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ABSTRACT

This thesis is devoted to the study of certain non-classical
partial differential equations referred to by many authors as Mangeron's
equations or polyvibrating equations of Mangeronj specifically, we inves-
tigate here the partial differential equation

82
dxdy

82u

D) Lu = 523y

(6 ) + pu = f

subject to various types of boundary conditions on the boundary 9R of

the rectangle R : {a <x <b ; ¢ <y <d} , where 6(x,y) , p(x,y) and
f(r,y) are functions defined on .R with certain specified properties.
Differential equations of the above type have applications in many problems
of mathematical physics and in some a?eas of multidimensional interpolation

theory..

In the present work, using the tools of functional analysis, we
establish a general abstract background for the theory of polyvibrating
equations and unify several known results with our new onés. The underlying
connection Dbetween all the'results obtained 1s the positive definiteness
of polyvibrating operators subject to certain restrictions, which shall be
made explicit in the course of the thesis. We achieve our objective, essen-

tially, in three steps.

First, we consider an associated variational problem which consists

of minimizing a functional of the form



(i1)

b rd
2 ff f(x,y,u,ux ) dxdy

a’e Y
over a specified class of functions. Necessary and sufficient conditions,
analogous to fixed end point problems of the calculus of variations, are

derived in the second chapter.

The second step is devoted to the study of the existence of a solu-
tion in a Hilbert space Vél) consisting of functions which are absolutely
continuous in the sense of Vitali and satisfy certain additional properties.
The Hilbert space V;l) seems to be considered here for the first timg.

We generalize the concept of eigenfunctions and eigenvalues, and show that,
for the associated Sturm-Liouville problem, the eigenfunctions form a
complete set in V;J) . We consider eigenvalue problems involving natural
boundary conditions in Chapter IV and prove a comparison theorem. Chapter

V deals with partial differential equations of the type (1) involving
mixed boundary conditions. We construct Green's functions for polyvibrating
operators and it is also shown that in certain cases the Green's function
is positive, a property which is very important in the study of the oscilla-

tory nature of eigenfunctions.

Lastly we generalize many results concerning Equation 1 to higher
order polyvibrating equations. For this purpose we introduce certain new
Hilbert spaces Vén) (n =1,2,*++) , which are subspaces of Vél) . We
conclude the thesis with the study of the existence of a solution to certain

integro-partial differential equations and with an up to date bibliography.
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CHAPTER I

Scope of the Thesis

§1. Introduction.

Many properties of the mixed derivative %xy of a function
u(x,y) of two real variables x,y are extensions of properties of the
ordinary first derivative of a function of one variable. For example,
if v(¢t) denotes a function defined on [a,b] such that v'(¢) exists

and is continuous in (a,b) , then

t
() v(t) = v(a) +j v'(§)dg .
a

This shows that the function value v(f) can be recovered provided we
are given the derivative in the interval a < ¢ < b and the initial
value of the function at ¢ = a . This characterestic property of -%%
extends to the function of two variables as follows. If u(x,y) 1is a
continuous function defined on a rectangle R:{a < x < b; ¢ <y < d}

such that the derivative qu(x,y) exists in the interior of R , then

T Y
(2 u(x,y) = ula,y) + ux,ec) - u(a,e) + J I u, _dedn .
ale &N

Taylor's formula for functions of a single variable can also be extended

as follows:

Theorem I. 1.1 [13]. If wv(x) <ie a function that is continuous

together with its first (n+1) derivatives on an interval containing a

and x , then the value of the function at x is given by



(%)
(3 (@) = (@ + v (@ @) + o + 2D @R h

7)(n) (@)

+ n!

(x-a)" + Rn(x,a) s
where

X n
R (z,a) = L =) D (1)

The equation (I.1.3) can also be written in the form

2L T (x=E)
(4 v(x) = v(a) + j v'(a)dg + J —xz—% v"(a)dg + e+ +
a a

X n-1 X n
+ J T " @z + f =8 gy
a

This form suggests the extension, as given by M. Picone [1].

Theorem I. 1.2 (M. Picone [11). Let wu(x,y) be a real valued

Sfunection of two variables such that it is continuous together with the

partial derivatives

(5)
in a<x<b ad e <y <d. Let

k
) wB @y = 2 1EH) (g <k < prD)

and

) uk(x,y) = u(k) (a,y) + u(k) (x,e) - u(k) (a,e)



for 0 <k <ntl . Then ulx,y) can be written in the form
Y
(8) ulx,y) = u, (x,y) + FJ u, (g,n)dedn + ---
a’e
Ty o Koo (K
+ f f @=8)_ )’y (g,nydedn + -
a’e (2]
+

(Y o\ T
w, (E,n)dEdn + j j @m8) Gon) D (g myae
c nh)

a

J“ Y @)1 g-n"?
ae 1w~ 1

Another interesting similarity between the ordinary derivative
for functions of one variable and the mixed derivative uxy(m,y) is to
be found in the theory of probability. Specifically, if v(x) denotes
the probability that the random variable R takes on a value less than or
equal to x and if v(x) 1is differentiable then -g% is the probability

density function. Similarly, if u(xl,xz) denotes the probability that

the random variables RZ’RZ take values less than or equal to x, and

82u

Zg s respectively, and if the mixed derivative 352355

exists, then it

is the joint probability density function of this random process.

If a function v(f) 1is absolutely continuous in (a,b) then its
derivative exists almost everywhere in (a,b) . To show how this property
is extended, we need the following definition of absolute continuity of a

function of two variables given by Vitali:

Definition I. 1.3 [14]). A function wulz,y) defined on the rectangle

Ri{a <x <b ; e <y <dl is said to be absolutely continuous in the sense

of Vitali in R , if given € > 0 there exists a § > 0 such that for any

finite or infinite set of nonoverlapping subrectangles {Ri} of R



meas (UR) <6 =>) |F (R)] <«
i i i *

where Fu(Ri) denotes the following double difference
'Fu(Ri) = u(ai,ci) - u(ai,di) - u(bi,ci) + u(bi’di)
for the rectangle

t{a. <x < b, ; c.
- =71 i

Extensive work was done in the beginning of this century on this type
of absolute continuity by G.H. Hardy, M. Krause and W. Young. Hardy and
Krause have defined the concept of bounded variation for functions of
two variables and used it in the study of expansion of functions of two
variables in terms of their double Fourier Series. A detailed account

can be found in the book by E.W. Hobson [14].

Thus it is quite natural to expect that there should be similar-

ities between the ordinary second derivative of a function of one variable
4
and the furth order partial derivative —EEE—E of a function u(x,y) of
dx 9y

two variables. This idea has been used by D. Mangeron [2] in his habili-
tation thesis, at the suggestion of M. Picone. D. Mangeron specifically

considered the eigenvalue problem for the equation

a4u
(» —5 = A Alx,y)u

Bx28y2

subject to the boundary conditioms



»* u(e,y) = ub,y) = ulz,e) = ulw,d) = 0

where A(x,y) is a positive continuous function defined on the rectangle
R:{fa <x <b ; e <y < d}. He extended many properties which hold for
the following simple eigenvalue problem for the ordinary differential

system
—s = =A p@@)u

v(a) = v(b) = 0

*
D. Mangeron [2] showed that the eigenvalue problem (I.1.9) - (I.1.9) is

equivalent to the minimization of the following double integral

b ed 2
(20) fj P2 dwy

X,
a‘ec Y

over the class of CZ(Rz) functions satisfying the conditions

1) ula,y) = u,y) = ulx,e) = u(x,d) =0
(11)

b ¢d P
(i1) J j A(x,y)u” dedy = 1 .
a’e

Noticing the similarity between the problem of minimization of (Z.7.10) and

simple integral problems of the calculus of variations, M. Salvadori [39]

has considered the problem of minimization of integrals of the type

b rd
12 j j 2Y s U3 dxd
(12) | Czc.7“(-'Jr:yuuxy) Y

over a specified class of functions and has generalized may of the results

in the calculus of variations which hold for the following simple integral



b
(13) J fx,y,y")dx .

a

Further, Tonelli [ 3] has given many criteria which ensure the
existence of an absolute minimum for functionals of the type (7.1.13).
These results have been generalized to the problem (I.1.12) by G. Stampac-
chia [37]. 1In this connection it is important to mention a lemma of
M. Mason [24], which seems to have been missed by the above mentioned
authors. The article by A. Huke [15] gives an excellent account of the
fundamental lemmas of the calculus of variations, and this is our source for

the lemma of Mason. This lemma will be given in Chapter II.

F. Maneresi [20] has considered the following Sturm Liouville

problem
(14) (o uxy)xy + pu =1 qu
(14)* ula,y) = uw(b,y) = u(x,e) = u(x,d) =0

where 6(x,y) 1s positive continuous function in R such that ex,ey,exy
are all continuous and p,q are nonnegative continuous functions defined
on R . The problem of F. Maneresi 1is quite easily seen to be very

similar to the following Sturm-Liouville problem for an ordinary self

adjoint differential system

(r@)y')' + s@)y = n t(®y
(15)

y(a) = yd) =0

where »(x) , 8(x) , and %(x) are sufficiently smooth in [a,b] . We



mention in what follows some work done in this direction. D. Mangeron
and L.E. Krivosein have considered in a series of papers [22] integro-

partial differential equations of the type

32nu b cd
2TH < ) 2 [ | K@aysgm) u(endedn
3x Yy a‘e
ula,y) = ub,y) = ux,e) = ulx,d) =0
a27: aziu
—=2= (a,y) = —5—5 @,e) =0 (2 = 1,8,+n-1)
ox 3y 3x 3y

for ¢ <y <d and a <x <b , respectively. They have considered the
problem both when K(x,y3;E,n) 1is a Fredholm or Volterra type of kernel.

In this connection we should also mention a series of papers published

by D. Mangeron and M.N. Oguztoreli [23] where the authors have considered the
following partial differential difference equation

2
ox 3y

u(x,ysa) = ue,ysat+l) .

This work extends the work of F. Truesdell [39] on the ordinary differential-

difference equation

NS

(x,a) = y(x,ot+l) .

If we make a transformation of variables

y=£&-n

8
1
oy
+
3

82u
XYy

then the partial differential operator is transformed into the



o2y 2% 22"
partial differential operator (—5 - __5) s and —~z—£; goes over to
32 32 ) g 8ﬁ x Yy _
6——§ - ——5) u . It is well known that the partial differential equation
o0& on
o%u 2% _ 2
8&2 8n2

represents the equation of a vibrating string. Thus rightly D. Mangeron
on
has called the operator % 2 polyvibrating operator of order =
ox dy
for the same reason as in the case of polyharmonic operators. I.N. Vekua

[40] has considered the solution of polyharmonic equations
), _ 23 3 -
(16) AN u = ( 7+ —3 u=f71
by making a transformation of the type
z=x+ 1y z=x-1y

and then the equation (I.1.16) is equivalent to the following partial

differential equation

5%, _ f(z¥§ zJE)
na—mn 2 ’ 27 ¢
9z 9z

We have also to mention the application of these types of
operators in approximation theory for functions of two wvariables: in [2]
it has been shown that a two dimensional spline is a function which

minimizes the integral

bed a4u 2
(17) j j P—-E—-g} deedy
a‘e dx dy



where u(x,y) is assumed to satisfy certain differentiability conditions.
G. Birkhoff and W. Gordon [ 7] have wsed these ideas very recently in their
paper on the Draftsmen's equation and related problems. 1In this connection we

should mention that many European Mathematicians have also considered

such problems. (cf: M. Piconme [1,2], D.V. Ionescu [I6]).

It is well known [30] that certain plane problems in elasticity

theoryare equivalent to the minimization of the quadratic form

2 2
(18) olu] = ” L+ 2257 gy
ox Yy

over the space of functions u satisfying the boundary conditions

du

(19) dn|sR =

0 o .

“lar =
It can easily be seen, by virtue of the boundary conditions, that there

exists constants cl and c2 such that

2 2

(20) e, u Yoy dxdy < ¢[ul < eq Jf Yonjeoy dxdy
The above inequality has been used by N. Aronszajn and W.F.Donoghue [4]
to find upper and lower bounds for the functional &{u] . This has
been done by solving the eigenvalue problems

34u =2 88u _

2. 2 "% » T gTHU

dx Yy ox dYy

subject to the boundary conditions (I.1.19). Partial differential equa-

tions of this type also occur in some problems of chemistry. M.N. Oguztoreli
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[4] has considered the above type of problems in connection with his

study on distributed parameter control systems.

82. Description of the Work Done in This Thesis.

The fundamental problem considered in this thesis is to investi-
gate systematically certain boundary value and mixed problems associated
with a class of polyvibrating equations of Mangeron, to unify the results
obtained up to date with our new ones, and to give a solid foundation for

the theory of polyvibrating equations.

In Chapter II we first give a simple proof of a lemma of Mason
for continuous functions u(x,y) whose partial derivatives ux ’ uy R uxy
have discontinuities only along lines parallel to the coordinate axes. This
proof of Mason's lemma is then used to prove some theorems of M. Salvadori
to the above class of functions. 1In this way we prove certain results in
one dimensional problems in the calculus of variations (7.1.13), where the
admissible functions are continuous functions whose derivatives are piece-
wise continuous in a specified domain of the real line. Necessary conditions
and sufficient conditions for the existence of an extremal are established
and the results obtained in this chapter are applied to establish the exis-

tence and uniqueness of the solution of the Mangeron equation (I.1.14)

subject to certain boundary conditions.

In Chapter III we show that the functions defined on R which
are absolutely continuous in the sense of Vitali and which vanish on the
boundary of R , form a Hilbert space Vél) , with respect to the inner

product
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b ¢d
(D ((u,v)) = izjc uxy vxy dxdy .
We have also shown, using a method due to N. Aronszan and Donoghue[ 4 ],
that this Hilbert space is the completion of C?(R), functions which are
infinitely differentiable in R and with compact support in Int (R) , with
respect to the norm defined by (Z.2.1). This leads us to the consider-
ation of the problem of existence and uniqueness of a generalized solution

to the following Manaresi type system:

(2) (e umy)xy +pu=f
(3 u(a,y) = ux,e) = u(b,y) = u(x,d =0

where 8(x,y) » p(x,y) are essentially bounded functions and

flx,y) € Lz(R) . We also assume the existence of a positive constant eo
such that 60(z,y) 3_60 . Further, we consider generalized eigen-
functions and eigenvalues for the partial differential equation (I7.2.2)
subject to the boundary conditions (I.2.3). In this analysis we make use

of an idea due to E.M. Landesman and A.C. Lazer [19].

In Chapter IV we give some "fundamental" inequalities connecting

the function u(x,y) and its mixed derivative uxy(x,y) where u(x,y)

is subjected to certain boundary conditions. One of these is an extension
of Poincare's inequality [ 1]. This inequality will then be used to

investigate the existence of a solution of the simple boundary value problem

4
() 2L - F@y) Fely®
ox 9y



- 12 -

(5) uxy(a,y) = uxy(b,y) = uxy(x,c) = uxy(x,d) =0 .

It will also be shown that the boundary conditions (I.2.5) are of
unstable type. This shows the peculiarity of this type of problems,

which are parabolic rather than hyperbolic.

In Chapter V we consider the classical operator (I.2.2), i.e.,
we assume that 6 , p , f are continuous functions in R such that
8(x,y) > 0 , plx,y) > 0 and 'qux,y) . eycr,y) and exycr,y) are all
continuous. The boundary conditions subject to which the solutions are

sought are of the form

|
(=}

o ucxi,y) + (—l)iuxcwi,y) =

(6)

I
[}

_and -
BJ. u(x,yj) + (-1) uy(m.yj)

where x4 < To > Yq < y2 are given, and ai ’ Bj are nonnegative constants

such that at least one of the

products {ai8j|i,j=1,2} is not equal to zero. Subject to these condi-
tions we will show the positive definiteness of the partial differential
operator in (I.1.14) and also show that the operator has a countable
sequence of eigenvalues tending to infinity. The interesting fact about
this type of boundary conditions is that when a; = g. = = , they

J
reduce to

qui,y) = u(x,yi) =0 (2=1,2)

for Y124 ¥y and ;< x <%,y. Thus this interpretation gives us a
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comparison between eigenvalues of (I.1.14) subject to two different types

of boundary conditions.

In Chapter VI we investigate the concept of Green's functions
for polyvibrating operators. These will be found explicitly by use of
some functional analytic results. We will also study the variation
diminishing property of the Green's functions in certain simple cases.
The proof follows closely to the one given by R. Bellman [5] for

ordinary differential equations.

In Chapter VII we give generalizations of the results obtained

in previous chapters to higher order polyvibrating operators of the form

2i 522
(0. =%

i=0 3’ ay v axtay”

'-

1N

]
M.S

2 2 2 2

_ 9 £l 9 U
Lyu-= dxdy Lo dxdy (8, dxdy ® axay)]

where the Gi's are functions with properties to be specified. Particularly
of interest is the question of the positive definiteness of these operators.

These properties help us in defining Hilbert spaces , which are

éd
o

o

subspaces of the Hilbert space introduced in Chapter III.

We conclude this thesis with an up to date bibliography and with

an indication of many open problems which could be pursued in future.
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CHAPTER II

Variational Problems Associated With

Polyvibrating Equations

§1. Introduction.

In this chapter we consider the problem of finding a function
o]
u(x,y) , belonging to a class of functions to be specified, which

minimizes the integral

b rd
(1 Jlul = f f fx,y,u,u, Ydedy
Y
a’‘c
and investigate the properties of this minimizing function. It is

assumed that f 1s a real valued function of class C'(R?) .

The above mentioned problem was originally suggested by M. Picone
[21] and has been extensively studied by D. Mangeron [21], M. Salvadori [34]
and by G. Stampacchia [37]. Our presentation in this chapter closely
follows that of M. Salvadori, with the addition of some new results. In
Section 2 we begin with some notation and definitions. Sections 3 and 4
deal with a lemma of M. Mason [24] and its extensions. First and second
variations of J[u] and necessary conditions for the existence of a minimizing

function are given in Sections 5 and 6. Sufficient conditions for the func-
tional J[u] to have an absolute minimum are dealt with in Section 7. 1In

Section 8 we use the results of Section 7 to show the existence and uniqueness

of solutions of a boundary value problem for Mangeron's equations (I.2.14).
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§2., Notation and Definitions.

Let R be the rectangle {a <x <b ; ¢ <y <d} in the two
dimensional euclidean plane and 3R be its boundary. By U(l) we shall
denote the class of all continuous functions wu(x,y) defined on R such
that the partial derivatives ux(m,y) . uy(x,y)and uxy(x,y)have discontin-

uities only along a finite number of lines parallel to the axes of coordinates.

will denote the functions u such that uxy belongs to

Similarly U(n) will denote the class of functions u(x,y) € u(n) such that

37 % )

. The space of functions u(x,y) € such that u =g

n~-1., n-1
dx "~ oy )
(given function ) on 3R will be denoted by Ugn .

