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Abstract

E. coli dimethylsulfoxide reductase (DmsABC) is a trimeric iron-
sulfur molybdoenzyme that allows respiratory growth on S- and N-
oxides. Absorption and fluorescence spectroscopy was employed, and

indicated DmsABC binds molybdopterin guanine dinucleotide (MGD).

A soluble form of DmsABC, missing the membrane anchor
(DmsC), is found in the cytoplasm (DmsAB). Examination of the
properties of DmsAB, and reconstitution of MGD into apo-DmsAB,
confirmed the instability of DmsAB in comparison with DmsABC.

These data implicated DmsC in the stabilization of DmsABC.

Determination of the correct iniiiating Met for DmsA indicated
DmsA possesses a leader with a double-arginine consensus, suggested to
be important for membrane targeting and translocation of a subset of
redox cofactor containing proteins. Examination of DmsABC with
truncated, deleted, or mutated double-arginine consensus leader,
demonstrated the leader and consensus within, are essential for

production of functional enzyme.

Open, closed, and nuclear magnetic resonance spectroscopic
assays were examined for use with DmsABC. Investigation suggested
dithionite was both a competitive and irreversible inhibitor. The kinetic
constants for DmsABC were determined for both the electron donor, and
electron acceptor portions of the reaction. This showed DmsABC's very

broad electron acceptor specificity for S- and N-oxides and miscellaneous




compounds. This was demonstrated to contrast trimethylamine N-oxide

reductase (TorA), as it was shown to reduce only a few N-oxides.

Examination of the crystal structure of dimethylsulfoxide
reductase from Rhodobacter sphaeroides ( DMSOR), and comparison of
the homologous DmsA and DMSOR sequences, revealed potential DmsA
active site residues. Site-directed mutagenesis was employed to alter

these residues in DmsA. Kinetic analysis demonstrated T148, A178,

and R217 altered the electron acceptor Kp, suggesting a role in

substrate binding. G167 and Q1791 decreased the keat for DMN, and

abolished growth on Gly/DMSO, suggesting a role in electron transfer.

Examination of respiratory growth of E. coli not expressing
DmsABC or TorA, indicated the presence of an additional previously
unidentified anaerobically expressed energy conserving terminal
reductase. It allowed for anaerobic growth on substituted pyridine N-
oxides. The enzyme responsible, pyridine N-oxide reductase, was

characterized, and appears to be a cytoplasmic molybdoenzyme.
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Chapter 1 : Introduction

1.1. Introduction

Escherichia coli (E. coli) can obtain energy using either
fermentation or respiration. During fermentation, energy is generated
exclusively by substrate level phosphorylation, concomitant with redox-
balanced dismutation of substrate. However, much of the energy in
reduced substrate is lost. When terminal electron acceptor is present,
E. coli can switch to respiration, where a proton gradient is produced
during the oxidation/reduction reactions. This gradient of protons can be
used directly for transport, motility, or by the FoF1 ATPase to generate

adenosine triphosphate (ATP) [198, 233].

During respiration, E. coli expresses primary dehydrogenases,
and terminal reductases, and produces membrane soluble quinones (Q)
[81]. In the absence of the terminal electron acceptors oxygen (Og) or
nitrate, dimethylsulfoxide (DMSO) reductase (DmsABC) is synthesized
[29]. It is a terminal reductase able to reduce S- and N-oxides found in
the environment [270], and in the process, energy is conserved as a
proton gradient across the membrane [30, 215]. DmsABC has been
cloned, sequenced, overexpressed, and purified [27, 31, 270]. It has also
been well characterized functionally (29, 30, 214-216, 267, 270, 272] and
biophysically (53, 207-210, 244-246], making it an excellent model
system for elucidating key features in electron transfer through an
electron transport chain protein.

The aim of this introduction is to briefly outline concepts
important in respiration, provide an overview of respiration in E. coli,
and describe our current understanding of the structure and function of
DmsABC. At the end of the introduction the aims of the thesis will be
outlined.




