I*. Natnonal Library Biblioth
of Canada

Acquisitions and

ue nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontario)

Your tile Volie rélérence

Out tle Notre 16lérence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiguer avec luniversité
qui a cendéré le grade.

La qualité dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éte
dactylographiées a l'aide d’un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

UNIVERSITY OF ALBERTA
Programming Using Constructive Proofs

BY

Andrew Walenstein @

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree
of Masters of Science

DEPARTMENT OF COMPUTING SCIENCE

Edmonton, Alberta
Fall 1992

(L

National Liby; Bibliothéque nationale

of Canada a:y du Canada

Canadian Theses Service Service des théses canadiennes
Ottawa, Canada .

K1A ONA4

The author has granted an irevocable non-
exclusive licence allowing the:National Library
of Canada to reproduce, lodn, distribute or sell
copies of his/her thesis by any means and in
any form or.format, m: this thesis avallable
to interested persons, - -

The author retains ownership of the copyright
in histher thesis. Neither the thesis nor
substantial extracts from it may be printed or

otherwise reproduced without his/her per-
mission. -

-L'auteur a accordé une licence irrévocable et
- non exclusive permettant & la Bibliothéque

nationale du Canada de reproduice, préter,

-distribuer ou vendre des coples de sa thése

de quelque manidre et sous quelque forme
que ce soit pour mettre des exemplaires de

cette thése a a disposition des personnes’
intéressées,

Lauteur conserve {a propriété du droit d'auteur
qui protége sa thése. Nila thése ni des extraits
Substantiels de celle-ci ne doivent &tre

imprmés ou autrement reproduits sans son
autorisation.

ISBN 0-315-77296-4

Canady

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Andrew Walenstein

TITLE OF THESIS: Programming Using Constructive Proofs

DEGREE: Masters of Science

YEAR THIS DEGREE GRANTED: 1992

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

Permanent Address:
8216 186 Street
Edmonton, AB
T5T 1H4
Canada

Date: DTAJZV 03, (??2

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEAKCH

The undersigned certify that they have read, and reco.::v1:4 %o the Faculty of Grad-
uate Studies and Research for acceptance, a thesie &~ 7icd Programming Using
Constructive Proofs submitted by Andrew ’zi«s:3%ein in partial fulfillment of
the requirements for the degree of Masters of Stsc:ice

Bl b B

. “Supervisor: H. James Hoover

Examiner: Petey van Bzi:lQﬁ
. (‘)
f >./\\ A (8 L -

External: Bruce Cockburn (Electrical Engineering)

Date: JL-)‘ZY .g.; qu .

To Lorena

Abstract

Constructive logics and type theories can be viewed as programming environments
when they are able to construct correct programs from prsiofs of their specifications.
In this thesis we discuss the implementation of a system called MiZAR-C which allows
one to write proofs in a classical first-order natural deductior. logic from which it can
extract programs when the proofs are constructive.

A major task involved in using a logic as a programming language is the encoding
of the relationship between the specification and a program which meets it. We first
lay down the foundation for a general framework for encoding program-specification
relationships in M1zAR-C which follows from the definition of the mechanism to ex-
tract programs from proofs. The programs extracted from proofs are defined by a
realizability interpretation for the inference rules in the logic. We will also need to
introduce a marking scheme for the inference rules in order to show that allowing clas-
sical inference rules does not cause erroneous programs to be extracted: the marking
scheme allows us to recognize non-constructive proofs. We also discuss the soundness
of the extended features and conveniences of M1ZAR-C’s logic such as the equality
inference rules, multi-way disjunction, and function terms.

Second, we describe how the realizability interpretation’s definition outlines a kind
of framework for extending the logic with axioms representing definitions of the basic
data types which might be found in programming languages. That is, the restrictions
which the realizability interpretation imposes on the realizations paired with axioms
indicates how to add constructions such as data types and induction schemes to the
system. We also introduce the possibility of modifying the realizability interpretation
in order to expand this framework so that it may encode specifications for programs
which execute non-deterministically and which may not behave purely functionally.

Finally, we conclude with a demonstration proof of the summation procedure for
functions over natural numbers, and we mention problems which need to be resolved
in order to provide a logical framework convenient enough for writing programs in
general. The proof of the summation procedure serves to illustrate a need for ab-
straction methods such as tactics and abbreviations.

Acknowledgements

I would like to thank my supervisor, Jim Hoover, for his invaluable and inspiring
tutelage, winning attitude, and constructive comments. He has provided a marveious
research environment in which the joys of comprehending new ideas were spiced with
deliciously serendipitous discoveries. I thank him for adding depth to my academic
pursuits by being a good friend, and often dragging me away from the terminal and off
to movies and lunches. I believe he somehow managed to temper my often wild and
implusive ideas (and tolerated caffiene-induced, late-night e-rantings), and provided
instinctive direction for exploration.

Piotr Rudnicki, the other main M1zZAR-C group member, made cur study group
complete. He has been a wise, experienced guide to my personal and professicnal
philosphy—he mixed thoughtfulness with humor. Thanks go to my committee: Keith
Smillie for his careful and appreciated evaluations and comments, and to Peter van
Beek and Bruce Cockburn for their thorough and excellent review. I owe Brent
Knight for his careful criticisms, and for insisting on excellence. I am also grateful
to Tony Jones and Ladislav Hala whose work ethic in the weight room I have gained
personal strength from. Ron Kube, Hazem Nassef, Manoj Jain, Phil Clarke, and
Nyan Lo provided me with necessary dart challenges. I thank Bob Beck for allowing
me to let Joose, and the Comp Sci intramural hockey team for fun and support. Brett
Manz deserves credit for being an excellent friend and for providing late-night/early-
morning snooker competition and general diversions from reality. I thank my mother
and father for their support and care, and for enduring my often nocturnal working
schedule.

The Department of Computing Science and Jim Hoover have provided me with
funding during my stay.

I owe Lorena the most, for her patience and love.

Contents

1 Introduction

1.1 Background Material
1.2 Programming using Constructive Proofs
1.3 The M1zAR-C System

2 Preliminaries

2.1 Scheme Notation for Untyped A Calculus
2.2 Realization Pairing and Inference Notation

3.3 Existential Introduction and Elimination
3.3.1 Formula Strictness and Existential Introduction

3.3.2 The consider Elimination

3.4 Conjunction, Disjunction and Case Selection
3.4.1 Natural Cor'unction and Disjunction Representation
3.4.2 Realizing Disjunctions
3.4.3 Disjunction Introduction
3.44 Case Selection
3.4.5 Conjunction Inferences

3.5 Logic with Equality

3.5.1 Equality Introduction Rule

3.5.2 Take Rule

3.6 Sorted Variables

4.0.1 Shape

402 Adding Common Structures

ooooooo

ooooooooooooooooooo

oooooooooooooooo

ooooooooooooooooooo

oooooooooooooooo

ooooooooooooooo

The Base Set of Inferences and its Soundness
3.1 Constructiveness and Marking Formulas
3.2 Familiar Inferences

oooooooooooooooo

ooooooooooooooooooo

ooooooooooooooooooo

oooooooooooooooo

ooooooooooooooooooo

oooooooooooooo

ooooooooooooooooooo

ooooooooooooooooooo

ooooooooooooooooooo

ooooooooooooooooooo

Frameworks for Relating Programs to Specifications

ooooooooooooooooooo

ooooooooooooooooooo

4.0.3 Afunctional Realization Specification

vii

DD W N

oo Qo

11
11
12
13
13
14
15
16
19
20
20
21
23
24
25
26
26
27
28

30
31
32

C a w »

4.0.4 Alternative Case Selection Strategies

Some Problems Encountered

51 AnExampleProof,

5.2 Implementation Restrictions

5.3 DeficienciesintheLogic
53.1 SortsasStaticTypes
5.3.2 Tactics and Abbreviations

Annotated proof of Pred
Nm‘x-constructive Inference Rules
Proof of Summation

Proof of Summation using Tactics and Abbreviations

viii

39
39
40
42
42

s5r

52

54

87

List of Figures

1.2.1 A demonstration proof of the identity function. 4
1.2.2 A program extracted from Ident’sproof. 4
1.2.3 An example proof of a function in Mi1ZAR-C. 5
3.3.1 A sample use of the consider statement. 17
3.3.2 Performing universal eliminationon aterm. 18
3.3.3 Using value capture for existential introduction. 19
4.0.1 A representation of a data type for the naturals. 32
4.0.2 Proving lemmas from a compact representation of a data type. 33
4.0.3 An example of parallel case selection. 38
5.3.1 An alternative grammarforsorts. 43
5.3.2 Using special syntax forsorts. 43
5.3.3 Using formulas to specify types. 4

ix

List of Symbols

Notation Description , Section

P realizes: zpY means z realizes Y 2.2

(elo,ely,...,ely) n element list containing el; in order 2.1

V{Fo, /,...,F;) n-ary disjunction in formulas F; 34.1

A{Fo, Fy,...,F,) n-ary corjunction ir formulas F; 34.1

D(F) the set of defined teims in formula F 3.3.1

v(v) the Scheme variable identifier to which the logic 3.2.2
variable name v is mapped

u(l) the Scheme vasiable identifier to which the for- 3.2.2
mula labe} / is mapped

Areg the proper free substitution of term t for (free) 3.2.2
variabie r in A

T the Scheme expression z evaluated 2.1

P=F th- predicate P abbreviates the formula F 5.1

Chapter 1

Introduction

There is interest in the computing science community in the relationships between
computer programs, particularly functional programs, and proofs of theorems in var-
ious constructive logics. Some of that interest is in codifying mathematical thought
using a formal logic for precision: the rigour with which computers can check formal
proofs can be utilized to gain confidence in the proven theorems. This has been the
concern of thr AUTOMATH [7] project and the Mizar [21] project; the former using
a constructiv logic and the latter a classical logic.

Another important motivation for using a constructive logic is that constructive
logics promise a method for producing correct programs. The main idea behind this
kind of constructivism is that a given formula, F, is considered true when it can be
proven constructively, that is, when there is some effective method for proeducing an
object which gives evidence for F. It was Kleene (see [24, 2]) who proposed the idea
of realizability which relates formulas to programs: the programs realizing formulas
take the place of the vaguely defined idea of effective method of for giving evidence
to the formulas. Cury and Howard (see [6]) reformulated realizability with natural
deduction proofs in mind: they showed an isomorphism between natural deduction
logics and typed lambda calculi, that is, they related propositions to types.

The relationship between propositions and types is used by projects whose con-
cerns are directed towards program derivation. Martin-Lof’s Type Theory [16],
NUPRL [4), and the Calculus of Constructions [6] approach the problem of program
derivation from the type perspective, using type systems as their formal language. In
contrast, the PX system [10, 11] utilizes a logic whose term language forms the basis
of a functional programming language; in PX, from a constructive proof of a formula,
a Lisp program is extracted. Whereas PX implements a particular logic for program-
ming, systems such as Elf [18) are logical fymeworks in which various logics can be
implemented, for example constructive logies. PX and Elf demonstrate a range of
concerns for computing scientisis: from investigating particular logics with a specific
computation paradigm in mind, to investigating classes of logics in a framework for
implementing.

The members of the MIZAR-C group «t the University of Alberta, (Jim Hoover,

1

Piotr Rudnicki, and Andrew Walenstein) have implemented a proof checker and pro-
gram extraction system, called Mi1ZAR~C, which falls somewhere in the range be-
tween PX and Elf. MiZAR-C implements a first-order natural deduction logic which
may be extended by the addition of inference rules and axioms. With the extension
mechanisms, MIZAR-C can implement or simulate many different logics, so it is a
type of logical framework. In addition, programs are generated from proofs through
a realizability interpretation in which formulas and inferences in the logic calculus
are interpreted as expressions and operations on expressions in an untyped lambda
calculus. MiZAR-C’s language for the logic is closely related to the Mizar-MSE lan-
guage [14]; its language for the extracted programs is Scheme, a cousin of Lisp which
implements an untyped lambda calculus. MiZAR-C’s proof checking environment
is implemented using the Synthesizer Generator [19] which provides an interactive
syntax directed editing environment for writing proof texts.

1.1 Background Material

In order to comfortably read this thesis, knowledge of the general ideas of several
systems and disciplines is desirable. The reader should understand the process of
natural deduction, understand the untyped lambda calculus, and know how to read
and understand the Scheme syntax for untyped lambda calculus. A good introduction
to lambda calculus and Scheme appears in [8]; [17] and [14] give introductions to
natural deduction, the latter also describing the syntax of Mizar-MSE, the language
upon which MiZAR-C’s language is based.

Natural deduction refers, in essense, to the process of using arguments to create
formulas: an argument is created by making assumptions and showing a conclusion
which follows from the assumptions. If the assumptions are formulas, the argument
proves an implication: showing formula B can be concluded from an assumption of
formula A proves A — B. Similarily, if thc assumption is a variable with an unknown
value, the argument proves a universally quantified formula: showing formula Plz]
from a variable z of unknown value proves Vz.P[z]. Forming implications this way is
called implication introduction, and forming universally quantified formulas is called
universal introduction. What is important for the logic is that when an implication
or universal introduction is performed, an assumption is discharged, that is, we can
no longer refer to the discharged assumption (A above), or variable (z above). In
MizAR-C, assumptions of formulas and variables occur only within the scope defined
by a now-end pair, therefore universal and implication introductions occur when
leaving the scope. Natural deduction systems, in addition to arguments, also define
a collection of rules of inference such as implication elimination, which are used to
justify deduction steps. For example, if A is known to be true, and we have proven
A — B, then we can use the implication elimination rule to justify the conclusion
of B from these two facts. In MIZAR-C, justification of the deduction of formula F
by appealing to an inference rule is written “F by rule(A,B,...)", where A, B, ...

2

are formulas used in the justification by rule rule. A natural deduction provi of a
theorem typically utilizes a combination of inference rules and arguments.

In its simplest form, untyped lambda calculus is a calculus of variable substitu-
tion: variable substitution occurs when lambda calculus terms are reduced. Lambda
expressions of the form (lambda (z) g) define a function in parameter variable z
over expression g; lambda expressions of the form (f e) are called applications of
expression f to argument e. If f is a function of the form (lambda (z) g), (f e)
can be reduced: the result of the reduction is the expression obtained by substituting
all occurrances of expression e for variable z in expression g. This reduction is called
B reduction. Scheme uses (an expanded version of) untyped lambda as its function
definition and application language, so expressions of the form (lambda (z) g) are
Scheme functions, and (f e) is a function application itself. Reduction occurs in
Scheme during evaluation, and Scheme tries to reduce an expression until it cannot
be reduced further. Scheme will do this by trying to evaulate (reduce) the parame-
ters in a function application before reducing the function application. Scheme adds
assignment operations to the language, however when these operations are not used,

Scheme expressions are purely functional, that is, their output depends only on the
value of their input parameters.

1.2 Programming using Cormstructive Proofs

M1zAR-C provides an environment for producing programs which are correct with
respect to a specification of its intended behaviour. The relationship between spec-
ifications and programs is established by using the language of first order predicate
logic formulas as the specification language. We can do this by relating input z to
output y by reading the formula

Vz.(3y.Post[z,y))

as a specification of a program which, when given an z, finds a y for which prop-
erty Post[z,y] on z and y holds. Then, through the realization mechanism, from a
constructive proof of the specification, a program is extracted which is correct with
respect to the specification.