By F(l) we shall specify the subclass of functions u in U(Z)

such that all the partial derivatives Uy > uy and uxycr,y) are continu-

ous in R . Inductively P(n) will represent the class of functions
an-2
such that 5 u belongs to F(Z) . Further P(n) will denote the
n-1, n-1 g
ox Yy
functions u in F(n) such that % = g on the boundary of R . Observe
that r(n) c U(n) .

§3. Mason's Lemma.

In this section we state and prove the following lemma due to

M. Mason [24], which plays an important role in the calculus of variations.
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Lemma II. 3. 1. If Flx,y) is a eontinuous funetion defined on R
such that
b ed
(I J J F@x,y) ny dedy = 0
a’e

for all u e Uéz), then
(2) F(x,y) = A(x) + B(y)

vhere A and B depend only on F .

Proof: Let (x,y) € R . Choose €7:€5 such that 0 < €, < %g

0 < 82

as follows:

<y-é_c and consider the functions zl(:x:) and z2(y) defined

(E-l-(x—a) a<x<ate,;
1 a+€1_<_ac§x—€1
z_(x) =
,@ ﬂ . ~ ~
— (x-2) x -€, <x <&z
€4 1-""-
L0 otherwise

and
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1
(E—Z—(y—c) e<y<cteg,
1 ct+e, <y<y- ey
zz(y)=$
1 — —_ —
gz-(y-y) Yy- €32y Yy
\
0 otherwise

Clearly the function u(x,y) = zZCr)zZ(y) belongs to Uél) and by virtue

of condition (II.4.1) , we have

b rd 1 +€1 c+t~:2
I J F(x.y)uxy dyde = ¢ [Jﬂ J F(x,y) dydz
a 1-2 a c

ote, 2
(3 - J_ J F(x,y) dyde + J_ ﬁ_ F (x,y) dydx
Xx~c

e x-€,7Y-€,

ate
- f_ F(xsy)dydx] =0 .
Y=ty

Since F(x,y) 1is continuous, letting €75€g tend to zero, we obtain
Fx,y) - Fla,y) - F@x,e) + Fla,e) = 0

which proves the assertion of the lemma.

We now recall the following definition of the concept of quasi-

monotonicity of a function of two variables.
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Definition [14]. A function F(x,y) defined on R s said to

be quasi-monotone if and only if the inequalities T, 2 %55 Yy 2 Yy

imply the inequality

(€3] F(xz,yz) - F(eyyy) - Fleg,y,) + F(xz,yz) >0 .

The following result is of particular interest in the theory

of quasi-monotone functions.

+ .
Corollary: If I‘O(l) denotes the set of nonnegative functions belong-
ing to I‘él) » then a function F(x,y) defined on R <is quasi-monotone if

and only if

[
F(x,y) u_ (x,y) dyde > 0
a’e Y -

T
for all funetions wu € I‘o

Proof: The '"if' part follows from the lemma (II.4.1) by replacing
(a,e) and (E,y) by (xl,yl) and (xz,yg) respectively. In order to
prove the converse assertion, we consider the function ¢q(x,y) defined

below which is a continuous extension of F(x,y)
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( F(a,y) x<a j3e<y=<d
F(b,y) x >b ; e <y<d
Fx,d) a<x<b; y>d
F(x,e) a<x<b; y<e
q@,y) =  Flz.y) a<x<bj;e<ysd
F(a,d) z<a 3 y>d
F(b,d) x>b 3 y>d
F(b,e) 2>b 3 y<e
\ F(ase) r<a 3 y<e
Clearly q(x,y) 1is quasi-monotone in R . Put
1 7 (o (B
(%) qx,y:a,8) = o8 f J q (@+E,y+n) dndg
-0

1 fmfy+8 (E,m)  dndE
= — q ,ﬂ n .
408 x-o’ y-B

Then we have

(6) 'B%g? (x,y;0,B) = Zi_s [q (@+o,y+B) ~ q(z-a,y+B) -

- q(x+a,y-B) + qlx—0,y-B)]
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which is nonnegative, since q(x,y) is quasi-monotone on R . Thus if
+
u e U(J) we have
o
b rd b d
(7) LL qu(x,y;oc,B) u dedy = LL q(x,y3a,8) Yoy dxedy > 0

because u(x,y) vanishes on the boundary 9R . Taking the limit as

a,B tends to zero, we obtain q(x,y;a,B) > g(x,y) and consequently

b rd
J f F(x,y) uxy dedy > 0 .

a“‘c

This completes the proof of the second part of the corollary.

85. The First and Second Variations of J .

As usual we denote the partial derivatives of f(x,y,u,v) by

U(J) he the class of admissible
1)
UO

f& s fb , f;y ) féy ees etc. Let

functions and let u € %;1) and w € . Choose § > 0 such that
the function u + ew is admissible if € is on the range -§ < e <& .

Clearly the function

b d
1 F(e) = Jlu + ew] = XY, utsw, u_ Few dxd
(1) (€) = Jlu + ew] Uc F.y, oy ) Y
is in the class (C"(-68,6). The derivative F'(©) of F at € = 0 , which
is called the first variation of J at u(x,y) , is denoted by J'(u,w) .

By differentiating (IZ.5.1) with respect to € at € = 0 , we obtain
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b rd
(2) J'[u,w] = J f [, wy) + f, w (x,y)] dxdy
a‘c

where the arguments in the partial derivatives of f are (.'I:,y,u,uxy) .

The second variation of J along u is denoted by the symbol J"(u,w) .

It can easily be shown that

b ¢d
3) I"(u,w) = j J 2W(x,y,u,u_ ) dedy
XYy
a’e
where
2 W(x,y,u,u_) =71 w2+2fww fw2
2YsUs xY u uw  xy v Ty

and the arguments of the derivatives of [ are (x,y,u,uxy) .

Lemma II.S5.1. Given a function u € Ug(l)there 18 a unique

2z € U;l) sueh that

4) J'(u,w) = (w,2))
for all w e ué” , Wwhere
b d
) @) = [ [ vy, 2 aedy

The function z(x,y) is defined by the relationship

(6) z(a,y) = za(x,e) = z(a,e) =0
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and

X (Y
(7) ny(x,y) = f.u(xay’u:uxy) + IaJc fu(Em,u,uEn)dEdn - A(:C) - B(y) + C

where
7 d
A(x) = Zi'-"c’f x(z,y) dy
e
7 b
B(y) = —(—b—_g)—f X (x,y) de
a
7 b ¢d
C = sy | | x@w) @y
a‘e
and

Y
X(x,y) = fv(x9y’u’uxy) + FJG fu(g’n:u’ugn) d&dn

a

Proof: First we establish (I7.5.4) . Let w € Uél) . Then,

since
w(a,y) = wb,y) = wx,e) = w(x,d) = 0
we obtain

b d Y
(8) j j w_ (x,y) [fo f;dtdn - A(x) - B(y) + C] dedy =
ale TY a’e
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b rd
= I f w(x,y) f’u(x,y,u,uxy) dxdy .
a‘ec

The left hand side of (I.5.8) is equal to

b rd
9 [ajc Qxy[_fb + zxy] dxdy ,

by virtue of (I.5.7). Hence, combining (I.5.8) and (I.5.9), the result
follows. We now show uniqueness of function 3z(x,y) . If there were

two functions 3z, and z, in Uél) such that
(w,z)) = ((w,2,))
then we would have
((w,zl-z2)) =0 .

Hence, taking w = z_, - By 5 We obtain

1
82
Sway (B1 7 %) =0
32
except perhaps at the discontinuities of 555; (31-32) and therefore

z, (x,y) - zo(x,y) = Clx) + D(y)

C , D are arbitrary functions of x,y . But the boundary conditions
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(II.5.6) imply that

zz(x,y) = zz(x,y)

and this completes the proof.

o
Theorem II.5.2. If a function u(x,y) € Uéz) minimizes J[ul ,

then

(<) J'@w) = and  J"(Rw) > 0

|
S

for all w e Uél) 3

(i) J"(%,w)

0 holds for all w € Uél)
if and only if

(o}

z (Y
Fpe,y) + J J }u(a,n) dgdn = A(x) + B(y) - C
a‘c

o
where A(x) , B(y) and C are as defined in lemma I.5.1. fécx,y) and

%&(m,y) denote fb(x,y,ﬁ,ﬁxy) and f;(x,y,g,amy) respectively.

Proof: Suppose that 8(m,y) minimizes J[u] din Uéz) . Then the
function F(e) in (IT.5.1) with u = %(x,y) has a minimum at € = 0 .

Hence it follows that

(10) F1(0) = J'"(B,w) =0  and J"(f,w) > 0
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This proves the assertion (Z).

The proof of part (ZZ) follows from (II.5.10) and from lemma

(I1.4.1), the extension of Mason's lemma.

86. Weierstrass' Necessary Condition.

Let ECr,y,u,uxy,v) be a function defined by the equality

(1) E(x’y’u’uxy’v) = f(xsysu’v) - f(m’y’u9uxy) - (v-uxy) fv(xsy’u’uxy) .

Theorem II.6.1. Suppose the function u(x,y) € U;l) minimizes the

funetional IJ[ul . Then
(2) E(x,y,u,gxy,v) >0

holds for all (x,y,u,uxy,v) such that (x,y,u,uxy) are evaluated along

ﬁCr,y) and (x,Y,u,v) is8 a 4-vector.

Proof: Let 3Gx,y) € %;1) . Consider a point (x,y) € R which
does not lie on any line of discontinuity of %r ) %y . axy . Define
u= 2@y , v=9% @y .

xy

Choose v and 60 > 0 such that CE;;:Z;U) is admissible and
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z+V/§<b , y+V8<d

for 0 < 3§ 5_60 . Let 0 < e <1 . Consider the auxiliary function
(x-x) (y-y) (v-v) x<x<x+/es 3 y<y<y+/es
(
/—1_8—6 (x—x) (y+8-y) (v-v) z<x<x+/ed 3 y+/ed<y<y+/s
by ={ [ () @re-w) (v-D) THeS<w /S 3 Fy<g+/es

Zf_e (y+8 -y) (@+/8-x) (v-0) z+/eb<x<xt/§ ; y+/ed<y<y+'s

0 otherwise
Put
u(@,y3e,8) = d(z,y) + ¢(x,y)

Then, we can easily verify that wu(x,y;€,8) 1is admissible, and since

3(x,y) minimi es J[u] we have
(3) Jlux,y3e,8)] = J[8Ge,y)] = 6, + G, + G, + G, > 0

where
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x+/e§ jy+es o B o o
F f {fx,y,ulx,y,e,8),u_ +(v-v)) - flx,y,u,u_)}dxedy
py 7 xy xy

x+/S /S
= 2 - [-5 @) - 2,8, ) Ydxd
Gg ﬁ J-y—-h/ég {f(x’y ,u(x,ya€,5),uxy I-¢ (v U)) f(-%‘,y u uxy) Y

G—Mﬁ%{ ( 8) 2 £ (D) - flx,y,5,0_ )} dedy

3 - f;_‘_/ggg f(m’y’u xsyas’ ’uxy 1_€ Qy, s xy

G fM f?m {r¢ ( 8),5% 4+ —— (v-0)) - Fflx,y,%,%_ ) }dedy
= XY sUX Y€, U s - - sY s> .

? Izweslyaes xy = 1-€ xy

By virtue of (II.6.3), we have

Jlule,y3e,8)1 = J0Ge,y)1]

lim 8 = f(z,y;&s v) - f(;’g:;sg) +
&0
f(;sy’;’;_nl(v";)) - f(z9g’za.;)
+ 2
Nz
f(z,g,z,_ TIZ(U—-U—)) - f(—:z;—,-?’—‘s;)
+
Ng
where

Letting € > 0 , which implies nl > 0 and n2 > (0 , we obtain
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o]
Jlux,y;e,8)] gaj[u(x’y)] = E@,Y,u4,0,0) > 0

lim
e>0
&0

which completes the proof of the theorem.

§7. Sufficient Conditions for the Existence of an Absolute Minimum.

In the previous two sections we have assumed the existence of
a minimum of the functional J in a specified class of functions and
investigated the properties of the corresponding minimizing function.
In this section we investigate the conditions which ensure the existence
of an absolute minimum of a functional I[u] . As is well known this
type of theorem was studied by Tonelli [ 3] in the case of simple
integral problems of the calculus of variations. A particular case of

our problem has been studied by G. Stampacchia [37].

Specifically we consider the problem of the existence of an

absolute minimum of the following general Bolza type functional

b rd
(1) ITu]l = 3dlula,y) , u(x,e)l + ff f(m,y,u,uxy)dvcdy .

a‘ec

The functional I[u] is defined on the class U of functions u(x,y)
which are absolutely continuous in the sense of Vitali in R (cf:

Definition I.1.3) and which are such that

(2) ub,y) = g 4(y) ; u,d) = f,(x)
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where f}(x) and gl(y) are absolutely continuous functions defined

a<x<b and ¢ <y <d respectively. Clearly V is an infinite set.

All the integrations considered in this section are in the
sense of Lebesgue. The function f(x,y,u,v) is of Cl(GXR) , where
G 1is a closed set in three dimensional space. The function &(x,y) is
assumed to have a finite lower bound. We also assume that there exists

constants a >0 , B, and p > 1 for which

€] flx,y,u,v) > alv|P +8 .

First we have the following observations. The assumptions
concerning the function ¢ and the condition (I1.7.3) for arbitrary

u e l! gives us that

b
(4 I[u] > B(b-a)(d-e) + a f

d

p
I quyl dedy + Y
a‘c

where
Yy=min ® .
Hence we have

w=inf Ilul > B(b~a)(d-e) + Y .
ueV
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This ensures the existence of a minimizing sequence, which we shall
designate by {un} . The sequence {un} can be chosen in such a way

that
I[un] < I[uz] = A (n=1,2,3,-°**) .
In this case the relation (II.7.4) yields the inequality
dxdy

b d
o f Jf I——-]p dedy < A- B(b-a)(d-e) - ¥ .
a

So, there exists a positive constant B such that

b d 2u r p
(5) LL |8x3y drcdy (n=1,2,3,°°*) .

The main objective of this section is to prove the following

theorem whose analogue for simple integral problems is well known [3].

Theorem I.7.1. Let V be the class of functions defined as above

and

(z) Flx,y,u,v) , in addition to the above assumpiions, is
continuously differentiable twice with respect to v and @y ,u,v)

is a nondecreasing function of v for (x,y,u) € G and all v .

(27) The continuous function d(u(&,y),u(x,n)) has a finite

Lower bound whem & =a and n = c¢ .
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(Z27) There exists constants o > 0 , B and p > 1 such

that

flx,y,u,v) > a |v|p + B

Then the functional I[u]l has an absolute minimum u on V

and there exists a funetion u € V such that

(6) Iful = .

Proof: The proof will be established as a combination of the

following lemmas.

Lemmg II.7.2. If {un} 18 a sequence of funetions belonging to
V such that
2
bed 0 u p
n P
7 —=—| dxdy < B
@ fafc ama” oy <

then we can select a subsequence of {un} converging uniformly to a

funection u(x;y) belonging to V and such that
b d 2

(8 f f Ié—a—ulp dedy < B
a’e

Proof: Consider the following relations
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[, @thoy+k) = (2y+K) - u@th,y) + u (@) | =

| fc+h Jy+k 82u | X+ pytk lazunl
= aFa= dédn| < J [ a7~ | d&dn
z y 3&9n x y dEan

for a <x <xth <b and e <y < y+k < d . Applying Holder's inequality,

we obtain the inequality

9) lun(x+h,y+k) - U, @,ytk) - u (wth,y) + un(x,y)l_i
T gk 3% o =
< (hk) {f f |§E§g1 dxdy} >
x
l+—1—=1. Hence
p q

1 1
lu, @y - u, By) - u @d) +u B,dD] < B-0)¥(d-)7 B .

Further we have

(un(x",y") un(x',y')) = (un(b,y") - un(b,y')) + (un(ac",d) - un(x',d))

bod o bd o
¥ LJ w 3Ean 4Edn - Lcj . 3gan 48

-9, + (F,E" - F&)

|
~
Q
~
~
Q-
-

2 y" 82u ".d 82u

fxnjyn 3 un b 3 x ., e
- dgdn - J J dgdn - f J gdn .
o' ' 3&an 2" yv d&on ' yn 9&an
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Therefore

lun(x"sy") - un(xlsy')l i lgz(y") - gz(y')l + lf_z(x") - fl(x')l

1 1 1
+ B{[(x"-z") ("-y")1? + [(b-=z") (¥"-y' )1 + [(@"-x") (d~y™) 19}

by virtue of Equation (II.7.7) and (II.7.9) . Since gz(y) and f}(x)
are uniformly continuous on ¢ <y < d and a <x < b , respectively,

{un} is a uniformly bounded equicontinuous family of functions; thus we
can select a uniformly convergent subsequence by the Arzela-Ascoli theorem.
Without loss of generality we can assume that {un} itself converges
uniformly to a continuous function, say, u(x,y) . This proves the first
part of the lemma. To prove the second part of the lemma we have to show
that wu(x,y) is absolutely continuous on R and satisfies (II.?.é).

To do so we observe that for a <x' <a2" <b and e <y' <y" <d,

Iun(xn’yn) _ un(xv’yu) - un(xn’y') + un(xv ’y')l i

1 1

4 4 " yn p
i (xn_xv)q (yn_yv)q [r f l l ]P
x! yl

)
n
ox3y

by virtue of Equation (I7.7.9). Let {Ri}z=1 be a set of nonoverlapping
subrectangles in R with vertices (x%,y%) and (xg,yz) as the opposite

corners. Using the notation

= wooy LI "ot vt
Fu, (R = u @5y = u,(h,yl) = u (@) + ow, @iy l)
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we can write that

1 1 x' y" 2 1

m m A 3 u,
Z |Fu ®)| < Z | G2z )q(yz—yt)ql J 'I ' Pl
=1 1=1 x.y y

T 97

Then Holder's inequality for sums [ 5] yields

1 x oyt 2 1
m m = m i1 9u
P OIF, Rl <1} @-=")"-y1? [ ] f f IBxB
i=1 n i=1 i=1 Jztiy Y
T Y1
1

Ia

m
Bl I @izl ypI? .
=1

Taking limit as #»n > © and using the uniform convergence of {un} to
u(x,y) , we establish the absolute continuity of wu(x,y) in the sense of

Vitali in R .

Further it follows from Equation (ZI.7.7), that the inequality

2

{fbjd IB
2l axay

holds for all »n , and we have

|un(x+h,y+k) - un(x,y+k) - un6x+h,y) + un(x,y)l <

1
y+k 3% u, =
< (k)7 {fﬁ ey ¥ dean )P

for a<ax <x+th <Db and ¢ <y < y+k < d , which implies the inequality



- 35 —

[ﬁ%‘[un02+h,y+k) - uan,y+k) - un(x+h,y) + un(x,y)]lP.§
;e 0% , rk )
Sk L Jy Iaganl dgdn < 7% JO JO lm (x+&,y+n) |© d&dn .