1.2. Respiration
1.2.1. Energy Transduction

According to Mitchell's chemiosmotic hypothesis, electron
transfer through the electron transport chain, from lower to higher
redox potential, is coupled to ATP synthesis, by production of a proton
gradient across the membrane [178]. The proton gradient is generated
by utilizing the free energy available from the oxidation and reduction of
substrates. The proton gradient is composed of a concentration gradient
of protons (ApH), and electrical potential (Ay) due to charge separation.
The two components constitute the proton motive force (pmf). The pmf

is then utilized directly for solute transport, flagellar rotation, or
synthesis of ATP via the FoF; ATPase [81].

1.2.2. Mechanisms of Proton Translocation

In E. coli, two different mechanisms are utilized to generate the
pmf. Respiratory proteins may utilize one or both of scalar and vectorial
proton movement. The scalar mechanism involving Q employs two
physically separated half reactions, where protons are first consumed on
the negative (N) side of the membrane, and then released on the positive
(P) side of the membrane. This is coupled with electron movement. In
bacteria, this mechanism requires reduction and oxidation of Q to occur
at the cytoplasmic and periplasmic face of the membrane, respectively
(Figure 1.1.). Another scalar mechanism employs the production of
protons on the periplasmic side of the membrane by chemical reactions.
The vectorial mechanism employs the "pumping" of protons from the N
to P side of the membrane (Figure 1.1.). Protons generated by the first
mechanism are called chemical, scalar, or substrate protons, while
protons pumped across the membrane are called vectorial protons [25,
81].

An additional mechanism of proton translocation, the "proton
motive Q cycle" has been observed, although not in E. coli. Briefly, the
oxidation of Q results in separate pathways for the two electrons. One
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Scalar and Vectorial Mechanisms of Proton
Translocation

In the scalar mechanism of proton translocation Q picks up
protons from the cytoplasm and deposits them in the
periplasm. This is the result of two physically separate
reducing and oxidizing half reactions. Scalar protons are also
generated when protons are produced by chemical reactions in
the periplasm (not shown). In the vectorial mechanism
protons are pumped across the membrane. The negative (N)
and positive (P) sides of the membrane are indicated. The
subunit structure is not meant to be representative of all
primary dehydrogenases and terminal reductases.
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continues through the electron transport chain while the other is routed
back to oxidized Q. The net result is translocation of four protons for
every one net Q oxidized [81, 248].

1.3. Respiration in E. coli
1.3.1. Modularity of Redox Components

The E. coli respiratory system consists of a modular design
composed of fourteen primary dehydrogenases that oxidize substrate,
three Q's that transfer reducing equivalents within the membrane, and
eleven terminal reductases that reduce substrate [255, 266]. The
dehydrogenases and terminal reductases use membrane soluble Q as
their common substrate, thus electrons from one dehydrogenase can be
utilized by a number of terminal reductases (Figure 1.2.). All
respiratory proteins must be linked to the membrane, either via other
subunits (i.e. cytochrome C) or on their own, at least transiently, to
allow electron transfer to and from the Q pool [255].

Growth conditions alter the synthesis of dehydrogenases, Q's, and
terminal reductases by a relatively complex regulatory system. This
allows the quantity of each component to be optimized, results in
minimal change to adapt to new environmental conditions, and
eliminates wasteful synthesis of unneeded protein. In addition, it
allows E. coli to exploit the oxidation/reduction couple with the largest
free energy, allows expression of apparently redundant proteins under
different growth conditions, and permits utilization of appropriate
enzymes as needed resulting in either the highest growth rate or most
efficient growth [81, 255, 257].

The expression of terminal reductases under various growth

conditions demonstrates how the cell utilizes the oxidation/reduction
couple with the largest available free energy. In the presence of Og, the
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Modularity of the E. coli Respiratory System
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shown on the left, the three types of membrane soluble Q's are shown
in the middle, and terminal reductases that accept electrons from the
Q pool are shown on the right.




electron acceptor with the highest redox potential (Table 1.1), all genes
involved in anaerobic respiration and fermentation are repressed. In
the presence of nitrate, the electron acceptor with the second highest
redox potential, all other anaerobically expressed genes not necessary
for respiration on nitrate are repressed [255].

