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Abstract 9 

If a non-indigenous species is to thrive and become invasive it must first 10 

persist under its new set of environmental conditions. Net reproductive rate (R0) 11 

represents the average number of female offspring produced by a female over its 12 

lifetime, and has been used as a metric of population persistence.  We modeled R0 as a 13 

function of ambient water temperature (T) for the invasive marine calanoid copepod 14 

Pseudodiaptomus marinus, which was introduced to west coast of North America 15 

from East Asia by ship ballast water. The model was based on temperature-dependent 16 

stage-structured population dynamics given by a system of ordinary differential 17 

equations.  We proposed a methodology to identify habitats that are non-invasible for 18 

P. marinus using the threshold of R0(T)<1 to identify potentially invasible habitats.  19 

We parameterized the model using published data on P. marinus and applied R0(T) to 20 

identify the range of non-invasible habitats in a global scale based on sea surface 21 

temperature data. Model predictions matched field evidence of species occurrence 22 

well.   23 
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Introduction 1 

  2 

 Assessment of habitat invasibility often relies on statistical matching of the 3 

external environmental variables in native and novel habitats via methods such as 4 

ecological niche modeling (ENM) (Jeschke and Strayer 2008; Mercado-Silva et al. 5 

2006).  However, it is often the case that invasive species can tolerate environmental 6 

conditions in novel habitats that are outside those found in their native habitats 7 

(Broennimann et al. 2007; Elith and Leathwick 2009). This indicates that the absence 8 

of a species in particular environments may not necessarily mean such environments 9 

are unsuitable for the species. As an alternative to ENM, we can determine the 10 

response of potential invaders to specific environmental conditions under controlled 11 

laboratory settings.  For example, we can measure the rates of mortality, offspring 12 

production, and stage durations under different environmental conditions.  However, 13 

we must still translate these measures into a habitat invasibility indicator or metric.  14 

Will a population persist and grow under a given set of environmental conditions?   15 

To answer this question we can use the net reproductive rate R0 of a population as a 16 

metric. R0 is a measure of a population’s reproductive success (Ackleha and de-17 

Leenheerb 2008), and therefore, is a population fitness trait, which represents the 18 

average number of offspring produced by a female over its lifetime (de-Camino-Beck 19 

and Lewis 2008). It has been used in evolutionary invasion analysis to predict long 20 

term evolutionary outcomes (Hurford et al. 2010). When R0>1, a population grows, 21 

and when R0<1, a population tends to decrease to extinction (Boldin 2006). Thus, we 22 

can use R0 to decide which habitats are suitable or unsuitable for a species by 23 

determining whether environmental parameters result in R0>1 or R0<1.  We derived R0 24 

from a mechanistic state-structured population model given by a system of ordinary 25 

differential equations and parameterized by data from laboratory experiments. This 26 

method allows us to predict the range of habitats that are non-invasible or potentially 27 

invasible for a species or strain.  28 

Our model species, Pseudodiaptomus marinus, is an invasive marine calanoid 29 

copepod that was introduced to the Pacific coast of North America (Fleminger and 30 
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Kramer 1998) and coastal waters in Southern Chile from its native habitat in East 1 

Asia via ballast water (Bollens et al. 2002).  It is a perennial egg-carrying calanoid 2 

copepod, spawns continuously throughout the year, and has multiple overlapping 3 

generations (Uye et al. 1983).  Its life-history traits such as fertility, mortality and 4 

maturation rates are known to be functions of temperature (Liang and Uye 1997a; Uye 5 

et al. 1983).  P. marinus has also been reported in many other oceanic habitats around 6 

the world (Marine Planktonic Database) and has been expanding its range (Jiménez-7 

Pérez and Castro-Longoria 2006). Despite high propagule pressure, P. marinus has 8 

not been reported in the coastal ecosystems of Oregon and Washington (Cordell et al. 9 

2009), or Vancouver Harbour (Piercey et al. 2000), indicating that it may be a 10 

successful invader only in selected habitats.  It has not been clear what environmental 11 

factors limit its geographical distribution in terms of its physiological tolerance.   12 

Here we modeled R0 of P. marinus as a function of temperature assuming 13 

continuous time stage-structured population dynamics of the species based on a 14 

system of linear first order ordinary differential equations (ODEs). ODE transmission 15 

models in epidemiology literature are commonly evaluated using R0, although it is 16 

less commonly used in stage-structured life-history dynamics.  We parameterized the 17 

model using previously published data from laboratory experiments and field surveys 18 

(Liang and Uye 1997a; Uye et al. 1983).  19 

The R0-based approach to determining habitat invasibility, while appealing, is 20 

necessarily limited by the range of environmental conditions under which the 21 

laboratory experiments can produce parameters. When R0 is calculated using model 22 

parameters that were estimated for a limited range of primary environmental variables 23 

(e.g. temperature only), with other secondary environmental variables (e.g. salinity, 24 

daylight levels) held at optimal levels in the laboratory, results are not likely to be 25 

representative of what the species experiences in the field.  In these cases, however, it 26 

is possible to use the R0-based approach to identify which habitats are non-invasible. 27 

If R0 <1 when secondary variables are optimal it also should remain below one when 28 

secondary variables are suboptimal. In this way we can identify temperature (T) 29 

thresholds for invasibility of the marine copepod P. marinus using R0(T). 30 
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The method we develop yields R0(T) as a function of temperature, allowing us 1 

to predict the range of temperatures that inhibit the growth of P. marinus, and thereby 2 

to predict the range of habitats that are potentially invasible to P. marinus.  This 3 

method can be generally applied to model R0 for other similar species. The results is 4 

complimentary to ENM and has a further advantage over ENM in terms of predicting 5 

species’ potential spread over habitats that differ from their native habitats.  6 