MizAR-C uses a Curry-Howard translation to transform the proofs into Scheme
programs. To see how the transformation relates proof steps to program steps, ex-
amine Figure 1.2.1. The figure contains a proof of the formula Vz.(3y.y =), which
is written in the language of MiZAR-C as “for x holds (ex y st y=x)". In the
proof, the let statement declares a variable which is local to the scope delimited by
the now-end pair. Since nothing is assumed about the value of the local variable x,
whatever formula we conclude using it (in this case, ex y st y=x) will hold for any
value of x which we provide; therefore, this natural deduction argument proves that
ex y st y=x may be universally quantified.

now

let x; { parameter x }
x = x by eqintro; { Mizar-C knows x=x }
thus ex y st y=x by exintro(_PREVIOUS); { return val == x }
end;

Ident: for x holds (ex y st y=x) by direct(_PREVIOUS);
Figure 1.2.1: A demonstration proof of the identity function.

(LAMBDA (x)
(LIST x #t))

Figure 1.2.2: A program extracted from Ident’s proof.

The use of local scopes for variables is a part of the process of hypothetical reason-
ing. In the logic, this reasoning corresponds to creating a universal formula (i.e. uni-
versal introduction), in programming terms, it corresponds to function abstraction.
Thus the let variable declaration is analagous to a parameter declaration in a pro-
gramming language. The existential quantifier introduction producing ex y st y=x
acts as a value store: in this case the value can be seen to be the value of the local
variable (function parameter) x. The thus token serves to identify ex y st y=x as
the conclusion of the subproof, which corresponds to identifying the return value for
a function in programming language terms. Therefore, a program extracted from the
proof would look like the program in Figure 1.2.2. The program is a function which
takes any value and returns it (along with a “proof” that the value is equal to itself,
here written #t). In the lambda calculus, (LAMBDA (x) e) is a function abstraction
over expression e using x as the parameter to the function.

Similarly, the assume statement is analagous to a precondition parameter: impli-
cation introduction corresponds to function abstraction, and implication elimination
to function application. Implications abstract over formulas, so in our program-
specification relationship, the corresponding function abstraction is over precondition
verifications. In particular, functions realizing implications transform precondition
witnesses to postcondition witnesses. This relationship is shown in the larger ex-
ample proof in Figure 1.2.3. This small proof is of the existence of the predecessor
function using the system extended with an implementation of natural numbers defin-
ing the constant 0 (0), the successor function (succ) and how it may be used, and
an inference rule supporting weak induction for the naturals (natind). The formula
that we prove, which we say is a specification for the predecessor function, is labelled
PredFunc. The axioms required by the proof, which are provided by the naturals-t
extension (not shown), are restated for clarity by using the direct rule, and are la-

4

article pred

environ
extendwith naturals-t;

begin
/* Restated axioms from naturals-t */
AX-successor: .
for x st Nat[x] holds Nat[(succ x)] by direct(NatT-succ);
AX-2zero-nat:
Nat[0] by direct(NatT-0);

0=0 by eqintro(); '

(succ 0)=0 or 0=0 by disjintrc(_PREVIOUS);

Nat[0] & ((succ 0)=0 or 0=0) by conj(_PREVIOUS, AX-zero-nat);
BaseCase:

ex pred st Nat[pred] & ((succ pred)=0 or 0=0) by exintro(_PREVIOUS);

InductionStep:
now
let x;
assume xNat: Nat[x];
assume unusedIH: ex pred st Nat[pred] & ((succ pred)=x or x=0);

Nat[x] implies Nat[(succ x)] by univelim(AX-successor);
Nat[(succ x)] by impelim(_PREVIOUS, xNat);
(succ x) = (succ x) by take(_PREVIOUS);

(succ x) = (succ x) or (succ x)=0 by disjintro(_PREVIOUS);
Bat[x] & ((succ x) = (succ x) or (succ x)=0)
by conj(_PREVIOUS, xNat);

thus ex pred st Nat[pred] & ((succ pred) = (succ x) or (succ x)=0)
by exintro(_PREVIOUS);
end;

PredFunc:
for x st Nat[x] holds
(ex pred st Nat[pred] & ((succ pred)sx or x=0))
by natind(BaseCase, InductionStep);

Figure 1.2.3: An example proof of a function in MizZaR-C.

beled with names starting with the AX- prefix. Another version of this proof appears
in Appendix A. In that version, the formulas and statements have been annotated
with comments (delimited by /* and #/) that describe the proof steps, and indicate
the extract:d program fragments which realize the formula immediately above them
in the proof.

1.3 The Mi1zAr-C System

The fixed part of the proof calculus and interpretation defined by MizAR-C is
intentionally small. This serves to emphasize the use of the extension mechanisms
of the system for exploring the features of different logical extensions. Fundamental
features of logics, such as the inclusion of the Axiom of Choice, or the implementation
of data types like natural numbers and lists, can therefore be defined and explored
separately when implemented as extensions. Nevertheless, Mi1ZAR-C is not a logical
framework in the flavour of Elf, because its language for writing formulas and proofs
is fixed. In addition, although M1zAR-C’s metalanguage allows for the implemen-
tation of inference rules for many logics, Mi1ZAR-C has not defined any particular
metatheory, such as Elf’s type theory, with which to expand Mi1zAR-C’s basic logic.

MizAR-C contains features which are important to proof derivation, and which
distinguish it from other constructive logic and type systems:

1. M1zAR~C employs classical first order logic. Because of this feature, the proof
writer is not confined to writing strictly constructive proofs in cases where con-
structions are not required. Classical inferences can be useful, for example,
when they are used for proving the functional behaviour of a program: in order
to soundly use the Axiom of Choice, a proof that the argument formula behaves
functionally must be provided, and that proof does not need to be construc-
tive. This feature distinguishes M1ZAR-C from purely constructive logics and
type theories, such as NUPRL, because these do not have natural analogues to
non-constructive classical inferences (although corresponding procedures can be
defined which simply remove constructive content from programs).

2. The term language, together with the inference rule design and interpretation,
allow for a language of partial functions including functions not defined on
the entire universe of discourse. Partial functions may play an important role
in proof writing because they can be easier to use than total functions. In
addition, a theory of manipulating partial functions is necessary, for example,
in establishing extensions which encode a type-like system which uses the idea
of “formulas as types”. The inclusion of partial terms distinguishes MizAR-C
from Martin-Lof's Type Theory, which cannot represent partial terms.

3. Normally, in constructive logics, disjunctions are introduced with an introduc-
tion rule which ensures that only one of the disjuncts are true, that is, the cases

6

are disjoint. We interpret disjunctions as representing potentially non-disjoint
cases by expanding the disjunction introduction rule and the disjunction real-
ization scheme. This modification to standard interpretations leads to viewing
disjunction elimination as simultaneous analysis of multiple cases instead of an
(nested) if-then-else structure. When we have more than one case holding at one
time we can then make use of parallel or non-deterministic execution during case
selection in disjunction elimination to make choices for efficient computation.
The author does not know of a system where disjunction may have non-disjoint
cases, and where disjunction elimination may be realized by non-deterministic
case analysis.

4. The logic can suppe.i an interpretation for existentially quantified formulas
where the existential quantifier essentially captures what is a set of possible
values rather than a single value. This interpretation allows formulas to specify
relations which are realized by programs which behave in a manner which is
not purely functional, that is, afunctional. Also, this type of interpretation is
important in order to be able to represent results of the non-deterministic choice
selection. Using afunctional realizations for existentially quantified formulas
appears to be a possibility which is unexplored elsewhere, as the current research
emphasizes purely functional executions exclusively.

After briefly introducing necessary notation in Chapter 2, we define in Chapter 3
the realizability interpretation for the logic and discuss the logic’s soundness under
the interpretation, including a discussion of our treatment of partial function terms.
Then in Chapter 4 we discuss how our interpretation provides a partial framework for
encoding programs in MIZAR-C'’s system and show alternate interpretations for case
selection and its relationship to afunctional interpretations of existentially quantified
formula. Then in Chapter 5 we present an example proof of a function, and we finish

with a discussion of some problems with our implementation and weaknesses of the
current system.

Chapter 2

Preliminaries

At each proof step, MizZAR-C’s proof checker pairs formulas from the logic with
expressions called realizations from another language called the realization language,
under a realizability interpretation for the logic calculus. The realization language is
based on the Scheme (cf. [3]) instantiation of the untyped lambda calculus (Scheme
is a cousin of Lisp with similar syntax). We use the syntax of Scheme to denote
the realizations of formulas with the anticipation that the reader will understand
the Scheme notation or be able to translate it to any chosen representation. After
introducing the important Scheme notation, we describe the p notation for denoting
the pairing of realizations to formulas and show how we represent rules of inference.

2.1 Scheme Notation for Untyped X Caiculus

In order to write the constructions extracted from proofs, we make use of some
Scheme special forms, some standard Scheme combinators, and we augment Scheme

with some of our own combinators. The following is the essential Scheme syntax upon
which we build:

e Lambda abstraction over a Scheme expression e is written as the special form
(LAMBDA (z) e), where 7 is the abstracted variable. Application of the lambda
form f to a Scheme expression ¢ is written (f e).

o List construction appears as (LIST zg z; ... Z,) which reduces to the m+1
element list (Zp,%7,. . .,%n), where Z; is the value of z; evaluated in the current
context.

® The expressions (CAR I) reduces to the first element in list I, and (CADR I)
to the second element in I. Let | = (l,l,...,In),m > 0, and let p =
(Po,P1s- - .1 Pa)sn > O wherefor i € {0,...,n},0 < p; < m. Then (PROJECT p I)
reduces to the n + 1 element list r = (rg,ry,...,r,) such that r; = lp,. That is,
r is the projection of the elements in I according to the projection list p.

In following sections, while discussing the particular features of our logic, additional
combinators and special forms will be introduced where required.

2.2 Realization Pairing and Inference Notation

In the following chapters we represent the pairing of a realization to a formula
of the logic with the connective p. We write zpY when we mean z realizes Y,
or mc:ve precisely, the Scheme expression z realizes logical formula Y. In addition,
the followis:; conventions will be used to denote logical formulas, concrete language
sentences, and metalinguistic symbols:

e When we consider logical formulas, as for example in the statement of infer-
ence rules, they are written in the standard logical formula farmat such as
Vz € Nat.(3y.P) instead of the concrete syntax of MizAR-C.

¢ Formulas are named with upper case letters, so for example the P in Vz.3y.P
stands for any subformula which may contain z and y. General formulas can
be distinguished from predicates by the presence of brackets: for example, the
formula P[z,y) stands for the binary predicate named P on z and y.

o When we are writing examples of formulas written in MIZAR-C syntax, they are
written in typewriter style such as for x st Nat[x] holds (ex y st Plx,yl).
In the sentence (ex x st F), F is an arbitrary formula.

® Scheme expressions are also written in typewriter style such as (LAMBDA (x) x).

We note that it is only the realization extraction machinery which remembers the
pairing of the realization to the logic formula, for example, two different interpre-
tations and their extraction mechanisms may produce different programs from the
same proof. Since the proof writer only writes proofs, not extractions, proof writer
need not see the extractions and :they are usually hidden. Thus zpY is a phrase
in the metalanguage and when # appears in place of a formula the reader should
understand that Y is the formula involved and z is the realization maintained by the
interpretation machinery.

It is essential to remember that the lambda calculus places the same importance
on scope as the logic, therefore it should be understood that we write zpY as a short
form for “expression z in context I'p realizes formula Y in context I'L”, where Ty is
the Scheme environment corresponding to the logic comtext I'z, in which Y appears.
This consideration is important when we discuss the soundness of the interpretation
of quantified formulas and implication, both of which use Scheme special forms to
create environments which assign realizations (Scheme expressions) to symbols.

We write our inference rules in a style adopted from Genzen'’s natural deduction
rule style (as in [24]) with the understanding that it is a mechanical although tedious
exercise to translate our object language (which uses labels to reference multiple

9

formulas) into Genzen style proof trees. As indicated above, we take the liberty of
writing metalinguistic phrases like zpY instead of simply the formula Y in order to
indicate how extraction is performed during the interpretation of the inferences.

As an illustration, we write the imaginary inference rule /R as:

IR I'Faphy At anpAn
OF bpB

Sequents are used for our rules because, in following discussions, we will want to
be able to explicitly mention that certain variables are available when performing
hypothetical reasonings. When a formula F is inferred from the formulas T' when
there is a variable v in the context, we write 'V I F. To avoid distractions, our rules
are written with a common formula sequence, such as T, as the sequence on the left
hand side of the turnstile (‘) instead of the more general form which uses possibly
distinct sequences A and ©. The ambitious reader can restate formulas contained in
the sequences I', A, and © in a use of IR above to make them equa! and then thin
the assumptions at the top level (as described in [17]).

In addition, where a hypothetical reasoning (an unnamed now reasoning) is actu-
ally used to perform the inference in question, such as in implication introduction, the
common names such as —-intro will be used to identify these deductions. Otherwise
we will use the actual inference scheme names as implemented in MizaR-C, such as
disjintro. In all cases, we leave it up to the reader to perform the translation from
the concrete object language sentences of MIZAR-C to the formula metalanguage we
use.

We make a distinction between an inference rule and a tactic. A tactic is similar
to a derived rule of inference: it is defined by a fixed sequence of deductions using (the
primitive) inference rules. For example, if F' is an arbitrary formula, the deduction

I'F upVz.(Vy.F)
I'F (u v(a)) pVy.Foos
T'F ((u v(a)) (b)) p(Frma)yes

univelim
univelim

on variables a and b, whose deduction steps are two uses of the univelim rule, might
be called the tactic dunivelim (see section 3.2.2 for the meaning of 4 and F;.,).
Tactic dunivelim could be written as:

I'l upVz.(Vy.F)
Tk ((u v(a)) v(b)) p(Fea)ys

dunivelim

10

Chapter 3

The Base Set of Inferences and its
Soundness

In this chapter we present the base set of inferences, that is, the fixed set of inference
rules defined by MIZAR-C. We also present a partial verification of their soundness
with respect to the base interpretation: the interpretation of the base set of inferencs.
The logical calculus contains classical inference rules, so we mean soundness with
respect to constructive proofs. Thus we say the interpretation is sound if, wheneve:
a theorem is proven constructively, a program is extracted which is correct with
respect to the specification as represented in the proven theorem. Furthermore, we
show that for any proof, we can determine whether we can interpret the proof as being
constructive or not so that we know if we have a valid extraction or not. For this
we need a method of identifying constructive proofs; we show in section 3.1 that this
identification can be performed inductively by marking each inference (proof step).

Some inferences are very familiar and are discussed in many other sources so we
tersely present them and their interpretation in section 3.2. We instead concentrate
on harmonizing the interpretation with the special features of the logic: existential
elimination by use of the consider statement, n-ary conjunction and disjunction,
equality manipulation schemes, partial functions, and sorted variables.

3.1 Constructiveness and Marking Formulas

Including classical inference rules into the logic requires us to introduce a method
of marking formulas to indicate if their proof was constructive or not, in order to know
if we have extracted a correct program. To make the marking notation unobtrusive
we overload the p notation by having it specifying a marking as well as indicating
a pairing. Thus we say formula Y is marked as constructive when we have written
zpY, that is, Y has been constructively arrived at. Similarily, we say formula Y is
marked as non-constructive if)’ either appears with the special Scheme constant #¢
as #fpY or, simply as Y.

When justifying an inference by reference to a rule, every premise (upper sequent)

11

marked constructive is required to be satisfied by a formula marked constructive. For
example, in an imaginary inference rule

F'FapA THB
T'FepC ’

rule

the premise (upper segjiiént) I' F ap A is marked constructive and must be satisfied
by a formula also mashigd constructive, whereas the premise I' - B is marked non-
constructive and may be satisfied by a formula which is arbitrarily marked.