E. coli express a number of apparently redundant respiratory
enzymes. More than one protein exists to oxidize the substrates
glycerol-3-phosphate (gly-3-P), formate, hydrogen (Hs), and
nicotinamide adenine dinucleotide (NADH), and to reduce the
substrates Og, nitrate and trimethylamine N-oxide (TMAO ). Proteins
with the same substrate specificity may have very similar, or somewhat
different functional properties. However, their differential expression
achieves particular advantages for the cell. Nitrate reductase-A and -Z
are functionally very similar enzymes, but their differential expression
may allow the cell to reduce low levels of nitrate as the cell encounters
anaerobic conditions prior to synthesis of nitrate reductase-A (34, 105,
108]. The two NADH dehydrogenases may be expressed differentially to
allow for a higher growth rate, or more efficient growth, under optimal
and sub-optimal growth conditions, respectively. Under high O»s
tension, expression of the uncoupled NADH dehydrogenase increases,
whereas under low Og tension, expression of the pmf producing NADH
dehydrogenase is augmented [232, 234]. This indicates under optimal
growth conditions, some efficiency is lost to allow for faster transfer
through the electron transport chain, resulting in a higher growth rate
[255].

1.3.2. Transcriptional Regulation of Respiratory Enzymes

The superimposition of positive and negative regulation by a
number of proteins, results in the fine-tuning of respiratory enzyme
expression in response to environmental conditions. Transcriptional
regulation of respiratory genes in response to nitrate and nitrite is
accomplished by NarX/L. and NarQ/P, and anaerobiosis by ArcA/B and

FNR. Although less well characterized, a number of other proteins also




Table 1.1.

Midpoint Potentials at pH 7.0 (Em,7) of Some Electron
Donor and Acceptor Couples

Redox Couple Em,7 (mV)
Ho/2H+ “414
NADH/NAD+ ~320
Glycerol-3-phosphate/Dihydroxyacetone phosphate -190
Menaquinol/Menaquinone ~74
Succinate/Fumarate +30
Demethylmenaquinol/Demethylmenaquinone +36
Ubiquinol/Ubiquinone +113
Trimethylamine/TMAOQ +130
Dimethylsulfide/DMSO +160
Ho/1/209 +820




appear to regulate some respiratory genes. Continued study of AppY,
IHF, H-NS, Fis, and StpA, will clarify the magnitude and importance of
their role in regulating the expression of respiratory enzymes [160, 255,
266).

ArcB/A, NarX/L and NarQ/P are two component regulatory
systems. The first protein in the set is a membrane localized sensor
kinase, followed by a cytoplasmic response regulator with a DNA
binding domain. The membrane sensors autophosphorylate in response
to their stimulus. Regulator activity is a function of the ratio of
phosphorylation and dephosphorylation by the sensor. Transfer of the
sensor phosphate to the response regulator results in DNA binding of
the regulator, and modulation of protein expression by interaction with
RNA polymerase [6, 57, 233, 255].

1.3.2.1. NarX/L and NarQ/P

NarX/L and NarQ/P mediate complex regulation in response to
nitrate and nitrite. They activate genes involved in nitrate and nitrite
catabolism, while repressing other anaerobic respiratory and
fermentative genes. NarX and NarQ are homologous sensors that
respond differently to periplasmic nitrate and nitrite. They mediate
dissimilar rates of phosphorylation and dephosphorylation for both
homologous regulators NarL and NarP. In addition, NarL and NarP act
as both activators and repressors at different gene loci. The differences
between NarX and NarQ, and NarL and NarP, result in a complex
pattern of regulation. For example, NarL represses, while NarP
activates nitrite reductase expression in the presence of nitrate.
However, both NarL and NarP activate nitrite reductase expression in
the presence of nitrite [81, 238, 255].

The NarL heptanucleotide recognition sequence has been
identified. It is present in the 5' untranslated sequence of genes for
respiratory enzymes with undefined number, location, orientation and
spacing [81, 238, 255]. NarP has affinity for the same or very similar




heptanucleotide [251], although binding appears be restricted to
inverted repeats with two basepairs in between (66].

