate the model. To determine how sample 

size of the training dataset affects sex prediction accuracy, we trained classifiers 

using randomly selected sub-samples of our data (n=10 (5♀, 5♂) to n= 110 (55♀, 

55♂)). We repeated this 50 times for each n.  

To externally validate our model, we used publicly available datasets that 

used the same tissue (i.e. skeletal muscle) and platform (i.e. Agilent), for which 

the sex was known: dataset GSE24215 included microarray data from 10 healthy, 

young men and dataset GSE23697 included 34 healthy, adult men. To determine 

how sample size of the training dataset affects sex prediction accuracy on these 

external datasets, we trained classifiers using randomly selected subsamples of 

our data (n=10 (5♀, 5♂) to n= 110 (55♀, 55♂)) then used these learned classifiers 

to predict sex on the external datasets. We repeated this 50 times for each n. 

3.3 Results 

Gene expression microarray analysis was conducted on 134 rectus 

abdominus muscle biopsies (69♂, 65♀).  Characteristics of the study participants 

are shown in Table 3-1. As expected, men were 26% more muscular than women 
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(t-test, p<0.0001). Mean age and number of patients undergoing chemotherapy 

did not differ between the men and women in this study.  

3.3.1 Effect of sample size on differential expression  

The full dataset was checked for differential gene expression revealed 717 

differentially expressed transcripts with a p-value < 0.0001 (Appendix 1). Note 

that the biological interpretation of these differentially expressed genes is not the 

goal of this study. 

This analysis was repeated for random samples of n=10 (5♀, 5♂) to n=120 

(60♀, 60♂) increasing the sample size by increments of 5♀ and 5♂ (Figure 3-1, 

top panels). At n=10 (5♀, 5♂), no genes were significant at p-value < 0.0001 

whereas at n=120 (60♀, 60♂), there were 472 differentially expressed transcripts 

at the same p-value cutoff.  Of course, the variance of these measurements 

become less meaningful for large subsamples, as the different size-n subsamples 

will have high overlap since they are all drawn from our dataset of 134 (65♀, 

69♂). The variances, however, are fairly accurate for small values of n. To assess 

the similarity of sample sets, we calculated the median Jaccard score over 1000 

randomly generated pairs of subsamples of size n. The Jaccard score of two sets A 

and B is the size of the intersection divided by the size of the union, i.e. J(A,B) = 

|A B| / |AB|.  Note that the Jaccard score is always between 0 and 1; the score 

of 0 means the two sets are disjoint, while the score of 1 means they are identical. 

As the median Jaccard score for two n =30 (15♀, 15♂) subsamples is around 0.1, 

the overlap is very small.  Such sizes are the most relevant, as they reflect the 

sizes of many earlier human microarray studies. Below we consider n=60 (30♀, 
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30♂); we consider the observed variations relevant as the Jaccard scores here are 

still under 0.3. 

We then explored whether the ranking of genes were reproducible over 

different sample sizes. From the previous analysis, for each of the 50 random 

samplings, each gene was given a ranking based on the p-value of its t-test (e.g. if 

a gene is ranked 4th, or 25th, or 120th), see Figure 1, bottom panels.  In Figure 3-

1 (bottom right-hand panel), in a large sample (n=60 (30♀, 30♂)) the top three 

genes (PRKY, DDX3Y, UTY) were reproducibly identified in the top 3 ranks in 

all 50 iterations of sampling.  By contrast, the p-value of 10th ranked gene was 

very close to its immediate neighbors; while on average it ranked 10th, its rank 

ranged from 5th to 17th.  As we decreased n, the ranking of any given gene 

became more and more variable, in that the rank of every gene had a larger range 

(e.g. at sample size n=30 (15♀, 15♂), the gene whose average rank was 10th , 

ranged in rank from 1st to 127th in the different random subsamples).  

3.3.2 Effect of sample size on prediction accuracy 

Microarray data are sometimes used to make a prediction (i.e. to determine 

the phenotype of a future subject (e.g. healthy or disease), based on a classifier 

produced from prior subjects.  While there is no clinical need to predict a person’s 

sex using muscle gene expression array, our data does provide the opportunity to 

explore the relationship between n and the ability to build a robust predictor. The 

classifier based on all n=134 participants used only 92 genes of the complete set 

of 41,000 and could predict sex with mean 92.5 ± 7.3 % (10-fold) cross-validation 

accuracy.  We then explored the predictive accuracy of this model on publicly 
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available muscle expression array data obtained in unrelated investigations 

conducted on the same platform (Agilent). In two such external datasets, this 

model had excellent accuracy: correctly predicted sex for 9/10 participants and for 

35/35 participants in dataset GSE24215 and dataset GSE23697, respectively.  

Figure 3-2 shows the mean internal cross-validation accuracy of sex 

prediction as we varied the sample size of the training data from n=10 (5♀, 5♂) to 

n=110 (55♀, 55♂). When the training sample had n=10 (5♀, 5♂), the classifier 

was unable to predict sex any better than chance (~50% cross validation 

accuracy). This accuracy increased as we increased n; we achieved predictive 

accuracy above 90% when training on a sample of at least 80 individuals (40 of 

each sex). This trend of increased accuracy with increased n was also seen when 

we used different subsamples of size n=10 (5♀, 5♂) to n=110 (55♀, 55♂) from 

our dataset to predict sex on the external datasets mentioned above (Figure 3-3). 

3.4 Discussion 

Our empirical evidence suggests that small sample sizes often typical of 

microarray studies negatively affect their interpretation, whether used to 

determine differential gene expression or to accurately predict future instances. 

The relatively high cost of analyses and the invasiveness of sampling tissues such 

as skeletal muscle in humans often dictate rather small sample sizes (24, 25) but 

our results suggest that efforts to increase n may well be justified.  

Researchers in biology attribute great importance to top ranked gene(s) in 

differential expression analyses (26). This is the first study examining the effect of 

sample size on gene rank using one large dataset and a biologically unambiguous 
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label. We show that any given gene may have a wide range of ranks, especially 

for small sample sizes. For example, in 50 subsamples of size n= 20 (10♀, 10♂), 

the gene that had the highest average rank, sometimes appeared in rank 200.  By 

contrast, at n=60 (30♀, 30♂) the top three ranked genes were constant. These 

observations explain the lack of concordance between the findings of two prior 

studies of sexual dimorphism (2, 4) with each other, and with our results. Those 

two earlier studies had 6 to 15 of each sex in their analysis and the 5 genes that 

they had in common with each other did not all rank in our top 100 differentially 

expressed gene list (these genes ranked 49th (IRX3), 62nd (DAAM2), 67th 

(TPD52), 147th (ALDH4A1) or was not significant (p=0.3, rank= 18854) (INSR) 

at n=134 (our full dataset).  

Microarray analysis is often used to identify gene signatures that can be 

used to develop a predictor.  In agreement with previous studies looking at this 

methodological issue, we conclude that small sample sizes (e.g. n < 20 per class 

label) will often result in poor predictors (8, 10, 15, 27), but the accuracy 

improves with increased sample size in the training dataset. This was the case 

both within our data and, as shown in Figures 3-3, when trying to make 

predictions on external datasets. In our study, a LASSO predictor, trained on our 

full dataset (n=134) returned 90-100% accuracy on publicly available data 

(external validation).  This excellent predictive accuracy also suggests that our 

findings of sex-related gene expression are not confounded by the use of a cancer 

patient sample, because the predictor based on these patients was accurate on data 

obtained on healthy men and women.  
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Sample size is not the only factor that can influence microarray analysis. 

Indeed, incomplete annotation of the genome and probes targeted to different 

regions of the encoding gene, stringency of hybridization conditions, 

commercially available arrays vs. in-house built, pre-analytical variables in the 

tissue accrual including induced hypoxia concomitant post de-vitalization of 

tissue and temperature and duration of storage of tissues should also be considered 

when comparing previous or designing future microarray experiments.  Here, we 

focused on sample size while maintaining the tissue collection method, 

microarray platform and storage conditions constant for all samples. Our analysis 

suggests principles that dictate how ranking and prediction accuracy can vary, in 

relation to the biological label (sex) that we chose to study.  Studies with larger 

inherent variance in the data (e.g. due to batch effects introduced by pooling 

several datasets) or different effect sizes may require considerably larger sample 

sizes than we report here (8-10, 28). By contrast in animal experiments which 

permit extensive control of many sources of variation, smaller sample sizes may 

be sufficient to test similar experimental questions.  Thus, it is not possible to state 

how many genes will be reliable / reproducible at different sample sizes for other 

datasets a priori. However, it would be beneficial to assess how sample size may 

affect ranking and prediction tasks, as we did here, by examining the robustness 

of top-ranked genes and mean and variance of cross-validated results for different 

subsamples of varying n, respectively. Even if a dataset is deemed to have a 

sufficient sample size, there are other methodological considerations that were not 

addressed here but which are important to properly interpret the data. For 



 

 

48 

 

example, using different normalization and multiplicity correction methods lead to 

different differential expression results (29-30).  Researchers need to evaluate 

what normalization method is best suited for their data and carefully consider 

what multiplicity correction should be used, which depends on the properties of 

the dataset in questions (e.g. the normality of the data).  

3.5 Conclusion 

 We conclude that gene signatures generated from small datasets should be 

interpreted with caution as they may not be reproducible and that prediction 

models built using small sample sizes result in poor prediction accuracy. While 

we cannot recommend specific sample sizes, outside the problem that we studied, 

our analysis shows that the sample size n= 10 (5♀, 5♂) was not useful for either 

prediction (which was not better than chance) nor for association (the probability 

of finding reproducible top 10 genes was negligible).     
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Tables 

 

Table 3-1: Patient characteristics 

 Men Women 

Total, n 69 65 

Age, mean years ± SD 59 ± 13 63 ± 13 

Muscle, mean ± SD   

   Skeletal muscle index (cm²/m²)  52.9 ± 7.8 41.9 ± 8.3* 

   
1
Estimated whole body skeletal muscle, kg 27.0 ± 4.8 17.9 ± 3.7* 

   Muscle rate of change, %/100d -4.4 ± 10.9 -4.5 ± 12.5 

Diagnosis at surgery, %   

    Benign neoplasm 13 18 

    Cancer, liver or intrahepatic bile ducts  17 14 

    Cancer, gastrointestinal tract  46 22 

    Cancer, pancreas 19 25 

    Cancer, ovary or uterus 0 17 

    Cancer, head and neck 3 2 

    Cancer, skin 0 2 

    Cancer, kidney 1 0 

*Different from men, P < 0.0001.  
1
Derived regression equations by Shen et al. 

(ref # 20) 

  



 

 

  

5
0
 

Figures 

Figure 3-1: The effect of sample size on p-values and rank order for the top 100 transcripts 

 
For each n tested (n= 10 (5♀, 5♂), 30 (15♀, 15♂), 60 (30♀, 30♂), 90 (45♀, 45♂) and 120 (60♀, 60♂) are shown here), n samples were randomly selected from our dataset of 

n=134 participants, 50 different times. Note log on the y-axes. 

Top panels: The average and 0.95 SD of the p-values for the top 100 transcripts. As sample size was increased, the average p-value decreased and became less variable.  

Bottom panels: The average and 0.95 SD (log) rank for the top 100 transcripts. As sample size was increased, the average rank decreased and became less variable.  

A 

B 
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Figure 3-2: Box-and-whiskers plot showing the mean internal cross-

validation accuracy of sex prediction for different sample sizes 

 

 
 

Sample sizes tested ranged from n=10 (5♀, 5♂) to n=110 (55♀, 55♂). To 

calculate the mean 10-fold cross validation prediction accuracy, for each n 

(=10…110), we built classification models using a randomly selected size-n 

subsamples of our full dataset of n=134.  This was repeated 50 times and the 

median prediction accuracy for each sample was calculated. As sample size 

increased, so did prediction accuracy. 
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Figure 3-3: Plots showing the mean and standard deviation accuracy of sex prediction on two external datasets using a 

predictor trained using different sample sizes from our dataset.   

 

 
 

We built predictors using different training sample sizes ranging from n=10 (5♀, 5♂) to n=110 (55♀, 55♂) from our full dataset. We 

then calculated the prediction accuracy, for each n (=10…110) on two external datasets (A. Dataset GSE24215 and B. Dataset 

GSE23697). This was repeated 50 times and the mean and standard deviation prediction accuracy for each sample size was calculated. 

As the training sample size increased, so did prediction accuracy on the external datasets. 
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CHAPTER 4: Skeletal muscle in cancer cachexia is characterized by features 

of wasting, pathological lipid infiltration, inflammation and aberrant 

regeneration processes 

 

4.1 Introduction 

Cancer patients often develop cachexia which is defined by muscle 

wasting (with or without loss of fat) (1). Muscle loss is an important component 

of the pathophysiology of cancer as it is associated with fatigue, decreased quality 

of life, decreased response to treatment and decreased survival (2, 3). 

Mechanisms involved in muscle wasting are not completely understood. 

However, much of the research has had a focus on protein turnover and cell 

proliferation and apoptosis, since these are considered a priori to be involved. 

Specific processes considered include protein degradation (e.g. the ubiquitin (Ub)-

proteasome pathway), apoptosis, autophagy and cell cycle arrest which favour 

wasting, and protein synthesis, transcription, translation, cell cycle and progenitor 

cell activation and differentiation which oppose wasting (4). Figure 4-1 part A 

shows a conceptual framework of different inputs from distant organs/tissues and 

local/neighbouring cells and part B of the figure shows a conceptual framework of 

pathways that are suggested to affect muscle in cancer cachexia. These different 

pathways are activated through ligand-receptor downstream signalling (e.g. pro-

inflammatory cytokines, glucocorticoids, growth factors, growth hormone, insulin 

and androgens) as well as via neural or mechanical activation of muscle. 

Considering the obvious nature of these signals and pathways in wasting, it is easy 
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to understand the considerable emphasis on them in the cancer cachexia literature 

(5-17). Generally, there is an increase in catabolism and a decrease in anabolism 

during cancer-associated wasting (11, 12).  

Gene array has been attempted to understand events leading to wasting, 

beyond the involvement of the pathways described above. Lecker et al. used 10k 

Affymetrix gene arrays to identify a common set of transcriptional adaptations 

responsible for muscle wasting in laboratory rodents in four different disease 

states (cancer, diabetes, renal failure and starvation) (18). This common 

transcriptional program, identified upregulation of protein degradation, 

downregulation of factors involved in muscle protein transcription and translation 

as key atrophy genes but additionally identified downregulation of pathways of 

energy metabolism, extracellular matrix (ECM) remodelling as well as several 

miscellaneous pathways(18). Braun et al. used 41k Agilent arrays and found 

many aspects of the Lecker transcriptional atrophy gene program in response to 

central (intracerebroventricular) interleukin 1β injection in mice, including 

transcription, protein degradation, ECM and energy metabolism (19). Braun also 

identified myogenic differentiation, inflammatory signalling, and oxidative stress 

in their model (19). Collectively these works have begun to reveal a wider 

understanding of muscle wasting in cachexia, however they have yet to be 

extensively validated in either human or animal studies. 

Most of the understanding of cancer-associated changes in skeletal muscle 

comes from over 400 studies conducted in rodent tumour models. However 

animal studies may or may not provide a basis for the design of therapeutic 
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strategies unless it is can be verified that homologous events occur in humans. 

Only 18 studies used muscle biopsies from patients with cancer as of July 2012 

(Table 4-1). These few studies used small, heterogeneous samples and focused on 

just a few of the observations and pathways identified in the animal models such 

as decreased fiber size (20-22), increased fat content (23), increased proteolysis 

(24-29), decreased protein synthesis (30, 31), apoptosis and regeneration 

processes (32, 33).   

Involuntary weight loss is the primary clinical feature of cachexia, as 

healthy adults are highly resistant to weight loss. Weight loss is expediently 

measured (1). This explains why weight loss is the most commonly used criterion 

for cachexia classification (Table 4-1). This has the inherent flaw that weight loss 

may or may not be related to muscle loss (34). Arguably, weight loss is not an 

ideal way to classify patients for cachexia research designed to probe molecular 

events and pathways in skeletal muscle. Muscle loss is considered the defining 

characteristic of cachexia (34). Very recently, computed tomography (CT) has 

been applied to quantification and characterization of skeletal muscle in cancer 

patients (35-37), providing for the first time an opportunity to use direct measures 

of muscle in clinical cachexia research.   

Recently, one research group published studies using a gene expression 

analysis of skeletal muscle to explore cachexia mechanisms (38, 39). However, 

these previous studies are limited by the use of weight loss to classify patients as 

cachexic or not. Also, it may be reasonably assumed that samples of mixed sex 

and small n would detract from their ability to detect significant differences in 
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gene expression (see Chapter 3). Our aim was to identify muscle gene expression 

signatures in relation to muscle characteristics detectable on CT images (muscle 

mass index, muscle radiation attenuation (an index of fat infiltration)) using a 

relatively large dataset of a single sex.  

 

4.2 Methods  

This study was approved by the Alberta Cancer Research Ethics 

Committee.  Patients provided written informed consent to banking of the tumour, 

buffy coat, and skeletal muscle with the Canadian Breast Cancer Foundation 

Tumour Bank, a province wide tumour bank within the Cancer Care domain, 

Alberta Health Services.  Release of 69 muscle samples from the bank for 

microarray analysis and collection of patient information for this study was 

conducted under Research Ethics Protocol ETH-21709.   

4.2.1 Participants and acquisition of muscle samples 

To avoid a potential confounder we opted to focus on only one sex. 

Compared to women, men with cancer have been reported to experience a faster 

rate of weight loss (40), be more likely to present with sarcopenia (i.e. low muscle 

mass) (35) and report poorer global quality of life (associated with reduced 

muscle quality) and physical function and increased fatigue (41). Based on the 

foregoing we opted to focus on a single sex (men). 

Acquisition of samples was conducted in the same manner as in Chapter 3. 

Briefly, biopsies of rectus abdominis muscle (0.5 – 1 g) were taken at the start of 

open abdominal surgery using sharp dissection and immediately frozen in liquid 



 

 

60 

 

nitrogen and stored in liquid nitrogen until analysis. Using scheduled surgeries 

allowed us to avoid causing additional pain and burden to patients, as would be 

the case if we had used the usual percutaneous needle biopsy method. Our 

approach was perceived by patients as minimally invasive and as a result allowed 

us to obtain an unusually large number of human muscle samples (see Table 4-1 

to compare sample sizes from other human studies).  

Chart review was used to identify details of diagnosis, computed 

tomography (CT) images (analysis detailed below) and history of weight loss. 

Patients were considered to be losing weight if they had lost more than 5% of 

weight over the 6 months prior to the biopsy.  

4.2.2 Body composition analysis 

Digital axial CT scans done as part of clinical care were used to quantify 

skeletal muscle area as in our prior studies (34, 42). Different tissues are 

indentified by an individual trained in anatomical radiology and quantified based 

on their attenuation characteristics which are a function of their composition (43). 

Radiation attenuation is measured in Hounsfield units (HU) using water [0 HU] 

and air [-1000 HU] as reference. In this study, images at the 3
rd

 lumbar vertebra 

(L3) were analyzed for total muscle cross-sectional area (cm
2
) within a specified 

Hounsfield Unit range (-29 to +150) using Slice-O-Matic software (v.4.3, 

Tomovision, Montreal, Canada). Muscle area was normalized for stature and 

reported as lumbar skeletal muscle index (SMI, cm
2
/m

2
). Muscle attenuation is 

considered to be related to muscle fat content (44). Specifically, a lower mean 
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attenuation indicates increased lipid content. We measured the mean muscle 

attenuation for the entire cross-sectional area at L3. 

4.2.4 Microarray analysis 

Microarray analysis was conducted as described in Chapter 3. Briefly, total 

RNA was isolated using Trizol (Sigma-Aldrich, Oakville, ON, CAN) and purified 

using QiagenRNeasy columns (Mississauga, ON, CAN) according to the 

manufacturer’s protocols.  RNA was quantified using a NanoDrop 1000 

Spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA) and its 

integrity evaluated using a Bioanalyzer 2100 (Agilent Technologies, Santa Clara, 

CA, USA) according to manufacturer’s protocols. RNA samples with RNA 

Integrity Numbers (RIN) greater than 7.0 were used. RNA was subjected to linear 

amplification and Cy3 labelling and Hybridization to Agilent Whole Human 

Genome Arrays using Agilent kits (One Color Low RNA Input Linear 

Amplification Kit Plus, One Color RNA Spike-In Kit and Gene Expression 

Hybridization Kit) according to the manufacturer’s protocols. Arrays were 

scanned using an Agilent Scanner, the data was extracted and quality was 

evaluated using Feature Extraction Software 10.5.1 (Agilent). The data was 

normalized using GeneSpring GX 11.5.1 (Agilent). Each microarray chip had of 

41,000 oligonucleotide sequences or transcripts. 

4.2.5 Statistical analysis 

4.2.5.1 Differential gene expression  

To run the differential expression analysis patients were first classified as 

low (Class 1) or high (Class 2) for skeletal muscle index, muscle attenuation and 
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weight loss. The approach taken to split patients into the different classes is often 

referred to as extreme phenotype classification and often used in gene expression-

type studies (45-48). This method consists of comparing patients with very high 

or very low values for SMI or muscle attenuation or weight loss and excluding 

patients in the middle. This approach exploits extremes of phenotype to maximize 

the chance of observing major differences in gene expression.  Also, when a 

population is split across a cut point into 2 classes, individuals on either side of 

the cut point who are not different from one another within the error term of the 

measurement are placed in different classes; this problem is avoided with our 

approach. To conduct this classification we first sorted patients based on their 

SMI or attenuation values (low to high).  After sorting, patients in the lowest 

tertile were classified as Class 1, patients in the highest tertile were classified as 

Class 2 and patients with values in the middle were excluded. Figure 4-2 uses 

muscle attenuation as an example of how this is conducted. 

For each phenotype assessed, T-test analysis was conducted on the log 

transformed intensities from the microarray data (Class 1 vs. Class 2).  

4.2.5.1 Pathway analysis 

Differentially expressed genes were analyzed using Ingenuity Pathway 

Analysis (IPA) (Ingenuity® Systems, www.ingenuity.com). Specifically, we 

uploaded the Agilent ID and nominal p-value from T-test analysis described 

above for each differentially expressed transcript with a p-value ≤ 0.01 into IPA. 

Based on the updated IPA database, each transcript was assigned its 

corresponding gene name. Non-coding or unknown genes in the IPA software 

http://www.ingenuity.com/
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were not included in IPA analysis. IPA provided information about common 

biological functions and canonical pathways of differentially expressed genes 

based on the information in the IPA database.  

 

4.3 Results  

4.3.1 Patient characteristics 

From our group of 69 patients, 64 patients had weight loss information or 

CT derived data (i.e. SMI and HU values). This clinical information was used to 

assign patients into Class 1 or Class 2 as detailed in the methods section. Patient 

characteristics for Class 1 and Class 2 for each variable are shown in Table 4-2. 

Though the sample sizes in Table 4-2 may appear suboptimal based on the results 

from the previous Chapter, it is important to note that the classification method 

used in Chapter 3 differs from what was used here (i.e. the extreme phenotype 

classification method). By using this method we exploit extremes of each 

phenotype to maximize the chance of observing major differences in gene 

expression. The three phenotype characteristics were not mutually exclusive and 

tended to overlap to some degree (Figure 4-3). Muscle attenuation and SMI were 

somewhat correlated (r=0.33). There was little to no correlation between the 

percent of weight lost and SMI and muscle attenuation, r=0.11 and r=-0.01, 

respectively. Comparing the distal ends of the weight loss spectrum, there were no 

significant differences in directly measured muscle parameters (index or 

attenuation). Patients with low muscle attenuation were significantly older than 

patients with high muscle attenuation (p<0.0001).  



 

 

64 

 

4.3.2 Differential expression analysis 

T-test analysis was conducted for each phenotype. For each of the 3 

phenotypes, there were different numbers of differentially expressed genes at 

given p-values. In Table 4-3 the numbers of differentially expressed transcripts 

are given for each phenotype and p-value, and both the total number and the 

number that exceeded 1.5-fold in magnitude are given. For muscle attenuation 

there were 5, 52, 440, 1644 and 2715 differentially expressed genes at p 

<0.00001, p<0.0001, p< 0.001, p<0.005 and p<0.01, respectively. Numbers of 

differentially expressed genes using each of the p-value cutoffs are considerably 

higher than for weight loss and SMI as shown in Table 4-3. Weight loss and SMI 

had relatively weak signatures (few differentially expressed genes); these 

phenotypic characteristics had 10-fold to 20-fold fewer differentially expressed 

genes than observed for muscle attenuation.  Thus, we decided to focus on muscle 

attenuation classification for our pathway analysis and further discussion. Of 

differentially expressed genes according to weight loss and SMI, only 10-14% 

overlapped with genes differentially expressed according to muscle attenuation at 

p<0.01. Because patients in the low muscle attenuation class were significantly 

older than those in high muscle attenuation class we conducted t-test analysis 

using age as a phenotype after using the same extreme phenotype classification 

method used for muscle attenuation, SMI and weight loss. We identified 1404 

differentially expressed transcripts at p<0.01 according to age, however, only 3% 

of these transcripts overlapped with differentially expressed transcripts according 

to muscle attenuation at p<0.01 (data not shown).  
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4.3.3 Pathway analysis  

Of 2715 differentially expressed transcripts according to muscle 

attenuation, 390 were not mapped by IPA. The 2325 transcripts that were mapped 

constituted 2104 unique genes. Pathway analysis provided a starting point for 

interpreting differentially expressed genes by identifying canonical pathways 

found to be represented based on the 2104 genes. Table 4-4 shows the list of 

identified canonical pathways. The list in Table 4-4 is organized according to 

categories: inflammation, degradation, apoptosis, growth and proliferation, 

transcription, ATP production, lipid metabolism, intracellular structure and 

vesicle transport, cellular adhesion and extracellular matrix and motor unit. About 

70% of the canonical pathways listed belong to the inflammation, growth and 

proliferation or ATP production categories. It is important to note that many of the 

canonical pathways on Table 4-4 were identified based on common molecules 

located downstream in signalling cascades. For example, under the category 

Growth and Proliferation, IPA identified insulin signalling, insulin-like growth 

factor 1 (IGF-1) signalling and mTOR signalling. These three canonical pathways 

have many common molecules in their signalling cascade (e.g. phosphoinositide-

3-kinase (PI3K), mammalian target of rapamycin (mTOR) and 3-phosphoinositide 

dependent protein kinase-1 (PDPK1)). These common downstream molecules 

were differentially expressed and largely responsible for the identification of these 

canonical pathways by IPA. By contrast, cell surface receptors that activate these 

signalling cascades, insulin receptors, and IGF-1 receptors) were not differentially 

expressed. Thus, canonical pathways identified by IPA were used to supplement 
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the more thorough independent study of differentially expressed genes assigned to 

each category which is described below.   

We were able identify a function for 37% of the differentially expressed 

genes with a fold change ≥ 1.5 and ≤ -1.5 by conducting an extensive review of 

the literature. Many genes had limited published information regarding their 

function. We grouped differentially expressed into different categories (Tables 4-5 

to 4-19), as we did for canonical pathways in Table 4-4. We acknowledge that 

some genes have diverse functions and therefore could be assigned to more than 

one category. However, for the purpose of presenting the results, each gene was 

limited to one category. In Tables 4-5 to 4-19 (discussed below) the negative and 

positive fold change values indicate genes are downregulated or upregulated in 

low attenuation class, respectively. 

4.3.4 Inflammation 

Downregulated genes indicate decreased activation of nuclear factor kappa 

B (NFκB) coupled with chemoattraction of lymphocytes (Table 4-5). NFκB is a 

downstream regulator of pro-inflammatory cytokines. Downregulated TNIP2 and 

ZFP91 encode genes which positively regulate NFκB-dependent transcription (50, 

51). MTPN, which encodes myotrophin, was also downregulated. Myotrophin is 

thought to promote hypertrophy, at least partly, through the activation of NFκB 

(52). Toll-like receptor 4 (TLR4) is integral to innate immunity and is also known 

to activate NFκB (53) was downregulated. A commonality with other 

downregulated genes is their involvement in chemoattraction (IL16, IL23A, 
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CCR1 and CCRL1) (54-56) and activation (ZFPM1) (57) of lymphocytes, 

particularly CD4 cells.  

Upregulated genes suggest involvement of the complement system and 

immune cell – muscle cell interaction (Table 4-6). A marked increase in mRNA 

levels for complement system proteins was identified; C2, CF1, C1R, C1S, CFH 

and C7 were all upregulated. Complement activation also has been shown to 

contribute to inflammation after skeletal muscle ischemia/reperfusion (58). 

Upregulation of SPON2, essential to the initiation of the innate immune response / 

inflammatory cell recruitment (59, 60), was also identified. IL21R (interleukin 21 

receptor) was also upregulated. IL21R is involved in regulating immunoglobulin 

expression (61); we did identify a marked upregulation in immunoglobulin 

expression (IGK@, IGHG4, IGKC and IGLC1 were all upregulated). CD28 was 

also upregulated as has been shown in muscle in response to stimulation with pro-

inflammatory cytokines IL-1 and IFN-γ compared to unstimulated muscle (62). 

CD80 and CD86 are ligands for CD28 and are expressed by macrophages, 

monocytes, dendritic cells, B cells, and activated T cells (62) suggesting a role in 

immune cell recruitment.  

4.3.5 Degradation and cell death 

A list of downregulated genes associated with the Ub-proteasome pathway 

is shown in Table 4-7. Downregulated genes included UBE2G2, UBE2N and 

UBE2K which encode Ub-conjugating enzymes. Ub-conjugating enzymes 

encoded by these genes suggest decreased lipid droplet degradation (UBE2G2) 

(63), decreased growth hormone receptor endocytosis (UBE2N) (63) and 
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decreased suppression of apoptosis (UBE2K) (64). We also identified several 

downregulated genes encoding Ub protein ligases and members of the F-box 

protein family which form a complex with Skp and Cullin to form the Skp, Cullin, 

F-box containing complex (SCF complex) which acts as a multi-protein ubiquitin 

ligase complex. Expression of Ub ligase encoded by HERC5 has been shown to 

be induced by pro-inflammatory cytokines IL-1β and TNFα via NF-kB (65) which 

is consistent with the decreased activation of NF-kB suggested by differentially 

expressed genes under the Inflammation category. The remaining downregulated 

genes encoding Ub-ligases suggest increased cell cycle progression and stem cell 

renewal (PJA1 and FBXO4) (66, 67), decreased proliferation (UBE3A and 

FBXL17) (68, 69) and increased motility (RNF5) (70). RING finger proteins play 

a critical role in mediating the transfer of Ub to the protein targeted for 

degradation; RING finger proteins RC3H1 and RNF31 were both downregulated. 

Finally, we identified PSMB7 to be downregulated. PSMB7 encodes a subunit of 

the proteasome and downregulation of this gene has been correlated with 

inflammation (71).    

A list of upregulated genes associated with the Ub-proteasome pathway is 

shown in Table 4-8. Among upregulated genes was UBE2Z which encodes a Ub-

conjugating enzyme which has not been extensively studied but is not generally 

highly expressed in skeletal muscle (72). BTRC, FBXO32, FBXL20 and WWP1 

were among the upregulated genes encoding Ub protein ligases. BTRC encodes a 

ligase involved in negatively regulating vascular endothelial growth factor 

(VEGF) receptor 2 accumulation (73), negatively regulating anti-inflammatory 
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interleukin 10 receptor accumulation (74). FBXO32 encodes a muscle-specific 

ubiquitin ligase known in the literature as F-box protein 32 or Atrogin-1 or muscle 

atrophy F-box (MAFbx). MAFbx is known to be induced in catabolic states 

including cancer cachexia (5) and is thought to be involved in decreasing rates of 

protein synthesis by targeting the myogenic differentiation factor MyoD for 

degradation and inhibiting differentiation of myoblasts (75). FBXL20 encodes an 

F-box protein with unknown targets. Finally, WWP1 encodes a ubiquitin ligase 

that negatively regulates TGF-β signaling in cooperation with Smad7 (76).  

The bottom of Tables 4-7 and 4-8 list genes associated with lysosomal 

protein degradation. TRAK1 was downregulated and encodes trafficking protein, 

kinesin binding 1. Knockdown of TRAK1 has recently been found to result in 

decreased degradation of internalized epidermal growth factor receptors through a 

block in endosome-to-lysosome trafficking in HeLa cells (77). Genes encoding 

lysosomal cysteine proteases cathepsin S and cathepsin C were upregulated. 

Under inflammatory conditions, cathepsin S is involved in controlling the level of 

class II Major histocompatibility complex-antigens on the surface of muscle cells 

(78). Cathepsin C plays a key role in neutrophil-dominated inflammatory diseases 

by activating neutrophil-derived serine proteases which can lead to tissue damage 

and chronic inflammation (79). Together differential expression of genes 

encoding lysosomal degradation-related proteins suggest increased promotion of 

an inflammatory state.     

Genes encoding both apoptosis and autophagy were differentially 

expressed (Table 4-9). With the exception of BAX which encodes the apoptotic 
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activator BCL2-associaed X protein, all other downregulated genes identified 

encode inhibitors of apoptosis (DKK3, BBC3, SATB2, CARD16 and BIRC5 (80-

84)). Upregulated genes included mostly activators of apoptosis (APAF1, 

DIABLO, EDARADD and PPIF). BFAR was also upregulated, this gene encodes 

bifunctional apoptosis regulator and has been found to associate with Bcl-2 in 

endoplasmic reticulum membranes and inhibits apoptosis (85). Differential 

expression of apoptosis-related genes suggests a decrease in apoptosis inhibition 

coupled by an increase in apoptosis activation. We identified upregulated but not 

downregulated autophagy-associated genes. These included ATG16L1, ATG4D, 

BECN1 and ATG7 which encode proteins involved in promoting autophagy. In 

summary, these genes suggest increased apoptosis and autophagy in low 

attenuation muscle.  

4.3.6 Growth 

Differentially expressed genes involved in growth and proliferation were 

further subcategorized in Table 4-10. Taken together, differential expression in 

this category supports increased differentiation, cell cycle progression and 

cytoskeleton reorganization and decreased mTOR associated signalling.  

Under the subheading Growth factors, GFER was downregulated. This 

gene encodes the augmenter of liver regeneration protein which supports cell 

proliferation by acting as an anti-apoptotic factor and protecting cells from 

oxidative damage (86). Growth factor receptors IGF2R and midkine were 

upregulated and both are upregulated during muscle regeneration promoting 

muscle differentiation and growth (87, 88). Though IGF2R encodes an insulin-
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like growth factor receptor it is structurally unrelated to either insulin like growth 

factor 1 receptor (IGF1R) or insulin receptor which are known to be decreased 

during cancer-associated atrophy (89).  

Differential expression under the transforming growth factor (TGF) family 

subheading shows downregulation of two genes encoding bone morphogenetic 

proteins (BMP). BMP signalling plays a critical role in coordinating 

differentiation of satellite cells from a proliferative to committed state during 

regeneration (90). Specifically, BMPs induce satellite cell commitment to the 

differentiation program and accelerate differentiation into fused myotubes (90). 

The most upregulated TGF family gene was TGFB2 (transforming growth 

factor2). Transforming growth factor2 is involved in controlling differentiation 

of adult skeletal myoblasts (91).  

 Decrease in expression of Ras and Rho GTPases has been observed in 

muscle atrophy (92). However, we observed downregulation of some 

Rho/RasGTPases and upregulation of others. Of the downregulated genes, HRAS 

is the most well studied in skeletal muscle; specifically, the H-Ras protein 

encoded by this gene is known to inhibit myogenesis and differentiation (93, 94). 

Of the upregulated genes, RAC1 and RHOQ are both involved in glucose uptake 

and actin reorganisation in response to insulin signalling (95, 96). Moreover, 

RHOQ is also involved in myofibril organization during differentiation (97).  

Genes encoding non-Ras/Rho growth factor signalling proteins are also 

listed in Table 4-10 under the heading Growth factor downstream regulators. 

Most of these were downregulated and are associated with the mTOR complex; 
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MTOR itself, as well as ICK, PIK3C2A and PLD1 involved in mTOR activation 

and belong to the well known PI3K/AKT/mTOR signalling cascade often 

downregulated in cancer cachexia models (98-100). MKNK2, encoding MAP 

kinase interacting serine/threonine kinase 2, is a negative downstream regulator of 

the elongation factor eIF4E which is downstream of mTOR (101) and was also 

downregulated. HSPA8 which encodes heat shock cognate 70 (Hsc70) was also 

downregulated. HSPA8 is known to be downregulated in diabetes and its 

expression responds to insulin administration (102). Upregulated genes under this 

subheading were MAPKAP1 and MAP2K6. MAPKAP1 encodes mitogen-

activated protein kinase associated protein 1 which is important for mTORC2-

mediated phosphorylation (mTORC2 is a regulator of the cytoskeleton) (103). 

MAP2K6 is a downstream regulator of RAC1 signalling in response to TGF 

signalling.  

The estrogen receptor gene (ESR1, also known as ERα) was upregulated. 

ERα signalling is closely linked to insulin sensitivity and insulin metabolic 

signalling in skeletal muscle (104). WDR77 which encodes a steroid receptor 

coactivator that enhances androgen receptor and estrogen receptor-mediated 

transcriptional activity (105) was downregulated.  Activated androgen receptor 

acts as DNA-binding transcription factor by binding to androgen response 

elements (ARE) on the DNA (106). Many differentially expressed gene have 

AREs (denoted by the 
‡
symbol in Tables 4-4 to 4-19) and are responsive to 

androgen signalling (106). We identified slightly more upregulated genes with 

AREs (n=75) compared to downregulated genes with AREs (n=65).  
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The Wnt signalling pathway category was interesting since we identified 

upregulation of the receptor as well as many of the downstream components of 

this pathway (FZD1, SFRP2 and DVL1). This is suggestive of an increase in Wnt 

signalling. Wnt signalling is involved in altering cell cycle progression, stem cell 

fate, growth and may modulate insulin resistance in muscle (107-109).  

We identified differential expression of genes encoding proteins involved 

in cell cycle regulation, such as cyclins. Downregulated genes under this 

subheading include genes which inhibit cell cycle progression promoting 

senescence (e.g. CDKN2A (110)) and genes that promote cell cycle progression 

(e.g. CENP-Fand FBXO11 (111, 112)). With the exception of TOB2 (113), 

upregulated genes included genes involved in promoting cell cycle progression at 

different parts of the cell cycle.  

Lastly, we included a miscellaneous subheading labelled Other 

growth/proliferation related genes. Downregulated genes under this subheading 

included genes involved in promoting proliferation (e.g. TSPAN1 (114)) and 

myogenic differentiation (e.g. AVP (115)). Upregulated genes included genes 

involved in muscle development (e.g. SHOX2 (116) and PROX1 (117)), 

myogenic differentiation (e.g. RBM38 (118) and MEF2D (119)) and growth (e.g. 

STAT5B (120)).  

4.3.7 Transcription and translation 

Many genes encoding transcription factors, transcription regulators, 

ribosomal subunits and translation factors were differentially expressed. However, 
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no evidence was obtained for the simplistic view that the low muscle attenuation 

class had general repression of muscle gene expression (Tables 4-11 and 4-12).  

Downregulated genes included transcription factors such as ASCL2, 

USF2, MAFA and TFEC; ASCL2, USF2 and TFEC. These genes are associated 

with promoting transcription of genes that ultimately result in growth (121, 122).  

PARP10, which encodes a protein that interacts with the transcription factor myc, 

was also downregulated. There were also downregulated transcription 

coactivators (e.g. CTRTC3 (123) and TAF10 (124)). In addition to the above, 

there was a marked downregulation of ribosomal components.  

Upregulated genes included POLR3B encoding a polymerase III which 

synthesizes ribosomal RNA and BRF2 encodes a protein that is part of the RNA 

polymerase III transcription factor complex. Upregulated POLR2J2 and POLR2K 

encode components of polymerase II which synthesize messenger RNA. 

Transcription factors ATF4, RUNX2 and GTF2H5 were upregulated. ATF4 is 

involved in increasing amino acid transporter expression during amino acid 

deprivation; this is thought to be a mechanism of increasing amino acid transport 

out of the myocyte for survival (125). RUNX2 stimulates transdifferentiation of 

satellite cells into mineralizing osteoblastic type cells (126) and there is evidence 

to suggest that GTF2H5 may be involved in DNA repair (127).  

4.3.8 ATP production and mitochondrial function  

 Most differentially expressed genes in this category were upregulated 

(Tables 4-13 and 4-14). Downregulated genes included genes encoding proteins 

involved in glucose metabolism (FBP1, HK1, and GPD2) and the tricarboxylic 
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acid cycle (IDH3A). FBP1 and IDH3A have been documented to be 

downregulated during inflammation (128, 129) and loss of HK1 was recently 

shown to increase TNF-dependent cell death by modifying caspase-driven 

apoptosis (130). Genes encoding complex I (ND4, ND3 and ND2) and ATP 

synthase (ATP5G2) of the electron transport chain were also downregulated. 