Integrating both sides of the above inequality over the rectangle
{a<z<Tj;e<y<y} with a<xz <h ; e<y<d, and using the

’

uniform convergence of the sequence {un} to the function u , we obtain

[x Jy [uCr+hly+k) = u(@w,y+k) = ulmth,y) + u(@,y),p dedy < B
hk — '
a ‘e

Since u(x,y) 1is absolutely continuous in the sense of Vitali on R , the
integrand tends to uxy(x,y) a.e. Hence, by an obvious extension of the
Lebesgue dominated convergence theorem to functions of two variables, we

can easily show that y(m,y) satisfies Equation (II.7.8). This completes

Uu
X

the proof of the lemma (I.7.2).

The next lemma gives us further information about the convergence of
2
o u

of the sequence {5552 .

Lemma II.7.3. Let {un} and u be as in Lemma I.7.2. Then the

Bzun agu
sequence {Bxay} converges weakly to 53y in Lp(R) .

Proof: We have to show that the relationship
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d 3 u, b rd a2
Lim fj x(x,y) dedy = ff X(x,y) drdy
o gl Bxay 2l dxdy

holds for any ¥ € Lq(R) . Given Y € Lq(R) and € > 0 , we can find

a polynomial PN(ac,y) of degree N(eg) such that
b rd
[ J Ix(:z:,y) - PN(x,y)Iq dxdy < e? .
a’e

Further we have

1

2
bed 3 u 2 =
n 9%u P
(10) { Jajc IW - Wl dxdy}p <28B

by virtue of (I7.7.7) and (II.7.8), and

bed 9 u, 3 u
IJJ (Bxay Bxay) X,y) - P (x,y))drdy| <
a’e

1 Y]

2 —
<[bd|8u 82|dxd]p[bdl(m)—P(xqudxdy]q
= gl oxdy  Jdxdy ade XT Y N2

< 2Be
by virtue of Holder's inequality. Hence

| b d 3 u, 8 u
Zim f J =" - a3} X(x,y) drdy
o ale a3y dxdy

brd 3%u
< 2Be + lim Iff {Sxan— gxg } P (x,y) dxdy| .
nreo Jgle ¥
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Therefore it is sufficient to show that the equality

d 9 u, 3 u
1im f J 5= ~ 5} P(x,y) dedy =
" ale dxdy ~ dxdy

holds for any arbitrary polynomial p(x,y) . To do so, consider the

identity

82p a2
dxdy ‘F>8x8y (un—u)

(un-u)

a2

57 [ Ly 2 [ 2 35! = 3y

[(u -u)pl

which yields
bed 9 u, 3 u b d 32
f J [Bxay Bxay]z’dxdy - j [ (un~u) oxdy dxdy
a’‘e a’le
b
- f [(u, —u) (b,y) - (u, -u) = (@y)] dy
a
D
- j [(u —u) (x dy = (u, —u) <2 a (x,0)] dx
a

Flu ~upt®]

Then, the result foliows from the uniform convergence of the sequence

{un} to the function u .



Lemma I.7.5. Let f(x,y,u,v) be a function such that,
fb(x,y,u,v) is a nondecreasing function in v for (x,y,u) € G,

-© < p <o, TLet {un} and u be as above. Then

(11) W= Zim Ilw ] > I[ul.
>0

Proof: We shall give a proof which resembles the well known proof

in the case of simple integral problems. (cf: N.I. Akhiezer [3]).

Let us denote by EM the set of points in R at which
(22) Iyxy(x,y)llﬁ M .
Consider the identity

(13) f(x,y,un,unxy)—ﬁ = {f(x,y,u,uxy)—B} + {f(x,y,un,un )

- f(x,y,un,uxy)} + {f(x,y,un,uxy) - f(x,y,u,uxy)}

where f 1is the constant which appears in the formula (II.7.3). Because
un(x,y) converges uniformly to wu(x,y) , we can find N(g) such that for

arbitrary € > 0 and for = > N(g)

lf(x,y,un,uxy) - f’(x,y,u,uxy)l < g
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at every point of EM . Hence the relation (II.7.12) implies that for

n > N(e)

n-n

(14) Jf Af@,y,u ,u )-Bldedy > Jf {fo,y,u,ux )-Bldxdy +
. : EM xy EM Y

+ ” {f(x,y,u_,u_ ) - f(x,y,un,uxy)}drdy - e(b-a)(d-e) .
E

n n
M Yy

On the other hand, the monotonicity of fb(x,y,u,v) yields the inequality

(15) F@sysu,u, ) - fl@y,un,u. ) > (u, -uxy) £y @sy,u )

s U
vy n®xy’ — oy n’ “xy

Because megy,un,un )-8 > 0 , inequality (II.7.13) implies that
Yy

b rd
(16) f J {f‘(x,y,un,un )-Bldedy > ”
a‘e

xY EM

{f(x,y,u,uxy)-s}drdy +

+ ”EM (unxy-uxy) fv(x,y,un,uxy)drdy - e(b-a) (d-e)

ffE '{f(x,y,u,uxy)—ﬁ}dxdy + JJE (un —uxy)[fv(msysun’uxy) -
M M Yy

- fbcx,y,u,uxy)}dkdy + ffEM (unxy—gxy) fb@x,y,u,uxy)dkdy -

€ (b-a) (d-e)
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o
3°un 82u
But due to the weak convergence of {5559} to 5555- in Lp(R) we
can see that the second integral in the right hand side of

the equality in (II.7.16) tends to zero. On the other hand, with the

aid of Holders inequality and formula (II.7.10), we can write

| ij )

—u ) @y, ,u ) - fy@sy>usu, )} dedy
W my Y Y

n’ xy

1/

< 2B{ jf va(x,y,un,uxy) - fv(x,y,u,uxy)lqudy} N
E

M

The difference

fv(x,y,un,umy) - fv(x,y,u,uxy)

converges uniformly to zero on the set EM as n > o ., Thus

iim jJ'E (un "uxy) {fv(x’y,unauxy) - fv(a?’y,u,uxy)}dxdy =0 .
Mmooy

After passage to the limit, inequality (II.7.16) becomes

b ¢d
vin [ [ tp@aysn,u, -8} dxay
a‘c

n->oo XY

i f f {f(&‘,y,u,uxy)—ﬁ}dxdy - e(b—a) (d—c)
E
M

or
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v > d(u(xr,e),ula,y)) + ” {f(x,y,u,uxy)—s} + (B-€) (b-a) (d-c)
E
M

Hence by increasing M to infinity we obtain

b rd
B> d(ulx,e),ula,y)) + f f {f(x,y,u,uxy)-s}dydm + (B-€) (b-a) (d-e)
a‘c

or
Jlul < u + e(®-a)(d-e) .

Because € > 0 is arbitrary, the proof of lemma I.7.5 is completed.

8§8. Solution of a Boundary Value Problem for a Fourth Order Polyvibrating
Equation.

In this section, as an application of the results established in
the previous sections, we shall prove the existence and uniqueness of the
solutions of a polyvibrating equation of the fourth order subject to certain
boundary conditions. More specifically we shall investigate the absolutely
continuous solutions of the polyvibrating equation

2 2

9 )
@) saiy OCY) g5 + p@du = g(=,y)

in R , subject to the boundary conditions
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ula,y) = Vl(y) u(b,y) = Y,@u) (e<y<d)
€))
u(e,e) = Xl(x) u(x,d) = Xg(x) (a<x<b)

We assume that Xi(m) and Vi(y) are absolutely continuous functions

such that

(3) V() = Xy(@) 5 Xp@ =Y () 5 Xg(b)

Y () , X;(B) = V(@)

Further, 0O(x,y) > 0 , p(x,y) > 0 and g(x,y) are assumed to be continu-
ous functions defined on R . It can easily be seen that the equation
(II.8.1) is the Euler-Lagrange equation of the quadratic functional

b
€)) I{u] = J

d 2 2
I [6 u, + plesydu - 2gul dydx
a‘ec Y

over the class U of the functions absolutely continuous in the sense of

Vitali in R and satisfying the boundary condition (I7.8.2). 1In this

case we have

Flx,y,u,v) = e(m,y)v2 + p(x,y)u2 - 2g(x,yiu

First we shall show that to find a minimum for the functional I{u] on .U .

we can restrict ourselves to the functions in V such that

G)) -m<u<m .
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For this purpose let us take a function u, which satisfies the boundary

condition (II.8.2). For example, let
uo(x,y) = [Xz(x) + Vz(y) - Xl(a)]

+ 422 K@) - Xp(@) - X, @) + X ()]

+

(x-a)
S5 V) - Yy(e) - Y, @) + Y ()]

(2-a) (y=c) .
- Gmayirey Vs - V(@) = V(D + Y (D]

Put I[uO] = A . To find the minimum of the functional we can restrict

ourselves to the admissible functions wu € V for which
Ifu]l <A .

Since p(x,y) > 0

b ¢d P b ¢d
f f ] U, dedy < A + 2 f f g u dedy .
a’e Y a’e

Hence

b

b ¢d P d
(6) . l;j; u_ dedy < A+ 2 lulmax f Iz g(x,y) dedy

XYy a

which implies the inequality
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max

b d P
(7 fJ u,, dedy <A+ Ay Jul
a

ny

where AZ R A2 are well defined constants. On the other hand, the

equality

Y
u@,y) = Xz(x) + Vl(y) - X (@) + Jx] u . dedy

X
a“’ec y

yields the inequality

bd
(8) |u|max j_max]XJ(x) + Y. (y) - Xz(a)l + V(b-a) (d-c) / [aJc uiy drcdy

Comparing the relations (II.8.6) and (IIl.8.7) we obtain

Z
) u| <M, + /B @) A, + Ay Ju| 1

Therefore we obtain

lul e <
max —

where m 1is the constant whose value can be easily found by solving the
quadratic equation with respectto |u| . Thus the function u = u(x,y)
max

satisfies the inequalities (I7.8.5). Clearly we have

Flx,y,u,v) > o v2 + B
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in G , where

a=0_. B = - 2m|9|max .

Hence the condition (I7.7.3) of theorem II.7.1 is satisfied at each
point of the region G for arbitrary but finite v . The monotonicity

condition for f is also satisfied because of the equalities

f;(x,y,u,v) = 2 0(x,y)v 3 fvar,y,u,v) = 8(x,y) >0

Hence by Theorem II.7.1 there exists a function u(x,y) , absolutely
continuous in the sense of Vitali in R, with its mixed derivative

umy(x,y) £ L2(R) » for which the functional I[u] assumes its absolute
minimum on .U and such that it satisfies the equation (I7.8.1) a.e.. This
proves the existence of a solution to the boundary value problem (II.8.1) -

(Ir.s8.2) .

To show the uniqueness of the solution we proceed as follows.

If there were two solutions u; 5 uy in V then the function v = U~Ug

would satisfy the homogeneous equation

82 820
(10) 359y (©(x,y) 55559 + p(x,y)v =0

and the homogeneous boundary condition
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oR

Multiplying the expression (r.8.10) by v , and integrating by parts,

we find
b d 9 2
J J [6 v2 + pv°] dedy = 0
xy
a’c
which is possible if and only if v(x,y) = 0 by virtue of our assumptions

about the functions 6 and p . This proves the uniqueness of the solu-

tion.



- 47 -

CHAPTER III

Existence Theorems for Polyvibrating Equations

Using a Hilbert Space Approach

8§0. Introduction.

In this chapter we generalize the work of F. Manaresi [20].

F. Manaresi has considered the following Sturm-Liouville problem

52 22,
(1) Erem (6(x,y) axay) +p(x,Pu =X u .
(2) u(a,y) = u(b,y) = ux,e) = ulzx,d) =0

where 0O(x,y) > 0 is a continuous function defined on R such that
0,.(y) Gy(x,y) s exy(x,y) are all continuous in R, while p(x,y) > 0
is a continuous function defined on R . 1In this chapter we consider
the same problem but the assumptions on 6(x,y) are consider-

ably weakened. There 6(x,y) , p(x,y) are measurable func-
tions belonging to LZ(R) and p(x,y) is a positive function. We assume

there exists a constant 60 such that
€)) 0(z,y) > 6, >0 .

Due to the assumptions on 6(x,y) the partial differential operator
(III.0.1) should be first considered as a formal partial differential
operator. Thus the partial differential equation is a differential equa-

tion in a generalized sense which will be made explicit in the following
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section. The motivation for this comes from the similar work done in
the case of elliptic partial differential operators of the second order.
In this regard we refer to the book by S. Agmon [1]. In Section 1 we
state without proofs some theorems from functional analysis. Next we
prove the properties of a suitable Hilbert space Vél) , in which our
problem will have a solution. Sections 3, 4 and 5 are concerned with

the characterisation of the Hilbert space Vél) . Sections 6 and 7 are

devoted to the study of a generalized Sturm-Liouville problem.

§1. Positive Definite Operators.

In this section we state without proofs some properties of
positive definite operators. The proofscan be found in the book of

S.G. Mikhlin [26].

Let H be a Hilbert space over the reals and let A be a symmetric

linear transformation defined on a linear subspace M which is dense in f .

The inner product in H will be denoted by the usual notation (u,v) for

u, vet.

Definition III.1.1. A Zs called strictly positive definite on M

i1f and only 1f there exists a positive constant <Y , such that
2 2
(1) A u,uw) >¥° Jul] , ueM.

Then, following K. Friedrichs [10], we define on the subset M , a new

inner product by
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2) [u,v] = (A u,v) . u,veM.

With this inner product, M becomes an inner product space which, when
completed in the usual way, yields a Hilbert space HA . Then we have

the following theorem:

Theorem III.1.2. The Hilbert space HA ean be identified with a

subspace of H :
(3 M < HA cH
On the basis of this theorem it is easy to show that
()] [u,v] = (A u,v) . ueM s V€ HA
) 1l 11 =t > 92 [l 1?0, uety .
Let f be any element in #H and consider the linear functional
(6 Ff(u) = (U, f) . uet .
Since

(7) [Fe] = . < [Hul] [1£1] <y A=l 1 -
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Ff(u) is a bounded linear functional on HA . By the Riesz representation

theorem there exists a unique element € HA such that

“r
(8) Fiw) = f) = Tusud ,  wehy .

Theorem (III.1.3). Let A be a positive definite operator. If

the equation

9 Au

1
~
LY

m
x

has a solution, then the functional

(10) Flz]l = (A u,u) - (u, ) - (FHu)

agsumes its minimum value for this solution. Conversely an element which

minimizes the functional (III.1.10) satisfies the equation (III.1.9).

The basic variational problem, generally speaking, consists of
finding an element belonging to M for which the functional (II1.1.10)
attains its minimum on M . 1In general this problem does not have a
solution in M . 1In order that the problem become solvable we modify it

somewhat. First of all if u € M then

(11) (A u,u) = [u,ul .

Further, by our previous remark, if f is a fixed element of H and u is
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an arbitrary element of HA , (u,f) 1is a bounded linear functional on

HA . Thus there exists uf € HA such that
(12) A u,u) = (u,f) = [u,uf] for all u € HA
We now have

(23) Flul = [u,u} - [u,uf.] - [uf,u] for all u € HA .

Formula (III.1.13) was established for u# € M , but its right hand side
is meaningful on all of HA . Using (III.1.13) we extend F[u] on all

of HA and we seek a minimum on HA . As a matter of fact
(14) Flu] = [u—uf.,u—uf] - [uf,uf]

and from (III.1.14) it is clear that F[u] assumes its minimum on HA for

u = uf . Thus it is clear that if Au = f , then
(15) A u,u) = (fLu) = (A uf,u) U € HA s uf € HA .

Hence we have the following definition.

Definition III.1.2. Given f € H , Up € HA will be a weak solution

or a generalized solution of the equation
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(9 Au=7f
i f the relationship
(16) A upu) = (£5u)

holds for all ueHA and feH.

Theorem III.1.3. Let A be a positive definite operator on a Hilbert

space and
. (Au,u)
(17) m = 'Lnf————(u’u)

Let (u) be a normalized minimizing sequence. If {un} contains a

convergent subsequence them m is an eigenvalue of A .

Theorem III.1.4.  Suppose that elements {q>n} belong to the domain

of definition of the operator A , and that the sequence {A(bn} 18 complete

in H . Then the sequence {¢n} is complete in HA .

Theorem III.1.5. Let the positive definite operator A be such

that every bounded set in HA is compact in H . Then
(i) A has a countable set of eitgenvalues tending to infinity;

(iZ) the sequence of eigenvectors is complete in HA as well

as in H .
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§2. Absolutely Continuous Functions.

It is well known that absolutely continuous functions of a
single variable, defined over a specified interval of the real line,
form a Hilbert space when a suitable inner product is chosen. In this
section we deal with the extension of this fact to functions of several
variables. We will be mainly concerned here with the definition of

absolute continuity, given by Vitali, for functions of several variables

(cf: Definition I.1l.3). We establish our results in the case of two

variables, their extensions to more than two variables are obvious.

Definition III.2.1 [14]. A funetion u(x,y) defined on the rectangle

R:{a<xz<b;e<y<dl is said to be absolutely continuous in the

sense of Vitali, if for any € > 0 , there exists a § > 0 such that for

any finite or infinite set of nonoverlapping subrectangles {Ri} of R
>1
(D meas (v R.,) <8§=> ) |F (R)| <e
i>1 ° i>1 PR

where Fu(Ri) denotes the following double difference

(2) Fu(Ri) = u(ai,ci) - u(ai,di) - u(bi,ci) + u(bi’di)

for the rectangle R. : {a
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It is known that every definition of absolute continuity has
associated with it a special derivative. This is the case for Definition

IIT.2.1.

Definition III.2.2. A function wu(x,y) defined on R 18 said to

be differentiable at (xo,yo) € R in the sense of Picone [5] whenever

the limit

5 Lo u0r0+h,yo+k) - u(xo,y0+k) - u(x0+h,yo) + quO,yo)
h>0 h ok
k>0

exists.

We call this limit the generalized derivative or hyperbolic

derivative of u(x,y) in the sense of Picone at (xo,yo) and denote it
32u
9oy

by the symbol (mo,yo) . Now,it is clear that if u(x,y)==f}(x) + fé(y)
where neither f}(x) nor fé(y) is differentiable, then u(x,y) does not
have any derivative in the classical sense, but the generalized Picone deri-

vative does exist and is equal to zero. We now state the following theorems

whose proofs can be found in the book of E.W. Hobson [14]:

Theorem III.2.3. If a function defined on R is absolutely continuous

in R in the sense of Vitali then it has a generalized derivative in the

sense of Picone almost everywhere in R .