 7 

Methods 8 

 9 

We modeled stage-structured population dynamics of P. marinus using a 10 

system of first order linear ODEs assuming continuous year-round growth and 11 

overlapping generations (Uye et al. 1983).  We followed the methods in van den 12 

Driessche and Watmough (2002) to model the net reproductive rate R0 based on the 13 

ODE model.  Our model contains fertility, maturation, and mortality rate parameters.  14 

Because stage based fertility, mortality, and maturation rates are temperature-15 

dependent (Uye et al. 1983; Liang and Uye 1997a.), we modeled the rate parameters 16 

as functions of temperature.  This allowed us to calculate the temperature-dependent 17 

R0.   18 

 19 

Model 20 

P. marinus has 12 life stages, consisting of eggs, five naupliar stages, five 21 

copepodid stages, and one adult stage.  We do not include naupliar stage 1 in the 22 

model as data corresponding to this stage are not available due to difficulty in 23 

measurement as it lasts only few minutes (Uye et al. 1983). However, the data on 24 

naupliar stage 2 can be considered as an approximation, combining stage 1 and stage 25 

2 into a single stage.  26 

We define n(t) to be a vector representing the stage composition of the 27 

population at time t, and A(T) be a matrix of parameter space of vital rates (fertility, 28 

maturation, and mortality) that depend on temperature (T).  Thus, we can write the 29 

rate of change of stage composition as follows:  30 
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where, 



i(T)  and )(Ti , 



(T)are stage-dependent mortality, maturation, and 8 

fertility rates respectively, which are functions of temperature. Here, 
1n represents the 9 

number of eggs, 
2 6...n n  represents the number of individuals in the five naupliar 10 

stages (excluding stage 1), 
7 12...n n  represents the number of individuals in the five 11 

copepodid stages, ( )T is the fertility rate (rate of egg production) in adult females as a 12 

functions of temperature. The constant q is the average proportion of ovigerous 13 

females in the adult population, which is estimated to be 0.61 (Liang and Uye 1997b). 14 

See Table 1 for all notations. We derived the net reproductive rate R0 for P. marinus 15 

based on the above model as described below.  16 

 17 

R0 as a function of temperature  18 

First, we wrote the matrix A as A F V   where F is the matrix of fertility 19 

coefficients (non-negative and non-zero), and V is the matrix of transition coefficients 20 

(i.e. net maturation and mortality rates).  R0 can then be written as ][ 1

0

 FVR  , 21 

where  is the spectral radius of the matrix



FV 1  (van den Driessche and Watmough 22 

2002).  That is
1

1
[ ] | |i

i n
FV max 

 
  where 1 2, ,..., n   are eigenvalues of the square 23 
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matrix



FV 1 . Note that the intrinsic growth rate defined as the maximum real 1 

eigenvalue of the square matrix A has a non-linear relationship with net reproductive 2 

rate R0 (Wallinga and Lipsitch M 2007). However, the intrinsic growth rate is positive 3 

if and only if 
0R >1. 4 

We modified the model to express R0 as a function of temperature, such 5 

that ])()([)( 1

0

 TVTFTR  . Using the graph reduction method (de-Camino-Beck  6 

and Lewis 2007) (see derivation in Appendix A) , we can also write R0 as,  7 

 

rate of production 
      of offspring 
       by females

1

0

1

mortality rate prob. of maturating into stage  s
   at stage s

( )( )
( )

( ) ( ) ( )

s
i

is i i

Tq T
R T

T T T
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where s is the final stage (stage 12) for P. marinus. We modeled temperature 9 

dependent parameters in the model as described in the next section. 10 

 11 

Fertility rates ( )T  12 

Eggs are produced by adult females in stage 1 (n11). Fertility rate, ( )T , can be 13 

written as ( ) ( ) /T f T t   , where f(T) is the number of eggs produced by an adult 14 

female over time t  at average temperature T.  Uye et al. (1983) fitted a linear model 15 

to parameterize ( )T .  The linear model takes the form ( ) 0.771 4.48T T   , with 16 

R
2
=0.84. Residual analyses of Uye’s data, however, show that residuals are not 17 

randomly distributed along the fitted line indicating that linearity may not be the 18 

appropriate assumption. There is a depression in fertility rates at low temperatures.  19 

Furthermore, the linear model assumes that fertility is unbounded with increasing 20 

temperature, which is not a biologically valid assumption.  We therefore refitted the 21 

data with a sigmoidal curve, assuming log normally distributed errors.  We 22 

incorporated a lag parameter (b) to relax the assumption that the curve must otherwise 23 

intercept the y-axis at the origin.  The sigmoidal curve allows us to assume that 24 

fertility rate has a maximum value.  Biologically it is more appropriate to assume that 25 
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fertility rate is a bell-shaped curve, however we did not have the data to extend our 1 

curve to the point were ( )T begins to decrease at high temperatures.  Hence, our 2 

model for fertility rate can be written as,  3 

( ) ( )( ) /[ ( 1)]w T b w T b

m l m lT f f e f f e      4 

Where, mf  is the maximum rate of fertility,
lf  is fertility rate at the lowest temperature, 5 

and w is a shape parameter that accounts for the depression in fertility at lower 6 