Notably, the downregulated complex I genes are transcribed from mitochondrial 

DNA; no complex I genes transcribed from nuclear DNA were downregulated. 

Upregulated genes included mostly genes encoding proteins of the electron 

transport chain (NADH dehydrogenase complex components, cytochrome c 

oxidase subunits, succinate dehydrogenase complex subunits and ATP synthase 

complex subunit). The most upregulated gene was THRB which encodes thyroid 

hormone receptor . Thyroid hormone receptor  is preferentially expressed in the 

liver under normal healthy conditions where it plays a major role in cholesterol 

and lipoprotein metabolism (131). In skeletal muscle, knockout of THRB in 

rodents results in decreased fatigue resistance compared to wild-type controls 

(132) suggesting that in skeletal muscle this hormone receptor is involved in 

energy metabolism. Together, the aforementioned differentially expressed genes 

suggest decreased glycolysis and disrupted respiratory ATP synthesis. However, 

the mix of upregulated and downregulated genes encoding proteins participating 

in the electron transport chain it is not clear if ATP synthesis is increased or 

decreased.  

There were a few genes downregulated encoding proteins involved in 

protecting cells from oxidative stress (TXNRD1, GSTA2, SOD3, and PRDX2). 
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TXNRD1 and GSTA2 are known to be downregulated in response to hypoxia and 

glucocorticoid treatment, respectively (133, 134). Glucocorticoid signalling was 

identified by pathway analysis and has been associated with cancer cachexia 

(135). SOD encodes superoxide dismutase 3 which inhibits reactive oxygen 

species-induced trafficking of toll-like receptor 4 signalling (136) suggesting that 

its downregulation may be associated with increased toll-like receptor 4 

inflammatory signalling. Finally, downregulation of PRDX2 is known to 

contribute to angiotensin II-mediated apoptosis in the kidneys (137). Together 

downregulated genes suggest increased increased glucocorticoid signalling 

increased inflammation via toll-like receptor signalling and increased oxidative 

stress that likely makes muscle cells more prone to apoptosis. There was also 

upregulation of genes involved in protecting cells from oxidative stress 

(TXNRD3, GSTK1, OXR1, RDH13 and PINK1). OXR1, RDH13 and PINK1 

encode proteins which act on the mitochondria to protect from oxidative stress 

(138-140). GSTK1 encodes a protein suggested to have a role in the detoxication 

of lipid peroxides generated in peroxisomes (141). Upregulated genes suggest 

increased protection of oxidative stress in the mitochondria and from reactive 

oxygen species generated during lipid metabolism.  

 In line with the decreased expression of NADH dehydrogenase complex 

subunits from mitochondrial DNA, we identified decreased expression of the 

mitochondrial RNA polymerase encoded by POLRMT (Table 4-15). We also 

identified decreased expression of the translocase of the outer membrane (TOM) 

complex subunit encoded by TOMM7 and the translocase of the inner membrane 
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(TIM) complex protein encoded by TIMM17B. The TOM and TIM complexes are 

required to import mitochondrial proteins transcribed from nuclear DNA (142). A 

decrease in protein import has been documented during chronic disuse atrophy 

(142). We identified both downregulated and upregulated mitochondrial 

ribosomal proteins; it is unclear if this is associated with increased or decreased 

ribosomal function. However, there was a marked upregulation in aminoacyl 

tRNA synthetases HARS2, TARS2, PARS2 and FARS2. Aminoacyl tRNA 

synthetases catalyze the ligation of amino acids to their cognate tRNAs. Despite 

this common task phenotypes caused by mutant alleles in different aminoacyl 

tRNA synthetases vary in tissue specificity and clinical presentation (143) 

suggesting that these upregulated genes may be involved in other roles in addition 

to mitochondrial translation that are still unknown.   

4.3.9 Lipid metabolism 

 There were fewer downregulated genes than upregulated genes in this 

category (Table 4-16). Downregulated genes included LEPR which encodes the 

leptin receptor. In skeletal muscle leptin reduces lipid accumulation, increases 

lipid oxidation and promotes hypertrophy (144-146). Hypertrophy occurs partly 

via activation of the PI3K/AKT signalling pathway (147) which, as previously 

mentioned, also appears to be downregulated. FAR2, which encodes a fatty acyl 

CoA reductase that converts saturated C16 and C18 fatty acids into fatty alcohols 

(148), was also markedly downregulated. Lastly, APOOL and SLC37A3 were 

also downregulated, however little is known about the function of these two 

genes. Together downregulated genes suggest increased lipid accumulation.   
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Among upregulated genes were ADIPOR2, LPIN2 and PPARA which are 

connected in lipid metabolism pathways. Adiponectin signalling is involved in 

peroxisome proliferator-activated receptor α (PPARα) activation (149). Lipins, 

such as lipin 2 encoded by LPIN2, also interact with PPARα to regulate 

transcriptional activity (150) and are associated with lipid accumulation (151). 

Finally, we identified upregulation of lipid droplet associated proteins (BSCL2 

and PLIN5) which also suggest increased intracellular lipid storage (152, 153). 

Like downregulated genes, these upregulated lipid-related genes also suggest 

increased lipid accumulation in low attenuation muscle. 

 

4.3.10 Intra- and extra- cellular structure components 

 Most genes encoding proteins involved in intracellular structure and 

vesicle transport were downregulated (Table 4-17). Taken together differentially 

expressed proteins in this category suggest decreased maintenance of cellular 

structure and increased intracellular reorganization. Downregulated genes 

included genes involved in vesicle and organelle trafficking (e.g. KIF23, CLINT, 

MYO5C and MYOF) (154-157), maintaining cellular structure (e.g. PKP3, 

CEP68 and TUBA3C) (158, 159) and structural changes required for cell division 

(e.g. BRK1 and ARHGAP33) (160, 161). Upregulated genes included SYNPO 

which encodes synaptopodin. Synaptopodin regulates the actin-bundling activity 

and may be required for cell movement as it is involved in actin cytoskeleton 

plasticity (162). JAKMIP2 and JAKMIP3 were also upregulated; these encode 
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proteins that regulate membrane traffic events occurring in the Golgi apparatus 

(163, 164).  

 Among downregulated ECM genes were genes encoding cadherins and 

laminins, and ECM intracellular signalling components catenins and calmodulins. 

These are all components of adherens junctions which connect the basement 

membrane to the intracellular space (165). Many of these downregulated genes 

are also associated with the neuromuscular junction (e.g. CASK (166), LAMA4 

(167), CTTN (168) and CTNND2 (169)). Among other downregulated ECM 

genes are others that encode proteins also involved in adhesion (LPHN1, TGFBI, 

HEPACAM, and LGALS3).  Upregulated ECM genes included ECM genes 

typically upregulated during fibrosis and ECM remodelling: COL8A1, COL6A3, 

FN1, FBN2, FAP and MMP2 (170-172). Notably, TGFB2 (introduced in section 

4.3.6 above) is known to be upregulated in injured muscle and involved in fibrosis 

(173). Other upregulated ECM genes are involved in promoting cell-cell 

interactions (e.g. NRCAM, MTSS1, VCAM1, MYO9A, VCAN and FBLN5 (174-

176)).  

4.3.11 Contractile and neuromuscular junction components 

 Differential expression under this category suggests disrupted actin 

stabilization and also disruption of the neuromuscular junction. Only NEBL 

encoding nebulette, involved in stabilizing actin (177), was downregulated in this 

category (Table 4-19). Upregulation of MYL4 encoding myosin light chain 4 may 

be indicative of proliferation of myoprogenitors (178). TNNT2 which encodes a 

troponin molecule and SNTA1 which encodes syntrophin α 1 were also 
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upregulated. Syntrophin α 1 plays a role in decreasing Ca2+ in muscles in the 

presence of laminin, linking the ECM with the actin cytoskeleton and membrane 

stabilization/contraction by interacting with the dystrophin-associated protein 

complex (179).  

 Decreased expression of extracellular matrix components associated with 

the NMJ (at the synaptic basal lamina) was mentioned above. The bottom part of 

Table 4-19 includes mostly downregulated genes encoding proteins of the 

postsynaptic terminal such as .CHRNB4, GRIN2D and DRD4 which encode 

subunits of the acethylcholine, glutamate and dopamine receptors. SYN1 was also 

downregulated; since this gene is only known to be expressed by neurons (180), it 

is unclear what function it plays in skeletal muscle.     

4.4 Discussion 

4.4.1 Muscle characteristics during cancer 

Here we present a relatively large dataset of muscle microarray that 

allowed us to investigate molecular differences related to skeletal muscle index, 

muscle attenuation and weight loss. This explorative study indicates that among 

the three aforementioned phenotypes, muscle attenuation gives the strongest 

molecular signature. Aberrant (low) muscle attenuation is a poor prognostic factor 

for cancer patients, and this feature has a very strong signature of differential gene 

expression. Though patients in the two muscle attenuation classes (high and low 

muscle attenuation) were significantly different according to age, differential 

analysis according to age results in a very different list of differentially expressed 

genes. This suggests that differential expression according to muscle attenuation 
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is distinct and specific to extremes in muscle attenuation phenotype. While weight 

loss has to date been the main phenotypic characteristic used in clinical 

classification of patients as cachectic or not, our findings make it very clear that 

weight loss has a trivial differential gene expression signature compared with 

skeletal muscle attenuation. The fact that patients with the very highest degrees of 

weight loss did not have significantly lower muscle index or significantly lower 

muscle attenuation than those with minimal weight loss, makes it clear that weight 

change overall does not represent changes in skeletal muscle characteristics. This 

is perhaps not surprising, given that body weight loss can easily include 

alterations in fat mass, or the mass of any other organ or body constituent.  

It is also notable that skeletal muscle index (i.e. the absolute muscularity of 

the men in our population) showed comparatively little gene expression signature 

being the least of the 3 phenotypic characteristics considered. In this regard, it 

should be noted that the stable skeletal muscle mass of normal healthy adults 

shows a considerable degree of inherent variation (181, 182), and this variation 

may not necessarily be anticipated to be associated with strong variation in gene 

expression as it does not concern pathological variation. While some cancer 

patients may be losing or may have lost a good deal of muscle, at least some 

patients with low muscle mass had low muscle mass before the onset of illness. 

Our findings of a strong gene expression signature associated with low 

muscle attenuation underscores a number of recent observations related to this 

characteristic of muscle. Reduced radiation attenuation of muscle is a relatively 

newly characterized and distinctive abnormality. The generally accepted boundary 
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of low attenuation muscle is <30 HU (183-185); nearly all of the patients in our 

low muscle attenuation class had values below this boundary. The muscle 

attenuation range in this study was comparable to a large cancer population 

(n=1473) from the Cross Cancer Institute (186) indicating that we had a 

representative sample. Low attenuation is related to deficits in physical 

functioning, altered metabolism and poor prognosis. Decreased skeletal muscle 

attenuation was linked with a decrease in muscle strength and performance (187-

189) and increased risk of hip fracture (190). Reduced muscle attenuation has 

been associated with accumulation of lipid (43, 191). Skeletal muscles normally 

contain only small amounts of fat used as a source of energy during aerobic work. 

Excess infiltration of fat has emerged as an important factor associated with 

insulin resistance and Type II diabetes (192-194). Recent reports suggest that low 

muscle attenuation is common in cancer, positively correlated with wasting and an 

independent prognostic of poor survival in cancer patients (21, 23, 186, 195). This 

is consistent with relationships between low SMI and low attenuation in our 

study.  Despite this, it is not in the usual repertoire of oncologic radiology to 

report quantifiable dimensions of muscles such as cross-sectional area or 

attenuation. There may be merit in quantifying skeletal muscle of cancer patients 

at standard vertebral landmarks, with a view to identify individuals affected by 

muscle wasting and altered attenuation.  

4.4.2 Comparison with prior array studies of skeletal muscle during atrophy 

Analyses of molecular events occurring during cancer cachexia have, for 

the most part, been limited to looking at a few genes or proteins at a time. Lecker 
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et al. were the first to investigate skeletal muscle changes during atrophy using 

gene arrays (18). This seminal work aimed to identify a common transcriptional 

program active during atrophy regardless of the cause (cancer, diabetes, renal 

failure and starvation). Only differentially expressed genes in all four states were 

included as part of the atrophy program (18). This approach designed to detect 

common downstream pathways, but deliberately excluded any gene expression 

events not common to all 4 states. For example, inflammation-related genes may 

have been differentially expressed in cancer but not in starvation and thus not 

included. Focusing only on genes differentially expressed in all four states also 

made it more likely to select genes encoding proteins located downstream in 

signalling cascades. Compared to Lecker et al. we identified more genes situated 

upstream of the final common transcriptional events. In common with Lecker et 

al. our analysis detected the pathways of protein degradation, ATP production and 

substrate metabolism, transcription factors, extracellular matrix proteins, 

translational control, oxidative stress and growth and differentiation (18). Most 

importantly, our findings within these categories agree with the findings from 

Lecker et al.. Specifically, we both showed increased expression of Ub-

proteasome pathway proteins involved in promoting skeletal muscle atrophy, 

decreased glycolysis, suppressed of cell growth via the mTOR pathway and 

changes in the expression of extracellular matrix proteins. Our analysis focused 

only in patients with cancer which is likely why we also identified a large number 

of differentially expressed genes suggesting increased inflammation as well as 

genes indicating disrupted lipid metabolism and mitochondrial function.   Our list 
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of categories was more extensive than that of Lecker et al. but this is to be 

expected considering the study design (i.e. genes had to be differentially 

expressed in all disease states) and the fact that they conducted their study nearly 

a decade ago with 10K arrays which is limited in comparison to the 41K arrays 

used in our study.  The recently conducted study by Braun et al. explored gene 

expression changes in response to central IL-1β injection in mice and found many 

of the same altered pathways as Lecker et al. despite being a different model (19). 

Braun et al. further strengthened the presence of a common transcriptional 

program but also introduced differentially expressed genes in skeletal muscle in 

the presence of an inflammatory response. This is important as inflammation is 

thought to be an important driver of skeletal muscle change in cancer (196). Braun 

et al. identified differentially expressed genes related to inflammatory signalling, 

protein degradation, growth factor signalling, nutrient signalling, intermediary 

metabolism, adipokine signalling, oxidative stress, myogenic differentiation and 

extracellular matrix (19). In our study we also identified differentially expressed 

genes in these categories. Many of the differentially expressed genes presented by 

Braun et al. showed transient gene expression following acute cell stimulation. 

For example, genes encoding p-selectin and NFκB showed a marked upregulation 

immediately (2 h) after acute IL-1β injection followed by a transient decrease in 

expression and ultimately downregulation at 8 h post injection (19).  In our study, 

genes encoding p-selectin and NFκB were downregulated which may be reflective 

of the chronic state of cancer patients. Transient gene expression following acute 

cell stimulation might not be comparable to gene expression changes during 
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chronic illness. The sampled human cases in this study are from a fixed time point 

(along a disease trajectory). Regardless of limitations associated with the 

aforementioned rodent studies, similarities with our results from human muscle 

are encouraging and serve to suggest results from rodent muscle can be extended 

to human muscle, albeit in a restricted manner.  

4.4.3 A molecular signature in muscle during cancer 

Low muscle attenuation means that a lower than usual proportion of 

muscle cross sectional area had normal attenuation values (i.e. < 30 HU). Patients 

with low attenuation also had significantly reduced overall muscle cross sectional 

area (SMI) compared with normal attenuation individuals. While low attenuation 

was coupled with significantly reduced in cross sectional area, in addition it had 

altered patterns of inflammation, growth / proliferation, cellular architecture and 

energy metabolism, based on differential gene expression. Muscle attenuation 

variation appears to be the result of multiple interacting pathways which are also 

altered during muscle atrophy (Figure 4-1). While pathway analysis revealed 

many different possible cytokine- and hormone-activated signalling pathways 

(many of which shown in Figure 4-1 part A), we did not identify many genes 

encoding cytokines/hormones or cytokine/hormone receptors. Most of the 

differentially expressed genes associated with ligand-activated signalling 

pathways (e.g. IL-1, IL-8, IL-2 and insulin signalling pathways) encode proteins 

which interact with ligand receptors (upstream) or are downstream in the 

signalling cascades shown in Figure 4-1 part B. Pathway analysis was used to 

supplement the more detailed study of individual differentially expressed genes 
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within each category. Below we will focus on a general view of how differentially 

expressed genes identified in the present study may work in concert to result in 

the low muscle attenuation phenotype.  

4.4.3.1 Molecular signal indicates altered energy metabolism 

Skeletal muscle plays a major role in whole body energy metabolism; it is 

the main site for glucose disposal and fatty acid oxidation. Diabetes and insulin 

resistance, in the absence of cancer, are the main clinical conditions associated 

with increased fat infiltration in muscle that have been studied to date (44). Most 

studies looking at increased fat infiltration focus solely on pathways associated 

with lipid synthesis and storage (44). All the lipid metabolism-related 

differentially expressed genes identified in our study support increased lipid 

accumulation. Upregulation of genes encoding lipid droplet associated proteins 

such as perilipin 5 and upregulation of adiponectin receptor, lipin and PPARα all 

suggest altered fat metabolism promoting lipid storage. Promotion of lipid storage 

is expected in low attenuation muscle since low attenuation is associated with 

increased lipid accumulation. PPARα is a major regulator of lipid metabolism 

involved in the transport proteins to facilitate fatty acid uptake , acyl CoA 

synthases, fatty acid-binding proteins that facilitate delivery of fatty acids to 

cellular compartments, mitochondrial carnitine system and fatty acid oxidation 

(197). We suggest that the role of adipokines, adipokine receptors and their 

downstream signalling mediators (PPARs) play a role during cancer-associated 

the fatty infiltration into muscle.  
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Altered muscle energy metabolism has been documented in muscle during 

cancer with a phenotype akin to metabolic syndrome, specifically insulin 

resistance (198). Thus, differential expression of genes encoding proteins 

involved in energy metabolism was expected. Our results suggested mitochondrial 

dysfunction. Disrupted mitochondrial function has been associated with increased 

lipid content in the muscle of elderly subjects (199, 200) and more extensively 

studied  in the liver of patients with nonalcoholic fatty liver disease (NAFLD) 

which characterized by fat accumulation (201). Mitochondrial abnormalities 

associated with NAFLD include depletion of mitochondrial DNA which can result 

from increases in reactive oxygen species, decreased activity of respiratory chain 

complexes, and impaired mitochondrial β-oxidation (201). In our study of skeletal 

muscle, differential expression analysis did identify upregulation of nuclear 

NADH dehydrogenase (complex I) genes, complex II genes and complex IV 

genes and downregulation of mitochondrial NADH dehydrogenase (complex I) 

genes. However, it is not clear if the activity of the different complexes, known to 

be strong correlates of muscle oxidative capacity (202), was altered. 

Mitochondrial dysfunction, including decreased oxidative phosphorylation 

capacity and disrupted mitochondrial dynamics, has been reported in response to 

systemic inflammation and skeletal muscle wasting (203) and so further analysis 

of mitochondrial function (e.g. assessing respiration rate and mitochondrial 

membrane potential) is warranted in muscles of cancer patients. 
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4.4.3.2 Molecular signal parallels aberrant repair 

Muscle damage can occur in response to disease, exposure to myotoxic 

agents, sharp or blunt trauma, ischemia, exposure to hot or cold temperatures and 

exercise. Regardless of the cause the process of repair follows a common set of 

events summarized by two stages, degeneration and regeneration (204). These 

well-orchestrated and interrelated phases of repair involve interactions between 

muscle cells, immune cells, progenitor cells (e.g. satellite cells), fibroblasts, 

neurons, adipocytes, and endothelial cells (204). Degeneration involves cell death, 

disruption of the myofiber sarcolemma and thus increased myofiber permeability, 

infiltration of pro-inflammatory immune cells, phagocytosis of cellular debris by 

macrophages and activation of progenitor cells (204). Regeneration involves 

activation of cell proliferation, growth and differentiation pathways to replace 

damaged tissue. Aberrant repair may be defined by deregulation of degeneration 

and/or regeneration processes such that muscle is incapable of recovering from 

insult or injury. Abarrant repair has been documented in chronic muscle diseases 

and conditions including muscular dystrophies, aging and myositis and is 

characterized by persistent inflammation, degeneration of myofibers and fibrosis 

(205). Based on differential expression it appears that low attenuation muscle is in 

a state of degeneration and regeneration similar to aberrant repair often seen in 

chronic tissue damage (205).   

Differential expression of molecules involved in immune cell-muscle cell 

interaction suggests immune cell recruitment and activation. These are hallmarks 

of aberrant repair (205). This is evidenced by the increased expression of 
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immunoglobulins and adhesion molecules typically involved in immune cell 

extravasation (e.g. VCAM-1 and SPON2). P-selectin, a molecule important in the 

initial recruitment of leukocytes, was recently found to be markedly upregulated 

in muscle immediately after (2 h) inflammation stimuli followed by a decrease in 

expression 8 h after inflammation stimulation (19). The gene encoding p-selectin 

was differentially expressed (p=1.67E-03) but had a very small fold change (FC= 

-1.1) in our study. This was expected since p-selectin shows an acute and transient 

early increase in expression; we do not expect its expression to remain increased 

during chronic inflammation. Increased immunoglobulin expression was recently 

identified in muscle from patients with myositis and associated with B cell 

infiltration (206, 207). B cells activate the complement system which is consistent 

with the upregulation of complement genes observed here. Differential expression 

was also suggestive of a decrease in T cell associated proteins. It is unclear what 

populations of immune cells are present in patients with cancer-associated 

changes. However, based on the information from the regeneration literature, it is 

clear that the identity of immune cells associated with muscle can lead to altered 

metabolism and cell survival (208).  

Persistent inflammation during aberrant repair is associated with protein 

degradation (208). Consistent with findings from Lecker et al. which looked at the 

atrophy program in animals (18) and numerous other studies on humans (Table 4-

1), our findings suggest involvement of the Ub-proteasome pathway in muscle 

during cancer. However, unlike Lecker et al. not all differentially expressed genes 

associated with the Ub-proteasome pathway were upregulated. We identified 
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upregulated Ub-proteasome pathway genes that play roles in decreasing growth 

factor signalling, decreasing anti-inflammatory cytokine signalling and decrease 

myogenic differentiation. Decreased myogenic differentiation is suggested by the 

increase in FBXO32 which encodes one of the most well studied Ub ligases in 

skeletal muscle wasting conditions. In addition, we also identified many 

downregulated Ub proteasome pathway genes involved in increased cell cycle 

progression and stem cell renewal, decreased proliferation and increased motility. 

Despite identifying different differentially expressed genes our Ub-proteasome 

pathway proteins support the general conceptual framework of cancer cachexia 

which indicates increased catabolism and decreased anabolism.   

Differential expression of genes related with apoptosis and autophagy 

identified in our study agree with animal models which suggest these pathways 

are increased in cancer cachexia (32, 209). Apoptosis is a part of the degeneration 

process and its constant activation may be indicative of an aberrant repair-like 

state. Constant activation of factors promoting differentiation of progenitor cells is 

also indicative of aberrant repair.  Of the different myogenic signalling pathways 

identified, Wnt signalling stood out since several genes encoding proteins of this 

pathway were upregulated. Wnt signalling can alter the adipogenic potential of 

myoblasts and is involved in the conversion of myogenic cells into non-myogenic 

fibrogenic cells (107, 210-212).   

Remodelling of the extracellular matrix (ECM) is an important step in 

normal repair process. ECM remodelling facilitates immune cell infiltration, 

accommodates for new myocytes in response to inflammatory and growth factors 
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and guide formation of neuromuscular junctions (205). This remodelling involves 

systematic and timely breakdown and repair of the different ECM layers in 

muscle in order to avoid fibrosis (205). Based on the CT scans alone, it is not 

possible to determine if patients in the low attenuation class had fibrotic muscle, 

and further histological work is required. Based on the differential expression 

(upregulation of ECM components) we would suggest that fibrosis is a possibility 

in low attenuation muscle.  

 

4.5 Conclusion 

This explorative study is a first step to understanding the etiology of 

cancer-associated muscle changes patients with cancer. Future work is needed to 

examine how stage, medication, anti-cancer treatment and functional status affects 

muscle gene expression of patients with low and high muscle attenuation. 

Unfortunately, the current patient group was not large enough to reliable analyze 

the data to examine how the aforementioned factors may affect gene expression. 

Based on the analysis of the present patient group we suggest that the association 

between inflammation (particularly identifying the identity of infiltrating immune 

cells), fibrogenesis and lipid metabolism (particularly related to mitochondrial 

function and PPAR signalling) in cancer patients with varying muscle attenuation 

are good starting points for future validation and follow-up studies.  
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Tables 

Table 4-1: Prior studies using human skeletal muscle from patients suffering from cancer-associated muscle pathology 

 
Reference Muscle 

biopsied 

Phenotypes examined Used to study    Major findings 

Bossola et 

al.  

2001  

(ref #24) 

Rectus 

abdominis 

- Cancer, gastric, weight losing(n=11♂,9♀) 

- Controls: non-cancer, abdominal disease, weight 

stable (n=6♂,4♀)) 

Ub-proteasome 

pathway 

- Ub mRNA was significantly cancer patients 

than controls.  

- Ub mRNA higher in cancer patients with 

higher disease stage and greater weight loss 

Bossola et 

al.  

2003  

(ref #25) 

Rectus 

abdominis 

- Cancer, gastric, weight losing (n=14♂,9♀)) 

- Controls: non-cancer, undergoing surgery, weight 

stable (n=9♂,5♀) 

 

Ub-proteasome 

pathway 

-  Proteasome proteolytic activities (CTL, 

chymotrypsin-like; TL, trypsin-like; PGP, 

peptidyl-glutamyl-peptidase) significantly 

increased in gastric cancer patients with respect 

to controls 

DeJong et 

al.  

2005  

(ref #26) 

Rectus 

abdominis 

- Cancer, pancreatic, weight losing (n=15)  

- Controls: non-cancer, weight stable (n=11)  

Ub-proteasome 

pathway and 

inflammation 

- Weight loss in pancreatic cancer is associated 

with systemic inflammation and increased 

mRNA expression for ubiquitin but not 

uncoupling proteins in skeletal muscle. 

Jagoe et al.  

2002  

(ref #27) 

Latissimusd

orsi 

- Cancer, lung (n=27♂,9♀) 

- Controls: non-cancer (n=4♂,6♀) 

Ub-proteasome 

pathway and 

lysosomalproteolytic 

pathway 

- mRNA levels for cathepsin B (involved in 

lysosomal proteolysis), but not for components 

of the Ub-proteasome pathway, were higher in 

patients with cancer compared with controls. 

Among lung cancer patients, cathepsin B 

mRNA levels correlated with fat-free mass 

index and tumour stage 

Op den 

Kamp et al.  

2012  

(ref #28) 

Vastuslatera

lis 

- Cancer, lung with <10% weight loss (n=15♂,1♀) 

- Controls: healthy, weight stable (n=7♂,3♀) 

Ub-proteasome 

pathway activity, 

muscle  nuclear factor  

kappa B (NF-κB) 

expression and 

systemic 

inflammation 

- Patients with weight loss showed increased 

plasma levels of C-reactive protein (CRP), 

soluble Tumor Necrosis Factor receptor 1 

(sTNF-R1), fibrinogen and decreased levels of 

albumin  

- No changes in fat free body mass or skeletal 

muscle NF-κB and ubiquitin proteasome 

system activity were observed 

Williams et Rectus - Cancer (n=4♂,2♀) Ub-proteasome -  mRNA levels for ubiquitin and the 20S 
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al.  

1999  

(ref #29) 

abdominis - Controls: non-cancer, (n=5♂,1♀) pathway proteasome subunits were higher in muscle 

from patients with cancer than in muscle from 

control patients 

Busquets et 

al. 

 2007  

(ref #32) 

Rectus 

abdominis 

- Cancer, gastrointestinal, weight losing (n=16) 

- Controls: non-cancer, weight stable (n=11) 

 

Apoptosis signalling  -Muscle from weight-losing cancer patients 

showed a significant increase in muscle DNA 

fragmentation compared with control 

participants.  

-  Muscle from weight losing cancer patients 

had a decrease in MyoD (a myogenic factor) 

protein content  

Aversa et 

al.  

2012  

(ref #31) 

Rectus 

abdominis 

- Cancer, lung or gastric, weight stable (n= 26♂,7♀) 

- Controls: non-cancer, age matched,  undergoing 

surgery, weight stable (n= 8♂,8♀) 

Myostatin signalling - Myostatin signalling is altered in non-weight-

losing cancer patients 

Banduseela 

et al. 

 2007  

(ref #30) 

Tibialis 

anterior or 

deltoid 

- Cancer, lung, muscle loss confirmed by MR images 

(n=1♂)  

- Controls:  

       - Malnutrition, weight losing (n=1♀) 

       - Acute quadriplegic myopathy (n=1♂)  

       - Hereditary motor and sensory neuropathy 

(n=2♀)  

       - Amyotrophic lateral sclerosis (n=1♂) 

       - Non-cancer, healthy (n=2♂)   

Muscle paralysis and 

myosin loss 

- A significant preferential loss of the motor 

protein myosin together with a downregulation 

of protein synthesis at the transcriptional level 

was observed in the patient with cancer-

associated muscle wasting 

Pessina et 

al.  

2010 

(ref #33) 

Rectus 

abdominis 

- Cancer, gastric, weight losing (n=17♂,13♀) 

- Controls: non-cancer, age-matched, weight stable 

(n=5♂,3♀) 

Genes involved in 

muscle regeneration 

- The expression of the genes involved in 

muscle regeneration (Pax7,  MyoD,  necdin) 

was increased with respect to the controls.  

- There was no difference in Myf5 expression 

or of the neonatal isoform of Myosin Heavy 

Chain (nMHC) expression between patients and 

controls.   

Ueyama et 

al.  

1998  

(ref # 214) 

Quadriceps 

femoris 

-Case study: 1 male patient with lymphoma  Muscle lymphoma - Immunohistochemical analysis of the biopsied 

muscle and the subcutaneous tumor led to the 

final diagnosis of true histiocytic lymphoma (an 

extremely rare condition).  

Weber et al.  Vastuslatera - Cancer, with >20% weight loss (n=9♂,8♀) Myoglobin plasma - Cancer patients had decreased plasma 
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2007  

(ref #20) 

lis - Controls:  

          (n=14♂,13♀) 

 

levels  as a marker of 

muscle mass and fiber 

composition 

myoglobin concentrations, maximal quadriceps 

muscle cross-sectional area as assessed by 

magnetic resonance imaging, body cell mass 

and maximal oxygen uptake (VO(2)max) 

compared to controls. 

Weber et al.  

2009 

(ref #21) 

Vastuslatera

lis 

- Cancer, >10% weight loss (n=10♂,9♀) 

- Controls: healthy, age-, gender-, and body-height-

matched, weight stable (n=10♂,9♀) 

Muscle fiber size and 

capillarization 

- Cancer patients had lowerbody mass index, 

muscle cross sectional area, total fiber size and 

VO(2max) compared to controls.  

- Absolute strength of quadriceps muscle was 

reduced in cancer compared to controls but was 

identical when normalized on muscle cross 

sectional area 

Zampieri et 

al.  

2010  

(ref #22) 

Rectus 

abdominis 

- Cancer, colorectal (n=10)  

- Controls: non-cancer (n=7) 

Morphometric 

analyses, ATPase 

histochemistry and 

immunohistochemical 

analysis of makers of 

muscle denervation 

and injury-induced 

muscle regeneration 

- Muscle from patients had a higher percentage 

of myofibers with internalized or central nuclei 

compared to controls. 

- In 30% of patients, small myofibers 

expressing the MHC-emb were identified  

- In 50% of patients, larger fibers positive for 

N-CAM were identified 

-  Among the 10,000 analysed myofibers in 

control biopsies, no MHC-emb and N-CAM-

positive muscle fibers were detected. 

Shaw et al.  

1991 

(ref # 213) 

 - Cancer, weight stable (n=26)  

- Cancer, weigh losing (n=21)  

- Controls: non-cancer, weight stable (n=18) 

Leucine kinetics to 

study protein 

metabolism at the 

whole-body and tissue 

level  

- Patients losing weight had a significant 

elevationwhole-body protein catabolism 

compared with the other two groups based on. 

- Whole-body protein synthesis was also 

elevated (to a lesser extent) weight losing 

patients.  

Gallagher 

et al.  

2012  

(ref #39) 

Quadriceps 

femoris 

- Cancer, gastrointestinal, weight losing (n=10♂,2♀) 

- Controls: healthy, weight stable (n=4♂,2♀) 

Global mRNA 

expression of 

sequential human 

muscle biopsies  

- Depression of muscle turnover in patients 

with cancer-associated weight loss 

 

Stephens et 

al.  

2010  

Rectus 

abdominis 

- Cancer, gastrointestinal, weight losing (n=12♂,6♀) 

- Controls: non-cancer, weight stable, undergoing 

surgery (n=2♂,1♀) 

Global mRNA 

expression 

(microarray) 

- CaMKIIbeta correlated positively with weight 

loss in all muscle groups and CaMKII protein 

levels were elevated in rectus abdominis in 
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(ref #38) cancer patients 

- TIE1 was also positively associated with 

weight loss. 

- Candidates selected from the pre-clinical 

literature, including FOXO protein and 

ubiquitin E3 ligases, were not related to weight 

loss in this human clinical study. 

Stephens et 

al.  

2011  

(ref #23) 

Rectus 

abdominis 

- Cancer, (n=11♂,8♀) 

- Controls: non-cancer, undergoing surgery 

(n=2♂,4♀) 

Intramyocellular lipid 

droplets 

- Compared with controls, cancer patients had 

increased lipid droplet number and diameter.  

- Mean lipid droplet count correlated positively 

with the severity of weight loss 
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Table 4-2: Demographics and anthropometrics of samples in Class 1 and Class 2 for skeletal muscle index (SMI), muscle 

attenuation and weight loss 

 

Asterisks denote p-values for t-test comparing high and low groups *p≤0.05, ***p ≤0.0001 

 All 

samples 
Class 1 

Low SMI 
Class 2 

High SMI 
Class 1  

Low muscle 

attenuation 

Class 2 
High muscle 

attenuation 

Class 1 
Weight 

stable 

Class 2 
Weight 

losing 
Total, n  69 18 18 18 18 18 18 
Age, mean years ± SD  59 ± 13 63 ± 16 54 ± 14 68 ± 10  48 ± 13***  60 ± 11 60 ± 10 
Muscle, mean ± SD         
   Skeletal muscle surface area 

(cm²)  
162 ± 28 143 ± 10  191 ± 20***  155 ± 25  176 ± 23*  147 ± 28  158 ± 35 

   Skeletal muscle index (cm²/m²)  53 ± 8 45 ± 2  57 ± 8***  49 ± 7  57 ± 8*   48 ± 8  54 ± 8  
   Muscle attenuation (HU)  36 ± 9 32 ± 9  40 ± 11*  26 ± 5  47 ± 4***   30 ± 9  35 ± 9  
Percent weight loss, % -4 ± 7 -4 ± 7 -3 ± 5 -3 ± 5 -2 ± 5 1 ± 3 -11 ± 7 
Diagnosis at surgery, n         
    Cancer, liver or intrahepatic 

bile ducts  
12 6 2 4 3 2 2 

    Cancer, gastrointestinal tract  35 10 6 9 8 13 8 
    Cancer, pancreas  13 2 7 4 6 1 3 
    Benign growth 9 1 3 1 1 2 4 
Previous chemotherapy exposure, 

%  
29 28 33 30 33 50 30 
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4-3: Number of differentially expressed transcripts for the three different 

classifiers (weight loss, skeletal muscle index (SMI) and muscle attenuation) 

at different p-value cutoffs 

 

 p<0.00001 p<0.0001 p< 0.001 p<0.005 p<0.01 

Weight loss 1 1 21 98 212 
Weight loss with a fold 

change increases >1.5 or 

decrease < -1.5  

1 1 11 51 93 

Skeletal Muscle Index 

(SMI)  
0 0 7 34 103 

SMI with a fold change 

increases >1.5 or 

decrease < -1.5 

     

Muscle attenuation 5 52 440 1644 2715 
Muscle attenuation with 

a fold change increases 

>1.5 or decrease < -1.5 

1 25 196 821 1403 
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4-4: Canonical pathways associated with differentially expressed genes 

associated with muscle attenuation identified by Ingenuity Pathway Analysis 

 

Ingenuity Canonical Pathways p-value 

Inflammation-related pathways  

IL-1 Signalling 2.24E-03 

fMLP Signalling in Neutrophils 2.45E-03 

HMGB1 Signalling 3.31E-03 

LPS-stimulated MAPK Signalling 3.89E-03 

Glucocorticoid Receptor Signalling 5.62E-03 

IL-8 Signalling 5.13E-03 

iNOS Signalling 8.32E-03 

Regulation of IL-2 Expression in Activated and Anergic TLymphocytes 8.32E-03 

NF-κB Signalling 1.05E-02 

B Cell Receptor Signalling 1.07E-02 

IL-2 Signalling 1.15E-02 

Toll-like Receptor Signalling 1.74E-02 

Leukocyte Extravasation Signalling 1.86E-02 

iCOS-iCOSL Signalling in T Helper Cells 2.19E-02 

MSP-RON Signalling Pathway 2.69E-02 

PI3K Signalling in B Lymphocytes 3.24E-02 

Lymphotoxin β Receptor Signalling 3.31E-02 

Complement System 3.63E-02 

IL-3 Signalling 3.98E-02 

CD28 Signalling in T Helper Cells 4.47E-02 

Role of NFAT in Regulation of the Immune Response 4.79E-02 

Degradation-related pathways  

Protein Ubiquitination Pathway 1.45E-02 

14-3-3-mediated Signalling 3.89E-02 

Apoptosis-related pathways  

CeramideSignalling 3.98E-02 

Nucleotide Excision Repair Pathway 4.17E-02 

Growth and proliferation-related pathways  

Signalling by Rho Family GTPases 4.57E-05 

Androgen Signalling 1.66E-03 

Rac Signalling 1.32E-03 

Wnt/β-catenin Signalling 2.63E-03 

p53 Signalling 3.28E-03 

IGF-1 Signalling 4.68E-03 

G Beta Gamma Signalling 8.91E-03 

EGF Signalling 1.15E-02 

PDGF Signalling 1.51E-02 

PAK Signalling 1.95E-02 

mTORSignalling 2.09E-02 

Factors Promoting Cardiogenesis in Vertebrates 3.63E-02 

Insulin Receptor Signalling 4.27E-02 

Aryl Hydrocarbon Receptor Signalling 4.79E-02 

Transcription and translation-related pathways  

FLT3 Signalling in Hematopoietic Progenitor Cells 3.98E-02 

Urate Biosynthesis/Inosine 5'-phosphate Degradation 3.98E-02 

ERK/MAPK Signalling 4.47E-02 
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ATP production-related pathways  

Mitochondrial Dysfunction 2.77E-06 

L-cysteine Degradation I 9.12E-04 

Retinoic acid receptor Activation 8.91E-03 

Aspartate Degradation II 7.76E-03 

Glutamate Degradation II 9.33E-03 

Valine Degradation I 2.51E-02 

Leucine Degradation I 3.55E-02 

TCA Cycle II (Eukaryotic) 3.80E-02 

Guanosine Nucleotides Degradation III 2.29E-02 

Protein Kinase A Signalling 3.02E-02 

Phenylalanine Degradation I (Aerobic) 4.90E-02 

Lipid metabolism-related pathways  

PPARα/RXRα Activation 1.41E-03 

Glycerol-3-phosphate Shuttle 9.33E-03 

Glycerol Degradation I 2.63E-02 

Molybdenum Cofactor Biosynthesis 4.90E-02 

Intracellular structure and vesicle transport-related pathways  

MacropinocytosisSignalling 5.13E-03 

Gα12/13 Signalling 5.25E-03 

RAN Signalling 1.51E-02 

Cellular adhesion and extracellular matrix -related pathways  

ILK Signalling 9.55E-03 

PaxillinSignalling 2.63E-02 

Tight Junction Signalling 5.37E-03 

Geranylgeranyldiphosphate Biosynthesis 4.90E-02 

Motor unit-related pathways  

     Amyloid Processing 4.38E-02 
1
 Fisher’s exact test was used to calculate a p‐value by IPA to determine the 

probability that the association between the genes in the dataset and the pathways 

is explained by chance alone. Low p-value suggests that the association between 

genes belonging to a particular pathway are unlikely to be associated with a 

function merely by chance. 
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Table 4-5: Shortlist of genes downregulated in low versus high attenuation 

muscle encoding proteins involved in inflammation 

 
Agilent ID Gene Symbol Entrez Gene Name p-value

1
 FC

2
 

A_24_P363615 MTPN myotrophin 7.04E-03 -3.1 

A_23_P147098 MTPN myotrophin 5.55E-03 -2.5 

A_24_P148717 CCR1 chemokine (C-C motif) receptor 1 4.62E-03 -2.4 

A_23_P54573 ZFPM1 zinc finger protein, multitype 1 3.61E-03 -2.3 

A_23_P10232 BANK1
‡
 B-cell scaffold protein with ankyrin 

repeats 1 

2.54E-03 -2.2 

A_23_P88781 CIAPIN1 cytokine induced apoptosis inhibitor 

1 

2.88E-03 -2.1 

A_24_P229936 CIITA
‡
 class II, major histocompatibility 

complex, transactivator 

3.06E-03 -2.1 

A_23_P72737 IFITM1 interferon induced transmembrane 

protein 1 

7.52E-03 -2.0 

A_23_P258418 TNIP2 TNFAIP3 interacting protein 2 8.03E-03 -1.9 

A_24_P56052 ZFP91
‡
 zinc finger protein 91 homolog  2.85E-03 -1.9 

A_32_P41496 LOC100132831 A20-binding inhibitor of NF-

kappaB activation 2 pseudogene 

6.92E-03 -1.9 

A_24_P406334 STEAP1 six transmembrane epithelial 

antigen of the prostate 1 

9.32E-03 -1.8 

A_24_P936272 HLA-B major histocompatibility complex, 

class I, B 

3.43E-03 -1.7 

A_23_P6909 CCRL1 chemokine (C-C motif) receptor-

like 1 

6.54E-03 -1.6 

A_23_P13382 LSP1  lymphocyte-specific protein 1 1.81E-03 -1.6 

A_23_P21495 FCGBP Fc fragment of IgG binding protein 5.24E-03 -1.6 

A_23_P109235 RALY
‡
 RNA binding protein, autoantigenic 

(hnRNP-associated with lethal 

yellow homolog (mouse)) 

