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Abstract When sampling animal movement paths, the frequency at which location

measurements are attempted is a critical feature for data analysis. Important quanti-

ties derived from raw data, e.g. travel distance or sinuosity, can differ largely based

on the temporal resolution of the data. Likewise, when movement models are fitted to

data, parameter estimates have been demonstrated to vary with sampling rate. Thus,

biological statements derived from such analyses can only be made with respect to the

resolution of the underlying data, limiting extrapolation of results and comparison be-

tween studies. To address this problem, we investigate whether there are models that

are robust against changes in temporal resolution. First, we propose a mathematically

rigorous framework, in which we formally define robustness as a model property. We

then use the framework for a thorough assessment of a range of basic random walk

models, in which we also show how robustness relates to other probabilistic con-

cepts. While we found robustness to be a strong condition met by few models only,

we suggest a new method to extend models so as to make them robust. Our frame-

work provides a new systematic, mathematically founded approach to the question if,

and how, sampling rate of movement paths affects statistical inference.
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1 Introduction

To learn about animal movement behaviour, researchers across the world collect in-

creasing amounts of data for many different species. When tracking an animal, e.g.

via GPS-based telemetry, locations are measured at discrete times, and the rate and

regularity of measurements are critical features. From raw location data we can esti-

mate classic movement characteristics such as mean square displacement, measures

of directional persistence or tortuosity, and travel distance (Turchin 1998; Codling

et al 2008; Rowcliffe et al 2012). These quantities can vary largely when derived

from movement data with different temporal resolutions (Ryan et al 2004; Codling

and Hill 2005; Nouvellet et al 2009; Rowcliffe et al 2012). When we fit a movement

model to data to perform statistical inference, the temporal resolution of the sam-

pling can both affect parameter estimates and result in erroneous inference such as

misclassified behavioural states (Breed et al 2011; Postlethwaite and Dennis 2013).

Generally, sampling a continuous path of an animal at discrete intervals can lead to

various degrees of information loss (Turchin 1998).

A few studies used fine-scale movement data to empirically estimate correction

factors to adjust measured travel distances according to the sampling interval (Pépin

et al 2004; Ryan et al 2004). While this is a first approach to understand the influence

of sampling interval on measured travel distance, it is unclear whether results can be

generalized from these studies to other species and systems. Another approach has

been to simulate movement according to correlated random walks or velocity jump

processes to estimate relationships between the resolution of a discretized path and

common movement characteristics, such as apparent speed and angular deviation.

In this way, Bovet and Benhamou (1988) and Benhamou (2004) defined sinuosity

as a measure of a path’s tortuosity that is independent of the discretization. While

these studies used “spatial sampling”, that is a rediscretization of a path based on a

certain step length, Codling and Hill (2005) extended the approach to “temporal sam-

pling”, where discretization is based on a fixed time interval. In addition to sinuosity,

Codling and Hill (2005) also investigated the relationship between apparent speed

and sampling interval. Both relationships break down when the observed angular de-

viation becomes large, either due to high tortuosity of the underlying movement or

a relatively large sampling time step (Bovet and Benhamou 1988; Codling and Hill

2005). An extension of this work has recently been provided by Rosser et al (2013),

who more closely investigated the full distributions of relative apparent speed and

apparent angle change. All these studies demonstrate that movement characteristics

are highly sensitive to path discretization but also that, unless discretization becomes

too coarse, changes may be described by functional relationships. However, analy-

ses of this kind are still lacking for other movement parameters, e.g. parameters that

describe selective behaviour with respect to the environment.

One may think that the best solution to avoid undersampling and information loss

is to take measurements at high rates to approximate a continuous path as best as

possible. However, this is often not feasible, because limited battery life of tagging

devices gives rise to a tradeoff between sampling frequency and total sampling time

span (Mills et al 2006; Breed et al 2011). In addition, oversampled movement paths

can be problematic in data analysis, because they lead to strong and long-lasting au-
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tocorrelations and require the processing of very long time series (Benhamou 2004).

Also, very frequent fix attempts can reduce GPS transmitter efficiency (measured as

total number of successful locations obtained during the deployment time) (Mills et al

2006), and noise can become very large compared to the actual signal, especially if

animals are resting or moving slowly (Ryan et al 2004). It is therefore important to

choose measurement rates appropriately to the behavioural scale of interest. Even if

we decide about sampling rates with care, it remains a problem that results are often

tied to the data’s resolution of a particular study. Generalizing or transferring re-

sults as well as comparison between different studies is limited (Tanferna et al 2012;

Postlethwaite and Dennis 2013).

Here, we introduce a new theoretical framework for analyzing the robustness of

movement models to varying resolutions of temporal discretization. In our paper, we

formally define robustness as a specific property of a model. Generally speaking, we

consider a model to be robust if it can be applied validly to movement data with

different temporal resolutions, thus allowing consistent statistical inference. While

we do not require important movement characteristics expressed in model parameters

to be the same across sampling rates, we ask for them to vary systematically in a

way that allows translation of results between resolutions. Because our framework

is defined at the level of the model, it is more general than previous approaches that

consider individual movement characteristics.

Our idea of movement model robustness is related to the formal concept of ro-

bustness in statistics, which explicitly acknowledges that statistical models usually

simplify and approximate the processes that generate observations. Robust statistical

methods aim at safeguarding results against misspecified model assumptions (Ham-

pel 1986; Huber and Ronchetti 2009). Here, in case of movement models, we may

consider the temporal resolution of a model as an assumption. Sometimes, a suitable

resolution can be determined by scale considerations, for example when modelling

inter-patch movement at the patch level (Benhamou 2013). If, in contrast, we are

interested in the finer behavioural rules of the inter-patch movement, for example,

compared to intra-patch movement, it may be less clear which resolution to chose

because regularly sampled locations do not necessarily correspond to an individual’s

decision points (Turchin 1998). Here, we investigate whether there are movement

models that are robust to the choice of sampling rate. We emphasize, however, that

this type of robustness is only biologically meaningful across a range of resolutions

that are all within the scale of the behaviour of interest.

We present the new framework in terms of random walk models with indepen-

dently and identically distributed steps. Many contemporary movement models have

surpassed these classical random walk models in complexity, e.g. including persis-

tent movement and additional components to describe environmental effects (e.g.,

Rhodes et al 2005; McClintock et al 2012). Still, here we focus on basic random

walks to introduce the new concept of robustness of movement models to temporal

discretization and to put it in context with other established ideas in probability theory

and movement ecology. Our aim is to provide the first step towards a rigorous theory

of robustness of movement models by working out fundamental results at the level

of simple random walks that are analytically tractable. This will provide a basis for

future work including more realistic random walk models. Ultimately, our goal is to
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understand how we can use models’ robustness properties to mitigate effects of data

collection rate on statistical inference about movement behaviour and in particular

parameter estimates.

Our paper is organized as follows. In section 2 we describe the set-up of our

study, after which we follow with two introductory example models that illustrate

our framework. We then give formal definitions of two types of robustness that vary

in their strength of requirements but also benefits. In section 3, we analyze robustness

properties of one-dimensional models. We present models that are robust, suggest a

way to construct robust models from non-robust models and relate robustness to the

probabilistic concept of infinite divisibility. In section 4, we extend results about ro-

bustness to two-dimensional models, in particular models with radially symmetric

step densities. Our framework provides a new systematic, mathematically founded

approach to analyze if, and how, sampling rate of movement paths influences move-

ment parameters and inference results. Here, we provide a first analysis at the fun-

damental level of simple random walks. We conclude our paper by discussing future

steps towards application of the new concept to biologically relevant models.

2 The robustness framework

2.1 Temporal resolution of random walks

Random walks have a long history as animal movement models. They are useful as

a basis for deriving partial-differential equation models for population distributions

(Patlak 1953; Skellam 1951), for building simulation models for moving individu-

als (Kaiser 1976; Jones 1977), and for developing metrics that summarize movement

characteristics (Kareiva and Shigesada 1983). Although models have become more

complex to include behavioural mechanisms such as territorial defense (Moorcroft

and Lewis 2006; Potts et al 2013) or resource selection (Mckenzie et al 2012; Potts

et al 2014), to describe temporally switching behaviour (Morales et al 2004; Mc-

Clintock et al 2013), and to account for stochasticity of the measurement process

(Patterson et al 2008; Breed et al 2012), random walks remain at the root of many

movement models (Börger et al 2008; Smouse et al 2010).