1.3.2.2. ArcA/B

Under anaerobiosis, ArcAB is mainly responsible for the
repression of genes involved in aerobic metabolism. However, ArcAB
also activates a handful of genes in anaerobic metabolism [81, 160]. It
has been postulated that ArcB senses redox potential rather than Oo
concentration {110, 113], redox state of the ubiquinone (UQ) pool (6],
pmf [37], or anaerobic metabolites [114]. ArcB has a large C-terminus
containing an additional cytoplasmic domain found in a subgroup of
two-component sensors. As a result, it is possible that more than one
signal may affect ArcB function simultaneously. Their superimposition
may result in fine tuning of regulation by ArcA/B in response to
environmental conditions [112, 160]. The DNA binding site for ArcA
has not yet been determined [160]

1.3.2.3. FNR

Under anaerobic conditions, FNR acts as both a transcriptional
activator and repressor of genes involved in anaerobic and aerobic
metabolism, respectively. FNR belongs to a family of transcriptional
regulators that includes the cyclic adenosine monophosphate (AMP)
receptor protein [71, 160]. However, FNR contains an additional N-
terminal extension with three Cys residues. Along with an additional
Cys residue, they are believed to form a [4Fe-4S] cluster in response to
low Og tension [136, 152]. This results in FNR dimerization, DNA
binding, and regulation of transcription [71, 152, 160, 291]. The FNR
binding site is a 22 base pair (bp) segment containing an inverted
repeat. Negative regulation is generally due to the FNR binding site
overlapping with the transcriptional start site resulting in promoter
occlusion. The FNR binding site is normally found thirty nucleotides
upstream of the transcription initiation site for positively regulated
genes [77, 160].




1.3.3. Prosthetic Groups in Respiratory Enzymes

The transfer of electrons through respiratory proteins requires
redox centers including the nickel-metal (Ni-M) dinuclear center,
polynuclear copper (Cu) sites, flavin adenine dinucleotide (FAD), flavin
mononucleotide (FMN), pyrroloquinoline quinone (PQQ), heme, iron-
sulfur (Fe-S) clusters, and molybdenum cofactor (moco) [24]. The
protein environment surrounding the redox centers alters their redox
potential, allowing them to be used for a variety of reactions [151].

1.3.3.1. Hemes

E. coli uses four types of heme involved in one electron transfer
reactions [81, 240]. Heme b is found in the membrane anchoring
subunits of a number of respiratory components, while heme d and
heme o, are associated only with the two terminal oxidases Cyd and
Cyo, respectively. In contrast, heme ¢ is covalently bound to protein,
and is found exclusively in the periplasm, attached to soluble or
membrane bound protein [81].

1.3.3.2. Fe-S clusters

The basic [2Fe-2S], [3Fe-4S] and [4Fe-4S] clusters mediate single
electron transfer [49]. The iron (Fe) is coordinated to one or two RS-
(generally Cys) and two to three S2- ligands (Figure 1.3.). A number of
consensus sequences have been identified that can be used to
distinguish Cys residues involved in the ligation of Fe-S clusters. They
include three closely spaced Cys's and a distant Cys residue as the final
ligand, even if an adjacent Cys near the first three is available. In
contrast, Rieske Fe-S clusters use two Cys and two His residues for
ligation of the Fe [19]. In addition, unusual clusters involving iron (Fe)
have been observed in nitrogenases (molybdenum-Fe) and hydrogenases
(Ni-Fe) [101, 261].
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Figure 1.3.
Structures of [2Fe-2S], [3Fe-4S], and [4Fe-4S] Clusters

The filled circles represent iron, the open circles represent sulfur, and
ligated Cys residues are as indicated.
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1.3.3.3. Moco

Molybdenum (Mo) is capable of mediating both one and two electron
transfer reactions. This allows it to couple redox centers and substrate
with different electron requirements. Mo has been selected by nature
for use in two cofactors [52, 97]. The first is the multinuclear M center
with seven Fe's and one Mo. It is found in nitrogenase, the enzyme
responsible for catalyzing the conversion of nitrogen (N3) to ammonia
(51, 101]. The second Mo containing cofactor is the pterin containing
moco, utilized by all other molybdoenzymes [138, 237] (Figure 1.4.).
Moco containing enzymes generally catalyze oxygen transfer [97]. The
two electron oxidative reaction involves the movement of oxygen from
water, to the Mo, and then to substrate [17, 98]. The reductive reaction
carried out by these enzymes involves the reverse transfer of oxygen.
The function of the pterin is at present speculative. However, it appears
to be important in electron transfer, and/or modulation of the redox
potential of the Mo [43, 97, 196].