temperatures.  We compared the regression fit of linear model used in Uye et al. (1983) 7 

with our sigmoidal model using residual sum of squares.  8 

 9 

Maturation rates i (T) 10 

We solved the system of ODE’s represented by Eq.1 analytically for initial 11 

values corresponding to a single individual in stage 1, 1(0) 1n  , and (0) 0in   for 12 

i=2,..,12. This allowed us to follow a single cohort over time with no additional 13 

individuals being added to the system (Appendix B).  14 

In experimental studies, maturation rates are commonly calculated using 15 

median development times, or the time it takes for 50% of the cohort to mature from 16 

eggs past a given stage (e.g. Uye et al. 1983, Breteler et al 1994, Lee et al. 2003.)  An 17 

assumption underlying such conventional calculation of maturation rate using 18 

‘proportions not yet past given stage’ is that daily mortality rates of copepods are the 19 

same across all stages for a cohort. It excludes the mortality rate parameter from the 20 

equation and assumes that daily stage proportions are the result of individuals 21 

maturing from one stage to another. We made the same assumption here in the 22 

estimation of maturation rates from our model as P. marinus data are available only as 23 

proportions of a cohort remains in each stage over time with the same assumption.  24 

Thus, we normalized the stage size data ( )an t for each time step (t) dividing it by total 25 

remaining population of the cohort at that time step to give the proportion at each 26 

stage ( )az t .  This assumption made the proportion at each stage ( )az t  to be 27 

independent from the mortality rates (Appendix C).   28 



 8 

Using Eq.3 in Appendix C we can describe the proportion of individuals not 1 

having past stage a, i.e. 
1

( )
a

i

i

z t


 , as, 2 

    
1 1 1

( ) 1 (1 )i

aa a
j t

i

i i j j i
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As shown by Cox (1967), this equation can also be derived from assuming the 4 

length of time that a copepod takes in a stage (stage duration time) as an exponentially 5 

distributed random variable, da, such that the probability density function of da is 6 

at

ae
 

and cumulative density function of da is (1 )at
e


 , where 

a is the stage 7 

maturation rate, and 0a  for all stages a. The length of mean time taken to exit stage 8 

a, i.e. stage development time, Da, becomes a random variable defined as 
1

a

a i

i

D d


 of 9 

which the cumulative density function of is
1

[1 ( )]
a

i

i

z t


 . The quantity
1

( )
a

i

i

z t


 , thus 10 

yields the proportion of individuals not having past stage a.   11 

We fitted stage proportion data from Uye et al. (1983) to Eq.4 using nonlinear 12 

least squares regression to estimate a .  The data used were collected for P. marinus at 13 

20
0
C.  We calculated the mean stage duration times da as 

1
a

a

d


  at 20
0
C.  This 14 

yielded from the fact that 



da is an exponentially distributed random variable.  We then 15 

used 



dacalculated for 20
0
C to estimate the relationship between 



Daand temperature 16 

(T).  We assumed the relationship given by Belehradek’s function,  1.8( 1)a aD T    17 

(as used by Uye et al. (1983) for P. marinus), where T is temperature in centigrade 18 

and a is a constant that varies with stage a.  Using calculated



a , we estimated the 19 

parameters for ( )a T from the following equation derived from the above, 20 

1.8

1( ) ( 1) /( )a a aT T      for each stage a at temperatures (T). Here, 0 0  . 21 

As an advancement to the above model, we modified Eq.1 to assume that stage 22 

duration times are gamma distributed (Breteler et al. 1994; Lee et al. 2003) to replace 23 
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the earlier assumption on exponentially distributed times. That is, probability density 1 

function of da now becomes 
1

( )
a

k
tkt e

k

 


where, 



(k)  (k 1)!,



a  0, k>0.  2 

Mathematically this can be achieved by assuming that there are sub-stages (ka) within 3 

each stage a in Eq.1 given that duration times of sub-stages are exponentially 4 

distributed (see MacDonald 1978 for a full description).  Here we assumed that 5 

mortality and maturation rates of sub-stages were the same for each stage. Thus the 6 

number of sub-stages, k, in Eq.1 is equivalent to assuming the shape parameter k in 7 

the gamma distributed stage duration times.  Here we assumed ka to be the same for 8 

all stages a as previous studies suggested for copepods (e.g., Breteler et al. 1994; Lee 9 

et al. 2003). The method for fitting the model with multiple sub-stages is outlined in 10 

Appendix D. 11 

The mean stage duration times da become 



da 
ka

 a
 for the modified model for 12 

gamma distributed da.  We assumed ka to be the same for all stages a (Breteler et al. 13 

1994). Therefore 14 

1.8

1( ) ( 1) /( )a a aT k T            (5) 15 

where 00  .  Note that the advanced model (see Appendix D through Eq.5) reduces 16 

to simple model when k=1 and 0  . We compared the model fits for k=1, and k=2,3 17 

using AIC and chi-squares test to determine which model assumption was the best to 18 

estimate 



 a(T). We used the estimated stage duration times to calculate mortality rates 19 

as shown in the next section.     20 

 21 

Mortality rates ( )T  22 

Liang and Uye (1997a) estimated the percent survival of nine generations of 23 

the population for P. marinus from the west coast of Japan under different mean 24 

temperatures.  We used these data to estimate survival curves at different temperatures.  25 