The classic random walk model for movement is a stochastic process {XXXt , t ∈N},

where the location XXXt ∈ R
2 of an organism for each time index t ∈ N is given as a

sum of independently identically distributed (i.i.d.) steps (Klenke 2008). That is,

XXXt = xxx0 +
t

∑
i=1

SSSi, (1)

where xxx0 is the (fixed) start location of the movement path, and SSSi is the vector, that is

the step, between location XXXi−1 and XXXi. Note that here we use SSS to denote steps and

XXX to denote locations, which are sums of steps. In the statistical literature, often SSS is

used for sums of random variables. However, we have chosen our notation according

to the movement context. For a graphical clarification of our notations refer to Fig. 1.

The random walk models an observed movement path, that is a series of locations

xxx = {xxx0,xxx1,xxx2, . . .}, where xxxt ∈ R
2, measured at regular time intervals. For some
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types of movement data paths can only be sampled irregularly. For example, when

tracking marine mammals, individuals must surface to allow location measurements.

To connect such data to discrete-time random walk models, hierarchical models such

as state-space models can be used (Jonsen et al 2005; Breed et al 2012).

As a convenient way for systematically studying varying temporal discretization

of movement data, we can mimic different sampling rates of movement paths via

subsampling. The nth subsample of xxx consists of every nth location, that is xxxn =
{xxx0,xxxn,xxx2n, . . .}. As n increases, the temporal resolution of the data becomes coarser.

Note that xxx1 = xxx is the original time series. If xxx is modelled by the process {XXXt , t ∈
N}, then the subsample xxx2, which consists of every second location of the original

time series, is correctly described by the subprocess {XXX2t , t ∈ N}. In general, the

subprocess may have a different probability distribution than the original process.

However, there is a simple relationship between the two processes. For the subprocess

we have XXX2t = xxx0 +∑2t
i=1 SSSi = xxx0 +∑t

i=1 S̃SSi,2, for steps S̃SSi,2 = SSS2i−1 +SSS2i; refer to Fig. 1.

Note that XXX2t is the t-th element in the subprocess {XXX2t , t ∈N} and the 2t-th element

in the original process {XXXt , t ∈ N}. More generally, for an arbitrary subprocess, we

have

XXXnt = xxx0 +
nt

∑
i=1

SSSi = xxx0 +
t

∑
i=1

S̃SSi,n, (2)

for the larger steps S̃SSi,n = ∑n−1
j=0 SSSni− j. Therefore, the distribution of XXXnt is based on

steps that are themselves sums of steps of the original process. We remind that for a

random walk with i.i.d. steps, all SSSi have the same distribution, however, their sum

may generally have a different distribution.

If a movement model were robust to changes in temporal resolution, the same

model should be able to describe validly both a path xxx and its subsample xxxn. As we

have described above, in a random walk model the distributions of the steps define the

process. If the steps {SSSi, i ∈ N} and {S̃SSi,n, i ∈ N} for a range of subsampling indices

n ∈ N can be described by the same probability model, with appropriate adjustment

of model parameters, then we consider the model to be robust to varying temporal

discretization within that range.

2.2 Two illustrative examples

We illustrate the concept of robustness with two simple examples. For simplicity, we

consider one-dimensional models. First, for an example of a robust model, we assume

that all steps Si have identical normal distribution, with zero mean and variance σ2,

which we denote by Si ∼ N (0,σ2). Because the model is in one dimension, the

normal distribution models both the distance and direction (right or left) of a step.

A step density centred at zero means that steps to the right and left have the same

probability. Because sums of independent random variables with normal distribution

have again a normal distribution with summed means and variances, it follows that

the location Xt is normally distributed as well, Xt ∼ N (x0, tσ2). The steps S̃i,2 of

the subsampled process {X2t , t ∈ N} are sums of two normally distributed random

variables and therefore we have S̃i,2 ∼ N (0,2σ2) and X2t ∼ N (x0,2tσ2). Thus, the
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probability distributions that describe the original and the subsampled process are

both normal with the same mean but different variances. However, the variances are

related through a simple linear function. Therefore, we can make inference using the

subsampled data and process and simply divide the estimated variance by 2 to obtain

an estimate of the variance of the original process. Conversely, we can multiply the

variance obtained using the original process by 2 to obtain the valid variance for the

coarser process. This also works analogously for n > 2. Because of this property, the

random walk model with normally distributed steps is robust.

For a counter example of robustness, we consider steps that have Laplace dis-

tribution, which is also termed double-exponential distribution. The Laplace distri-

bution, similar to the Normal distribution, is symmetric, however it is more peaked

and has slightly heavier tails than the Normal distribution. It commonly serves as a

one-dimensional (or marginal, in two-dimensional models) redistribution kernel in

models for dispersing organisms (Neubert et al 1995). We assume that steps Si are

i.i.d. Laplace distributed with location parameter zero, i.e. the density is centred at

zero, and scale parameter σ , that is Si ∼ Laplace(0,σ). Consequently, the location Xt
is distributed as a sum of Laplace distributions. Sums of Laplace distributed random

variables are not as simple or well-known as the previous Normal example. Still, we

can employ characteristic functions to look into this case further. The characteristic

function (ch.f.) of a random variable X is defined by the expectation φX (u) = E(eiuX ).
Characteristic functions uniquely define distributions. The ch.f. for the above step

distribution is given by

φSi(u) =
1

1+σ2u2
. (3)

Characteristic functions have the convenient property that summing independent ran-

dom variables corresponds to multiplying their characteristic functions (Klenke 2008).

The steps of the subsampled process, S̃i,2 = S2i−1 +S2i, consequently have ch.f.

φS̃i,2
(u) = φSi(u)2 =

1

1+(
√

2σ)2u2 +σ4u4
. (4)

This function cannot be expressed as the characteristic function of any Laplace dis-

tribution, which would have to be of the form eiμt(1 + σ2u2)−1 for some location

parameter μ ∈R and scale σ > 0. With a bit more work, one can also compare prob-

ability density functions. The steps Si of the original process have the Laplace density

fSi(s) =
1

2σ
e−

|s|
σ . (5)

The density of the sum of two such random variables can be calculated as convolution

of the individual densities,

fS̃i,2
(s) =

∫
R

fSi(v) fSi(s− v)dv. (6)

This results in (refer also to Kotz et al 2001)

fS̃i,2
(s) =

1

4σ2
e−

|s|
σ (σ + |s|), (7)
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which we cannot write in form of fSi(s) by transforming the parameters. We conclude

that the step distribution for the subsampled process does not belong to the same

family of distributions as the original process, namely the Laplace family. This means

that if we fit the original model with Laplace distributed steps to both xxx and xxx2, the

resulting parameter estimates are not truly comparable. If, however, instead we fit

a different model to xxx2 that uses densities (7), the parameter σ describes the same

quantity as in the original model. Therefore, the model that has Laplace distributed

steps is not robust against varying temporal resolution; but see section 3.2.

2.3 Formal definition of robustness

We now define robustness formally. We have seen above that the step distributions

play an essential role for the robustness of random walk models. In the Laplace exam-

ple, the characteristic function has been a convenient tool to analyze step distributions

of random walk models. Therefore, we use them in our definitions of robustness. For

a two-dimensional model, the ch.f. of a step SSSi ∈ R
2 is φ(uuu) = E(eiuuu·SSSi) for uuu ∈ R

2,

where · denotes the scalar product of vectors. For our purpose we highlight the pa-

rameters of a distribution as auxiliary variables of the ch.f. by writing φ(uuu;θθθ) for

model parameters θθθ ∈ΘΘΘ .

We provide two definitions of robustness that vary slightly in the strength of their

requirements. In principle, we consider a model to be robust if step distributions of the

subprocesses belong to the same class of distributions as those of the original process.

Because characteristic functions uniquely define distributions, we can formulate this

idea rigorously by requiring the characteristic functions of original and coarser steps

to have the same functional form.

Definition 1 (Semi-robustness) Let φ(uuu;θθθ) be the characteristic function of the

i.i.d. steps in a random walk movement model, where θθθ ∈ ΘΘΘ is the vector of model

parameters. The movement model is semi-robust if for every n ∈ N there exists a

function gn : ΘΘΘ →ΘΘΘ such that

φ(uuu;θθθ)n = φ(uuu;gn(θθθ)). (8)

As we have mentioned before, summing independent random variables (here, steps in

a random walk) corresponds to multiplying their respective characteristic functions.