Theorem III.Z2.4. If u(e,y) <is absolutely continuous in the sense of

Vitali in R , then
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X Y 2
@ faL 323?1 didn = u(x,y) - u(a,y) - u@,c) + ula,c)

Theorem III.2.5. If f(x,y) <s a summable function in R and

Y
©)) ux,y) = Ff F(&€,n) d&dn
a

c

then u(x,y) <is absolutely continuous in the sense of Vitali and hence
the generalized derivative in the sense of Picone exists almost every-

where in R and we have

O U _
(6) 359y Fx,y)

almost everywhere in R .

Theorem III.2.6. A necessary and sufficient condition that a

function defined on R be absolutely continuous in the sense of Vitali

is that it be the indefinite integral of a function swmmable in R .

Now, let V denote the class of all absolutely continuous

functions (in the sense of Vitali) defined on R . Let Vgl) denote the
functions in V which vanish on the boundary of the rectangle R and such
that their generalized derivative belongs to LZ(R) , the Hilbert space of

all square integrable functions defined om R , i.e.,
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(7) V;z) ={u: u is A.C., Uy € Ly(R) 5 ufyp = 0}

Theorem III.2.7. Vél) is a Hilbert space with respect to the

inner product

(8) () = o v dud u, ve vd®
s uxy xy Y s o
a‘e
and the norm
b d
2 _ 2 (1)
9 [ Tl«l]]® = f J oy daedy uel;
a‘e
Proof: The properties of the norm are verified as follows. First
we show that |||u||] = 0 implies u = 0 a.e. in R . Since u(z,y)

vanishes on the boundary of R , by Theorem III.2.4 we have

Z (Y
(10) ux,y) = J I U, dédn .
ale &N

Squaring both sides of (II7.2.10) and applying Cauchy-Schwarz inequality

to the right hand side yields

2 b rd 2
(11 u (x,y) < (x-a)(y-e) f j U dedy .
ale Y

Integrating either side of (I1I.2.11), we obtain



- 57 =

b ¢d 2 2
(12) f J W (o,y) dedy < EmDAED 1y )2
a’e
But since Illulll = 0 , we have
b d 2
(13) J J U (x,y) dedy = 0
a’e

which in tern implies u = 0 a.e.

The triangle inequality and symmetry property of the norm are

proved as usual. Thus it remains to show that the space Véz) is
complete with respect to the norm (III.2.9). To do so we proceed as follows.
Let {un} be a Cauchy sequence with respect to the norm (I717.2.9). Then we

have, since each {un} vanishes on the boundary of R ,

y 9 (un—um)
(14) unCr,y) - um(x,y) = j:J; ~SEan d&dn

and therefore

X (Y 3 (u -u )
a
b d 3 (u u) 2
< V(z-a) (y-e) axay —am—17 dxdy
a
< W) @-o) |[[[u,, 1]

by virtue of the Cauchy-Schwarz inequality. Further since
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(" ) (x' D) r"Jy" o uﬂ dn Jx Jy n
u @",y") - u (x',y = 4t -

n n , 3En . ), 3E
for a<x' <x" <b ;e <y' <y" <d we have

g™ = )|

"
Q 8

| A

[V(x"-a) y"-y") + V/(x"-x") (y'-c)

+ V@G |||

which proves the equicontinuity of the family {un} .

This shows that the sequence {un(x,y)} converges uniformly
to a function, say, a(x,y) . Completeness will follow if we can show
that 92(x,y) is absolutely continuous in R in the sense of Vitali. To
do so, first we observe that {SESy
Due to the completeness of LZ(R) , there exists a function g ¢ L2(R)

} 1is a Cauchy sequence in L2(R) .

) bed 3 u, 2
(16) lim [2f I§5§§'— g|® dedy = 0 .

7> c

On the other hand, we have
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2

XY O U

17) un(x’y) = J J 9E9
a‘c

A

dé&dn

3

by virtue of (III.2.4). Hence, passing to the limit in (IIr.2.16) as
n > o and using Equation (II7.2.17) and the uniform convergence of
uncr,y) , we obtain

X (Y

(18) f(z,y) = [

a‘lc

g(&,n) dé&dn .

Thus 8(x,y) is the indefinite integral of a summable function g(x,y)
and hence by Theorem III.2.5, 3(x,y) is absolutely continuous in the

sense of Vitali in R . Further we can easily prove that & =0 .
(1) o9R
Thus Vo is a Hilbert space.

§3. Fundamental Properties of the Hilbert Space

/D
o

The Hilbert space Vél) has many similarities with the Sobolev
spaces usually considered in the theory of partial differential equations.
In fact, it is known that the Sobolev space Héz) is the completion of
C: (R) , the space of infinitely differentiable functions with compact
supports in R , with respect to the Dirichlet norm. A similar property
vD

is also true for . This fact will be stated and proved in this

section.

Theorem III.3.1. Véz) is the completion of C:(R) equipped with

the inner product (III.2.4) and the norm (III.Z2.5) .
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Proof: For the sake of simplicity we will study the problem in

the rectangle

(D D={(x,y) 3 o <x <a; -B<y<B}

We can easily show that the transformation

= E+ D +a
2
n= &+ DEH +e

takes D into R and changes the norm involved only by a multiplicative

constant.

Let T be the linear transformation defined on L2(D) by

the equation

Y
3 T f(xsy) = Ja j f(E,n) dEdT]

'R

T 1is a completely continuous transformation of LZ(D) into itself, and,

in particular, for any continuous f(x,y) € L2(D) we have

a2
€)) flxe,y) = 555?‘(T n .

It is clear that for any f € L2(D) , T f wvanishes for x = -0 and
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y = -8B but T f need not vanish on other parts of the boundary. Let
M denote the subspace of Lg(D) ,consisting of elements f for which Tf

vanishes on all of the boundary of 7 . Then we have

B (x Y (O

(5) f j f(&,n) dédn = 0 ; f f f(&,n) d&dn = 0
-B'-a -B’-a

for any f in M and for all (x,y) € D . This may be written as

(6) jv FC&,n) x(&E,n) d&dn = 0

where x(E,n) 1s the characteristic function of rectangles of the form
~-0 <& <x; -B<n<PB or of the form -a<f<a; -B<n<y. It
is also evident that any g € LZ(D) which is orthogonal to the character-
istic functions of such rectangles or strips has the property that T g
vanishes on the boundary, i.e. it is im M . Thus M is a closed sub-

space of L2(D) such that T(M) contains C:(D) .

Given an f in M , let f}(x,y) (0 < r» < 1) be a function

defined on the rectangle 07 as follows:

&, D | <ra; |yl <rB

r r

) Fa@,y) =

0 otherwise

It is clear that f}(x,y) is in L2(D) . In fact we show that f}(x,y)
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is in M . Since, if X 1is the characteristic function of a strip
8 -a <&z B<y<B ,
we have

Br
r f £,,(&,n) dEdn
-or

9 I Fp(Esn) x(&sm) dEdn
D -Br

min(x,or)

J g
-or -Br

Jmin(% , o) 8 )
J f(E,n) r" d&dn
-a

n
F& D dgan

=r2f £x' dgdn = 0
D
X' being the characteristic function of the strip
.x
-a_<_x_<_m1,n(;,a) ;s -B<y<8B.

Similarly for strips -a <& <o ;3 -B<n<B . The functions f}
converge to f in the LZ(D) topology as r tends to 1 . Given any f}
in M we form its regularization f} £ of radius ¢ as follows.

s

(10) fr,t(x.y) = FJ Fp(Esn) Ky (x=,y-n) didn .

=00

Ktcx,y) is a function defined on the plane vanishing outside a circle
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of radius ¢ about the origin and which is given in that circle by

x ~¢2

(11) K, (x,y) = =5 exp(—5—5—%) .
t 2 2 2 2

t t-x -y
Here the number X is a normalizing factor. It is well known that [3I]
the regularization of a function in LZ(D) is a dZ(D) function which
converges to that function in the LZ(D) topology as the radius ¢ converges
to zero. In our case the regularization fr " of f} is to be taken with

’

radius ¢ <-% (1-r) and is a function which vanishes outside a closed sub-
set of the interior of D . Since f} was in M , the regularization also

belongs to M . We have, writing X for the characteristic function of a

strip

(12) L) fr’t X drdy = JD X @,y) JQI Fa(Esm) K, (@-&,y-n) d&dn dxdy

p
JD X (x,y) rJ fp@-8,5-n) K (&) dgdn dxdy

Jt Jt K (g,m{ J fp@=83-n) x(@>y) dedy} dgdn -
-t' =t D

Since |&| , |n| are sufficiently small, being less than ¢ , the trans-
lation f}(x—g,y—n) is a function vanishing outside a closed rectangle

in the interior of D and is in M . Hence the integral above is zero.
Thus for any f in M we can construct a C: function f},t in M
which vanishes outside of a rectangle completely interior to 0 and which
is as close to f in LZ(D) norm as we like. Hence T f},t is also in

(e o]
C_  and vanishes outside the same rectangle as f . TF is in
o r,t r,t
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C:(D) and approximates T f in the norm (III.2.5). Thus we have shown

that T(M) is the completion of C:(D) with respect to the norm (III.2.95)

Let us note that in the above proof we have been guided by a

method of Aronszajn and Donoghue [4].

Theorem III.3.2. The Hilbert space Vél) is a subspace of the
#(D
o

Sobolev space

Proof: We have the following relation

ux(x,y) = E uxn(x,n) dn

o]

for any function u € Co (R) . Squaring and applying Cauchy-Schwarz

inequality we obtain

(13) ui(x,y) < (y-o) {f uﬁy(x,y) dy

Integration of both sides yields

bd 2 bd
(14) J f W2 (@,y) dedy <& f J ufcy(x,y) dyd .
a‘c a‘e

Similarly we obtain

bd o 2 (bd 4
(15) [;J; uy(x,y) dxdy < =5 [2J yxy(x,y) dxdy .
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Addition of the inequalities (III.3.14) and (III.3.15) side by side

yields
b d P 2 b rd P
(16) J f [u, (x,y) + uny,y)] dedy < m f J Uy dxdy
a’e a’e
-0)°  (d~o)? w
where m = max { 3 . 3 } . Thus the Dirichlet norm on CO(R)

is dominated by the norm (II7.2.5) and this gives the conclusion of the

theorem.

§4. A Boundary Value Problem of Mangeron.

In what follows we use the above characterization of Uéz) to
show the existence and uniqueness of the generalized solution to a simple
boundary value problem due to D. Mangeron. Let L2(R) denote the Hilbert
space of all square integrable real valued functions defined on R . Let

CZ(R) have the usual meaning. It is well known that CZ(R) is dense in L2(R).

Recall that in L2(R) the scalar product and the norm are defined by

b (d 2
f || dedy .
e

bd )
(D) (u,v) = J J wo dedy [Tu]|© = J

a

We consider the boundary value problem

34u

2 = f(x,y)
8x28y2

(3) ula,y) = ub,y) = u(x,e) = ux,d) =0
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where f(x,y) 1is a function belonging to L2(R) .

Using the same notations introduced in the preceding sections,
4
we take H = L2(R) and M = C:(R) and A = ——é——g . The operator A

223y

is well defined on d:(R) . The symmetry of A is proved as follows.

Integrating over R both sides of the identity

(4) Oy = 1 Vgl — Dy 1y = Do T % sy Uy

where wu(x,y) and v(x,y) are any two functions belonging to C:(R) ,

we find

it
~
N
<

b rd b
(%) LL U Uy decdy ey a,e L [uxvxy(x,d) - uxvxy(x,c)] dx

d
- J [u vxy(b,y) - uyvxy(a,y)] dy

b d
+ J f u_ v dedy.
a xy XY

Since u(x,y) satisfies the boundary conditions (III.4.3) we have

b rd b rd
6 (Av,u) = J J uv dedy = f I u v dxdy
a’e LY*Y ale Y Y

which proves the symmetry of A . We now introduce the new norm defined

on CO(R) by
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bd bed
(?”) (A u,u) = IQJ u%xyxy dedy = f Jc uxy dxdy .

The positive definiteness of A can be proved as follows: Since

Y
(8) u(x,y) = Ff Ugn d&dn

a-“c

squaring and applying Cauchy-Schwarz inequality to the right hand side,

we obtain

2 bd o
9 u (x,y) < (x-a)(y-e) J J U, dxdy
a“‘c Y
Integrating both sides we obtain
b (d 2 2 bd ‘
(10) ” @y dedy < (b—a)4(d—c) IJ “i dedy .
a‘e a’c Y
Thus
(12) A ww = [ul[1Z > —F—— [[u]]?

(b-a) % (d-e)®

. - - © . _ 2
which proves the positive definiteness of A on CO(R) with vy = =) (&) °

In section 3 we have shown that the completion of C:(R)with respect to the
norm (II7.2.5) 1is Vél) . Hence, by virtue of the results of Section 1,

we have the following:
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Theoyem III.4.1. The boundary value problem (III.4.2) and (III.4.3)

has a generalized solution in V;z) and this solution is unique.

§5. Characterization of the Solutions.

In this section, using the method of reproducing kernels due to

1
N. Aronszajn [17] we characterize the subspace of V; ) which contains

the solution to our problem. We begin with the

Definition III.5.1 [19]. A functional completion M of an incomplete

function space M is defined to be a completion by adjunction of point

functions with the property that for each (x,y) there exists a number, call

it M, such that, if the sequence {u } is convergent in M, and
there exists a wu € M for which lim ||u -u|| = 0 , then

nro
@ e @) = e < My 1l

for each (x,y) in the domain of definition of fumctions in M

As was done in Section 3 choose M = C:(R) and define on CZ(R)

the inner product

b (d , P
(II1.2.4)  ((u,0)) = LL U Uy dady, || |u]||” = faf Uy B

D. Mangeron [ 2] has shown that the function
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/ (b-x) (d-y) (§-a) (n—-e) E<x 3 n<y

(b-z) (y=c) (E=a) (d-n) E<x ;3 N>y
(b=a) (d-c) G(z,y3E,m) = ¢

(x-a) (d-y) (b-&) (n-¢) E>x ;3 nNn<y

\ - e) (B-E)(@-N)  E>x 3 N2>y

84

20 2
dx” oy
conditions (III.4.3). Since the Green's function G(x,y3;&,n) 1is a

is the Green's function of the operator A = for the boundary

reproducing kernel, i.e.

bd 54, -
(2 u(x,y) = f J G(x,y3E,M) —5 35 dédn , u e CO(R) s
a’e 9E"on

thus for any fixed (x,y) we have, by the Cauchy-Schwarz inequality.
(3) lu@d| < 116, 1 [Tl

where llIGm y||| is the norm of G(x,y;&,n) for fixed (x,y) defined

by (III.2.9). 1In this case it should be noted that discontinuities of G

should be taken into account and also

2 -
(4) 1116, 17 = G @ay38m), Gpp @sy3E,m))

G(x,ys3x,y)
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which can be easily verified. So that

(5 luCe,y) | < VGGx,ysx,y) | |lull] -

~

Thus [G(m,y;x,y)]2 can be taken as the number Mx ¥ appearing in
>

Definitions III.5.1. Thus we can make a functional completion of C:(R)

as follows: Let {un} be a Cauchy sequence in C:(R) with respect to

(II1.2.5). We have

0 < Uim |u, (@,y) - u (x,y)| < /Glz,y;5x,y)
N0

zim ||lu, - w || .

Vel

so that {un(x,y)} is a Cauchy sequence of real numbers, which, therefore
converges to, say, a function wu(x,y) . The desired functional completion

=00

Co (R) consists of all functions u(x,y) defined in this way and it has

the following properties:

= 3 -
(i) normwise convergence in CO(R) , implies pointwise

convergence everywhere in R .
(ii) C:(R) is dense in f;?R) .
(iii) EZ?R) is complete.
(iv) For (x,y) € R, the function G(x,y3;&,n) as a function

of (E,n) 1is in E;?R) and

6) (Glx,y3E,n) , ug,m)) = ulx,y)
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for all u ¢ E: . Thus, G(x,y3&,n) 1is a reproducing kernel for the

complete space E:YR) . For the functions u ¢ C:(R) we have

b d 84
(7) J J Glx,y38,Mn) —5r—5 dEdn = u(x,y)
a-“c

Let us now consider the space ?Z?R) of all functions of the form

b rd
€)) Gw = f f G(x,y;&,n) w(g,n) d&dn , we Ly(R)
a’e
where w(x,y) is required to belong only to L, (R)
Since
b ¢d b ¢d 2
9 JJJJ G (x,y38,n) dxdy didn < «
a’c’a’e

all functions of the form Gw belong to L2(R) and since C:(R) is

dense in L2(R) we can easily show that C:(R) is also demse in fZ?R) .
—co =0

Hence CO(R) is isomorphic to CO(R) , since all completions are

isometrically isomorphic to each other. Thus we can put

. bd
(20) C(R) = {fj G(x,y3E,n) w(E,n) didn 3 we Ly(R)}
a

c

By differentiation with respect to the parameter under the integral signs,

we obtain
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32u 7 X (Y by
(1) 323y = -a) (d-2) leJc (&-a) (n-e)w d&dn - J;J; (b-&) (n-e)w d&dn

X rd b d
- f f (E-a) (d-)w dedn + J j (b-£) (d=m)w dEdn]
a'y XY

if

b ¢d
(12) u(e,y) = f f G(xz,y3&,n) w(g,n) d&dn .
a’'c

Since the integrals are all continuous functions, umycr,y) is continuous.

But then we have

_ (fz=a) (y-e) + (b-x) (y-c) + (x-a)(d-y) + (b-x) (d-y)
(13) uxyxy [ (b-a) (d=e) 1w
= w(x,y)
almost everywhere in R and if w(x,y) 1is continuous then uxyxyCr,y)

exists everywhere. Thus we see that if in the boundary value problem
(I11.4.2) and (III.4.3) f(x,y) 1is continuous then the generalized solu-
tion is also a classical solution. Incidentally we have also shown that a
(D
o

subspace is isometrically isomorphic to the function space ‘E:(R)

§6. A More General Boundary Value Problem.

In this section, to generalize the results of the problems in the

previous sections, we deal with the problem of the existence and uniqueness
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of a weak solution to the following boundary value problem due to

D. Mangeron [2]. The classical case has been treated by F. Manaresi
[7]. Our approach will be parallel to the one due to E.M. Landesman and
A.C. Lazer [19]. Specifically, we consider the partial differential
equation

2 2

0
@ A= g (0G.Y) ) + a@yu = F@.y)

for a<x <b and e <y <d , subject to the boundary conditions
(2) ula,y) = ulb,y) = u(z,e) = u(x,d) =0

where 0(x,y) and g¢g(x,y) are nonnegative measurable bounded functions

defined on R such that
3) 0 < 60_5 0(x,y)

and f(x,y) € L2(R) . A 1s considered as a differential operator in the
formal sense, since the differentiability conditions on 0(x,y) are

dropped.

We consider the inner product on C:(R) defined by

b d
6] v+ v] dydx ,U € ) .
ajc[uxyxy q uv] ay u NG

(4 <U,v> = J
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Lemma III.6.1. The operator A defined on C:(R) 18 positive definite

on C:(R) with respect to <u,u> .