Because of their estimation procedure, Liang and Uye reported percent 26 

survival >100% in some cases; these values were reduced to 100%.  We fitted the 27 
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function exp( )Sv a  for the proportion surviving from eggs to stage a, where  is 1 

a scale parameter and   is a shape parameter. We estimated  and   using non-2 

linear least squares regression.  We calculated the proportion of individuals that died 3 

in each stage with respect to the proportion of individuals that matured into the 4 

current stage from the previous stage using Sv. We refer to Sv as a modified Wiebull 5 

function because (1-Sv) is the cumulative density function of the Wiebull distribution 6 

(1951).  7 

To obtain estimates of mortality rates )(Ta  for each stage a, we divided the 8 

estimated proportions that died in each stage by the stage duration times, given by 9 

1
a

a

d


 for the exponential distributions (simple model), and 
a

a

k
d


  for gamma 10 

distributions (advanced model) at the same temperatures.  We pooled mortality rates 11 

across stages so as to be consistent with our earlier assumption (in modeling stage 12 

maturation rates using experimental data) that mortality rates across all stages are the 13 

same.  We fitted a quadratic function 01

2

2)(   TTT  for the pooled data 14 

using nonlinear least squares regression.  We did not use the survey measurement data 15 

at 27.4
0
C in Uye et al. (1983) for above calculations as it yielded near zero daily 16 

mortality rates at such a comparatively high temperature which resulted in a 17 

biologically inexplainable pattern that contradicted the general trend, suggesting that 18 

those data may be outliers. 19 

We tested whether the assumption behind pooling data, i.e. mortality rates are 20 

the same across all stages for a given temperature (as in Breteler et al. 1994; Uye et al. 21 

1983) is a valid assumption for this species.  To do this, we used the method of 22 

positioning means within confidence intervals (Venables and Repley 2002).  23 

Now we had ( )T , ( )a T  and ( )T  modeled exclusively as functions of 24 

temperature to finally fit into R0(T) model.  25 

The model for R0(T) for any k is as follows  26 

1

0

1

( )( )
( )

( ) ( ) ( )

k
s

i

is i i

Tq T
R T

T T T
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(see derivation in Appendix A). 1 

 2 

Application and validation 3 

 We used the parameterized R0(T) to predict the range of habitats that are non-4 

invasible to P. marinus on a global scale, based on sea surface temperature data from 5 

NOAA Optimum Interpolation (OI) SST V2. The range of habitat temperatures where 6 

R0(T)<1 is considered to be non-suitable for population persistence and hence non-7 

invasible. We compared predictions with the known distribution of P. marinus.  8 

 9 

Results 10 

 11 

Fertility rates 12 

We found that the sigmoidal model for fertility rates fits the data better than 13 

the linear model (Fig.1).  The residual sum of squares (RSS) for the sigmoidal model 14 

was 97.37, compared to 126.08 for the linear model.  Parameters for the sigmoidal 15 

model were 0

m lf =13.89,  f =0.61, w=0.35, b=6.01 C . Using the sigmoidal model, fertility 16 

rates started at zero near or slightly above 0
o
C, and tended to reach a maximum at 17 

temperatures above 25
o
C.  Intuitively, fertility rate should peak at some optimal 18 

temperature, then decrease with increasing temperatures, which our sigmoidal model 19 

does not recreate.  However, we are more interested in predicting dynamics at lower 20 

temperatures, so the sigmoidal model is sufficient. The results indicate that sigmoidal 21 

model is a better statistical approximation as well as having a theoretically better 22 

rationale than the linear model.   23 

 24 

Maturation rates 25 

We estimated stage development times for cases k=1,2 and 3 in Eq.5 by fitting 26 

data from Uye et al. (1983) (Fig.2).  We compared the fits using AIC and found that 27 

k=3 is the better statistical model than k=1,2 (Table 2).  The model with k=3 gives the 28 

lowest AIC (Table 2). Note that p-values for chi-squares goodness of fit test for k=1 29 

and k=2 with respect to k=3 was <0.001. This suggests that model with k=3 is 30 



 12 

significantly different from models with k=1 and k=2. Hence, we concluded that the 1 

model with k=3 is the most reasonable.   2 

 3 

Mortality rates 4 

We estimated values of λ and α for Wiebull model for different generations at 5 

different temperature regimes (Table 4). We also plotted mortality rates against 6 

temperatures based on the Wiebull model (Fig. 4) and in relation to 
( )

a

a

k
d

T
 at 7 

different temperature regimes.  The parameters estimated for mortality rate were 8 

κ2=0.0022 /day, κ1=-0.0563 /
0
C day, κ0=0.4211 /

0
C

2
 day.  The assumption that 9 

mortality rates are the same across all stages was tested by examining confidence 10 

intervals.  The mean values of the model coefficients fall within the confidence 11 

intervals of every other stage, indicating that the data can be pooled.  Hence, our 12 

assumption that mortality rates are the same across all stages for a given temperature 13 

is valid for P. marinus.  14 

 15 

Net reproductive rate 16 

We plotted R0(T) after incorporating the parameterized sub-17 

models ( )T , ( )a T and ( )T (Fig. 5).  R0(T) tends to curve downwards at high 18 

temperatures due to increasing mortality rate (Fig.4) that suppresses the positive effect 19 

of increasing fertility rates at higher temperatures (Fig.1).   20 

We plotted R0(T) for the cases where k=1 and k=3 (Fig. 5). Relatively higher 21 

values of R0(T) for higher k suggest that the fitness of the population is reduced when 22 

k is low regardless of the temperature.  The model R0(T) that best fits data was the one 23 

with parameter k=3.  The uncertainty associated with the estimates of R0(T) can not be 24 

calculated because parameters taken from the literature did not have confidence 25 

estimates (Uye et al (1983) and Liang and Uye (1997a)).  We found that R0 >1 26 

between 11
0
C and 23

0
C , and this is therefore the range within which the habitats are 27 

potentially invasible.  If other conditions in a habitat are ideal and temperature falls 28 

within this range, species could grow.  At temperatures <11
0
C and >23

0
C,  R0 <1 and 29 



 13 

habitats with these mean temperatures are non-invasible.  If a habitat’s temperature 1 

fluctuates seasonally between these two limits, it is tolerable to P. marinus.   2 