In our random walk models, steps are identically distributed. Therefore, the LHS of

equation (8) is the ch.f. of the sum of n steps and therefore defines the distribution for

the steps S̃SSi,n of the model for the nth subsample. The RHS of the equation is the ch.f.

of the steps Si, however with transformed parameters. Therefore, semi-robustness re-

quires that subsamples of the random walk are defined by the same step distribution

up to a known parameter transformation. The parameter transformation gn is an im-

portant part of the definition, because it allows us to scale up model parameters to a

coarser discretization. Say, our model represents a temporal discretization τ , that is τ
is the time interval between two locations. If our model is semi-robust, we know that

it is also valid for any discretization nτ , n ∈ N, with parameter gn(θθθ).
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If we want to be able to compare results of studies that use different temporal res-

olutions for their models more generally, we also need be able to translate parameters

downwards, that is to a finer discretization. The following definition characterizes

models that can be scaled both upwards and downwards.

Definition 2 (Robustness) A semi-robust movement model is robust if the function

gn in Definition 1 is bijective, that is both one-to-one and onto.

This definition allows scaling upwards just as before. Additionally, we can translate

the parameter θθθ to a finer scale 1
n τ . The surjectivity of gn guarantees that there exits

an inverse image ψψψ = g−1
n (θθθ)∈ΘΘΘ , which is unique by injectivity. Therefore, φ(uuu;ψψψ)

defines a valid characteristic function, and by property (8) we have

φ(uuu;ψψψ)n = φ(uuu;gn(ψψψ)) = φ(uuu;θθθ). (9)

This means that there is a valid sub-model for the discretization 1
n τ with parameter

vector ψψψ .

The introductory example model with Normally distributed steps is robust. The

transformation for the only model parameter, the standard deviation σ , is gn(σ) =√
nσ . The second example with Laplace distributed steps is neither robust nor semi-

robust since property (8) is not met. In section 3.2, we will see that it is possible to

embed the Laplace model within an extension so as to make it robust.

3 One-dimensional models

In the following we look further into the question which random walk models are

robust. First, we focus on one-dimensional models, that is random walks on the real

line. These models can play a role in situations where movement is naturally limited,

e.g. movement within a stream or along a river bank. Also, univariate step distri-

butions arise as marginals of two-dimensional movement- or dispersal kernels; see

section 4.2. After presenting classes of robust models, we describe the relationship

of robustness with the probabilistic concept of infinite divisibility. With this, we hope

to deepen the reader’s understanding of robustness and to set robustness apart from

other concepts.

3.1 Robust random walk models

To find robust models, we look for steps with probability distributions that are closed

under summation. Such a property ensures semi-robustness, which is a necessary con-

dition for robustness. Whether a semi-robust model is also robust depends largely on

the parameter space for which the step distribution is well-defined. A straightforward

example is given by distributions, whose ch.f. can be expressed as some function

raised to a power, where the power is a model parameter. In such a case, taking the

ch.f. to the power n simply corresponds to multiplying the power parameter by n.

Thus, we can define a parameter transformation gn that multiplies the power param-

eter by n, while all other parameters remain unaffected. We obtain semi-robustness
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as long as the product of power parameter and n still belongs to the model parameter

space. For robustness, we additionally require that the parameter transformation is

invertible, which means that we need to be able to divide the power parameter by

any n ∈N and still remain within the valid parameter space. Therefore, the definition

of the parameter space of a distribution is key to whether a model is semi-robust or

robust.

Theorem 1 Consider a one-dimensional random walk movement model with i.i.d.
steps that have characteristic function of the form φ(u;θθθ) = h(u;θθθ 1)

θ2 for some func-
tion h : R×ΘΘΘ 1 →C and model parameters θθθ = (θθθ 1,θ2)∈ΘΘΘ 1×Θ2. If the parameter
space is such that nΘ2 = {nθ2;θ2 ∈Θ2} ⊂Θ2 for all n ∈N, the model is semi-robust.
If additionally 1

nΘ2 ⊂Θ2 for all n ∈ N, then the model is robust.

Proof We define the parameter transformation as gn(θθθ) = gn(θθθ 1,θ2) = (θθθ 1,nθ2) ∈
ΘΘΘ 2 ×Θ2. Then, trivially, we have φ(u;θθθ)n = h(u;θθθ 1)

nθ2 = φ(u;gn(θθθ)), and semi-

robustness follows. Let θ2
n ∈ Θ2 for all n ∈ N and all θ2 ∈ Θ2. Then for each θθθ we

have a unique inverse image g−1
n (θθθ) = (θθθ 1,

θ2
n ), which lies within the valid parameter

range. Therefore, the model is robust.

For such models, the parameter transformation only affects the parameter that

constitutes the power in the ch.f. For example, consider i.i.d. steps Si that have Gamma

distribution with shape κ > 0 and scale σ > 0. Note that the support of the Gamma

density is only the positive real line, so movement steps are always into the same

direction (to the right). The Gamma distribution has the well-known property that a

sum of independent Gamma random variables, all having the same scale parameter,

again has a Gamma distribution (Casella and Berger 2002). The ch.f. of the Gamma

distribution is φ(u;κ,σ) = (1−σ iu)−κ . Therefore, we directly obtain φ(u;κ,σ)n =
(1−σ iu)−nκ = φ(u;nκ,σ). Hence, the summation affects the shape parameter, and

we have gn(κ,σ) = (nκ,σ). Because the Gamma distribution is defined for all pos-

itive shapes κ ∈ R
+, the transformation gn is invertible, and we conclude that steps

with Gamma distribution lead to robust models.

The chi-squared distribution is a special case of the Gamma distribution for a

scale σ = 2 and shape κ = k
2 for degrees of freedom k ∈ N. The ch.f. is

φ(u;k) = (1−2iu)−
k
2 . (10)

The nth power of φ is still a ch.f. of a chi-squared distribution with degrees of freedom

nk ∈N, and therefore a model with chi-squared steps is semi-robust. However, for an

arbitrary k ∈N, the fraction k
n is a rational but not necessarily a natural number. Thus,

the second condition of Theorem 1 is not satisfied. For more examples of distributions

that meet the conditions of Theorem 1, see table 1. Note that there are also discrete

distributions that belong to the group of distributions described in the theorem (e.g.

the binomial, Poisson and negative-bionomial).

Another class of distributions that are suitable as step distributions for robust

models is given by the family of stable distributions (Samorodnitsky 1994; Nolan

1997; Klenke 2008). The stable distributions comprise a four-parameter family of

distributions, which we denote by S (α,β ,σ ,μ), with index of stability 0 < α ≤ 2,
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skewness −1 ≤ β ≤ 1, scale σ > 0 and location μ ∈R. Note that the scale parameter

does not necessarily correspond to the variance of the distribution, which is in fact

infinite for most stable distributions. Only for certain values of α and β , do stable

distributions have closed-form density functions. However, for any parameter values,

we can define a stable distribution uniquely by its characteristic function. There are

multiple ways to parameterize stable distributions, which differ slightly in the inter-

pretation of the parameters σ and μ . Here we use the form of the ch.f. provided in

Nolan (1997),

φ(u;α,β ,σ ,μ) =

{
exp

[
iμu−σα |u|α(1− iβ tan(πα

2 )sign(u)
)]
, α �= 1

exp
[
iμu−σ |u|(1+ iβ sign(u) ln |u|)], α = 1.

(11)

The most famous example of a stable distribution is the Normal distribution for α = 2.

Using the above parameterization of the stable distribution, the mean and variance of

the Normal distribution are μ and 2σ2, respectively. For α = 2, the term including

the parameter β vanishes. For α = 1 and β = 0, the Cauchy distribution is another

well-known case, for which a closed-form density is known. While the Normal and

Cauchy distribution are symmetric, the Lévy distribution for α = 1
2 and β = 1 is an

example of a stable distribution with skewed density function (Samorodnitsky 1994).

Theorem 2 A one-dimensional random walk movement model with i.i.d. steps is ro-
bust if steps are distributed according to the stable law S (α,β ,σ ,μ), i.e. have char-
acteristic function (11).

Proof We can easily verify that the ch.f. of the stable distribution satisfies prop-

erty (8). We have

φ(u;α,β ,σ ,μ)n =

{
exp

[
i(nμ)u− (n

1
α σ)α |u|α(1− iβ tan(πα

2 )sign(u)
)]
, α �= 1

exp
[
i(nμ)u− (nσ)|u|(1+ iβ sign(u) ln |u|)], α = 1.