Proof: Since u € C:(R) we have

(%) u(e,y) =

SO

jy d&d
u n
o En

TR

Y 1
— VO0(&,n) u,_ d&dn .
Jc VBCE, ) &n

a

Hence squaring and applying the Cauchy-Schwarz inequality, we obtain

(6) u2(x y) < ny —L d&dn ny 0 u’ d& dn
W= 8(&,n) 2o &n

a’e
[ ey aom [ 0
= d&dn f 0 u, d& dn

2l BEM e “En

Integration of both sides of the above inequality yields the inequality
b rd 2 b ¢d 1 b d 2

(?) Jajc Uu CZ'de < (b-a) (d-e) Jafc W CZ'de fafc 0 uxy d:x:dy
From (IIT.6.6) we obtain

b d 2 b (d 1
(8 J f U’ dedy < (b-a) (d—c)[ f CIERD) dedy <u,u>
a’e a’e ?

Hence
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b d P P
9 (A u,u) = J J [GCx,y)qu + gq(x,y)u"] dedy = <u,u>
a’e

for all functions u in C:(R) » Which proves the positive definiteness

of the operator A on C:(R)

Theorem III.6.2. The norms defined by (III.6.4) and (III.2.5) are

equivalent.
Proof: We have to show that there exist constants m and M such
that
b cd 2 b 2
(10) m J j Yoy dady < <u,u> < M f Uy dxedy
a‘e a ‘e
The first inequality is readily obtained, since
b (d 2 b rd 2 P
(11 ] J J u.  dxdy < J J ® u  +q u’) dedy
o Y — xY
a’e a‘c
To prove the second inequality, we observe that
b ¢d 2 2 b ¢d 2 b ¢d 2
(12) f J (® u_ + qu”) dedy < f f 8 u- +gq f f u® dedy
xy - zY ¥
a’e a‘e a‘e
where
q;, = sw lq@,y)] .

(x,y)eR
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Hence, combining (II7.6.8) and (III.6.12), we infer that

d

b d 7 b 2
<u,u> < [(b-a) (d-e) 94 £Z£3~675j53-dbdy + 1] fafc ) uxy dxdy.

On the other hand, by our assumption on 6(x,y) , we have

sup O(x,y) <=
(x,y)eR

and our theorem is thus proved.

©

Therefore, the completion of CO(R) with respect to <u,u>

gives us the Hilbert Space Véz) . As before, the following definition

connects the operator A and the quadratic form <u,u>

Definition III1.6.3. A generalized (weak) solution of the boundary

value problem (III.6.1) and (III1.6.2) is a member u € V;l)

such that
<v,u>= (v,f)

for all v € Vél)

Combining the above theorems with theorems from Section 1, we

have the following theorem:

Theorem III.6.4. The boundary value problem (III.6.1) and (III.6.2)

has a unique generalized solution in V;Z) .
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At this point, we wish to mention that in the case when 6(x,y)
is sufficiently differentiable and p(x,y) and f(x,y) are continuous,
F. Manaresi [I1] has shown that there exists a classical solution to the
boundary value problem (II7.6.1) and (III.6.2), by using the method of

successive approximations.

§7. Generalized Eigenfunctions and Weak Eigenvalues.

In this section, following the general spirit of the work of E.M.
Landesman and A.C. Lazer [19], we extend the concept of eigenfunctions
and eigenvalues of the following generalized Sturm-Liouville problem of

D. Mangeron [2]. Specifically we consider the following problem

2 2
(1 Au-s= a.i_ay (0(x,y) 3—%%) + g(x,y)u = X p(x,y)u
2 - ula,y) = u(x,e) = ulb,y) = u(x,d) =0

where ©0(x,y) and g¢(x,y) satisfy the conditions specified in Section 6,

and p(x,y) is a measureable function defined on R satisfying the conditions

(3 § < p(x,y) <A

for all (x,y) € R where 8 , A are constants. Let us define the follow-

ing inner product on LZ(R)
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b rd
(4) (u,v)_ = ff p uv dxdy u,v € Ly(R)
p a’e

Clearly, due to the assumptions on p(xz,y) , the inner product (III.7.4)
defines an equivalent norm on L2(R) , which induces the same topology

on L2(R) as (u,v) does.

Let us define a linear functional on ng) by
b ¢d
5 L = L, W), = f J w dxd,
(%) p,w(¢) (¢ )p n pé Y

where w € LZ(R) . Then, by virtue of (III.7.3), it can easily be seen

that Lp » is a bounded linear functional on Vél) . Since Vﬁl) is a
’

Hilbert Space, as shown in Section 2 there exists a unique T?(w) € Uél)

such that

6) OT,@> = L () = (p)p

for all ¢ € Vél) . This defines a linear map
) (1)
(7) T? : LZ(R) > Vo

but since Véz) < L2(R) , we may consider T? as a linear map from L2(R)

into LZ(R) . Since

b d 2 b d 7
J u” dxedy < (b-a)(d-e) f j drdy <u,u>
a’e

(III.6.8) J W

a-c
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and since p(x,y) satisfies the condition (III.7.3) it follows that Tp

is continuous and maps bounded subsets of LZ(R) into bounded sets of

Véz) . Thus by Rellich's selection principle [1] T? is completely contin-

uous. Moreover Tb is symmetric with respect to ( , )p as the inner

product. For if wu,v € L2(R) we have

(8) (Tp U, v) <Tp u, T, v>

i
A
-—‘
<
-
<
\"4

(T v, w
p p

,T v .
(u p )p

If for some u € L2(R) . Tb u=20, then

€)) (Cb,u)p =0

1}
(=

for all ¢ ¢ C:(R) and since C:(R) is dense in LZ(R) we have u =

Thus, if u € LZ(R) , it follows from (III.7.6) , letting ¢ =T u € Vél)

p
that
(10) (Tb u,u)l9 = <Tb u,Tb u> >0
which is positive for u # 0 . Hence T? is positive and symmetric.

Now applying the results of §93 and §94 of [33] about positive
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symmetric operators we infer the existence of a sequence {¢k}? in LZ(R)

such that

O = A Ty 9%
(12)

(G280, = &

where ij is the Kronecker delta and

o  (u,¢,)
k
(12) T u= — KPPy
1 kzl Ay %

for all u ¢ L2(R) . Moreover the sequence {Ak} has no finite cluster

point and so we may assume
(12) " 0 <A, <A, <A
Using (III.7.6) and (III.7.11) we obtain

w, ¢y > = (w,xk¢k)p = W, A pdy)
for w e Véz) . Hence for each k = 1,2,3,---,¢k is a nontrivial weak
solution to the boundary value problem (II7.7.1) and (III.7.2). We there-

fore call A a weak eigenvalue corresponding to p and denote it by

k
kk(p) . It can easily be seen that
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o]

_ 2
(13) ), = ZZ (s ),

for all u € L2(R) .

We can now write a similar identity involving V;Z) . Using

(III.7.6) and (III.7.11) we have

(19) Opo 03> = N (PIT by 07>

A (P) (¢k,¢j)p

1

which shows that the sequence {——— qél) » 1s orthonormal
YA, (P)

t Y7 in

< > . If for some w € V;l)

with respect to the inner product ’

(15) <psw> = 0

for all %k , then by (III.7.6) and (III.7.11)

s =0
(¢k w)p

{———l——-¢k} is complete

for all K. Hence w = 0 a.e.. Thus the sequence
VA (P)

in Uéz) and Parseval's formula yields
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(16) <u,u> = ) <—=t Op > 4>

(17) <uyu> = kgz A @) (u,¢k)§ )

The identities (IIT.71 6) and (II1.7.17) together with (II7.7. 12') now
yvield the following variational characterization of weak eigenvalues in

terms of the inner product < | > apg («, )p

( )\Z(p) =min [<u,u> u € (/21) : (u,u)p =11}
(18) < <u,u> |, u e Vél) 3 (u,u) = 1
}‘k+1 () = min p
(ua(b') =0 j = 1,233,"°:k

Note that Courant's Min-Max principle can also be extended very easily.

In this connection we have the following:

Theorem III.7.1. If for vz,vz,v3,--',vk in LZ(R) s we define

<6,6> , 0¢e v | (g8 =7
o p

k( )( 1’ 2’ ? k) ' f
‘e’z). = 0 7. = 2,2’.o.’k_l
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then

uk(p) (01’02""’vk) | UJ- £ L2(R)
My =5
j = Z’Z’c..’k
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CHAPTER IV

Fundamental Inequalities and Natural Boundary Conditions

81. 1Inequalities.

Various types of inequalities have been proved for functions
of one variable, relating them with their derivatives. In this connec~-
tion, we refer to the excellent books by E.F. Beckenbach and R. Bellman
[6] and D.S. Mitrinovic [27]. In this chapter, we give analogous
inequalities for functions of two variables u(x,y) defined on R ,
relating them with their mixed partial derivative uxycr,y) y Assuming
its existence in the classical sense. The extension of some of these

inequalities has been considered by D. Mangeron [12].

Theorem IV.1.1. Let wu(x,y)e F(Z) be such that u(a,y) = u(x,c) =

u(a,e) = 0 . Then

b (d 2 2 (b
D ff 2 dndy < (b—a)4(d—c) LJ uﬁy dody .

c

Proof: Since u(a,y) = u(x,e) = u(a,e) = 0 , we have

(2 ux,y) = FJy u d&dn
ale &N

which implies
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Y 2
3 ug(x,y) = (FJ ugn dg‘dn)
a‘e

and utilising the Cauchy-Schwarz inequality we obtain

2 l‘” ¥ 2
€)) u (@,y) < (@-a)(y-e) J %gn d&dn
a‘e

IA

b ¢d P
(x-a) (y-e) ] L U dEdn .

a

Integrating either side of the inequality (IV.1.4) we obtain (IV.1.1).

Corollary IV.1.2. If u(x,y) € P(l) and u(a,y) = ux,e) = u(a,e)

= 0 , then
b rd b d
(5) fj lu u |drdyii’i)§‘-d'ﬁjj w2 amdy .
a‘e %y ale
Proof: Applying the Cauchy-Schwarz inequality to the left hand

side we obtain

bdl | bed bed
(6 J J u u dedy < L j u dedy J f u_ drdy
a’e Y e ale Y

and combining (IV.1.6) and (IV.1.1) we obtain (IV.I1.5).

Theorem IV.1.3. If u(x,y) € rl » then
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b d 2 b d 2
D) 4(b~-a) (d-e) ]I u” dxdy + 4UJ u dxdy]
a ‘e a’e
3 3 (Prd o b d 2
< (b-a)“ (d-e) JI u. dxdy + 4(b-a) J dx [J u(x,y)dy]
ale Y a e
d b 2
+ 4(d-e) J dy U u(ac,y)dx]
[e] a
Proof: Let a <&, <z, <b ; e<y; <y,<d . Then
2 T2 2
(8) [ulryyy) - ulwg,y,) - ulxs,yy) + ule,,y )1 = [] J Uy dxdy]
T1°¥7
which on applying the Cauchy-Schwarz inequality yields
T Y2 2 Fa¥2
(9 U J ey dxdy] < @, () [ f L, dndy
%17Y1 174
b d 2
< (b-a) (d-e) J f u’  drdy
ale ™

Expanding the term
[ 05 ,) - w(@;5y,) - u@goy,) + u@,y )17
2°Y2 1°Y2 2°Y1 1°Y1
in (IV.1.8) and integrating the resulting inequality in the 4-dimensional

rectangle {a <z, <b; a<xy,<b; ec<y;<d ;3 c<y,<dl

(IV.1.7) follows.
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(2

Corollary IV.1.4. If ueT is such that

u(a,y) = ulb,y) = u(x,e) = u(x,d) = 0 ,

then

b rd 4 4 (bd
R TP ey
a ‘¢ a-‘ec

Proof: In the inequality IV.1.7, replace u by u and since

xy
d
(11) J; uxy dy = ux(x,d) - ux(x,c) =0
and also
b
12 dr = u (b,y) - ,y) = 0
(12) J’a Uy uy( y) uy(a y)
we have
b ¢d 2 2 ¢b
2 (b-a) % (d-e) J [d e 4
(2 LL Moy U < 2 |, gy EH
Combining this with (IV.1.1) we have
b ¢d 4 4 b d
2 (b~-a) " (d-e) 2
(14) I J u“dedy < T8 J J Uy dxdy
a’e a’e
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1
Theorem IV.1.5. If u(x,y) eT ([0,2n]x[0,2%]) <s such that

(Z) u(o,y) = u(@m,y) ; u(x,o) = u(x,2m
(15)
an an
(iz) j u@e,y)de = 0 ; j u(@,y)dy = 0 .
0 0
Then
a2me2m 2 2T ¢ 2 P
(16 j ] u dxdyf_f f iZ dmdy .
0 Jo 0’0

Proof: Applying Wirtinger's inequality [5] to u(0,y) as a

function of x alone we have,

_ 2T 2 2n 2
(17) f u” (z,y)dx 5J u” (x,y)dx
0 o

which implies

2w 2w 9 an el 2
(s J f u” (x,y)dxdy ij j u, (@, y)dedy
0 ‘0 0 ‘0

But since

2w
(19) ux(x,o) = qux,Zﬂ) and J; ui(x,y)dy =0

a repeated application of Wirtinger's inequality yields the result.
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Remark 1: Since wu(x,y) 1is periodic and satisfies the condition
(IV.1.15(Z)), it has been shown by M. Picone [6] that u(x,y) can be

expressed as Fourier series

(20) u(@,y) = ) (a,. Cos ix Cos jy + b.. Sin jy Cos iz +
, & %] iJ
1,J=1
+ c.. Sin ix Cos Jy +
zJ
+ dij Sin ix Sin Jy) .
Using this expansion, it can easily be shown that the equality sign in

the inequality (IV.1.16) holds if and only if wu(x,y) 1is of the form

(21) u(@,y) = a,, Cos x Cos y + by, Cos x Sin y +

te,, Cosy Sinx + d]l Sin x Sin y .

Remark 2: If in Theorem IV.1l.5, wu(x,y) satisfies the condition

(IV.1.15(<Z)) only, then the inequality of Theorem IV.1.3 gives that

ot e2m P w4 am el 2
(22) J J w dedy < J J u,,, dedy
0 o 0 o Y

(11) If in the theorem (IV.1.5), u(x,y) satisfies the condition

(IV.1.15(Z)) only, then Corollary IV.1l.4 gives that
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rem

2 2 “8 am 27 9
(23) Jo Jo u” (x,y)dxdy 51_5 Jo Jo uxyxy dxdy

Theorem IV.1.6. Let p(x,y) be a bounded positive function

defined on R . Then
b ¢d 5 b d

(2¢) )\iju dacdy<Jju dxdy
a’e - Y

where A 1is the smallest eigenvalue of the problem

84u
(Z) —5 35 = A pl,yu
dx "~ 9y
(29)
(i7) u(x,e) = u(e,d) = ula,y) = ul(b,y) = 0 .
Proof: Consider the problem of minimizing.the functional
b (d
2 2
(26) J J Uy daxdy uel,
a‘e
subject to the condition
b d 2
27) ]qu dedy = 1
a’e

in the class of functions vanishing on the boundary of R .

Using the method of Lagrange multipliers, the problem

is equivalent to minimizing the quadratic functional
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bed 2
(28) Jlul = j J (umy - XA pu)dxdy

a-‘c

over all functions uGr,y) for which the integral exists and the
functions vanish on the boundary of R . The corresponding Eulér
equation is

4

o u 0

— 5 - Apl,yu=
sy

(29)

If wu(x,y) satisfies the equation and the boudary conditions then

b d 54 bd ,
(30) 0 = J J u[—_EE—E - X ple,y)uldedy = j J u_ dedy - A
Y
a‘ec dx dy a’e

Thus the minimum value of the functional (IV.Z.26) is the smallest eigen-

value of the Sturm Liouville problem (IV.I.25).

§2. Natural Boundary Conditions.

2
It is known that for the operator - 4—5 (a < x < b) the
dx

conditions u(a) = 0 , u(b) = 0 are principal and the conditions u'(a) = 0

IN

and u'(b) = 0 are natural. If the operator A has the form

5 K J199°dx K
Au= ) AGr, oo 2 ) “

1’72 n
k=0 2,y ,1,=1 3m, . ++dx, dx. dx. *** dx.

1 %2 k Ji1 dg Ik

j]’j2’..’jk=1
so that its order equals 2s , let this operator be positive and bounded

below for a set of functions which satisfy certain boundary conditions.
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Then the natural boundary conditions will be the homogeneous ones into
which there enter derivatives of u of order s and higher, and the
principal ones will be - those which contain derivatives of % up to

the order s-1 . First we have the following theorem.

Theorem IV.2.1. If u(x,y) e P(z)is such that u(a,y) = u(x,e) =

ula,e) = 0 and ulx,y) minimizes the functional
b d 2
@ L [" a2, anay

subject to the conditions

b d P
€)) J J u” dedy = 1
a’e
then
(3) uxy(x,d) = uxy(b,y) = uxy(b,d) =0
and
84u
4) NN A u(x,y) =0
dx " dy

where ) 1s the minimun eigenvalue.

Proof: First of all Theorem IV.1l.1l shows that the minimum exists. By

the method of Lagrange multipliers, the first variation of the resulting
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functional is equal to zero. That is
b ¢d
(5) L fc (uxyvxy - A w) dedy = 0

for all admissible v(x,y) . Also as a consequence of Mason's lemma
(cf: §II.3) we can easily show that wu(x,y) satisfies (IV.2.4). We now

have the following identity

= - - +
(8) uxyxyv [uxyv]xy [uxyvx] y [uxyvy ]x uxy vxy

Integrating the above identity we obtain

d b d b
- A - b,d b,d
(7 fcja [uayvxy A uvldedy L L ( Uiy u) vdxdy Yoy b,d) v(b,d)

b d
+ L uxy(m,d) v, (x,d)dx + L uxy(b,y)vy(b,y)dy

But due to the arbitrariness of v , we can first choose v(x,y)
such that v(x,y) vanishes on the boundary of R . Then we get the Euler

equation. Thus

d

b
@y, G DvOD + [ oo, Dds + [ o Gy = 0

for all v(x,y) such that v(a,y) = v(x,e) = 0 . Now let us choose vy

as follows:



- 94 -

(9) o(x2,y) = F©)g(y) feclan , geclca

fla) = f(B) = 0 fx) £ 0.

ge) =0 , g(y) 20 and g(d) # 0 .