In the practice of writing proofs, it may happen that a premise marked constructive
may fail to be satisfied by a formula marked constructive. In this case, although a
constructively marked conclusion is supported by the rule, we say a construction error
has occurred. When a construction error occurs, the conclusion is always marked
non-constructive regardless of the statement of the rule. For example, if rule were
used where the premise ap A was satisfied with a formula marked non-constructive,
a construction error has occurred and the realization of the conclusion, c, is #f.
The definition of the marking scheme is completed by requiring that all axioms and
assumptions be marked constructive by default.

There is a class of inferences in the base logic which do not require any of their
premises to be marked constructive and have a conclusion marked non-constructive.
These inferences we call inherently non-constructive for our interpretation, or simply
non-€onstruclive, as opposed to the inferences which provide am expression which re-
alizes the conclusion if the marking of the premises are correctly met. For reference,
the non-constructive rules appear in Appendix B. The remainder of the inferences
in the base set are all potentially constructive—all of their conclusions are marked
constructive. In each of these, if their premises are satisfied without a construction
error, the conclusion is marked constructive and the expression realizing the conclu-
sion is the realization extracted from the inference. By marking the formulas in all
derivations, we know by induction on the marking of the inference rules that formulas
marked constructive correspond exactly to those theorems for which correct programs
have been extracted. We can state this property of the marking scheme as follows:

Property 3.1 From assumption set T, if we can deduce F, that is if ' r p F, then
r # #f and F is marked constructive iff the proof of F was constructive.

Proof By induction on the length of the derivation, using the definition of the marking
scheme.

3.2 Familiar Inferences

The following inferences and their realizations closely follow the standard Curry-
Howard translation; we merely present them here.

12

3.2.1 Implication and Equivalence

T,Al bpB
T+ (LAMEDA (u(A)) b)pA— B

—-tniro

I'ipA— B TFlapA
'@ a)pB

Here p(A) is the Scheme variable name to which the label used to identify assumption
of A in the deduction of I', A+ B in —-intro is mapped. From the definition of the
lambda form, u(A) binds the realization of A, namely a, on application in impelinm.
In our implementation we ensure that the u(A) created in (LAMBDA (u(A)) b) is
unused in order to avoid capturing any Scheme variables in b. #(A) is analogous
to the realizing variables in [23]). Since u(A) represents the realizing variable for
an assumption, the expression it is bound to must be of the appropriate shape, as
described in section 4.0.1.

The biconditional, «, is defined as a conjunction of two implications, so iffintro
and iffelim could be implemented as tactics, however, because MIZAR~C does not
have support for reasoning about tactics, we implement them as the rules:

impelim

I'tlpA—-B TtFrpB— A

Mt ST TR pA o B

I'FipA- B

ittelin (left) T R oA B

. L. 'k
iffelim (right) TF (CAI;: ?):BB—s A

The « rules pair and unpair realizations for implications, so it is clear that to properly
unpair we must be careful about the order in which the realizations are paired. In
particular, for any A « B it is not true that if rpA — B then TpB « A, although
from one formula the other can easily be proved. Thus we postulate the tactic iffswap
which performs the required proof, which we have currently added as the rule:

'ipAe- B

iffsva
H P T (PROJECT (LIST10) DpB = A

3.2.2 Quantified Formulas

To interpret quantified formules, we must map variable identifiers from the logic onto
Scheme variable identifiers. Define a mapping v such that for a given defined logic
variable identifier z, the Scheme identifier it is mapped to is ¥(z), such that distinct
logic variable identifiers are mapped onto distinct Scheme variable identifiers. Com-
plez terms in the logic borrow their syntax directly from Scheme syntax: a well formed
complex term is of the form (f o #; ... t,),n > 0 where f is a variable and ¢; are
all variables or well formed complex terms. Then, for the well formed complex term

13

t=(fto s ... ta),n > 0, we can simply define ¥(t) = (v(f) v(to) ¥(t1) ... v(tn)).
Expanding the p notation to allow realizations to be paired with terms as well as
formulas, we write v(t)p t if

® tisa well formed term which is defined in the current context (see section 3.3.1),
and

e the Scheme variables identified by v(t) are bound appropriately so that the
value of »(t) implements ¢ in any formula in which ¢ appears.

Recall that the correct bindings of the Scheme variables are guaranteed by the inter-
pretation of universal quantification as lambda abstraction and universal elimination
as application. Thus the rules for universal quantifiers are

I'"FapA Voelim AVlF fovVz.B
['F (LAMBDA (v(z)) a)pVz.A ‘ A'F (f v(y)) pB:.—,

where A and B are formulas in free z, and where z and y are variables in I'* and
AV respectively. I'* represents the context I' with a variable z added to it, and AV
represents a context A where the variable y is defined. The variable z is not defined
in I' s0 we say it is a variable local to the reasoning which establishes I'* F apA.
Also, ¥(z) and v(y) are the Scheme variable identifiers which the variables z and y
are mapped to in I'" and AY respectively. B,., is the formula B with all occurrences
of the free variable z replaced by the variable .

The relationship between the quantified logical formula and the extracted Scheme
expression which establishes the soundness of the interpretation is preserved by our
construction. This is commonly justified by observing that the substitution performed
in the 8 reduction of (f ¥(y)) corresponds to the bound variable substitution in es-
tablishing B..,. Likewise, the lambda abstraction over all occurrences of the Scheme
variable »(z) in a corresponds to the universal quantification over z all occurrences
of z in A.

V-intro

3.3 Existential Introduction and Elimination

MizAR-C allows for the formation of partial functions by allowing the formation
of complex terms which may not denote values in all contexts. In addition, we do not
have any explicit type checking for variables which form a term, so it is possible to form
terms which are not defined when 1. is valid to introduce arbitrary formulas. Arbitrary
formulas may be introduced in disjunction introduction or in the assumptions during
hypothetical reasonings. In order to avoid problems from either of these cases where
terms may not have any meaning, we require that whenever we use an inference rule
which considers a term's value, such as existential introduction, we need to be assured
that the inference is allowed only when the term is defined. In the following section
we introduce 2 notion of when the logic ensures that a term must be defined; this
leads directly to the existential introduction rule.

14

3.3.1 Formula Strictness and Existential Introduction

We do not have a special predicate or notation to explicitly indicate that for a complex
term, it has a defined value (which, for example, Beeson in [2]) writesas ‘t}’). Because
of this, in disjunction introduction (see section 3.4.3), we cannot require that all
complex terms in the disjuncts added by the introduction be explicitly indicated as
being defined since explicit indication is not possible. In addition, type-checking for
complex terms is not available in the current version of MIZAR-C so that - y well
formed complex term may be written in the disjuncts introduced during disjunction
introduction. Similarly, for hypothetical reasonings which introduce implications (see
section 3.2), we do not check the assumption tc ensure that all complex terms in it
are defined. Notice that even though formulas may contain complex terms which may
not be dofined, the system checks that all simple terms (variables) occurring in the
assumption or disjuncts are defined.

In order to ensure that these arbitrary additions do not cause trouble, we show that
the logic indicates exactly when a complex term must be defined based on the notion
of derivability of atomic formulas. The result follows from a strictness requirement
for the terms in atomic formulas: any atomic formula which has been derived in any
context must be fully defined in that context. In a fully defined formula, all terms
and subterms occurring i it must be defined in the current context, Clearly, for any
atomic formula which was proven, all of its terms and subterms must be defined in
order for the derivation to make sense and the formula to be considered true. Since
all subterms in defined complex terms are required to be defined, the term language
does not support special forms or control structures (such as a partially evaluated if
form) in the term expressions.

Thus a fully defined formula contains a set of complex terms which are themselves
fully defined. For a formula F this set is written as D(F) and we can define it for all

formulas based on the notion of the derivability of a fully defined formula. Let D(F)
be defined as:

LHF=V(Fo,F,....,Fp)ym>0,F=A— B, or F = -A for formulas F, F,,
A, and B, then D(F) = Q.

2. If F is a predicate or equality, then it must be fully defined so all complex
terms in F must denote values for F' to be derived; therefore D(F) is the set
of all complex terms, including subterms, which occur F. All subterms in any
complex term must also be defined in order for the term to be defined.

3. f F = A(Fy, R, ..., Fn),m > 0 is a conjunction, any of the conjuncts F; must
be derivable and fully defined in the context so D(F) = UR,D(F)).

4. f F =Vz.P, or F = 32.P for some formula P, then D(F) is the subset all the

complex terms in D(P) which do not contain the free variable z which is bound
in F
m 2.

15

Proposition 3.3.1 If ¢ is a complex term, ¢ € D(F') only if £ is defined in the current
context.

Proof The proof is by showing for each case of the definition of D, no complex terms
are added to D(F) which are not defined in the current context. Justification of
cases 2 and 3 is straightfoward as a result of the strictness requirement for atomic
formulas and the meaning of conjunction. Case 4 is justified by considering the
possibility of using universal or existential elimination on F. For either case,
it would be impossible to perform universal or existential elimination to derive
the formula P such that it is fully defined, if D(P) is nonempty but D(F) is
empty. Therefore the complex terms available at the level in which F is stated
are those which are defined in P without reference to the quantified variable z.
No terms are added to D(F) in case 1.

Note that case 1 indicates that we cannot decide if a disjunction, implication, or
negation asserts that any complex term in it is defined. Since both the assumption in
hypothetical reasoning, and disjunction introduction can produce subformulas which
have undefined complex terms, without a proof history we cannot decide which, if
any, of the complex terms in either of these formulas are defined. Finally, =A may
be identified with the formula A — 1, so we treat negated formulas as if they were
implications; that is we cannot trust that the complex terms in =A are defined.

With the above definition of D(F'), and the fact that M1ZAR-C does not permit
the statement of formulas with undefined variables in them, we have an understanding
of when a term in a formula F' denotes a value. Therefore we may now state the
existential introduction rule:

't upA,._g

SXintro (LIST »(t) u) p3z.A °

where A contains free z in it (the formula may not be vacuously quantified), and ¢
is either a variable, or t € D(A;). I Ay is marked constructive, for all terms
t=(ftots ... tn),m >0, such that t € D(A..), v(t)pt (from the interpretation
of section 3.2.2). The type of Scheme expression which realizes 3x.A defined by
this introduction rule is a list [where (AR 1) pt and where (CADR 1) pA,.,. With
this observation, by explicit substitutism it is clear that if »(z) is bound to (CAR 1)
(i.e. ¥(t)) then (CADR 1) pA also. That particular consequence is exploited by the
existential elimination inference described in the following section.

3.3.2 The consider Elimination

MizAR-C contains a convenient method of performing existential elimination which
simplifies reasoning about existentially quantified formulas. In MizZAR-C, an elimi-
nation can be performed on a existentially quantified formula 3z.P by the action of
considering a value of z which makes P true. Consideration of such a value is justified

16

now

assume U: for x holds P[x] implies Q[x];
assume E: ex y st P[y];
novw

consider z such that EL: P[z] by direct(E);

P[z] implies Q[z] by univelim(U);

@lz] by impelim(_PREVIOUS,EL);

thus ex t st Q[t] by exintro(_PREVIOUS);
end;

thus ex t st Q[t] by direct(_PREVIOUS);
end;

(for x holds P[x] implies Q[x]) implies
((ex y st P[y])) implies (ex t st Q[t])) by direct (_PREVIOUS);

Figure 3.3.1: A sample use of the consider statement.

in the case where 3z.P is constructively proven and 3z.P is not vacuously quantified
because, as the previous section demonstrated, the Scheme expression realizing such
a formula 3z.P remembers the realization for a value of = which establishes P. The
elimination is performed under the direction of the consider statement, and we give
an example of its use in Figure 3.3.1. In the example, the variable z is said to be local
to the context after the consider statement. For clarity, the consider statement
and the scope of the local variable z are delimited by an optional set of now and end
delimiters.

The format of all deductions which the consider statement allows can be repre-
sented by the following deduction sequence:

i I'Fep3z.P
consider TV F mpP,., (+)
IFitpQ
T'tieQ

where P;., is the formula P with all occurrences of variable z replaced with variable
y which is local to context I' as indicated by T¥ (the fact that y is a local variable is
the only distinction between I and I'¥). I'¥ and m P P:.., should be thought of as the
scope and formula respectively which result from the use of the consider statement
eliminating the existential quantifier from 3z.P as described above. m will be #£ if
3z.P is marked non-constructive. The double line between mpP;y,and IV - tpQ
indicates that a series of deductions may be performed in order to obtain PQ so
long as the deductions do not add any more undischarged assumptions. The final
step from IV F tpQ to I'F fpQ indicates that Q does not contaiz the local variable
y introduced at the consider statement. M1ZAR-C’s proof checker explicitly verifies
that Q does not contain references to the local variable although our sugared syntax of

17

nowv
assume Express: P[(t u)];
assume U: for x holds Q[x];
(t u) = (¢t v by take(Express);
consider v such that 1: v=(t u) by exintro(_PREVIOUS);
Qlvl by univelim(U);
thus Q[(t u)] by equality(_PREVIOUS,1);
end;

Figure 3.3.2: Performing universal elimination on a term.

syntax of reasonings sometimes obscures where this check occurs. In Figure 3.3.1, the
formula Q appears as ex t st Q[t] and 3z.P appears as ex t st P[t].

For our interpretation of the y considered to establish P, we bind v(y) to the value
previously established in the construction of 3z.P, that is, (CAR e) where ep3z.P.
Then, as indicated in the existential introduction section 3.3, m is (CADR e). The
mechanism for establishing the binding of #(y) and m appears in f as the expression

f= (LET ((v(y) (CAR €))) (LET ((u(P) (CADR €))) 1))

where u(P) is the Scheme (realizer) variable corresponding to the label for the con-
sidered formula P.._, at (*) and {pQ in the scope I'V.

In logical systems which cannot introduce new local variables, the above deduc-
tion can be transformed into the use of another common formulation of existential
elimination, 3-elim:

. F”,gpP:o—yl-th
"V::.:Z‘; TVF (LAMBDA (a(P)) D pPory = Q
3.ebim T'F (LAMBDA (v(y)) s)pVy.P;y—Q THepdzP

T'F ((u (CAR €)) (CADR €))pQ

where y is a variable, u is (LAMBDA (v(y)) s) and s is (LAMBDA (u(P)) t) respec-
tively. In Scheme the special form (LET ((a b)) c) is by definition equivalent to
((LAMBDA (a) c¢) b). Therefore by simple transformation it can be seen that the
realization defined by f above and ((u (CAR e)) (CADR e)) are equivalent Scheme
expressions.

With the statement of existential introduction and elimination given, we can now
show that the restriction of universal introduction and elimination to operating only
over variables is not an important restriction. It can be shown that universal elimi-
nation on terms can be carried out in multiple steps by making use of local variables
which denote terms. We start with an example of the procedure which is given in
Figure 3.3.2. In it, the formula labeled Express is a formula containing a defined
function term (t u) with which we eliminated the universal quantifier in the formula
at Us.

18

now
assume D: OK[(t x)];
1: OK[(t x)] or BAD[(t y)] by disjintro(D);
(t x) = (t x) by take(D);
consider v such that 2: v=(t x) by exintro(_PREVIOUS);
OK[v] or BAD[(t y)] by equality(1,2);

thus ex v st OK[v] or BAD[(t y)] by exintro(_PREVIOUS);
end;

Figure 3.3.3: Using value capture for existential introduction.