3.37E-03 -1.6 

A_23_P152620 TNFSF13 tumor necrosis factor (ligand) 

superfamily, member 13 

8.60E-03 -1.6 

A_24_P772061 PPIA peptidylprolylisomerase A  2.49E-03 -1.6 

A_23_P331928 CD109
‡
 CD109 molecule 2.15E-03 -1.6 

A_24_P73599 IL16
‡
 interleukin 16 2.20E-03 -1.5 

A_23_P76078 IL23A interleukin 23, α subunit p19 6.67E-03 -1.5 

A_24_P158903 IRAK4 IL-1 receptor-associated kinase 4 1.69E-03 -1.5 

A_32_P66881 TLR4
‡
 toll-like receptor 4 1.33E-03 -1.5 

A_23_P74928 MR1
‡
 major histocompatibility complex, 

class I-related 

2.18E-03 -1.5 

A_23_P101992 MARCO macrophage receptor with 

collagenous structure 

6.31E-03 -1.5 

1
 t-test p-value  

2
FC: fold change. Fold change values that are positive are higher in patients with low muscle 

attenuation  
‡ 

Androgen response elements identified by Wyce et al. in the genome of skeletal muscle cells 
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Table 4-6: Shortlist of genes upregulated in low versus high attenuation 

muscle encoding proteins involved in inflammation 

 
Agilent ID Gene Symbol Entrez Gene Name p-value

1
 FC

2
 

A_23_P64898 KLRG1 killer cell lectin-like receptor 

subfamily G, member 1 

8.55E-03 1.5 

A_23_P133916 C2 complement component 2 7.96E-03 1.5 

A_23_P121533 SPON2
‡
 spondin 2, extracellular matrix 

protein 

5.26E-03 1.5 

A_23_P214627 AIF1 (includes 

EG:11629) 

allograft inflammatory factor 1 3.65E-03 1.5 

A_23_P110777 LECT2 leukocyte cell-derived chemotaxin 2 5.37E-03 1.6 

A_23_P10873 TLR1 toll-like receptor 1 3.08E-03 1.7 

A_32_P157927 IGK@ immunoglobulin kappa locus 5.06E-03 1.8 

A_23_P7212 CFI complement factor I 4.37E-03 1.8 

A_24_P354800 HLA-DOA major histocompatibility complex, 

class II, DO α 

6.83E-03 1.8 

A_24_P373312 NFATC3
‡
 nuclear factor of activated T-cells, 

cytoplasmic, calcineurin-dependent 3 

1.36E-04 2.0 

A_23_P125423 C1R
‡
 complement component 1, r 

subcomponent 

1.21E-03 2.0 

A_23_P78092 EVI2A
‡
 ecotropic viral integration site 2A 4.10E-03 2.1 

A_23_P2492 C1S
‡
 complement component 1, s 

subcomponent 

2.29E-04 2.2 

A_24_P24371 IGHG4 immunoglobulin heavy constant 

gamma 4 (G4m marker) 

9.02E-03 2.2 

A_24_P227927 IL21R
‡
 interleukin 21 receptor 4.34E-03 2.2 

A_24_P273972 CFH
‡
 complement factor H 4.23E-03 2.3 

A_24_P88696 SCG2
‡
 secretogranin II 9.77E-03 2.8 

A_23_P91095 CD28
‡
 CD28 molecule 8.08E-03 3.0 

A_23_P21260 IGKC immunoglobulin kappa constant 8.56E-03 3.1 

A_23_P96191 IGK@ immunoglobulin kappa locus 5.23E-03 3.1 

A_23_P213857 C7 complement component 7 8.83E-03 3.2 

A_24_P318990 IGLC1
‡
 immunoglobulin lambda constant 1 

(Mcg marker) 

7.15E-03 3.6 

1
 t-test p-value  

2
FC: fold change. Fold change values that are positive are higher in patients with low muscle 

attenuation 
‡ 

Androgen response elements identified by Wyce et al. in the genome of skeletal muscle cells 
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Table 4-7: Shortlist of genes downregulated in low versus high attenuation 

muscle encoding proteins involved in protein degradation 

 
Agilent ID Gene Symbol Entrez Gene Name p-value

1
 FC

2
 

A_23_P406385 FBXL16 F-box and leucine-rich repeat protein 

16 

9.05E-05 -4.4 

A_32_P213755 PSMB7
‡
 proteasome (prosome, macropain) 

subunit, beta type, 7 

7.39E-03 -4.0 

A_32_P20288 FBXL17
‡
 F-box and leucine-rich repeat protein 

17 

2.64E-03 -2.9 

A_23_P11244 PJA1 praja ring finger 1, E3 ubiquitin 

protein ligase 

6.47E-03 -2.5 

A_23_P103334 RC3H1 ring finger and CCCH-type domains 1 5.55E-03 -2.5 

A_32_P185149 RNF5 ring finger protein 5, E3 ubiquitin 

protein ligase 

4.17E-03 -2.3 

A_32_P114348 RNF5 ring finger protein 5, E3 ubiquitin 

protein ligase 

4.72E-03 -2.2 

A_23_P211179 UBE2G2 ubiquitin-conjugating enzyme E2G 2 4.57E-03 -2.0 

A_23_P110196 HERC5 HECT and RLD domain containing 

E3 ubiquitin protein ligase 5 

2.68E-03 -1.9 

A_23_P8095 RNF5 ring finger protein 5, E3 ubiquitin 

protein ligase 

3.91E-03 -1.9 

A_23_P413634 ZNF329 zinc finger protein 329 2.85E-03 -1.9 

A_23_P341471 UBE2N ubiquitin-conjugating enzyme E2N 9.40E-03 -1.7 

A_24_P381803 UBE3A
‡
 ubiquitin protein ligase E3A 9.92E-04 -1.7 

A_24_P286013 UBE2K ubiquitin-conjugating enzyme E2K 1.03E-03 -1.6 

A_24_P171873 FBXO4 F-box protein 4 4.74E-03 -1.5 

A_23_P99632 RNF31 ring finger protein 31 4.61E-03 -1.5 

A_23_P132536 TRAK1
‡
 trafficking protein, kinesin binding 1 4.65E-03 -2.3 

1
 t-test p-value  

2
FC: fold change. Fold change values that are positive are higher in patients with low muscle 

attenuation  
‡ 

Androgen response elements identified by Wyce et al. in the genome of skeletal muscle cells 
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Table 4-8: Shortlist of genes upregulated in low versus high attenuation 

muscle encoding proteins involved in protein degradation 

 
Agilent ID Gene Symbol Entrez Gene Name p-value

1
 FC

2
 

A_24_P47681 CAND1 cullin-associated and neddylation-

dissociated 1 

9.84E-03 1.5 

A_23_P46819 BTRC
‡
 beta-transducin repeat containing 

E3 ubiquitin protein ligase 

1.70E-03 1.5 

A_24_P218259 FBXO32
‡
 F-box protein 32 8.52E-03 1.5 

A_24_P339305 UBE2Z ubiquitin-conjugating enzyme 

E2Z 

6.02E-03 1.6 

A_23_P91468 PSMA7 proteasome (prosome, macropain) 

subunit, α type, 7 

1.29E-04 1.7 

A_23_P141146 FBXL20 F-box and leucine-rich repeat 

protein 20 

1.77E-03 1.7 

A_23_P146990 WWP1 WW domain containing E3 

ubiquitin protein ligase 1 

9.89E-03 1.7 

A_23_P65254 POMP proteasome maturation protein 1.20E-04 1.8 

A_23_P83438 UBE2Z ubiquitin-conjugating enzyme 

E2Z 

7.83E-03 1.8 

A_23_P322562 NEURL neuralized homolog (Drosophila) 2.44E-03 2.5 

A_32_P179572 UBFD1 ubiquitin family domain 

containing 1 

6.82E-03 3.3 

A_23_P169934 RILPL1 Rab interacting lysosomal protein-

like 1 

7.64E-03 1.8 

A_23_P46141 CTSS
‡
 cathepsin S 2.87E-03 1.9 

A_23_P1552 CTSC
‡
 cathepsin C 8.74E-03 2.1 

A_24_P567408 CLN3  ceroid-lipofuscinosis, neuronal 3 2.16E-03 2.6 
1
 t-test p-value  

2
FC: fold change. Fold change values that are positive are higher in patients with low muscle 

attenuation  
‡ 

Androgen response elements identified by Wyce et al. in the genome of skeletal muscle cells 

 

 



 

 

 104 

Table 4-9: Shortlist of genes differentially expressed according muscle 

attenuation encoding proteins involved in apoptosis and autophagy 

Agilent ID Gene 

Symbol 

Entrez Gene Name p-value
1
 FC

2
 

A_24_P218620 DKK3
‡
 dickkopf 3 homolog (Xenopuslaevis) 9.63E-03 -2.4 

A_23_P90189 BBC3 BCL2 binding component 3 7.01E-03 -2.2 

A_23_P346309 BAX BCL2-associated X protein 2.01E-03 -1.9 

A_32_P174365 SATB2
‡
 SATB homeobox 2 1.93E-05 -1.6 

A_23_P64173 CARD16 caspase recruitment domain family, 

member 16 

4.30E-03 -1.6 

A_23_P118815 BIRC5 baculoviral IAP repeat containing 5 4.76E-03 -1.6 

A_23_P36611 APAF1
‡
 apoptotic peptidase activating factor 1 7.86E-03 1.5 

A_23_P65963 BFAR bifunctional apoptosis regulator 4.61E-04 1.6 

A_23_P47800 DIABLO diablo, IAP-binding mitochondrial 

protein 

7.41E-03 1.6 

A_23_P503233 EDARADD EDAR-associated death domain 9.23E-03 1.7 

A_23_P202104 PPIF peptidylprolylisomerase F 2.67E-03 1.9 

A_32_P113508 ATG16L1 autophagy related 16-like 1 (S. 

cerevisiae) 

3.24E-04 1.5 

A_23_P101342 ATG4D autophagy related 4D, cysteine 

peptidase 

2.65E-03 1.7 

A_23_P89410 BECN1 beclin 1, autophagy related 3.09E-03 1.9 

A_23_P143987 ATG7
‡
 autophagy related 7 7.94E-03 2.0 

A_24_P313597 BECN1 beclin 1, autophagy related 9.00E-03 3.1 
1
 t-test p-value  

2
FC: fold change. Fold change values that are positive are higher in patients with low muscle 

attenuation 
‡ 

Androgen response elements identified by Wyce et al. in the genome of skeletal muscle cells 
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Table 4-10: Shortlist of genes differentially expressed according attenuation 

muscle encoding proteins involved in growth and proliferation 

Agilent ID Gene 

Symbol 

Entrez Gene Name p-value
1
 FC

2
 

Growth factor 

A_23_P206484 GFER growth factor, augmenter of liver 

regeneration 

1.87E-03 -2.1 

A_23_P334021 IGF2R
‡
 insulin-like growth factor 2 receptor 2.45E-04 1.8 

A_23_P116235 MDK midkine 8.72E-03 3.2 

 

Transforming growth factor (TGF) family 

A_23_P68487 BMP7
‡
 bone morphogenetic protein 7 1.94E-03 -3.1 

A_23_P115118 BMP8B
‡
 bone morphogenetic protein 8b 2.38E-03 -2.5 

A_32_P146394 TGFBR1
‡
 transforming growth factor, beta 

receptor 1 

6.68E-03 -2.1 

A_23_P33768 ZFYVE9
‡
 zinc finger, FYVE domain containing 

9 

2.75E-03 -1.8 

A_24_P264790 LTBP3 latent transforming growth factor β 

binding protein 3 

6.29E-03 -1.8 

A_23_P218144 LTBP2
‡
 latent transforming growth factor beta 

binding protein 2 

8.46E-03 1.5 

A_23_P405129 LTBP2
‡
 latent transforming growth factor beta 

binding protein 2 

9.28E-04 1.6 

A_24_P402438 TGFB2
‡
 transforming growth factor, beta 2 3.38E-03 2.1 

Ras/Rho family 

A_24_P24856 LOC440461 Rho GTPase activating protein 27 

pseudogene 

4.91E-03 -2.7 

A_23_P321855 ARHGEF7
‡
 Rho guanine nucleotide exchange 

factor (GEF) 7 

8.79E-03 -2.0 

A_23_P502747 RASAL2
‡
 RAS protein activator like 2 3.19E-03 -2.0 

A_23_P258151 FGD5 FYVE, RhoGEF and PH domain 

containing 5 

3.16E-03 -1.7 

A_24_P44916 CDC42EP5
‡
 CDC42 effector protein (Rho GTPase 

binding) 5 

7.27E-03 -1.7 

A_23_P98183 HRAS Harvey rat sarcoma viral oncogene 

homolog 

6.03E-03 -1.6 

A_23_P69738 RASL11B 
‡
 RAS-like, family 11, member B 9.96E-03 1.7 

A_23_P72968 ARHGAP36 Rho GTPase activating protein 36 9.00E-04 1.9 

A_32_P49844 RHOQ ras homolog family member Q 4.02E-03 2.1 

A_32_P222695 ARHGEF37 Rho guanine nucleotide exchange 

factor 37 

5.30E-03 2.5 

A_32_P217709 RAC1 ras-related C3 botulinum toxin 

substrate 1  

6.34E-03 6.2 

 

Growth factor downstream regulators 

A_24_P17917 ICK intestinal cell (MAK-like) kinase 5.73E-04 -6.0 

A_23_P36166 PIK3C2A phosphoinositide-3-kinase, class 2, α 

polypeptide 

4.01E-03 -5.0 

A_32_P99715 HSPA8 heat shock 70kDa protein 8 3.27E-03 -4.6 

A_23_P105524 PLCZ1 phospholipase C, zeta 1 2.95E-03 -4.1 

A_23_P142304 MKNK2
‡
 MAP kinase interacting 4.04E-03 -2.6 
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serine/threonine kinase 2 

A_24_P938135 MKNK2
‡
 MAP kinase interacting 

serine/threonine kinase 2 

3.16E-03 -2.4 

A_23_P34606 MTOR mechanistic target of rapamycin 7.17E-04 -2.1 

A_23_P50773 CRTC1
‡
 CREB regulated transcription 

coactivator 1 

4.45E-03 -2.0 

A_32_P143048 ZFYVE9
‡
 zinc finger, FYVE domain containing 

9 

2.86E-03 -1.8 

A_32_P112331 PLD1 phospholipase D1, 

phosphatidylcholine-specific 

1.23E-04 -1.5 

A_24_P416489 MAP2K6 mitogen-activated protein kinase 

kinase 6 

6.30E-04 1.7 

A_24_P43884 MAPKAP1
‡
 mitogen-activated protein kinase 

associated protein 1 

3.66E-03 1.8 

Steroid hormone  

A_23_P115149 WDR77 WD repeat domain 77 7.28E-03 -2.4 

A_24_P383478 ESR1
‡
 estrogen receptor 1 2.58E-03 1.7 

A_23_P309739 ESR1
‡
 estrogen receptor 1 8.16E-03 2.8 

Wntsignalling pathway   

A_23_P52986 VWCE
‡
 von Willebrand factor C and EGF 

domains 

7.98E-04 -1.7 

A_24_P208513 WNT6 wingless-type MMTV integration site 

family, 6 

9.87E-03 -1.6 

A_24_P261417 DKK3
‡
 dickkopf 3 homolog (Xenopuslaevis) 5.78E-03 -1.5 

A_24_P38276 FZD1 frizzled family receptor 1 8.44E-03 1.5 

A_23_P81103 SFRP2 secreted frizzled-related protein 2 8.53E-03 1.6 

A_23_P347432 DVL1 dishevelled, dsh homolog 1 

(Drosophila) 

7.96E-03 2.0 

Cell cycle regulation  

A_23_P43484 CDKN2A cyclin-dependent kinase inhibitor 2A 3.95E-04 -3.6 

A_23_P401 CENPF
‡
 centromere protein F, 350/400kDa 

(mitosin) 

3.69E-03 -2.9 

A_24_P357536 FBXO11
‡
 F-box protein 11 4.40E-03 -2.2 

A_23_P65757 CCNB2 cyclin B2 7.23E-04 -1.8 

A_23_P253446 GAP43
‡
 growth associated protein 43 5.37E-04 -1.8 

A_24_P82466 GAS7
‡
 growth arrest-specific 7 3.97E-05 -1.8 

A_23_P138435 ZMIZ1
‡
 zinc finger, MIZ-type containing 1 9.34E-04 -1.6 

A_24_P765784 GTF2I
‡
 general transcription factor IIi 9.42E-03 1.6 

A_23_P216679 CDC14B
‡
 CDC14 cell division cycle 14 

homolog B  

1.75E-03 1.6 

A_24_P913227 CDC23 cell division cycle 23 homolog  2.88E-03 1.6 

A_23_P88083 CDC16
‡
 cell division cycle 16 homolog 4.05E-03 1.7 

A_23_P380010 STARD9 StAR-related lipid transfer (START) 

domain containing 9 

9.90E-03 1.7 

A_32_P37143 GAS2L3 growth arrest-specific 2 like 3 1.70E-03 1.8 

A_23_P335813 TOB2 transducer of ERBB2, 2 9.31E-03 1.9 

A_23_P97064 FBXO6 F-box protein 6 1.77E-04 2.1 

A_23_P87575 CCNT1 cyclin T1 2.85E-03 6.9 

Other growth/proliferation related genes   

A_23_P160167 TSPAN1 tetraspanin 1 2.19E-03 -9.8 

A_23_P109133 AVP arginine vasopressin 8.13E-03 -4.0 
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A_32_P138586 GLI4 GLI family zinc finger 4 2.66E-03 -2.5 

A_23_P114349 XAGE3 X antigen family, member 3 2.76E-03 -2.2 

A_24_P89701 IMPDH1 IMP (inosine 5'-monophosphate) 

dehydrogenase 1 

6.34E-03 -2.0 

A_23_P119992 VRK2
‡
 vaccinia related kinase 2 5.79E-04 -1.6 

A_24_P830690 PDPK1 3-phosphoinositide dependent protein 

kinase-1 

3.32E-03 -1.5 

A_23_P47885 LRIG3
‡
 leucine-rich repeats and 

immunoglobulin-like domains 3 

4.24E-03 1.5 

A_23_P2097 TRIM68 tripartite motif containing 68 1.43E-03 1.5 

A_23_P51679 MEF2D
‡
 myocyte enhancer factor 2D 2.92E-03 1.6 

A_23_P100788 STAT5B signal transducer and activator of 

transcription 5B 

7.04E-03 1.6 

A_23_P345212 BOD1L2 biorientation of chromosomes in cell 

division 1-like 2 

5.00E-04 2.4 

A_23_P17430 RBM38 RNA binding motif protein 38 6.38E-04 2.9 

A_23_P137634 PROX1
‡
 prosperohomeobox 1 5.61E-03 4.4 

A_23_P124384 SHOX2 short stature homeobox 2 3.42E-03 4.9 
1
 t-test p-value  

2
FC: fold change. Positive are higher in patients with low muscle attenuation 

‡ 
Androgen response elements identified by Wyce et al. in the genome of skeletal muscle cells 
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Table 4-11: Shortlist of genes downregulated in low versus high attenuation 

muscle encoding proteins involved in transcription and translation 

Agilent ID Gene 

Symbol 

Entrez Gene Name p-value
1
 FC

2
 

A_32_P171061 ASCL2 achaete-scute complex homolog 2  5.79E-03 -5.8 

A_23_P20927 TNKS tankyrase, TRF1-interacting ankyrin-

related ADP-ribose polymerase 

3.02E-03 -4.9 

A_23_P84762 PARP10 poly (ADP-ribose) polymerase family, 

member 10 

3.55E-03 -3.0 

A_32_P211799 USF2 upstream transcription factor 2, c-fos 

interacting 

3.36E-03 -2.4 

A_23_P77228 CRTC3
‡
 CREB regulated transcription coactivator 

3 

8.09E-03 -2.4 

A_23_P203463 TAF10  TAF10 RNA polymerase II, TATA box 

binding protein (TBP)-associated factor, 

30kDa 

3.69E-03 -2.2 

A_24_P127719 MAFA
‡
 v-mafmusculoaponeuroticfibrosarcoma 

oncogene homolog A (avian) 

9.21E-03 -2.2 

A_24_P37519 LZTFL1
‡
 leucine zipper transcription factor-like 1 9.31E-03 -2.2 

A_24_P921781 DMRT3
‡
 doublesex and mab-3 related 

transcription factor 3 

2.51E-03 -2.1 

A_23_P325100 DMRT3
‡
 doublesex and mab-3 related 

transcription factor 3 

3.99E-03 -1.8 

A_23_P83298 PRRX2
‡
 paired related homeobox 2 2.53E-04 -1.8 

A_32_P184394 TFEC transcription factor EC 9.84E-03 -1.8 

A_23_P41292 CTBP1
‡
 C-terminal binding protein 1 9.75E-05 -1.7 

A_24_P49106 TCEAL7 transcription elongation factor A (SII)-

like 7 

4.38E-03 -1.6 

A_23_P63289 SSU72
‡
 SSU72 RNA polymerase II CTD 

phosphatase homolog (S. cerevisiae) 

2.86E-03 -1.5 

A_24_P385119 TAF2  TAF2 RNA polymerase II, TATA box 

binding protein (TBP)-associated factor, 

150kDa 

8.10E-03 -1.5 

A_23_P90383 RPL18A ribosomal protein L18a 6.38E-03 -2.7 

A_24_P7629 RPL32P3 ribosomal protein L32 pseudogene 3 2.51E-03 -2.7 

A_24_P221366 RPS15A ribosomal protein S15a 3.55E-03 -2.4 

A_32_P207231 RPL7 ribosomal protein L7 9.39E-03 -2.4 

A_23_P24763 RPS13 ribosomal protein S13 3.74E-03 -2.3 

A_23_P97021 EIF2C3 eukaryotic translation initiation factor 

2C, 3 

3.20E-03 -2.2 

A_32_P220127 RPL34 ribosomal protein L34 9.46E-03 -1.6 

A_32_P193288 RPL18A ribosomal protein L18a 6.98E-03 -1.6 

A_23_P74097 TCEB3 transcription elongation factor B (SIII), 

polypeptide 3 (110kDa, elongin A) 

5.19E-03 -1.5 

1
 t-test p-value  

2
FC: fold change. Fold change values that are positive are higher in patients with low muscle 

attenuation 
‡ 

Androgen response elements identified by Wyce et al. in the genome of skeletal muscle cells 
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Table 4-12: Shortlist of genes upregulated in low versus high attenuation 

muscle encoding proteins involved in transcription and translation 

Agilent ID Gene Symbol Entrez Gene Name p-value
1
 FC

2
 

A_23_P434442 TCEAL3 transcription elongation factor A 

(SII)-like 3 

3.44E-03 1.5 

A_32_P192545 TCEAL6 transcription elongation factor A 

(SII)-like 6 

3.51E-03 1.5 

A_24_P196117 GTF2H5
‡
 general transcription factor IIH, 

polypeptide 5 

5.46E-03 1.5 

A_23_P35148 TAF13  TAF13 RNA polymerase II, TATA 

box binding protein (TBP)-

associated factor, 18kDa 

2.51E-03 1.5 

A_23_P161615 POLA2
‡
 polymerase (DNA directed), α 2, 

accessory subunit 

2.71E-03 1.7 

A_32_P161762 RUNX2
‡
 runt-related transcription factor 2 1.94E-03 1.7 

A_23_P68547 MCM8
‡
 minichromosome maintenance 

complex component 8 

5.95E-03 1.8 

A_23_P120941 ATF4
‡
 activating transcription factor 4 (tax-

responsive enhancer element B67) 

4.76E-04 1.8 

A_32_P18470 TCEAL5 transcription elongation factor A 

(SII)-like 5 

9.17E-03 1.9 

A_24_P142442 POLDIP2 polymerase (DNA-directed), delta 

interacting protein 2 

1.81E-03 2.0 

A_23_P20480 BRF2 BRF2, subunit of RNA polymerase 

III transcription initiation factor, 

BRF1-like 

2.96E-03 2.1 

A_23_P157452 POLR2K polymerase (RNA) II (DNA 

directed) polypeptide K, 7.0kDa 

8.71E-03 2.2 

A_23_P348281 TCEANC2 transcription elongation factor A 

(SII) N-terminal and central domain 

containing 2 

7.92E-03 2.5 

A_23_P215253 POLR2J2
 ‡
 polymerase (RNA) II (DNA 

directed) polypeptide J2 

3.39E-03 2.5 

A_24_P321626 POLR3B polymerase (RNA) III (DNA 

directed) polypeptide B 

3.37E-03 2.7 

A_32_P47701 EEF1A1
‡
 eukaryotic translation elongation 

factor 1 α 1 

1.17E-03 1.5 

A_24_P356015 EIF2S1 eukaryotic translation initiation 

factor 2, subunit 1 α, 35kDa 

1.90E-04 2.5 

1
 t-test p-value  

2
FC: fold change. Fold change values that are positive are higher in patients with low muscle 

attenuation 
‡ 

Androgen response elements identified by Wyce et al. in the genome of skeletal muscle cells 
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Table 4-13: Shortlist of downregulated genes in low versus high attenuation 

muscle encoding proteins involved in ATP production and reactive oxygen 

species 

Agilent ID Gene 

Symbol 

Entrez Gene Name p-value
1
 FC

2
 

A_24_P927850 IDH3A isocitrate dehydrogenase 3 (NAD+) α 9.91E-03 -2.7 

A_24_P710024 ND4
§
 NADH dehydrogenase, subunit 4 

(complex I) 

4.97E-03 -2.6 

A_23_P119812 GPD2
‡
 glycerol-3-phosphate dehydrogenase 2  8.01E-04 -2.3 

A_23_P257111 FBP1 fructose-1,6-bisphosphatase 1 4.13E-03 -2.3 

A_24_P117528 PRPS2 phosphoribosyl pyrophosphate 

synthetase 2 

1.38E-05 -2.1 

A_23_P205959 ALDH1A3
‡
 aldehyde dehydrogenase 1 family, 

member A3 

9.15E-03 -2.0 

A_23_P360209 ND3
§
 NADH dehydrogenase, subunit 3 

(complex I) 

2.75E-03 -2.0 

A_23_P431853 ND2
§
 mitochondrially encoded NADH 

dehydrogenase 2  

1.82E-03 -2.0 

A_23_P161297 OGDHL oxoglutarate dehydrogenase-like 8.15E-03 -1.9 

A_24_P367965 HK1
‡
 hexokinase 1 7.88E-03 -1.9 

A_23_P163161 SDR39U1 short chain dehydrogenase/reductase 

family 39U, member 1 

4.90E-03 -1.6 

A_23_P87616 ATP5G2 ATP synthase, H+ transporting, 

mitochondrial Fo complex, subunit C2 

(subunit 9) 

4.57E-03 -1.5 

A_32_P149416 TXNRD1
‡
 thioredoxinreductase 1 7.53E-03 -3.1 

A_23_P214300 GSTA2 glutathione S-transferase α 2 8.19E-03 -2.1 

A_23_P254741 SOD3 superoxide dismutase 3, extracellular 5.61E-03 -1.5 

A_32_P227525 PRDX2
‡
 peroxiredoxin 2 6.29E-03 -1.5 

1
 t-test p-value  

2
FC: fold change. Positive values are higher in patients with low muscle attenuation 

§
Gene encoded from mitochondrial genome 

‡ 
Androgen response elements identified by Wyce et al. in the genome of skeletal muscle cells 
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Table 4-14: Shortlist of upregulated genes in low versus high attenuation 

muscle encoding proteins involved in ATP production and reactive oxygen 

species 

 
Agilent ID Gene 

Symbol 

Entrez Gene Name p-value
1
 FC

2
 

A_23_P51009 NDUFB3 NADH dehydrogenase (ubiquinone) 1 

beta subcomplex, 3, 12kDa 

6.47E-03 1.5 

A_23_P52639 COX8A cytochrome c oxidase subunit VIIIA  1.58E-03 1.5 

A_23_P130418 NDUFV2
‡
 NADH dehydrogenase (ubiquinone) 

flavoprotein 2, 24kDa 

5.07E-03 1.5 

A_23_P162982 DHRS4 dehydrogenase/reductase (SDR family) 

member 4 

1.08E-03 1.5 

A_23_P154832 ATP5J ATP synthase, H+ transporting, 

mitochondrial Fo complex, subunit F6 

1.62E-03 1.5 

A_23_P106544 CMC2  COX assembly mitochondrial protein 2 

homolog  

6.02E-05 1.6 

A_23_P55123 COX10
‡
 COX10 homolog 1.10E-04 1.7 

A_24_P416951 NDUFV3 NADH dehydrogenase (ubiquinone) 

flavoprotein 3, 10kDa 

7.17E-03 1.7 

A_23_P140960 NDUFAB1 NADH dehydrogenase (ubiquinone) 1, 

α/beta subcomplex, 1, 8kDa 

3.33E-03 1.7 

A_23_P159650 COX7B cytochrome c oxidase subunit VIIb 3.42E-03 1.7 

A_23_P141032 COX4I1 cytochrome c oxidase subunit IV isoform 

1 

9.04E-04 1.8 

A_23_P345942 NDUFAF2 NADH dehydrogenase (ubiquinone) 

complex I, assembly factor 2 

4.95E-03 1.8 

A_32_P117016 ALDH1L2 aldehyde dehydrogenase 1 family, 

member L2 

2.87E-03 1.8 

A_24_P128020 NDUFS4 NADH dehydrogenase (ubiquinone) Fe-S 

protein 4, 18kDa 

2.79E-04 2.2 

A_23_P106575 GOT2 glutamic-oxaloacetic transaminase 2, 

mitochondrial  

2.82E-03 2.2 

A_23_P129313 IVD isovaleryl-CoA dehydrogenase 7.26E-03 2.2 

A_24_P58944 SDHAP1 succinate dehydrogenase complex, 

subunit A, flavoproteinpseudogene 1 

8.64E-03 2.4 

A_24_P206047 SLC25A4 solute carrier family 25 (mitochondrial 

carrier; adenine nucleotide translocator), 

member 4 

8.35E-03 2.5 

A_23_P138967 SDHD succinate dehydrogenase complex, 

subunit D, integral membrane protein 

6.63E-03 2.6 

A_32_P67259 SDHA succinate dehydrogenase complex, 

subunit A, flavoprotein (Fp) 

4.65E-03 2.9 

A_23_P157569 ADHFE1
‡
 alcohol dehydrogenase, iron containing, 1 3.50E-04 4.4 

A_32_P170925 TXNRD3
‡
 thioredoxinreductase 3 5.59E-03 1.7 

A_23_P20107 GSTK1 glutathione S-transferase kappa 1 5.98E-03 1.7 

A_23_P94204 OXR1 oxidation resistance 1 3.73E-04 1.8 

A_23_P39185 RDH13 retinol dehydrogenase 13  7.08E-03 1.9 

A_23_P23194 PINK1
‡
 PTEN induced putative kinase 1 1.27E-03 2.2 

1
 t-test p-value  

2
FC: fold change. Positive values are higher in patients with low muscle attenuation 

‡ 
Androgen response elements identified by Wyce et al. in the genome of skeletal muscle cells 
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Table 4-15: Shortlist of differentially expressed according to muscle encoding 

proteins involved in mitochondrial transcription and translation  

 
Agilent ID Gene Symbol Entrez Gene Name p-value

1
 FC

2
 

A_32_P143596 TOMM7 translocase of outer mitochondrial 

membrane 7 homolog (yeast) 

6.55E-03 -3.2 

A_23_P33886 TIMM17B translocase of inner mitochondrial 

membrane 17 homolog B (yeast) 

1.56E-03 -2.1 

A_23_P169629 SHMT2 serine hydroxymethyltransferase 2  9.34E-03 -2.0 

A_24_P371194 MRPL53 mitochondrial ribosomal protein L53 2.11E-04 -1.9 

A_23_P122233 MRPL22  mitochondrial ribosomal protein L22 5.53E-03 -1.9 

A_24_P283294 MRPS10
‡
 mitochondrial ribosomal protein S10 5.32E-03 -1.7 

A_23_P114808 MECR
‡
 mitochondrial trans-2-enoyl-CoA 

reductase 

9.20E-03 -1.7 

A_24_P569294 MRPS12 mitochondrial ribosomal protein S12 2.17E-03 -1.7 

A_23_P131096 POLRMT
‡
 polymerase (RNA) mitochondrial 

(DNA directed) 

5.06E-03 -1.6 

A_23_P102258 MRPL53 mitochondrial ribosomal protein L53 2.00E-03 -1.6 

A_23_P383688 AARS2 alanyl-tRNAsynthetase 2, 

mitochondrial (putative) 

1.15E-03 -1.6 

A_23_P9582 TUFM Tu translation elongation factor, 

mitochondrial 

5.68E-04 -1.5 

A_23_P152353 EARS2 glutamyl-tRNAsynthetase 2, 

mitochondrial (putative) 

2.59E-03 -1.5 

A_32_P111609 TOMM7 translocase of outer mitochondrial 

membrane 7 homolog (yeast) 

8.48E-03 -1.5 

A_23_P86182 MRPS21 mitochondrial ribosomal protein S21 4.89E-03 1.5 

A_23_P114826 MRPS15 mitochondrial ribosomal protein S15 8.39E-03 1.5 

A_24_P12932 MRPS16  mitochondrial ribosomal protein S16 7.03E-03 1.5 

A_23_P49768 MRPL27  mitochondrial ribosomal protein L27 2.92E-03 1.5 

A_23_P33720 FARS2
‡
 phenylalanyl-tRNAsynthetase 2, 

mitochondrial 

3.48E-03 1.6 

A_23_P71464 DECR1
‡
 2,4-dienoyl CoA reductase 1, 

mitochondrial 

5.02E-03 1.7 

A_24_P351304 IMMT inner membrane protein 3.22E-03 1.7 

A_23_P413721 GPD1 glycerol-3-phosphate dehydrogenase 1  7.57E-03 1.7 

A_23_P72138 MRPS22 mitochondrial ribosomal protein S22 4.27E-03 1.9 

A_32_P209989 MRPL46
‡
 mitochondrial ribosomal protein L46 1.08E-03 1.9 

A_24_P125690 MRPL34 mitochondrial ribosomal protein L34 4.25E-03 1.9 

A_23_P157352 MRPS33 mitochondrial ribosomal protein S33 4.03E-04 1.9 

A_23_P25348 ACAD10 acyl-CoA dehydrogenase family, 

member 10 

8.63E-04 2.7 

A_23_P41588 HARS2 histidyl-tRNAsynthetase 2, 

mitochondrial (putative) 

9.15E-04 3.0 

A_23_P553 TARS2 threonyl-tRNAsynthetase 2, 

mitochondrial (putative) 

1.80E-03 3.4 

A_23_P51291 PARS2 prolyl-tRNAsynthetase 2, 

mitochondrial (putative) 

2.17E-03 3.7 

1
 t-test p-value  

2
FC: fold change. Positive are higher in patients with low muscle attenuation 

‡ 
Androgen response elements identified by Wyce et al. in the genome of skeletal muscle cells 



 

 

 113 

Table 4-16: Shortlist of differentially expressed according to muscle encoding 

proteins involved in lipid metabolism  

 
Agilent ID Gene Symbol Entrez Gene Name p-value

1
 FC

2
 

A_23_P161135 LEPR
‡
 leptin receptor 6.20E-04 -3.0 

A_23_P150903 FAR2 fatty acyl CoA reductase 2 8.52E-04 -2.9 

A_23_P136986 APOOL
‡
 apolipoprotein O-like 4.05E-03 -1.7 

A_23_P95130 SLC37A3 solute carrier family 37 (glycerol-

3-phosphate transporter), member 

3 

6.24E-03 -1.5 

A_24_P231104 LEPR
‡
 leptin receptor 1.01E-03 -1.5 

A_24_P13376 ADIPOR2 adiponectin receptor 2 5.65E-04 1.5 

A_24_P301557 LPIN2
‡
 lipin 2 2.17E-04 1.6 

A_24_P151920 TMEM97 transmembrane protein 97 2.75E-04 1.6 

A_24_P244442 BSCL2 Berardinelli-Seip congenital 

lipodystrophy 2 (seipin) 

2.13E-04 1.8 

A_23_P148919 CPT2 carnitinepalmitoyltransferase 2 1.04E-03 1.9 

A_23_P206945 ACOX1 acyl-CoA oxidase 1, palmitoyl 3.49E-03 1.9 

A_24_P570049 PPARA
‡
 peroxisome proliferator-activated 

receptor α 

4.61E-03 1.9 

A_23_P210900 ACSS2
‡
 acyl-CoA synthetase short-chain 

family member 2 

1.33E-04 2.1 

A_24_P272222 PLIN5 perilipin 5 4.22E-03 2.2 

A_23_P80449 THRB
‡
 thyroid hormone receptor, beta 1.07E-03 3.5 

1
 t-test p-value  

2
FC: fold change. Positive are higher in patients with low muscle attenuation 

‡ 
Androgen response elements identified by Wyce et al. in the genome of skeletal muscle cells 
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Table 4-17: Shortlist of differentially expressed genes according to muscle 

attenuation encoding proteins involved in intracellular structure and vesicle 

transport 

 
Agilent ID Gene 

Symbol 

Entrez Gene Name p-value
1
 FC

2
 

A_23_P95810 PKP3 plakophilin 3 4.42E-04 -9.3 

A_23_P48835 KIF23
‡
 kinesin family member 23 4.85E-03 -4.6 

A_24_P157342 BRK1 BRICK1, SCAR/WAVE actin-

nucleating complex subunit 

7.70E-04 -3.6 

A_24_P10674 ARHGAP33 Rho GTPase activating protein 33 4.77E-03 -3.4 

A_23_P133345 CLINT1 clathrininteractor 1 4.03E-05 -2.6 

A_23_P210323 CEP68
‡
 centrosomal protein 68kDa 1.09E-03 -2.5 

A_23_P140434 MYO5C
‡
 myosin VC 5.55E-03 -2.0 

A_23_P56736 TUBA3C tubulin, α 3c 8.27E-03 -1.9 

A_24_P259819 MZT2A mitotic spindle organizing protein 2A 8.51E-03 -1.9 

A_23_P420361 BRK1 BRICK1, SCAR/WAVE actin-

nucleating complex subunit 

1.40E-03 -1.9 

A_23_P137532 PLOD1
‡
 procollagen-lysine, 2-oxoglutarate 5-

dioxygenase 1 

9.26E-03 -1.8 

A_24_P184799 COCH coagulation factor C homolog, cochlin 

(Limulus polyphemus) 

3.33E-03 -1.7 

A_23_P354387 MYOF myoferlin 8.43E-05 -1.7 

A_23_P389102 MYO1D
‡
 myosin ID 6.57E-03 -1.7 

A_24_P184803 COCH coagulation factor C homolog, cochlin 

(Limulus polyphemus) 

2.85E-03 -1.7 

A_23_P63789 ZWINT ZW10 interactor 6.27E-03 -1.6 

A_23_P109171 BFSP1
‡
 beaded filament structural protein 1, 

filensin 

1.38E-03 -1.5 

A_23_P69326 CADPS
‡
 Ca++-dependent secretion activator 6.82E-03 -1.5 

A_32_P24122 STMN3 stathmin-like 3 5.88E-03 -1.5 

A_23_P101193 MYO5B
‡
 myosin VB 1.53E-03 -1.5 

A_24_P532589 MZT1 mitotic spindle organizing protein 1 7.08E-04 1.5 

A_24_P405992 SYNPO
‡
 synaptopodin 6.35E-03 1.5 

A_24_P220058 MAPRE1
‡
 microtubule-associated protein, RP/EB 

family, member 1 

6.81E-03 1.9 

A_24_P323522 JAKMIP3 Janus kinase and microtubule interacting 

protein 3 

9.64E-03 1.9 

A_23_P70509 ATAT1 α tubulin acetyltransferase 1 1.41E-03 2.2 

A_23_P91293 VAPB
‡
 VAMP (vesicle-associated membrane 

protein)-associated protein B and C 

4.08E-04 2.2 

 