(12)

Therefore, we choose gn(α,β ,σ ,μ) = (α,β ,n
1
α σ ,nμ). It is easy to see that gn is a

bijection of the parameter space, leaving α and β unchanged and being monotone on

R
+ ×R in the last two arguments. Therefore, stable steps distributions lead to robust

models.

We have just seen that if we sum n steps, each having stable distribution Si ∼
S (α,β ,σ ,μ), the sum is again stable according to

S̃i,n ∼ S (α,β ,n
1
α σ ,nμ). (13)

In fact, stable distributions are a family of distributions that have been constructed to

have this special summation property. Equivalently to defining a stable distribution by

its characteristic function, we can also say a random variable S has stable distribution

if the sum of independent copies of S is a scaled and shifted version of S, that is if we

have
n

∑
i=1

S d
= anS +bn (14)
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for some an > 0,bn ∈ R, where
d
= stands for equality in distribution (Samorodnitsky

1994; Kotz et al 2001). In fact, the only choice for an is an = n
1
α (Samorodnitsky

1994). Because the location Xt is a sum of steps, Xt = x0 +∑t
i=1 Si, the distribution of

the location Xt is also stable,

Xt ∼ S (α,β , t
1
α σ ,x0 + tμ), (15)

for any t ∈N. The analogue holds for the locations of the subsampled process {Xnt , t ∈
N},

Xnt ∼ S (α,β ,n
1
α t

1
α σ ,x0 +ntμ). (16)

The parameters α and β remain unchanged under summation. The parameter β de-

termines skewness, with β = 0 corresponding to a symmetric density, and therefore

a stable distribution S (α,0, ·, ·) is also termed α-symmetric stable distribution.

A special case is given by models that have starting location x0 = 0 and step

distribution S ∼S (α,0,σ ,0). These specific stable distributions are symmetric with

centre at zero, and they lead to

Xt ∼ S (α,0, t
1
α σ ,0) (17)

and

Xnt ∼ S (α,0,n
1
α t

1
α σ ,0). (18)

Therefore, Xnt is a scaled version of Xt , that is we have

Xnt
d
= n

1
α Xt , (19)

which means that the random walk {Xt , t ∈ N} is self-similar (Samorodnitsky 1994).

Also, the probability density function of the step distribution, pS(s), is related to

the density of the summed steps S̃i,n via a scaling property (see Appendix A or refer

to Klafter et al (1995)),

pS̃i,n
(s) =

1

n
1
α

pSi

(
s

n
1
α

)
. (20)

This specific random walk is called a Lévy flight (Klafter et al 1995). Note that this

(original) definition of a Lévy flight is different from a Lévy walk. In contrast to

Lévy flights, where jumps between locations occur instantaneously or during a fixed

time interval, a Lévy walk is based on a continuous-time random walk, describing

the movement of an organism at constant speed between reorientation events (Klafter

et al 1995). In this description, the emphasis lies on waiting times, which follow a

scaling law. In the movement literature, the two terms are often used interchangeably

(Reynolds and Rhodes 2009; James et al 2011). Note that because of the different

assumptions, data are processed slightly different in a Lévy walk analysis, where

usually steps (as we have defined them here) are combined as “moves” as long as

directional changes between them remain under a certain threshold (Plank et al 2013).

This type of post-processing has recently been mentioned as possibly problematic

(Benhamou 2013), and it is not suitable for our framework.

Although stable step distributions are predestined to lead to robust models, ro-

bustness is a more general concept. In terms of the characteristic function φ of S,
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the summation property (14) is φ(u)n = eiubn φ(anu), or simply φ(u)n ∝ φ(anu). In

comparison, the robustness property (8) is a weaker condition.

It means that the sum of n i.i.d. steps has the same distribution as a single step

up to adjusted parameter values according to a known function gn. In the case where

steps have stable distribution, the function gn affects the scale and location parameter

of a distribution. However, distributions may have other types of parameters that can

be affected. For example, in the above case of Gamma distributed steps, summation of

steps results in a modified shape parameter. In contrast, scaling a Gamma distributed

random variable by a constant c leads to a Gamma distribution with same shape κ but

adjusted scale cσ . Therefore, the Gamma distribution is not stable, and the resulting

random walk does not exhibit self-similarity. However, the random walk model with

Gamma distributed steps is robust.

3.2 Robust model extensions

As we have seen in Theorem 1, a step distribution having ch.f. that is the power of

some function leads to a semi-robust or robust model, depending on the definition of

the parameter space. This leads to the idea that we can obtain robustness by embed-

ding a distribution into a larger family of distributions by adding an additional power

parameter. Starting with a ch.f. φ(u;θθθ), θθθ ∈ΘΘΘ , we can augment the model parame-

ters by k ∈ N, that is we define a new parameter vector θ̄θθ = (θθθ ,k) ∈ΘΘΘ ×N. We can

then define a new distribution via the ch.f. ψ(u; θ̄θθ) = φ(u;θθθ)k. For k ∈ N we know

that ψ is again a ch.f., because by construction it is the ch.f. of a distribution of a sum

of k independent random variables. Because nk ∈N for all n,k ∈N, and according to

Theorem 1, a step distribution with ch.f. ψ(u; θ̄θθ), where k is simply one of the model

parameters, leads to a semi-robust random walk model with gn(θθθ ,k) = (θθθ ,nk). To

go a step further and construct a robust model, the range of the parameter k would

need to include positive rational numbers. However, for k �=N, we have in general no

guarantee that ψ is again the ch.f. of a distribution

As an illustration of these ideas, consider the Laplace distribution. The Laplace

distribution with mean zero and scale parameter σ > 0 has ch.f.

φ(u;σ) =
1

1+σ2u2
. (21)

We have seen above that a model with Laplace distributed steps is not robust. How-

ever, we can define a new family of distributions via the ch.f.

ψ(u;σ ,k) =
1

(1+σ2u2)k , (22)

where k ∈ N. This is the ch.f. of the sum of k independent Laplace random variables

and therefore a valid ch.f. Using this distribution for steps and treating k as a reg-

ular model parameter, we have constructed a semi-robust model. In this particular

case, where we extend the Laplace distribution, the function ψ in equation (22) is

also a valid ch.f. for any non-negative, real k ∈ R≥0 (Kotz et al 2001). It corresponds

to a generalized asymmetric Laplace distribution with location parameter zero and
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symmetry parameter being zero (and hence being symmetric); see also table 1. This

generalized Laplace distribution is not widely known, however, it has found several

applications. In particular, it has been used in financial modelling, where it is also

known as variance gamma model (Madan and Seneta 1990; Seneta 2004). A move-

ment model with step distribution determined by the ch.f. (22) for k ∈ R≥0 is robust.

For applications in which likelihood functions play an important role, e.g. for

statistical inference, a remaining question is whether we can find the correspond-

ing probability density function for the ch.f. ψ . In principle, the probability density

function of a distribution can be calculated as inverse Fourier transform of the char-

acteristic function (Klenke 2008). Alternatively, for k ∈ N, the density of ψ can be

obtained as the convolution of the k single step densities. Both methods can be diffi-

cult or may not result in a closed-form density. However, for the above example of the

generalized asymmetric Laplace distribution, a density function is available in terms

of a Bessel function (Kotz et al 2001). In the symmetric case with location parameter

zero, the density that corresponds to the ch.f. φ in equation (22) is

f (x) =
1√

π(k−1)!
2−k+ 1

2 σ−k− 1
2 |x|k− 1

2 Kk− 1
2

( |x|
σ

)
, (23)

where Kk− 1
2
(x) is a modified Bessel function of the third kind. This formula is valid

for any k ≥ 0. For the case where we restrict k to the non-negative integers, k ∈ N0,

the Bessel function Kk− 1
2
(x) has a closed form (Kotz et al 2001, Appendix B), and

we can alternatively write

f (x) =
e−

|x|
σ

σ (k−1)!2k

k−1

∑
j=0

(k−1+ j)!
(k−1− j)! j!

·
( |x|

σ
)k−1− j

2 j . (24)

This density function can be used for likelihood-based inference, and both σ and k
can be estimated simultaneously. While the new parameter k may take the role of a

nuisance parameter, it allows the distribution to be more flexible. Most importantly,

estimates of σ become comparable across different temporal resolutions; see Fig. 2.