Tungsten (W) and Mo share a number features, including similar
atomic radii, electronegativity, and biologically relevant oxidation states
[97]. W was shown to be a Mo antagonist in E. coli, as growth in the
presence of W resulted in inactive molybdoenzymes [120]. However
more recently, a number of enzymes have been shown to contain W
instead of Mo ligated in the pterin moco. W-substituted moco has been
found in acetate-producing, methane-producing, hyperthermophilic,
acetylene-utilizing and sulfate-reducing organisms [26, 96, 102, 103,
123, 180, 222, 285]

Moco is highly Og labile, and as a result its structure was
originally extrapolated from the structural characterization of a number
of stable oxidized derivatives [117, 118, 121, 144]. Previously it was
thought the structure of moco was identical for all moco containing
enzymes. However, it became apparent that moco from some
prokaryotic enzymes had a higher molecular weight than expected [133,
146-148, 181]. Eventually it was demonstrated in addition to the

12




Figure 14.

Structures of Moco Derivatives

A. Molybdopterin (MPT)
B. Molybdopterin guanine dinucleotide (MGD)
C. Bis-molybdopterin guanine dinucleotide - ligating Mo (bis-MGD)

The thiol groups from structures A., B., and C., can ligate either a Mo or W.
Additional ligands will be present to complete the coordination sphere of the Mo.

The designation moco refers to all moco derivatives (A-C). A. MPT refers to moco

with no appended nucleotide. This was the original structure determined for
moco. B. Molybdopterin dinucleotide refers to any dinucleotide derivative. MGD

is one such derivative, although the nucleotide appended can also be AMP, inosine
monophosphate, or cytidine monophosphate. C. The prefix bis is appended to
designate that two moco's are ligated together. The example depicted here shows
two MGD ligated together. Additional ligands will be present to complete the
coordination sphere of the Mo.
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original structure for moco - molybdopterin (MPT) (1.4. A. ), a nucleotide
(guanosine monophosphate (GMP), cytidine monophosphate (CMP),
AMP, or inosine monophosphate (IMP)) was sometimes appended in a
pyrophosphate linkage to MPT, resulting in a variety of moco
dinucleotide derivatives (Figure 1.4. B.) [41, 117, 122]. The function of
the nucleotide portion of the moco is at present a mystery.

Recently the crystallization of several molybdoenzymes has
confirmed the structure of MPT and dinucleotide derivatives of moco,
but also revealed one additional level of complexity. The Mo (or W) can
be coordinated by two MPT's or MPT dinucleotide derivatives, resulting
in bis-moco (Figure 1.4. C.) [43, 55, 203, 220, 223].

The E. coli gene loci moa-moe are involved in the biosynthetic
pathway of moco (Figure 1.5.) [197]. The pathway begins with an
unknown derivative of guanosine being converted to the sulfur free
precursor Z. This involves MoaA, MoaB and MoaC [282]. Precursor Z is
then converted to MPT involving converting factor containing bound
sulfur (MoaD, MoaE) [188-190]. MoeB is responsible for reactivation by
resulfuration of the small subunit of the converting factor [294]. In the
last step, MPT is converted into molybdopterin guanine dinucleotide
(MGD) by MobA and MobB [76, 119]. Mo is transported into the cell by
modA-D [116, 199], and is processed and inserted into moco by mogA.
(130].

1.3.4. Translocation of Respiratory Enzymes Across the
Cytoplasmic Membrane

A number proteins in the electron transport chain have
periplasmic subunits. As a result, they possess an N-terminal leader
responsible for their translocation [72, 254]. Leader sequences are 18-
26 amino acids long, and have amino acid biases, but share no homology
or conserved motifs [24]. They are characterized by a positively charged
N-terminus, followed by a hydrophobic core, and a hydrophilic carboxy-
terminal cleavage site possessing small amino acids at the -1 and -3
positions to the site of cleavage (C). The leader sequence is generally
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Guanosine-X

Figure 1.5.
Biosynthetic Pathway for Moco in E. coli

The genes responsible for each step in the biosynthetic pathway are
indicated beside the arrows, and the name of each structure is
indicated to it's right. In addition to the pathway indicated above,
modA-D and mogA, are responsible for Mo processing and Mo
insertion into moco, respectively.
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cleaved in the periplasm by leader peptidase I (63, 182, 262].