As we will show in section 3.5.2, if a complex term 1 is defined in a context we may
prove that ¢ = ¢ by using the take rule. With ¢ = ¢ we can create a local variable by
considering the term in the equality by using existential introduction rule as shown
at label 1 above. After introducing the local variable, the universal elimination can
be performed on it and all occurrences of the variable can be substituted with the
term using equality substitution. The technique of introducing a local variable which
temporarily names a defined term is called value capture. The above strategy works
for any complex term and any universally quantified formula, so it can in fact be
implemented as a tactic on basic inference rules.

Also, using the value capture strategy and equality substitution, we can prove
existentially quantified formula over disjunctions created by disjunction introduction
as is exemplified by the proof fragment in Figure 3.3.3. In the proof, (t x) represents
a defined complex term and (t y) represents a possibly undefined complex term
which was introduced using disjunction introduction. Like the strategy for eliminating
universal quantifiers by substituting in for a term, the above strategy for introducing
existentials is a tactic which will work for any disjunction introduction sequence from
a formula with a defined term in it.

3.4 Conjunction, Disjunction and Case Selection

Since we intend to use Mi1ZAR-C to write and check proofs, we are willing to intro-
duce some features in the logic which may make reasoning about metalogical features
more difficult than they could be, so long as some gains are made in concerns of the
language interface. We show in the following sections how we formulate disjunction,
conjunction, and case analysis in an intuitive way, but wait until the next Chapter to
show how it is possible that this format of disjunction is more significant than merely
syntactic sugaring.

19

3.4.1 Natural Conjunction and Disjunction Representation

In many other constructive logic and type theory systems, disjunctions are commonly
defined as a binary connective (cf. [12, 24] or [22]). However, conjunction and dis-
junction are naturally viewed as operators upon sequences of formulas rather than
a connective between a pair of formulas. As an illustration, consider that even if
disjunction is defined to be a binary connective, the formula AV BV C is commonly
read as “at least one of A, B, or C is true” instead of the stricter readings of “one of
A or BV C is true” or “one of AV B or C is true” (depending on V’s left-to-right
precedence). More specifically, syntactically and realization-wise (A vV B) V C and
AV (B YV C) are not equivalent although they are logically equal. Even so, we might
define a tactic to shuffle the order of the connection among the disjuncts should we
ever need to write a disjunction in a distinct but equal form. However, this raises the
question of why one needs a series of deductions (a tactic) to prove two formulas are
the same when the user intuitively sees them as equivalent?

Thus there is good reason then to define, as we have, AgV A;...VA,,n > 0 to be
infix notatien foi the generalized n-way disjunction V (Aq, A,, .. ., A,) on formulas A;.
We have defined conjunction of formulas similarly so that the conjunction written as
AoAAA...AAp,m > 0is defined to be the infix notation for the m-way conjunction

/\(Ao, Ah' ’°1Am)-

3.4.2 Realizing Disjunctions

We step back for a moment from examining inferences and discuss a version of the
Kleene realizability for disjunction (cf. [24]) inspired by Martin-Lof (as in Backhouse,
et. al [20]):

inl(z)pAVB ifzpA or

inr(z)pAVB ifzpB

where inl and tnr are the “inject left” and “inject right” functions. We can imagine
that the result of inl(z) is the sequence (z, left) and of inr(z) is the sequence (right, z)
for language constants left, right. Then (z,left) pAV B means AV B was proven from
A, and (right,z) p AV B means AV B was proven from B. Although this definition for
disjunction has the advantage that it is straightforward (as are the inference rules for
manipulating these disjunctions), it does not capture our understanding of disjunc-
tions as being an operation on sequences of formulas. Furthermore, this formulation
has the property that for any disjunction, the extracted realization remembers the
extracted program of exactly one disjunct in a disjunction.

We can reformulate the above idea of realizability in order to capture the intuitive
list-operator notion of disjunction. Let

(20,21, ..Zm) P \/ (A0, Ay, .., Am)ym > 0

if there is an i € {0,1,...,m} such that z;pA; and A; is true, and for every
i € {0,1,...,m]}, either z; # #f or else z;pA; and A, is true. In essence, a list

20

{(zo0,21,...,2m) realizes an m-formula disjunction if at least one of r; realizes the
corresponding disjunct A;, and all the other z; are the constant #f or else realize
their corresponding (true) disjunct, A;. This formulation of the realizability of the
disjunction is closely related to the intuitive understanding of the disjunction; the
property of “at least one of the formulas is true” is clearly similar to “at least one of
the formulas is realized”.

#1 is used in the interpretation in place of the evocatively named constants left and
right since both left and right may be replaced by #f. This is because left and right
both indicate the placement of the other expressions realizing the true disjuncts by
virtue of their position in the sequence (and by being an invalid realization), rather
than by their distinct names. Since we are assuming #£ to be a special language
constant, we can aid our analysis of the soundness of our rules in the following section
by insisting on the following properties of the extracted realizations in general:

Property 8.4.2.a No constructively proven formula is allowed to be realized by #f.
Property 3.4.2.b All non-constructively proven formula must be realized by #f.

Property 3.4.2.a can be proven inductively over the length of the derivations based on
the realization extraction mechanisms for each inference and the appropriate require-
ments imposed on axiom realizations (see section 4.0.1). In order to show Property
3.4.2.b we need to appeal to the marking scheme described in section 3.1 which ensures
that non-constructively proven formulas are realized by #£. With these properties for
the realizations for all formulas, we can define a marking for disjunction introduction
which both preserves properties 3.4.2.a and 3.4.2.b and tries to ensure that all those
z;, for which the corresponding A; was constructively proven, have realizations which

are non-#£f.
3.4.3 Disjunction Introduction

An obvious generalization of the standard binary introduction is

Fl'a;,pAk
'k (LIST ag @; ... am) pV (Ao, Ayy...,An)

V-intro m>0,0<k<m

where a; = #f iff i # k. This inference would give us a base inference rule set as pow-
erful as the system with binary disjunction and the more restricted introduction rule;
its interpretation preserves the soundness. However, the rule extracts an expression
which remembers the realization of only a single disjunct. In order to advantageously
use the case analysis described in section 3.4.4 (and especially in section 4.0.4), the
inference must be modified to allow for more than one disjunct to be true.

The key idea is to allow other formulas to contribute their constructive proofs to
the proof of the disjunction. Intuition tells us that disjunction is a weaker statement
than conjunction, so we could think of allowing V/ (A, Ay...,An)ym > 0 to be
concluded from A (Ao, Ay,...,4m). Instead, we can more directly conclude it from

21

the statements of the A; themselves to obtain the rule V-intro; which modifies V-intro
as follows:

I'FapAy ThapAy ... Tla,pA,
I'FrpV(Bo,B,...,Bn)

V-introy n20m>n

where there exists a total 1-1 mapping P : {0,1,...,r} — {0,1,...,m}, such that for

alli € {0,1,...,n}, A; = Bp(;). Then define an + such that v pV (B, By,...,Bn)
so that by our discussion in section 3.4.2, ' = (ro,ry,...,T) where

ripA; if r} # #f and there exists j € {0,1,...,n}
for alli € {0,1,...,m}, such that A; = Bpy;
r; = #f otherwise

In other words, the extracted forms a; which realize A; are projected onto the list
which realizes the disjunction.
In order to create ' by r, we define

r = (PROJECT p (LIST ap a; ... a, #£))
where p= (LIST po ;1 ... pm) and

k if ¢ = P(k) for some k € {0,1,...,n},

for every i € {0,1,...,m}, pi is { m+1 otherwise.

By the definition of PROJECT, it is straightforward to see that r reduces to r’ as above,
so the inference along with caseanal (see section 3.4.4) preserves the soundness of
the interpretation since it satisfies the properties 3.4.2.a and 3.4.2.b.

As V-intro; is stated, if any of A; are disjunctions, then the result will not be a flat
disjunction—it will have a hierarchical structure. The presence of inference rules, such
as the imp2disj i (see Appendix B) rule, makes hierarchical disjunctions necessary, yet
there are occasions where it may be desirable for the resulting disjunction to remain
fat. Of course, from several disjunciions Dy, D, ..., Dm, using case analysis one can
prove a single flat disjunction D; containing all (or some subsets) of the formulas
in each of the D; in some order; thevefore the flattening operation is a tactic for
disjunctions. If all of D; are not disjunctions, or if some of the disjunctions of D; are
to be flattened, then a single tactic may not be used and either several tactics must
be created or else several proof steps must be used. Another consideration is that
the tactic using case analysis would result in a realization for the disjunction which
stores exactly one of the disjuncts’ realizations.

Instead, we might introduce another disjunction introduction which flattens one
of its disjunctions:

rl‘de(Ao,Al,...,A[) l‘l-a,.,.;pAm . TI'F a,.pA,.

V'"‘tmh 'k rpV (BOo Bh sy Bm)

22

for 1> 0,n > I,m > 1 where there exists a total 1-1 mapping P : {0,1,...,n} ~

{0,1,...,m} such that for all i € {0,1,...,nr}, A; = Bp(;). Then, for similar reasons
as in the V-intro; definition above, we define

r = (PROJECT p (LIST ap a; ... a, #f))

where p = (po,p1,...,pn) Such that each p; = P(i) maps a,, onto position i iff
ap() pAp(;) in the premises. Although this rule provides a flattening operation which
remembers all of the realizations for the disjuncts of the flattened disjunction, it
cannot handle all cases, and we note that more work can be done on providing useful
disjunction introduction rules.

Experience so far indicates that the flattened disjunction is the more convenient
statement of the disjunction. Thus for convenience, in the physical system we incor-
porate both V-intro; and V-intro, into the single inference scheme disjintro which
examines the leftmost premise and uses the V-intro, rule if it is not a disjunction,
otherwise it uses \/-intro,. '

3.4.4 Case Selection

The process of case analysis can reasonably be viewed as one which chooses a proof
of a theorem from the several choices presented by a disjunction. The disjunction
introduction which was defined in the previous section allows us to create a disjunction
with more than one possible disjunct being true. Let us formulate case analysis in a
standard way to examine how non-disjoint disjunction affects case analysis:

l"l-dpAoVAl l"l-aopAo-»B l"l-alpA,-»B
I'+bpB ’

What is b? To answer that first let us assume that we intend to realize disjunctions
in the manner described in section 3.4.2. If AgV A, is a dichotomy, then d will always
be either (#f,z) when A, is true, or {y,#£) where Ay is true, for some expressions z
and y. In either case, to get a b realizing B we can apply y to ao if d = (y, #f) or else
z to g, if d = (#¢,z). With a dichotomy the decision of which implication to use is
indicated unambiguously by the proof of Ay V A;. But there is no reason provided
by the logic as to why we should consider Ag V A, to be disjoint cases (other than
by biased assumptions about how disjunctions are created). Further, the analysis of
cases does not specify which of Ag — B or A; — B to use to conclude B when both
A and A, are true. In particular, there are two proofs of B available through two
different implication elimination inferences. .
Let us expand the two-case rule into the caseanal rule Mi1ZAR-C defines:

I'tdpV(Ao,Ar,...,An) TrFagpAo—=B ... TkFanpAn—B
I'tppB

for m > 0, where d = (dy, d,,...,dy). The realization paired with B must be p such
that p is an expression which

two-case

caseanal

23

1. chooses a c so that A, is true, and a,pA. — B and d.p A..
2. applies the chosen a,. to d. to obtain the z such that zpB

If we assume that dp V/ (4o, A1,...,Am) as in the interpretation in 3.4.2, properties
3.4.2.a and 3.4.2.b hold for d. Then an example of such an expression p is the one
which tests each of the d; in turn to see if it evaluates to a non-#f value and chooses
the first c such d. evaluates to a non-#f value. Call this program First-Case.

Clearly using First-Case for p preserves the soundness of the interpretation be-
cause, by property 3.4.2.b, First-Case will not pick a ¢ such that A, is false, and
by the interpretation of 3.4.2, at least one d; will be non-#f so First-Case succeeds.
caseanal is currently implemented to perform a slight variation on the First-Case
selection strategy and p is defined to be p = (CASE-ANAL d (LIST ap a; ... an)),
where CASE-ANAL is a program which goes through each d; and uses the smallest &
where d;. is non-#£ for its choice of c. This is an eager evaluation which is significantly
different than the lazy evaluation which First-Case defines. We note, however, that it
is only the realizations of the disjuncts which get evaluated eagerly—the application
of the realizations, (d. a.), occurs exactly once. If we could ensure lazy evaluation
for the list expressions for d and (LIST @y a; ... a,), then we could expand the
CASE-ANAL expression into the Scheme special form CASE with the d; in place as the
case tests and (a; d;) as the expression to evaluate for those tests which evaluate to
non-#f values.

3.4.5 Conjunction Inferences

The conjunction A (Ao, Ay,...,Am) intuitively smezsns t&at all the formulas A; are
simultaneously true. The calculus of conjunctiors manipulation allows for the rear-
rangement of the A;, the addition of any nvizber of vthe: yroven formulas, and the
subtraction of any of the A;. Each of these operaticss casy < and often are, written
as separate rules of inference which are used 1 sosbinaisor. Nevertheless, because
of our definition of conjunction, we may reasonably trea: ulf covjunction inferences
within one inference scheme, making conjunction manipuiatiizn uaifcrmly simple. The
treatment of conjunction inferences can be made unitusm: by writing a conjunction
inference as the choice of a subset of formulas frem the = eace of formulas.
The conjunciion scheme is

r '- CPA(AQ,AI,.. o,A’.) r "‘ an,’.x‘f'?.*;;g,. [E‘;‘ﬂ- ampAm
T'+bpB

conjunction

for n > 0 and m > n where all of Ag,4,;,...,A, are not conjunctions *ut each of
Ans1yAngay ..., Am may be (flat) conjuactions, and B may be a conjunctica. Now

consider the formula sequence Cy, where C;,i > n are the sequences defined as:

C" — Ao,Al,..-,An

C: = C A if A; is not « conjunction
! =1 Ao, Airy..., A ifA;= A fﬁ.o, Aa,..., A.'k) for some k> 0

Then B may either be a conjunction A {8, By,...,B)),l > 0 such that for all i €
{0,1,...,1}, B; = A, for some k where 44 is in Cpy, or B can be any single formula
from Cp. Our implementation of cor; treates a program for b which projects or
selects the appropriate realizations from the premises. When B is a conjunction,

b= (PROJECT (LIST po p1 ... p1) (LIST Cp Cot1 ... Cm))
where ¢;pC; and A, = B; for all i € {0,1,...,1}. If Bis a single formula,
b= (LIST-REF (LIST ¢, Cny1 ... Cm) k)

for the above k. For clarity at the proof levet, we say that A (A) for the single formula
A does not define a conjunction. Nevertheless, if we look at the formula A as the
“conjunction” of the single formula A (A), then the conjunction rule becomes uniform:
it creates a single conjunction from a list of them, we simply interpret conjunctions
of the form A (A) as we would the formula A.

As a final note about the conjunction inference rule, as might be expected, we could
have defined it to take both conjunctions and non-conjunctions for every premise, not
merely the leftmost one. Firstly though, conjunction provides the generality we need
for the rule since it implements both of the standard conjunction introduction and
elimination rules. Secondly, the statement of conjunction would have been made un-
necessarily complicated, since as it is it is clearly generalizable. MizAR-C in fact
implements the conj scheme as this more general form of conjunction, which recog-
nizes conjuncts in any or all positions in the premises and flattens them appropriately.