A_23_P156390 JAKMIP2 janus kinase and microtubule interacting 

protein 2 

4.50E-03 2.7 

A_23_P213798 SYNPO
‡
 synaptopodin 8.05E-03 3.9 

1
 t-test p-value  

2
FC: fold change. Fold change values that are positive are higher in patients with low muscle 

attenuation 
‡ 

Androgen response elements identified by Wyce et al. in the genome of skeletal muscle cells 
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Table 4-18: Shortlist of differentially expressed according to muscle encoding 

proteins involved in cellular adhesion and extracellular structure 

Agilent ID Symbol Entrez Gene Name p-value1 FC2 

A_23_P140797 CDH8‡ cadherin 8, type 2 7.89E-03 -5.7 

A_23_P124095 CALML5 calmodulin-like 5 2.89E-03 -3.9 

A_23_P25790 CDH24 cadherin 24, type 2 2.76E-03 -3.0 

A_32_P168464 CASK‡ calcium/calmodulin-dependent serine protein 

kinase  

6.99E-05 -2.8 

A_23_P391926 LPHN1 latrophilin 1 3.83E-03 -2.7 

A_23_P156327 TGFBI‡ transforming growth factor, beta-induced, 

68kDa 

3.11E-03 -2.2 

A_23_P16944 SDC1  syndecan 1 2.55E-03 -2.2 

A_24_P213944 HEPACAM‡ hepatic and glial cell adhesion molecule 3.15E-03 -2.1 

A_23_P128919 LGALS3 lectin, galactoside-binding, soluble, 3 6.48E-03 -2.1 

A_23_P133656 LAMA4‡ laminin, α 4 7.41E-03 -2.0 

A_23_P55716 BCAM basal cell adhesion molecule  1.75E-03 -2.0 

A_32_P142088 MPZL1‡ myelin protein zero-like 1 1.07E-04 -1.9 

A_32_P210390 CAMKK2 Ca2+/calmodulin-dependent kinase kinase 

2,β  

2.42E-03 -1.8 

A_32_P452655 LGALS9C lectin, galactoside-binding, soluble, 9C 1.22E-03 -1.8 

A_23_P110624 CTNND2 catenin, delta 2  1.43E-04 -1.7 

A_23_P7397 PCDHB10 protocadherin beta 10 2.89E-04 -1.6 

A_24_P409126 FNDC3A‡ fibronectin type III domain containing 3A 9.33E-03 -1.6 

A_23_P202823 CTTN cortactin 1.87E-03 -1.6 

A_23_P44291 CRTAP‡ cartilage associated protein 3.88E-04 -1.6 

A_23_P160286 PRG4  proteoglycan 4 5.61E-04 -1.6 

A_23_P27315 EMILIN2 elastin microfibrilinterfacer 2 2.26E-04 -1.5 

A_23_P63557 CNTN2 contactin 2 (axonal) 5.97E-03 -1.5 

A_24_P71661 CRTAP‡ cartilage associated protein 1.65E-03 1.5 

A_24_P353905 MXRA8‡ matrix-remodelling associated 8 9.72E-04 1.5 

A_24_P139152 COL8A1‡ collagen, type VIII, α 1 6.33E-03 1.6 

A_23_P56746 FAP‡ fibroblast activation protein, α 5.55E-03 1.6 

A_23_P138137 OMA1 OMA1 zinc metallopeptidase homolog  8.51E-05 1.6 

A_24_P302506 AMIGO1 adhesion molecule with Ig-like domain 1 2.15E-03 1.6 

A_24_P759477 ITGB8‡ integrin, beta 8 4.92E-03 1.7 

A_23_P94030 LAMB1‡ laminin, beta 1 7.11E-03 1.7 

A_24_P85539 FN1‡ fibronectin 1 8.50E-03 1.7 

A_23_P138139 OMA1 OMA1 zinc metallopeptidase homolog  7.09E-05 1.8 

A_23_P131614 COL6A3‡ collagen, type VI, α 3 5.90E-03 1.8 

A_32_P5040 NOTCH2NL‡ notch 2 N-terminal like 9.30E-03 1.8 

A_23_P151805 FBLN5 fibulin 5 4.74E-03 1.9 

A_23_P329573 ITGB2‡ integrin, beta 2  7.66E-03 2.0 

A_23_P152305 CDH11‡ cadherin 11, type 2, OB-cadherin  6.40E-04 2.0 

A_23_P130961 ELANE elastase, neutrophil expressed 8.71E-03 2.1 

A_23_P163787 MMP2‡ matrix metallopeptidase 2  1.27E-03 2.2 

A_23_P144959 VCAN‡ Versican 8.12E-04 2.2 

A_23_P205841 MYO9A‡ myosin IXA 3.50E-03 2.4 

A_23_P151267 LIMA1‡ LIM domain and actin binding 1 9.68E-03 2.4 

A_23_P34345 VCAM1‡ vascular cell adhesion molecule 1 2.65E-03 2.8 

A_23_P214026 FBN2 fibrillin 2 6.45E-03 3.5 

A_23_P347632 MTSS1 metastasis suppressor 1 9.39E-03 4.0 

A_24_P252364 NRCAM‡ neuronal cell adhesion molecule 1.45E-03 4.8 
1 t-test p-value  
2FC: fold change. Positive are higher in patients with low muscle attenuation  
‡ Androgen response elements identified by Wyce et al. in the genome of skeletal muscle cells 
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Table 4-19: Shortlist of differentially expressed according to muscle 

attenuation encoding proteins involved in muscle and neural function  

Agilent ID Gene Symbol Entrez Gene Name p-value
1
 FC

2
 

A_24_P398147 NEBL
‡
 nebulette 3.11E-03 -5.5 

A_24_P257022 TNNT2
‡
 troponin T type 2 (cardiac) 9.09E-03 2.2 

A_24_P322709 SNTA1 syntrophin, α 1 6.87E-04 2.6 

A_24_P927304 TNNT2
‡
 troponin T type 2 (cardiac) 1.42E-03 2.6 

A_24_P188218 MYL4
‡
 myosin, light chain 4, alkali; atrial, 

embryonic 

3.97E-03 3.9 

A_24_P224488 MAPT microtubule-associated protein tau 8.17E-03 -3.5 

A_23_P500824 SYN1 synapsin I 9.52E-03 -3.2 

A_23_P332789 CHRNB4 cholinergic receptor, nicotinic, beta 

4  

4.38E-03 -3.0 

A_23_P35534 NEUROG3 neurogenin 3 1.98E-03 -2.9 

A_23_P153549 GRIN2D
‡
 glutamate receptor, ionotropic, N-

methyl D-aspartate 2D 

7.06E-03 -2.8 

A_23_P21570 NPAS3
‡
 neuronal PAS domain protein 3 2.61E-03 -2.4 

A_23_P86801 RAPSN receptor-associated protein of the 

synapse 

5.23E-04 -2.2 

A_23_P96072 GRIN1 glutamate receptor, ionotropic, N-

methyl D-aspartate 1 

5.52E-03 -2.2 

A_24_P295465 LRRTM3 leucine rich repeat transmembrane 3 3.00E-03 -2.2 

A_23_P150162 DRD4
‡
 dopamine receptor D4 9.30E-03 -2.1 

A_23_P212608 CLSTN2
‡
 calsyntenin 2 4.72E-03 -1.8 

A_23_P344451 HDGFRP3
‡
 hepatoma-derived growth factor, 

related protein 3 

2.90E-03 1.6 

A_23_P211522 SYNGR1 synaptogyrin 1 1.17E-03 2.0 
1
 t-test p-value  

2
FC: fold change. Positive are higher in patients with low muscle attenuation 

‡ 
Androgen response elements identified by Wyce et al. in the genome of skeletal muscle cells 
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Figures 

Figure 4-1: A conceptual framework of the different inputs from distant 

organs and tissues (part A, this page) and pathways that are suggested to 

affect muscle in cancer cachexia (part B, next page)  
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Figure 4-1 part A: Skeletal muscle receives signals from many distant organs and 

tissues, as well as from neighboring/resident cells within the muscle tissue. Some 

of these signals will promote catabolism (left side of figure) and others will 

promote anabolism (right side of figure).  
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Figure 4-1 part B: The different signals that reach myocytes will ultimately determine if the muscle will undergo catabolism or 

anabolism. This simplified schematic includes some signalling pathways known to affect skeletal muscle metabolism. 
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Figure 4-2: An example of how the extreme phenotype classification method 

was conducted using the distribution of muscle attenuation values for men in 

this study 

 

 

The extremes of the phenotypes were selected by selecting the third lowest and 

highest values of the measured values for each phenotype (in this case muscle 

attenuation) and excluding the patients in the middle third.  
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Figure 4-3: Venn diagram showing overlaps between patients classified as 

being weight losing, having low muscle attenuation and low skeletal muscle 

index.  

 

 

Of the patients classified in the weight losing class, only also had low muscle 

attenuation or low skeletal muscle index. However, there was greater overlap 

between the patients with low attenuation and low skeletal muscle index.  
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CHAPTER 5: Prediction of skeletal muscle and fat mass in patients with 

advanced cancer using a metabolomic approach 

 

5.1 Introduction  

Recent progress in high-throughput analytical technologies and in 

bioinformatics now permits simultaneous analysis of hundreds of compounds 

constituting the metabolome. Metabolomic analyses give complex fingerprints 

that appear to be characteristic of a given metabolic phenotype or diet. While 

many have suggested that metabolomics has the potential to change how nutrition 

research is conducted (1-3), much of this potential remains unrealized (4). A 

surprisingly small number of metabolomic studies have been conducted in human 

nutrition to date, and progress is hampered by a number of unsolved problems, 

most notably by the lack of well-established, standardized methods for collecting, 

measuring, analysing and reporting metabolomic data (1, 5). 

One important prerequisite for effective use of metabolomic approaches is 

to understand how variability in endogenous (e.g. tissue metabolism) and 

exogenous (e.g. diet) metabolite sources affect metabolomic profiles. A 

conceptual framework for these contributions includes multiple elements (Figure 

5-1). Food intake may be the largest contribution to diurnal variation in 

metabolites.   Diet is also a source of elements characteristic of specific foods: 

phytochemicals (ex. coffee (6), tea (7), cocoa (8), almonds (9)) or amines (e.g. 
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fish (10)).  Metabolomic assessment in the postabsorptive state would generally 

limit the immediate influence of meals on substrate flux (11).   

Individuals also may have widely divergent body proportions of organs 

(12), fat and skeletal muscle (13).  As illustrated in Figure 5-1, relatively high 

body fat mass would result in a disproportionately low contribution of muscle-

derived metabolites to the metabolome overall. Beside the well-known relation of 

urinary creatinine excretion to skeletal muscle mass (14), the amount of body lean 

and fat mass remains an unexplored source of variation in human metabolite 

profiling studies.   

Based on the above, the following hypothesis was explored: in the 

postabsorptive state, the metabolome is defined, in part; by the varying 

proportions of tissues (e.g. adipose tissue, skeletal muscle) as these produce 

tissue-specific metabolites in the course of their turnover / metabolism. For 

example, adipose tissue is the origin of fatty acids and hence of ketones; and 

creatinine and 3-methylhistidine originate in skeletal muscle. Such tissue-

associated metabolites would therefore provide good variables for predicting 

varying proportions of tissues. This will be tested in a population of patients with 

advanced (stage IIIB and IV) cancer.   

Detection of nutritional and metabolic alterations that accompany the 

progression of cancer is a crucial part of patient care.  Patients with advanced lung 

and colorectal cancers are known to have wide variations in lean and fat mass, 

dietary intake, metabolic rate and fuel metabolism due to the disease (12, 13, 15).  

Metabolomics is a particularly attractive technology to detect such variations as 
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this is a vulnerable patient population since it is fast, relatively inexpensive and 

most importantly non-invasive. To begin to understand the potential utility of 

metabolomic profiling in this patient population blood and urine metabolites were 

quantified using proton NMR and MS.  Metabolite patterns were assessed in the 

post-absorptive state, using multivariate statistics and machine learning 

approaches to detect metabolite signatures of these features. 

 

5.2 Methods 

5.2.1 Study Design 

Approval was provided by the Research Ethics Board of the Alberta 

Cancer Board. Eligible participants were recruited between 1/2005 and 10/2006 

and included men and women with advanced stage (IV) non-small cell lung or 

colorectal cancer, >18 years of age, able to communicate freely in English and 

able to provide informed consent. At this advanced disease stage, both lung and 

colorectal cancer patients show similar characteristics (12, 13). Study participants 

were receiving therapy appropriate to their disease and stage. Patients with 

creatinine clearance below 60 ml/min (n=11), radiation to the kidneys (n=2), or 

bladder metastasis resulting in blood in the urine (n=3) were excluded as these 

independently affect urinary excretion, making the total number of included 

patients n= 55.  While there is not an explicit formula for sample size calculation 

for metabolomic studies, previous work from our group (16) and others (9, 17-19) 

have been able to discriminate dietary or metabolic types with samples of this 

size.   
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5.2.2 Assessments 

Patients collected diet records under the supervision of a dietitian for 3 

days including one weekend day (20). To reduce the confounding acute effect of 

meals, participants were studied after a 12 h fast spanning the night of the 3
rd

 day 

to the following morning.  While this fasting could be expected to reduce the 

influence of prior intake, as protein intake during the day is related to the rate of 

amino acid oxidation during the night (21), a potential influence of prior protein 

intake may be expected.   

Participants attended the Human Nutrition Research Unit for sampling and 

metabolic evaluation.  While full details regarding assessments on these patients 

have been published (22), a brief summary is provided below.  

Height and weight were measured with participants barefoot and in a 

hospital gown. DXA employed a LUNAR Prodigy High Speed Digital Fan Beam 

X-Ray-Based Densitometer, (General Electric) with enCORE 9.20 software for 

analysis of total fat mass (TFM) and lean soft tissue (LST). Appendicular lean soft 

tissue (ALST) was calculated by summing the LST from the limbs (arms and 

legs) (23) and is a measure of appendicular skeletal muscle (24). Percent muscle 

and fat mass is often used to describe body composition phenotypes. To test body 

composition phenotype in addition to absolute lean and fat mass with relation to 

metabolites, this was also calculated (% lean or fat mass =  LST or TFM (kg) / 

body weight (kg)).  

 Nutrient intakes were estimated using the Canadian Nutrient
 
File Database 

(FOOD PROCESSOR II nutrient analysis software, version 9.0; Esha Research, 
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Salem, OR). Total energy intake and macronutrient intakes (total protein, fat, 

carbohydrate and sugar) were calculated. Since the body weight (range 48-142 kg) 

and composition (range % body fat 13.8-56.2%) was variable, both the absolute or 

per kg body weight expression of energy intake and expenditure would be 

difficult to interpret. These data were thus expressed per kg lean soft tissue as 

assessed by DXA (25).   

Resting energy expenditure (REE) and respiratory quotient (RQ) were 

determined by indirect calorimetry (VMax 29N, SensorMedics, Yorba Linda, CA) 

as detailed in Prado et al. (22).  

Urine and plasma samples were collected immediately upon arrival to the 

research unit. Sodium azide was added to urine samples to a final concentration of 

~0.02% to prevent bacterial growth. Whole blood was collected and plasma was 

isolated by a clinical laboratory provider (Dynacare Kasper Medical Laboratories, 

certified by: College of American Pathologists and College of Physicians& 

Surgeons of Alberta). Urine and plasma samples were stored at -80 °C until ready 

for analysis. 

5.2.3 NMR spectroscopy 

Urine samples were prepared by and analyzed according to a recently 

published procedure (16). Blood was prepared by removing high molecular 

weight compounds by ultrafiltration using Nanosep 3kDa microcentrifuge filter 

tubes. Prior to filtration, microcentrifuge filter tubes were washed using distilled 

deionized water (ddH2O) to remove glycerol used as a preservative in the filters.  

Ultrafiltrate volumes ranged from 250 µL to 400 µL. Ultrafiltrates were then 
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brought to volume (585 µL) using ddH2O. As with the urine samples, plasma was 

combined with 65 µL of internal standard (Chenomx Inc, Edmonton, Alberta) 

(consisting of ~5 mM sodium 2,2-dimethyl-2-silapentane-5-sulfonate d6 (DSS-

d6), 0.2% sodium azide in 99% D2O) and pH corrected to pH 6.75 ± 0.05 using 

small amounts of NaOH or HCl. A 600 µL aliquot of prepared sample was placed 

in a 5 mm NMR tube for NMR spectral acquisition.  

One-dimensional NMR spectra were acquired using the standard NOESY 

pulse sequence on a four-channel Varian Inova-600 MHz NMR spectrometer with 

a triax-gradient 5-mm HCN probe. Quantification of metabolites by targeted 

profiling was performed using Chenomx NMRSuite 4.6 (Chenomx Inc. 

Edmonton, Canada).  

Two analysts independently used Chenomx software to identify metabolite 

concentrations; only consensus assignments agreed upon by both analysts were 

used in statistical analysis. Laboratory analyses were also conducted to verify 

creatinine concentrations and amino acid peak assignments. A more complete 

description of these additional laboratory analyses has been published (16).  

5.2.4 Mass spectrometry 

Direct flow injection MS using AbsoluteIDQ™ Kit (BIOCRATES Life 

Sciences AG (Austria)) was used for the analysis of plasma and urine samples. 

This kit assay in combination with a 4000 QTrap (Applied Biosystems/MDS 

Sciex) mass spectrometer permits the identification and quantification of up to 

160 metabolites in urine and plasma.  Samples were prepared according to 

manufacturer’s instructions.  A standard flow injection protocol consisting of two 
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20 μL injections (one for the positive and one for the negative ion detection mode) 

was applied for all measurements. Multiple reaction monitoring detection was 

used for quantification. MetIQ software (BIOCRATES Life Sciences AG 

(Austria)) was used to control assay workflow, including sample registration, and 

calculation of metabolite concentrations. 

5.2.5 Metabolite data preprocessing 

Concentration values for metabolites can range over several orders of 

magnitude, both within and between patients.  This was addressed by using the 

natural log of concentration values. The issue of different urine dilutions was also 

addressed. Various methods have been proposed to address this, including 

normalization by creatinine concentration (26), by total peak area (27), and by 

probability quotient (28). We earlier considered these options and found that they 

reduced predictive accuracy of various algorithms compared to no data 

normalization (16). Therefore, our main analysis used only log transformation as 

the only pre-processing step. In addition, normalization of urine metabolite 

concentrations to whole – body lean soft tissue mass was also conducted 

attempted.  

5.2.6 Statistical methods 

The objective of the statistical analysis is to relate the patient’s 

plasma/urine metabolites with the patient’s dietary/physiological assessments (i.e. 

class).  As there is no single accepted method for statistical treatment of 

quantitative metabolomic data, several methods previously used were compared. 

Data were analyzed by partial least squares discriminant analysis (PLS-DA) (29), 
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support vector machines (SVM)) (30) and least absolute shrinkage and selection 

operator (LASSO) (31). Each of these algorithms uses a labelled data set (i.e. data 

describing a set of patients, along with the class label for each patient – e.g. 

patient has high energy intake versus low energy intake) to produce a classifier 

that can predict the class label of a new patient. Here classes were defined as the 

distal ranges of values (highest and lowest) for each assessment where an instance 

(patient) was labelled high if his/her measurement on this assessment was at least 

0.5 SD above the median and labelled low if the assessment was at least 0.5 SD 

below the median. For example, only individuals with high and low energy intake 

were included, leaving out an intermediate group representing a band 

approximately the width of the measurement error of this variable.   

The effectiveness of each learning algorithm was assessed, i.e. how 

accurately the classifier classifies novel patients, by leave-one-out cross-

validation (LOOCV) and permutation testing. The baseline accuracy rate was 

compared with the LOOCV accuracy results obtained by PLS-DA, SVM and 

LASSO. The baseline accuracy rate is the frequency of the most common class, 

expressed as a percentage (i.e. if 60 patients are in class A and 40 patients in class 

B, then the baseline accuracy would be 60%). Note that metabolomic information 

is not used in calculating the baseline accuracy. Thus, if the metabolic profile data 

contains any signal with respect to a particular classification task then it would 

increase the classification accuracy above the baseline accuracy rate; the 

maximum accuracy being 100%. Predictors were subjected to permutation testing 

(1000 permutations), to determine whether the predictive cross-validation 
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accuracies of these classifiers are statistically significant. An acceptable model 

was that very few (< 50 out of 1000; i.e. p<0.05) permuted models outperform the 

original model.  

PLS-DA is commonly used to build predictors using eigenvalues (29, 32). 

LOOCV analysis by PLS-DA was conducted using SIMCA P11.0 (Umetrics, 

Umeå, Sweden). SVM (30) views each instance as a vector in multi-dimensional 

space, and seeks the maximally separating hyperplane between the classes in this 

space. SVM analysis (with a linear kernel) using LOOCV was conducted using 

the WEKA machine learning package (33). LASSO is a linear classifier based on 

a form of regularized regression, which incorporates a penalty into the least 

squares objective function when learning a set of regression coefficients. LASSO 

implicitly performs variable selection because it sets some of the regression 

coefficients to zero; hence the associated variables (here, metabolite 

concentrations) will not contribute to the model. This technique was implemented 

using R and used the glmnet package to perform LASSO regression using 

LOOCV (34). Though the above three algorithms differ, they all work by finding 

a hyperplane that separates two classes in multidimensional space. At the most 

basic level, future patients would be predicted to belong to one class or another 

based on where their metabolite concentrations place them in multidimensional 

space relative to that hyperplane.   

Many researchers interested in nutrition and metabolism may ask: which 

metabolites best discriminate the classes? This was addressed by using mutual 

information to quantify the dependence between each metabolite and the class 
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outcome (the two groups for each assessment – e.g., high muscle mass versus low 

muscle mass); see (16). Mutual information analysis yields unit-less values, where 

larger values indicate a higher degree of dependence. 

 

5.3 Results 

5.3.1 Distribution of measured dietary/physiological assessments in advanced 

cancer patients 

Of the 55 cancer patients included in this study, 58% were male, 45% had 

lung cancer and the overall median age was 61 ± 11 yrs. The median and variation 

for each measured assessment as well as characteristics of classes are shown 

(Table 5-1).  

5.3.2 Urine - Metabolites identified and quantified 

 Using NMR we quantified 71 metabolites. However 8 metabolites were 

excluded because they were: drug metabolites or constituents of vehicle for drug 

administration (ibuprofen, acetaminophen, salicylurate, propionate, propylene 

glycol and mannitol), belonged to microbial metabolism or aspartame 

consumption (methanol) (40, 41) or had unreliable quantification (urea). Urea has 

unreliable quantification since suppression of the NMR signal by pre-saturation 

may lead to resonant suppression of the urea peak due to proton exchange with 

water, thereby making its quantification unreliable (35). A list of the 63 remaining 

metabolites can be found in Table 5-2. NMR-measured concentrations of 

creatinine were confirmed using laboratory tests (intraclass correlation of 0.949 
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with a 95% confidence interval of 0.907 to 0.971). Spike-in experiments provided 

positive confirmation of peak assignments for amino acids (16) (data not shown).  

Mass spectrometry identified 117 metabolites including 12 amino acids, 

37 acyl carnitines, 55 glycerophospholipids, 12 sphingolipids and the combined 

concentration of hexose sugars.    

5.3.3 Urine - Results of statistical analyses 

The urine data analysis summary (Table 5-3) presents the accuracies for 

the best predictive models using all three methods (i.e. SVM, LASSO and PLS-

DA). The most accurate predictors were for appendicular skeletal muscle mass: 

SVM (LOOCV accuracy = 98%), LASSO (LOOCV accuracy = 90%) and PLS-

DA (LOOCV accuracy = 85%), compared with a baseline accuracy rate of 54%. 

Lean soft tissue (which includes skeletal muscle, soft lean tissues, organs and 

skin) was also accurately predicted with all three algorithms (Table 5-3). Similar 

accuracies of these models may be explained by the high correlation (Pearson 

correlation = 0.98) between total lean and appendicular lean tissues. Satisfactory 

predictive models were achieved for total fat mass using SVM (LOOCV accuracy 

= 79%), LASSO (LOOCV accuracy = 82%) and PLS-DA (LOOCV accuracy = 

79%), compared with the baseline accuracy rate of 50%. Median concentration 

and standard deviation of urinary metabolites quantified by NMR for the two 

classes (high and low) of lean soft tissue and fat mass are listed in Tables 5-4 and 

5-5, respectively. High and low percent lean and fat mass did not produce 

predictive models that were any better than could be obtained by chance. 
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 The distribution of cancer types (lung, colorectal) was not different 

between the high and low fat mass groups or between the high and low lean tissue 

mass groups.  However, the low class for lean tissues was composed mainly of 

women (95%) and the high class was composed of 100% men. By itself, sex was 

predicted by urinary metabolite profiles, with a base model, SVM, LASSO and 

PLS-DA providing respectively, 58%, 91%, 85% and 78% LOOCV accuracy. 

However, it seems likely that sex was discriminated by nothing other than the fact 

that men are generally larger and more muscular than women, leading to 

differential production of muscle-specific metabolites. This is consistent with the 

observation that creatine, a muscle-specific metabolite, was in the top two 

metabolites that contributed to the discrimination of sex in the three statistical 

analyses, as well as the mutual information (see below).  

Neither total energy, carbohydrate, sugar nor fat intake could be predicted 

accurately from the NMR urine metabolite data; this was true when the classes 

were determined based on absolute (total) intake, intake / kg body weight or 

intake / kg lean soft tissue.  However, protein intake did result in a satisfactory but 

relatively weak model with a baseline accuracy of 53% and LOOCV accuracies 

using SVM (70%), LASSO (73%) and PLS-DA (73%). Protein intake also 

produced several randomly permuted models that appeared more accurate than the 

model learned using the original data (48 times for SVM and 28 times for 

LASSO).  To test whether variation in lean tissue was confounding chances of 

building predictive models based on macronutrient intakes, urine metabolite 

concentrations were normalized to the whole body LST mass for each individual, 
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and reran all of the classifiers.  This normalization made no difference in the 

accuracy of the predictive models for any macronutrient (e.g., the LOOCV for 

SVM for protein intake was 73% with this normalization compared with 70% (see 

above)). 

The RQ classes included a group with substantially fat oxidation (RQ 

=0.7) and a class with a slightly higher RQ of 0.8 reflecting more mixed 

oxidation. RQ did not produce a predictive model any better than could be 

obtained by chance, as determined by permutation testing.  REE classes (Table 5-

1) were developed for each sex and then aggregated as this is a sex-dependent 

variable (36). The median energy intake per kg body weight or per kg LST for 

patients in the low and high REE classes was not different (47 ± 10 kcal / kg LST; 

29 ± 8 kcal / kg body weight for both). REE also did not produce a predictive 

model any better than could be obtained by chance, regardless of the basis of 

normalization of this value (total, per kg body weight, per kg lean soft tissue).  

Classifiers built using urine metabolites measured by MS alone or NMR 

and MS pooled together resulted in no improvements in LOOCV accuracy and, in 

fact, for most models the accuracy decreased.    

5.3.4 Urine - metabolites related to lean and fat mass 

 Bivariate analysis allows for the ranking of metabolites according to their 

mutual information for ALST and TFM.  As LST and ALST share the same top 

30 metabolites, albeit in slightly different rank order, Table 5-6 shows only 

ALST. This mutual information analysis for ALST and LST further supports the 

suggestion that the discrimination of sex is nothing more than the discrimination 
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of lean mass, because 17 of the top 20 metabolites (including creatine) in the list 

of mutual information for sex were identical with the metabolites discriminating 

muscle and lean tissue, (not shown).  

5.3.5 Plasma - Metabolites identified and quantified 

Mass spectrometry identified 143 metabolites including 15 amino acids, 25 

acyl carnitines, 87 glycerophospholipids, 15 sphingolipids and the combined 

concentration of all hexose sugars (Table 5-7).  Quantitative NMR analysis 

identified the 31 metabolites listed in Table 5-8.  

5.3.6 Plasma - Results of data analyses 

Plasma NMR data analysis resulted in poor predictive models (i.e. not 

different from the baseline accuracy rate) for lean and fat mass, percent lean and 

fat mass, total energy and macronutrient intake and energy metabolism. Plasma 

MS data resulted in satisfactory prediction using SVM (71%), LASSO (88%) and 

PLS-DA (79%) of total body fat, compared to baseline of 50%. Median 

concentration and standard deviation of plasma metabolites quantified by MS for 

the two fat mass groups (high and low) are listed in Table 5-9. Predictive models 

built using plasma metabolites measured by NMR and MS pooled together 

resulted in no improvements in LOOCV accuracy and, in fact, for most models 

the accuracy decreased. 

5.3.7 Plasma - Metabolites related to total body fat 

Bivariate analysis was used to rank metabolites according to their mutual 

information for TFM; the top 30 are shown (Table 5-6). All of the metabolites 
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included in the top 30 are lipid molecules (acylcarnitines, phosphatidylcholines, 

lysophosphatidylcholines, and sphingomyelins).   

 

5.4 Discussion 

 The present quantitative metabolomic study supports the hypothesis that 

body lean and fat mass have distinctive metabolic profiles. Broad categories (high 

and low) of muscle mass quantity were accurately predicted from metabolite 

concentrations in easily obtained physiological fluids. This level of discrimination 

lends itself to the identification of occult sarcopenia (i.e. absolute muscle mass >2 

standard deviations less than for normal healthy adults), a clinically important 

condition (13).  The above results also suggest the potential of metabolomic 

approaches to further studies of body components per se. These findings suggest 

that lean / muscle mass can be easily predicted using urinary metabolite profiles, 

which is advantageous over other means as it can be obtained non-invasively. 

People who are not candidates for other forms of imaging (too large, CT or MRI 

contraindications), or in remote locations, or are too frail to undergo assessment 

could be possible candidate populations for a metabolomics-based screening test. 

 Variation in lean and fat mass inherent in patients with cancer and possibly 

other chronic conditions may confound metabolomic studies intended to look at 

diet, metabolic disorders or diseases.  This variation could be eliminated by 

assessing patients only within predefined lean and fat mass ranges by ensuring 

that lean and fat mass was used as a basis for matching participants in different 
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treatment groups, or by explicitly including these factors when building predictors 

for various conditions.   

 

5.4.1 Sources of variation in metabolite profiles  

To eliminate acute effects of dietary intake samples were collected under 

standardized conditions of overnight fasting. A diet record completed over the 3 

days preceding sampling and lean and fat mass measurements provided the 

estimates of energy and macronutrient intake. The fasting period would appear to 

have largely eliminated effects of foods eaten in the 3 days preceding the 

measurements, as neither total energy intake, nor that of any energy 

macronutrient, was associated with a clear-cut metabolite profile. 
 

Protein intake resulted in a relatively weak predictive model with cross 

validation accuracy of up to 73%. There are many possible reasons for the 

appearance of a metabolic profile, when we stratified for protein intake. All of the 

elements of macronutrient intake (sugar, fat, total carbohydrate and protein) were 

correlated with one another (Pearson r =0.62 to 0.82). The individuals within the 

low protein class here had protein-energy malnutrition, with median intakes of 0.8 

g protein and 24.9 kcal/kg body weight /d and protein:energy ratio of 0.034 g 

protein /kcal.  This was different (p<0.001) from the high protein class with 

protein intake of 1.6 g/kg body weight/d, energy intake of 37.0 kcal/kg body 

weight/d and protein:energy ratio of 0.047 g protein /kcal, and can be compared 

with recommended values of recommended intakes of 1.2-2.0 g protein  and 30-

35 kcal /kg body weight /d for this patient population (37).  Thus in overnight 
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fasted individuals, the presence of quite severe malnutrition could be detected but 

with a relatively weak signal.  It will be useful to further understand why the 

patients with the low energy intakes chose and consumed foods with a low 

protein:energy ratio, as it may not be in their advantage. 

Analysis could not produce a satisfactory predictor for RQ and REE. The 

rationale for including RQ as a possible source of variation was that oxidation of 

these fuels may result in changes in plasma and urine metabolites. For example, 

increased plasma acylcarnitine concentrations have been correlated with fatty acid 

oxidation (42) and changes in urinary amino acid concentrations may be reflective 

of protein catabolism. It seems likely that the fasting protocol contributed to a low 

level of variation in RQ. REE was expressed in relation to whole body LST, to 

limit the variation contributed by variability in body weight and in % body fat.  

Here, the mean REE of the two classes (27.7 ± 1.9 versus 37.2 ± 3.2 kcal / kg LST 

/ day) can be compared with values for healthy individuals across the entire 

lifespan. With reference to the meta-analysis reported by Weinsier et al. (36), 27.7 

kcal / kg LST / day is a normal metabolic rate for healthy individuals from ages 

50-70 years. By contrast, 37.2 / kg LST / day (30% higher) is hypermetabolic and 

REE in this range is not expected beyond adolescence. The lack of discrimination 

of REE in our models suggests that the higher overall metabolic throughput is not 

necessarily associated with alterations in patterns of metabolites. 

 Previously published population-based data demonstrated high variability 

in muscle and fat mass in cancer patients (38).  Individuals with the same body 

weight and BMI may be up to 2.5-fold different in amount of lean and muscle 
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tissue. Previous work also indicated that even patients with metastatic cancers 

were likely to be overweight or obese (13, 38), with severe muscle wasting 

(sarcopenia) concurrently present in a significant proportion of the population. 

Like many elderly people, cancer patients may be affected by age, limited 

mobility, and their primary disease as well as comorbid conditions, each resulting 

in muscle loss. 

There has been interest in testing for metabolic signature of cancer. The 

present results suggest that, to identify specific metabolic discriminates of cancer, 

as opposed to cancer-associated variations in lean and fat mass and food intake 

(which are not specific to this disease), studies should be conducted with the 

following controls.  1) Participants should be in the fasted state because it reduces 

the effect of diet, 2) participants could be stratified for protein intake or provided 

a standardized protein intake prior to the measurement to remove its effect (39) 

and 3) as suggested above, assessing patients only within predefined categories of 

lean and fat mass, or by ensuring that lean and fat mass is used as a basis for 

matching participants in cancer versus noncancer groups.  Many diseases in 

addition to cancer are associated with wasting of the lean tissues (COPD, chronic 

heart failure, chronic renal failure, diabetes).  In the absence of suitable controls, a 

metabolic signature apparently due to one of these diseases may merely reflect the 

presence of wasting (a non-specific effect) as opposed to a specific disease-related 

process. 
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5.4.2 Methodological considerations 

Particular attention was given to characterizing the patient population 

using precise measures of lean and fat mass, supplemented with estimates of 

metabolic rate, RQ and macronutrient intake. Empirical results showed that SVM 

was the most accurate classifier of the three algorithms that we tested; as this is 

the second time that superior predictive accuracy is obtained with SVM (16) 

compared with multiple other methods, we suggest it may be a good method for 

future work.   

No single analytical platform captures all metabolites in a biological 

sample. Proton NMR is less sensitive than MS but easily captures amino acids and 

their intermediates, TCA cycle intermediates and other metabolites involved in 

energy metabolism (e.g. glucose). Both skeletal muscle and organ tissues 

metabolize compounds producing end products that are ultimately excreted from 

the body via urine. Thus it was not surprising that metabolites mainly responsible 

for the discrimination between low and high lean and muscle tissues are 

metabolites known to originate mainly from muscle (creatine), amino acid 

metabolism (trigonelline, guanidoacetate) and intermediary metabolites (2-

oxoglutarate, succinate, fumarate, pyruvate). The sensitivity of MS enabled the 

quantification of lipid molecules in plasma that was not possible with NMR and 

proved to be a superior platform to build a predictive model for total fat mass.   

 

 

 



 

 

 

 161 

5.5 Conclusion 

In conclusion, the above results can inform future studies using 

metabolomic approaches in human nutrition and metabolism.  Our findings raise 

the possibility of a non-invasive test for lean and fat mass based on urine 

sampling. This may have applications in screening or in individuals who cannot 

undergo diagnostic imaging by DXA, CT or MRI.  Secondly, our findings will 

assist in the design of future studies, to assist with minimization of sources of 

variation which may confound the interpretation of results. 
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Tables 

Table 5-1: Variation in lean and fat mass, energy intake and energy metabolism for all cancer patients as well as after patients 

were divided into two classes (low and high)  

 

 All Patients (n= 55) Low Class¹ High Class 

 Median ± SD Range Median ± SD Median ± SD 

Lean and fat mass 

      TFM, kg 28 ± 9.5 11.4 - 62.5 17 ± 3.5 37.5 ± 7.6 

      LST, kg 46.4 ± 10.6 29.3 - 65.8 35.7 ± 3.2 57.8 ± 4.6 

     ALST, kg 19.3 ± 4.8 12.4 - 28.5 14.7 ± 1.2 24.8 ± 2.3 

Dietary Intake  

     Total Energy Intake, kcal/kg LST 46.5 ± 12.8 27.4 - 85.1 32.5 ± 3.8 62.6 ± 10.7 

     CHO Intake, g/kg LST 
6 ± 2 3 - 11.9 4.3 ± 0.6 7.8 ± 1.4 

     Sugar Intake, g/kg LST 
1.9 ± 0.9 0.5 - 4.6 1.1 ± 0.2 2.9 ± 0.6 

     Fat Intake, kcal/kg LST 14.7 ± 6 1.7 - 35.3 9 ± 2.8 20.4 ± 4.5 

     Protein Intake, g/kg   LST 
1.9 ± 0.6 1 - 3.6 1.4 ± 0.2 2.5 ± 0.4 

Energy Metabolism  

     REE, kcal /kg LST/day 33 ± 5 25 - 46 29 ± 4 38 ± 4 

     RQ 0.8 ± 0.1 0.7 - 0.9 0.7 ± 0 0.8 ± 0 
1 

Low and High classes were determined by using the cutoff of median ± 0.5 SD for all the patients in the study, as detailed in the 

methods section.  
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Table 5-2: Concentrations of 63 urine metabolites quantified by NMR for all patients included in data analysis¹ 

 

Urine metabolite ¹H chemical shift (ppm) and coupling² μmol/L 

1,6-Anhydro-β-D-glucose 3.53(m), 3.67(m), 3.69(m), 3.75(dd), 4.09(dd), 4.62(dd), 5.45(m) 38.1 ± 9.79 

1-Methylnicotinamide 4.47(s), 8.17(t), 8.88(d), 8.95(d), 9.26(s) 44.5 ± 5.26 

2-Aminobutyrate 0.97(t), 1.89(m),  3.71(dd) 9.74 ± 4.36 

2-Hydroxyisobutyrate 1.35(s) 35.3 ± 3.88 

2-Oxoglutarate 2.44(t), 3.00(t) 84.8 ± 52.5 

3-Aminoisobutyrate 1.19(d), 2.60(m), 3.03(dd), 3.1(dd) 41.1 ± 16.1 

3-Hydroxybutyrate 1.19(d), 2.29(dd), 2.40(dd), 1.14(m) 11.8 ± 3.86 

3-Hydroxyisovalerate 1.26(s),2.36(s) 7.85 ± 6.71 

3-Indoxylsulfate 7.18(m), 7.26(m), 7.36(s), 7.49(d), 7.70(d), 10.10(s) 171 ± 21.4 

4-Hydroxyphenylacetate 3.44(s), 6.85(m), 7.16(m) 59.3 ± 16.0 

Acetate 1.91(s) 25.0 ± 31.4 

Acetone 2.22(s) 7.73 ± 3.67 

Adipate 1.54(m), 2.19(m) 8.45 ± 5.04 

Alanine 1.47(d), 3.78(qt)  169 ± 31.9 

Asparagine 2.86(dd), 2.95(dd), 3.99(dd), 6.91(s), 7.62(s) 42.7 ± 6.98 

Betaine 3.26(s), 3.89(s) 64.1 ± 16.8 

Carnitine 2.41(dd), 2.45(dd), 3.22(s), 3.40(m), 3.43(m), 4.56(m) 23.4 ± 7.09 

Citrate 2.53(d), 2.69(d) 2140 ± 347 

Creatine 3.02(s), 3.92(s) 42.0 ± 43.1 

Creatinine 3.03(s), 4.05(s) 7980 ± 749.0 

Dimethylamine 2.72(s) 298 ± 31.0 

Ethanolamine 3.14(m), 3.82(m) 220 ± 32.9 

Formate 8.45(s) 75.3 ± 10.6 
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Fucose 1.20(d), 1.24(d), 3.44(dd), 3.56(t), 3.63(dd), 3.74(dd), 3.76(dd), 

3.79(m), 3.80(m), 3.85(dd), 3.86(m), 3.87(m), 3.97(dd), 4.01(m), 

4.03(m), 4.07(dd), 4.18(m), 4.55(d), 5.20(d), 5.22(d), 5.27(d) 

75.5 ± 11.6 

Fumarate 6.51 4.13 ± 2.19 

Glucose 3.24(dd), 3.40(m), 3.41(m), 3.47(m), 3.49(m), 3.53(dd), 3.71(m), 

3.72(dd), 3.74(m), 3.82(m), 3.84(m), 3.90(dd), 4.64(d), 5.23(d) 

189 ± 31.8 

Glutamine 2.12(m), 2.15(m), 2.43(m), 2.47(m), 3.76(t), 6.87(s), 7.58(s) 232 ± 38.5 

Glycine 3.56(s) 666 ± 327 

Glycolate 3.95(s) 154 ± 28.3 

Guanidoacetate 3.79(s) 83.3 ± 9.62 

Hippurate 3.96(d), 7.54(m), 7.55(m), 7.63(t), 7.82(m), 7.83(m), 8.52(s) 975 ± 379 

Histidine 3.15(dd), 3.25(dd), 3.99(qt), 7.11(s), 7.92(s) 178 ± 33.5 

Hypoxanthine 8.18(s), 8.20(s) 48.8 ± 7.48 

Isoleucine 0.93(t), 1.00(d), 1.25(m), 1.46(m), 1.97(m), 3.66(d) 7.83 ± 2.04 

Lactate 1.32(d), 4.11(d) 68.1 ± 15.0 

Leucine 0.95(d), 0.96(d), 1.67(m), 1.70(m), 1.73(m), 3.73(m) 21.6 ± 2.66 

Lysine 1.43(m), 1.50(m), 1.72(m), 1.88(m), 1.91(m), 3.02(t), 3.75(t) 88.1 ± 18.9 

Methylamine 2.6(s) 14.5 ± 1.90 

Methylguanidine 2.83(s) 14.5 ± 2.81 

N,N-Dimethylglycine 2.92(s), 3.72(s) 21.0 ± 3.97 

O-Acetylcarnitine 2.14(s), 2.50(dd), 2.63(dd), 3.19(s), 3.60(dd), 3.84(dd), 5.59(m) 9.84 ± 4.39 

Pantothenate 0.89(s), 0.92(s), 2.41(t), 3.39(d), 3.43(qt), 3.44(qt), 3.51(d), 

3.98(s), 8.00(dd) 

23.8 ± 4.09 

Pyroglutamate 2.03(m), 2.38(m), 2.41(m), 2.50(m), 4.17(dd) 147 ± 21.2 
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Pyruvate 2.37(s) 19.9 ± 4.22 

Quinolinate 7.46(dd), 8.00(d), 8.45(d) 43.4 ± 5.65 

Serine 3.84(dd), 3.94(dd), 3.98(dd) 124 ± 28.6 

Succinate 2.4(s) 25.3 ± 5.86 

Sucrose 3.47(t), 3.55(dd), 3.66(s), 3.68(m), 3.76(m), 3.80(m), 3.82(m), 

3.83(m), 3.84(m), 3.88(m), 4.04(t), 4.21(d), 5.40(d) 

23.8 ± 35.6 

Tartrate 4.33(s) 12.9 ± 15.6 

Taurine 3.25(t), 3.41(t) 253 ± 56.6 

Threonine 1.32(d), 3.59(d), 4.26(m) 82.4 ± 11.0 

Trigonelline 4.43(s), 8.07(dd), 8.82(m), 8.83(m), 9.11(s) 85.1 ± 23.7 

Trimethylamine N-oxide 3.26(s) 403 ± 100 

Tryptophan 3.30(dd), 3.47(dd), 4.05(q), 7.19(m), 7.27(m), 7.31(s), 7.52(d), 

7.72(d) 

52.5 ± 7.14 

Tyrosine 3.05(dd), 3.19(dd), 3.94(q), 6.88(m), 7.20(m) 50.5 ± 8.09 

Uracil 5.79(d), 7.52(d) 35.3 ± 4.00 

Valine 0.98(d), 1.03(d), 2.26(m), 3.61(d) 31.5 ± 3.34 

Xylose 3.22(dd), 3.31(dd), 3.43(t), 3.52(dd), 3.60(m), 3.62(m), 3.65(m), 

3.67(m), 3.69(m), 3.92(dd), 4.57(d), 5.19(d) 

48.9 ± 8.79 

cis-Aconitate 3.12(d), 5.75(m) 125 ± 37.9 

myo-Inositol 3.27(t), 3.53(dd), 3.62(dd), 4.05(m) 76.6 ± 22.9 

trans-Aconitate 3.44(s), 3.59(s) 21.1 ± 2.19 

1-Methylhistidine 3.21(dd), 3.29(dd), 3.74(s), 3.95(dd), 7.13(s), 8.10(s) 245 ± 72.5 

3-Methylhistidine 3.08(dd), 3.16(dd), 3.70(s), 3.96(dd), 7.03(s), 7.70(s) 67.3 ± 10.6 

¹Values are median ± SE, n=55.  