Sequence analysis of periplasmic proteins binding a subset of
redox cofactors, including flavin, moco, Fe-S clusters, Ni-Fe complexes,
and tryptophan tryptophylquinone, revealed these proteins have long
(~58) amino acid leaders. In addition, these leaders have the consensus
motif (S/T)-R-R-X-F-L-K. Berks hypothesized that proteins with this
"double-arginine" leader assemble in the cytoplasm, and the fully folded
cofactor-containing proteins are translocated to the periplasm through
an export apparatus distinct from the Sec-system [24]. Evidence
suggests at least two double-arginine containing proteins bind cofactor
prior to translocation of the fully folded protein [201, 217], and
translocation appears to be dependent on the pmf but not on Sec-
proteins [217]. In addition, components of the translocation apparatus
appear to have been identified [267]. Thus, some periplasmic
respiratory subunits are translocated by the Sec-system, while those
binding a subset of redox cofactors are translocated by this novel
system.

1.3.5. Transport of Substrates to the Cytoplasm

Transmembrane carriers are required for the transport of
substrates that are oxidized or reduced in the cytoplasm. Expression of
these carriers varies, depending on the growth conditions and
availability of substrate [255]. Examples of these transporters include
PutP, an sodium proline symporter, and GIpF involved in glycerol
uptake [70, 166].

1.3.6. Electron Transport Chain Components
1.3.6.1. Q

E. coli synthesize three different membrane localized Q's that
mediate electron and proton transfer between the primary
dehydrogenases and terminal reductases [81, 247]. UQ is a benzene
derivative, while menaquinone (MQ) and demethylmenaquinone (DMQ)
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are naphthalene derivatives (Figure 1.6.) [175]. UQ, DMQ, and MQ,
show decreasing redox potentials of +113 , +36 and -74 mV, respectively
(Table 1.1) [81, 277]. E. coli Q's generally possess a side chain with
eight prenyl units, although minor amounts of Q's with other numbers
of prenyl units do exist [175].

UQ is at least four times more abundant than MQ plus DMQ in
aerobically grown cells, whereas UQ is one third or less as abundant as
MQ and DMQ in anaerobically grown cells (192, 263, 278]. The
variation in Q ratio's observed with changes in Os tension is not
mediated by FNR or ArcAB [224, 254]. Q ratios also vary depending on
the growth conditions (i.e. presence of specific oxidant and reductant)
[254]. Dehydrogenases and terminal reductases generally select Q with
the best suited redox potential. As a result, UQ is generally employed
for O2 respiration, UQ and MQ for nitrate respiration, while MQ and

DMQ are utilized for electron acceptors other than nitrate [81].
1.3.6.2. Primary Dehydrogenases Using Various Substrates
1.3.6.2.1. Proline

Proline dehydrogenase (PutA) catalyzes the oxidation of proline
or pyrroline-5-carboxylic acid without production of a pmf. Itis a
homodimer with each subunit possessing a non-covalently bound FAD
[47]. PutA is membrane bound only when proline concentrations are
high, or membrane components are reduced [279]. Binding to the
membrane is concomitant with reduction of bound FAD, and a
conformational change in PutA [48]. In addition, PutA acts as a DNA
binding protein to repress its own expression [47].

1.3.6.2.2. Pyruvate

Pyruvate oxidase (PoxB) is responsible for the oxidation of
pyruvate to acetate and carbon dioxide, and is not coupled to production
of a pmf. It contains non-covalently bound FAD and thiamine
pyrophosphate as cofactors [81]. PoxB is purified as a soluble protein.
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Figure 1.6.

Structures of the Oxidized forms of UQ, DMQ and MQ
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However, PoxB will bind to membranes with the addition of cofactor and
substrate, allowing it to interact with the Q pool. Substrate and cofactor
are believed to induce a conformational change in PoxB exposing an
amphipathic helix [84, 85].