3.3 Robustness and infinite divisibility

Robustness is related to the probabilistic concept of infinite divisibility. Roughly

speaking, a distribution is infinitely divisible if it can be expressed as the distribution

of a sum of independent random variables. More precisely, in terms of the charac-

teristic function φ of a distribution, φ is infinitely divisible if for every n ∈ N, there

exists another ch.f. φn such that φ(u) = φn(u)n (Steutel and Van Harn 2004; Klenke

2008). It is important that φn is not just any function but the ch.f. of a random vari-

able. An example of an infinitely divisible distribution is the Normal distribution with

mean μ ∈ R and standard deviation σ ∈ R
+. Its ch.f. is

φ(u; μ,σ) = eiμu− 1
2 σ2u2

. (25)
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We can choose φn(u) = φ(u;
μ
n ,

σ√
n ), which is the ch.f. of another Normal distribution

with mean
μ
n ∈R and standard deviation σ√

n ∈R
+. In general, many of the commonly

known distributions are infinitely divisible.

Both concepts, robustness and infinite divisibility, are linked to sums of random

variables. However, the two concepts are not the same. The Laplace distribution is in-

finitely divisible, however, the factors of the ch.f. do not again correspond to Laplace

distributions. Instead, the ch.f. of a zero-mean Laplace distribution can be factored as

follows (Kotz et al 2001),

φ(u) =
1

1+σ2u2
=

[(
1

1− iσu

) 1
n
(

1

1+ iσu

) 1
n
]n

= φn(u)n. (26)

Each factor φn is the ch.f. of a random variable that is a difference between two i.i.d.

Gamma random variables (Kotz et al 2001). This second example highlights that a

distribution can be infinitely divisible but, as a step distribution, does not lead to a ro-

bust model. This is due to the fact that infinite divisibility only requires the existence

of random variables that sum up to the variable in question. Robustness additionally

requires that the summands belong to the same distribution as the original, only with

modified parameter values. On the other hand, the converse is true and every robust

random walk model of the form that we consider here must have infinitely divisible

step distribution.

Theorem 3 Let Si, i ∈ N, denote the i.i.d. steps of a random walk movement model.
If the step distribution leads to a robust model, then Si is infinitely divisible. The
converse is not true, that is not every infinitely divisible step distribution leads to a
robust model.

Proof Let φ(u;θθθ), with θθθ ∈ΘΘΘ , be the ch.f. of a single step Si. Let n ∈ N, and let gn
be the parameter transformation given by robustness. Because gn is bijective, we can

define a unique ψψψ := g−1
n (θθθ) ∈ΘΘΘ and choose φn(u) := φ(u;ψψψ). It follows that

φn(u)n = φ(u;ψψψ)n = φ(u;gn(ψψψ)) = φ(u;gn(g−1
n (θθθ))) = φ(u;θθθ), (27)

which shows infinite divisibility. As a counter example for the converse, we have seen

above that the Laplace distribution is infinitely divisible but a model with Laplace

distributed steps is not robust.

In the preceding proof, the bijectivity, and in particular the surjectivity, of the

transform gn is crucial for the existence of φn. Therefore, semi-robustness is not a

sufficient criterion for infinite divisibility. Consider the Binomial distribution, which

is discrete and not typically used as distribution for movement steps. Still, it serves

as a counter example for a distribution that is not infinitely divisible, yet as step

distribution leads to a semi-robust model. For its ch.f. is φ(u; p,n) = (1− p+ peiu)n

for p ∈ [0,1] and n ∈ N, and therefore meets the first, but not the second, condition

of Theorem 1. On the other hand, as a distribution with bounded support, namely

{k ∈ N,k ≤ n}, it is not infinitely divisible (Steutel and Van Harn 2004).

Even if a model both is semi-robust and has infinitely divisible step distribution,

it does not follow that it is robust. Consider the model with chi-squared distributed
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steps. As we have seen in section 3.1, this model is semi-robust but not robust. Still,

the chi-squared distribution is a special case of the Gamma distribution and thus in-

finitely divisible; compare table 1. The reason for the model not being robust is that

the summands, which a chi-squared random variable can be decomposed into, are

generally Gamma and not again chi-squared random variables. This examples high-

lights that the definition of the model parameter space is an important consideration

for robustness. If instead of the chi-squared distribution, which is embedded in the

Gamma distribution, we directly use the Gamma distribution as probability model for

steps, we immediately obtain a robust model.

We have used the same idea in section 3.2 to embed the Laplace distribution

within the more comprehensive generalized Laplace distribution. Although the Laplace

distribution is infinitely divisible, Laplace distributed steps lead to neither a robust nor

a semi-robust model. If we define the extension described by the ch.f. (22) for k ∈N,

we obtain a random walk model that is semi-robust. If we go even further and define

the extension for k ∈ R≥0, the resulting model is robust.

From these considerations we can conclude that robust random walk models lie

within the intersection of semi-robust models and models with infinitely divisible

steps, however, they do not constitute the entire intersection; see Fig. 3.

4 Two-dimensional models

4.1 Radially-symmetric step densities

Many applications of movement modelling, especially those that consider movement

of terrestrial animals, require the use of two-dimensional models. We then often de-

scribe steps by their length and bearing, which corresponds to describing a vector in

polar coordinates. Accordingly, instead of assigning a distribution to steps directly,

we compose step distributions of a step length distribution and a distribution for the

bearing. From these, we can obtain a step distribution (i.e. a distribution for the two-

dimensional vector) by taking into account the transformation from polar coordinate

formulation to euclidean space. Let SSS =
(

S1
S2

)
∈ R

2 be the two-dimensional step.

Then we denote by

R =
√

S2
1 +S2

2 (28)

the step length, which is the length of the vector in polar coordinates, and let pR(r)
be the step length distribution. Let pΓ (γ) denote the distribution of the bearing. Note

that, in accordance with common usage, we use capital letters for random variables

and small letters for their realizations. The transformation between the two coordinate

systems is given by S1 = RcosΓ and S2 = RsinΓ . Assuming that step length and

bearing distributions are independent, we obtain as step density

pS1,S2
(s1,s2) =

1√
s2

1 + s2
2

· pR
(√

s2
1 + s2

2

) · pΓ (Arg(s1 + is2)), (29)
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where Arg(·) denotes the principle argument of a complex number. The factor (
√

s2
1 + s2

2)
−1

is due to the coordinate system transformation.

A classic assumption for simple random walk models is that bearings have uni-

form distribution on the interval (−π,π], which leads to a bearing density pΓ (γ) = 1
2π

(Bartumeus et al 2005; Smouse et al 2010; James et al 2011). If movement is as-

sumed to be persistent in its direction, we may release this assumption and use a von

Mises or wrapped Cauchy distribution instead. In case of a correlated random walk,

a non-uniform bearing distribution would be centred around the bearing of the pre-

vious step. In a biased random walk, the bearing distribution would have a (possibly

time-varying) location parameter that represents a global tendency towards a certain

direction or goal location (Morales et al 2004; McClintock et al 2013; Benhamou

2013). Here, we only consider models with uniform bearing distribution.

and therefore step densities of the form

pS1,S2
(s1,s2) =

1

2π
√

s2
1 + s2

2

· pR

(√
s2

1 + s2
2

)
. (30)

This density function is radially symmetric, and we can simply write

pS1,S2
(r) =

1

2πr
pR(r) (31)

for r =
√

s2
1 + s2

2. Note that we distinguish the radius density pR and radially-symmetric

step density pS1,S2
via the subscript.

The radial symmetry of the density (30) enables us to compute its ch.f. via a

Hankel transform. The Hankel transform of order ν of a function f (r) for r ≥ 0 is

given by the integral

Hν{ f}(u) =
∫ ∞

0
r f (r)Jν(ru)dr, (32)

where Jν denotes the Bessel function of the first kind of order ν (Piessens 2000). The

ch.f. of a two-dimensional random vector with joint density (31) can be calculated as

φ(uuu) = 2π H0{pS1,S2
}(‖uuu‖). (33)

For details about the calculation, see Appendix B. Because φ only depends on the

norm of uuu and hence is radially symmetric as well, we also use the notation φ(‖uuu‖).
Hankel transforms have been computed for a variety of functions, which in the fol-

lowing simplifies our analysis of characteristic functions for two-dimensional step

distributions.