3.5 Logic with Equality

Equality is normally viewed as a predicate with special status and it is this status
which introduces a calculus on terms in the logic: a calculus of term replacement.
Potentially, one could introduce equality into the logic as such a distinguished pred-
icate and some second-order axioms about substitutions based on equality. Because
MizAR-C does not have the capability of stating or using second order assumptions,
our equality reasoning is formulated instead through a distinguished predicate with
special syntax and a set of inference schemes, take, eqintro, and equality which
supply the necessary machinery to perform the equality substitutions.

Through these inference rules, MiZAR-C provides an equality notation and cal-
culus for terms which we interpret at a very low level, and because of this, we do not

25

yet discuss the problems involved with extensionality versus intentionality. When we
write s = ¢ for arbitrary terms s and t, we mean that s is realized by an expression
which is computationally equal to that which realizes {. Another meaning we can use
for this equality is that, whatever models we are using to represent Scheme expres-
sions using terms, whenever we can assert s = t, the realizations associated with s and
t can be exchanged in any formula F’s corresponding realization f without affecting
the soundness of F'’s interpretation. This idea can be made slightly more precise by
saying that s = t implies that in the current contezt, v(s) can be substituted for v(t)
in arbitrary expressions z involving v(t), where zp X for some formula X, so that
the new expression also realizes X.

3.5.1 Equality Introduction Rule

MIzAR-C’s proof checker keeps track of which variables are defined and which are
not, =0 is possible to check if a variable denotes a value, or simply denotes. If a
variable denotes, we are permitted to infer that it is equal to itself (reflexivity). This
rule which can be written as:

kA

eqintro .
Ik A#tpv=v

Here v = v is the special syntax for the binary equaiity predicate, and I'® indicates
that v is some variable defined in I’ (unless v was introduced using the consider
mechanism from an existentially quantified formula marked non-constructive). The
first thing to notice about the inference is that we say the Scheme language constant
#t realizes v = v for any v. In fact, we do not interpret any equality operaticss
as computational operations, so in truth there is no realization associated with ax
equality formula. Nevertheless, as we shall see with the take and equality schemes,
we need to remember if the equality was obtained in a context where the symbols of
the terms in the equality have constructive meaning. Thus we use #t as an indicator
that the v in v = v has constructive meaning for the benefit of tiie other inference
rules such as existential introduction.

3.5.2 Take Rule

The language of the logic does not have a mechanism for explicitly introducing an
arbitrary function term. The only way to write a complex term in any context is
to write it as part of a formula which was restated from the environmest or was
obtained through a valid deduction from assumptions in the environment (including
an assume statement, or through the Axiom of Choice if the system is extended with
it). However, in section 3.3.1 we have already introduced the notion of fully defined
formulas and the set constructor D which gives the set of complex terms which are
asserted for any formula stated in the current context. From D’s definition, we can

26

define a rule which extracts a term in D(A) for any formula A:

I'tapA

tak
® TrapAstpi=1i

where ¢ € D(A). Clearly D(t = t) = {t} if t € D(A), and substituting v(t) for v(t) in
any Scheme expression z leaves z unchanged so substitutions on any formula F using
this equality preserves the soundness of the interpretation of equality.

3.5.3 Substitution Scheme

Given an equality a = band a formula A in term a, we may substitute b for any ain A.
In addition to the reflexivity property which take and eqintro embody, equality has
two other properties: transitivity and symmetry. To make the substitution scheme

useful, it should encompass both these properties, so we define it in the following
manner.

equality TFzpA TF#tpa= ;‘1'- zpB I'F #tpag, = azms m>0

where A and B are equality unifiable under the set of equalities given. For equality
unifiable formulas A and B, = (#f) realizes B as it did A (see [23] for a similar
interpretation), indicating that we have dealt only with notational differences.

The equality scheme implements two different operations for convenience since
although they can be performed simultaneously, merging their operations requires a
more involved description of the process. Hence we have split the inference into the
cases where m > 0 and where m = 0 and perform different operations for each. For
the case where m > 0, in three steps we define equality unifiability as:

1. Let E be the equalities given in the inference, ag = ay,...,a33 = @3m4+3- From
E form equivalence classes C; where a.,a, € C; iff a, = a, € E. Then pick a
single member from each Cj, ¢; called a representative of that equivalence class.

2. For each occurrence of a term a; in A and B, replace (substitute) its occurence
with the representative, ¢, where a; € Ci, to form the unifiers A’ and B'.

3. Then A and B are equality unifiable under E iff A’ = B'.

When m > 0, equality implements reasonings based on the transitivity of equality
by virtue of the construction of the equivalence classes C;.

For the case where m = 0, no equalities are given for substitution, so A and
B are said to be equality unifiable if they are equal under the symmetric nature of
equality. More specifically, A and B are equality unifiable for m = 0 if ao = by,q; =
bi,...,a; = bj,j >= 0 are equality subformulas in A, and A can be transformed into
B by substituting b; = a; for some or all of a; = b;.

27

The soundness of the interpretation of the inferences allowed by the equality
scheme depends on whether or not z realizes A’ as well as A. If m = 0 then the
realizations of A and B are identical since all equalities are realized by #t. Otherwise,
for m > 0, if ¥(az;) can be substituted for ¥(az;41) for any of the equalities in E, then
any v(a:) can be substituted for v(a,) if a;,a, € C; for some j. The substitution is
allowed because we insist that two terms @ and b can be used to state a = b in the
context only if ¥(a) an v(b) are computationally equal. Therefore z realizes A’ if it
realizes A, and similarly it realizes B if it realizes A’ and A’ = B'.

To complete our discussion of the equality calculus, we must examine the other
inference rules to ensure that they preserve the property that equalities indicate sub-
stitutability on the logical level and on the computational level. Only the quantifier
rules are permitted to change a term in an equality. Since all the quantifier rules
are interpreted so that substitutions on the logic level correspond exactly to substi-
tutions at the realization level, the other inference rules preserve the equality rules’
soundness.

3.6 Sorted Variables

Each logic variable is attributed with a sort which is indicated by a single identifier.
We interpret sorts as dividing the universe of discourse into distinct sets such that a
variable can name an object which is a member of exactly one sort, the sort which
the variable was declared to be quantifying over. All of the inference rules in the
previous sections were written with the assumption that the sorts of all variables
were identical, and the syntax of the language allggus for the user to leave out explicit
specification of the sort of a variable. If the sa# designator for a variable is omitted,
its sort is defaulted to the special sort thing (unless the default sort for the identifier
is changed using the special statement reserve in the environment for the proof).
H a user wishes to completely remove sorts from consideration, it is entirely possible
by simply omitting them everywhere and the inference rules, which we have defined
without taking inte account the sorts, work as stated: the system using a single
sort is trivially isomorphic to an unsorted one. The following constraints modify the
applicability of the inference rules when using variables with heterogenous sorts:

1. We define the sort of a complex term t = (f ¢ ¢, ... £,) to be the sort of the
function variable f in ¢. This feature makes it impossible for sorts to represent
types, but it simplifies term formation and ensures that variables which name
terms (such as during value capture) have matching sorts.

2. Sort is significant for quantification. The sort of the quantified variable being
introduced must match the sort of the term being quantified over, and the sort
of a quantified variable being eliminated must match the sort of the variable
eliminating the quantifier. Also, if formula A equals B without considering the
sort constraints, then the sorts of all bound variables in a formula 4 must also

28

match the sorts of their respective bound variables in B for A to be considered
equal to B.

Currently, the tagging of variables and terms with sorts in no way changes the
interpretation of the logical inferences since the rules make no reference to them.
However, sorts are sigpificant for the realization of axioms since they alter the ap-
plicability of inferences on the variables and terms in them. The constraints which
differing variable sorts place on the applicability of inference rules can be employed in
formulating axioms to indicate that the object universe is separated into disjoint, uni-
verses identified by sort names. Disjoint sort universes might be utilized, for example,
to separate objects of the concrete computation universe from meta-level objects such
as propositions or formulas.

29

Chapter 4

Frameworks for Relating
Programs to Specifications

Chapter 3 introduced the interpretation of the logic calculus as Scheme operations,
which we use to implement an extraction mechanism. However, we did not explicitly
refer to the realizations paired with axioms or assumptions in hypothetical reasonings.
In order to retain the soundness of our interpretation of the logical operations as
Scheme operations on assumptions in reasonings, we must make certain requirements
of the Scheme expressions which are paired with them. For the same reason, these
requirements are also imposed on all added axioms in order to ensure the soundness
of the extended system. These requirements can be made explicit using the notion
of the shape of a formula and realization. In the following sections we introduce the
definition of shape and discuss schemes for pairing axiom formulas to realizations so
that we ensure the programs extracted from proofs from these axioms satisfy their
specification.

The interpretation we have defined in Chapter 3 is only one of many possible
interpretations which result in a useful realizability interpretation. In particular,
the interpretation was made such that if the axioms are purely functional, then all
extracted programs will be functional also. We will show that changes may be made
to the extraction machinery to accommodate the extraction of programs which are
correct with respect to their specification, but which are no longer purely functional.
Specifically, we show that, with particular parallel execution machinery available, case
analysis can be made to exploit the parallel machinery in order to choose efficient
computations from a selection of them. We also show that existential elimination is
formulated in our system to take advantage of nondeterministic case analysis, as well
as afunctional realizations which are paired with axioms.

Together, the scheme of pairing formulas with axioms and the assignment of an
interpretation to the logical calculus outline a rough framework for encoding both
purely functional and not purely functional program-specification relationships, out-
lined in Chapter 1.

30

4.0.1 Shape

Conceptually, the realizations paired with assumptions or axioms are imagined to
be indistinguishable from those extracted from correct constructive proofs using our
interpretation. Conversely, the realizations extracted when interpreting a proof define
a shape for the realizations which corresponds to the shape of the formula they are
paired with. It is a general dogma of the interpretation that the shape of a formula
specifies the shape of its realization.

The correspondence between the shapes of the formulas and the realizations paired
with them, can loosely be writlen as a macro S in a set of recurrences:

S(A)

S(-4)

S(V (Ao, Avy- -y Am))ym > 0
S(A (Ao, Avy..., Am))sm > 0
S(A— B)

#t for atomic A: the predicates, 1, and =
#t

(LIST S(Ao) S(A1) ... S(An))

(LIST S(Ao) S(A1) ... S(An))
(LAMBDA (v) S(B))

for some Scheme variable v not occurring
bound in S(B)

(LAMBDA (v) S(A))

for some Scheme variable v not occurring
bound in S(A)

(LIST e S(A))

for some Scheme expression e

S(Vz.A)

S(3z.A)

Negated formulas are not interpreted as containing any constructions since none of
our constructive inference rules are capable of producing a negated formula ~A where
it did not exist already. In those cases where the formula was deduced through non-
constructive inference rules, the formula will be marked non-constructive and will be
realized with #£. Nevertheless, negated formulas can be useful for writing constructive
proofs since they can provide the knowledge of when a proof of a formula is impossible.
For example, if we have defined Nat [x] to mean x is a natural number, and succ is

the successor function, we can write our knowledge that 0 is not the successor for any
natural aumber as:

notOSucc: for x holds Nat[x] implies not (succ x)=0

which can be read as a statement that the formula (succ x)=0 for x satisfying Nat [x]
cannot be constructively proven. It is safe to mark an axiom such as not0Succ as
constructive because no term can be extracted from any subproof using the ax-
iom without the term already being defined elsewhere. To see this notice that
D(Vz.Nat[z] — —(sucec z) = 0) = O, D(Nat[z] = ~(succ z) = 0) = O for any
z, and D(~(succ) = 0) = O for any z satisfying Nat[z], by the definition of D.
Therefore, for any use of the formula not0Succ, neither take nor exintro may be
used to extract a term from not0Succ or its descendents even if it is marked construc-
tive. We currently include negintro in the list of non-constructive inference rules

31

NatDef: ex 0 st Nat[0]
& (ex succ st
(for i st Nat[i] holds Nat[(succ i)] & not (0 = (succ i)))
& (for i,j st Nat[i] & Nat[j] holds
(not ((succ i) = (succ j)) implies not (i=j))
& ((succ i) = (succ j) implies i=j)
)
)

rby nat-def;

Figure 4.0.1: A representation of a data type for the naturals.

in Appendix B, but for the same reasons as for using negated formulas in axioms,
negation introduction may also be marked constructive.

4.0.2 Adding Common Structures

Predicates are often realized simply by #t since they are usually interpreted as being
atomic expressions which indicate membership in a set of values—those values of its
arguments for which the predicate is true. Predicates can be used in an axiomitization
to indicate sets of values or data types by introducing them in a single existential
formula which acts as a package for the data type. Figure 4.0.1 gives an illustration
of an existential formula which is an effective definition of the data type for naturals.

The rby mechanism employed in Figure 4.0.1 pairs a Scheme sentence named
nat-def with the formula at label NatDef and nat-def is defined as a Scheme variable
which evaluates to the expression realizing the formula at NatDef. The sentences
which the variables @ and succ quantify over define how those values can and cannot
be used, and as such are often called the module definition. The use of Nat in the
universal sentence “far i st Nat[i] holds F” is intended to be a restriction on
variable i for formula F, and is commonly interpreted to mean Vi € Nat.F.

It is usually an assumption (tacit or explicit) in such definitions that the set
defined by Nat is the smallest set satisfying the axioms which are encoded in the
package. In our case, it is an explicit assumption that the definition at NatDef is the
only axiom in the axiom set which allows the conclusion of a formula satisfying the
predicate Nat. With that assumption then the set of theoreifis constructively provable
from the assumption of NatDef, using the inference rules available in the extension,
defines the set of values which establish Nat. Then NatDef is a sound encoding of how
we conceive (and implement in nat-def) the set of naturals if the provable formulas
establish Nat only on those terms in suce and 0 which are interpreted as Scheme
expressions which encode a natural number. If succ is mapped to 1+ and 0 to 0
then by induction on the length of derivation using the base inference rules we can be
convinced that NatDef allows proofs of theorems which are sound for the arithmetic

32

consider 0 such that 1: Nat[0] &
(ex succ st
(for i st Nat[i] holds Nat[(succ i)] & not (0 = (succ i)))
& (for i,j st Nat[i] & Nat([j] holds
(not ((succ i) = (succ j)) implies mot (i=j))
& ((succ i) = (succ j) implies i=j)))
by direct(NatDef);
ZeroNat: Nat[0] by conj{, _PREVIOUS);
consider succ such that
2: (for i st Nat[i] holds Nat[(succ i)] & not (0 = (succ i)))
& (for i,j st Nat[i] & Nat[j] holds
(not ((succ i) = (succ j)) implies not (i=j))
& ((succ i) = (succ j) implies i=j))
by conj(1);

Figure 4.0.2: Proving lemmas from a compact representation of a data type.

model for 1+ and 0.

NatDef is a closed formula which introduces our notation for the naturals. When
a data type is introduced through a single existential statement such as NatDef, we
call the axiom a compact representation of the data type. The proof writer must use
the consider statement to obtain the values of 0 and the successor in order to use
this definition; the axiom as it is stated is not easy to use in a preof. One can quite
easily rearrange NatDef at the top level of the proof text (not within a now reasoning)
into more convenient lemmas, an example of which are given in Figure 4.0.2. The
proof introduces the two constants 0 and succ to the scope, and as demonstrated for
ZeroNat, the remainder of Peano’s axioms can be provided using short proofs from
2.