1.3.6.2.3. D- and L-Lactate

D-lactate dehydrogenase (D1d) with non-covalently bound FAD,
and L-lactate dehydrogenase (Lld) with bound FMN, oxidize D- and L-
lactate to pyruvate, respectively. Dld and Lld are both monomeric and
membrane bound, but contain no apparent membrane spanning

segments [81]. These enzymes are apparently not coupled to production
of a pmf [81, 168].

1.3.6.2.4. Glucose

Glucose dehydrogenase (Ged) is a monomer with five
transmembrane-spanning segments. It oxidizes glucose to gluconate on
the periplasmic side of the membrane, and this reaction is apparently
not coupled to synthesis of a pmf [81]. It uses the cofactor PQQ not
synthesized by E. coli. As a result, Ged activity requires externally
provided PQQ [81, 258].

1.3.6.2.5. Gly-3-P

There are two gly-3-P dehydrogenases that oxidize gly-3-P to
dihydroxyacetone phosphate. The aerobically expressed enzyme (GlpD)
is a monomer with non-covalently bound FAD [81]. It does not appear
to possess any transmembrane segments [13]. The anaerobic enzyme
(GIpACB) is a heterotrimer. The GIpAC catalytic dimer has been
purified from the soluble fraction of the cell, and appears to non-
covalently bind FAD and FMN, by GIpA and GlpC, respectively [59,
139]. GlpB may possess two Fe-S clusters, and although tightly
associated with the membrane, does not appear to possess any
transmembrane spanning segments [59, 260]. GIpAC may associate
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with GlpB transiently or may fall off the membrane once the cells are
broken [259].

1.3.6.2.6. Succinate

Succinate dehydrogenase (SdhABCD) oxidizes succinate to
fumarate without generation of a pmf [81, 255]. It belongs to a family of
related proteins that includes E. coli fumarate reductase (FrdABCD).
SdhA binds FAD covalently, and is the site of succinate oxidation. SdhB
is the electron transfer subunit with [2Fe-2S], [3Fe-4S], and [4Fe-4S]

clusters. SdhC and SdhD are membrane anchor subunits that share
heme b556 and are responsible for Q reduction [81].

1.3.6.2.7. Formate

Formate is oxidized to carbon dioxide by two homologous formate
dehydrogenases [81]. FdhGHI is expressed under anaerobic conditions
in the presence of nitrate [23, 155]. In contrast, FdoGHI is expressed
constitutively at low levels [194]. The physiological role of FdoGHI is
not known. It is postulated that FdhGH and FdoGH face the periplasm
where they produce a pmf by chemical production of scalar protons [81].
The formate oxidizing subunits FdhG and FdoG contain moco [81], with
one of the Mo ligands possibly being seleno-Cys (Se-Cys) encoded by an
opal codon [81, 83]. The electron transfer subunits FdhH and FdoH
bind four [4Fe-4S] clusters, while the membrane anchor subunits FdhI
and Fdol bind heme b [22, 81].

The formate hydrogenlyase complex is responsible for coupling
formate oxidation with Hp production without the use of Q as a
mediator [255]. The formate dehydrogenase subunit (FdhF) that
composes part of the formate hydrogenlyase complex has been
crystallized [43]. The crystal structure confirms FdhF uses Se-Cys as a
Mo ligand, and binds a [4Fe-4S] cluster via Cys residues in the N-
terminus [14, 83, 293]. The FdnG and FdoG sequences are homologous
to FdhF, and share the opal codon and Cys residues responsible for
incorporation of Se-Cys and Fe-S cluster ligation, respectively. This
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suggests they are structurally and functionally similar to FdhF [22, 81,
246]

1.3.6.2.8. Ho

Hydrogenases 1 (HyaABC) and 2 (HybABC) both oxidize Hs to
protons under anaerobic conditions in the absence of nitrate.
Generation of a pmf is likely due to the production of two periplasmic
chemical protons. Two cytoplasmic protons are used in Q reduction [81,
126]. The HyaB and HybC subunits bind a Ni-M cluster, the likely site
of Hp oxidation. While, the electron transfer subunits, HyaA and HybA,
contain two and four [4Fe-4S] clusters, respectively. The electrons may
then be transferred to the putative third heme & binding subunits HyaC
and HybB, and then to the Q pool [81, 261].