²s=singlet, d=doublet, dd=doublet-doublet, t=triplet, q=quartet, m=multiplet 
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Table 5-3: Best predictive models based on SVM, LASSO and PLS-DA analysis and permutation testing 

 

 Analysis from urine metabolites¹ Analysis from 

plasma 

metabolites² 

 LST ALST TFM TFM 

Baseline accuracy, %
 
 54 51 50 50 

SVM     

     LOOCV accuracy, % 90 98 79 71 

     Permuted models better than original  

data, n (p-value) 

0 (< 0.00001) 0 (< 0.00001) 15(0.015) 62 (0.062) 

LASSO     

     LOOCV accuracy, % 87 90 82 88 

     Permuted models better than original 

data, n (p-value) 

1 (0.001) 1 (0.001) 10 (0.01) 1 (0.001) 

PLS-DA     

     LOOCV accuracy,                    % 85 85 79 79 

     Permuted models better than original 

data, n (p-value) 

0 (< 0.00001) 1 (0.001) 17 (0.017) 27 (0.027) 

¹ Urine metabolites include only metabolites analyzed by nuclear magnetic resonance (n=63 metabolites). 
 
² Plasma metabolites included only metabolites analyzed by mass spectrometry (n=143 metabolites). 
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Table 5-4: Concentration of 63 urinary metabolites quantified by NMR from 

cancer patients included in the high and low lean soft tissue classes¹
, 
²
 

 

 Urine metabolite Patients with low lean 

soft tissue 

Patients with high 

lean soft tissue 

 μmol/L 

1,6-Anhydro-β-D-glucose 34.5 ± 15.4 36.3 ± 18.1 

1-Methylnicotinamide 43.5 ± 12.4 50.7 ± 6.51 

2-Aminobutyrate 6.56 ± 2.76 15.5 ± 2.07 

2-Hydroxyisobutyrate 27.7 ± 4.79 39.8 ± 10.0 

2-Oxoglutarate 144 ± 124 84.8 ± 30.5 

3-Aminoisobutyrate 47.2 ± 18.0 35.4 ± 27.6 

3-Hydroxybutyrate 11.6 ± 5.00 16.4 ± 6.01 

3-Hydroxyisovalerate 5.98 ± 3.97 7.07 ± 20.6 

3-Indoxylsulfate 203 ± 36.1 119 ± 37.7 

4-Hydroxyphenylacetate 54.5 ± 37.0 67.5 ± 10.5 

Acetate 29.5 ± 6.80 21.2 ± 5.13 

Acetone 5.4 ± 0.58 8.2 ± 4.2* 

Adipate 8.42 ± 12.0 8.98 ± 1.95 

Alanine 118 ± 48.1 227 ± 78.1 

Asparagine 37.4 ± 9.57 57.9 ± 12.6 

Betaine 42.7 ± 13.7 127 ± 43.3* 

Carnitine 16.9 ± 11.7 28.5 ± 14.8 

Citrate 1720 ± 427.0 2410 ± 705.0 

Creatine 86.5 ± 108 36.6 ± 8.82* 

Creatinine 7430 ± 1300 8300 ± 1340 

Dimethylamine 333 ± 56.9 268 ± 46.4 

Ethanolamine 184 ± 41.8 234 ± 77.0 

Formate 48.1 ± 9.16 128 ± 16.2** 

Fucose 82.3 ± 18.5 69.5 ± 15.4 

Fumarate 4.70 ± 3.84 3.89 ± 1.08 

Glucose 171 ± 66.0 201 ± 40.0 

Glutamine 260 ± 53.3 245 ± 59.8 

Glycine 688 ± 176 891 ± 994 

Glycolate 133 ± 34.3 242 ± 60.5 

Guanidoacetate 83.5 ± 16.8 63.4 ± 16.8 

Hippurate 903 ± 942 1030 ± 410.0 

Histidine 146 ± 36.8 323 ± 74.0* 

Hypoxanthine 40.7 ± 10.9 42.8 ± 13.1 

Isoleucine 8.72 ± 1.16 7.72 ± 6.20 

Lactate 110 ± 19.3 71.4 ± 27.9 

Leucine 16.5 ± 4.48 22.6 ± 4.31 

Lysine 89.5 ± 24.7 118 ± 47.6 

Methylamine 13.4 ± 3.05 10.6 ± 3.76 

Methylguanidine 17.4 ± 3.50 13.2 ± 3.62 
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N,N-Dimethylglycine 16.0 ± 4.72 26.5 ± 10.5 

O-Acetylcarnitine 6.96 ± 1.84 15.4 ± 3.10* 

Pantothenate 20.9 ± 7.29 24.3 ± 8.99 

Pyroglutamate 162 ± 49.7 137 ± 20.5 

Pyruvate 20.4 ± 8.82 14.7 ± 7.54 

Quinolinate 38.7 ± 10.8 41.8 ± 6.55 

Serine 118 ± 33.9 128 ± 49.2 

Succinate 26.3 ± 13.7 26.6 ± 4.95 

Sucrose 22.5 ± 97.8 25.3 ± 13.1 

Tartrate 11.2 ± 8.82 15.3 ± 14.6 

Taurine 222 ± 104 336 ± 87.2 

Threonine 84.4 ± 15.8 95.4 ± 23.4 

Trigonelline 89.5 ± 32.1 89.8 ± 35.0 

Trimethylamine N-oxide 459 ± 246 403 ± 87.2 

Tryptophan 39.9 ± 9.52 66.6 ± 14.7 

Tyrosine 39.7 ± 8.01 64.5 ± 14.5* 

Uracil 54.6 ± 8.63 39.2 ± 6.13 

Valine 27.2 ± 4.62 32.2 ± 7.64 

Xylose 58.8 ± 20.3 48.0 ± 12.6 

cis-Aconitate 157 ± 47.4 108 ± 32.5 

myo-Inositol 35.2 ± 19.5 87.6 ± 53.2 

trans-Aconitate 21.0 ± 2.72 19.6 ± 3.36 

π-Methylhistidine 232 ± 98.3 197 ± 164 

τ-Methylhistidine 48.3 ± 15.6 73.0 ± 19.8 

¹Values are median ± SE, Low class n=21, High class n=18.  

²Low and High class included patients who had values 0.5 SD below and 

above the median for lean soft tissue, respectively.  

Asterisks indicate different from low lean soft tissue: *P<0.05, **P<0.01, 

***P≤0.001 based on Mann-Whitney nonparametric statistical analysis  
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 Table 5-5: Concentration of 63 urinary metabolites quantified by NMR from 

cancer patients included in the high and low total fat mass classes¹
, 
² 

 

 Urine metabolite Patients with low 

fat mass  

Patients with high 

fat mass 

 μmol/L 

1,6-Anhydro-β-D-glucose 45.6 ± 20.1 32.6 ± 17.2 

1-Methylnicotinamide 44.5 ± 5.74 52.4 ± 9.50 

2-Aminobutyrate 10.3 ± 4.47 7.04 ± 7.47 

2-Hydroxyisobutyrate 32.5 ± 4.78 43.7 ± 6.95 

2-Oxoglutarate 108 ± 22.4 84.8 ± 186 

3-Aminoisobutyrate 70.6 ± 25.6 21.5 ± 28.8 

3-Hydroxybutyrate 13.7 ± 6.14 10.4 ± 4.87 

3-Hydroxyisovalerate 14.4 ± 4.79 7.07 ± 4.35 

3-Indoxylsulfate 276 ± 37.4 107 ± 32.4** 

4-Hydroxyphenylacetate 62.4 ± 19.0 69.9 ± 25.6 

Acetate 35.4 ± 7.57 23.9 ± 9.58 

Acetone 7.8 ± 0.80 8.23 ± 1.75 

Adipate 8.82 ± 1.39 11.2 ± 4.18 

Alanine 176 ± 50.5 236 ± 53.3 

Asparagine 32.4 ± 12.8 52.0 ± 12.4 

Betaine 68.7 ± 23.4 123 ± 27.4 

Carnitine 27.9 ± 6.18 46.3 ± 18.2* 

Citrate 1350 ± 424.0 2240 ± 625.0 

Creatine 47.8 ± 57.1 40.0 ± 26.1 

Creatinine 8940 ± 1550 7780 ± 1670 

Dimethylamine 333 ± 74.8 243 ± 57.8 

Ethanolamine 289 ± 53.7 193 ± 81.5 

Formate 77.6 ± 17.8 93.2 ± 21.1 

Fucose 90.3 ± 28.7 66.7 ± 22.5 

Fumarate 4.6 ± 0.63 3.91 ± 5.61 

Glucose 178 ± 94.9 195 ± 39.0 

Glutamine 232 ± 62.9 310 ± 61.9 

Glycine 550 ± 177 541 ± 167 

Glycolate 211 ± 66.2 189 ± 62.0 

Guanidoacetate 83.4 ± 25.8 70.0 ± 21.0 

Hippurate 1910 ± 544.0 608 ± 512 

Histidine 151 ± 52.2 138 ± 69.8 

Hypoxanthine 64.8 ± 14.6 57.7 ± 17.3 

Isoleucine 8.43 ± 1.35 8.42 ± 1.48 

Lactate 76.1 ± 16.5 74.6 ± 29.8 

Leucine 18.9 ± 6.13 20.8 ± 3.29 

Lysine 56.0 ± 33.0 90.3 ± 31.5 

Methylamine 21.6 ± 3.14 9.83 ± 1.35* 

Methylguanidine 11.6 ± 3.13 9.86 ± 4.15 
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N,N-Dimethylglycine 16.6 ± 5.12 21.6 ± 6.72 

O-Acetylcarnitine 10.5 ± 1.08 17.6 ± 3.94* 

Pantothenate 20.7 ± 7.65 21.1 ± 6.34 

Pyroglutamate 178 ± 67.9 137 ± 30.6 

Pyruvate 22.2 ± 5.06 14.7 ± 12.9 

Quinolinate 44.1 ± 13.1 39.0 ± 11.1 

Serine 126 ± 54.6 139 ± 36.7 

Succinate 28.7 ± 13.2 25.3 ± 15.5 

Sucrose 22.5 ± 7.86 26.0 ± 18.7 

Tartrate 11.9 ± 19.4 10.8 ± 2.68 

Taurine 213 ± 152 243 ± 81.8 

Threonine 75.5 ± 17.9 87.7 ± 19.7 

Trigonelline 156 ± 50.4 73.1 ± 41.4 

Trimethylamine N-oxide 460 ± 363 341 ± 126 

Tryptophan 59.5 ± 8.48 42.0 ± 17.5 

Tyrosine 46.7 ± 12.6 59.7 ± 17.9 

Uracil 49.2 ± 5.13 27.2 ± 9.85 

Valine 31.2 ± 5.37 33.2 ± 5.47 

Xylose 70.3 ± 29.3 46.4 ± 16.8 

cis-Aconitate 139 ± 46.9 129 ± 73.1 

myo-Inositol 87.3 ± 39.8 79.2 ± 68.2 

trans-Aconitate 20.8 ± 5.10 21.2 ± 4.07 

π-Methylhistidine 245 ± 125 190 ± 116 

τ-Methylhistidine 78.2 ± 14.2 107 ± 23.4 

¹Values are median ± SE, Low class n=14, High class n=14. 

²Low and High class included patients who had values 0.5 SD below and 

above the median for total fat mass, respectively.  

Asterisks indicate different from low total fat mass: *P<0.05, **P<0.01, 

***P≤0.001 based on Mann-Whitney nonparametric statistical analysis  
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Table 5-6: Bivariate analysis: top 30 metabolites related to the best predictive models   

 Urinary metabolites Plasma metabolites
 2

 

 ALST 

 

TFM 

 

TFM 

Rank
 1
 Metabolite (mutual information 

value) 

Metabolite (mutual information 

value) 

Metabolite (mutual information 

value) 

1 Fumarate (0.162) 3-Indoxylsulfate (0.167) lysoPC.a.C26:0 (1.126) 

2 Creatine (0.133) Uracil (0.149) C8 (1.012) 

3 4-Hydroxyphenylacetate (0.074) Fumarate (0.125) C10 (0.849) 

4 Quinolinate (0.058) O-Acetylcarnitine (0.122) C14 (0.716) 

5 2-Oxoglutarate (0.056) Methylamine (0.121) C5 (0.449) 

6 Adipate (0.056) Acetone (0.099) C8:1 (0.262) 

7 Sucrose (0.048) Taurine (0.095) C3 (0.221) 

8 Betaine (0.045) Tartrate (0.088) C0 (0.21) 

9 Trigonelline (0.042) Glycolate (0.084) PC.aa.C40:4 (0.188) 

10 Formate (0.038) 3-Aminoisobutyrate (0.073) SM.C24:1 (0.181) 

11 Glycolate (0.037) Hypoxanthine (0.069) PC.aa.C38:3 (0.177) 

12 Taurine (0.03) Trigonelline (0.058) PC.aa.C40:5 (0.148) 

13 O-Acetylcarnitine (0.03) Carnitine (0.055) PC.aa.C38:4 (0.14) 

14 1-Methylnicotinamide (0.027) 1-Methylnicotinamide (0.054) PC.aa.C34:4 (0.133) 

15 Xylose (0.026) Tryptophan (0.052) C16 (0.124) 

16 Glucose (0.024) Adipate (0.047) C18:2 (0.12) 

17 2-Aminobutyrate (0.022) Dimethylamine (0.043) PC.aa.C36:4 (0.115) 

18 Guanidoacetate (0.022) Trimethylamine-N-oxide 

(0.041) 

C4 (0.109) 
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19 3-Aminoisobutyrate (0.022) 2-Oxoglutarate (0.04) PC.aa.C30:2 (0.108) 

20 Methylguanidine (0.022) Creatinine (0.039) SM.C16:1 (0.105) 

21 Succinate (0.02) 3-Methylhistidine (0.037) PC.aa.C38:5 (0.095) 

22 Tartrate (0.02) Hippurate (0.036) lysoPC.a.C14:0 (0.093) 

23 Tryptophan (0.019) Pantothenate (0.035) PC.aa.C36:2 (0.087) 

24 Lactate (0.019) 2-Hydroxyisobutyrate (0.035) lysoPC.a.C18:0 (0.084) 

25 cis-Aconitate (0.019) Pyroglutamate (0.033) PC.aa.C24:0 (0.084) 

26 Hippurate (0.018) 3-Hydroxybutyrate (0.032) PC.aa.C4:3 (0.082) 

27 Pyroglutamate (0.018) Threonine (0.031) SM.C18:1 (0.081) 

28 Tyrosine (0.017) Ethanolamine (0.028) C12 (0.074) 

29 Acetone (0.016) Lactate (0.026) PC.aa.C36:1 (0.074) 

30 3-Indoxylsulfate (0.016) Succinate (0.026) PC.aa.C36:3 (0.072) 
1
 We use mutual information to quantify the dependence between two variables (see the Methods section); this allows us to rank 

metabolites according to the degree of dependence with the two different classes (low and high). In this case mutual information is 

high when a particular metabolite is highly correlated with ALST or TFM.  
2
 Cx:y; acylcarnitine (x= number of carbons in acyl chain, y= location of double bond); PC.aa, phosphatidylcholine diacyl; lysoPC a, 

lysoPhosphatidylcholine acyl; SM, sphingomyelin. 
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Table 5-7: Concentration of 143 plasma metabolites quantified by MS for all patients 

included in data analysis. 
 

Plasma metabolite² μmol/L Plasma metabolite μmol/L 

glycerophospholipids  acyl carnitines  

PC aa C24:0 0.11 ± 0.010 C0 30.1 ±  1.21 

PC aa C28:1 3.01 ± 0.107 C10 0.27 ± 0.018 

PC aa C30:0 5.28 ± 0.241 C10:1 0.15 ± 0.013 

PC aa C30:2 5.32 ± 0.179 C10:2 0.04 ± 0.004 

PC aa C32:0 16.8 ± 0.595 C12 0.1 ± 0.006 

PC aa C32:1 26.0 ± 1.68 C12:1 0.000 ± 0.014 

PC aa C32:2 7.78 ± 0.353 C14 0.05 ± 0.002 

PC aa C32:3 0.74 ± 0.034 C14:1 0.1 ± 0.006 

PC aa C34:1 273 ± 10.7 C14:1-OH 0.0 ± 0.001 

PC aa C34:2 387 ± 12.1 C14:2 0.04 ± 0.002 

PC aa C34:3 21.6 ± 1.32 C16 0.1 ± 0.004 

PC aa C34:4 1.87 ± 0.138 C16:2 0.009 ± 0.001 

PC aa C36:0 8.37 ± 0.298 C18 0.05 ± 0.002 

PC aa C36:1 80.4 ± 2.87 C18:1 0.2 ± 0.007 

PC aa C36:2 267 ± 7.23 C18:2 0.05 ± 0.002 

PC aa C36:3 176 ± 5.96 C2 6.32 ± 0.420 

PC aa C36:4 183 ± 7.73 C3 0.27 ± 0.014 

PC aa C36:5 34.0 ± 2.29 C4 0.18 ± 0.012 

PC aa C36:6 1.3 ± 0.078 C4-OH (C3-DC) 0.0 ± 0.007 

PC aa C38:0 3.92 ± 0.154 C5 0.1 ± 0.007 

PC aa C38:1 9.46 ± 0.351 C5:1 0.0 ± 0.002 

PC aa C38:3 68.7 ± 2.40 C5:1-DC 0.02 ± 0.001 

PC aa C38:4 114 ± 4.06 C7-DC 0.04 ± 0.003 

PC aa C38:5 86.0 ± 3.04 C8 0.25 ± 0.010 

PC aa C38:6 92.4 ± 4.35 C8:1 0.17 ± 0.012 

PC aa C40:1 0.52 ± 0.030   

PC aa C40:2 0.49 ± 0.015   

PC aa C40:3 1.0 ± 0.028 sphingolipids  

PC aa C40:4 5.39 ± 0.219 SM (OH) C14:1 6.98 ± 0.217 

PC aa C40:5 17.4 ± 0.727 SM (OH) C16:1 3.97 ± 0.131 

PC aa C40:6 33.1 ± 1.74 SM (OH) C22:1 15.7 ± 0.555 

PC aa C42:0 0.60 ± 0.042 SM (OH) C22:2 14.9 ± 0.467 

PC aa C42:1 0.28 ± 0.0164 SM (OH) C24:1 2.3 ± 0.089 

PC aa C42:2 0.2 ± 0.008 SM C16:0 125 ± 3.03 

PC aa C42:4 0.2 ± 0.007 SM C16:1 19.7 ± 0.609 

PC aa C42:5 0.41 ± 0.016 SM C18:0 27.6 ± 0.939 

PC aa C42:6 0.58 ± 0.018 SM C18:1 14.4 ± 0.464 

PC ae C30:0 0.41 ± 0.017 SM C20:2 1.9 ± 0.075 

PC ae C30:1 2.0 ± 0.061 SM C22:3 19.2 ± 1.24 

PC ae C32:1 3.41 ± 0.135 SM C24:0 28.1 ± 1.03 
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PC ae C32:2 0.62 ± 0.024 SM C24:1 89.1 ± 2.38 

PC ae C34:0 2.7 ± 0.092 SM C26:0 0.42 ± 0.014 

PC ae C34:1 11.5 ± 0.407 SM C26:1 0.86 ± 0.024 

PC ae C34:2 11.4 ± 0.484   

PC ae C34:3 6.54 ± 0.377 Amino acids  

PC ae C36:0 1.6 ± 0.051 Arginine 88.9 ± 2.73 

PC ae C36:1 9.53 ± 0.334 Glutamine 664 ± 16.5 

PC ae C36:2 14.8 ± 0.497 Glycine 238 ± 19.7 

PC ae C36:3 10.3 ± 0.360 Histidine 88.8 ± 2.43 

PC ae C36:4 16.3 ± 0.691 Methionine 26.3 ± 0.774 

PC ae C36:5 10.2 ± 0.496 Ornithine 50.8 ± 2.01 

PC ae C38:0 3.08 ± 0.138 Phenylalanine 51.2 ± 1.36 

PC ae C38:1 5.88 ± 0.203 Proline 174 ± 6.46 

PC ae C38:2 6.56 ± 0.195 Serine 82.9 ± 2.34 

PC ae C38:3 5.76 ± 0.177 Threonine 108 ± 3.33 

PC ae C38:4 14.8 ± 0.553 Tryptophan 65.6 ± 1.62 

PC ae C38:5 20.4 ± 0.702 Tyrosine 73.6 ± 2.39 

PC ae C38:6 8.86 ± 0.357 Valine 223 ± 7.76 

PC ae C40:0 0.000 ± 1.11 Leucine/Isoleucine 175 ± 5.39 

PC ae C40:1 1.9 ± 0.067   

PC ae C40:2 1.8 ± 0.060 Hexose sugars 4650 ± 137.0 

PC ae C40:3 1.2 ± 0.042   

PC ae C40:4 2.46 ± 0.103   

PC ae C40:5 4.18 ± 0.173   

PC ae C40:6 5.65 ± 0.233   

PC ae C42:0 0.49 ± 0.031   

PC ae C42:1 0.36 ± 0.012   

PC ae C42:2 0.65 ± 0.024   

PC ae C42:3 0.82 ± 0.039   

PC ae C42:4 1.1 ± 0.067   

PC ae C42:5 2.12 ± 0.150   

PC ae C44:3 0.1 ± 0.007   

PC ae C44:4 0.54 ± 0.038   

PC ae C44:5 1.89 ± 0.135   

PC ae C44:6 1.2 ± 0.086   

lysoPC a C14:0 6.3 ± 0.086   

lysoPC a C16:0 105 ± 3.32   

lysoPC a C16:1 3.49 ± 0.151   

lysoPC a C17:0 2.1 ± 0.090   

lysoPC a C18:0 33.4 ± 1.16   

lysoPC a C18:1 27.2 ± 1.23   

lysoPC a C18:2 25.9 ± 1.47   

lysoPC a C20:3 2.98 ± 0.119   

lysoPC a C20:4 6.29 ± 0.333   

lysoPC a C26:0 0.65 ± 0.024   
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lysoPC a C28:0 0.51 ± 0.016   

lysoPC a C28:1 0.73 ± 0.019   

¹Values are median ± SE, n=55.  

²Cx:y; acylcarnitine (x= number of carbons in acyl chain, y= location of double bond); 

PC.aa, phosphatidylcholine diacyl; lysoPC a, lysoPhosphatidylcholine acyl; SM, 

sphingomyelin. 
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 Table 5-8: Concentration of 31 plasma metabolites quantified by NMR for all 

patients included in data analysis¹. 
 

Plasma metabolite ¹H chemical shift (ppm) and coupling² μmol/L 

2-Aminobutyrate 0.97(t), 1.89(m), 3.71(dd) 20 ± 1.2 

2-Hydroxybutyrate 1.35(s) 38.8 ± 2.26 

3-Hydroxybutyrate 1.19(d), 2.29(dd), 2.40(dd), 1.14(m) 43.0 ± 11.1 

Acetate 1.91(s) 44.4 ± 2.56 

Acetoacetate 2.27(m), 3.43(m) 18.3 ± 3.26 

Acetone 2.22(s) 8.26 ± 1.79 

Alanine 1.47(d), 3.78(qt) 384 ± 13.4 

Arginine 1.68(m), 1.90(m), 3.23(t), 3.76(t) 74.4 ± 3.97 

Asparagine 2.86(dd), 2.95(dd), 3.99(dd), 6.91(s), 7.62(s) 41.9 ± 3.93 

Betaine 3.26(s), 3.89(s) 42.6 ± 2.24 

Carnitine 2.41(dd), 2.45(dd), 3.22(s), 3.40(m), 3.43(m), 

4.56(m) 

42.4 ± 1.84 

Citrate 2.53(d), 2.69(d) 85.8 ± 4.93 

Creatine 3.02(s), 3.92(s) 25.1 ± 4.28 

Creatinine 3.03(s), 4.05(s) 69.0 ± 3.01 

Glucose 3.24(dd), 3.40(m), 3.41(m), 3.47(m), 3.49(m), 

3.53(dd), 3.71(m), 3.72(dd), 3.74(m), 3.82(m), 

3.84(m), 3.90(dd), 4.64(d), 5.23(d) 

4660 ± 185.0 

Glutamine 2.12(m), 2.15(m), 2.43(m), 2.47(m), 3.76(t), 

6.87(s), 7.58(s) 

517 ± 21.9 

Glycerol 3.55(m), 3.64(m), 3.78(m) 69.9 ± 5.34 

Glycine 3.56(s) 199 ± 12.4 

Isoleucine 0.93(t), 1.00(d), 1.25(m), 1.46(m), 1.97(m), 

3.66(d) 

65.5 ± 2.21 

Lactate 1.32(d), 4.11(d) 1200 ± 56.00 

Leucine 0.95(d), 0.96(d), 1.67(m), 1.70(m), 1.73(m), 

3.73(m) 

106 ± 3.76 

Lysine 1.43(m), 1.50(m), 1.72(m), 1.88(m), 1.91(m), 

3.02(t), 3.75(t) 

129 ± 6.22 

Methionine 2.16(m), 2.63(t), 3.85(dd) 15 ± 0.70 

Ornithine 1.73(m), 1.83(m), 1.93(m), 3.05(t), 3.78(t) 43.2 ± 2.70 

Phenylalanine 3.19(m), 3.98(dd), 7.32(d), 7.36(m), 7.42(m) 56.6 ± 3.61 

Proline 1.99(m), 2.06(m), 2.34(m), 3.33(dt), 3.41(dt), 

4.12(dd_ 

152 ± 8.32 

Pyruvate 2.37(s) 39.6 ± 4.46 

Serine 3.84(dd), 3.94(dd), 3.98(dd) 104 ± 6.73 

Threonine 1.32(d), 3.59(d), 4.26(m) 55.6 ± 5.44 

Tyrosine 3.05(dd), 3.19(dd), 3.94(q), 6.88(m), 7.20(m) 54.7 ± 5.45 

Valine 0.98(d), 1.03(d), 2.26(m), 3.61(d) 220 ± 7.16 

¹Values are median ± SE, n=55.  

²s=singlet, d=doublet, dd=doublet-doublet, t=triplet, q=quartet, m=multiplet 
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Table 5-9: Concentration of 142 plasma metabolites quantified by MS from cancer 

patients included in the high and low total fat mass classes¹
, 
² 

 

 Plasma metabolite³ Patients with low fat mass Patients with high fat mass 

 μmol/L 

Arginine 97.8 ± 5.91 82.3 ± 4.21 

Glutamine 682 ± 28.4 655 ± 43.2 

Glycine 268 ± 13.24 221 ± 10.8* 

Histidine 92.6 ± 5.79 96.8 ± 4.23 

Methionine 25.4 ± 1.31 27.9 ± 2.16 

Ornithine 50.5 ± 3.95 51.9 ± 3.80 

Phenylalanine 52.2 ± 2.70 57.6 ± 3.24 

Proline 165 ± 17.5 176 ± 11.1 

Serine 88.3 ± 4.15 84.2 ± 4.77 

Threonine 113 ± 5.49 98.5 ± 8.49 

Tryptophan 65.0 ± 3.45 70.0 ± 3.62 

Tyrosine 70.6 ± 4.39 82.6 ± 6.19* 

Valine 220± 14.9 263± 15.2 

Leucine/Isoleucine 170 ± 12.0 190 ± 11.1 

C0 25.9 ± 1.90 32.5 ± 1.57** 

C10 0.3 ± 0.04 0.26 ± 0.016 

C10:1 0.17 ± 0.030 0.15 ± 0.020 

C10:2 0.0 ± 0.009 0.05 ± 0.008 

C12 0.15 ± 0.013 0.1 ± 0.009 

C12:1 0.0 ± 0.03 0.0 ± 0.03 

C14 0.05 ± 0.005 0.05 ± 0.004 

C14:1 0.12 ± 0.010 0.10 ± 0.011 

C14:1-OH 0.008 ± 0.003 0.02 ± 0.002 

C14:2 0.05 ± 0.005 0.04 ± 0.004 

C16 0.1 ± 0.009 0.1 ± 0.006 

C16:2 0.01 ± 0.002 0.009 ± 0.002 

C18 0.05 ± 0.003 0.05 ± 0.003 

C18:1 0.17 ± 0.011 0.2 ± 0.009 

C18:2 0.05 ± 0.004 0.05 ± 0.003 

C2 6.65 ± 0.403 7.09 ± 0.565 

C3 0.24 ± 0.014 0.34 ± 0.033** 

C4 0.13 ± 0.012 0.17 ± 0.021* 

C4-OH (C3-DC) 0.00 ± 0.015 0.00 ± 0.014 

C5 0.080 ± 0.011 0.12 ± 0.019* 

C5:1 0.0 ± 0.005 0.0 ± 0.007 

C5:1-DC 0.0 ± 0.003 0.009 ± 0.003 

C7-DC 0.04 ± 0.007 0.04 ± 0.006 

C8 0.28 ± 0.027 0.24 ± 0.011 

C8:1 0.12 ± 0.014 0.20 ± 0.020* 
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PC aa C24:0 0.056 ± 0.017 0.109 ± 0.017 

PC aa C28:1 2.90 ± 0.266 3.36 ± 0.194 

PC aa C30:0 5.595 ± 0.409 5.67 ± 0.402* 

PC aa C30:2 4.76 ± 0.247 6.28 ± 0.414 

PC aa C32:0 17 ± 1.012 17.9 ± 1.19 

PC aa C32:1 25.9 ± 2.84 28.6 ± 3.77 

PC aa C32:2 7.93 ± 0.699 8.14 ± 0.626 

PC aa C32:3 0.65 ± 0.064 0.73 ± 0.046 

PC aa C34:1 247± 17.9 285 ± 25.4 

PC aa C34:2 414 ± 23.8 443 ± 25.6 

PC aa C34:3 21.8 ± 2.89 24.3 ± 2.20 

PC aa C34:4 1.75 ± 0.328 2.14 ± 0.159 

PC aa C36:0 8.07 ± 0.534 9.14 ± 0.678 

PC aa C36:1 78.7 ± 5.07 87.5 ± 6.89 

PC aa C36:2 267 ± 15.5 286 ± 14.7 

PC aa C36:3 172 ± 12.4 196 ± 13.6 

PC aa C36:4 174 ± 16.0 200 ± 14.7 

PC aa C36:5 30.0 ± 3.14 32.8 ± 3.14 

PC aa C36:6 1.22 ± 0.12 1.07 ± 0.116 

PC aa C38:0 3.30 ± 0.370 3.42 ± 0.256 

PC aa C38:1 9.55 ± 0.675 9.94 ± 0.763 

PC aa C38:3 60.8 ± 4.05 75.1 ± 5.44** 

PC aa C38:4 108 ± 7.84 120 ± 9.06* 

PC aa C38:5 74.4 ± 6.34 78.1 ± 6.12 

PC aa C38:6 72.5 ± 7.00 79.0 ± 8.65 

PC aa C40:1 0.48 ± 0.069 0.478 ± 0.057 

PC aa C40:2 0.51 ± 0.033 0.52 ± 0.031 

PC aa C40:3 1.04 ± 0.067 1.1 ± 0.068 

PC aa C40:4 4.84 ± 0.429 5.53 ± 0.473* 

PC aa C40:5 14.9 ± 1.27 17.7 ± 1.39* 

PC aa C40:6 25.8 ± 2.21 33.0 ± 3.38 

PC aa C42:0 0.59 ± 0.085 0.54 ± 0.050 

PC aa C42:1 0.27 ± 0.036 0.25 ± 0.021 

PC aa C42:2 0.17 ± 0.018 0.16 ± 0.016 

PC aa C42:4 0.21 ± 0.017 0.23 ± 0.012 

PC aa C42:5 0.39 ± 0.031 0.40 ± 0.026 

PC aa C42:6 0.54 ± 0.036 0.56 ± 0.038 

PC ae C30:0 0.48 ± 0.038 0.43 ± 0.026 

PC ae C30:1 1.99 ± 0.161 2.1 ± 0.097 

PC ae C32:1 3.34 ± 0.350 3.52 ± 0.253 

PC ae C32:2 0.62 ± 0.056 0.68 ± 0.051 

PC ae C34:0 2.80 ± 0.216 2.81 ± 0.151 

PC ae C34:1 12.2 ± 0.920 12.0 ± 0.789 

PC ae C34:2 14.3 ± 1.20 11.6 ± 0.936 

PC ae C34:3 8.07 ± 0.771 6.67 ± 0.936 
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PC ae C36:0 1.58 ± 0.103 1.74 ± 0.111 

PC ae C36:1 10.2 ± 0.798 10.1 ± 0.591 

PC ae C36:2 16.3 ± 1.21 15.5 ± 0.883 

PC ae C36:3 11.0 ± 0.944 10.4 ± 0.764 

PC ae C36:4 15.9 ± 1.90 18.5 ± 1.42 

PC ae C36:5 10.3 ± 1.28 10.6 ± 1.11 

PC ae C38:0 2.88 ± 0.233 2.74 ± 0.276 

PC ae C38:1 5.97 ± 0.444 6.32 ± 0.372 

PC ae C38:2 6.66 ± 0.428 6.77 ± 0.379 

PC ae C38:3 5.93 ± 0.523 6.03 ± 0.353 

PC ae C38:4 13.6 ± 1.49 16.2 ± 1.18 

PC ae C38:5 18.9 ± 1.80 22.6 ± 1.46 

PC ae C38:6 8.09 ± 0.917 8.80 ± 0.668 

PC ae C40:0 0.000 ± 1.71 0.000 ± 2.05 

PC ae C40:1 1.87 ± 0.134 1.79 ± 0.154 

PC ae C40:2 1.89 ± 0.119 1.90 ± 0.144 

PC ae C40:3 1.28 ± 0.093 1.3 ± 0.073 

PC ae C40:4 2.23 ± 0.244 2.68 ± 0.175 

PC ae C40:5 3.69 ± 0.425 4.17 ± 0.308 

PC ae C40:6 4.46 ± 0.544 5.11 ± 0.416 

PC ae C42:0 0.44 ± 0.075 0.45 ± 0.056 

PC ae C42:1 0.36 ± 0.028 0.37 ± 0.026 

PC ae C42:2 0.61 ± 0.045 0.66 ± 0.043 

PC ae C42:3 0.83 ± 0.073 0.83 ± 0.066 

PC ae C42:4 1.15 ± 0.131 1.0 ± 0.091 

PC ae C42:5 2.17 ± 0.288 2.03 ± 0.264 

PC ae C44:3 0.16 ± 0.010 0.1± 0.009 

PC ae C44:4 0.55 ± 0.062 0.51 ± 0.048 

PC ae C44:5 1.78 ± 0.216 1.79 ± 0.175 

PC ae C44:6 1.29 ± 0.143 1.22 ± 0.116 

lysoPC a C14:0 5.92 ± 0.195 6.16 ± 0.104 

lysoPC a C16:0 108 ± 7.45 108 ± 7.27 

lysoPC a C16:1 3.56 ± 0.257 3.37 ± 0.384 

lysoPC a C17:0 2.14 ± 0.193 1.94 ± 0.152 

lysoPC a C18:0 32.0 ± 2.47 34.0 ± 2.19 

lysoPC a C18:1 27.9 ± 1.87 25.6 ± 2.54 

lysoPC a C18:2 29.2 ± 2.76 25.6 ± 2.98 

lysoPC a C20:3 2.53 ± 0.213 3.24 ± 0.237 

lysoPC a C20:4 6.20 ± 0.441 6.31 ± 0.587 

lysoPC a C26:0 0.69 ± 0.027 0.79 ± 0.083 

lysoPC a C28:0 0.51 ± 0.022 0.52 ± 0.029 

lysoPC a C28:1 0.70 ± 0.043 0.73 ± 0.033 

SM (OH) C14:1 7.01 ± 0.529 7.21 ± 0.372 

SM (OH) C16:1 4.46 ± 0.300 4.35 ± 0.259 

SM (OH) C22:1 16.0 ± 1.15 16.1 ± 0.961 
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SM (OH) C22:2 14.8 ± 0.907 15.1 ± 0.943 

SM (OH) C24:1 2.47 ± 0.176 2.41 ± 0.199 

SM C16:0 127 ± 5.03 129 ± 7.05 

SM C16:1 18.2 ± 0.852 22.5 ± 1.45* 

SM C18:0 31.4 ± 1.48 28.0 ± 2.28 

SM C18:1 13.7 ± 0.710 15.4 ± 1.12 

SM C20:2 1.85 ± 0.175 2.00 ± 0.106 

SM C22:3 17.7 ± 1.76 19.1 ± 1.76 

SM C24:0 28.1 ± 1.74 31.2 ± 2.19 

SM C24:1 88.3 ± 2.37 94.3 ± 5.92 

SM C26:0 0.42 ± 0.024 0.43 ± 0.026 

SM C26:1 0.87 ± 0.044 0.94 ± 0.053 

Hexose 4520 ± 142.0 4710 ± 251.0 

¹Values are median ± SE, Low class n=14, High class n=14. 