 3 

Application and validation 4 

 We mapped the range of habitats where yearly averaged sea surface 5 

temperatures is between 11
0
C and 23

0
C (colored contours in Fig 6) where they are 6 

potentially invasible to P. marinus. Hence, the area where there are no contour lines 7 

(23
0
C <T<11

0
C) indicate the habitats where P. marinus is non-invasible. Field 8 

sampling evidence depicted in Fig (6) suggests that our predictions fit well into 9 

potentially invasible habitat range except for marginal deviations of few occurrences.  10 

 11 

Discussion 12 

 13 

Here we proposed a novel methodology to model net reproductive rate R0, 14 

which is a population persistence metric, as a function of temperature (T) for invasive 15 

marine copepod P. marinus based on the data from experiments. This approach can be 16 

generally applied to model R0 for aquatic copepods that respond to environmental 17 

parameters markedly, reproduce year-round, and have multiple overlapping 18 

generations (species for e.g. as in Bonnet et al. 2009; Chen et al. 2006). Temperatures 19 

giving R0(T) >1 indicate habitats where the species can physiologically persist, 20 

assuming that other environmental factors are suitable for its growth.  Temperatures 21 

resulting R0(T) <1 indicate habitats where that the species cannot physiologically 22 

persist regardless of the other environmental factors. Thus, our approach can 23 

conservatively predict habitats which are non-invasible, and thereby habitats which 24 

are potentially invasible. Note that we have not incorporated confidence intervals in 25 

the estimates due to unavailability of primary data to incorporate that. 26 

The habitats that are potentially invasible to P. marinus as predicted by our 27 

model matched well with field evidence of species occurrences on a global scale 28 

except for few marginal deviations (miss-matches) on the borders limiting R0(T)=1. In 29 

particular, we note that from Fig 6, Elliot bay, Puget Sound is on the border of non-30 



 14 

invasibility range limiting R0(T). It has been recorded in U.S Geological Surveys that 1 

P. marinus has been sampled in that location by Cohen (2004). However, up to now, 2 

there has been any indication that it has established in that location. Further 3 

northwards, Piercey et al. (2000) found that there was a large propagule pressure of P. 4 

marinus on Vancouver harbor (in 25.4% ships sampled, and occurring in densities 5 

from 2~54m
-3

). Our model predicts that Vancouver harbor is also located on the 6 

border where R0(T)=1. We note that on the above locations, temperatures fluctuate 7 

seasonally throughout the year (Lighthouse sea surface temperature data, DFO 8 

Canada). To better predict non-invasibility in such habitats we need a model that 9 

incorporates the effect of seasonal variation of temperatures. 10 

Furthermore, had we incorporated the survival data at 27 
0
C, then the upper 11 

bound of R0(T)=1 would have shifted towards higher temperatures moving the 12 

potentially invasible range towards the tropics. We did not incorporate those data as 13 

they were inconsistent with the general trend in mortality rates with respect to 14 

increasing temperatures and did not make sense biologically, as outlined in the 15 

methods section. 16 

The methodological basis adopted here in determining non-invasible habitats 17 

is in contrast to that of ENM (Peterson 2003). ENM predicts habitat-suitability based 18 

on a snapshot of environmental conditions and species occurrences (Herborg et al. 19 

2007a; Peterson et al. 2007) by matching the range of environmental variables in 20 

native habitats with that in novel habitats (Jeschke and Strayer 2008; Mercado-Silva 21 

et al. 2006). For e.g. Genetic Algorithm for Rule-set Prediction (GARP) (Stockwell 22 

and Peters 1999) in ENM has been commonly used to predict habitat suitability for 23 

both terrestrial and aquatic invasive species (e.g. Herborg et al. 2007a; 2007b; 24 

Peterson 2003; Peterson et al. 2007). The above methodology implicitly assumes that 25 

the limit to phenotypic plasticity of population fitness traits is exhaustively 26 

represented in the observed environmental set in their native habitats.  This, in turn, 27 

assumes that a species may only survive and reproduce in habitats those having 28 

environmental sets similar to that in their native ranges.  Often, species tolerate 29 

environmental set beyond that is found in native habitats (Lockwood et al. 2006).  For 30 
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example, a species distribution may be confined to a certain native range due to 1 

natural barriers rather than environmental parameters (Lonhart 2009) suggesting that 2 

absence is not necessarily indicative of a habitat’s suitability.  In such cases, ENM 3 

may not be able to fully capture the potential range of the environmental set that a 4 

species may tolerate.  For this reason, ENM can overlook habitats where a species can 5 

potentially survive and reproduce, especially in cases where human-mediated 6 

transport may facilitate jump dispersal (e.g. Broennimann et al. 2007). Our approach 7 

avoids this particular limitation of ENM.   8 

Our model is designed to quantify R0 at low introductory populations to 9 

determine the species establishment potential. Hence, we did not explicitly account 10 

for density dependence of the population considering high population levels. Further, 11 

we disregarded Allee effects (Taylor and Hasting 2005; Courchamp et al. 2008; 12 

Kramer et al. 2008) although it may be a factor that acts against species establishment 13 

at low population levels (Lockwood et al. 2005; Whitmann et al., accepted). In such 14 

cases it is possible to have a backward bifurcation, where a species can persist even 15 

when R0<1, and hence a different approach would be needed to analyze populations 16 

with Allee effects. Biologically, inclusion of the Allee effect may further filter out a 17 

subset of non-invasible habitats from potentially invasible habitats.  This will 18 

complement our predictions which were made without the case of Allee effect.  19 

Sea surface temperature has been rising over the last few decades (Cane et al. 20 