4.2 Robust two-dimensional models

In the following, we look for robustness among two-dimensional models. A direct

way of verifying robustness is via the two-dimensional ch.f. according to Defini-

tion 1 or 2. In the case where the step distribution has a radially symmetric density

function, it depends on the step distribution pS1,S2
(r) whether the Hankel transform

in formula (33) can be readily obtained or not. Alternatively, we can draw on our

previous results for one-dimensional models.
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Theorem 4 Consider a random walk model with two-dimensional steps that have
radially symmetric density of the form (30). If the marginal step distribution, given
by the density pS1

(s1) =
∫ ∞
−∞ pS1,S2

(s1,s2)ds2, leads to a (semi-) robust model in one
dimension, then the two-dimensional model is (semi-) robust as well.

Proof Let φ(‖uuu‖;θθθ) denote the radially symmetric ch.f. of the two-dimensional steps,

where θθθ ∈ΘΘΘ are the model parameters. The ch.f. of the marginal density is

∫ ∞

−∞
eiu1s1 pS1

(s1)ds1 =
∫ ∞

−∞

∫ ∞

−∞
eiu1s1 pS1,S2

(s1,s2)ds1 ds2

= φ(‖uuu‖;θθθ)
∣∣
u2=0

= φ(|u1|;θθθ) =: φSi(u1;θθθ) (34)

Let n ∈ N. By assumption, there exists a function gn such that

φSi(u1;θθθ)n = φSi(u1;gn(θθθ)). (35)

Because of the previous calculations, we also have φ(|u1|;θθθ)n = φ(|u1|;gn(θθθ)). Re-

placing u1 by ‖uuu‖ yields semi-robustness for the two-dimensional model. The pa-

rameter transformation is the same for the two-dimensional and the marginal one-

dimensional model, therefore if the one-dimensional model is robust, the same holds

for the two-dimensional one.

With this result, we have established a link between one- and two-dimensional mod-

els. The correspondence of the characteristic functions given in equation (34) allows

us to compute the ch.f. of the radially symmetric two-dimensional model directly

from the ch.f. of the one-dimensional model, and vice versa. Whether it is easier to

obtain the two-dimensional ch.f. via the Hankel transform of the two-dimensional

density or via the ch.f. of the one-dimensional marginal depends on which of the two

densities is available. From the two-dimensional ch.f., in turn, we can calculate the

two-dimensional, radially symmetric step density via an inverse Hankel transform,

which is self-reciprocal.

To demonstrate these relationships, we now present three example models and

their robustness properties.

Example 1 (Exponential step length) A common step length distribution used for

movement analyses is the exponential distribution (Smouse et al 2010; DeMars et al

2013), which has density pR(r) = 1
λ e−

r
λ . Using this in the step density (31), we obtain

pS1,S2
(r) =

1

2πλ r
e−

r
λ . (36)

The Hankel transform of order zero is given by H0{pS1,S2
}(u) = 1

2π (1 + λ 2u2)−
1
2

(Piessens 2000), and thus the ch.f. is

φ(‖uuu‖;λ ) =
1√

1+λ 2‖u‖2
(37)
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From this, we can already see that the exponential step length model, where λ > 0

is the only parameter, is neither robust nor semi-robust. The marginal of the density

pS1,S2
is

pS1
(s1) =

1

λπ
K0

( |s1|
λ

)
, (38)

where K0 denotes the Bessel function of the second kind of order zero. The ch.f. of the

marginal is φ(u;λ ) = (1 + λ 2u2)−
1
2 . This is in fact the ch.f. of a generalized (asym-

metric) Laplace distribution with location and asymmetry parameters being zero, and

with scale λ and power k = 1
2 , which we have seen before to be robust; compare

section 3.2 and Table 1. Therefore, if we embed the exponential step length model in

an extended model with step characteristic function

φ(‖uuu‖;λ ,k) =
1

(1+λ 2‖uuu‖2)k , (39)

for k ∈ R≥0, we obtain a robust model with the two parameters λ > 0 and k ∈ R≥0.

In the one-dimensional case, we could obtain the density from the ch.f. (22) via an

inverse Fourier transform. However, the two-dimensional step density needs to be

computed from (39) as an inverse Hankel transform. Unfortunately, the inverse Han-

kel transform of order zero of the function (39) is not readily available.

Example 2 (Heavy-tailed step length distribution) In one dimension, we have seen

that stable step distributions lead to robust models. An example of a stable distri-

bution with closed-form density function is the Cauchy distribution. According to

Theorem 4, we can therefore construct a robust two-dimensional model by finding

the two-dimensional density (31) that has the Cauchy density as marginal. We can

achieve this via the identity of characteristic functions established in (34). From the

ch.f. of the Cauchy distribution, we obtain a corresponding two-dimensional ch.f.

φ(‖uuu‖;σ) = e−σ‖uuu‖. Applying an inverse Hankel transform according to the iden-

tity (33), we obtain (Piessens 2000)

pS1,S2
(r) =

σ
2π(σ2 + r2)

3
2

. (40)

According to (31), this results in a step length density for the two-dimensional models

as follows

pR(r) =
σ r

(σ2 + r2)
3
2

. (41)

The variance does not exist for this density, and the density is heavy-tailed. More

precisely, the tail is of order 1
r2 , that is we have

σ r

(σ2 + r2)
3
2

= O
( 1

r2

)
, (42)

as r → ∞. We will later see that the step distribution in this example is a special case

of a bivariate stable distribution. Because of its relation with the univariate Cauchy, it

is also known as bivariate (isotropic) Cauchy (Achim and Kuruoglu 2005; Nadarajah

and Kotz 2007).
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Example 3 (Normally distributed steps, or Rayleigh step length distribution) The

Normal distribution is another special case of a stable distribution. Its radially sym-

metric two-dimensional version with mean zero is the bivariate Normal distribution

with covariance matrix
(σ2 0

0 σ2

)
, having density

pS1,S2
(r) =

1

2πσ2
e
− r2

2σ2 , (43)

and ch.f. φ(‖uuu‖;σ) = e−
1
2 σ‖uuu‖2

. The corresponding step length distribution with den-

sity

pR(r) =
r

σ2
e
− r2

2σ2 (44)

is a Rayleigh distribution with scale parameter σ > 0. As we can easily see from the

ch.f. and also via Theorem 4, this model with Normally distribution steps is robust.

In the latter two examples, the step distributions are special cases of bivariate

stable distributions. Analogously to one-dimension, an α-stable random vector SSS ∈
R

2, 0 < α ≤ 0, by construction has the property

n

∑
i=1

SSS d
= n

1
α SSS +bbbn (45)

for some bbbn ∈ R
2 (Samorodnitsky 1994). If SSS is elliptically contoured, its ch.f. is

E
(
eiuuu·SSS) = exp

(
iuuu ·μμμ − (uuuT Σuuu)

α
2

)
(46)

for location vector μμμ ∈ R
2 and positive definite shape matrix Σ (Nolan 2013). From

this form of the ch.f., we can easily see that the nth power is again the ch.f. of an

α-stable random vector, with location vector nμμμ and shape matrix n
2
α Σ . Therefore,

we immediately obtain the following theorem.

Theorem 5 A two-dimensional random walk model with elliptically contoured steps
SSS that have bivariate stable distribution, i.e. have ch.f. (46), is robust. ��
The bivariate Normal distribution with mean μμμ and a general covariance matrix

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
, (47)

where ρ is the correlation, is an example of such a bivariate stable distribution for

α = 2. If SSS is not only elliptically contoured but even radially symmetric with location

μμμ = 0, the ch.f. (46) simplifies to

φ(‖uuu‖;α,σ) = e−σα‖uuu‖α
, (48)

for σ > 0. Example 2 and 3 were special cases for α = 1 and α = 2, respectively.

As in the univariate case, closed-form expressions for the density of bivariate

stable distributions are available only for some special cases, e.g. the examples we

have presented above. However, there are results that allow simulation of random
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variables with stable distributions. For an α-stable, radially symmetric stable random

vector SSS, we have

SSS d
=
√

AT UUU , (49)

where UUU is a random vector with uniform distribution on the unit circle, T is a chi-

squared random variable with degrees of freedom 2, and A is a univariate stable ran-

dom variable, A ∼ S (α
2 ,1,2σ2(cos πα

4 )
2
α ,0) (Nolan 2013). Thus, to obtain a bivari-

ate stable random vector, it is enough to generate a univariate stable random variable.

For this, an algorithm is available (Weron 1996), which has been implemented in the

R package ‘stabledist’ (Wuertz et al 2013). This package also provides numerical

calculations of density and cumulative distribution functions.