²Low and High class included patients who had values 0.5 SD below and above the 

median for total fat mass, respectively.  

³Cx:y; acylcarnitine (x= number of carbons in acyl chain, y= location of double 

bond); PC.aa, phosphatidylcholine diacyl; lysoPC a, lysoPhosphatidylcholine acyl; 

SM, sphingomyelin. Asterisks indicate different from low total fat mass: *P<0.05, 

**P<0.01, ***P≤0.001 based on Mann-Whitney nonparametric statistical analysis 
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Figures 

Figure 5-1: A conceptual framework: contributions of multiple elements (diet, lean and fat mass, energy metabolism) to the 

metabolome of different biofluids  

 

 

 

 

Considering two individuals of equal body weight and equal macronutrient intake, but with different muscle and fat mass (A. normal, 

B high relative fat mass), it would be expected that metabolic fluxes in B would have a proportionately higher amount of fat-derived 

metabolites and a lower proportion of muscle-derived metabolites.
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CHAPTER 6: Learning to predict cancer-associated skeletal muscle wasting 

from 
1
H-NMR profiles of urinary metabolites  

6.1 Introduction  

Metabolic, neuronal and hormonal controls normally ensure that body 

weight and composition are maintained constant during adult life.  Involuntary 

weight gains or losses are significant perturbations of this precise control.  The 

focus of our research is cancer-associated muscle wasting. Muscle depletion is 

associated with poor functional status, treatment toxicity and shorter life 

expectancy (1-5). Prado et al. (2008), and others have shown that muscle loss may 

occur independently of changes in fat mass, and that muscle wasting may be an 

early or occult phenomenon that is difficult to detect against the background of 

overall body weight and body weight change, especially in overweight or obese 

individuals.  A recent consensus definition of cachexia (6) makes a distinction 

between behavior of skeletal muscle and adipose tissue: “cachexia is a complex 

metabolic syndrome associated with underlying illness and characterized by loss 

of muscle with or without loss of fat mass…”.  Muscle wasting may go unnoticed 

in its early stages, if progressing slowly, or if it is obscured by changes in other 

tissues. Improved approaches for detecting the onset and evolution of muscle 

wasting would help manage wasting syndromes and facilitate early intervention.  

Wasting has a cumulative nature. For example, muscle loss at a rate of 0.07% in 
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one day appears trivial, but if sustained equals 7% loss over 100 days and 25% 

loss over a year – a quantity that would have important physiological 

consequences for most individuals. Dual energy X-ray absorptiometry (DXA), 

computed tomography (CT) and magnetic resonance imaging (MRI) are 

considered the most precise measures of adipose and muscle tissues currently 

available (7-10), but have several limitations. Images must be repeated over time 

to detect loss, access and cost may be limitations and their analysis may be time-

consuming and labor-intensive and DXA and CT expose patients to radiation. 

Clinicians are keen to find new diagnostic approaches for identifying and 

monitoring muscle loss that are faster, cheaper, safer and more accessible.  

We hypothesized that metabolites produced from tissue breakdown are 

likely to be a sensitive indicator of muscle wasting and may provide a new 

diagnostic approach.  Muscle breakdown generates amino acids and their various 

catabolites, as well as urea and creatinine. Several of these end products are 

detectable in physiological fluids using NMR spectroscopy (11, 12). Coupled with 

recent advances in machine learning and multivariate statistics, metabolomic 

approaches have led to the identification of biomarkers for several diseases (i.e. 

celiac disease, prostate cancer) (13, 14).  Based on these ideas we investigated 

whether we could detect muscle wasting using metabolomic data from urine 

samples from patients with cancer.  Urine was selected as the biofluid of choice, 

since several end products of muscle catabolism (i.e. creatinine, methylhistidine) 

are specifically excreted in urine. We applied machine-learning techniques to 
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identify patterns of urinary metabolic profiles that discriminate the condition of 

muscle loss.  

 

6.2 Methods 

6.2.1 Study design and sample collection  

This study was approved by the Alberta Cancer Board Research Ethics 

Board. All participants provided written informed consent and had advanced 

cancer of the colon or lung, defined as locally recurrent or metastatic. Patients 

with prior radiation to the kidneys or malignancy of the kidney or urinary tract 

were excluded as these independently alter the ability to concentrate urine 

normally. Urine was selected as the biofluid of choice. Patients donated a urine 

sample taken at random (i.e. not controlled for time of day, or food intake) during 

a routine visit to the cancer center (n=93). We did not undertake a 24 h urine 

collection, as the patients’ ages and medical conditions (life-limiting illness) limit 

their inclination to commit to this additional burden. Preliminary data from our 

group suggests that urine volumes do not differ between cancer patients similar to 

those studied here (n=17, mean 24 hour urine volume 0.025 ± 0.009 L/kg body 

weight) and age and sex matched healthy controls (n=25, 0.024 ± 0.011 L/kg body 

weight). After adding sodium azide to a final concentration of 0.02% to prevent 

bacterial growth, samples were stored frozen at -80 °C until NMR data 

acquisition.   
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6.2.2 CT image analysis 

We compared our predictive model, obtained by applying machine 

learning methods to urine metabolites, with muscle loss quantified in serial CT 

images (15). Images were analyzed for total skeletal muscle tissue cross-sectional 

area (cm
2
) at the 3

rd
 lumbar vertebra using Slice-O-Matic software V4.3 

(Tomovision, Montreal, Canada).  Further details of image analysis can be found 

elsewhere (9, 10, 16) and prior studies in the Baracos laboratory (1, 17). During 

routine clinical care tumor progression is assessed by CT at intervals of ~100 

days. Two scans (preceding and following the urine sample) were selected.  

Muscle area in the CT image preceding the urine collection was used as a 

reference (baseline) to compute the % loss or gain. We expressed this rate as % 

change per 100 days, to take into account minor variation in the number of days 

between scans for different individuals. 

6.2.3 NMR spectra acquisition and targeted profiling 

Urine samples were prepared by adding 65 μL of an internal chemical shift 

standard (supplied by Chenomx Inc., Edmonton, Canada consisting of 5 mM 

sodium 2,2-dimethyl-2- silapentane-5-sulfonate-d6 (DSS-d6) and 0.2% sodium 

azide in 99% D2O) to 585 μL of urine. Using small amounts of NaOH or HCl, the 

sample was adjusted to pH 6.75 ± 0.05. A 600 μL aliquot of prepared sample was 

placed in a 5-mm NMR tube (Wilmad, Buena, NJ). All one-dimensional NMR 

spectra of urine samples were acquired using the first increment of the standard 

NOESY pulse sequence using a 600 MHz Varian INOVA NMR spectrometer 
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(Varian Inc., Palo Alto, CA) equipped with a triple axis-gradient 5-mm HCN 

probe.   

We used a targeted profiling or quantitative metabolomic approach (12, 

18) to identify and quantify metabolites from the resulting NMR spectra using 

Chenomx NMRSuite 4.6 (Chenomx Inc. Edmonton, Canada). Quantitative 

approaches are more interpretable than spectral binning and are also more robust 

with respect to compound overlap, and variability in solution conditions (i.e. pH 

and ionic strength) (12, 19). Two analysts (DDH, CS) independently analyzed the 

spectra and we included only those compounds and concentrations agreed upon 

by both analysts.  Compound spiking with authentic standards from the Human 

Metabolome Library (20) was used to confirm the identity of difficult-to-assign 

compounds.  As a further check, additional (non-NMR) laboratory analyses were 

conducted to verify creatinine concentrations and amino acid peak assignments 

and concentrations. Creatinine was determined colorimetrically (SpectraMAX 190 

using SoftMax Pro V5 software) with two different commercial kits based on 

Jaffè’s basic picrate method (Stanbio Creatinine Liquicolor Kit, Cat No. SB 0420-

250 and Cedarlane, Creatinine Assay Kit, Cat. No. 500701-480). Amino acid 

assignments and concentrations were verified by a spike-in experiment with a 

solution containing Ala, Asn, Gln, Gly, His, Ile, Leu, Lys, Phe, Ser, Tau, Thr, Trp, 

Tyr, Val, 1-Methylhistidine and 3-Methylhistidine (3-MH). Spiked samples were 

quantified by NMR as described above and by reverse-phase HPLC using Waters 

pico-tag® method (Waters Co., MA, USA) (21).  
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6.2.4 Statistical methods 

6.2.4.1 Data preprocessing  

Many statistical procedures assume that variables are normally distributed 

and a significant violation of this assumption can seriously increase the chances of 

making an analytical error. Data can appear non-normal if some values are 

extreme outliers relative to the rest of the sample. This frequently happens in urine 

samples as metabolite concentrations can vary up to several hundred–fold.  To 

correct for this problem, we transformed the data by taking the natural log of the 

concentration values.  

Water intake during the day can alter concentration of metabolites in urine.  

We employed three approaches to correct for this effect, including a) 

normalization to creatinine concentration in each sample (22)), b) normalization 

by total peak area of each sample; this assumes that the integrated area under an 

NMR spectrum is a linear function of the detectable metabolite concentrations in 

the samples (23, 24)) and c) probability quotient normalization (25), which 

calculates a most probable dilution factor (the median) by examining the 

distribution of the quotients of the amplitudes of a test spectrum by those of a 

reference spectrum.  

6.2.4.2 Development of a Classifier 

Metabolomic researchers (11, 13) compute how each individual compound 

correlates with the outcome — i.e. muscle loss or muscle gain.  While such 

bivariate analyses typically provide valuable biological insights, they do not 

directly help clinicians who are primarily interested in making a diagnosis.  As 
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our primary goal was to develop a tool that could predict whether a patient is 

losing muscle based on their urine metabolite concentrations, we considered 

different analytical tools.  For diagnostic applications, it is useful to have a 

classifier that returns a prediction: given the metabolic profile mr of patient r, 

determine whether this patient r is losing muscle or not, cr  (losing, gaining).    

A classifier can base its prediction on a potentially complicated combination of all 

metabolite concentrations. 

A sample of historical data (i.e. a collection of patient metabolic profiles, 

along with their respective muscle loss/gain values ( [ mr, cr ] )r over a set of 

patients r), is used as a starting point.  We can use the machine learning approach 

to computationally learn a classifier, from this historical data. The classifier can 

then be used to predict the status of future patients. We summarize below a 

number of machine learning approaches. 

6.2.4.3 Classifiers considered  

We examined classification performance using 8 different standard 

statistical and machine-learning approaches:  

(a) Naïve Bayes – a Bayesian classifier that assumes that metabolite 

concentrations are all independent of each other, for each of the two classes C  

(losing, gaining) (26).  

(b) Tree-augmented Naïve Bayes (TAN) – a Bayesian classifier allowing a 

simplified set of conditional dependencies between pairs of metabolites (forming 

a tree structure), for the overall distribution (27). 
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(c) multi-TAN – identical to TAN except that the tree structure for the two classes 

is allowed to differ from one another (27). 

(d) Full dependence model – a Bayesian network classifier allowing any 

metabolite concentration to depend on any other metabolite concentration.  

(e) Partial Least Squares-Discriminant Analysis (PLS-DA) – a common approach 

in metabolomics studies that uses an eigenvalue-based approach to create a 

classifier. 

(f) Decision Trees (also called recursive partitioning systems) (28) sequentially 

decide which feature to examine, based on the observed values of the features 

already examined, until having enough information to return a class value (26). 

(g) Support Vector Machines (14) view each instance as a vector in k-dimensional 

space, and seek the maximally separating hyperplane between the classes in this 

space (26). We use a SVM with a linear kernel. 

(h) Pathway Informed Analysis (PIA) – A Bayesian classifier using biological 

knowledge in the form of metabolic pathways, extracted from the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database (29).  PIA treats each 

pathway as a graph structure, similar to the “substrate graph” structure of Fell & 

Wagner (2001), where each node of the graph represents a specific metabolite and 

each edge connects a pair of metabolites that participate in the same reaction (i.e., 

malate and fumarate) (30). Incorporating pathway knowledge into classifiers 

represents a confluence of statistical and biological expertise that could improve 

predictive power (note that none of the other 7 learning algorithms use biological 

information). 
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6.2.4.4 Prediction accuracy of classifiers 

We used cross–validation and permutation tests to assess the accuracy of 

our classifiers. The quality of a classifier is defined by how well it performs on 

novel test instances that were not part of the training set. Such an evaluation could 

be based on an external validation set – i.e., new data that the learner has not 

previously seen. Here, we used cross-validation (31) to approximate an external 

validation set.  This involves partitioning the training data into k=5 subsets; then k 

times we first produce a classifier based on (k-1) subsets of the data, which we 

then test of the remaining subset. We then use these k evaluation scores to 

estimate the mean and variance of the accuracy (on novel data) that we would 

obtain using a classifier built using the entire training set. 

Permutations tests are particularly useful for confirming robustness of the 

classifier and for ensuring it has not been over-trained (32).  We first randomly 

permute the labels (muscle loss status) for the training data, then run the entire 

cross-validation evaluation process on this newly re-labeled data.  As permutation 

removes any correlation between data and label, we should get just “noise” on the 

permuted data.  We then compared the diagnostic accuracy on the original un-

permuted data, with the distribution of the accuracy obtained using the various 

permuted datasets. This allowed us to estimate the likelihood that results from un-

permutated data were due to chance. 

6.2.4.4 Bivariate analysis 

A standard approach to analyzing quantitative metabolomic data is 

bivariate analysis -- i.e. finding the degree to which the primary outcome depends 
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on each individual metabolite.  Each highly-dependent metabolite is a feature that 

is associated with the biological process of interest (here, muscle wasting).  We 

focus on binary classification, labeling each patient as either losing or gaining 

muscle and use mutual information (33) to quantify the dependence between the 

binary class outcome C  (losing, gaining) and the real-valued concentration of 

each of the 63 metabolites M  (fumarate, malate, oxaloacetate …), which we 

assume follows a Gaussian distribution.  This involves computing:   

 dm
cPmp

cmp
cmpCMMI

c 





)()(

),(
log),(),(  

where P(c) is the probability that the class C=c (here, we set P(C=losing) to be the 

observed frequency of “muscle losing” patients in the data sample) and 



p(m) 1/ 2m
2
exp  mm 

2
/ 2m

2   is the Gaussian probability density 

function, which is based on the mean m and variance m
2
 estimated from the data 

sample. We use a similar function for p(m,c), using estimated mean and variance 

that depends on whether the class is C=losing or C=gaining.  Notice that 

MI(M,C) is 0 if the metabolite M is completely independent of C; larger values 

indicate a higher degree of correlation. 

 

6.3 Results 

6.3.1 Muscle loss continuum in advanced cancer patients 

Figure 6-1 shows the distribution of muscle loss and gain for the 93 

samples in our study. Patients in the 2 classes (Table 6-1) did not differ in age, 
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sex, cancer site or stage and these features were uncorrelated with one another and 

also uncorrelated with muscle loss/gain. Because the measurements of muscle 

change are only precise to about 1.5%/100 days, we adopted the following simple 

classification rule: patients were designated as not losing muscle (anabolic) if the 

change in muscle mass exceeded +0.75% / 100days; patients were designated as 

losing muscle (catabolic) if muscle was lost over time and exceeded -0.75% / 

100days. Using this classification scheme we excluded the 20 patients whose 

change was between -0.75% and +0.75% / 100 days (shaded area in Figure 1). We 

classified 44 patients as muscle losing (Mean -4.71% / 100 d; SD = 5.13) and 29 

patients as not losing muscle (Mean +3.91%/ 100 d; SD = 2.33). These two 

groups of patients with known muscle change status (loss or gain) were used to 

build predictive models using urinary metabolites.    

6.3.2 Metabolites detected and used in statistical approaches 

We assigned and quantified 71 metabolites in each sample.  Creatinine 

concentrations assessed by NMR were within 95% (95% confidence interval of 

91% - 97%) of the values confirmed by laboratory tests. Spike-in experiments 

provided positive confirmation of peak assignments for Ala, Asn, Gln, Gly, His, 

Ile, Leu, Lys, Phe, Ser, Tau, Thr, Trp, Tyr, Val, 1-Methylhistidine and 3-

Methylhistidine. We excluded drug metabolites or drug vehicle constituents 

(ibuprofen, acetaminophen, salicylurate, propionate, propylene glycol, mannitol) 

from statistical analyses. Methanol (a microbial (non human metabolite) was 

excluded as unlikely to be related to muscle loss. Urea was excluded since 

suppression of the NMR signal by pre-saturation may lead to resonant suppression 
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of the urea peak due to proton exchange with water, thereby making its 

quantification unreliable (19).  The remaining 63 metabolites were used in 

subsequent analyses.   

Median concentration and concentration ranges for these 63 metabolites 

are shown (Table 6-2). Numerous individual metabolites, as well as the total 

concentration (i.e. the sum of all 63 metabolites), were increased in the patients 

losing muscle (Mann-Whitney test).  Levels of creatinine were higher in patients 

with muscle loss (P<0.001). 

None of the methods of data normalization (by creatinine concentration, 

by total peak area, probability quotient normalization) proved helpful and all three 

methods reduced the predictive accuracy of the classifiers, compared with no data 

normalization. The use of a log transformation was ultimately found to be the only 

preprocessing step for the metabolite concentrations that improved the predictors' 

performance compared with raw concentration values. 

6.3.3 A classifier for muscle loss based on urinary metabolites 

Of all tested algorithms (Table 6-3), SVM was the most accurate classifier, 

and predicted muscle loss status with a (5-fold cross validation) accuracy of 

82.2% (



  = 7.45%). Although PIA produced a classifier with the same accuracy, 

we focus on the SVM model because it is more familiar. Figure 6-1 also identifies 

the patients who were misclassified by the SVM classifier. While 6 misclassified 

patients had muscle losses/gains of less than 2%, there were 7 misclassified 

patients with losses/gains up to 5%.  
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In 1,000 permutation tests (32) on the SVM model, which produced an 

average accuracy of 53.8%, no permutation performed better than the SVM 

classifier. This non-parametric test suggests that chance alone would not have 

produced this SVM result – i.e., the probability that a classifier (here SVM) could 

produce a score of 82.2%, if there was no real pattern in the data, is P < 0.001.   

6.3.4 Urine metabolites related to muscle loss 

Mutual information was used to quantify dependence between each of the 

63 metabolites the class outcome (losing muscle vs. not losing muscle), Table 6-4. 

Larger values indicate a higher degree of dependence between the metabolite and 

the class outcome. 

 

6.4 Discussion 

Cancer-associated muscle wasting is associated with reduction in 

functional status, in response to treatment and in life expectancy. Methods 

currently used to assess muscle loss involve diagnostic imaging techniques such 

as computed tomography (CT), which are costly, inconvenient, invasive, time 

consuming and have limited ability to detect early or slowly evolving wasting. We 

present a novel approach using single time-point urinary metabolite profiles to 

determine whether a patient is experiencing muscle wasting; 
1
H-NMR analysis of 

a single random urine sample may be a fast, cheap, safe and inexpensive tool to 

screen and monitor muscle loss, and that useful classifiers for predicting related 

metabolic conditions are possible with the methodology presented. 
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6.4.1 Building an accurate classifier using metabolomic data 

Here we present the first steps towards diagnostic markers of cancer-

associated skeletal muscle wasting using metabolic
 
profiling. Human populations 

are variable with respect to age, gender, ethnicity, diet, drug intake, and health 

status and some, but not all, of these features can be controlled in research studies. 

Against this background, we tried to determine whether urine could be used to 

diagnose patients with skeletal muscle wasting, an important physiological 

component of the negative nitrogen balance characteristic of wasting syndromes. 

Muscle wasting may go unnoticed in its early stages, if progressing slowly, or if it 

is obscured by changes in other tissues. This is why a robust classifier that can 

achieve an accuracy of 82%, using metabolites in a single randomly collected 

urine sample could be considered a significant advance compared with a standard 

approach that requires several months and the acquisition of at least 2 diagnostic 

images. 

 In efforts to find the most accurate classifier we tested 8 different 

classifiers. Our validated results (cross validation and permutation testing) support 

the claim that SVM found a meaningful pattern within the data. SVM 

performance was superior to PLS-DA, a method often used in metabolomic 

studies (34). PLS-DA reduces the dimensionality of the data in a way that 

increases the separation with respect to the topic of interest (e.g., a disease state, 

or other variable under study). While PLS-DA can overfit (34), our results show 

that PLS-DA performed competitively with the top predictors. 
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We can envisage an even better predictor and more precise diagnostic test 

based on an extended metabolite profile. In NMR spectra, it is typically possible 

to detect only those compounds with concentrations >1 µM. Analysis of blood 

plasma or more sensitive or comprehensive metabolomic methods (i.e. MS-based 

methods) may reveal additional metabolites related to muscle loss. Different 

analytic approaches could also permit detection of compounds involved in lipid 

metabolism to shed light on fat loss and gain. Furthermore, serial urine sampling 

and CT image analysis over time would take advantage of repeated measures 

within individuals and would enable the ability to define biochemical changes 

early and late in disease and pathways implicated in disease pathogenesis. Finally, 

it will be important to account for some of the presently unexplained sources of 

variation, which may limit the precision of this diagnostic test. It is not obvious 

why certain patients were misclassified by our classifier (Figure 6-1); it could be 

due to some undetected underlying condition (i.e. kidney dysfunction) or to 

inherent limitations of the data, given that the minimum interval over which gain 

or loss can be detected by CT (months) was represented by a single point in time 

sample. 

6.4.2 Metabolomic signature of muscle loss 

Different metabolites appear in urine in function of processes of passive 

diffusion, active transport and reuptake and are not a representative sample of all 

of intermediary metabolism. Owing to the specific nature of urine, metabolites 

associated with amino acid metabolism, urea cycle, intermediary metabolism 

(glycolysis, TCA cycle, 1-carbon metabolism) and creatine metabolism were 
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prominent. Nevertheless, that certain urinary metabolites are related to muscle 

loss (Table 6-4) does suggest some of the underlying biology of muscle wasting. 

Several of the metabolites are constituents, breakdown products or metabolites 

formed in muscle. Creatinine is a degradation product of creatine, a 

phosphorylated molecule specific to muscle energy metabolism; both of these 

compounds were related to muscle loss. Creatinine is known to be raised when 

muscle is broken down (35). This likely explains why creatinine normalization 

during the prepossessing step did not perform well; creatinine normalization 

would only work if the assumption that creatinine concentration is only related to 

urine dilution. Muscle proteins contain a higher proportion of branched chain 

amino acids compared with proteins in other tissues, and muscle is the 

predominant site of their catabolism. Thus the association of valine, leucine and of 

a decarboxylation product of leucine, 3-OH-isovalerate, with muscle loss is not 

surprising. This is not exclusive to the branched chain amino acids; during muscle 

protein breakdown, all of its constituent amino acids enter oxidative pathways. 

Increased levels of several metabolites in urine are possibly indicative of 

increased flux of amino acids (Leu, Ile, Val, Ala, Thr, Tyr, Gln, Ser), and of 

amino acid carbon through intermediary metabolism (succinate, trans-aconitate) 

and 1-carbon metabolism (betaine, trigonelline). Finally, in relation to the 

suggestion that insulin resistance may be a prominent feature of cancer-associated 

muscle wasting (36, 37), urinary glucose was elevated in patients with muscle loss 

(397 µM) compared with patients who were not losing muscle (93 µM) (p<0.001).  

Elevated blood and urine glucose levels are associated with insulin-resistant 
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states, and while the urine glucose levels in patients with muscle wasting were 

below levels typical of diabetes, this may be an early sign of insulin resistance.  

 

6.5 Conclusion  

Our work is the first attempt to use metabolomics to diagnose muscle 

wasting occurring as a result of cancer cachexia in humans. We developed a 

single time-point urine test using concentrations of 63 urinary metabolites to 

diagnose muscle wasting. This minimally invasive test is rapid, robust, quite 

accurate (82.2%), and able to detect a small but physiologically relevant rate of 

muscle loss (outside of 0.75% loss /100 days). Metabolites related to muscle 

wasting include a variety of compounds likely to originate from catabolism of this 

tissue and may also shed some light on the underlying metabolic aberrations that 

lead to muscle loss. 
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Tables 

 

Table 6-1: Characteristics of study participants  

 

 Patients with 

muscle gain 

>0.75%/100 d 

Patients with 

muscle loss 

>0.75%/100 d 

All patients 

Age (mean ± SD) 64 ± 11 62 ± 10 63 ± 10 

Gender  

  % Male 48 66 59 

Cancer Type 

  % Lung  28 23 25 

  % Colorectal  72 77 75 

Staging % (N) 

  Stage 1 NA NA NA 

  Stage 2 NA 2 (1) 1 (1) 

  Stage 3 31 (9) 25 (11) 27 (20) 

  Stage 4 69 (20) 73 (32) 71 (52) 
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Table 6-2: Median concentration and concentration ranges of 63 urine metabolites included in the statistical analyses 
 

Metabolite ¹H chemical shift 

(ppm) and coupling¹ 

Median concentration (range) (µM) 

  Patients with  

muscle gain 

 >0.75%/100 d 

Patients with  

muscle loss  

<-0.75%/100 d 

All patients 

1,6-Anhydro-β-D-glucose 3.53(m), 3.67(m), 3.69(m), 

3.75(dd), 4.09(dd), 

4.62(dd), 5.45(m) 

34.7 (9.4 - 191.9) 98.5 (4.7 - 687.3) ** 47.5 (4.7 - 942.6) 

1-Methylnicotinamide 4.47(s), 8.17(t), 8.88(d), 

8.95(d), 9.26(s) 

18.2 (6.4 - 1036) 51.7 (6.9 - 474.1) ** 36.4 (4.6 - 1036) 

2-Aminobutyrate 0.97(t), 1.89(m),  3.71(dd) 7.4 (1.3 - 28.9) 15.3 (2.1 - 173) ** 10.5 (1.3 - 173) 

2-Hydroxyisobutyrate 1.35(s) 18.8 (4.9 - 66.2) 42.1 (7.8 - 85.4) *** 33.7 (4.5 - 193.4) 

2-Oxoglutarate 2.44(t), 3.00(t) 25.3 (5.6 - 987.2) 69.3 (5.5 - 2467) * 63 (5.5 - 2467) 

3-Aminoisobutyrate 1.19(d), 2.60(m), 3.03(dd), 

3.1(dd) 

21.3 (3.1 - 209.2) 30.7 (2.6 - 1481)  29.8 (2.6 - 1481) 

3-Hydroxybutyrate 1.19(d), 2.29(dd), 

2.40(dd), 1.14(m) 

6.5 (2.2 - 34.3) 25.6 (1.7 - 176.6) *** 11.8 (1.7 - 176.6) 

3-Hydroxyisovalerate 1.26(s),2.36(s) 5.3 (0.9 - 57.6) 21.3 (2.5 - 164.4) *** 13 (0.9 - 359.7) 

3-Indoxylsulfate 7.18(m), 7.26(m), 7.36(s), 

7.49(d), 7.70(d), 10.10(s) 

104.9 (27.8 - 613.8) 202.4 (34.9 - 1038) *** 165.6 (27.8 - 1038) 

4-Hydroxyphenylacetate 3.44(s), 6.85(m), 7.16(m) 48.2 (15.5 - 799.6) 93 (17.6 - 430.9) ** 70.1 (15.5 - 799.6) 

Acetate 1.91(s) 16.2 (3.5 - 202.5) 71.5 (9.9 - 410.6) *** 34.9 (3.3 - 410.6) 

Acetone 2.22(s) 6.8 (2.3 - 23.8) 8.2 (2.3 - 206.5) 7.6 (2.1 - 206.5) 

Adipate 1.54(m), 2.19(m) 6.2 (1.6 - 19.2) 16.1 (3.1 - 325.6) *** 11.1 (1.6 - 325.6) 

Alanine 1.47(d), 3.78(qt)  78.6 (16.8 - 601) 320.1 (26.8 - 1314) *** 195.7 (13.9 - 1447) 

Asparagine 2.86(dd), 2.95(dd), 

3.99(dd), 6.91(s), 7.62(s) 

29.2 (6.7 - 152.6) 64.4 (8 - 272.9) *** 42.3 (6.7 - 272.9) 

Betaine 3.26(s), 3.89(s) 27.3 (2.3 - 312.4) 112.5 (4.1 - 391.7) *** 63.8 (2.3 - 788.8) 

Carnitine 2.41(dd), 2.45(dd), 3.22(s), 

3.40(m), 3.43(m), 4.56(m) 

19 (2.7 - 206.5) 31.7 (4.5 - 488.1) ** 24.6 (2.7 - 488.1) 
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Citrate 2.53(d), 2.69(d) 1014 (59.6 - 4214) 2336 (80.9 - 13636) ** 1790 (59.6 - 13636) 

Creatine 3.02(s), 3.92(s) 18.6 (2.8 - 393.6) 87.4 (7.9 - 1863) *** 48.8 (1.1 - 1862.7) 

Creatinine 3.03(s), 4.05(s) 3616 (1003 - 15116) 10003 (1256 – 33944) *** 8032 (868.2 - 33944) 

Dimethylamine 2.72(s) 148.8 (41.3 - 496.2) 370.6 (46.9 - 1562) *** 306.2 (27.4 - 1562) 

Ethanolamine 3.14(m), 3.82(m) 113.9 (21.5 - 907.8) 270.7 (16.1 - 1439) ** 212.4 (16.1 - 1439) 

Formate 8.45(s) 61.4 (6.4 - 294.4) 136.1 (27.7 - 1476) ** 91.7 (6.4 - 1476) 

Fucose 1.20(d), 1.24(d), 3.44(dd), 

3.56(t), 3.63(dd), 3.74(dd), 

3.76(dd), 3.79(m), 

3.80(m), 3.85(dd), 

3.86(m), 3.87(m), 

3.97(dd), 4.01(m), 

4.03(m), 4.07(dd), 

4.18(m), 4.55(d), 5.20(d), 

5.22(d), 5.27(d) 

37.7 (5.7 - 196.2) 90.2 (13.6 - 408.4) *** 68.4 (5.7 - 408.4) 

Fumarate 6.51 3.1 (0.8 - 36.2) 6.6 (1.1 - 96.6) *** 4.2 (0.8 - 96.6) 

Glucose 3.24(dd), 3.40(m), 

3.41(m), 3.47(m), 3.49(m), 

3.53(dd), 3.71(m), 

3.72(dd), 3.74(m), 

3.82(m), 3.84(m), 

3.90(dd), 4.64(d), 5.23(d) 

92.9 (26.9 - 337.5) 397 (43.9 - 8724.8) *** 190 (26.9 - 8724.8) 

Glutamine 2.12(m), 2.15(m), 2.43(m), 

2.47(m), 3.76(t), 6.87(s), 

7.58(s) 

112.9 (23.3 - 862.1) 401.3 (26.8 - 1684) *** 226.4 (15.1 - 1684) 

Glycine 3.56(s) 382.2 (38.3 - 2281) 690.2 (52.6 - 5073) ** 560 (38.3 - 18195) 

Glycolate 3.95(s) 66 (5.4 - 439.9) 179.8 (10.9 - 682.8) ** 126.3 (5.4 - 885.5) 

Guanidoacetate 3.79(s) 45.6 (7 - 301.1) 96.1 (18.2 - 563.5) ** 72.1 (4.6 - 563.5) 

Hippurate 3.96(d), 7.54(m), 7.55(m), 

7.63(t), 7.82(m), 7.83(m), 

8.52(s) 

574.8 (122.7 - 6667) 21816 (93.1 - 19263) *** 1274 (93.1 - 19263) 
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Histidine 3.15(dd), 3.25(dd), 

3.99(qt), 7.11(s), 7.92(s) 

78.4 (16.3 - 616.1) 326 (14.1 - 1869) *** 182.8 (14 - 1868.8) 

Hypoxanthine 8.18(s), 8.20(s) 31.8 (3.8 - 161.7) 44.8 (4.2 - 265.3) 42.6 (3.7 - 265.3) 

Isoleucine 0.93(t), 1.00(d), 1.25(m), 

1.46(m), 1.97(m), 3.66(d) 

4.2 (1.8 - 18) 8.4 (2 - 40.2)* 7.7 (1.8 - 117.5) 

Lactate 1.32(d), 4.11(d) 39.4 (7.3 - 199.3) 110.4 (17.5 - 3659) *** 87.3 (7.3 - 3659) 

Leucine 0.95(d), 0.96(d), 1.67(m), 

1.70(m), 1.73(m), 3.73(m) 

9 (2.5 - 31.4) 24.3 (3.5 - 103.8) *** 19.1 (2.5 - 103.8) 

Lysine 1.43(m), 1.50(m), 1.72(m), 

1.88(m), 1.91(m), 3.02(t), 

3.75(t) 

34.9 (10.5 - 787.5) 106.7 (15.2 - 464.6) *** 75.6 (4.3 - 787.5) 

Methylamine 2.6(s) 5.1 (1.5 - 44.6) 20.4 (1.8 - 52.3) *** 15.5 (1.5 - 108.8) 

Methylguanidine 2.83(s) 6.8 (1.7 - 36.6) 10.4 (2.1 - 141.6)  8.8 (1.7 - 141.6) 

N,N-Dimethylglycine 2.92(s), 3.72(s) 9.2 (1.2 - 52.5) 30.4 (3.4 - 119.9) *** 21.3 (1.2 - 169.5) 

O-Acetylcarnitine 2.14(s), 2.50(dd), 2.63(dd), 

3.19(s), 3.60(dd), 3.84(dd), 

5.59(m) 

6.1 (1.2 - 43.9) 14.2 (1.6 - 254.6) ** 11.6 (1.2 - 254.6) 

Pantothenate 0.89(s), 0.92(s), 2.41(t), 

3.39(d), 3.43(qt), 3.44(qt), 

3.51(d), 3.98(s), 8.00(dd) 

14.4 (3.1 - 691.4) 26.3 (2.6 - 187.5) * 22.6 (1.7 - 691.4) 

Pyroglutamate 2.03(m), 2.38(m), 2.41(m), 

2.50(m), 4.17(dd) 

82.7 (21.4 - 442.1) 251.7 (37.6 - 1066) *** 155.5 (18 - 1066) 

Pyruvate 2.37(s) 6.5 (0.9 - 66.6) 21.4 (1.8 - 184.8) *** 15.4 (0.9 - 184.8) 

Quinolinate 7.46(dd), 8.00(d), 8.45(d) 26.7 (5.2 - 163.6) 76 (16.2 - 260.7) *** 51 (5.2 - 260.7) 

Serine 3.84(dd), 3.94(dd), 

3.98(dd) 

90.5 (16.2 - 269.8) 218.3 (32.6 - 1245) *** 136.8 (16.2 - 1245) 

Succinate 2.4(s) 8.6 (1.7 - 221) 50.2 (6.4 - 587.8) *** 29.3 (1.2 - 587.8) 

Sucrose 3.47(t), 3.55(dd), 3.66(s), 

3.68(m), 3.76(m), 3.80(m), 

3.82(m), 3.83(m), 3.84(m), 

3.88(m), 4.04(t), 4.21(d), 

5.40(d) 

19.2 (6.5 - 600.6) 67.6 (10.2 - 2081) *** 41.1 (6.5 - 2081) 
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Tartrate 4.33(s) 10.7 (2.2 - 273.1) 16.3 (3 - 834.5)  12.8 (2.2 - 834.5) 

Taurine 3.25(t), 3.41(t) 176.2 (17.9 - 1513) 407.5 (55.3 - 4285) ** 280.3 (13.5 - 4284) 

Threonine 1.32(d), 3.59(d), 4.26(m) 39.1 (9.1 - 250.5) 102.6 (8.2 - 448.5) *** 67.6 (4.4 - 448.5) 

Trigonelline 4.43(s), 8.07(dd), 8.82(m), 

8.83(m), 9.11(s) 

74.6 (10.1 - 564.5) 190.2 (10.2 - 2257) ** 97.2 (10.1 - 2257) 

Trimethylamine N-oxide 3.26(s) 243 (55.7 - 1533) 542.8 (66.8 - 5460) ** 403.2 (14.9 - 5460) 

Tryptophan 3.30(dd), 3.47(dd), 

4.05(q), 7.19(m), 7.27(m), 

7.31(s), 7.52(d), 7.72(d) 

21.3 (10.5 - 185.4) 82.1 (9.9 - 260.3) *** 56.7 (9.9 - 260.3) 

Tyrosine 3.05(dd), 3.19(dd), 

3.94(q), 6.88(m), 7.20(m) 

23.9 (4.2 - 180) 86.8 (14 - 537.2) *** 58.5 (4.2 - 537.2) 

Uracil 5.79(d), 7.52(d) 20.2 (3.1 - 138) 29.5 (4.2 - 179.2) 28.1 (3.1 - 179.2) 

Valine 0.98(d), 1.03(d), 2.26(m), 

3.61(d) 

13.2 (4.1 - 53.3) 39.8 (4.3 - 160.1) *** 30.8 (4.1 - 160.1) 

Xylose 3.22(dd), 3.31(dd), 3.43(t), 

3.52(dd), 3.60(m), 

3.62(m), 3.65(m), 3.67(m), 

3.69(m), 3.92(dd), 4.57(d), 

5.19(d) 

32.8 (10.1 - 259.4) 71.3 (16.6 - 2158) *** 51.2 (9.8 - 2155) 

cis-Aconitate 3.12(d), 5.75(m) 54.1 (12.9 - 298.1) 235.1 (15.1 - 1862) *** 128.7 (12.9 - 1862) 

myo-Inositol 3.27(t), 3.53(dd), 3.62(dd), 

4.05(m) 

30.5 (11.6 - 315.5) 131.9 (22 - 850.4) *** 78.2 (8.1 - 850.4) 

trans-Aconitate 3.44(s), 3.59(s) 13.6 (4.9 - 181.2) 45.3 (7.9 - 216.3) *** 26.9 (4.9 - 639.3) 

1-Methylhistidine 3.21(dd), 3.29(dd), 3.74(s), 

3.95(dd), 7.13(s), 8.10(s) 

73 (11.4 - 1186) 245 (16.6 - 2694) ** 199.8 (11.4 - 2694) 

3-Methylhistidine 3.08(dd), 3.16(dd), 3.70(s), 

3.96(dd), 7.03(s), 7.70(s) 

29.7 (8.6 - 184.6) 82.8 (8 - 317) *** 71.4 (8 - 317) 

Total metabolites  29.2 (0.8 - 15116) 82.8 (1.1 – 33944) *** 56.7 (0.8 – 33944) 

 

* (P<0.05), **(P<0.01), ***(P≤0.001) P-values were obtained using
 
Mann-Whitney nonparametric statistical analysis comparing 

patients with versus without muscle loss.  

¹s=singlet, d=doublet, dd=doublet-doublet, t=triplet, q=quartet, m=multiplet 
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Table 6-3: Predictive performance for muscle loss of 8 machine learning 

approaches, averaged over the 5 folds of cross-validation  

 

Classifier Mean Accuracy Standard 

Deviation 

Support Vector Machines 82.2 % 7.5 

Pathway Informed Analysis 82.2 % 7.2 

Multi-Tree Augmented Naïve Bayes 76.8 % 8.0 

PLS-DA 76.7 % 14.8 

Tree Augmented Naïve Bayes 76.7 % 9.6 

Full dependence model 75.1 % 6.8 

Naïve Bayes model 75.1 % 9.7 

J48 Decision tree 65.8 % 9.1 

Random permutation test (SVM) 53.8% 6.5 
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Table 6-4: Bivariate analysis: top 30 urine metabolites related to skeletal 

muscle loss 

Metabolite Mutual Information 

Adipate 0.213524065 

Glucose 0.203986953 

Quinolinate 0.196946368 

myo-Inositol 0.17310194 

Valine 0.165888472 

Succinate 0.164968427 

Betaine 0.16477065 

Leucine 0.16401522 

N,N-Dimethylglycine 0.157109136 

3-Hydroxyisovalerate 0.15366801 

Creatine 0.147918127 

Acetate 0.14713014 

Alanine 0.145640343 

Pyroglutamate 0.142823206 

3-Hydroxybutyrate 0.142709618 

Glutamine 0.141498304 

cis-Aconitate 0.134050157 

Methylamine 0.130789947 

Tryptophan 0.130351855 

Dimethylamine 0.126891503 

Xylose 0.125333817 

Creatinine 0.125318846 

Formate 0.123810009 

Tyrosine 0.116765473 

trans-Aconitate 0.110643466 

Lactate 0.109694272 

Sucrose 0.108986623 

2-Hydroxyisobutyrate 0.107381302 

Serine 0.106181068 

Threonine 0.101972559 

1
Mutual information is a way to quantify dependence between two variables.  We 

computed the mutual information between each of the 63 metabolites the class 

outcome, C.  Here we have a binary outcome variable (losing muscle vs. not 

losing muscle) and a continuous metabolite concentration variable that we assume 

follows a Gaussian distribution.  Mutual Information computed as described under 

statistical methods and yields unit-less values, larger values indicate a higher 

degree of dependence. 
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Figures 

Figure 6-1: Percentage muscle change continuum in cancer patients as 

determined by computed tomography image analysis 

The boxed region highlights the patients excluded from analysis. Light colored 

columns indicate those samples that were misclassified by the SVM during cross-

validation. 