1997). Our model can be used as a tool to determine how climate change may affect 21 

species range expansion.  For P. marinus, the shape of R0(T) curve suggests that with 22 

increases in sea temperature, ranges may tend to shift towards currently cooler waters.  23 

However, the effect of climate change on seasonal changes in sea surface temperature 24 

may also be a critical factor in determining long term effects on niche shifts. For 25 

example, temperature data from Racerock, B.C., spanning the years 1921-2008, 26 

indicates that annual low temperatures have not increased as much as annual high 27 

temperatures.  The impact of such non-linear increases in temperatures may have non-28 

linear effects on R0.  Hence, we may not be able to rescale the range of R0 by simply 29 

adding the expected increment to mean sea surface temperature.   30 
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A proxy of using mean temperatures to characterize a habitat is appropriate in 1 

cases where temperature forces R0 to be either strictly less than 1 or greater than 1. 2 

Hence, our result is only applicable to habitats where all seasonal temperatures, were 3 

they held constant or averaged, would force R0(T) to be greater than 1 or less than 1 4 

throughout years. However, in habitats where temperatures fluctuate seasonally, or 5 

daily, forcing R0(T) >1 in one period, and R0(T) <1 in another period, we cannot make 6 

clear predictions on habitat invasibility by metric R0(T) alone.  Yet, we could presume 7 

that a habitat to be more unfavorable to a species when the seasonal fluctuations of a 8 

factor forces R0<1 in longer period of the year, and vice-versa.  It may be useful to 9 

incorporate the effects of short term and seasonal temperature fluctuations on R0 (see 10 

Bacaeer 2009; Bacaeer and Ouifki 2007, Wesley and Allen 2009).  11 

An extension to our model would be to incorporate vital rates as functions of 12 

other environmental factors such as salinity. We can then calculate R0 in a two-13 

dimensional environmental space.  It may increase the non-invasible habitat set for the 14 

species reducing the potentially invasible habitat set. Recent work towards modeling 15 

the combined effect of temperature and salinity on population persistence is found in 16 

Strasser et al. (in press). 17 
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Appendix A: Deriving R0 from graph theoretic method 1 

 2 

Following the method given in de-Camino-Beck et al. (2008), here we have a 3 

real 12x12 matrix ijaVF  )( 1 after decomposing matrix A from Eq.1 into matrices 4 

F, fertility, and V, transition. Hence, for matrix )( 1 VF  , there corresponds a 5 

labeled directed graph, )( 1 VFD  , with nodes 1,2,…,12, and a directed edge (arc) 6 

ji.  The weight of this arc is aij, and )( 1 VFD  has a loop at node i of weight aij if 7 

0ija .  Thus, we can draw the diagraph, )( 1 VFD  , as follows. 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

We created trivial nodes using graph reduction Rule 1 in de-Camino-Beck et al. (2008) 16 

by reducing the loops –aii<0 to -1 at node i’s, for every arc entering i divided by 17 

weight aii. Thus the diagraph will be reduced to the following.  18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

Using Rule 2 in de-Camino-Beck et al. (2008), by eliminating arcs through trivial 26 

nodes, here we replaced two arcs at a time by j k with weights equal to the product 27 

of weights on arc ji and ik, for trivial nodes i on a path jik. Thus, it finally 28 

yields the following diagraph with a single node.    29 

………. n1 n2 n3 n12 n11 

-(γ2+μ2) -(γ3+μ3) -(γ10+μ10) -(γ11+μ11) 

-(γ1+μ1) -μ12 n10 

-γ1 -γ2 -γ10 -γ11 -γ9 -γ3 

qβλ-1 

n1 n2 n3 ………. n12 n11 

-1 

-1 n10 

    -γ1 

(γ1+μ1) 

 

qβλ-1 

  μ12 

    -γ2 

(γ2+μ2) 

 

    -γ10 

(γ10+μ10) 

 

-1 -1 -1 

    -γ11 

(γ11+μ11) 

 

-1 



 18 

 1 

 2 

 3 

Finally, we set the weight of this loop to zero giving and equation of lambda. The 4 

smallest positive roots of this equation yielded R0.  5 

11

0

112

i

i i i

q
R



  

 
  

 
    6 

Furthermore, when there are 2 sub stages in each stage (that is k=2), the initial graph 7 

is given as follows: 8 

 9 

 10 

 11 

         12 

 13 

 14 

 15 

 16 

Using Rule 1, this can be reduced as follows. 17 

 18 
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 22 
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 24 

 25 

 26 

It finally yields, 27 
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Thus,   

2
11

0

112

i

i i i

q
R



  

 
  

 
  2 

Similarly, for any k sub stages, it yields,
11

0

112

k

i

i i i

q
R



  

 
  