It is likely that the proof writer will require the steps at 1 and 2 and will desire
the statement of the Peano axioms in a more convenient form. Therefore it may make
sense to create the extension defining the data type originally in the diffuse format
of lemmas which may be proven from the compact representation. Of course with a
tactic mechanism, it would be possible to provide tactics along with the extension
which extract each of the required lemmas. As an alternative, M1ZAR-C provides
import and export mechanisms which allow the lemmas proven in one proof text to
be imported as axioms in another proof. If the extension writer is uncertain about
writing an extension in the diffuse format, the extension can be written in the compact
form and a set of usable lemmas proven from it can be saved into an importable text
using the export mechanism. Then the exported lemmas may be loaded into the
proof which requires the lemmas as axioms using import facility.

Even though we have declared NatDef to be a definition for a data type for natural

33

number representation, no explicit definition of the predicate Nat was made so that
the system could check for improper, or multiple, definition. The extension writer has
been held entirely responsible for writing the axioms in such a way that the axioms,
along with the inference rules, result in a sound system. Although this might be
acceptable for the axiomitization of basic data types and operations, the proof writer
using these basic definitions is also responsible for defining any new properties or
operations for the basic definitions. For example, in order to prove the existence of
the summation function £i_,f(z) for arguments z € Nat and f : Nat — Nat, the
proof writer must be able to define a predicate P (or formula F) in f, 2, and some
variable sum for which P (or F) is true only for a single value of sum for set f and
z. We show how we currently handle these definitions in section 5.1 noting that it is
a widely studied problem (see for example [9, 15, 13]).

4.0.3 Afunctional Realization Specification

As mentioned in section 3.3.2, the intuitive understanding of the logical formula 3z.P
for P with z in it, is that 3z.P specifies that some elements from a nonempty set
of values from the universe of discourse satisfying P. When we wish to claim that
3z.P specifies that exactly one value satisfies P (as we wish for indicating functions),
we normally require the assumption of, or proof of, 3z.P AVy.(Pzy = y = z). If
we cannot prove 3z.P A Vy.(Pz—y — y = z), only 3z.P, then for certain P we are
free to interpret P as meaning there are multiple choices for z which satisfy P. In
other words, we can interpret 3z.P as a set if P contains no free variables, or we
can interpret it as a relation if it does. As a trivial example of a P which we are
not free to interpret as a relation, if we assume 3z.z = z holds for some free variable
z, then the formula Vy.y = z = y = z may be derived by use of the transitivity
of the equality predicate. In this case, we are forced to interpret 3z.z = z as a
function since we can prove it behaves like one. The subformula Vy.(Psy = y = z)
in 3z.P AVy.(Pz.y — y = z) acts as a certificate of the functional behaviour of the
formula P.

Jz.P is forced to be functional only if it contains an equality which relates bound
variables to free variables, as above, because we have fixed the meaning of the equality
predicate to be functional. In the formula 3z.P, if z is not related to any free variables
by the equality predicate, this restriction is not imposed by MIZAR-C and it is
possible to interpret R = 3z.P as specifying any value from a set of values whose
cardinality is greater than one. It would be impossible, in general, to realize R = 3z.P
such that each member of this set is recorded in the realization since, for example, R
might specify an infinite set. A more practical solution is to realize R by a procedure
which chooses a value from the set of possible values whenever it is executed. In
that way, when its value is considered using the consider statement, the program is
executed and its value is bound to the value returned by the procedure.

As an illustration, for the sentence 3z.Q, assume the axioms in use do not give
us knowledge about Q which forces us to interpret Q as a function, and therefore we

34

are free to choose r which satisfies Q from a set. Then we can implement 3z.Q as
the pair constructor (LIST p s) with the following restrictions:

1. p is an expression (procedure) which returns any one of a set of values when
evaluated.

2. for any value v which p returns, it must be equal to the value of

e y(z) for a logical variable identifier which establishes Q

o y(ftoty ... ty),n > 0for sometermt = (f tot; ... 1,) such that ¢isin
D(QS‘-(! to t3 .. !..)) and on—(] to t1 ... tn) is true

An example of a formula which might usefully exploit the possible ambiguity in
the choice which is made at a consider statement using 3z.Q is the axiomatization
of a pseudo-random number generator. Let Q = Nat[z] above, and let

(LIST (RAND) #t)p3z.Nat[z]

where Nat|z] is interpreted as meaning z is a natural number and where RAND is a
procedure which implements some pseudo-random number generator which returns
natural numbers as values. Then each choice of z satisfying Nat[z] above which
was introduced through the use of the consider statement may be different since
each choice executes RAND and binds the value it returns to p(z) (so long as the list
construction is lazy, see Chapter 5 for more). As required, if we cannot show that
Nat[z] must be a single value (and we should not be able to if Nat represents the
natural numbers data type) we will not be able to show that two variable z and z’
consider'd from the above existentially quantified formula are equal. If Nat[z] is
true in the current extension for any natural number, then the above realization is
correct with respect to the specification 3z.Nat|z].

As can be expected, the extension implementor must be careful in making the
choice of allowing existentially quantified formulas to be realized by expressions which
behave afunctionally since it can affect the soundness of the available inference rules.
For example, if an extension to the natural numbers is added which admits an afunc-
tional realization, yet the use of the Axiom of Choice rule for natural numbers is
desirable, the statement of the choice rule must be made so it does not attempt to
extract a function where only a relation exists. To perform this check and be con-
sidered safe in the presence of afunctional realizations for existentials, the rule must
insist that a certificate of functional behaviour be established. An example of such a
rule of unique choice can be given as: '

I'FupVz.(3y.P) TFcpVz,y,2(PAP, ,)—oy=2
Tk gp3f.(Vz.Py (s 1)

for any formula P in z. We will not concern ourselves with the realizations u, g,
and c since they are not important to the following discussion. The sentence Cp =

35

choicey -sefe

Vz,y,2.(PAP,._.) = y = z acts as a certificate of the functional relationship between
y and z in the formula Vz.3y.P, if it can be proven then y must be functionally related
to z. Cp will not be provable and the choice rule not usable if the environment did
not provide enough information to conclude Cp.

Claim 4.0.3 Although choicey-safe is written with Cp marked constructive, a non-
constructive proof of Cp will also ensure the safety of choicey-safc.

Proof A (classical) argument for why a classical proof of Cp suffices is as follows.
Either the relation R[z,y] = Vz.3y.P is not a function, or it is. If it is not a
function, then Cp is not provable, even classically, or the context contains a
contradiction. If R[z,y] is a function, then even when a constructive proof of it
is given, the construction from the proof is not required for the construction of
g, so a classical proof is acceptable because we do not need the witness.

An illustration may help: there are many ways to sort a finite sequence of naturals
into non-decreasing order, yet all such sort procedures are functions from sequences to
sequences because the resulting list is unique. The proof of uniqueness of the sequence
ordered by non-decreasing elements is a result which could be be proven classically
and is independent from the implementation of the sort procedure: in particular it
is a kind of non-computational precondition to the correct application of the choice
rule. In the case of the sorting function, it might also be reasonable to view the proof
of functionality as a non-computational postcondition of the sort function.

Here then is an instance where the classical reasonings allowed by MizaR-C
can be used to advantage if choicey-safe can be redefined so that its Cp premise
is marked non-constructive. Allowing classical reasoning for the functionality certifi-
cates can often lead to much shorter proofs of the functionality than using only purely
constructive reasoning.

Only for the case where we have made sure that all realizations corresponding to
proven formulas behave functionally are we able to interpret the rule:

I'F upVz.(3y.P)
'k gp3f.(Vz.Pye (s)

choicen-unsafe will not be sound in the presence of afunctional axioms since the
function f may then not exist. In addition, in the next section we show that it is
possible to extract realizations from proofs which are afunctional, thus there are cases
where the choice rule must insist on a certificate of functlonahty, even if no axioms
are paired with afunctional realizations.

choicey -unsafe

4.0.4 Alternative Case Selection Strategies

In our framework for relating theorems to programs (see chapters 1 and 4), theorems
are viewed as specifications of the desired relation between input and output. Since

36

there can be more than one proof of a specification, there may be more than one
non-isomorphic program which can be proven to realize the specification. Changing
the proof of a theorem is not significant to the theorem’s logical statement, since any
valid proof verifies the theorem. However, in terms of the running times of extracted
programs, it is possible to make a potentially significant difference by changing the
proof of the theorem.

Our hope here is to show that more imaginative interpretations of case analysis

may improve the computational complexity involved in case selection. Recall from
section 3.4.4 that for the rule

r"de(A.o,A],...,Am) I‘l—aopAo—»B s I‘I-a,,.pA,,.—bB
I'tppB

caseanal

for m > 0, where d = (dy, d,,...,dn), the current case selection strategy for p is
First-Case. For computational complexity reasons, we may wish to stipulate that p
must choose a ¢ € {0, 1,...,m} so that the pair a.,d., where (a. d.) p B, executes in
the fewest computation steps.

Of course, in general p cannot always perform this choice by merely inspecting
the a; and d;. Nevertheless, with suitable knowledge of the realizability interpretation
built into the program extraction machinery, it may be possible to obtain a rough
or possibly exact count of the number of operations each a; will incur as a result of
executing on d;. If this accounting is available, we could hope to decide at proof time
which proof (—-elimination) to use to establish C and write the desired p from this
decision. Another possible selection strategy is a permuted-order testing which may
be useful if something is known about the relative frequency with which each case
occurs so that the entropy of the selection is maximized.

However, even without operation counting in the extraction procedure, with the
appropriate computation engine, a p could indeed be built which decides which a;,d;
pair executes in the fewest steps. For example, if p is written to be executed on a
parallel machine with a eureka jump mechanism, it can run each q;, d; pair, where
d; is non-#£, on separate machines and then (retroactively) choose the result of that
a;, d; pair which finishes its calculations first.

As an aside, an unexplored consequence of the above observation is that, with
parallel execution at our disposal, as long as one of the (a; d;) applications specifies
a halting computation any (or all) of the other (a; d;) need not indicate halting
computations. In particular, as long as (a, ds) for some h halts (and of course d; is
non-#f) any of the a;,i # h may be an improper extraction from a proof of A; — B
with a non-constructive step in it, provided that (a; d;) does not halt or halts with
an error condition so p does not choose it.

Finally, observe that the realizations extracted from the consider statement are
correct even in the case of afunctional choice since the expression (CAR e) (in the
statement of the inference) is evaluated exactly once to obtain its value and which
is then saved by the (LET ...) construction which binds that chosen value to a vari-
able. Figure 4.0.3 gives a small incomplete example where we use two proofs of the

37

now
let x; assume d: A[x];
casel: now assume A[x];

thus (ex y st B[x,y]) by exintro(_PREVIOUS); end;

case2: now assume A[x];

thus (ex y st B[x,y]) by exintro(_PREVIOUS); end;

A[x] or A[x] by disjintro(d,d);
thus (ex y st Bix,y]) by caseanal (_PREVIOUS,casel,case2);
end;

for x st Alx] holds (ex y st Blx,y]) by direct(_PREVIOUS);

Figure 4.0.3: An example of parallel case selection.

same relation to prove a new relation whose r* xlization may execute afunctionally if
the case selection is performed nondeterminisucally as given above. The ellipsis in
deductions at casel and case2 indicate distinct deduction sequences which establish
ex y st Blx,y] from A[x]. The case analysis might choose either of them depending
upon which proof results in an extraction which runs quicker on the given input value
x. Notice also that if we do not have a guarantee that B[x,y] functionally relates
y to x, then we cannot guarantee that the value for x captured by the existential
quantifier in casel and case2 will be the same.

38

Chapter 5

Some Problems Encountered

MizAR-C’s implementation is not complete with respect to the descriptions of the
support mechanisms in Chapters 2 and 3, such as the marking scheme. We have
also found that some features such as the extraction mechanism might be reasonably
extended in order to become useful for encoding a variety of program-specification
relationships. We outline these problems associated with the actual implementation
of M1ZAR-C’s proof checker and program extraction mechanism in section 5.2.

We note that, other than defining a realizability interpretasicn and implementing
a basic method of extending the system, we have incorporated essentials :: features
which aid in general program development. Although we have not PSR Y dm-
plementatior: of these featvres, the need for them is recognized, and iii =2¢7its $.5 we
discuss sorme pr.Ji2c s cavnter«d when writing the type information cf objects, and
when trying to deiw jredic-les. We highlight these problems and give an extended
example of a proof in Miz4R~C in section 5.1.

5.1 An Example Proof

We give an example of using M1ZAR-C on a problem which is admittedly small
but which demonstrates a use of formulas as specifying types, and a use of extensions
to the system including new inference rules. The proof is of the summation function
and it appears in Appendix C.

In the proof, the formula at SigmaDef is the definition of the the summation
operator. Since there is no predicate definition mechanism yet for the proof writer,
we are forced to include the (impredicative) definition of the predicate Sigma using
the magic rule. magic is a rule which can be used on any formula and uses the
definition of shape defined in section 4.0.1 to create an appsopriate realization for
the conclusion. We will not discuss the magic rule, except to say that the magic
rule should be thought of as adding axioms to the system without being required to
manually assign a realization to them. For example, the axiom

NatT-0: for x st Nat[x] holds Nat[(succ x)];

39

may be added to any system using the magic rule since it assigns a realization such
as:
(LAMBDA (x) (LAMBDA (natx) #t))

to the formula where x is ¥(x) and natx is the realizer variable for the Nat[x] an-
tecedent in NatT-0.

The extendwith naturals-t statement in the environment section loads in the
predefined extension which implements the basic data type for naturals, much as was
done in section 4.0.2. It defines the constant 0, the function succ : Nat — Nat, and
we interpret the predicate Nat [t] for arhitrary defined term t to mean that t € Nat.
It also defines an induction inference rule natind:

I'tbcpPro TtispVz.Natlz] = (P = Preuee 1))

natind TF pVz.P

for any formula P in variable z, where succ is the successor function succ. p in
natind is defined to be

(LAMBDA (x) (LAMBDA (Natx) (NAT-IND-ITER x bc is)))

where x is ¥(x), Natx is the realizer variable for the antecedent Nat [x] in the conclu-
sion. NAT-IND-ITERis a Scheme combinator defined in the extension which recursively
applies is starting bc, x times and returns the result. The application is performed as

((isr) #¢t)

where #t represents the realization of #at[x] and r is the currently iterated real-
ization which starts out as bc. The extension nat-plus-t adds to the system the
plus function of type Nat x Nat — Nat which adds two numbers together. All ax-
ioms from either extension which are used in the proof have been restated just after
SigmaDef using labels starting with R (the direct rule allows one to restate any
formula). In case the examples before have not made it clear, the label _PREVIOUS in
a deduction stands for the formula immediately before the current one.

5.2 Implementation Restrictions

At present, the marking strategy defined in section 3.1 is not implemented by
MizAR-C, which means that construction errors are not mechanically caught at
proof time. Nevertheless, the non-constructive inference rules pair realizations of #£
with their conclusions and #f is an invalid realization for a true formula. Because
of this feature, the construction error tests may be quite easily added to the current
implementation. As a convenience, the marking of each formula as constructive or
non-constructive might also be indicated textually by the system so that the proof
writer can immediately identify which formulas do not have a constructive proof.
Without the textual marking of the formulas as constructive or non-constructive, one

40

cannot immediately know from a proof where non-constructive steps have prevented
a correct program from being extracted.