Using serial computed tomography images, patients’ muscle change (loss or gain) 

was computed. The boxed region indicates patients whose muscle change fell 

within a minimal margin of ± 0.75% / 100 d. These patients were not included in 

the analysis as their calculated muscle change is within the precision error of the 

imaging method. The remaining patients were classified as losing or not losing 

muscle.  These two groups represent the distal ends of the muscle change 

continuum and statistically different from each other (P<0.001). 
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CHAPTER 7: Final Discussion 

 

7.1 Introduction  

The purpose of this research was to apply transcriptomic and metabolomic 

technologies to gain a better understanding of transcriptional changes that occur in 

skeletal muscle, develop a non-invasive tool to detect muscle mass changes in 

cancer and gain insight into the metabolic alterations underlying cancer cachexia. 

It was clear early on in this research that various methodological considerations 

would have to be addressed (Figure 7-1). The work presented here extends 

beyond cachexia research to other fields that may use metabolomic and 

transcriptomic technologies. This final discussion outlines key points and 

concepts related to the research presented in the previous chapters and makes 

recommendations for future research.   

 

7.2 The concept of classification in cancer cachexia studies 

At no point in this thesis were patients classified as cachectic or non-

cachectic, specifically. Cancer cachexia is a complex and multifactorial syndrome 

(1) and patients with cachexia may present with varying degrees of muscle and fat 

mass, weight loss, muscle loss, myocellular fat infiltration, dietary intake and/or 

resting metabolic rate (2, 3). I aimed to better understand molecular and metabolic 

differences in relation to these variations. This required classification of patients 

according to not one criterion but multiple criteria (Chapters 4 - 6). This differs 

from a historical approach which was limited to a single criterion, percentage 
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weight loss (as outlined in Table 4-1 of Chapter 4). Accumulating evidence 

suggests that each unit of weight lost does not have constant composition (varying 

proportions of lean and fat tissue) (4, 5).  Thus, if a study aims to understand 

molecular mechanisms in relation to weight loss alone it will be unclear if 

molecular differences identified are related with muscle loss, fat loss, or a 

combination of the two. This is a point raised repeatedly throughout this thesis 

and is something that should be considered when planning future cachexia studies. 

In this thesis, multiple classification criteria were possible due to the particularly 

rich datasets used in Chapters 4-6. Such datasets are rare but results from this 

thesis suggest that future studies could benefit from considering relevant sources 

of variation when studying this multifactorial syndrome.  

A typical method of classification involves dichotomizing a continuous 

variable by splitting patient populations based on a single cutoff value for which 

there may be no statistical justification (6). For example, using a cutoff of 5% 

weight loss, patients would be classified as weight losing or weight stable 

depending on whether they experienced weight loss greater than or less than the 

cutoff, respectively (5). This method forces patients that may not be different from 

each other (e.g. a patient with 5.1% and a patient with 4.9% weight loss) (7) into 

different classes; therefore decreasing the chances of identifying differences in 

molecular or metabolic signatures. The method used in Chapters 4-6 involved 

splitting patients based on excluding patients with values on either side of the cut 

point (as shown in Figure 6-1). The band of patients excluded should be at least as 

wide as the measurement error of the phenotype in question.  A wider zone of 



  

  

 

219 

exclusion permits comparisons of patients at the extremes of phenotypes, which 

have a greater chance of carrying the characteristic molecular signatures 

associated with a particular factor. Though not often used in cancer cachexia 

studies, this approach is not new to medicine and has been recommended for 

OMIC studies (8-11). Using this classification method allowed patients to be split 

into distinct and clinically relevant groups. For example, when looking at skeletal 

muscle index (SMI) in Chapter 4, the values for SMI in the high SMI class were 

within the range expected for healthy men of the same age whereas the average 

SMI values in the low SMI class were within the range expected for sarcopenic 

men. Sarcopenia in cancer is clinically relevant as it is associated with poor 

outcomes of surgery including increased length of stay, infectious complications 

and increased requirement for inpatient rehabilitation (12, 13); altered clinical 

response to opioid analgesics (14), increased chemotherapy toxicity (2), poorer 

prognosis (15) and decreased survival (16-18).  

It is important to note that classification made to study molecular and 

metabolic changes in response to phenotypic changes that occur in response to 

cachexia is a distinct task from classification made in the clinic for diagnostic 

purposes. The classification approach used in this thesis (i.e. looking at the 

extremes for each phenotype) is not intended for clinical diagnostic purposes. A 

year prior to the completion of this thesis, experts introduced a new classification 

system indicating severity (precachexia, cachexia, and refractory cachexia) (1); 

this classification system was intended to diagnose and treat cancer cachexia. The 
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specific diagnostic criteria of these stages were deemed to require the future 

acquisition and analyses of large data sets (1). 

 

7.3 Detecting small, early changes in muscle mass  

Underdiagnosis of cachexia has generally been attributed to disagreement 

and ambiguity surrounding its definition (19, 20). Experts recently defined cancer 

cachexia as “a multifactorial syndrome characterised by an ongoing loss of 

skeletal muscle mass (with or without loss of fat mass) that cannot be fully 

reversed by conventional nutritional support and leads to progressive functional 

impairment” and emphasized the importance of muscle as marker of cachexia and 

advocated for routine assessment of muscle mass (1). Despite this, muscle mass is 

rarely assessed in the clinic. Chapter 6 presents a novel, fast and non-invasive 

method of detecting very low rates of muscle loss (0.75% change/100d) using a 

randomly collected urine sample. The ability to detect low rates of muscle wasting 

suggests that this method has the potential to detect even early stage cachexia 

(precachexia). Experts have recently emphasized that “every effort should be 

concentrated on the recognition of preclinical cachexia (precachexia)”(21). Most 

previously conducted clinical trials have focused on treating the advanced 

(refractory) cachectic patient, in other words, they focused on stereotypical 

cachectic patients who exhibit the ‘skin and bones’ phenotype or lost 

uncharacteristic amounts of body weight (21). By definition, this is not a stage 

that would respond to treatments or interventions. Ideally, treatments or 

interventions should target the prechachexia stage as this would theoretically 
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prevent or delay progression to the refractory stage (21). The metabolomics-based 

method from Chapter 6 could potentially be used to focus on patients at a 

clinically relevant stage in the cancer cachexia continuum.  

In Chapter 6, skeletal muscle rate of loss was measured using two 

consecutive computed tomography images taken as part of routine clinical care 

over ~100 days. Future validation studies should consider short-term fluctuations 

in urinary metabolite concentrations within the time frame of these two images. It 

is crucial that the metabolomic-based method withstand small-fluctuations in 

metabolite concentrations and correctly identify patients as losing or not losing 

muscle within that time frame. In other words, the false positive/false negative 

rate of this assessment must be determined. This would require obtaining urine 

samples periodically and assess the classification accuracy at each point in time 

using the metabolomic profile. Validation of the metabolomic-based method is 

warranted considering its potential. 

 

7.4 Advancing our understanding of cancer cachexia mechanisms 

Chapter 4, which focused on molecular changes in muscle from cancer 

patients, included a large number of muscle samples compared to previous studies 

using human muscle (see Table 4-1). This was possible because samples were 

obtained by conducting tissue collection during clinically scheduled surgeries 

which appears to be perceived as minimally invasive by patients. Though some 

groups have taken advantage of surgery to obtain muscle biopsies (22-25), the 

invasive percutaneous biopsy method appears to be most often used (26-28). 
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Surgery is a major part of cancer diagnosis, treatment and palliative care and 

presents many opportunities to obtain tissue samples; this approach should be 

considered in future cancer cachexia studies.  

There are no prior reports looking at the relationship between muscle mass 

and muscle attenuation variation in relation to muscle gene expression profiles in 

cancer patients or animal models. Thus, it was not possible to relate findings from 

Chapter 4 with previously conducted studies. Interpretation was limited to other 

conditions for which muscle gene expression was examined. The concept of tissue 

cross-talk, such as immune cell – muscle cell interactions, emerged from the 

results in Chapter 4. This concept is a relatively new way of thinking about cancer 

cachexia. Myocytes interact with immune cells, fibroblasts, stem cells, adipocytes, 

neurons and endothelial cells (Figure 4-1). Differential gene expression in Chapter 

4 revealed many genes supporting myocyte interaction with these other cells. 

Future studies, should appreciate the importance of cell-cell interaction. For 

example, in the case of in vitro studies it may be beneficial to study co-cultures as 

opposed to myocytes only.  

Chapter 4 was a hypothesis-generating study which identified numerous 

avenues that warrant further study. Namely, the association between muscle 

attenuation and muscle atrophy with inflammation, degradation, mitochondrial 

dysfunction and fibrosis.  

 Systemic inflammation, as indicated by increased plasma acute phase 

proteins (e.g. C-reactive protein) concentrations, is often observed in 

cancer patients (29). Though a single measure of inflammation may not 
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reflect the status of inflammation at the tissue level, it is unfortunate that 

this measure was not available for participants in Chapter 4. Having 

plasma acute phase protein concentrations would have allowed us to check 

for a relationship between muscle attenuation and systemic inflammation. 

Regardless, gene expression data in Chapter 4 did suggest immune cell 

infiltration at the tissue level. This could be confirmed by conducting a 

flow cytometry experiment by labeling immune cells. Such experiments 

have been conducted in rodent models of other conditions such as notexin-

induced myoinjury, acute phase of Trypanosoma cruzi infection and 

regeneration (30-32) but not during cancer-associated muscle changes. 

Future cancer cachexia studies should focus on the role of infiltrating/local 

immune cells in cachexia development and progression.  

 Protein degradation has been a major theme in cancer cachexia. Our work 

supports prior reports stating that the ubiquitin-proteasome system is a 

major proteolytic pathway during cancer. Perhaps the most important 

question regarding degradation is, what turns it on?  

 Muscle energy metabolism is altered in cancer cachexia and our findings 

pointing to altered mitochondrial function are in line with this. 

Mitochondrial function has recently become a focus within cachexia 

research (33-37). Accumulating reactive oxygen species (38), altered 

insulin sensitivity (39) and inflammation (33, 40) are all associated with 

mitochondrial dysfunction in muscle and were suggested in low 

attenuation muscle based on differential expression in Chapter 4. 
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Mitochondrial function has yet to be studied even at a basic level in human 

skeletal muscle from cancer patients with cachexia. Identifying the number 

and shape (e.g. is there swelling) might be a good starting point to 

studying mitochondrial change. More sophisticated studies might include 

examining mitochondrial function. Experiments to measure mitochondrial 

function in muscle cells may include measuring mitochondrial proton 

current to assess the respiration rate, measuring mitochondrial membrane 

potential and measuring coupling efficiency in muscle cells (41). Other 

experiments may be conducted in isolated muscle mitochondria such as 

measuring mitochondrial proton current using the Clark oxygen electrode 

method or measuring mitochondrial respiratory control index (the ratio of 

respiration to phosphorylation of ADP to ATP) (41). 

 The presence and significance of fibrosis in skeletal muscle in cancer 

cachexia is unknown. A search on Pubmed using the terms “cancer 

cachexia and fibrosis” yields 5 studies, all but one dealing with fibrosis in 

adipose tissue. Studies on other conditions that result in cachexia, such as 

chronic heart failure and HIV infection, do indicate that skeletal muscle 

fibrosis accompanies muscle atrophy (42, 43). Chapter 4 provides 

evidence for the presence of fibrosis-related pathways in low 

attenuation/low muscle mass index muscle during cancer. Examining the 

presence of fibrosis through histological analysis and examining the 

presence and activity of fibroblasts and fibroblast progenitors over the 
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course of the cachexia trajectory would be a great start to further our 

understanding of fibrosis in cachexia.  

7.5 Methodological considerations 

To use transcriptomic and metabolomic approaches to study cancer 

cachexia, I was forced to address some methodological issues. Figure 7-1 shows 

the general workflow of transcriptomic and metabolomic studies and identifies 

what issues I addressed. Methods for sample processing, sample analysis and data 

processing were not addressed for gene expression studies as these steps were 

followed according to manufacturer (Agilent) instructions. Results from Chapters 

3 and 4 can be easily compared to other studies which use Agilent microarray 

technology. Other groups have compared microarray platforms (44), though this 

area is still under investigation suggesting that cross platform comparisons should 

be avoided. Likewise, urine collection and storage methodology was not 

addressed, for example, we did not study the impact of different collection 

containers or study the effect of sample freeze thaw cycles which may affect 

metabolomic profiles (54). However, the urine collection method was kept the 

same in both Chapter 5 and 6.  

 

7.5.1 Sample size in gene expression studies 

Unlike univariate statistical problems there are no standard sample size 

calculations for microarray and developing a sample size calculation method is an 

ongoing endeavor (45, 46).  Sample sizes range drastically from one microarray 

study to another and may be as low as one pooled sample per group (47). Chapter 
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3 demonstrates how sample size can greatly affect the identification of 

differentially expressed genes and therefore interpretation of microarray studies. 

This work was done prior to the work in Chapter 4 specifically because it was 

unclear how sample size would affect results. Results from Chapter 3 allowed us 

to confidently proceed with work done in Chapter 4 and can be used by others 

analyzing gene expression data.  

 

7.5.2 Data analysis and interpretation in gene expression studies 

Gene expression microarray analysis offers a lot of information and as a 

result interpretation of results can be difficult. For example, in Chapter 4, 

thousands of genes were differentially expressed. For interpretation, genes were 

grouped into categories according to their function. Of course, most genes have 

more than one function and how genes are grouped may be contested. Further, 

many differentially expressed transcripts have unknown functions and though 

these may be important, they cannot be categorized and therefore remain excluded 

from interpretation. Transcripts of unknown function have been the focus of a 

decade long project which involved 32 institutes, 442 consortium members, and 

1649 experiments called the Encyclopedia of DNA Elements (ENCODE) project 

(48). 80% of transcripts previously considered “junk” has been assigned 

biochemical functions including switching transcription on or off and regulating 

the degree of transcription (48). Incorporation of recently released ENCODE 

results to results from Chapter 4 may indicate what roles the differentially 

expressed transcripts of unknown function have in cancer cachexia.  
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Gene expression may not always translate to protein content or protein 

activity. This is an inherent limitation of any gene expression analysis. Once 

transcribed and then translated, post translational modifications (e.g. 

phosphorylation, methylation, ubiquitination) can enhance or inhibit protein 

function. To examine how the function of proteins encoded by differentially 

expressed genes from Chapter 4 may be altered it will be necessary to examine 

each protein independently. This caveat should always be considered when 

conducting explorative microarray studies.  

 

7.5.3 Sample processing and analysis in metabolomics studies 

Proton nuclear magnetic resonance (H¹-NMR) was used as the primary 

method of metabolite quantification in this research. Sample processing for NMR 

is relatively simple. For urine samples there are 3 steps: 1) a fixed amount of urine 

is aliquoted, 2) internal standard is added and 3) samples are brought to the same 

pH prior to analysis to prevent unpredictable chemical shifts. Since in 

metabolomics NMR is used as an analytical technique, error at any of these three 

steps will alter results.  Quantification of metabolite concentrations is based on the 

intensity of NMR signals versus the frequency in reference to the internal 

standard. If measuring the concentration of only one metabolite in a homogenous 

solvent, then only the signals from that one metabolite would be present in the 

NMR spectrum and the NMR spectrum would be easy to read. In complex 

biofluids signals from different metabolites often overlap with each other making 

quantification difficult. To ensure samples were processed properly and spectra 
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were read correctly, extensive validation steps were undertaken: only metabolites 

identified by two different analysts were considered, amino acid concentrations 

were validated using high performance liquid chromatography (HPLC), and 

creatinine concentration was validated using commercially available kits. Such 

extensive validation is unique to the work presented here and provides a high-

quality dataset for statistical analysis.  

 

7.5.4 Data processing and analysis in metabolomics studies 

Urine was selected as a biofluid of study in Chapter 5 and 6 because it is a 

waste pool for metabolites generated during protein turnover. It is also preferred 

because its collection is non-invasive, does not require trained personnel and is 

easy to do. However, urine is prone to dilution effects due to water intake, water 

retention and kidney function. Dilution is not usually considered an issue in 

plasma where metabolite concentrations are highly regulated and small changes 

observed in pathological situations are typically significant (49). To address 

dilution raw urine metabolomic data is often normalized to make the data from all 

samples directly comparable with each other (49-51). No normalization method 

was used prior to analysis in Chapters 5 and 6 since all normalization methods 

tested resulted in decreased prediction accuracy. This same approach was taken by 

other metabolomic researchers (52, 53). However, it does not mean that the issue 

of dilution is resolved. Additional studies would be required to resolve this issue 

and develop a new and reliable urine normalization method to address dilution 

variation. Perhaps by injecting an exogenous metabolite at a constant rate that is 
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not used by human tissues and is not reabsorbed by the kidneys (e.g. inulin) it 

would be possible to correct for dilution effects.   

Metabolomics, like microarray, may be used to build a predictive classifier 

(e.g. to predict if new patients are losing or not losing muscle) or to identify a 

biomarker (e.g. elevated levels of metabolite A may indicate the presence of 

cachexia). These represent two different statistical problems. Chapters 5 and 6 

mainly dealt with the building of predictive classifiers. Chapter 6 compared the 

different statistical and machine learning classification methods. Machine learning 

classifiers, support vector machines (SVM) and LASSO and the commonly used 

partial least squares discriminant analysis (PLS-DA) were the best performing 

classifiers out of the ones tested. Chapter 5 employed these three classification 

methods to explore potential sources of variation in urine and plasma. Body 

composition gave a metabolomic signature in both biofluids. This is a particularly 

important finding as it suggests that future metabolomic studies using urine, and 

to a lesser extent plasma, should consider body composition when selecting 

patients and making interpretations. For example, if comparing urine from early 

stage cancer patients with urine from late stage cancer patients in order to identify 

markers of cancer stage, it may be beneficial to assess muscle mass since it may 

be a confounding factor.  

 

7.5.5 Considerations for future transcriptomic and metabolomic studies 

The crux of OMIC technologies is the quantity of data produced. At 

present there are no standard methods of statistically dealing with either gene 
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expression or metabolomic data. In fact, a relatively new field of research, the 

field of bioinformatics, emerged specifically to address such issues. 

Methodological results from this work contribute to this field. Future 

transcriptomic studies may use the results from Chapter 3 to make decisions about 

sample size. Future metabolomic studies may draw from our work from Chapters 

5 and 6 regarding potential sources of variation in urine and plasma, data 

normalization and available predictive classifiers.  

 

7.5 Conclusions 

This research emphasizes the need to address methodological issues in 

order to use novel techniques in a way that yields reliable and worthwhile results. 

Throughout this work every step of the gene expression and metabolomic study 

process was scrutinized. The focus on methodological considerations should not 

be considered a distraction from cancer cachexia research; addressing these issues 

allowed the author to use these methods with a greater level of confidence. Gene 

expression profiling studies identified numerous avenues for future research and 

the metabolomics studies indicated that the cancer patient urine metabolome could 

be used to predict low muscle mass and muscle mass change.  
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Figures 

 

Figure 7-1: Methodological issues associated with steps in gene expression 

profiling and metabolomics workflow addressed (or not addressed) in this thesis 
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Appendix 1: Differential gene expression according to sex 

 The full data set used in Chapter 3 included 134 participants (69 men and 

65 women) and 41,000 oligonucleotide sequences for each subject. Differential 

expression was calculated using t-test on the log transformed intensities over the 

set of males vs. the set of females. Below is a list of the 717 differentially 

expressed oligunucleotide sequences with a p-value < 0.0001 and a false 

discovery rate < 0.003. Each oligonucleotide was mapped to its corresponding 

gene using Ingenuity Pathway Analysis (IPA) (Ingenuity® Systems, 

www.ingenuity.com). From the 717 sequences, 527 unique genes were mapped in 

IPA (see Gene Symbol column in Table AP1). While many of the top 

differentially expressed features were on the X and Y chromosomes, these only 

accounted for 10% and 4% of the 717 features with a p-value <0.0001, 

respectively.  

 

Table AP1: Differentially expressed features according to sex  

 
ID Gene Symbol  Chromosome p-value FC FDR 

A_23_P137248 PRKY* Y 3.09E-31 -0.7 1.27E-26 

A_24_P130936 DDX3Y* Y 1.32E-29 -0.5 2.70E-25 

A_23_P160004 UTY*† Y 7.47E-29 -1.6 1.02E-24 

A_23_P364792 TXLNG2P* Y 1.45E-26 -1.4 1.48E-22 

A_23_P96658 TXLNG2P* Y 3.09E-26 -1.4 2.53E-22 

A_23_P251232 TTTY14*† Y 4.18E-26 -1.2 2.86E-22 

A_24_P66233 TTTY14*† Y 1.21E-24 -1.3 6.32E-21 

A_23_P148629 EIF1AY* Y 1.23E-24 -0.6 6.32E-21 

A_24_P307993 LOC100509121 Y 2.90E-24 -2.5 1.32E-20 

A_23_P121441 NLGN4Y† Y 5.17E-24 -1.3 2.12E-20 

A_23_P11408 PRY2 (human) Y 1.46E-23 -0.8 5.20E-20 

A_32_P111701 GYG2*† X 1.52E-23 -0.9 5.20E-20 

A_32_P109165 GINS3* 16 1.95E-23 -1.2 6.16E-20 

A_24_P186030 PRKY* Y 4.13E-23 -1.0 1.21E-19 

A_23_P137238 KDM5D Y 8.57E-23 -1.1 2.34E-19 

A_24_P216625 NCRNA00185* Y 4.15E-22 -1.6 1.06E-18 

A_24_P348861 TTTY15 Y 4.53E-22 -3.6 1.09E-18 

http://www.ingenuity.com/
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A_24_P500584 XIST X 6.21E-22 0.6 1.41E-18 

A_23_P217507 ZBED1*† X 1.84E-21 -1.1 3.96E-18 

A_23_P137226 USP9Y Y 2.74E-21 -1.5 5.61E-18 

A_24_P942743 ZFY Y 6.10E-21 -1.3 1.19E-17 

A_23_P62446 HSFY1/HSFY2* Y 6.90E-21 -2.9 1.29E-17 

A_23_P73848 NCRNA00185* Y 9.36E-21 -1.6 1.60E-17 

A_23_P324384 RPS4Y2 Y 1.31E-20 -1.3 2.15E-17 

A_24_P237511 EIF1AY* Y 2.23E-20 -1.6 3.52E-17 

A_23_P217797 DDX3Y* Y 1.31E-19 -1.6 1.99E-16 

A_23_P259314 RPS4Y1 Y 2.18E-18 -1.4 2.98E-15 

A_23_P254842 HDHD1† X 3.35E-18 1.1 4.44E-15 

A_23_P137876 EIF1AX* X 5.80E-18 1.1 7.43E-15 

A_23_P307346 CA5B*† X 5.45E-17 1.3 6.77E-14 

A_23_P3934 RNF43 17 1.84E-16 -1.0 2.22E-13 

A_24_P36745 CXorf38* X 2.66E-16 1.1 3.11E-13 

A_24_P134626 TXLNG† X 5.48E-16 1.3 6.24E-13 

A_32_P86623 ZBED1* X 2.77E-15 -0.7 3.06E-12 

A_32_P25737 CHIC1 X 4.06E-15 -0.6 4.38E-12 

A_23_P35194 EIF1AX* X 6.22E-15 1.2 6.54E-12 

A_23_P85640 INPP5B† 1 6.93E-15 1.1 7.11E-12 

A_23_P370027 GGT7* 20 7.99E-15 -1.4 7.99E-12 

A_23_P253896 NPNT† 4 8.39E-15 0.6 8.19E-12 

A_24_P378987 DHRSX† X 1.43E-14 -0.7 1.37E-11 

A_23_P152136 GINS3* 16 1.47E-14 -1.00 1.37E-11 

A_23_P61886 TSPAN5*† 4 2.30E-14 -1.65 2.10E-11 

A_24_P126060 DDX3X*† X 5.41E-14 1.24 4.72E-11 

A_23_P217304 KDM6A X 7.89E-14 1.26 6.74E-11 

A_23_P340148 ZNF711* X 8.16E-14 1.11 6.83E-11 

A_24_P586712 TPRG1 3 4.36E-13 2.00 3.46E-10 

A_23_P317654 DDX3X* X 4.39E-13 1.61 3.46E-10 

A_23_P217297 ZNF711* X 7.13E-13 1.12 5.51E-10 

A_23_P152235 IRX3* 16 7.90E-13 -0.81 6.00E-10 

A_23_P323930 TSPAN5* 4 1.00E-12 -0.80 7.45E-10 

A_23_P325093 GGT7* 20 1.02E-12 -1.05 7.45E-10 

A_23_P140748 NDRG4 16 2.09E-12 -2.05 1.47E-09 

A_24_P45005 NPEPL1*† 20 2.68E-12 -0.60 1.86E-09 

A_23_P57236 GGT7* 20 3.93E-12 -1.18 2.69E-09 

A_23_P55586 CDH20† 18 8.96E-12 -2.21 6.02E-09 

A_23_P255535 ASMT X 1.19E-11 0.84 7.87E-09 

A_23_P125656 DDX3X* X 1.28E-11 1.18 8.31E-09 

A_23_P149019 BAI2† 1 2.16E-11 1.25 1.38E-08 

A_24_P68222 CD99P1 Y 4.21E-11 -1.18 2.58E-08 

A_23_P339582 CXorf38* X 6.68E-11 0.81 4.03E-08 

A_24_P375761 STGC3 3 7.02E-11 0.75 4.17E-08 

A_32_P52785 DAAM2† 6 9.05E-11 -1.46 5.26E-08 

A_23_P137031 EIF2S3* X 9.10E-11 1.87 5.26E-08 

A_24_P196419 GGT7* 20 1.27E-10 -0.88 7.21E-08 

A_24_P73769 C16orf89* 16 1.50E-10 1.00 8.45E-08 
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A_32_P144421 ZNF518B* 4 1.58E-10 -0.94 8.76E-08 

A_23_P216257 TPD52*† 8 2.53E-10 -0.84 1.38E-07 

A_23_P145514 IL20RA† 6 2.67E-10 -0.50 1.44E-07 

A_23_P31921 ASS1† 9 3.11E-10 1.35 1.65E-07 

A_24_P57631 GPC3† X 3.32E-10 0.83 1.74E-07 

A_23_P153945 GTDC1† 2 3.89E-10 -0.88 2.02E-07 

A_24_P286114 SLC1A3*† 5 4.12E-10 0.74 2.11E-07 

A_24_P237389 EIF1AX* X 4.51E-10 1.40 2.28E-07 

A_23_P85053 ZRSR2 X 5.02E-10 0.87 2.51E-07 

A_24_P331560 STS† X 6.09E-10 1.51 3.01E-07 

A_23_P167509 CYFIP2*† 5 7.31E-10 1.24 3.57E-07 

A_32_P171328 UBE2S* 19 8.15E-10 -0.62 3.91E-07 

A_32_P34516 XKR6† 8 8.51E-10 -1.43 4.01E-07 

A_23_P70991 AIMP2 7 1.05E-09 -1.19 4.85E-07 

A_32_P81514 LOC100506725 7 1.05E-09 0.91 4.85E-07 

A_23_P26640 C16orf89* 16 1.09E-09 0.74 4.97E-07 

A_23_P371729 GJA5 1 1.15E-09 0.83 5.16E-07 

A_24_P299193 GGT7* 20 1.28E-09 -1.42 5.73E-07 

A_32_P197340 LOC285141 2 1.42E-09 -0.72 6.22E-07 

A_23_P217411 SMC1A X 1.81E-09 1.15 7.72E-07 

A_24_P403561 LRP4 11 1.81E-09 1.15 7.72E-07 

A_23_P306215 FAM84A 2 1.85E-09 -0.76 7.84E-07 

A_24_P332647 SSH1 (includes 

EG:231637)† 

12 2.35E-09 -1.66 9.84E-07 

A_23_P359043 AKAP2/PALM2-

AKAP2† 

9 2.53E-09 1.73 1.05E-06 

A_23_P217704 GYG2* X 2.70E-09 0.83 1.11E-06 

A_32_P182299 C1orf168† 1 3.00E-09 -1.10 1.22E-06 

A_24_P121631 ZNF764 16 3.37E-09 -0.61 1.35E-06 

A_24_P925505 CD36* 7 3.66E-09 0.59 1.46E-06 

A_23_P315212 NTSR2 2 4.35E-09 1.47 1.71E-06 

A_23_P212126 COLQ* 3 4.38E-09 0.74 1.71E-06 

A_23_P111583 CD36* 7 4.45E-09 0.98 1.72E-06 

A_23_P53198 DGAT2* 11 5.76E-09 0.76 2.21E-06 

A_23_P254226 OFD1 X 6.85E-09 1.28 2.60E-06 

A_24_P288848 CXorf36* X 7.17E-09 1.13 2.70E-06 

A_24_P96474 LDOC1L* 22 8.35E-09 -0.75 3.11E-06 

A_23_P215883 NCALD† 8 9.27E-09 1.01 3.42E-06 

A_23_P320622 TTTY10 Y 1.21E-08 -3.10 4.41E-06 

A_23_P132308 C22orf23* 22 1.33E-08 -0.74 4.74E-06 

A_23_P125639 ZFX*† X 1.34E-08 1.58 4.74E-06 

A_23_P121215 CAMK1 3 1.45E-08 1.73 5.07E-06 

A_24_P26160 COLQ* 3 1.46E-08 0.63 5.07E-06 

A_23_P211007 NRIP1 21 1.69E-08 -0.79 5.82E-06 

A_23_P48676 PYGL 14 1.81E-08 1.08 6.19E-06 

A_23_P362770 CCDC36* 3 1.84E-08 0.80 6.23E-06 

A_23_P339240 PLCH1 3 2.06E-08 -4.41 6.93E-06 

A_32_P72447 UBE2S* 19 2.50E-08 -0.57 8.34E-06 

A_23_P114221 RBBP7† X 2.52E-08 0.83 8.34E-06 
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A_23_P329835 UTY* Y 2.66E-08 -3.76 8.73E-06 

A_32_P184933 UBE2S* 19 2.74E-08 -0.53 8.93E-06 

A_24_P132518 IKBKB† 8 2.93E-08 -1.25 9.46E-06 

A_23_P250963 SLC1A3* 5 2.97E-08 0.55 9.51E-06 

A_24_P340128 P2RY8 X 3.21E-08 -0.66 1.01E-05 

A_23_P387656 EPB41L4B*† 9 3.27E-08 0.70 1.02E-05 

A_23_P127565 LAYN† 11 3.33E-08 1.35 1.03E-05 

A_23_P85250 CD24 Y 3.42E-08 -0.98 1.05E-05 

A_32_P151557 EIF2S3* X 3.66E-08 0.74 1.12E-05 

A_24_P156576 GEMIN8† X 3.87E-08 1.34 1.18E-05 

A_23_P12755 LOXL4* 10 4.24E-08 1.36 1.27E-05 

A_23_P309361 HENMT1 1 4.31E-08 -0.70 1.28E-05 

A_24_P367645 MAP7D2 X 4.40E-08 1.04 1.30E-05 

A_32_P100464 LOC100507588 19 4.68E-08 0.47 1.37E-05 

A_24_P399680 FAM210B 20 4.96E-08 -1.22 1.43E-05 

A_23_P58647 CTNNA1*† 5 4.98E-08 1.80 1.43E-05 

A_24_P346431 TNS3*† 7 5.00E-08 1.64 1.43E-05 

A_23_P210109 CYP26B1* 2 5.06E-08 2.05 1.44E-05 

A_23_P503182 ABR† 17 5.59E-08 0.76 1.57E-05 

A_23_P217379 COL4A6 X 6.02E-08 0.54 1.68E-05 

A_23_P147423 ADAMTS9*† 3 6.12E-08 1.06 1.70E-05 

A_32_P55241 SHISA2* 13 6.22E-08 -0.77 1.71E-05 

A_24_P797678 ZC3H7B 11 6.79E-08 -1.02 1.84E-05 

A_24_P207195 IRX3* 16 6.85E-08 -1.00 1.85E-05 

A_24_P772488 PLXNA4 7 7.31E-08 0.67 1.96E-05 

A_23_P127495 BBOX1 11 7.54E-08 2.09 2.01E-05 

A_24_P295791 DGAT2* 11 7.61E-08 0.91 2.01E-05 

A_23_P137209 UBA1* X 7.98E-08 1.27 2.10E-05 

A_23_P154526 GRB14† 2 8.12E-08 1.09 2.11E-05 

A_23_P372255 ITPKB† 1 8.65E-08 1.44 2.23E-05 

A_23_P52793 PPP2R1B*† 11 9.23E-08 1.52 2.36E-05 

A_32_P461386 LOC100131840 3 9.58E-08 0.90 2.44E-05 

A_23_P344481 STOX1*† 10 1.01E-07 1.80 2.51E-05 

A_23_P165608 SEMA4F* 2 1.09E-07 0.74 2.71E-05 

A_23_P83098 ALDH1A1† 9 1.11E-07 -1.02 2.75E-05 

A_23_P162466 PKP2 (includes 

EG:287925)* 

12 1.12E-07 -0.50 2.75E-05 

A_24_P166807 TPD52* 8 1.21E-07 -0.58 2.95E-05 

A_24_P944588 ZNF682 19 1.36E-07 -0.77 3.27E-05 

A_32_P32391 OR7E156P* 13 1.37E-07 -0.99 3.28E-05 

A_23_P435018 UNC45B* 17 1.58E-07 -0.67 3.75E-05 

A_23_P206612 USP31*† 16 1.58E-07 -1.56 3.75E-05 

A_23_P321703 BCL2A1 15 1.64E-07 -0.51 3.85E-05 

A_32_P58407 KCND3*† 1 1.69E-07 0.82 3.96E-05 

A_23_P353014 CACNA2D4 12 1.70E-07 1.61 3.97E-05 

A_23_P25525 GTF3A 13 1.78E-07 -0.46 4.12E-05 

A_23_P131723 YWHAQ*† 2 1.83E-07 1.70 4.22E-05 

A_32_P197698 LOC153546 5 1.88E-07 -0.79 4.31E-05 

A_24_P307974 TAF8 (includes 6 1.92E-07 -1.00 4.37E-05 
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EG:129685) 

A_23_P429959 PRX 19 1.93E-07 1.56 4.37E-05 

A_24_P390583 USP31* 16 2.05E-07 -1.39 4.61E-05 

A_23_P131428 VAX2 2 2.14E-07 0.66 4.78E-05 

A_24_P336137 C22orf23* 22 2.23E-07 -0.83 4.97E-05 

A_32_P104063 CRNDE 16 2.25E-07 -0.71 4.98E-05 

A_32_P224522 SLC25A23* 19 2.27E-07 -1.34 5.01E-05 

A_24_P634530 CPPED1* 16 2.31E-07 -1.01 5.07E-05 

A_24_P133288 PKP2 (includes 

EG:287925)* 

12 2.79E-07 -0.72 6.05E-05 

A_32_P51119 STOX1* 10 2.97E-07 1.30 6.40E-05 

A_23_P156117 CYFIP2* 5 3.04E-07 1.24 6.53E-05 

A_23_P206733 CES1 16 3.10E-07 1.09 6.58E-05 

A_23_P346390 CXorf36* X 3.18E-07 1.81 6.73E-05 

A_23_P120953 SERHL2 22 3.36E-07 1.07 7.06E-05 

A_23_P145895 TP53TG1* 7 3.41E-07 -0.79 7.12E-05 

A_24_P677525 PLXNB2* 22 3.54E-07 1.94 7.34E-05 

A_24_P4426 INPP5F*† 10 3.55E-07 1.30 7.34E-05 

A_23_P11341 FAM104B* X 3.56E-07 -0.45 7.34E-05 

A_32_P156851 RCAN2† 6 3.64E-07 -0.90 7.45E-05 

A_24_P161973 ATP11A 13 3.88E-07 -1.26 7.91E-05 

A_23_P141992 HSD11B1L 19 3.92E-07 -0.76 7.95E-05 

A_24_P284093 DACT1* 14 4.09E-07 0.96 8.26E-05 

A_23_P26697 TRIM47 17 4.18E-07 1.04 8.36E-05 

A_23_P416142 DLG1*† 3 4.18E-07 2.84 8.36E-05 

A_23_P13442 MICAL2*† 11 4.33E-07 1.27 8.61E-05 

A_23_P307682 FAM78B 1 5.07E-07 -0.53 0.00010 

A_23_P65518 DACT1* 14 5.08E-07 1.50 0.00010 

A_24_P193582 DEF8* 16 5.16E-07 -0.93 0.00010 

A_24_P326660 MCAM* 11 5.42E-07 1.85 0.00011 

A_24_P320796 FKBP9L 7 5.56E-07 1.71 0.00011 

A_23_P159325 ANGPTL4 19 5.82E-07 0.70 0.00011 

A_24_P929083 MAGI2-AS3 7 6.11E-07 -1.06 0.00012 

A_24_P236235 FLRT2† 14 6.12E-07 1.05 0.00012 

A_23_P54283 EID1*† 15 6.19E-07 -0.95 0.00012 

A_24_P201531 ARCN1† 11 6.58E-07 1.30 0.00012 

A_23_P3602 NUDT7 16 6.70E-07 -0.82 0.00012 

A_23_P103588 HMGCS2 1 6.76E-07 0.71 0.00013 

A_24_P162073 BCR*† 22 6.93E-07 1.12 0.00013 

A_23_P52531 FAM24B† 10 6.95E-07 -1.09 0.00013 

A_23_P200160 CFH 1 6.99E-07 1.09 0.00013 

A_24_P230938 MORN4 10 7.44E-07 -1.01 0.00014 

A_24_P20292 B3GNT7 2 7.52E-07 0.92 0.00014 

A_23_P404965 GNL1 6 7.87E-07 -0.72 0.00014 

A_23_P54758 GDE1 (includes 

EG:393213) 

16 8.12E-07 -0.60 0.00015 

A_23_P218918 FGF2† 4 8.40E-07 1.41 0.00015 

A_23_P162171 MCAM* 11 8.61E-07 1.48 0.00015 

A_24_P339858 C21orf90 21 8.70E-07 1.68 0.00015 
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A_23_P24843 MICAL2* 11 8.76E-07 1.09 0.00015 

A_32_P177955 LOC441461 9 8.89E-07 -0.68 0.00016 

A_23_P36745 ALDH2* 12 8.92E-07 0.55 0.00016 

A_23_P210100 CYP26B1* 2 9.77E-07 2.18 0.00017 

A_23_P134139 FABP7 6 9.97E-07 0.89 0.00017 

A_24_P188071 TUBA1C† 12 1.04E-06 -1.03 0.00018 

A_23_P60120 GSDMC 8 1.05E-06 0.53 0.00018 

A_23_P57570 A4GALT 10 1.06E-06 -1.13 0.00018 

A_23_P166023 PFDN4† 20 1.11E-06 -0.80 0.00019 

A_23_P49677 UNC45B* 17 1.12E-06 -0.85 0.00019 

A_32_P192594 LOC400099 13 1.14E-06 -1.18 0.00019 

A_24_P622186 BMS1 10 1.14E-06 -0.84 0.00019 

A_23_P113523 GTPBP6* X 1.14E-06 -0.73 0.00019 

A_23_P144807  5 1.17E-06 1.03 0.00019 

A_23_P168551 SLC29A4 7 1.18E-06 0.69 0.00019 

A_24_P111106 FGF1*† 5 1.19E-06 0.65 0.00019 

A_24_P274987 TMEFF1† 9 1.20E-06 1.92 0.00020 

A_32_P184279 CCDC6† 10 1.22E-06 -0.88 0.00020 

A_24_P687131 LOC285033 2 1.25E-06 -1.19 0.00020 

A_23_P3221 SQRDL 15 1.27E-06 -0.63 0.00020 

A_23_P106322 CPEB1 15 1.27E-06 -0.62 0.00020 

A_24_P216765 TOMM20† 1 1.28E-06 -0.69 0.00020 

A_23_P7791 OGFRL1† 6 1.29E-06 -0.81 0.00020 

A_32_P35220 CBWD5† 14 1.29E-06 -0.90 0.00020 

A_23_P120488 NPEPL1* 9 1.29E-06 -0.58 0.00020 

A_23_P44244 SMARCA1† X 1.41E-06 0.77 0.00022 

A_23_P401774 ELMOD1† 11 1.41E-06 -0.79 0.00022 

A_24_P941038 VSTM4 10 1.41E-06 1.13 0.00022 

A_24_P179225 MATN2*† 8 1.42E-06 0.71 0.00022 

A_32_P166422 HECW1 7 1.44E-06 -0.80 0.00022 

A_32_P196263 ADAMTS9* 3 1.46E-06 1.51 0.00022 

A_23_P35684 INPP5F* 10 1.46E-06 1.93 0.00022 

A_23_P131255 SPATS2L 2 1.47E-06 -0.84 0.00022 

A_23_P120270 MCFD2† 4 1.52E-06 1.16 0.00023 

A_23_P137514 IVNS1ABP 1 1.58E-06 -1.33 0.00024 

A_23_P502731 PRRX1† 1 1.64E-06 0.69 0.00025 

A_24_P393372 PACS2 5 1.67E-06 0.80 0.00025 

A_32_P194025 FAM104B* X 1.74E-06 -0.52 0.00026 

A_32_P226646 LOC100129781† 16 1.83E-06 -0.74 0.00027 

A_24_P175783 ARHGEF12† 11 1.87E-06 2.59 0.00028 

A_24_P184803 COCH 14 2.00E-06 0.90 0.00029 

A_23_P400465 GTF3C6 6 2.04E-06 -0.85 0.00030 

A_23_P142815 ATP6V1B1 2 2.06E-06 1.24 0.00030 

A_23_P416813 ZFP82 19 2.16E-06 0.67 0.00031 

A_24_P274842 TP53TG1* 7 2.17E-06 -0.58 0.00031 

A_23_P1492 AVPI1 10 2.27E-06 1.31 0.00033 

A_23_P148600 INE1 X 2.27E-06 1.25 0.00033 

A_24_P290527 ZFX* X 2.37E-06 1.16 0.00034 
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A_23_P71328 MATN2*† 8 2.55E-06 1.02 0.00036 