Substituting this value of v(x,y) in Equation (IV.2.8) we get
b
g(d)f uxy(x,d) i (x)de = 0
a

for all f(x) € CJ(a,b) with f(a) = f(b) = 0 . Hence by the fundamental

lemma of the calculus of variations [11] we have

Il
Q

(10) uxy(x,d)

|
Q

(11) uxy(b,y) =

e and ¢ being constants. But Equations (IV.2.10) and (IV.2.11) are

) 2

compatible iff ¢, = ¢

7 Substituting this back into Equation (IV.2.8)

P

we find

-e, v(b,d) + e, v(b,d) + e, v(b,d) = e, vb,d) = 0
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But, since v(x,y) can be chosen so that v(b,d) # 0 , we

have ¢q = 0 . This completes the proof of the theorem.

§3. A Simple Boundary Value Problem Involving Natural Boundary Conditions.

In this section we investigate the boundary value problem

a4 a<x<b
(D —55 = flz,y) ( )
dx” oy e <y <d
¢)) umy(b,y) = uxy(a,y) = uxy(m,c) = uxy(x,d) =0

f(x,y) being a continuous function. Clearly the solvability of the
boundary value problem (IV.3.1) and (IV.3.2) can be replaced by the problem

of minimizing the functional

bd
(3) Iful = ff (uxy = 2 uf) dedy

a-‘ec

over the above specified class of functions. However the operator

84u

€)) : Auy-=
3x23y2

is not positive definite on the class of functions satisfying the boundary

conditions (IV.3.2), since in this case

b d bed o
(5 (Au,u) = j J U u dedy = f f u dedy = 0
a‘e YTy a
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d 2
J u_  dxdy ueM
e XY o

2 b
) G = [l =

a

and as before, in this completed space Mo we can show that there exists

a solution.

In the case of Vél) we found that the functions in the completed
space satisfy the same boundary conditions as the original class of func-

2
tions. But this need not be the case here. Let u(x,y) € C4(R ) be any

function which satisfies (IV.3.9) but not (IV.3.8). Then since the

functions

. km(x-a) . Lu(y-e)
{Stn _TB:ES_ sin —?E%ET—}k ’

form a complete orthogonal system in R with respect to the LZ(R) norm,

we can expand uxy(x,y) in terms of its Fourier Series, i.e.

(12) u, (@) = ) 4 p sin km(x-a) sin Lr(y-¢e)
Y k,b=1 *> (b-a) (d-c)
where
byd km(x-a) L (y-c)
(13 Ap = f j u_ (x,y) sin ———= sin £MYZC) Gredy
ale TY (b-a) (d-e)

and the series converges in the L2(R) norm. Integrating the series (IV.3.12),

we obtain
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o

_ (b-a) (d-e) km(x-a) £ (y—-¢)
(14) u(x,y) = f@) +g@) + ) a S—————= 008 —j3——<— COS -
k61 % kpn? (6-a) (d-2)

where f(x) and g(y) are arbitrary continuously differentiable functions

in the respective domains. Since u(x,y) satisfies the conditions

(IV.3.9), we find that f(x) + g(y) = 0 . For the conditions (IV.3.9)

imply
f(x) (d-e) + fd gly)dy = 0
e
b
g(y) (=) + [ Py = 0
a
Thus

1 b 1 d
f(x) + g(y) = - -2 L flx)de - o) L g(y)dy

constant

But since

implies that ¢, = 0 .
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[o o]

(b-a) (d~e) km(x-a) £r (y-c)
(15) u(x,y) = a =27 cos = cos < .
k,0=1 k, 2 ki’,'rrz (b-a) (d-e)
We now put
n
(b-a) (d-e) kw(x~a) L (y-e)
u (x,y) = Z a === = cos - cos - .
73 k,0=1 k.2 %2 _"2 (b-a) (d-e)

Clearly the functions {unCr,y)} , belong to Mo for all »n . From

the expansion (IV.3.12) we find

82u 82u
2im ||o=2 - —2|| = 2im |[|u-u =0 .
in |1z - ol | = Zim T, 1
nr>oo Ny

By definition there exists a function Z{x,y) £ M; such that {un(m,y)}

converges both in LZ(R) norm and the norm (IV.3.10). But then
u(x,y) = ulx,y) ,
since unCr,y) > u(x,y) in LZ(R) norm. Thus u(x,y) € ﬂ; . This

function, however does not satisfy the boundary conditions by our assump-

tions.

§4. A Comparison Theorem for Eigenvalues.

In this section we prove a comparison theorem for eigenvalues of
a partial differential equation of D. Mangeron involving natural boundary

conditions. This is an extension of a theorem of Z. Nehari [28] for ordinary
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differential equations. The second theorem proved in this section is
an extension of an inequality of Liapunov for ordinary differential

equations.

Theorem IV.4.1. Let p,,y) » pz(x,y) be positive continuous functions

defined on R such that

Y Y
FJ p,(&,n)dEdn < rJ po(&,n)dEdn
a“c a‘e

Let X, and Ay respectively be the least eigenvaluesof the equations

84ui
@) —5 35 = AP @ydu; (2=1,2)
dx 9y
2 a2
€] 'my— ui(a,y) = —axTy ui(x,c) = 0
(3) ui(b,y) = ui(x,d) =0

Then we have A2 5_%1 s Where the equality sign holds when pl(x,y)= pz(x,y) .

Before we give the proof of the theorem we have the following

lemma:

Lemma IV.4.2 . If ¢@x,y) , ¢ (x,y) are funetions belonging to F(Z)

such that

(4) d(a,y) = d(x,e) = 0 H l,b(x’d) =1P(bsy) =0 ’
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then
b rd b d
(5) L L 6 ¥, Iy - Uc by ¥ Y
Proof: Integrating the identity
(6) 6 Uy = by V= (001, - [0, V],

and making use of the boundary conditions (IV.4.4) we find

b ¢d
% L | t0uy = 100

b d
L (o, (@,d) - dY, (x,e)]de + L [¢ylP(b,y) - ¢yw(a,y)]dy

and the lemma follows.

Proof of Theorem IV.4.1. It can easily be seen using the identity

(Iv.2.6), that
2
bed 3u; 4 b d P
(8) [ J [5555] dedy = A, J f p; u; dedy.
a’e ale

Now in Lemma IV.4.2, we take
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X Y
9) V) = wi@y) 5 9@y) = J f p (E,n)dEdn
a“‘e

which yields

bed 3%u, bd )
(10) f J [axay] dedy = X, f j p,; u; dedy
a“‘c a‘c
bd xy 2%u,”
= Ay J lf [ pyd&dn] 355y dxdy .
a‘c ac

Since ul(x,y) is the eigenfunction corresponding to the least eigen-
value ll , we have ul(x,y)_z 0 by R. Jentzsch's theorem [17]. Further

by virtue of boundary conditions (IV.4.2) and (IV.4.3) we have

32u1 X (Y
(11) a3y (xz,y) = A, LJG p,(&n) ul(i,n)d«‘;dn >0
Thus we have
d

(12) U e = g @) = [ gy @l 2 0
Since ux(x,d) = (0 , we see that uzx(w,y)_ﬁ 0 . By a similar argument
uzy(x,y) < 0 . Thus

2, 2 2

P (uz) P u, Bul 3u1

(13)

= 2u - —= >0 .

52y 1500y T % %% oy

Hence
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2 2 2

bed 3%u, , bed 3%u,
(14) f J Lszay) “ddy = A4 f f ([, 2Py dEdN) mrm dxdy
a-“c a“‘e
bed 2%,
< Al e ('fafc pgdf-;dn) (8x3y ) dxdy

b rd P
}\1 JJ pz(x,y)uz dedy

Thus for the solution x4 (x,y) satisfying the boundary conditions

(IV.4.2) and (IV.4.3)

b rd 82u1]2 bd
(15) JaL['ax—ay dxdy < A Jajc Py Ug dedy .

But by virtue of Theorem IV.1l.6, we have

bed bed 3%, , bd
(16) Ay J J Dy %y dedy _<_J J [3x3y] dedy < A, f f Py uy dedy
a‘e a-“c a‘e

This yields the assertion of the theorem.

Theorem IV.4.3. Let 6(x,y) > 0 be such that €,(x,y) , ey(x,y)

and exy(x,y) are continuous functions in R and let p(x,y) be a

continuous function defined om R . If the boundary value problem

(17) (o uxy)xy - plx,ydu =0

(18) u(a,y) = u(z,e) = uxy(b,y) uxy(x,d) = 0



- 104 -

has a non-trivial continuous solution, then

Prd gy (B[

@ f f 0(x,y) j [ p, (x,y)dedy > 1
a’e ale

where

p,(x,y) = max {0 , p(z,y)}

Proof: First of all we observe that because of our assumption of

the existence of a nontrivial solution, we have

b rd 2 b (d 2
(20) J j 0w, dedy = I j p u” dedy > 0 .
a’e Y a’e
Also
Y
(21) ulx,y) = fo ug d&dn
a’e n

= u,_ d&dn

squaring and applying the Cauchy-Schwarz inequality, we obtain

X
(22) w2,y < j

a

v 2
j e(g’n) dgdn J:Jc 86 (&,n) ugn d&dn

b d

f b d 2
dxdy f f 0 u_ dxdy
, e(x,y) e XY
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bd bd
=Lfcwdxdy fafcpu dndy

Hence
P b ed 7 b ¢d P
(23) max U (x,y) ij f EICR) dxdy f f p,(®,y)dedy maxr u(x,y) .
(x,y)eR a’e Y a’e (x,y)eR

Since wu(x,y) is nontrivial, we have

b ¢d 7 b rd
(2¢) 1 j_f f Ezgjgj-dmdy f f p,(x,y) drdy

a’e a’c

which completes the proof of the theorem.

Theorem (IV.4.3) is an extension of a result of D.F. St. Mary

[36], who has proved it for the case of ordinary differential equations.
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CHAPTER V

Problems With Mixed Boundary Conditions

§1. Introduction.

In this chapter we consider the Sturm-Liouville problems of
the type (III.6.1) subject to mixed boundary conditions. We have not
been able to find problems of this type discussed in the literature.
Throughout this chapter, for the sake of convenience, R will denote

the rectangle

y; 2y Syt

b~
I
f

O

Specifically we consider the following boundary value problem

2 2
() Lou=-2(0 =) + plz,y)u = Flzy)

dxdy ~~ dxdy
Subject to the homogenous boundary conditions of the form

2 ai’u(xi,y) + (-J)iux(xi,y) =0

for y, <y <y, and 7 =1,2,

il
[}

(3) B ulxy ) + (—Z)Juy(x,yj)
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for x, <z f_x2 and J = 1,2 , and the compatibility conditions
u, (x, ,yz)ux(xg,yg)uy (x, ,y2)uy (554 4)
ux(xl,yz)ux(xl,yz)uy(xz ,yl)uy(xg,yg) .

Let 6(x,y) > 0 , p(x,y) > 0 be continuous functions defined
on R . We assume that Gm ,AGy s exy are all continuous functions
defined on R . It is clear that there exists a positive constant 60
such that ©(x,y) 3_60 . Let Fé?% denote the class of functions in
F(2) which satisfy the boundary conditions (V.Z1.2.3). Here o and Bj

(Z,j=1,2) are nonnegative constants such that at least one of the

products {aisj I 2,4 = 1,2} does not vanish.

§2. Symmetry and Positive Definiteness of L in Fézé .
b

In this section we deal with the symmetry and positive definite-

ness of the operator L in F(2) . First we prove the following lemmas.

a,B

(2)

Lemma V.1.1. The operator L is symmetric on L 8 -
b

)

Proof: We have to show that if u,v € Fégs then

>

(1) (Lu,v) = (u,lv)

where ( , ) denotes the inner product in LZ(R) .
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Integrating the identity

(2) v(euxy)xy = [v euxy]xy - [vxe uxy]y - [vy Guxy ]x
+ 06 u v
XY Y
we have
Fo e o2
(3) f J v Llu dedy = j j [v(® uxy)xy + puv]dedy
1Y Z17Y1

Substituting (V.2.2) into (V. 2.3) and integrating we find

X

272 ZosY g a
(9 j v lu dedy = [vOu_ ] - f [v, & u_(x,y,) -
X,°Y4 XY *12Y1 x x * z

- v 0 uxy(x,yl)]dr

Yo
[vyG uxy(xz,y) -v
Y7

Y 3] uxy(xl,y)]dy

ToHo
+ J fy (6 uxyvxy + puv)dxdy
T17¥;

Further,by the boundary conditions (V.1.2-3) we have

+7
aiBj u(xi,yj) (-1) uxy(xi,yj)
_ (_ndH1
(8) Yooy (x,yj) -1 B ux(x,yj)

T+1

(-1)

u (xi,y)

vy o u, @5y)
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Substituting these values in (V.1.4) we obtain

2
(6) (Lu,v) = . §=1 0B 8 5y,) ul@yy;) vlwssy;)
o
+f ZBG(x,y)u(x,y)v(xy)dx
x, J=1 J

Yy 2
+ f Z o G(x »Y) u (x 2 Y) v (x »Y)dy

Lo
+ J f [6 U, v + puv]ldxdy
z, xY

Since the expression on the right hand side of (V.2.6) is symmetric in

u and v , the proof is completed.

Theorem V.2.2. Under the assumption on {aiBj} the operator

(2)
N

18 positive definite on

Proof: We have to show that there exists a constant <Y such that

(Lupu) > Yz(u,u)

for all u € F(Zé First of all, we have from (V.1.6) that
’
2 9 To 2
(7)) Lu,uw) =} o B BGr,,y du (x,5y,) + f ) B e(x,y )u (x,y )dx
, & A 1275 AR
1,J=1 z, Jg=1

Y2 2 5 22 5 2
+ J Y o, e(xi,y)unyi,y) + f (e Uy + pu”)dxdy

i=1 °
Y7 T1°Y;
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For simplicity let us assume that azBl # 0 . Then from (V.1.7),

removing suitable terms, we obtain

To¥s
2 2
(8) (Lu,u) 3[ J 6 Yoy + a8, 0@y Ju (®Hy,) +
1Y
it 2 Y2 2
+ fx 81 e(x,yz)u (x,yl)d'x: + Jy a, G(xl,y)uy(xl,y)dy.
1 1

By virtue of our assumptions on 6(x,y) , we may write

oo Zg
2 2 2
9 o (Lu,w) zm{f f Uy dedy + u (x,,y,) + f u (oY )dy +
x4 yl xl
Yg
+ f u2(x1,y)dy}
Y
Yq

where
m = 606 and § = min{l,al,Bz,asz}
Further we have

z (Y
u@,y) = u@y,y) + ulx,y,) - ulx,,y,) + J f Uen dndg .

Using the inequality

(atbretd)® < 2(P+bP %+ d?)
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which holds for any four real numbers a , » , ¢ and d, we have

2 2 zry 2
(10) uz(x,y) < 4 {ug(xl,y) + u Gx,yz) + u (xl,yz) + [[ﬁfyzugn dndgl”}

By the Cauchy-Schwarz inequality applied to the integral in (V.1.10) we

¢an write

(11) u2(x,y) < 4{u2(x1,y) + ug(x,yz) + ug(xl,yl)
To Mo 5
+ (@-x,) (¥-y ;) J Uy dxedy }
%1'¥1

and integrating (V.1.11) over the rectangle R , we obtain

Ty Y, Y2

.’L‘Z yl yz
X
1
@e )y p? 2z
+ J u_ drdy
7 <y
1°Y1

Further we have the relationship

X

u(:c,yz) = u(xl,yz) + J ug(E,yl)dE
X
1

hence
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L q

uz(x,yl) < 2@y + 2@w)) f W2,y ) de

%7
%2 2 2 [ 2 3
(13) u (x,yz)db 5_2(x2~x1)u (xl,yz) + (xz—mz) ux(x,yl)dk .
x x
1 1
By a similar argument, we can show that
72 2 22 o
(14) Jy u @,y)dy < 2y Pu (@5y4) + (Yyyy) y U, (.9 -
1 1

Multiplying (V.1.13) by 4(y2—y1) and (V.1.14) by 4(x2-x1) and adding

F2 Y2,
(15) 4(y2-y1) J u (x,yl)dr + 4(x2—x1) J u (xz,y)dy
Ty Y1
X
2 2 2 o
< 16(x2—a‘_7)(y2—y1)u (‘”z’yz) + 4(502-%'1) CP Y Lc ux(x,yl)dr
1
Yo
2 2
+ 4(y2—y1) (xz—xz) J uy(xl,y)dy .
Y1
Combining (V.1.12) and (V.1.15) we obtain
To M2 2 5
(16) J u'(@,y)dedy < 20(x gz ) (Y g~y Pu (X15Y )
1Y
2 ‘2,
+ 4(x2—x1) (y2—yz) Jx ux(x,yz)dx
1

2 2 9
+ 4(y2—y1) (x2—x1) Jy uy(xz,y)dy
Y1
To¥s 2
+ f f qu dxedy
1Y
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Thus
o2 5 9 P 5
(17) f f u (x,y)dedy < Clu (xg5y4) + J u (x,y )de +
xl y] .’L‘Z
Yg Te e
+ J uj(xl,y)dy + J f uiy dxedy }
Yq 173

where C is the maximum of the coefficients in(V.1.16). Combining

(V.2.9) and (V.2.17) we get the positive definiteness of the operator L .

§3. Eigenvalues of L .

In this section we investigate the eigenvalues of L in the comple-

2
tion of Pa 8 and show the completeness of eigenfunctions in LZ(R).'XJe
'S

note that using the theorem of K. Friedrichs mentioned in [IV.I], the space

Fézé can be completed with respect to the norm (Lu,u)z/z . In this comple-
3

ted space we can show that there is a unique solution to the boundary value

probem (V.1.1,2,3). Now we have the following theorem:

(2)
Theorem V.3.1. If {un} is a sequence of functionsfrom T 8 such
>

that

&) (Lu,u) < M

where M 1is a constant, then we can extract a uniformly convergent sub-

sequencc.
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Proof: For the sake of convenience let us assume that “IBZ # 0 .

Then (V.2. 1) yields

( fape o -
272 937u 2 du
ny 2 M n 2 M
J f (axay) dady 5 > f [3.1:_ (x,y,)1 dr < N
1Y o z, o°1
() ¢
Y Bun 2 " 2 y
f [ ay (.’ch,y)] dy i 0 o and un(xl,y1)<_m Thus
\ "¥3 o1 01”1

by the Bolzano-Weierstrass Theorem we can choose a subsequence which is
again denoted by {un(ml,yl)} such that {ui(xl,yz)} converges. Further

we have

" au
" - _n
u, @y ,) = w (x,y,) = E' T (x,y7)dx

for a < x' <x" < b , which implies

ou
[, ="y ) - w &'y ] < E' | 5% @yp)|de .

An application of the Cauchy-Scwarz inequality to the integral on the right

hand side of the above inequality yields

11] ] L1} \ M
(3) lu, ="y ) - w @'y | < /(& "-a") /—GOTJ .