A more serious concern is that we currently use Scheme as the execution niachine
for the extracted programs. Although this is convenient for system development rea-
sons, it is poor with respect to efficiency concerns because Scheme fully evaluates the
list constructor. That is, all elements z; of (LIST zo z; ... Zp),m > 0 are evalu-
ated to produce (Zo, %3, ...,%m). All of our realizations reduce to normal form such
that if zpY then ZpY also because we have been careful to evaluate any afunctional
expressions at most once by capturing values using the LET special form. Therefore
eager evaluation does not introduce execution errors, but unnecessary evaluations
usually occur as a result. Execution order is especially important during case anal-
ysis because, for example when using the First-Case program, not all elements in a
disjunction always need be evaluated since only the first non-#£ element is impor-
tant. Since Scheme [3] does not properly implement lazy lambda calculus variable
substitution and does not have the eval function, we found it very awkward to imple-
ment lazy case selection in an unextended Scheme. A simple solution to the problem
of controlling evaluation order would be to implement, and use instead of Scheme,
a small lambda calculus evaluator which uses the Scheme notation and which has
proper lambda function semantics.

We have also found that the interactive proof editing facilities available in the
Synthesizer Generator did not appear to aid substantially in the process of writing
proofs. In our experience, even moderately sized proofs (proofs greater than around
100 lines) required an unreasonable amount of time to perform incremental updates
on even small changes. Almost certainly part of the problem occurs as a result
of the fact that the Synthesizer Generator does not provide a convenient way of
dynamically changing inference scheme mechanisms. Because of this deficiency, the
inference scheme machinery is written in a version of Common Lisp which introduces
inefficiencies such as formula translation to Lisp s-expressions. Nevertheless, judicious
use of the import and export mechanisms will allow for modular creation of large
proofs by writing lemmas in one sub-proof and using them in other sub-proofs by
importing them. Since such lemmas are imported as axioms, they are not checked
and incremental updates are not applied to them so they do not significantly slow
down the editor. Thus where modularization through lemmas is possible, the size of
a sub-rroof for which the system must allow convenient interactive proof updating
may be much smaller than the entire proof.

Lastly, as the inference engine is implemented currently, the inference rule inter-
pretation is immutable because the extraction machinery is written into the inference
rule mechanisms. Changing interpretations for a proof might be desirable since dif-
ferent interpretations could be made for distinct execution machinery, while the same
program-specification relationship encoding could be retained. In such cases, chang-
ing the interpretation of a proof of a specification for different execution machines
corresponds roughly to a recompilation process: the same psoof is used to create pro-
grams for multiple execution schemes. For this reason, it might be advantageous to

41

add the facilities to the system which allow at proof time (or perhaps link time) to
specify an interpretation (from a fixed selection of interpretations, say) for the proof
so that the extraction mechanisms may be changed independently from the proof.
Unfortunately, adding this facility introduces numerous other problems concerning
the use of extensions with such a system. Specifically, the assignment of realizations
to axioms in an extension is dependent upon the interpretation of the inference rules,
so the extension writer might be required to assign several differeni irterpretations of
the axioms for any particular extension. In addition, the system must contend with
several interpretations of an extension’s axioms, and it must ensure that the correct
interpretation for the axioms is used depending upon the choice of interpretation for
the inferences.

5.3 Deficiencies in the Logic

Implementation restrictions notwithstanding, MizAR-C’s logic and proof check-
ing system lack some features which makes general program construction inconvenient
and problematic. The first difficulty concerns the technical complexity involved with
writing forwnulas as type specifications, in particular, formulas used as type specifiers
can become long and their purpose obscured. In section 5.3.1 we propose an initial so-
lution to these two problems by expanding the syntax of the variable sort specification
mechanism. In section 5.3.2 we question the necessity of the special syntax for sorts
when the awkwardness of using formulas to specify types can be largely alleviated
through the use of tactics and abbreviations. An abbreviation is simply a name given
to a formula. For example, we might wish to abbreviate the formula Vz.(3y.z = y) as
the word ident. Then, if ident is known to abbreviate Vz.(3y.z = y), we may write
ident whenever we wish to write Vz.(3y.z = y).

5.3.1 Sorts as Static Types

Restrictions on a quantifier can be interpreted as indicating parameter restrictions
for partial functions specified by the quantified formula. For the sentence

S = Vz.Nat[z] — 3y.Nat[y],

where Nat is a predicate indicating membership in the naturals, we might interpret
S to specify a function from Nat to Nat. We say that, where true, Nat|z] represents
knowledge that object z is a member of the set of naturals, and acts as a statement of
z's type. The proof of the summation function in section 5.1 indicates the disadvan-
tage associated with this kind of program-specification relationship: we must always
carry around proofs of our objects’ types, a process which becomes both tedious and
distracting. Tactics may be defined, though, to help automate the use of these speci-
fications in order to at least reduce the amount of tedious work associated with using
formulas as types for quantifier restrictions.

42

sort := identifier
| sort=> sort
| <sort{,sort}>
| (sort)

Figure 5.3.1: An alternative grammar for sorts.

for f being Nat->Nat, z being Nat holds
(ex sum being Nat st Sum[f,z,sum])

Figure 5.3.2: Using special syntax for sorts.

However, it might be more convenient to build into the system a notation and
interpretation for quantifier restrictions for the simple types. We may try using sorts
as simple type identifiers, but since we define (see section 3.6) the sort of a complex
term to be the sort of its function variable, without modification of the definitions of
the sort of a term, we run into trouble. The trouble occurs because, if we interpret
the sort of a term to be its type, function variables in complex terms would always
have the same type as the objects in their range, a relationship which is not easily (or
naturally) mapped to a realization. This problem can be solved in a straightforward
way by extending the language for sort identification and changing the interpretation
of sorts. In particular, we could allow sorts to be named by the grammar which
appears in Figure 5.3.1. In Figure 5.3.1, identifier is a variable identifier and sortis a
sort. The parenthesis as usual override the precedence of the other sort construction
operators. :

With the above sort syntax, we could interpret a sort composed of a simple identi-
fier as naming a basic sort which is thought of as a built-in data type. Then we could
interpret sorts of the form so->s, as naming the set of functions from sort g to sort sy,
and sorts of the form <sg,s1, ..., ,8m>,m >0 as naming the cartesian product of the
m sets identified by s;. Thenatermt = (f{ot; ... tm),m > 0 would be well formed if
variable f is of sort <sp, s1, ..., Su>=> s, and t’s sort would be s. Figure 5.3.2 gives
an example of the use of this interpretation for sorts as specifying simple types. In it,
Sunff,z,sun] is to be interpreted as sum = £%_,(f i), and objects satisfying the
predicate Nat are said to be natural numbers. Using formulas as type specification,
the formula in Figure 5.3.2 might appear as SumDef in Figure 5:3.3, which is arguably
more difficult to use and state. The formula for x st Nat[x] holds Nat[(f x)]
acts as a certificate of the fact that f is a function from Nat to Nat since when it is
true, for any object y satisfying Nat [y], one can conclude that (£ x) is defined and
its value also satisfies Nat [(f x)].

It is unclear what significant advantages specialized sort syntax provides when tac-

43

for £,z st (for x st Nat[x] holds Nat[(f x)]) & Nat[z] holds
(ex sum st Nat[sum] & Sum([f,z,sum])

Figure 5.3.3: Using formulas to specify types.

tics combined with abbreviations may make writing and reading proofs easier without
sorts. To see how the system of using formulas as types can be made more palatable
without resorting to building in a typing notation, we describe two extensions to the
MIzZAR-C system: tactics and abbreviations.

5.3.2 Tactics and Abbreviations

The main advantage which tactics can provide is that they can automate some
monotonous tasks involved in writing proofs by abstracting out proof procedures
much in the same way as macros (and algorithms) abstract out computation steps.
Tactics may be currently added by writing—by hand—the tactic mechanism as a
named inference scheme using MizZAR-C’s internal inference writing language, Lisp.
For example, we have implemeuted a simple tactic called munivelim which can call
univelimmultiple times to eliminate several universal quantifiers from a formula in a
single step. A tactic implemented as a named inference scheme can then be included
in an extension (for use with the extendwith statement) which makes it convenient
to bundle tactics with the axioms they work upon. Although any tactic could be im-
plemented using Lisp, it would be convenient to allow the proof writer to add tactics
to the system as they are needed, but without knowing how to write them in Lisp.
In addition, it would be desirable to be able to prove each tactic is correct (i.e. that
it represents a series of valid deductions using more primitive, valid inference rules)
which is difficult to do if the tactics are written directly in Lisp.

The straightforward solution is to add a tactic writing syntax to the MizAR~-C
language which allows for reasoning using the inference rules on named parameter
formulas. Then the tactic writing mechanism could interpret the inference rule se-
quence used on the parameter formulas as a tactic which may be used on other actual
formulas. Then, instead of extracting executable code from the proof of a tactic,
we could extract a Lisp program which implements the tactic as a named inference
scheme. Since these named inference schemes would be conservative extensions to
the system in which they are defined, they might be added to the system where the
tactic definition appears. An alternative is to export their definition using the export
mechanism in order to load them into other proofs when an import is performed.

It may also be possible to encode, in an extension to the system, the inference rules
as functions on MIZAR-C formulas. This extended system, call it meta-MizAR-C,
would describe the set of valid inference rules in the logic of M1zAR-C; we could then
write tactics as theorems asserting the existence of new functions based on the axiomi-

44

tization of M1ZAR~C'’s inference rule functions. Extractions from the (constructive)
proofs of these theorems could be named and loaded into the proof checker to be
used as inference schemes implementing tactics. Although this second approach, if
feasible, would make simple tactic writing much more difficult, it would allow for the
interesting exercise of reimplementing the base inference rules by proving them using
an assumption of a definition of the logic of MiZAR~C. The potential importance
of the feasibility of the latter approach is described by Constable and Howe [5] and
Allen et. al. [1].

While tactics allow the writer to create succinctly written reasonings, the formulas
the tactics work on can remain large and unwieldy. An abbreviation mechanism which
allows formulas to be represented by a name may be a partial solution to this problem.
For any large formulas which occur often, writing them as named formulas decreases
the size, and increases the readability of the entire proof. Once again, using our
example from Figure 5.3.3 we might wish to interpret the formula

fFunc: for x holds Nat[x] implies Nat[(f x)];

as a certificate that £ is a function from Nat to Nat, but the meaning of the foimnula
is not obvious and the formula itself is rather large and distracting. It wor ' be
much better to name the entire formula at fFunc as Func-Nat2Nat[£] to inaicate
the property of £ (its type) which £Func specifies. In general, we could implement
abbreviations by adding a command which associates an arbitrary formula F in free
variables v1,v3,...,v, (n >= 0) with an unused n-place predicate P[v;,vs,...,uv,]
so long as Plv;,v;,...,v,] does not appear in F. Then, in the proof text which
follows the abbreviation’s definition, wherever predicate P[ty,1s,...,t,] appears, it
would be expanded into the formula F with the n free variables v; in F substituted
with the corresponding terms ¢; in P[t;,t,,...,t,]. It is important to remember that
this formulation of abbreviation automatically expands the abbreviation names so
that the predicate Plv;,vs,...,v,] above is not actually defined by the abbreviation
mechanism, rather it only acts to identify a formula. This distinction is important
since D(F) may be @ which forces us to expand Pfvy,vs,...,v,] before any inference
rules such as take or exintro are used on it. As a consequence, the statement of an
abbreviated formula is allowed only where the statement of the formula it abbreviates
is allowed. As always, all variables in P[t;,,,...,1,] must be defined in order for the
formula it represents to be statable.

The above proposed abbreviation facility is only a partial solution for meaning-
fully naming large formulas since, for example, terms can become large (examine the
term (plus z (f (succ n))) in the summation proofs in Appendix C and Appendix
D). We also note that, in the natural deduction system, some inferences are written
in several steps using special notation so that any one proof step, such as a univer-
sal variable declaration, may not be a complete inference. Because of this fact, some
commonly occurring proof steps cannot be abstracted by a tactic because they do not
constitute a complete inference. Such is the case when using a consider statement to
eliminate an existential quantifier from a formula because the inference is completed

45

only when the local variable introduced by the consider statement is removed from
consideration. For cases where common proof steps do not form a complete inference
or sequence of inferences, we could instead implement proof macros which expand
to multiple proof steps when entered into the system. Some useful proof macros
might also be displayed as their macro names by using the view capability of the Syn-
thesizer Generator, which allows one to display entire language strings in alternative
condensed formats. Finally, the implementation of parameterized tactics, or tacticals,
which name a family of tactics would be the next step in defining a convenient tactic
mechanism. Tacticals are important for proof writing because they abstract a general
inference scheme over deductions as well as formulas (see below for an example).

We now return to the question raised when discussing the sort restrictions of
MIZAR-C: is the special sort syntax necessary to understand and write the our
desired proofs with reasonable comfort? As perhaps an indicator of the comfort
which tactics and abbreviations might add to the system, we show the example proof
which appears in Appendix C rewritten in Appendix D using the tacticals elim and
captureand the (currently imaginary) abbreviations SigmaF and NatFunc. The proof
uses the abbreviations

SigmaF[z,n,f] = Nat[z] & Sigmalz,n,f]
NatFunc{f] = for x st Nat[x] holds Nat[(f x)]

where = means the name on the left hand side abbreviates the formula on the right
hand side. Both tacticals may be implemented in Lisp (elim already has been) and
added to an extension and perform the expected inferences: capture introduces an
existential formula of the form ex v st v=t for some argument term t, and elin
performs multiple universal quantifier elimination and implication elimination given
a sequence of argument variables, a universal sentence, and formulas matching an-
tecedents for implications in the universal sentence. Their definitions are clarified by
their use in the example proof.

46

Bibliography

(1] Stuart F. Allen, Robert L. Constable, Douglas J. Howe, and William E. Aitken.
The semantics of reflected proof. In Fifth Annual IEEE Symposium on Logic

in Computer Science, pages 95-107, Los Alamitos, CA, 1990. IEEE Computer
Society Press.

2] Michael J. Beeson. Foundations of Constructive Mathematics, volume 6 of Ergeb-
nisse der Mathematik und ihrer Grenzgebiete 3.Folge. Springer-Verlag, Berlin-
Heidelberg-New York, 1985.

[3] William Clinger and Jonathan Rees (eds.). Revised* report on the algorithmic
language scheme. LISP Pointers, 4(3):1-56, 1991.

[4] R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer, R.W,
Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler, P. Panangaden, J.T. Sasaki,
and S.F. Smith. Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hail, Englewood Cliffs, New Jersey, 1986.

[5] Robert L. Constable and Douglas J. Howe. Nuprl as a general logic. In Pier-

giorgio Odifreddi, editor, Logic and Computer Science, pages 77-90. Academic
Press, London, UK, 1990.

[6) Thierry Coquand. On the analogy between propositions and types. In Gerard
Huet, editor, Logical Foundations of Functional Programming, The UT Year of

Programming Series, pages 399-418, Reading, Massachusetts, 1990. Addison-
Wesley.

[7] N. G. de Bruijn. A survey of the project AUTOMATH. In To H.B. Curry:
Essays in Combinatory Logic, Lambda Calculus, and Formalism, pages 579-606,
London, UK, 1980. Academic Press.

[8] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials of
Programming Languages. The MIT Press, Cambridge, Massachussets, 1992.

[9] Timothy G. Griffin. A formal account of notational definition. Technical report,
Cornell University, 1988.

47

{10] Susumu Hayashi. An introduction to PX. In Gerard Huet, editor, Logical Foun-
dations of Functional Programming, The UT Year of Programming Series, pages
431-486, Reading, Massachusetts, 1990. Addison-Wesley.