 
  3 

The same result can be easily derived from ][ 1

0

 FVR  also. 4 

 5 

Appendix B: General solution for 



na (t)  6 

 7 

We obtained the following general solution for



na (t) , the proportion of 8 

individuals in a given stage a at time t in Eq.1:  9 

1

1

( ) ( . )
a

a aa i

i

n t b 




 
  
 
      for a>1;       (2)  10 



n1(t)  e
 1t1    for a=1 ;      11 

where, 



 i  ( i i) such that 



 i  0 and 



i  0 for any stage i and ( )ij i j    , and 12 



ba  is a row vector of dimension 1x(a-1) of the form 
1

a

a j

j

b B


  , j=1,…,a, where, Bj 13 

matrices are non-square matrices such that, 
1 1B   , 1
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, and so on. The general formula for Bk 15 

(k3) can be written as, 16 

11

11

1 1

2 1

1 1

3 1

1 1

2 1 ( 2) ( 1)

0 : 0 0

: 0 00

: : : : ::

0 : 00

0 : 00

kkk

k kk

k

kk kk

kk kk k k

B



 

 

 





 



 

 

 

    

 
 
 
 
 
 
 
 

 17 

n12 



 20 

 Note that due to the dimensions of the Bj matrices, the product 
1

a

a j

j

b B


 is a vector. 1 

We define the vector 



v a to be a column vector of the form, 2 

1
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Appendix C: Analysis of the case with constant mortality amongst stages 5 

 6 

To see that the assumption of equal mortality at each stage cased the mortality 7 

rates in Eq. 2 to cancel out mathematically, consider the case where each i is a 8 

constant   in our solution Eq.2.  Then note that in Eq.2, 



 ijbecomes independent of 9 

 , and as a result ab also becomes independent of  .  Further, in a , ( )i at t
e e

  
  10 

can be written as ( )i at tte e e
      for each element i.  Thus, in the dot product 11 

( . )a ab   in the Eq.2, the term te   can be separated out as a multiplier, and after 12 

redefining, 
1

1

( ) ( . )
a

t

a aa i

i

n t e b  






 
  

 
 , such that term

1

1

( . )
a

a ai

i

b 




 
 
 
  becomes 13 

independent of .  i.e. a ab b  and a a   for the special case where 



i  0 for all 14 

stages i.  Now, we can write the proportion of each stage a that remains at time t, 15 

( )az t , with respect to the total population at t: 16 

11

1 11 1

( ) ( ) / ( ) ( . ) / ( . )
jas s

a a j ja a i i i

i ji i

z t n t n t b b   


  

  
    

   
    17 

where, s is number of stages.   Thus, this equation is independent of . The numerator 18 

of this equation is ( )an t  for the case where 0i   for all stages for any t.  The 19 

denominator is the solution to 
1

( )
s

i

i

n t


  for the special case where 0i   for all stages 20 



 21 

at any t if the population starts from 1 egg, thus remains 1 at any t.  Hence, this can be 1 

simplified, so that, 2 

1

1

( ) .
a

a aa i

i

z t b 




 
  
 
         (3) 3 

which, is equivalent to ( ) ( )a az t n t when 0i   for all stages at any t.  Therefore, 4 

( )az t can be equated with the stage sizes normalized at each time step t in 5 

experimental data found in the literature which makes the assumption that 
i   for 6 

all i=1 to s. 7 

 8 

Appendix D: Fitting Eq. 4 data using multiple substages 9 

 10 

To derive solution to the modified system of equations in Eq.1 by adding k 11 

sub-stages to each stage required using Laplace transformations.  It yielded a 12 

complicated analytical result.  Instead, we modified Eq. 4 to include sub-stages within 13 

stages, by assuming small differences in maturation rates among sub-stages.  However, 14 

the solution in Eq.4 cannot be simply transformed into a general case for the system to 15 

have multiple sub-stages, because in such case the denominator of the solution in Eq.4 16 

becomes zero, mathematically, as 



 ij  0 when i and j were redefined for sub-stages 17 

in each stage, such that ji   .  Therefore, we implemented the sub-stages for a 18 

given stage a by adding and subtracting a small constant (



) to



 a  such that a  .   19 

For example, separating 



 a  into three sub-stages would involve splitting



 aamong the 20 

three sub-stages, such that maturation rates were



a [a ,a,a ].  Then we 21 

estimated 



 a  using the modified Eq.4 fitting to data from Uye et al. (1983) for small 22 

values of  .   23 
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Tables 1 
 2 

 3 

Table 1 Meaning of mathematical notations   4 

 

Notation 

 

Description 

 

1n  number of eggs 

2 6...n n  number of individuals in the five naupliar stages  

7 12...n n  number of individuals in the five copepodid stages  

( )T  Fertility rate (rate of egg production) in adult females as a function of 

temperature 

q average proportion of ovigerous females in the adult population, assumed 

to be a constant value of  0.61 (Liang and Uye 1997b) 

( )i T  rate of mortality in stage i as a function of temperature 

( )i T  

 

A 

 

T 

R0 

fm 

fl 

w 

 

b 

 

za(t) 

da 

ad  

rate of maturation of individuals surviving to stage i as a function of 

temperature 

12x12 linear matrix composed of maturation, mortality and fertility rates, 

such that ( ) / ( )dn t dt An t , where n are vectors of stage classes 

temperature 

net reproductive rate 

maximum rate of fertility 

fertility at the lowest temperature 

shape parameter that accounts for the depression in fertility rate at low 

temperatures 

lag parameter to relax the assumption that the fertility rate curve 

otherwise intercepts y-axis at the origin 

proportion of individuals at each stage a 

stage (a) duration times random variable 

mean stage (a) duration times 
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Da 

aD  

stage (a) development time distribution 

mean stage (a) development times 

a  

 