5 Discussion

We presented a new way of classifying movement models according to their robust-

ness against changes in temporal discretization. After providing a formal definition

for movement model’s robustness, we explored which models have this property. Our

definition emphasizes a systematic transformation of model parameters between tem-

poral resolutions. This ensures that, if a model is robust, we can fit it to movement data

with varying time intervals between locations, and we know how to translate model

parameters between resolutions. Conversely, if a model is not robust, any results we

derive from it are tied to its particular temporal resolution, and thus comparison of

studies is difficult if they use data obtained at different sampling rates.

The question of robustness may already arise at a fundamental level when in-

terfacing models with data. If a model is not robust, then it cannot use data with

a particular temporal resolution to make inferences about movement behaviours at

higher and lower resolutions. This is of particular concern in movement ecology, be-

cause sampling schemes for animal movement data are often subject to logistical

constraints. For example, limited battery life of GPS devices often leads to lower

sampling rates in favour of longer total time spans. The resolutions thus imposed on

data may be very different than those for behavioural or ecological questions about

movement. If a model is not robust, then it may still be semi-robust, which means that

inference can be made at lower but not at higher resolution. Because the conditions

for robustness and semi-robustness are rather stringent, it appears that many existing

movement models may fail in this regard.

Previous approaches to the problem have been empirical or based on simula-

tions. Several studies used fine-scale movement data with sampling intervals of a few

minutes (Pépin et al 2004; Postlethwaite and Dennis 2013) or even a few seconds

(Ryan et al 2004). These data were subsampled at various scales to obtain empirical

relationships between the sampling interval and measured or inferred movement pa-

rameters. Such investigations have demonstrated that the sampling interval can have

a strong effect on results from movement analyses. However, each of these studies is

based on a specific species within a particular environment, and it is unclear whether

the obtained relationships and possible correction factors can be transferred to other

species and systems. Also, fine-scale movement data is rarely available, and therefore

we need a more general method that relates sampling rates to movement parameters.
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As an alternative to using very fine movement data, another approach has been

to simulate synthetic data from movement models, such as correlated random walks,

and to subsample these. Movement characteristics, such as apparent angular deviation

and apparent speed, were then calculated for varying discretization of the simulated

movement paths to establish relationships, which can be used to derive discretization-

independent measures such as sinuosity (Bovet and Benhamou 1988; Benhamou

2004; Codling and Hill 2005; Rosser et al 2013). In this approach, the focus lies on

preserving movement characteristics across varying resolution. In contrast, our ro-

bustness definitions operate at the level of the model. However, if a model is robust,

this implies that model parameters follow a relationship with the sampling interval.

The parameter transformation gn in our robustness definition takes a similar role as

the relationship between, e.g. angular deviation and sampling interval in Codling and

Hill (2005).

In our investigations, we found that robustness is a rather strong condition for

a model. This is in line with previous empirical results that highlight the sensitivity

of movement characteristics to the sampling interval. For one-dimensional models,

we encountered two groups of step distributions that lead to robustness. First, Theo-

rem 1 established robustness for distributions whose characteristic function is a sim-

ple power function. Among the common distributions, those that meet this condition

have support R≥0 and therefore only allow steps into positive direction. Such models

can be applicable in situations where movement experiences external forces, such as

movement within strong water currents (Luschi et al 2003) or wind-driven dispersal

(de la Giroday et al 2011). The second class of step distributions that lead to ro-

bust models are the stable distributions. If steps have α-symmetric stable distribution

S (α,0,σ ,0), the resulting random walk is a Lévy flight (Klafter et al 1995). In our

analysis of two-dimensional models, we found few robust models. It is, again, mainly

the stable distributions that constitute examples of robust models. Stable distributions

are fat-tailed and do not have second (and higher) moments, the Normal distribution

for α = 2 being the only exception. To circumvent this problem, the related Lévy

walk was introduced (Klafter et al 1995).

On the one hand, Lévy walks may be attractive models because of their scale-

invariance and optimality in certain foraging situations (Viswanathan et al 1999). On

the other hand, it is highly debated whether Lévy walks are suitable models for move-

ment and fit empirical data (Benhamou 2007; James et al 2011; Edwards 2011; Pyke

2015). A major point of controversy arises from the difficulty of inferring processes

from patterns. Although movement patterns may fit Lévy walks, the underlying pro-

cess does not necessarily need to be a Lévy walk but may be due to more complex

behaviour (Benhamou 2007; Plank et al 2013). Interestingly, the risk of misidentify-

ing a (composite) correlated random walk as Lévy walk is strongly affected by the

data sampling scheme and whether higher dimensional data is projected on a lower

dimension (Plank and Codling 2009; Codling and Plank 2011). The debate on Lévy

walks further concerns statistical methods that are used to detect Lévy walk behaviour

in data (White et al 2008; Edwards 2011). Even the application of Lévy walks within

optimal foraging theory as Lévy foraging hypothesis has been met with scepticism

(Pyke 2015).
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In our paper, we are merely interested in the question if there are models that

are robust to changes in sampling rates, and which models these are. Because of the

complexity of the issue, we here concentrated on investigating this question for ba-

sic random walks. Because we assume that our random walks have i.i.d. steps, this

excludes correlated random walks, in which the direction of a step depends on the di-

rection of the previous step. We restrict our analysis of two-dimensional models fur-

ther to radially symmetric step densities, which also excludes biased random walks.

Even among these rather simple models, we found few that are robust. This foreshad-

ows that robustness may be rare, if existent at all, among more complex models. But

many contemporary models include forms of behavioural mechanisms beyond the

mere random walk and will likely continue to become more sophisticated (Holyoak

et al 2008; Smouse et al 2010; Fagan et al 2013). This means that most analyses of

movement data to date are restricted to the temporal resolution of each study, limit-

ing extrapolation of results and comparison between studies. Here, we have proposed

a new fundament for analyzing movement models’ robustness to varying sampling

rates. Our analysis of simple random walks serves to illustrate the new framework

and to provide a first step towards a mathematical rigorous treatment of the prob-

lem. An important next step will be to extend the framework to more complex and

biologically realistic models that include temporal or spatial heterogeneities.

We suggest that a path for further investigation lies in continuing to look for ro-

bust extensions of models. The results we have presented here about robust random

walk models need not be exhaustive. In Example 1, we have shown that the two-

dimensional model with exponential step length is not robust but can be extended to

a robust model with an additional parameter (the power of the ch.f.). This would be

similar to the one-dimensional example in section 3.2, where we demonstrated a ro-

bust extension to the Laplace model. If we would use this extended model and during

statistical inference estimate the power parameter together with all other parameters,

we would be using a robust model. Such an extension is, in theory, also possible

for other models. Unfortunately, although we may be able to straightforwardly con-

struct the characteristic function of such a robust extension, it can be more difficult

to derive the bivariate step density. To overcome this problem, one could fall back

on numerical solutions. For example, one could solve the inverse Hankel transform

of equation (39) numerically and embed this process into an inferential optimization

routine such as likelihood maximization or an MCMC algorithm.

Another avenue for future research will be to release the strict conditions of ro-

bustness. In our definition presented here, the parameter transformation gn is a key

element. It assures that we can systematically translate results about model parame-

ters between analyses using different sampling rates. The works by Pépin et al (2004)

and Codling and Hill (2005) tried to establish such a transformation empirically for

some specific movement quantities. The relationships they found were able to correct

for different sampling rates to some extent. This suggests that although our robust-

ness is a strong condition on a model, there may be models that are approximately

robust within certain ranges of sampling intervals. Often, we do not wish to compare

data analyses with widely varying sampling intervals. When we analyze movement,

we always have to be aware of the behavioural scale of interest, as the behavioural

processes may vary across scales (Yackulic et al 2011; Fleming et al 2014). Also, the
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same movement path may be appropriately described by different models (e.g. bal-

listic or diffusive) when viewed at different scales. However, it may be a reasonable

goal to compare movement analyses with sampling intervals within, e.g. a range of a

few hours. Within such a reasonable range, an approximate type of robustness may

be sufficient.

Therefore, a useful extension of the robustness framework presented here is a defi-

nition of approximate robustness, which does not require the model distributions to be

exactly the same across resolutions but only approximately. We provide such a defini-

tion in Schlägel and Lewis (2015), in which we also make a step from simple random

walks to spatially-explicit random walks that include a resource-selection component.