Similarly, we obtain
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(4) lu, (x,,5™) - u, @y <Yy / ejgz

The inequalities (V.3.3) and (V.3.4) show the equicontinuity and uniform
boundedness of the families {un(x,yl)} and {un(xl,y)} respectively. Thus
by the Arzela-Ascoli Theorem we can choose a uniformly convergent subsequence
(where we keep the same indices for the sake of simplicity). Now we exhibit

the uniform convergence of this subsequence {un(x,y)} .  We have

(5) u, (@",y") u (@',y') = un(x",yz) - un(x',yz) +

+ou (@, - u (@,y")

x" ey 82u ' oy 32u
L e [y ey
1791 1791
and therefore
(6) |un(x",y") - un(x',y')l < lun(x",yl) - un(x',y1)|

+ |u (@y™ = w @y |
xllfy' lagun dxd .’D" yn a2un 1 yu azun
Fyscv +
z'y' Bxayl Y [xvf ' laxayl wdy jzzfy' laxayl dedy

Applying Cauchy-Schwarz inequality to the integrals in (V.1.23) we find
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(7) la, (oy™) = w2ty | < Ju, @y ) - o @ty )]

+ lun(x_—l’y") - un(xz,y')|

k A/(@@"-z) @y ")+ V(@gz ) @-y') + Y (y,my ) &Mz}

where Kk 1is a constant depending on M , 6 , o and 81 .

1
Since {un(x,yz)} and '{un(xz,y)} are equicontinuous and uniformly

o

bounded, {unCz,y)} is equicontinuous and uniformly bounded by virtue
of (V.3.7). Then Arzela-Ascoli Theorem yields the existence of a uniform-

ly convergent subsequence.

Combining Theorem V.1l.3 and Theorem III.1.5, we obtain the

following theorem:

Theorem V.3.2. The operator L subject to ihe boundary conditions

(V.1.2-3) has a countable set of eigenvalues tending to infinity and the

etgenfunctions form a complete set with respect to both the LZ(R) norm and

the norm
2
[ T2 =lusw)
§4. Comparison Theorems for Eigenvalues.
We state and prove the following comparison theorem for eigen-
values of the operators L and L# . A similar theorem has been proved,

for ordinary differential equations by K. Kreith [I18].
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*
Theorem V.1. 5. If 6*(x,y) and p (x,y) are functions such

*
that 6 < 6 and pip* and Yi's and 57:'3 are constants

satisfying

then the eigenvalues of L* subject to the boundary conditions
z -0 - -nJ =
(1) v ule,y) + D7 ow (@y) = 0 ; GJ- ulx,y ) + (-1) uy(w,yj) 0

where L' is de fined by

2, 2

#,o_.9 3u *
(2 L'y = 5237 0 (z,y) axay) +p (x,y) u

majorize those of L subject to (V.1.2-3).
Proof: Indeed, from our hypothesis it can easily be seen that
t
(Lu,u) < (L'u,u)

for all admissible functions and the result follows.

Corollary: Eigenvalues of the problem (V.1.1) - (V.1.2) are majorized

by those of the problem



for

- 118 -~

2 2

2 0zy) TE) + pu = A u

dxoy oxdy

u(misy) = u(x,y,l:) =0

yl Ly §_y2 and xl <x j_xz respectively.

Proof:

§. = o
z

*
The assertion follows by taking 6

in Theorem V.1.5.

(2=1,2)

Il
<D
-
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CHAPTER VI

Green's Functions of Polyvibrating Operators

§1. Introdution.

It is well known that finding Green's functions of differen-—
tial operators is equivalent to finding the inverse operators to these
differential operators. In practice it is easy to prove the existence
of inverse operators using functional analysis as a tool. Also once
we find the Green's function it is easy to give an explicit representa-
tion of the solution. But the actual construction of the Green's functions
for many partial differential operatorsseems to be quite difficult. 1In
this chapter, we give explicit representations of the Green's functions
for certain of the polyvibrating operators of D. Mangeron [2]. We quote
below two theorems from functional analysis on which our representa-

tion is based.

Theorem VI.1.1 [25]. If A is a completely continuous, symmetric,

positive, transformation between two Hilbert spaces, then

(Z7)  All the eigenvalues of A are real and different from

zero. Each is of finite multiplicity and they are either finite or

denumerably infinite in numbers tending to zero.

(i7) Every element of the form Au can be developed in terms

of the orthonormal system {¢.} of corresponding eigenfunctions
Y i p g
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Yy

(1) Au = ) “f(Au’¢i)¢i
i=1 ¢ '

Theorem VI.1.2. If A <s a symmetric, positive bounded below

operator with a discrete spectrum then its inverse operator G = Al

i8 completely continuous and is symmetric.

Combining Theorems (VI.ZI.1) and VI.1l.2, we infer that the

. -1 . . .
inverse operator G = A of a positive bounded below operator is given

by

(2) Gu= z )\.7: ¢

where ¢i's are the eigenfunctions of A and Ai are the corresponding

eigenvalues. Thus

o b (d
Gu= } %wgmwff u(E,n) ¢, (E,n)dEdn
k=1 "k a’‘e

Il
i~ 8

7 b ¢d
= [ wcem apta o Emdean
a‘c

k=1

=7 J I u(E,n) X X dEdn
k=1 ‘a’ec k
b d o ¢, (E,m) P, (x,y)

- f [Tuem 3 KT
a’e k=1 k
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The interchange of summation signs and integration has to be Justified
every time. Thus the Green's function G(x,y;&,n) is given by
® b (@) 9 (Es1)

(3) G(z,y3E,m) = N
k=1 k

82, Green's Functions.

Though in many simple cases the Green's functions could be
found by elementary techniques, the above approach gives us a unified
treatment of Green's functions. In §V.2 it has been proved that under
suitable conditions on 6(x,y) and p(x,y) , the partial differential

operator L ,

2 2
0 6 o u

(D Lu-= dxdy zy

) + plx,y) u

subject to the boundary conditions

]
D
Q
A
<
A
Q

o, u(xi,y) + (—l)i ux(xi,y) =

|
Q

Q
A
«
A
Q.

B, ulx,y.) + (—Z)i uy(m,yi) =

and the compatibility conditions (C) , is positive definite provided
at least one of the terms {aisj} (2 =1,2; §=1,2) is different from
zZero, ai's and Bj's being nonnegative. It has also been shown

in Theorem (V.2.4) that the operator L , subject to the boundary conditions
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(V.1.2) has a discrete spectrum {)\i} tending to infinity. Thus we
can use the theorems VI.2.1 and VI.2.2 to give an explicit representa-

tion for the Green's functions. We consider several cases as follows:
Case (i). O(@,y) =1 , p(xyy) =0, o, =p,=x 2, d=1,2) .
It is clear that in this case the operator L reduces to

34u

(3 L y=—S%
9229y

and the boundary conditions (VI.2.3) can be identified as

we

u(xi,y) = 0 u(:n,yi) =0 ( =1,2)

for y, <y <y, and z, <x <z, respectively.
The eigenfunctions are given by

k'rr(x-:z:l) ] L'n(y—yl)
sin

= Z 2 L
@) " Uy b= 1,2,

{sin

and the eigenvalues are k2£21r4 / (xz-xl)z(y2-y1)2 . Hence by

Theorem VI.2.1 the Green's function is given by

2 2
© o () (Yo~Y,) kn(g -x.)
2 1 291 . 1
G(x,y3E,n) = ) { sin ————
k=1 zzz x%e? (g 1)
. kn(z-x)) . Arymy) o Em(ny )
sSin sn sn

(o) Y97Y; (yg¥p)
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D. Mangeron [ 2 ] originally obtained the representation of G(x,y;&,n)

as given by

@) (Y g=y) (B ) (n-y ) E<win<y

(xz-xl)(yg—yz)G(x,y;E,n) = \J
(x-xl) (yz—y) (mg-g) (n-yl) E>x3n<y

(-2, (g-y ) (@ g8 (Y p—m)  E225n2Y

Case (ii). 6(x,y) 1, p(x,y) =0 |, Ay = o , 62 =0 .

1

The operator L reduces to (VI.2.3), but the boundary

conditions reduce to
u(@,,y) = u(x,yl) =0 3 uxy(xz,y) = uxy(x,y2) =0

The eigenfunctions are given by

2ntl,y m(x-x ;) siy L2mEDT (y-y,)
2 (x g~ ;) 2 YgYq Men=I,2,00¢

{sin (

and the corresponding eigenvalues being

CmD e ? f

2 2
16‘(x2-x1) (92‘?/1)
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Thus once again the Green's function G(x,y;&,n) is given by

@ » 216G ) yy? (2k+ D) Tl )
G(x,y;3E,n) = { 5 7 S T Imx))
k=1 £=1 (2k+1)°(28+1) T 277
kD) (e
sin Z(xz_xz) sin 2(y2—y1) (n—yl)
. ey o

An alternate representation of this function can be obtained and has the

form

(acl-E) (yl—n) E<x;n<y
(
(xl—é) (yl—y) E<x3n>y
G(z,y3E,n) = {
(@ ,~z) (¥ ,~n) E>2x 3 n<y
\
(xl-x) (yz-y) E>x 3 n>y .

Thus the above examples show that, finding the explicit repre-
sentations of Green's functions is equivalent to finding th e eigenfunctions

of polyvibrating operators subject to suitable boundary conditions.

Following M.N. Oguztoreli [29] we consider the following

problem:
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Thus once again the Green's function G(x,y;E,n) is given by

2 2
o o  16(@x,x,) Yory,) (2k+1)m(x-2 )
G(x,y;gan) = Z Z { 2 21 2 i sin 2(:1: = ) z

k=1 =1 (2k+1)°(28+1) T 271

_ @DTE=) . (eknyw
sin Z(xz_xz) sin 2(y2—y1) (n—yz)

. ee+1) o
sin Z(yz'yz) (v yl)} .

An alternate representation of this function can be obtained and has the

form

(xZ-E) (yl-n) E<x;n=<<y
(
(acz—é;)(yl—y) E<x3;n>y
G(x,y3E,n) = ﬁ
(x~2) (¥ ;=) E2x 3 n=<y
\
(xl—x) (yz—y) E>x 3 N>y

Thus the above examples show that, finding the explicit repre-
sentations of Green's functions is equivalent to finding th e eigenfunctions

of polyvibrating operators subject to suitable boundary conditions.

Following M.N. Oguztoreli [29] we consider the following

problem:
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82 82u
(4) e (p(x) q(y) éfvca_y) =X rx)sy) u

for T, <X <Xy 3 Yy <y <y, subject to the boundary conditions
6)) u(@,,y) = ul@y,y) = 0

for Y1 2 Y fY, and

(6) uCr,yz) = u(x,y2) = 0

for x4 <z f_xz , where A 1is a parameter. We assume that p(x) and
q(y) are continuously differentiable positive functions defined on
a<xz<b and e <y < d respectively. We wish to determine values of
the parameter A in such a way that the'boundary value problem (V.2.4)
and (V.2.5-6) will admit a solution in the rectangle R . This can easily

be done as follows by a separation of variables. For, let

u(x,y) = X&) Y@ .

Then the problem is equivalent to the following two Sturm-Liouville

problems of ordinary differential equations.

il

i,cd— (p(x) %) H rx)X

(7)

|
()

XCxZ) = X(xz) =
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and
) % @ @) fz—;’) -V sV
where

Let Hy o Hy Uz 5 °°° denote the eigenvalues of the problem

(VI.2.7) and X1 , XZ . X3 , *** be the corresponding eigenfunctions.
Similarly let Vs o Vo V3 , *** denote the eigenvalues of (VI.2.8) and

e++ the correspesponding eigenfunctions. Existence of

y y

y] > 2 > 3 b
these eigenfunctions can easily be shown using methods of differential
equations. The conditions on p(x) and ¢g(y) assure that these eigen-

functions form a complete system of orthogonal functions with weights

r(x) and s(y) , respectively. Hence

Uom = Xm(x) Vn(y)

form a complete system of orthogonal functions with welght »r(@)s(y) .
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CHAPTER VII

Generalizations to Higher Order Operators

§1. Introduction.

In this chapter we generalize some of the results obtained in
the previous chapters to the partial differential operators of higher

order. In our study we shall restrict ourselves to the class of functions

™ gefined in Chapter II.

In section 2, starting with certain higher order problems of

the calculus of variations, we obtain the Hilbert spaces Vgn) which are

subspaces of the Hilbert space Vél) introduced in Chapter III. In the
same section we prove the positive definiteness of certain higher order
polyvibrating operators. In section 3 we use these results to demonstrate
the existence and uniqueness of the solutions to certain integro-partial

differential equations of polyvibrating type.

In this chapter u« nn will denote the partial derivative

xy
Bgnu

7 which is the nth order Picone derivative of the function
ox dy

u = ulz,y)

§2. Minima of Integrals Involving Higher Order Picone Derivatives.

In this section we investigate the properties of a function

g(x,y) which minimizes a functional of the form
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b cd
(1) I,lul = f J Fl,y,usu, 2 su ) axdy
a’e Y x'y
over the class of functions in F(n) such that
ak+!.u ak+£u
¢) — (a,y) = A, ) ;3 ——5 (b,y) = B, ,@)
8mk3y£ kL 3xk8y£ k.t
for
e<y=<d, k=0,1,2,+*,n-1 , £ =0,1,2,°°°,n-1
and
E)k+1?,u ak+£u
(3 —5 (x,e) =C, p(®) 3 —5—5 &,d) =D (x)
axkay£ k.t axkayﬂ k.t
for
a<x<b, k=0,1,2,++,n-1, L£=0,1,2,++,n"1
where Akﬂ . Bkﬂ . Ckﬂ and Dkﬂ are certain known functions, which

are sufficiently smooth and compatible with each other. We assume that
f(x,y,uo,ul,---,un) is a function ,twice continuously differentiable with

respect to all its arguments.

It can easily be seen, using techniques of Chapter II, that

the first variation of the functional Il[u] is given by
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bd n 82i6
) - L]

(4) Iz[u,(S] - f f .2 fu.(xay’u’uxys s U n 7’2) 1: 7: d'lfdy

a’ec 1=0 "1 x'y ox dy
where &(x,y) is a function belonging to F(n) such that

k+L k+L

() 2t (ay) = 22 By = 0

ox dy ox dy

for e <y <d and k= 0,1,2,***,n-1, £ =20,1,2,°**,n-1 , and

k+2
6) S @) = 2% (@D = 0
9x dy 9x 9y

for a<z <b and k= 0,1,2,+=,n-1 , L= 0,1,8,%+2,mn=1 .

P(")

Thus if #(x,y) € satisfies the Equations (VII.2.2-3)

and minimizes Il[u] , we have
(7) 15[2,8] = 0

for all d&(x,y) € F(n) satisfying Equations (VII.2.5-6). An integration

by parts, yields

bed n q@xpy , on-k-1, _ n-k-1 n
@ [[o) [[ e = e maany 25 dndy - 0
a‘e k=0 ‘a’e [(n-k-1)1] k dx oy

for all G&6(x,y) € F(n) and satisfying Equations (VII.2.5-6) where

%uk(x’y) auk (x’y’u’uxy: ,uxnyn) .
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By Mason's lemma II.2.1, we have

noxy n-k-1 n-k-1 n-1
) [[ e e p emasan = ), 4,
k=0 ‘ale [(n-k-1)1] “x k=0

)
where Vk(y) and XkCr) are functions depending only on f and its

o
partial derivatives f; . Since we have assumed that jYx,y,uO,u1,°°°,un)

7
is sufficiently differentiable, differentiating either side of the above

relation, we see that 8(x,y) is a solution of the partial differential

equation

% 32i o 0 o}

€D ——= [f, (@y,u,u_,***,u )1 =0 .

=0 axtayz “s Y xnyn

Equation (VII.2.89) is a 4 nth order nonlinear polyvibrating partial

differential equation. If we assume

n
2
f(xsysuoau1,°'°’un) = .X 91/ ui
=0
where GiCr,y) are functions belonging to F(t) , then we obtain the
following linear polyvibrating equation
% 32i aZiu
(10) Lou = —_— (6.(:1:,y) —*) = 0 .
1 =0 thayz z szayz

We will discuss this equation in the following section.
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8§3. Self Adjoint ¢ nth Order Polyvibrating Equations.

Motivated by the results of Section 2, we consider the follow-

ing boundary value problem

27

n
&) L= § =2 o @a 2t = s
i=0 " By ox ay
a7<+1£ ak+£
(2) k Z (a,y) % uz (b’y) =0
dx "oy ox 3y

for e <y <d and k= 0,1,2,***,n-1 , L= 0,1,2,*%*,n-1

ak+£ k+£

3
(3) (x,0) = @ d) = 0
sakayt axkayz

for a<x <b and k= 0,1,2,***,n-1 , L =20,1,2,***,n~1 . We also
suppose that Gi(x,y) € I‘('I’) are all positive functions defined over R

for 0 < 7 <n such that there exists a constant 6, for which

(4 Gn(x,y) > 60 > 0
and f(x,y) € L2(R) . First we prove the following.
Theorem VII.3.1. The partial differential operator LJ de fined

by (VII.3.1) is symmetric and positive definite with respect to the inner

product: of L,(R) provided Equations (VII.3.2.-3) are satisfied.
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Proof: Let us note that for any two functions u,v wvanishing
on the boundary of the rectangle R , we have the following formula of

integration by parts

b ed b ¢d
) ffuv dxdy=ffvu dedy .
a’e Y a

x X
e Y

Then, clearly, if u and v satisfy the boundary conditions (VII.3.2.-3),

we have
b ¢d bd n Bziu 32iv
(6) ff uledxdy=ff L 8@y —— ——
a’e a’e i=0 dx 9y~ dx dy
which proves the symmetry of LZ . Hence
bd n P
(7) (Lzu,u) = f f .Z Gi u ;o dedy
a’e 1=0 xy

By virtue of our assumptions on Gi(x,y) we can write

d 2
f Gn(x,y) u”, dxdy

b
(8) (Lu,u) 3.[ "
a‘e Xy
b d 2
> 90 f f U dxdy
a'e xyY
Further, since
82i aZiu

——;—ﬂ; (@y) = ——="— (x,e) = 0

dx Yy dx oy
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we have

b rd 2 2 ¢bd
2 (b=a)“(d-c) 2
(9 ff U ;g 9wdY < 4 ff “ i1 i+1 DY
a‘e xy a’e 7 Ty

1 =0,1,2,***,n-1 , as a consequence of the Theorem IV.1-1. Using

(VIT.3.9) »n times,

b od 2n 2n bd
a [ et
a‘e 2 a’‘e xY

which proves the positive definiteness of -LJ .