  

  

  

 

 

constant that varies with stage a in maturation function of temperature 

1.8

1( ) ( 1) /( )a a aT T      where 0 0   derived from Belehradek’s function 

scale parameter in exp( )Sv a   

shape parameter in exp( )Sv a   

are parameters from mortality as a quadratic function of temperature 

01

2

2)(   TTT  

 1 

 2 

Table 2  Model comparisons for cases k=1, 2 and 3 in Eq.4.  3 

 

Model 

  

RSS 

 

LL 

 

(LL/LLmax) 

 

Chi
2
  

 

Deg 

 

AIC 

 

∆AIC 

 

  p-of 

Chi
2
 

k=3 0.57 120.56 0.00 0.00 14 -213.12 0.00  

k=2 1.04 108.83 -11.73 23.45 13 -191.67 21.45 1.28E-06 

k=1 1.88 97.29 -23.27 46.54 12 -170.58 42.54 7.83E-11 

**LL-Log likelihood, LLmax-Maximum Log likelihood 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 
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Table 3  Stage maturation, duration, and development rates at 20
0
C, and coefficient 1 

a calculated for each stage a for k=1. 2 

 

      Stage 

 

     0(20 )a C  

Stage 

duration 

time 

0(20 )ad C  

(days) 

Stage 

Development 

time 

0(20 )aD C  

(days) 

 

       
a  

e 
3.64 0.27 - 55.01 

n2 
2.53 0.40 0.67 134.21 

n3 
1.05 0.96 1.63 325.81 

n4 
0.87 1.16 2.78 557.40 

n5 
0.65 1.53 4.31 864.01 

n6 
0.81 1.23 5.54 1110.77 

c1 
0.54 1.84 7.39 1479.68 

c2 
0.58 1.73 9.12 1827.22 

c3 
0.60 1.66 10.78 2159.64 

c4 
0.40 2.48 13.26 2656.81 

c5 
0.29 3.48 16.74 3353.02 

c6 
- 4.84 21.57 4321.76 

 3 

 4 

Table 4  Estimation of   and  in exp( )Sv a  at different temperatures 5 

Temp 

(
0
C) 10.60 14.30 16.70 20.20 21.50 22.30 25.60 27.40 

  0.02 0.01 0.00 0.00 0.13 0.53 0.00 0.10 

  2.69 2.26 7.87 2.93 1.43 0.94 29.24 1.56 

RSS 0.05 0.11 0.09 0.02 0.06 0.01 0.09 0.03 

**RSS-Residual sum of squares 6 

 7 
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Figures 1 

 2 

a) Sigmoidal model   3 
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     b)  Linear model  5 

    6 

Fig. 1  Rate of fertility of adult females at different temperatures comparing sigmoidal 7 

model with linear model by Uye et al. (1983).  Dashed lines indicate 95% confidence 8 

intervals. 9 
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 1 

  2 

Fig. 2  Proportion of individuals in the population not yet past a given stage a 3 

obtained by fitting Eq.4 to data from Fig.2 in Uye et al (1983). Solid lines are the fits 4 

for k=1, dashed lines are the fits for k=3.  5 
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 8 

Fig. 3  Proportion survived at the end of each stage in different temperature regimes 9 

fitted to exp( )Sv a  calculated based on data from Liang and Uye (1997a) 10 
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 1 

Fig. 4  Quadratic model of daily mortality rates as a function of temperature, 2 

estimated for data where all stages are pooled. Parameter values for mortality rate 3 

model are κ2=0.0022 /day, κ1=-0.0563 /
0
C day, κ0=0.4211 /

0
C

2
 day.  4 
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 7 

Fig. 5  R0 plotted as a function of temperature (T) for the cases where k=1 8 

(exponentially distributed stage duration times), and k=3 (gamma distributed stage 9 

duration times) 10 
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 Fig. 6  Range of potentially invasible habitats [from 11
0
C to 23

0
C] by P. marinus as 3 

predicted by our model based on R0(T)>1 for sea surface temperature (T) data 4 

averaged from year 1971-2000 through NOAA interactive database. Dots are the 5 

habitats where P. marinus was collected or has established.  6 

 7 

[References are from Fleminger and Kramer (1988) except *: (A) West coast 8 

of Hokkaido, Japan, Sato (1913), Sato Anraku (1953), Walter (1986b); (B) Qing-Chao 9 

and Shu-Zhen (1965); (C) Andaman Islands (Pillai 1980); (D) Mauritius (Grindley 10 

and Grice 1969); (E) Moreton Bay, Queensland (Greenwood 1977); (F)* Patagonian 11 

Waters, Southern Chile (Jones, 1966; Grindley and Grice, 1969) from Hirakawa 12 

(1986); (G) Oahu, Hawaii (Jones 1966) (Carlton 1985)*; (H)* San Francisco Bay, 13 

California (Ruiz et al. 2000); (I) Peter the Great Bay (Brodsky 1948, 1950); (J) Chiba 14 

(1956), Tanaka (1966), Tanaka and Huee (1966), Walter (1986b); (K) Brodsky (1948, 15 

1950);  (L)* Elliot Bay, Puget Sound, Washington (Cohen 2004), USGS; (M) USGS; 16 

(N) Shen and Lee (1963).] 17 