Our present paper already demonstrates that analytical calculations become techni-

cally involved as soon as we move to two-dimensional models. Therefore, to include

more biological realistic models in our robustness analysis, it is necessary to branch

out to numerical as well as Monte Carlo (i.e. simulation) methods. For example, a

challenge for future investigations of more complex models will be to identify a suit-

able parameter transformation gn as required by the robustness definition. For this,

simulations can be used, relating parameter estimates to the subsampling amount n,

similar to the approach by Benhamou (2004) and Codling and Hill (2005).

We have put forward a new mathematical rigorous approach to address the ques-

tion how sampling rate of movement data affects statistical inference and whether

models, a key tool for analyzing movement data, can be robust to varying sampling

rates. While our analysis here focuses on simple random walks, we hope to encourage

further research built on this theoretical basis. We have presented our new framework

of robustness to temporal resolution in the context of movement ecology. However,

random walks serve as models for movement also in other areas than ecology, for

example cell movement during physiological processes (Dickinson and Tranquillo

1993) or blood vessel growth, termed angiogenesis (Plank and Sleeman 2003). There-

fore, our framework could be interesting to these fields as well.
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Fig. 1 Schematic of locations and steps between locations for a) an original process and b) its subprocess

for n=2. The original process consists of steps Si, whereas the subprocess has steps S̃SSi,2, which are sums

of the original steps
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Table 1 List of distributions, which as random walk step distributions lead to semi-robust or robust mod-

els. The table indicates which of these distributions are also robust or infinitely divisible. We do not include

any statements about infinite divisibility for two-dimensional models as we have not discussed this in our

paper

Distribution Ch.f. φ(u)
Parameter Semi-

Rob.
Inf.

space rob. div.

Continuous distributions

with support R

Normal eiuμ− 1
2 σ2u2

μ ∈ R, σ ∈ R
+ � � �

Cauchy eiuμ−σ |u| μ ∈ R, σ ∈ R
+ � � �

Lévy eiuμ−|σu| 1
2 (1−i·sign(t)) μ ∈ R, σ ∈ R

+ � � �

Laplace extension
(

1
1+σ2u2

)k μ ∈ R, σ ∈ R
+, � � �

k ∈ N

Generalized eiuμ

(1+σ2u2+iνu)k
μ,ν ∈ R, � � �

asymmetric Laplace σ ,k ∈ R≥0

Continuous distributions

with support R2

Bivariate Cauchy e−σ‖u‖ σ ∈ R
+ � �

Bivariate Normal e−
1
2 σ‖u‖2

σ ∈ R
+ � �

Continuous distributions

with support R≥0

Gamma 1
(1−σu)κ σ ∈ R

+, κ ∈ R
+ � � �

Chi-squared 1

(1−2u)
k
2

k ∈ N � � �

Discrete distributions

Poisson eλ (eiu−1) λ ∈ R≥0 � � �

Bionomial (peiu +(1− p))n p ∈ [0,1], n ∈ N0 � � �
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Fig. 2 Inference results when using the Laplace model versus the generalized Laplace model. Panel a:
Simulated 1D-random walk with Laplace distributed steps with mean zero and scale σ = 1. Panel b: Ex-

cerpt of panel a for time steps 1 to 25. Panel c: Histogram of realized steps of the random walk, fitted

with a Laplace distribution with mean zero. The estimate of the scale σ is denoted by σ̂ . Panels d, f, h:
We subsampled the random walk, taking every 4th location. The panels show the original random walk

(in grey) and the subsample (in black). We obtain different subsamples, depending on the starting location

of the subsampling procedure. The three panels start the subsampling at x1, x2, and x3, respectively. Each

subsampled path is 1000 time steps long. Panels e, g, i: Histograms of realized steps of the subsampled

paths. Each histogram corresponds to the subsample to its left. Steps were fitted with a Laplace distribu-

tion (dashed purple line) and with a generalized Laplace distribution as given in equation (24) (red solid

line). The generalized Laplace model accounts for the subsampling with its additional parameter k (here

k = 4) and is thus the correct model. When fitted to the subsampled random walks, k was estimated si-

multaneously with σ . The estimate of k varies for the different subsamples, reflecting the stochasticity of

the data, but it is always close to 4. When using the generalized Laplace model, estimates of the scale σ
are valid estimates for the scale of the original random walk as well. In contrast, the scale estimate from

the simple Laplace model (given in parenthesis) cannot validly represent the original scale and naturally

overestimates σ
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Semi-
robust
models

Models w/
infinitely
divisible
steps

Robust
models

• Generalized Laplace
• Stable Distributions
   - Normal
   - Cauchy

• Binomial• Laplace
• Laplace extension

   • Chi-squared

Fig. 3 Graphic depiction of the relationships between semi-robust and robust models and models with

infinitely divisible step distributions. Each section contains examples from the text for step distributions

that lead to the type of model



28 Ulrike E. Schlägel, Mark A. Lewis

Acknowledgements We are grateful for the comments of two reviewers, which were highly useful in im-

proving our manuscript. UES was supported by a scholarship from iCORE, now part of Alberta Innovates-

Technology Futures and funding from the University of Alberta. MAL gratefully acknowledges Natural

Sciences and Engineering Research Council Discovery and Accelerator grants, a Canada Research Chair

and a Killam Research Fellowship.

References

Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs, and math-

ematical tables, National Bureau of Standards Applied Mathematics Series, vol 55. For sale by the

Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

Achim A, Kuruoglu EE (2005) Image denoising using bivariate α-stable distributions in the complex

wavelet domain. Signal Processing Letters, IEEE 12(1):17–20

Bartumeus F, Da Luz M, Viswanathan G, Catalan J (2005) Animal search strategies: a quantitative random-

walk analysis. Ecology 86(11):3078–3087

Benhamou S (2004) How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or

fractal dimension? J Theor Biol 229(2):209–220

Benhamou S (2007) How many animals really do the Lévy walk? Ecology 88(8):1962–1969
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Fagan WF, Lewis MA, Auger-Méthé M, Avgar T, Benhamou S, Breed G, LaDage L, Schlägel UE, Tang
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A Scaling property for a step density with symmetric stable distribution

Here, we present a short calculation that shows the scaling property given in equation (20) for a step density

pS(s) when S ∼ S (α,0,σ ,0). The ch.f. of S is φ(u) = exp(−σα |u|α ). From this, the density of S can be

obtained via an inverse Fourier transform,

pS(s) =
∫ ∞

∞
exp(−ius)φ(u)du. (50)

Analogously, we calculate the density of the summed steps S̃i,n = ∑n−1
j=0 Sni− j as

pS̃i,n
(s) =

∫ ∞

∞
exp(−ius)φ(u)n du =

∫ ∞

∞
exp(−ius)exp(−σα n|u|α )du. (51)
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A substitution, t = n
1
α u, yields

pS̃i,n
(s) = n−

1
α

∫ ∞

∞
exp(−itn−

1
α s)exp(−σα |t|α )dt =

1

n
1
α

pS

(
s

n
1
α

)
. (52)

B Characteristic function of a radially symmetric random vector

Here, we provide details about the link between the characteristic function of a radially symmetric random

vector and the Hankel transform as stated in equation (33). The ch.f. of the two-dimensional random vector

SSS with density (30) is given by

φ(uuu) =
∫ ∞

−∞

∫ ∞

−∞
eiuuu·sss pS1 ,S2

(s1,s2)ds1ds2. (53)

Because the density is radially symmetric, we switch to polar coordinates via s1 = r cosγ and s2 = r sinγ ,

where the angle γ is chosen such that the vector uuu has angle zero. The determinant of the Jacobian for this

transformation is |J| = r. The dot product of the vectors uuu and sss can be written as uuu · sss = ‖uuu‖r cosγ . With

this, we obtain

φ(uuu) =
∫ ∞

0

(∫ 2π

0
ei‖uuu‖r cosγ dγ

)
pS1 ,S2

(r)r dr. (54)

The symmetry of the cosine allows us to simplify the inner integral as follows,

∫ 2π

0
ei‖uuu‖r cosγ dγ = 2

∫ π

0
ei‖uuu‖r cosγ dγ = 2πJ0(‖uuu‖r), (55)

where J0 denotes the Bessel function of the first kind. The last equation follows from an integral represen-

tation of the Bessel function (Abramowitz and Stegun 1964, 9.1.21). With this, the characteristic function

becomes

φ(uuu) = 2π
∫ ∞

0
pS1 ,S2

(r)r J0(‖uuu‖r)dr. (56)

The integral is the Hankel transform of order zero of the density pS1 ,S2
(r) evaluated at ‖uuu‖.