Now we introduce the space Vén) of functions satisfying the

following properties: Uue Vgn) if and only if
(Z) U, uxy s U ggs U, o . are all defined on
Yy £ sy

R and are absolutely continuous in the sense of Vitali in R ;

(<) uxnyn belongs to LZ(R) H

(ii2) wulxz,y) satisfies the boundary conditions (VII.3.2) and

(VII.3.3).
Then we have the following theorem:
Theorem VII.3.2. Vo(n) forms a Hilbert space with respect to the

inner product defined by
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b ¢d
(11) ((u,v))n = L fc uxnyn vmnyn dxdy

and the corresponding norm defined by

2 bd 2
(12) ||lu|||n=fj 2 asdy .
a‘e xy
Proof: First we show that |||u|||n = 0 implies wu = 0 a.e.

in R . This is easily shown since an extension of inequality (III.2.12)

as in Theorem VII.3.1 yields

b ¢d 2n 2n
(1% [ ] o amay < D& 1111220 .
a’‘e 2

Since u € LZ(R) , we have u = (0 a.e. in R . Other properties can

easily be verified. Thus we have only to show the completeness Vén)

To do this let {un} be a Cauchy sequence with respect to the norm
2n
lll-llln . This clearly implies that {—EE—EZ} is a Cauchy sequence in
dx 9y
L2(R) . By virtue of completeness of L2(R) there exists a function

g € LZ(R) such that

b d 2n
3 2
f ——E - g|® dxdy =0 .

(14) lim f ”
a‘’e anay

But since norm convergence in L2(R) implies weak convergence, we

have
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n-2 an
P ] Xy o u, Y
(15) iim _?’L-Z—ZIL-J = Lim Jf o dedy = FJ g(x,y) dxdy
me  dx Ty m+» ‘g’e 3x dy a‘e

which shows the absolute continuity of the limit

a2n-2
um
im ——— .
an—layn'l
anu
Further since f——%—mz is a Cauchy sequence in L2(R) , we can show
dx "9y
that
a2n-2
m
(1) {—_ﬁfj__ﬁ:j& converges uniformly,
ox )
a2n-2
P m
(ii) {——5:7——5:7 is a Cauchy sequence in L2(R) .
ox )
The proof of (i) follows from the relationship
: azn-zgn L (Y anum
(16) T (z,y) = ” —" gEdn
9" Zay” 1 ale ag%n™
which implies the inequality
32n-2%w y a2num
a7 e N
(x,y)eR dx ~dy a‘e 9E°9In

To prove (ii) let us note that
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n-~2
] 2 2
m (b-a) " (d-c) 2
oup || < ( [ 1112
(x,y)eR 3dx  ~dy
32n~2u
by virtue of Cauchy-Schwarz inequality. Thus {(———2 -} is a
m—-1, m-1
dx oy
82nu
uniformly bounded family since the sequence {__Z_EZ} is uniformly
dx dy
bounded because it is a Cauchy sequence in L2(R) . As in §l1.7, we can
82n-2um
easily show the equicontinuity of the family {_75_3__2—7} . Thus by
dx T3y

the theorem of Arzela~Ascoli we can extract a uniformly convergent subse-

32n-2u
quence from {——5:7——§m? . We will denote this subsequence also by
ox oy -
32n_2u
—2—-1 for the sake of convenience. Using this uniformly conver-
axn—layn-l

ging subsequence we see that
n-2 32n—2
u

. Yy 0 U Y . -
(18) im afc W dedy = rafc [Zim _n-—_l——n_-—ll dxedy

m>oo n>o 9x oy

which yields the absolute continuity of

32n-2
“m
" lim ——————— .
o amn—layn-l

By similar reasoning we can demonstrate that the sequences
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2 2n-4
3 u, ) U,
**) {fwl, | }, cee , ———=}
m a3y an-layn_l

converge uniformly to functions u , uxy . ux2y2 , v,
all of which are absolutely continuous in the sense of Vitali in R .

U -1 n-1
z Y

b

Further it can easily be seen that u I belongs to L2(R) . The

x Yy
boundary conditions are easily seen to be satisfied by u by virtue of

the uniform convergence.

Incidentally, we have shown that Vén) is a subspace of the

1
space V; ) of chapter III for all = .

Theorem VII.3.3. If {um} is a sequence such that u € Vgn)

and
(19) (Lou,u) <M

where M is a constant, then {um} contains a uniformly convergent

subsequence.
Proof: By virtue of Equation (VII.3.19) we have
b (d azn m .2 M
f f [——1"dedy < 4 .
N N — 6
a’e dx dy o

Thus combining the above inequality with the inequality (VII.3.9) we have
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2
bed 9°%u n-2 n-2
(20) J f [Mgm]zdm,%E (b=a) Zn_éch) Moo
e ¥ 2 Bo

But then

| | b ¢d 82um 2
n sup |u (x,y)| < (b-a)(d-c) ff [ 1" dedy

(x,y)eR n a‘e dxdy
(o) 212 ( gy 22 -%
< (b-a)(d-e) {2 e M},

22n-2 6

o
Hence {un} is uniformly bounded. The equicontinuity of this family
can be shown as was done in the proof of the Lemma II.7. Thus we can

extract a uniformly convergent subsequence by Arzela-Ascoli Theorem.

Consider now Lzu = Au , where A 1is a parameter. Then
combining the above theorem with the Theorem III.1.5 , we immediately
see the existence of a countable sequence of eigenvalues An tending
to infinity, corresponding to the infinite sequence of eigenfunctions

{un} satisfying Llun = Anun and the boundary conditions (VII.3.2-3).

As another generalization of the operator L of chapter V, we
give the following result about the positive definiteness of the polyvi-

brating operator L2 defined by the equation

2 2 2 2
(22) L= ] ] 3 o u

2* = oy 1° 525y %1Gmny @ smap)l
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Theorem VII.3.4. The operator LZu defined by (VII.3.22) is

positive definite and symmetric if
(Z) 6(x,y) > 6,
(22) 6,(x,y) > 6, >0 and O(x,y) , 0,(x,y) are sufficiently

smooth in R ,

over the space of functions ul(x,y) € r(4) satisying the boundary conditions

(23) u = 0 s U = 0 .
aR ZY |
Proof: First of all using integration by parts we find
b d 2 2 2 2
- 2 o u P 3 v
26) (L) = l;j; 0,@sy) Igmge (0 5591 [z (0 57501 dwdy

if u and v satisfy the boundary conditions (VII.3.23) which shows

the symmetry of L2 . Thus we have,
b rd 2 2
= 97 a0 u (42
(Lg,u) = [zfc 0,Gy) L5258 3Ky 1 sy
Also
25 Nl LY

a-“c

Since uxy(a,y) = uxy(x,c) = 0 and by the Cauchy-Schwarz inequality

we have
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b rd 2 2 b 2 2
2 2 (b-a)~ (d-e) 9 du .2
(26) LL 6 uxy dedy < 7 J J [Bxay (0 Bxay] dxdy
Thus
b ¢d 2 2 (b¢d 2 2
2 2 (b-a)“ (d-e) ) 3 U (2
27) J I ¢ Uy dedy < 75 J’ f el(x,y)[axay (® axay)] dxdy
a’e 1 a’e
since el(x,y)/GZ > 1. Combining this with (V.1.I1) we obtain the inequality
b d 2 2 bd 4 4
28) J f W2 dnay < (b-a) éd—c) f f o2 “i dody < (b=a) ;d-c) (L s
a‘e 40 a’e Y 160 3]
o o 1
This proves the positive definiteness of the operator L2 in F(4) subject

to the boundary conditions (VII.3.23).



- 141 -

BIBLIOGRAPHY
AGMON, S.
Lectures on Elliptic Boundary Value Problems - Van Nostrand -
1965.

AHLBERG, J.H., NILSON, E.N., and WALSH, J.L.

The Theory of Splines and Their Applications - Academic Press -
1967.

AKHTEZER, N.T.
The Calculus of Variations - Blaisdell Publishing Company - 1962.

ARONSZAIN, N. and DONOGHUE, W.F.

Variational approximation methods applied to eigenvalues of a
clamped rectangular plate - Technical report 12, University of
Kansas, 1954.

BECKENBACH, E.F. and BELLMAN, R.
Inequalities - Springer-Verlag, New York, Inc., 1965.

BIRKHOFF, G.

Piecewise bicubic interpolation and approximation in polygons -
Approximations with special emphasis on Spline functions. ed.
I.J. Schoernberg, Acad. Press, 19689.

BIRKHOFF, G. and GORDON, W.J.
The Draftsman's and related equations — Journal of Approximation
Theory 1, 199-208, 1968.

COURANT, R. and HILBERT, D.

Methods of Mathematical Physics, Vol. I & II - Interscience
PublicationsIne., New York, 1966.

EASWARAN, S.

1. A Comparison Theorem for Eigenvalues of Mangeron Equatioms,
Bulletin of the Polytechnic Institute of Jassey, Romania, Vol. 17
(21), Fase. 3-4, 67-72, 1971.

2. On the Natural boundary conditions for Mangeron Equations.
To appear in Bulletin of the Polytechnic Institute of Jassy, Romania.



10.

11.

12.

13.

14.

15.

16.

17.

18.

- 142 -

3. Fundamental inequalities for Polyvibrating operators. To 7 opear
in Bulletin of Polytechnic Institute of Jassy.

4. Polyvibrating operators and their eigenvalues. To appear in
Bulletin of Polytechnic Institute of Jassy.

On the positive definiteness of Polyvibrating operators.
To appear in Bulletin of Polytechnic Institute of Jassy.

6. On the zeros of solutions of Mangeron's Equations.

FRIEDRICHS, K.O.
Die Randwert und Eigeniwert problem aus der Theorie der elasti~
chen Platten. Math. Ann. 98, 205, 1928.

GELFAND, 1I.M. and FOMIN, S.V.
Calculus of Variations - Prentice Hall Ine., 1963.

GouLp, S.H.
Variational Methods for Eigenvalue Problems - University of
Toronto Press, 1957.

HESTENES, M.R.
Calculus of Variations and Optimal Control Theory - John Wiley
and Sons Ine., New York, 1966.

HOBSON, E.W.
The Theory of Functions of a Real Variable, Vols., I and IT -
Dover Publications, New York, 1927. [pp: 346-347, 610-615 of Vol.

HUKE, A.
A historical and critical study of the fundamental lemma in the
Calculus of variations — Contributions to the Caleulus of Varia-
tions, 1932.

IONESCU, D.V.
L'extension d'une formule de Cubature. Bulletin de la Societe
des societe des sciences de Liege , 39, 661-690, 1970.

JENTZSCH, R.
Uber Integralgleichungen mit positivem Kern -~ J.f. Matemetik, 141,
4, 235-244, 1911.

KREITH, K.

Comparison TheoremsSfor constrained rods - SIAM Review 6, 31-36,
1964.

I].



19.

20.

21.

- 143 -

LANDESMAN E.M. and LAZER, A.C.

Linear eigenvalues and a nonlinear boundary value problem -

Pacifice Journal of Mathematies, Vol. 33, No:2, 1970. 311~

327.

MANAREST, F.

1.

3.

Applicazioni di un procedimento variazionale Allo studio di una
equazione differenziale alle derivate parziali con coratteristiche
reeli doppie - Rend. Semi di Univ. Radova 163-197, 1954.

Un problema di autovalori - Rend. Sem. Univ. Padova, 343-351,
19564.

Su Alcuni problemi Relativi ad equazioni Alle derivate parzieli Di

dipo iperbolico-Parabolico - Rend. Sem. Univ. Padova, 348-375,
1954.

MANGERON, D.

1.

Sopra un problema al contorno per un'equazione differenziale non
lineare alle derivate parzieli di quarto ordine con le carater-

estiche realidoppie - Rend. Acad. Naz. Lincei 6, Vol. 16, 1932,

305-310.

Problemi al contorno per le equazioni differenziali alle derivate
parziali con caratteristiche reali multiple. - Giorn. di. Mat.,

Gattaglini, 71, 89-139, 1933.

Sur certains problemes a la frontiere pour une classe d'equations
aux derive partielle's d'ordre superieurs. - C.R. Acad. Se. Paris
204, 1937, 94-96.

Sur les solutions periodiques d'une certaine classe d'equations
aux derivee partielles d'odere superieur - C.R. Acad. Se. Paris
204, 1937, 1037, 1022-1024.

Sur les noyaux associes a certain probleme a la frontiere pour
une classe d'equations aux derive partielles d'ordre superieur -

Mathematicea, Vol. XIV, Page 31-35, 1938.

Functiile lui Green de ordine p 1in teoria ecuatulor cu derivate
totale de ordin superior - Rev. Stiimt. V. Addmachi, 32, 1946,
40-42.

Recherches sur les problemes a la frontiere pour une classe
d'equations aux derives partielles d'ordre superieur — BullZ.
Polit. Iast, 2, 89-92, 1947.



- 144 -

8. Sur quelques problemes du Calcul des variations lies a la
Theorie d'une classe d'equations aux derivee partielles
d'ordre superieur - Bull. Polit. Iasi, 3, 153-155, 1948.

9. Sur une classe de problemes a la frontiere non elliptiques
d'ordre superieur - C.R. Aecad. Se. Paris, 255, 1962, 2894-
2896.

10. Optimal functional equations of dynamic programming related to
a new class of boundary value problems in '"total derivatives”
(Russian). - Soobse. Akad. Nauk. Gruzin SSR, 33, 1964, 521-528.

11. Introduzione nello studi dei sistemi polvibranticon rimanenza
ed argomenti ritardati - Rendi, Accad. Naz. Lincei, 39, 22-28,
1965. ’

12. Sur les rapport des moyennes des carree's de deux derives totale
d'ovdre consecutif - C.R. Acad. Se. Paris 266, 1103-1106, 1968.

22, MANGERON, D. and KRIVOSEIN, L.E.

1. Problemi di Goursat e di Dirichlet per una classe di equazioni
integro-differenziali a derivate totali - Rend. dell'lcademia di
Scienze Fisiche e matematiche della Societa Nationale di Scienze
Lettre di Arti Napoli, ser. 4, Vol. XXVIII, 1961.

2. Sopra i problemi al contorno per le equazioni integro differen-
ziali lineari a derivate parziali con derivata d'ordine superiore
di Picone. - Rend. Sem. Mat. Univ. Padova, 33, 1963, 226-266.

3. Approximation par les polynomes de Bernstein des solutions de
certains probleme la frontiere pour les equations integro differ-
enziale d'ordre superieur - C.R. Acad. Se. Paris, 254, 1962, 3624-
3626.

4. Sur l'evaluations des erreurs de determination des Solutions d'une
classe d'equations integro-differentielles aux derivee totales -
C.R. Acad. Sei. Paris, 1961, 253, 1190-1192.

5. Sur le probleme de Goursat pour une classe d'equations fonctionelles
non-lineares polyvibrantes - Mathematica, Cluj, 1963, 6, 28.

23. MANGERON, D. and OGUZTORELI, M.N.

Darboux problem for a Polyvibrating equation: Solution as an F-
Equation. - Proe. Nat. Acad. Sei. U.S.A., Vol. 67, No: 3, 1488-
1492, 1970.



- 145 -

24, MASON, M.

Beweis eines Lemma der Variations rechnung. - Math. Annalen,
61 (1905), p. 450.

25, MIKHLIN, S.G.

Variational Methods in Mathematical Physics. - The Macmillan
Company, New York, 1964.

26. MIKHLIN, S.G.

The problem of the minimum of a quadratic functional - Holden
Day Ine., 1965.

27. MITRINOVIC, D.S.
Analytic Inequalities - Springer Verlag, 1970.

28. NEHARI, Z.
Oscillation Criteria for Second order linear differential equations,
Trans. Anm. Math. Soc., 84-85, 1957, 428-445.
29. OGUZTORELI, M.N.
1. On a class of integro-differential equations I - Rend. Accad. Naz.
Lincei, Vol. 48, 1970, 20-25.

2. On a class of integro-differential equations II - Rend. Acecad.
Naz. Lincet, 1970, Vol. XLVIII, 297-301.

3. On a class of integro-differential equations IV ~ Rend. Acead.
Naz. Lincei, XLVIII, 1970, 405-408.

4. Optimal controls in distributed parameter systems - Rendiconti di
Matematiea, Roma. Ser. 6, 2, 229-244, 1969.

5. A boundary value problem for a polyvibrating equation - Rend. Se.
Fis. Acad. Se. Torino, Vol. 104, (1969-70), 119-125.

6. Un problema misto concernente un equazione integro-differentiali
di tipo parabolico con argomento retardato — Rendiconti di
Matematica, Vol. 2, Ser. 6, 245-294, 1969.

30. OGUZTORELI, M.N. and EASWARAN, S.

A Goursat problem for a higher order Mangeron equation - Rend.
Accad. Naz. Lincei, 1971.



31.

32,

33.

34.

35,

36.

37.

- 146 -

PICONE, M.

1. Nuove vedute sull'integrazione della equazioni lineari a deri-
vate paziali delle fisica matematica - Ann. Sei. Univ. Jassy,
26, 182-232, 18940.

2, Nuovi metodi per il calcolo delle soluzioni delle equazioni a
derivate parziali della fisica matematica - Ann. Seci. Univ.
Jassy, 26, 1, 183-232, 1940.

3. Vedute generali Sull'interpolazione e quelche loro consequenza -
Ann. Se. Norm. Sup. Pisa S. III, Vol. V, 1951, 193-244.

4. Introduzione al calcolo delle variazioni - Liberia Eredi Virgillo
Vesehi - Roma, 1950-51.

5. Lezioni di Analisi infinitesemale - Catania.

6. Appunti di Analisi Superiore - Rondinella, Napoli, 1940.

PICONE, M. and MANGERON, D.

Calcolo tramite l'impiego delle derivate totali delle soluzioni
di vari sistemi funzionali della fisica matematica (I) - Bull.
Institutui Politechnic di Iast, Vol. XIII, 1967, 41-46.

RIESZ, F. and SZ. NAGY, B.
Lecons d'analyse fonctionelle - Budapest, 1952.

SALVADORI, M.

Problemi variazionali sotto forma non parametrica per equazioni
alle derivate parziall con caratterestiche reali doppie - Ann.
Norm. Sup. Pisa, 5, 51-72, 1936.

SOBOLEV, S.L.

Applications of Functional Analysis in Mathematical Physics -
American Mathematical Society Transl., 1963.

ST. MARY, D.F.

Some Oscillation and Comparison Theorms for (r(t)y')' + p(t)y = 0 -
Journal of Differential equations, 5, 314-323, 1969.

STAMPACCHIA, G.

Problemi Variazionali per le equazioni lineari alle derivate
parziali con carallerestiche reali doppie - Giorn di Mat. Battaglini
78, 81-86, 1948-49.



38.

39.

40.

41.

- 147 -

SWANSON, C.A.

1. Comparison and Oscillation Theory of linear differential
equations - Academic Press

2. A Generalization of Sturm's Comparison Theorem - J. Math. Anal.
Applns., 156, 512-519, 1966.

TRUESDELL, C.

An essay toward a unified theory of special functions. Ann.

of Math. Studies, 18, 182 (1948).

VEKUA, T.N.
New methods for Solving Elliptic equations - North Holland
Publishing Company, Amsterdam, 1967.

Y. TAKAHASHI - M.J. RABINS - D.M. AUSLANDER.

Control and Dynamic Systems. Addison Wesley Publishing Company,
1970.