A_24_P152404 C10orf76† 10 2.58E-06 -0.60 0.00036 

A_23_P99614 BTBD6 14 2.59E-06 -0.75 0.00036 

A_23_P209669 NRP2† 2 2.59E-06 0.77 0.00036 

A_24_P286527 RABL5* 7 2.63E-06 -0.65 0.00037 

A_23_P53126 LMO2 11 2.83E-06 -1.53 0.00040 

A_23_P31124 COL21A1† 6 2.85E-06 1.49 0.00040 

A_24_P295999 CD4 12 2.90E-06 -0.60 0.00040 

A_23_P126623 PGD† 1 2.92E-06 0.79 0.00040 

A_23_P5435 KRTCAP3* 2 2.95E-06 -1.43 0.00041 

A_23_P60079 ANGPT2 8 2.98E-06 1.56 0.00041 

A_32_P180315 C9orf174† 9 3.00E-06 -0.77 0.00041 

A_23_P203115 TMEM25 11 3.02E-06 -0.59 0.00041 

A_23_P308954 BHLHB9 X 3.02E-06 -0.46 0.00041 

A_32_P221799 HIST1H2AG 

(includes others)† 

6 3.04E-06 0.88 0.00041 

A_23_P155556 CLDND1 3 3.13E-06 1.09 0.00042 

A_24_P134765 CCDC36* 3 3.23E-06 0.55 0.00043 

A_23_P22926 GNB1 1 3.28E-06 1.86 0.00044 

A_32_P122754 C9orf30*† 9 3.50E-06 1.57 0.00047 

A_32_P195850 DPY19L2 12 3.51E-06 -0.95 0.00047 

A_24_P70888 PLXNB2* 22 3.53E-06 1.78 0.00047 

A_24_P335202 CHRDL2* 11 3.75E-06 -1.53 0.00049 

A_24_P734953 TRNP1 1 3.76E-06 0.73 0.00049 

A_23_P92073 PARP3 3 3.77E-06 -0.65 0.00049 

A_23_P16110 OR7E24 19 3.85E-06 -1.47 0.00050 

A_23_P20752 CDK20 9 3.87E-06 -0.87 0.00050 

A_24_P384018 OR7E156P* 13 4.03E-06 -1.11 0.00052 

A_23_P36496 RBMS1† 2 4.03E-06 1.22 0.00052 

A_32_P48397 PLXNB2* 22 4.13E-06 2.26 0.00053 

A_23_P314222 LEO1† 15 4.21E-06 -0.61 0.00054 

A_24_P262688 LAIR1 19 4.26E-06 2.25 0.00055 

A_23_P94159 FBXO25 8 4.35E-06 -0.72 0.00056 

A_23_P377882 KCNH2 7 4.39E-06 1.07 0.00056 

A_24_P650482 PCBP1-AS1 2 4.42E-06 -0.99 0.00056 

A_23_P54116 DAAM1† 14 4.43E-06 1.21 0.00056 

A_24_P242688 HADHA 2 4.53E-06 0.93 0.00057 

A_23_P381172 MRAP* 21 4.54E-06 1.57 0.00057 

A_23_P208259 ZNF665 (includes 

others) 

19 4.63E-06 0.60 0.00058 

A_23_P44257 COMMD8† 4 4.69E-06 -0.84 0.00058 

A_23_P164047 MMD† 17 4.69E-06 1.67 0.00058 

A_24_P607880 IPW 15 4.77E-06 -0.94 0.00059 

A_23_P98446 SC5DL* 11 4.78E-06 -1.76 0.00059 

A_24_P367776 ACSM5† 16 4.88E-06 -0.52 0.00060 

A_23_P346337 SFXN1 5 4.90E-06 -1.07 0.00060 

A_23_P215642 TNS3* 7 5.08E-06 0.90 0.00062 

A_23_P31584 RABL5* 7 5.11E-06 -0.70 0.00062 

A_23_P47616 FOLH1 11 5.12E-06 1.12 0.00062 
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A_23_P156890 TCF21 6 5.14E-06 0.65 0.00062 

A_24_P196469 TCEANC X 5.20E-06 0.77 0.00063 

A_32_P171747 ZNF518B* 4 5.29E-06 -0.82 0.00064 

A_23_P71268 AZGP1* 7 5.32E-06 1.11 0.00064 

A_23_P122976 GNAI1† 7 5.32E-06 1.37 0.00064 

A_32_P155035 LOC100506411 14 5.39E-06 -0.95 0.00064 

A_32_P195065 SEMA4F* 2 5.44E-06 1.23 0.00065 

A_24_P127235 BCR* 22 5.52E-06 1.02 0.00065 

A_23_P68978 EFCAB6† 22 5.65E-06 -0.52 0.00067 

A_23_P110212 ACSL1† 4 5.68E-06 0.99 0.00067 

A_23_P348737 NR2F1 5 5.78E-06 1.42 0.00068 

A_23_P71270 AZGP1* 7 5.83E-06 1.88 0.00068 

A_23_P23584 CTNNBIP1† 1 5.83E-06 -0.91 0.00068 

A_23_P95823 NSMCE1† 16 5.89E-06 -0.41 0.00068 

A_24_P223518 FKBP9 7 5.93E-06 1.79 0.00069 

A_32_P61729 RTN3* 11 5.96E-06 2.37 0.00069 

A_24_P85085 SYTL2† 11 5.97E-06 1.96 0.00069 

A_23_P68700 DNAJC28 21 5.98E-06 -0.85 0.00069 

A_24_P153643 DOCK3† 3 6.01E-06 -0.73 0.00069 

A_24_P126210 MRAP* 21 6.16E-06 0.49 0.00070 

A_24_P335221 RTN3* 11 6.35E-06 1.36 0.00072 

A_32_P181527 C8orf85 8 6.44E-06 -2.51 0.00073 

A_24_P347480 NEK9† 14 6.50E-06 -0.68 0.00073 

A_23_P36753 ALDH2* 12 6.55E-06 0.56 0.00074 

A_23_P207999 PMAIP1† 18 6.63E-06 -0.95 0.00074 

A_23_P73982 TMEM48† 1 6.64E-06 -0.86 0.00074 

A_24_P406754 LOXL4* 10 6.72E-06 1.67 0.00075 

A_24_P160225 CXorf36* X 6.82E-06 0.24 0.00076 

A_23_P11841 ATP2B4† 1 6.85E-06 2.26 0.00076 

A_23_P211878 FLNB† 3 6.89E-06 1.25 0.00076 

A_23_P416656 MYO1C 17 7.05E-06 1.37 0.00078 

A_32_P323 LRRC40 1 7.35E-06 1.18 0.00081 

A_24_P237374 UBA1* X 7.39E-06 2.39 0.00081 

A_24_P199905 YWHAQ* 2 7.50E-06 1.27 0.00082 

A_23_P257335 KHDRBS3† 8 7.60E-06 0.80 0.00083 

A_23_P88893 DEF8* 16 7.72E-06 -1.18 0.00084 

A_23_P129085 SPESP1† 15 7.79E-06 -0.33 0.00085 

A_32_P49748 B4GALNT3 12 7.82E-06 0.80 0.00085 

A_23_P144054 PRKCD 3 7.90E-06 3.75 0.00085 

A_23_P54576 KIFC3 16 7.95E-06 1.41 0.00086 

A_23_P13548 CHRDL2* 11 7.97E-06 -0.89 0.00086 

A_24_P304549 LAMP1 13 8.00E-06 0.88 0.00086 

A_32_P147149 FLJ33630 5 8.18E-06 -1.00 0.00087 

A_24_P80633 CTNNA1* 5 8.18E-06 2.40 0.00087 

A_23_P213336 FGF1* 5 8.23E-06 0.48 0.00087 

A_23_P144020 CNTN4 3 8.47E-06 1.37 0.00089 

A_32_P228067 C1orf101 1 8.50E-06 -0.39 0.00089 

A_23_P212034 DLG1* 3 8.50E-06 1.33 0.00089 
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A_24_P89708 IMPDH1 7 8.68E-06 1.10 0.00091 

A_23_P500381 HTR7† 10 8.82E-06 -1.85 0.00092 

A_23_P151209 CSRNP2 12 8.87E-06 1.34 0.00092 

A_23_P14708 ZNF280D† 15 9.03E-06 1.32 0.00094 

A_23_P75749 GLYAT 11 9.14E-06 0.77 0.00095 

A_24_P297078 C20orf3 20 9.23E-06 1.26 0.00095 

A_23_P62270 KDM5C X 9.36E-06 1.18 0.00096 

A_23_P394836 INF2 14 9.49E-06 1.52 0.00098 

A_23_P129956 DUSP3† 17 9.58E-06 -0.83 0.00098 

A_23_P25487 SLC38A4*† 12 9.59E-06 0.92 0.00098 

A_32_P232883 LOC100507165 11 9.61E-06 -0.72 0.00098 

A_24_P195785 COL4A5 X 9.74E-06 0.92 0.00099 

A_23_P39076 RRAS* 19 9.93E-06 1.18 0.00101 

A_23_P65918 ITPKA† 15 9.99E-06 -1.70 0.00101 

A_23_P103256 CFHR3 1 9.99E-06 1.22 0.00101 

A_32_P232865 BCR* 22 1.00E-05 0.85 0.00101 

A_24_P239988 ITSN2 2 1.02E-05 1.02 0.00102 

A_23_P155477 C3orf18 3 1.03E-05 -0.64 0.00103 

A_23_P3204 MAPK6† 15 1.04E-05 -1.06 0.00104 

A_23_P250800 ST3GAL6† 3 1.08E-05 0.63 0.00108 

A_24_P386622 ARRB1 11 1.10E-05 1.01 0.00109 

A_24_P728215 ZBTB20-AS1 3 1.10E-05 -1.05 0.00109 

A_23_P253677 TMEM192 4 1.13E-05 -0.77 0.00112 

A_24_P111547 MDH1B 2 1.13E-05 -0.43 0.00112 

A_24_P97849 DBN1* 5 1.16E-05 0.87 0.00114 

A_23_P118246 GINS2 16 1.21E-05 -0.59 0.00118 

A_23_P19657 LRP11 6 1.22E-05 0.56 0.00119 

A_24_P393496 LOC100288798 12 1.23E-05 -1.02 0.00120 

A_32_P89730 LOH12CR2* 12 1.23E-05 -0.98 0.00120 

A_23_P380990 CLEC4F 2 1.28E-05 2.53 0.00124 

A_23_P209246 GLI2† 2 1.29E-05 1.73 0.00124 

A_23_P77066 SNRPN† 15 1.30E-05 -0.74 0.00125 

A_23_P127915 STK33 9 1.30E-05 -0.48 0.00125 

A_23_P41917 HOMER1 5 1.34E-05 -0.51 0.00129 

A_23_P84995 MTMR8 X 1.35E-05 0.73 0.00129 

A_24_P321919 IQGAP1† 15 1.35E-05 1.28 0.00129 

A_23_P75283 RBP4 10 1.36E-05 0.66 0.00129 

A_23_P39074 RRAS* 19 1.38E-05 1.52 0.00131 

A_32_P169406 LOC400043 12 1.39E-05 1.88 0.00131 

A_23_P61623 SLCO3A1† 12 1.39E-05 1.29 0.00131 

A_23_P78782 CA11 19 1.40E-05 -0.91 0.00131 

A_24_P933704 PAM† 5 1.40E-05 1.71 0.00131 

A_23_P5757 TPRKB 2 1.41E-05 -0.38 0.00132 

A_23_P161439 C10orf116 10 1.41E-05 1.77 0.00132 

A_23_P43226 KCTD9† 8 1.43E-05 -0.94 0.00134 

A_23_P4536 EPB41L3 18 1.44E-05 1.20 0.00134 

A_23_P163258 PARP6† 15 1.44E-05 -0.94 0.00134 

A_24_P30806 EID1* 15 1.47E-05 -1.12 0.00136 
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A_23_P215525 OSBPL3† 7 1.50E-05 1.01 0.00138 

A_23_P316612 GLIS1† 1 1.54E-05 1.46 0.00142 

A_23_P358394 FAM65B* 6 1.55E-05 0.69 0.00142 

A_24_P196774 SNX8 7 1.56E-05 -0.66 0.00143 

A_24_P174313 KANSL3* 2 1.59E-05 -0.60 0.00144 

A_23_P104798 IL18 (includes 

EG:16173)† 

11 1.65E-05 1.16 0.00150 

A_23_P350617 KLB* 4 1.68E-05 0.85 0.00152 

A_23_P111260 NT5E† 6 1.68E-05 1.17 0.00152 

A_23_P433132 KRTCAP3* 2 1.70E-05 -0.95 0.00153 

A_23_P76015 ARHGEF17 11 1.74E-05 1.23 0.00156 

A_23_P382045 TULP4† 6 1.75E-05 -1.11 0.00157 

A_23_P104563 CPT1A 11 1.78E-05 1.30 0.00159 

A_23_P363954 THRSP* 11 1.82E-05 0.66 0.00162 

A_24_P109214 APOC1* 19 1.84E-05 -1.27 0.00163 

A_23_P200984 PTPRF*† 1 1.86E-05 1.76 0.00165 

A_23_P40657 GCAT 22 1.87E-05 -0.66 0.00165 

A_23_P11295 MTCP1NB X 1.88E-05 -0.82 0.00166 

A_24_P756657 C6orf225 6 1.89E-05 -0.78 0.00166 

A_24_P171268 RASSF5† 1 1.90E-05 -0.73 0.00167 

A_32_P198810 LOH12CR2* 12 1.90E-05 -0.91 0.00167 

A_24_P221903 LRRC3DN 21 1.94E-05 0.98 0.00170 

A_24_P339071 CDR2 16 1.95E-05 1.78 0.00171 

A_23_P204736 GPD1 12 1.97E-05 -0.43 0.00171 

A_32_P134167 CUL5 11 2.00E-05 -0.79 0.00174 

A_23_P29023 C21orf119 21 2.01E-05 -0.64 0.00174 

A_24_P270814 CRK*† 17 2.05E-05 2.05 0.00177 

A_24_P284523 MAP3K10 19 2.12E-05 -1.17 0.00183 

A_32_P213330 RGNEF† 5 2.13E-05 3.14 0.00183 

A_24_P100627 ATRNL1† 10 2.13E-05 -0.30 0.00183 

A_23_P94338 ENPP2† 8 2.15E-05 1.34 0.00184 

A_23_P111672 TES† 7 2.19E-05 0.86 0.00187 

A_24_P383609 NANOS1 10 2.20E-05 -0.59 0.00188 

A_24_P382533 NNAT† 20 2.25E-05 1.29 0.00191 

A_32_P211621 SLC25A24 1 2.27E-05 -0.86 0.00192 

A_32_P143000 FAM189A1 15 2.27E-05 0.94 0.00192 

A_23_P98455 VWA5A 11 2.32E-05 1.09 0.00196 

A_23_P348227 ZNF135* 19 2.36E-05 0.68 0.00199 

A_23_P204640 NANOG 12 2.39E-05 -1.28 0.00201 

A_23_P217339 PRKX† X 2.40E-05 2.42 0.00201 

A_23_P163458 EHD4† 15 2.41E-05 1.77 0.00201 

A_23_P36562 ITGA5† 12 2.41E-05 2.25 0.00201 

A_23_P103690 FAM189B* 1 2.41E-05 -0.51 0.00201 

A_23_P258310 PXDNL 8 2.44E-05 1.56 0.00203 

A_23_P208450 SLC25A23* 19 2.44E-05 -1.34 0.00203 

A_32_P5480 CERS6† 2 2.48E-05 -0.78 0.00206 

A_32_P85330 C15orf37 15 2.50E-05 -0.45 0.00207 

A_32_P4814 TMEM185A X 2.51E-05 -0.74 0.00207 

A_23_P20558 CDC37L1† 9 2.51E-05 -1.19 0.00207 
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A_32_P210872 HEPN1 11 2.53E-05 8.46 0.00208 

A_23_P4082 CCT6B 17 2.54E-05 -1.21 0.00208 

A_24_P234701 APBB2† 4 2.54E-05 2.39 0.00208 

A_23_P252075 AHCYL2 7 2.56E-05 0.82 0.00210 

A_23_P72187 MED14 X 2.58E-05 1.15 0.00210 

A_32_P88240 KBTBD12 3 2.58E-05 -0.78 0.00210 

A_23_P69531 KLB* 4 2.61E-05 0.91 0.00213 

A_23_P110882 TSPYL4† 6 2.63E-05 -0.92 0.00213 

A_23_P119857 TTC32† 2 2.64E-05 -1.82 0.00214 

A_23_P372888 SC5DL* 11 2.65E-05 -0.48 0.00214 

A_23_P371145 ADPRHL1*† 13 2.71E-05 -0.86 0.00219 

A_24_P167030 AP3M1 10 2.72E-05 1.66 0.00219 

A_24_P355145 DNAJC5B 8 2.73E-05 0.52 0.00220 

A_24_P297166  22 2.76E-05 0.84 0.00221 

A_24_P83738 ASTN2† 9 2.83E-05 1.76 0.00227 

A_23_P130677 C19orf80 19 2.85E-05 0.79 0.00228 

A_32_P224253 DNAH11 7 2.88E-05 1.24 0.00229 

A_23_P11685 PLA2G4A 1 2.92E-05 0.84 0.00232 

A_24_P136683 CA5BP1 X 3.01E-05 1.63 0.00239 

A_32_P427150 SHISA2* 13 3.01E-05 -0.68 0.00239 

A_23_P412186 ZNF252 8 3.02E-05 -0.45 0.00239 

A_23_P356484 RPS10 6 3.03E-05 -0.50 0.00239 

A_24_P934755 LOC100507948 2 3.04E-05 -0.59 0.00239 

A_23_P422115 C9orf116 9 3.04E-05 -0.61 0.00239 

A_23_P431360 ZNF219*† 14 3.06E-05 -0.78 0.00240 

A_32_P56713 BCR* 22 3.10E-05 1.64 0.00242 

A_32_P171530 LIFR-AS1 5 3.10E-05 -0.46 0.00242 

A_24_P321581 SLC38A4* 12 3.11E-05 1.31 0.00242 

A_23_P255263 STOM† 9 3.15E-05 1.58 0.00245 

A_23_P408249 PCK1 (includes 

EG:18534)* 

20 3.16E-05 1.03 0.00245 

A_23_P45579 HSFY1/HSFY2* Y 3.17E-05 -3.62 0.00246 

A_23_P392126 C17orf108 17 3.26E-05 -0.44 0.00252 

A_23_P36658 MGST1 6 3.28E-05 0.79 0.00253 

A_32_P149298 KIAA1841 2 3.29E-05 0.63 0.00253 

A_23_P400378 GPBAR1 2 3.34E-05 1.39 0.00256 

A_23_P167096 VEGFC† 14 3.39E-05 -1.01 0.00259 

A_24_P71781 TMEM108† 3 3.42E-05 1.28 0.00261 

A_23_P16451 UBXN6 19 3.44E-05 -0.68 0.00261 

A_24_P772103 PITPNC1† 17 3.44E-05 2.01 0.00261 

A_23_P369237 ADIPOQ 3 3.47E-05 0.56 0.00263 

A_23_P53397 SP1 12 3.53E-05 1.04 0.00267 

A_23_P137470 SIPA1L2† 1 3.56E-05 0.40 0.00269 

A_24_P233995  1 3.60E-05 2.08 0.00271 

A_23_P217168 CXorf36* X 3.61E-05 1.12 0.00271 

A_23_P79289 COBLL1*† 2 3.64E-05 1.21 0.00273 

A_23_P79251 EHD3 2 3.67E-05 -1.02 0.00275 

A_23_P63010 CERS2 1 3.69E-05 1.27 0.00276 

A_23_P426305 AOC3 17 3.73E-05 1.89 0.00278 
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A_23_P168105 EGFL8 6 3.75E-05 1.28 0.00279 

A_23_P108437 FZD5* 2 3.77E-05 2.48 0.00280 

A_23_P6708 LOC152217 3 3.80E-05 -0.47 0.00282 

A_23_P48438 ADPRHL1* 13 3.82E-05 -0.94 0.00283 

A_23_P136116 AGMO 7 3.83E-05 1.56 0.00283 

A_23_P76799 BAZ1A† 14 3.85E-05 1.66 0.00284 

A_23_P215009 FAM65B* 6 3.86E-05 1.01 0.00284 

A_23_P77401 CPPED1* 16 3.96E-05 -0.90 0.00291 

A_23_P4649 APOC1* 19 3.98E-05 -1.40 0.00291 

A_24_P382187 IGFBP4 17 3.98E-05 2.19 0.00291 

A_24_P341222 C4orf52 4 3.99E-05 -0.19 0.00291 

A_24_P308851 PCDHGA7† 5 4.00E-05 0.82 0.00292 

A_32_P3385 FLJ37798 6 4.04E-05 -0.52 0.00294 

A_24_P272225 LOC645676† 1 4.10E-05 -0.38 0.00297 

A_24_P107291 PPP2R1B* 1 4.11E-05 -0.86 0.00297 

A_23_P258698 MANBA† 11 4.11E-05 3.32 0.00297 

A_23_P152082 SPTBN5† 15 4.17E-05 0.75 0.00301 

A_23_P105212 THRSP* 11 4.20E-05 0.68 0.00302 

A_23_P368259 EID2B 19 4.21E-05 -0.86 0.00303 

A_24_P73738 RPL13† 16 4.24E-05 -0.67 0.00304 

A_23_P56197 CRLF1 19 4.25E-05 -0.73 0.00305 

A_23_P201156 CADM3 1 4.26E-05 1.04 0.00305 

A_23_P251293 SNCG 10 4.29E-05 3.03 0.00306 

A_23_P210623 PCK1 (includes 

EG:18534)* 

20 4.32E-05 3.68 0.00307 

A_24_P174316 KANSL3* 2 4.32E-05 -0.66 0.00307 

A_23_P94141 RAD54B 8 4.36E-05 -0.92 0.00309 

A_24_P932939 LOC401052 3 4.41E-05 1.30 0.00312 

A_23_P215735 ST7† 7 4.42E-05 1.65 0.00312 

A_23_P28258 PRKAG3† 2 4.42E-05 -0.51 0.00312 

A_24_P389415 PNMA2 8 4.46E-05 0.89 0.00314 

A_23_P136433 FGF1* 5 4.52E-05 0.58 0.00317 

A_32_P219279 ELFN2† 22 4.56E-05 1.13 0.00319 

A_23_P63101 FAM189B* 1 4.57E-05 -0.60 0.00320 

A_32_P106646 FAM36A† 1 4.61E-05 -0.70 0.00322 

A_32_P157391 FOLH1B 11 4.68E-05 0.34 0.00326 

A_24_P924862 RAPH1† 2 4.83E-05 -0.79 0.00334 

A_24_P364087 SERGEF 11 4.84E-05 -0.99 0.00335 

A_23_P42036 LYRM2 6 4.85E-05 -0.42 0.00335 

A_24_P328657 PEX5L 3 4.86E-05 1.14 0.00335 

A_24_P148503 FZD5* 2 4.87E-05 1.33 0.00335 

A_23_P255851 RNF38 9 4.89E-05 2.59 0.00335 

A_23_P142055 C19orf38 19 4.96E-05 -0.81 0.00339 

A_23_P126186 DEGS1 1 4.96E-05 0.95 0.00339 

A_23_P121564 GUCY1B3† 4 5.06E-05 0.61 0.00344 

A_23_P357207 MRAP2 6 5.08E-05 -1.66 0.00344 

A_23_P101084 SPATA22 17 5.08E-05 1.09 0.00344 

A_23_P214739 FBXL4 6 5.09E-05 -0.69 0.00344 

A_24_P35891 ZNF219* 14 5.11E-05 -0.89 0.00345 
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A_32_P224302 ZNF135* 19 5.14E-05 0.91 0.00346 

A_24_P254532 PGK1† X 5.20E-05 -1.47 0.00350 

A_23_P17695 SLC37A1 21 5.33E-05 -0.95 0.00356 

A_32_P208654 PIWIL2† 8 5.34E-05 -0.33 0.00356 

A_23_P17786 PITPNB† 22 5.35E-05 1.44 0.00356 

A_32_P55462 ZFR2 19 5.37E-05 -0.40 0.00357 

A_32_P144018 LOC100506451 12 5.38E-05 -1.33 0.00357 

A_23_P85783 PHGDH 1 5.43E-05 1.37 0.00360 

A_23_P146584 C9orf30* 9 5.49E-05 2.39 0.00363 

A_32_P228804 COBLL1* 2 5.51E-05 1.58 0.00364 

A_23_P147711 NPR1 (includes 

EG:18160) 

1 5.56E-05 1.46 0.00367 

A_23_P111517 WBSCR17† 7 5.58E-05 1.78 0.00367 

A_32_P205637 PARD6B† 20 5.62E-05 -0.56 0.00368 

A_24_P222835 S100PBP 1 5.62E-05 3.70 0.00368 

A_23_P340149 ZNF711* X 5.62E-05 1.45 0.00368 

A_23_P2414 C12orf39 12 5.64E-05 0.70 0.00368 

A_23_P108075 SLC7A10 19 5.67E-05 0.95 0.00369 

A_23_P327307 PAK2† 3 5.68E-05 2.31 0.00369 

A_32_P42075 CCZ1/CCZ1B 7 5.74E-05 -1.10 0.00373 

A_23_P5550 PUM2† 2 5.86E-05 2.86 0.00380 

A_23_P105138 CAT 11 5.87E-05 0.99 0.00380 

A_23_P4922 C19orf68 19 5.89E-05 -0.96 0.00380 

A_23_P39871 SLC19A3 2 5.91E-05 1.15 0.00381 

A_24_P54174 TNFRSF1B† 1 5.96E-05 -1.05 0.00383 

A_23_P21324 TWIST2 2 5.97E-05 0.93 0.00383 

A_32_P447001 FLJ27352 15 6.01E-05 -0.70 0.00385 

A_24_P260122 PHLDB2† 3 6.02E-05 1.64 0.00385 

A_23_P216556 EPB41L4B* 9 6.03E-05 2.28 0.00385 

A_32_P140268 KCND3* 1 6.07E-05 0.86 0.00387 

A_23_P202837 CCND1 11 6.22E-05 1.13 0.00396 

A_23_P254165 RAI2 X 6.36E-05 -1.43 0.00404 

A_24_P943575 CHD6† 20 6.46E-05 -2.36 0.00409 

A_24_P74374 CTSA 20 6.63E-05 2.54 0.00419 

A_23_P162211 MANSC1† 12 6.68E-05 0.60 0.00422 

A_24_P358381 GTPBP6* X 6.71E-05 -0.97 0.00423 

A_23_P64721 HCAR3 12 6.79E-05 0.87 0.00427 

A_23_P51699 ARHGEF2† 1 6.80E-05 1.79 0.00427 

A_23_P363472 NDFIP2 13 6.80E-05 -0.80 0.00427 

A_24_P861009 BRWD1† 21 6.92E-05 -0.66 0.00433 

A_23_P422212 SLC35F3 1 6.95E-05 1.96 0.00434 

A_23_P141044 ZNF688 16 6.97E-05 -0.69 0.00435 

A_24_P941268 CA5B* X 6.98E-05 0.93 0.00435 

A_23_P159053 RAD17 (includes 

EG:19356) 

5 6.99E-05 -0.44 0.00435 

A_24_P385313 PTPRF* 1 7.02E-05 4.26 0.00436 

A_23_P157963 CNTLN 9 7.06E-05 -0.53 0.00437 

A_24_P100830 AMN1 (includes 

EG:196394)† 

12 7.14E-05 -0.37 0.00442 
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A_23_P132365 LDOC1L* 22 7.22E-05 -0.37 0.00446 

A_23_P106675 PLCG2† 16 7.27E-05 1.61 0.00447 

A_23_P10121 SFRP1 8 7.27E-05 1.26 0.00447 

A_23_P500353 KCNN2 5 7.28E-05 0.62 0.00447 

A_32_P34920 FOXD1† 5 7.30E-05 1.66 0.00448 

A_23_P171232 AMOT X 7.34E-05 0.97 0.00450 

A_24_P56557 ATPBD4 15 7.50E-05 -1.04 0.00458 

A_23_P99980 HMGB1 13 7.54E-05 -1.04 0.00460 

A_23_P203751 TMEM135 11 7.65E-05 1.24 0.00466 

A_23_P330788 IQSEC2 X 7.67E-05 -0.69 0.00466 

A_32_P36694 JAZF1† 7 7.67E-05 1.25 0.00466 

A_23_P256542 FAM162A 3 7.68E-05 -1.23 0.00466 

A_23_P133665 FRK† 6 7.70E-05 0.75 0.00467 

A_23_P56328 PLVAP† 19 7.80E-05 1.06 0.00472 

A_24_P354615 MTMR12 5 8.02E-05 1.01 0.00484 

A_32_P223059 SLC45A1† 1 8.06E-05 -1.43 0.00486 

A_23_P83556 CRK* 17 8.11E-05 1.25 0.00488 

A_23_P503115 BCR* 22 8.12E-05 0.73 0.00488 

A_23_P305759 ABHD3 18 8.18E-05 1.22 0.00491 

A_23_P35114 PLEKHO1† 1 8.25E-05 -1.28 0.00495 

A_23_P208812 ZNF507† 19 8.43E-05 -1.15 0.00504 

A_32_P206949 TMEM17 2 8.49E-05 -0.68 0.00506 

A_23_P48585 SALL2 14 8.52E-05 -0.49 0.00507 

A_23_P206310 KIAA0513 16 8.57E-05 -0.88 0.00509 

A_23_P11192 UBE2E3† 2 8.71E-05 -0.68 0.00517 

A_23_P129188 CALML4 15 8.84E-05 1.48 0.00524 

A_23_P434212 SULT1A1 16 8.88E-05 3.04 0.00525 

A_23_P92025 CIDEC† 3 8.98E-05 1.56 0.00531 

A_24_P719579 CISD3 17 9.01E-05 -0.97 0.00532 

A_23_P30126 FGFBP1 4 9.17E-05 9.27 0.00539 

A_23_P44836 NT5DC2 3 9.19E-05 2.98 0.00540 

A_23_P212675 NME9 3 9.24E-05 -1.16 0.00542 

A_24_P62833 ADAMTSL4† 1 9.35E-05 0.78 0.00547 

A_23_P141484 C17orf63† 17 9.38E-05 -0.95 0.00547 

A_23_P250914 ATP6V1C2 2 9.39E-05 0.94 0.00547 

A_23_P432947 GREM1† 15 9.41E-05 -0.31 0.00548 

A_23_P156284 DBN1* 5 9.50E-05 1.12 0.00552 

A_23_P57709 PCOLCE2 (includes 

EG:26577)† 

3 9.51E-05 0.59 0.00552 

A_23_P501276 TUBB2A† 6 9.56E-05 1.01 0.00554 

A_24_P59643 KIAA1456 8 9.59E-05 0.77 0.00555 

A_24_P62615 CAP1† 1 9.63E-05 1.68 0.00557 

A_24_P218814 RDH5† 12 9.69E-05 1.09 0.00559 

A_24_P98249 TACC1† 8 9.81E-05 1.19 0.00564 

A_32_P166031 LOC100507568 15 9.82E-05 1.76 0.00564 

A_23_P93009 SRP19 5 9.86E-05 0.59 0.00565 

A_23_P158041 AQP7 9 9.98E-05 1.88 0.00571 

A_32_P209250 Not mapped by IPA Y 9.08E-21 -1.25 0.00000 

A_32_P35165 Not mapped by IPA X 8.52E-19 -3.46 0.00000 
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A_32_P216715 Not mapped by IPA X 1.84E-18 0.85 0.00000 

A_24_P642758 Not mapped by IPA X 3.78E-14 1.20 0.00000 

A_24_P238386 Not mapped by IPA 16 1.36E-13 -3.24 0.00000 

A_24_P703642 Not mapped by IPA 2 1.23E-12 1.32 0.00000 

A_32_P11325 Not mapped by IPA 9 2.79E-11 -0.95 0.00000 

A_32_P117185 Not mapped by IPA 2 3.26E-11 0.88 0.00000 

A_24_P332541 Not mapped by IPA 12 8.21E-10 1.60 0.00000 

A_24_P33055 Not mapped by IPA 7 1.43E-09 1.76 0.00000 

A_24_P178444 Not mapped by IPA 11 1.24E-08 1.59 0.00000 

A_24_P306814 Not mapped by IPA 5 1.26E-08 1.62 0.00000 

A_24_P913576 Not mapped by IPA 14 3.19E-08 -1.22 0.00001 

A_24_P929818 Not mapped by IPA 9 4.22E-08 1.11 0.00001 

A_24_P255836 Not mapped by IPA 2 5.54E-08 -0.83 0.00002 

A_24_P101742 Not mapped by IPA 5 6.52E-08 1.76 0.00002 

A_32_P182395 Not mapped by IPA 9 8.12E-08 -0.69 0.00002 

A_32_P119165 Not mapped by IPA 9 1.00E-07 0.61 0.00003 

A_24_P358606 Not mapped by IPA 5 1.00E-07 1.04 0.00003 

A_32_P232682 Not mapped by IPA 7 1.14E-07 -0.80 0.00003 

A_32_P231493 Not mapped by IPA 13 2.72E-07 -0.76 0.00006 

A_24_P691826 Not mapped by IPA 17 3.06E-07 -0.59 0.00007 

A_23_P170719 Not mapped by IPA 19 5.20E-07 0.63 0.00010 

A_24_P332292 Not mapped by IPA 15 5.61E-07 -0.75 0.00011 

A_24_P900555 Not mapped by IPA Y 6.52E-07 1.12 0.00012 

A_23_P350754 Not mapped by IPA 11 8.19E-07 -1.69 0.00015 

A_32_P86616 Not mapped by IPA X 8.94E-07 2.32 0.00016 

A_24_P7330 Not mapped by IPA 22 1.06E-06 1.13 0.00018 

A_32_P17484 Not mapped by IPA 20 1.29E-06 -1.03 0.00020 

A_24_P367100 Not mapped by IPA 2 1.52E-06 -1.25 0.00023 

A_32_P225667 Not mapped by IPA 16 1.66E-06 -0.84 0.00025 

A_24_P418028 Not mapped by IPA 14 1.67E-06 -1.12 0.00025 

A_24_P488927 Not mapped by IPA 1 2.08E-06 0.50 0.00030 

A_24_P5994 Not mapped by IPA 20 2.55E-06 1.13 0.00036 

A_32_P186725 Not mapped by IPA 8 3.28E-06 -0.66 0.00044 

A_32_P40424 Not mapped by IPA 6 4.95E-06 -0.76 0.00061 

A_32_P194563 Not mapped by IPA Y 5.26E-06 -0.95 0.00063 

A_24_P110201 Not mapped by IPA 4 5.63E-06 -0.23 0.00067 

A_24_P93425 Not mapped by IPA 1 6.07E-06 -0.55 0.00069 

A_32_P18838 Not mapped by IPA 8 6.17E-06 -0.81 0.00070 

A_23_P317413 Not mapped by IPA 14 8.17E-06 -0.45 0.00087 

A_32_P86533 Not mapped by IPA 2 8.84E-06 1.03 0.00092 

A_32_P58705 Not mapped by IPA 7 1.17E-05 0.69 0.00115 

A_32_P148616 Not mapped by IPA 4 1.18E-05 -0.55 0.00115 

A_24_P170203 Not mapped by IPA 11 1.30E-05 -0.77 0.00125 

A_32_P105397 Not mapped by IPA 15 1.39E-05 -0.88 0.00131 

A_32_P30760 Not mapped by IPA 5 1.49E-05 -1.52 0.00138 

A_32_P201212 Not mapped by IPA 4 1.51E-05 -1.36 0.00138 

A_23_P90780 Not mapped by IPA 2 1.62E-05 -1.14 0.00148 

A_32_P109181 Not mapped by IPA 21 1.73E-05 -0.71 0.00155 
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A_24_P222432 Not mapped by IPA 9 1.96E-05 -1.33 0.00171 

A_24_P478362 Not mapped by IPA 5 2.08E-05 -1.32 0.00180 

A_24_P110242 Not mapped by IPA 16 2.87E-05 3.67 0.00229 

A_32_P23525 Not mapped by IPA 12 3.28E-05 1.15 0.00253 

A_24_P707530 Not mapped by IPA 17 3.35E-05 -0.74 0.00257 

A_32_P142459 Not mapped by IPA 4 3.39E-05 0.76 0.00259 

A_23_P28307 Not mapped by IPA 2 3.60E-05 1.11 0.00271 

A_32_P214340 Not mapped by IPA 4 4.11E-05 1.07 0.00298 

A_32_P13612 Not mapped by IPA 3 4.33E-05 -0.48 0.00308 

A_24_P490877 Not mapped by IPA 8 4.45E-05 1.05 0.00314 

A_32_P105539 Not mapped by IPA 9 4.66E-05 -0.70 0.00325 

A_32_P31963 Not mapped by IPA 5 4.75E-05 0.86 0.00330 

A_24_P489639 Not mapped by IPA 11 4.81E-05 0.93 0.00334 

A_32_P49284 Not mapped by IPA 8 4.87E-05 -0.83 0.00335 

A_32_P144999 Not mapped by IPA 6 4.98E-05 1.20 0.00339 

A_32_P56463 Not mapped by IPA 14 5.05E-05 -0.48 0.00343 

A_24_P721828 Not mapped by IPA 14 5.05E-05 -0.90 0.00343 

A_23_P114582 Not mapped by IPA 1 5.26E-05 1.12 0.00353 

A_24_P818529 Not mapped by IPA Y 5.26E-05 -0.27 0.00353 

A_24_P823514 Not mapped by IPA 17 5.35E-05 -0.72 0.00356 

A_32_P161554 Not mapped by IPA X 5.58E-05 -0.83 0.00367 

A_24_P170874 Not mapped by IPA 2 5.68E-05 1.19 0.00369 

A_24_P533142 Not mapped by IPA 11 5.94E-05 -0.68 0.00383 

A_32_P144281 Not mapped by IPA X 6.41E-05 0.75 0.00407 

A_32_P212920 Not mapped by IPA 8 6.85E-05 1.33 0.00429 

A_32_P144629 Not mapped by IPA 8 7.04E-05 -0.71 0.00437 

A_32_P185881 Not mapped by IPA 2 7.38E-05 -0.75 0.00452 

A_32_P8653 Not mapped by IPA 3 8.44E-05 1.37 0.00504 

A_24_P307395 Not mapped by IPA 14 8.46E-05 1.61 0.00505 

A_24_P281009 Not mapped by IPA 9 9.10E-05 0.94 0.00536 

A_32_P40615 Not mapped by IPA 7 9.26E-05 -0.52 0.00542 

A_32_P115663 Not mapped by IPA 5 9.70E-05 -0.71 0.00559 

A_32_P169353 Not mapped by IPA 2 9.78E-05 2.39 0.00563 

A_23_P435390 Not mapped by IPA  9.86E-05 1.39 0.00565 

 

FC, fold change (men versus women); FDR, false discovery rate 

*An asterisk indicates that a given gene is represented in the microarray set with 

multiple identifiers 

† Androgen response elements identified by Wyce et al. in the genome of skeletal 

muscle cells (Wyce A, Bai Y, Nagpal S, Thompson CC. Research Resource: The 

androgen receptor modulates expression of genes with critical roles in muscle 

development and function. Mol Endocrinol. 2010;24:1665-74.) 
 

 

 