[11] Susumu Hayashi and Hiroshi Nakano. PX: A Computational Logic. The MIT
Press, Cambridge, Masschussets, 1989.

[12] Martin C. Henson. Realizability models for program construction. In G. Goos
and J. Hartmanis, editors, Mathematics of Program Construction, Proceed-
ings, volume 375 of Lecture Notes in Computer Science, pages 256-72, Berlin-
Heidelberg-New York, June 1989. Springer-Verlag.

(13} Martin C. Henson and Raymond Turner. A constructive set theory for program
development. In G. Goos and J. Hartmanis, editors, Foundations of Software
Technology and Theory of Computer Science, Proceedings, volume 338 of Lecture
Notes in Computer Science, pages 329-47, Berlin-Heidelberg-New York, Decem-
ber 1988. Springer-Verlag.

[14] H. James Hoover and Piotr Rudnicki. Lecture Notes on Formal Systems and
Logic in Computing Science. Department of Computing Science, University of
Alberta, 1991. Course Notes.

[15) Paul Francis Mendler. Inductive definition in type theory. Technical report,
Cornell University, 1987.

[16] Bengt Nordstrém, Kent Petersson, and Jan M. Smith. Programming in Martin-
Lof’s Type theory, volume 7 of International Series of Monographs on Computer
Science. Claredon Press, Oxford, 1990.

[17] Larry Paulson. Logic and Computation: Interactive Proof with Cambridge LCF,
volume 2 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, Cambridge, 1987.

(18) Frank Pfenning. Elf: A language for logic definition and verified meta-
programming. In Fourth Annual Symposium on Logic in Computer Science,
pages 313-322. IEEE Computer Society Press, June 1989.

[19] Thomas W. Reps and Tim Teitelbaum. The Synthesizer Generator. Texts and

Monographs in Computer Science. Springer-Verlag, Berlin-Heidelberg-New York,
1989.

[20] Grant Malcolm Roland Backhouse, Paul Chisholm and Erik Saaman. Do-it-
yourself type theory. Formal Aspects of Computing, 1:19-84, 1989.

[21] Piotr Rudnicki and Wlodzimierz Drabent. Proving properties of pascal programs
in MIZAR 2. Acta Informatica, 22:311-331, 1985.

48

[22] Yukihide Takayama. QPC: QJ-based proof compiler - simple examples and
analysis. In G. Goos and J. Hartmanis, editors, Second European Symposium

on Programming, Proceedings, Lecture Notes in Computer Science, pages 49-63,
Berlin-Heidelberg-New York, 1988. Springer-Verlag.

[23] Yukihide Takayama. Extraction of redundancy-free programs from constructive
natural deduction proofs. Journal of Symbolic Computation, 12:29-69, 1991.

[24] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics: An Introduc-

tion, vols I and II, volume 121 & 123 of Studies in Logic and the Foundations of
Mathematics. North-Holland, Amsterdam, 1988.

49

Appendix A

Annotated proof of Pred

article pred
environ
extendwith naturals-t; /# Extend with definition of naturals */

begin
/* Restated axioms from naturals-t »/
AX-successor:
for x st Nat[x] holds Nat[(succ x)] by direct(NatT-succ);
/* 1Is realized by (LAMBDA (x) (LAMBDA (nat) #t)) since it is */
/+ a higher order function on a natural witness transformation */

AX-zero-nat:
Nat[0] by direct(NatT-0);
/% Nat[0] is realized by #t »/

0=0 by eqintro();
/% 0 is defined in naturals-t; O=0 is realized by #t =/

(succ 0)=0 or 0=0 by disjintro(_PREVIOUS);
/+ 0=0 is remembered as the (only) true disjunct, realized by a #*/
/* list of the disjunct realizations: (LIST $f #t) %/

Nat[0] & ((succ 0)=0 or 0=0) by conj(_PREVIOUS, AX-zero-pat);
/* The new conjunction realization remembers the realizations of */
/* both conjuncts in a 1ist: (LIST #t (LIST #f #t)) x/

BaseCase:

ex pred st Nat[pred] & ((succ pred)=0 or 0=0) by exintro(_PREVIOUS);
/+ Ve save the value 0 as the one satisfying the base case, and #/
/* the witness that it satisfies it: «/

/* BASECASE = (LIST O (LIST #t (LIST #f #t))) */

50

/+ Our goal in the induction step is to prove
* GOAL: for x st Nat[x] holds

* (ex pred st Nat[pred] & ((succ pred)=x or x=0)) implies
* (ex pred st Nat[pred] & ((succ pred)=(succ x) or (succ x)=0))
»/
InductionStep:
nov
let x;

/* Parameter named x */

assume xNat: Nat[x];
/* Precondition Parameter nat-x */

assume unusedIH: ex pred st Nat[pred] & ((succ pred)=x or x=0);
/* Precondition Parameter ind-hyp, the induction hypothesis */

/* We can construct our desired conclusion without reference to »/

/+ the induction hypothesis using the axioms for naturals %/
Nat([x] implies Nat[(succ x)] by univelim(AX-successor);

/* Eliminate on x, (AX-successor x) == (LAMBDA (nat) #t) &/
Nat [(succ x)] by impelim(_PREVIOUS, xNat);

/* Eliminate on Nat[x], ((LAMBDA (x)) #t) == st */
(succ x) = (succ x) by take(_PREVIOUS);

/* (succ x) is a valid term, equality realized by #t */

(succ x) = (succ x) or (succ x)=0 by disjintro(_PREVIOUS);
/* Remember the realization of true disjunct (LIST #t #f) s/

Nat[x] & ((succ x)=(succ x) or (succ x)=0) by conj(_PREVIOUS, xNat);
/+ Remember conjuncts’ realizations: (LIST nat-x (LIST #t #£)) »/

/* The "thus" statement iJsntifies the formula which is to be %/
/* concluded as a result of this reasoning */

thus ex pred st Nat[pred] & ((succ pred) = (succ x) or (succ x)=0)
by exintro(_PREVIOUS);
/+ Value remembered for pred is x, the parameter: s/
/* (LIST x (LIST nat-x (LIST #t #£))) %/
end;

/+ The assumptions and local variable declarations result in

* abstraction through implication introduction and ::niversal
* introduction respectively when we move out of th¢ "now--end".

51

* We have proven GOAL:, from the proof, it is realized by:
INDSTEP =
(LAMBDA (x)
(LAMBDA (nat-x)
(LAMBDA (ind-hyp)
(LIST x (LIST nat-x (LIST #t #£))))))

4 & &% =

*/

PredFunc:

for x st Nat[x] holds
(ex pred st Nat[pred] & ((succ pred)=x or x=0))
by natind(BaseCase, InductionStep);

/* The realizer for the formula concluded by the induction scheme natind
+ is a function which calls a recursor, NAT_IND_ITER to apply
s INDSTEP iteratively to BASECASE:

(LAMBDA (x)

(LAMBDA (nat-x)
(NAT_IND_ITER x BASECASE INDSTEP)))

*

in more familiar Scheme, we can rewrite the realizer as the recursive
program:

(define (rec x nat-x)
(it (= x 0)
BASECASE
((INDSTEP (rec (- x 1) nat-x)) nat-x)

% % # % % 4 # X % & &

)

*
~

52

Appendix B

Non-constructive Inference Rules

These are the inherently non-constructive inference rules which implement standard
classical inference rules. In the following A and B are arbitrary formulas.

Tk --4

negelim —
A

contrintro Ll T e negintro I—;:——;-'L—

rr1

. 'MA—-B T}-B
1 13 ——
revimp TF =4 exniddle Fv (A A)

Let C be a formula such that either C = ~A or ~C = A, then

THASB ooty LFV(B,O)

o ogis
WPEES TEV(B.C) TFA—B

53

Appendix C

Proof of Summation

article summation
environ

extendwith naturals-t;
extendwith nat-plus-t;

begin

{ A ‘definition’ of the summation operator as a predicate. }
SigmaDef:
for £ st (for x st Nat[x] holds Nat[(f x)]) holds
Sigma[(f 0), 0, 1]
& (for n, z st Nat[n] & Nat[z] holds
Sigma(z, n,] implies Sigma[(plus z (f (succ n))),(succ n),f])
by magic();

{ Restatement of axioms in naturals-t and nat-plus-t for referance }

RNatT-0: ¥at[0]
by direct(NatT-0);

RNatT-succ: for x st Nat[x] holds Nat[(succ x)]
by direct(NatT-succ);

RNatT-plus: for x,y st Nat(x] & Nat[y] holds Nat[(plus x y)]
by direct(NatT-plus);

now
let £; assume fFunc: for x st Nat[x] holds Nat[(f x)];

(for x st Nat[x] holds Nat[(f x)]) implies

Sigma[(f 0), 0,]
& (for n, z st Nat{n] & Nat[z] holds

54

Sigma(z, n,] implies Sigmal(plus z (f (succ n))),(succ n),1])
by univelim(SigmaDef);

1: Sigma[(f 0), 0, f] &
(for n, z st Nat{n] & Nat[z] holds

Sigmalz, n, 1] implies Sigmal(plus z (£ (succ n))),(succ n),f])
by impelim(_PREVIOUS, fFunc);

2: Sigma[(f 0), 0, £] by conj(1);

3: for n, z st Nat[n] & Mat[z] holds
Sigma(z, n, f] implies Sigmal(plus z (f (succ n))),(succ n),f]
by conj(1);

{ Show a value exists for the base case for 0 }
BaseCase: now

Nat[0] implies Nat[(f 0)] by univelim(fFunc);
nf0: Xat[(f 0)] by impelim(_PREVIOUS,RNatT-0);
Nat[(f 0)] & sigma[(f 0),0,f] by conj(n£0,2);

thus ex z st Nat[z] & Sigma[z,0,f) by exintro(_PREVIOUS);
end;

{ Now induction step }
IndStep: now
let n;
ussume nNat: Nat[n];
assume IndHyp: ex z st Nat[z] & Sigma[z, n, £];

consider z such that 4: Nat[z) & Sigmalz, n, f] by direct(IndHyp);
nats: Nat[n] & Nat[z] by conj(nNat,4);
sig: Sigma[z,n,f] by conj(4);

for z st Nat[n] & Nat[z] holds

Sigmalz, n, f] implies Sigmal(plus z (f (succ n))),(succ n),f]
by univelim(3);

Nat[n] & Nat(z] implies
(Sigma(z, n, £] implies Sigmal(plus z (f (succ n))),(succ n),f])
by univelim(_PREVIOUS);

Sigma(z, n, f] implies Sigmal(plus z (£ (succ n))),(succ n),f)
by impelim(_PREVIOUS,nats);

sigp: Sigma[(plus z (£ (succ n))), (succ n), £]
by impelim(_PREVIOUS,sig);

55

(£ (succ n)} = (£ (succ n)) by take(_PREVIOUS);
consider fsucc such that
vfsucc: fsucc = (f (succ n)) by exintro(_PREVIOUS);

(succ n) = (succ n) by take(_PREVIOUS);
consider succn such that
vsuccn: sucen = (succ n) by exintro(_PREVIOUS);
Nat[n] implies Nat[(succ n)] by univelim(RNatT-succ);
Nat[(succ n)] by impelim(_PREVIOUS,nNat);
nsn: Nat[succn] by equality(_PREVIOUS,vsuccn);
Nat[succn] implies Nat[(f succn)] by univelim(fFunc);
Nat[(f succn)] by impelim(_PREVIOUS,nsn);
Nat[(f (succ n))] by equality(_PREVIOUS,vsuccn);
Nat[fsucc] by equality(_PREVIOUS,vfsucc);
nfsz: Nat[z] & Nat[fsucc] by conj(_PREVIOUS,4);
for fsucc st Nat[z] & Nat[fsucc] holds
Nat[(plus z fsucc)] by univelim(RNatT-plus);
Nat[z] & Nat[fsucc] implies
Nat[(plus z fsucc)] by univelim(_PREVIOUS);
Nat[(plus z fsucc)] by impelim(_PREVIOUS,nfsz);
Nat[(plus z (£ (succ n)))] by equality(_PREVIOUS,vfsucc);

Nat[(plus z (f (succ n)))] &
Sigma[(plus z (f (succ n))),(succ n),f]
by conj(_PREVIOUS,sigp);
thus ex z st Nat[z] & Sigma[z, (succ n), f] by exintro(_PREVIOUS);
end;

thus
for n st Nat(n] holds (ex z st Nat[z] & Sigma[z, n, £])
by natind(BaseCase, IndStep);
end;

SigmaFunc:
for £ st (for x st Nat[x] holds Nat[(f x)]) holds
(for n st Nat[n] holds (ex z st Nat[z] & Sigmalz, n, £]))
by direct(_PREVIOUS);

56

Appendix D

Proof of Summation using Tactics
and Abbreviations

now
let f; assume fFunc: NatFunc[f];

1: Sigmal(f 0), 0, 1] &
(for n, z st Nat[n] & Nat[z] holds

Sigma(z, n, £] implies Sigma[(plus z (£ (succ r))),(succ n),f])
by elim[f] (SigmaDef, fFunc);

N

: Sigmal(f 0), 0, £] by conj(1);
3: for n, 2 st Nat{n] & Nat[z] holds

Sigma[z, a, f] implies Sigma[(plus z (f (succ n))),(succ n),f]
by conj(1);

{ Show a value exists for the base case for 0 }
BaseCase: now

nf0: Nat[(f 0)] by elim[0] (fFunc,RNatT-0);
Nat[(f 0)] & Sigmal(f 0),0,£] by conj(nf0,2);
thus ez z st SigmaF[z,0,f] by exintro(_PREVIOUS);
end;

{ Now induction step }
IndStep: now
let n; assume nNat: Nat(nl:
assume IndHyp: ez z st SigmaF[z,n,f];

consider z such that 4: SigmaF(z,n,f] by direct(IndHyp);

nats: Nat[n] & Nat[z] by conj(nNat,4);
sig: Sigma(z,n,f] by conj(4);

57

sigp: Sigma[(plus z (f (succ n))), (succ n), f] by elim[n,z](3,nats,sig);
consider fsucc such that

visucc: fsucc = (f (succ n)) by capture[(f (succ n)](_PREVIOUS);
consider succn such that

vsuccn: sucen = (succ n) by capture[(succ n)] (_PREVIOUS);

Nat[(succ n)] by elim[n] (RNatT-succ,nNat);

nsn: Nat[succn) by equality(_PREVIOUS,vsuccn);
Nat[(f succn)] by elim[succn] (fFunc,nsn);
Nat[(f (succ n))] by equality(_PREVIOUS,vsuccn);
Nat[fsuccl by equality(_PREVIOUS,vfsucc);

nfsz: Nat[z] & Nat[fsucc] by conj(_PREVIOUS,4);

Nat[(plus z fsucc)] by elim[z,fsucc] (RNatT-plus,nfsz);

Nat{(plus z (f (succ n)))] by equality(_PREVIOUS,vfsucc);
SigmaF[(plus z (f (succ n))),(succ n),f]
by conj(_PREVIOUS,sigp);
thus ez z st SigmaF[z,(succ n),f] by exintro(_PREVIOUS);
end;

thus
for n st Nat[n] holds (ex z st SigmaF[z,n,f])
by natind(BaseCase, IndStep);
end;

SigmaFunc:
for f st NatFunc[f] holds
(for n st Nat[n] holds (ex z st SigmaF[z,n,f]))
by direct(_PREVIOUS);

58