1.3.6.2.9. NADH

E. coli expresses two distinct NADH dehydrogenases (NDH-I and
NDH-II). NDH-I is composed of 14 subunits containing FMN and 5-8
Fe-S clusters [38, 153, 230, 264]. It is a homologue of mitochondrial
complex I [264]. NDH-I generates a pmf by pumping protons across the
membrane, although the process by which this occurs is at present
unknown [81, 168]. In contrast, NDH-II is composed of one subunit with
no transmembrane segments, containing FAD as its only cofactor (115,
288]. It is not coupled to proton translocation [81]. Both NDH-I and
NDH-II are expressed aerobically. In addition, NDH-I is expressed
anaerobically, and expression increases in the presence of nitrate [40,
86].

1.3.6.3. Terminal Reductases Using Various Substrates

1.3.6.3.1. Og

E. coli expresses three oxidases (CyoABCD, CydAB, and CyxAB)
that reduce Og to water [81]. CyoABCD is structurally distinct from the

other two oxidases, and predominates when E. coli is grown at high Osg
tension [9, 61, 145, 200]. Q is oxidized by CyoA [273], and the electrons
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are passed from Q to heme b5g2, and subsequently to the binuclear
center (heme o3 and Cu), where Og binds and is reduced. All three

prosthetic groups are found in CyoB. In addition to the two scalar
protons released on the periplasm on Q oxidation, two protons are
pumped across the membrane by the integral membrane subunit CyoB.
Helix VIII in CyoB is amphipathic, and polar residues may form a
proton conducting channel from the cytoplasm to the periplasm [78, 81].
The functions of CyoC and CyoD are not known [81].

The integral membrane protein CydAB has a low K for Og, and
predominates under low Og tension [61, 81]. Q oxidation appears to
occur at the periplasmic face of the membrane by CydA, resulting in

release of two protons to the periplasm. The Q electrons are transferred
to heme b558 in CydA [81, 158, 177, 286], and then to heme b595 and

heme d where O3 is reduced. Heme bs95 and heme d are bound by both
CydA and CydB [81].

An additional oxidase may be expressed from cyxAB under low O9

tension. These genes are homologous to cydAB. At present, the
importance of CyxAB is not known [81].

1.3.6.3.2. Nitrite

E. coli synthesizes a periplasmic nitrite reductase (NrfABCD)
binding both heme ¢ and Fe-S clusters. It conserves the energy of
nitrite reduction in the presence of the electron donor formate (3, 65,
104]. Since reduction of nitrite in the periplasm results in consumption
of periplasmic protons, translocation of protons to the periplasm must
occur concomitantly to explain respiratory growth on nitrite [255].
NrfABCD is induced by anaerobiosis and nitrite, mediated by FNR and
NarP [65, 251].

1.3.6.3.3. Fumarate
FrdABCD is homologous to SdhABCD although it preferentially

mediates fumarate reduction [54, 81]. Although electron transfer to
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fumarate generates a pmf with the electron donors Hgo, NADH, gly-3-P
and formate [92, 93, 95], FrdABCD does not appear to be a coupled
enzyme [80, 243, 255]. The catalytic subunit FrdA contains covalently
bound FAD [269], the electron transfer subunit FrdB contains three Fe-
S clusters ([2Fe-2S], [3Fe-4S], and [4Fe-4S]) (167], while FrdC and FrdD
are the anchor subunits essential for binding of FrdA and FrdB to the
membrane, and for electron transfer from MQ [54, 60, 154]. FrdABCD
i1s expressed in response to anaerobiosis, but is repressed by nitrate
[111, 124, 125].

1.3.6.3.4. Nitrate

E. coli express three nitrate reductases. Nitrate reductase-A
(NarGHI) and -Z (NarZYV) are membrane bound, with their catalytic
subunits facing the cytoplasm [33, 105, 108, 127], while the seven
subunit Nap is found in the periplasm [88]. Formate, gly-3-P, Ho,
NADH, lactate, succinate, and malate are all effective electron donors
for nitrate respiration [109, 237]. Generation of a pmf is observed on
reduction of nitrate, and is likely via scalar reactions [79, 128, 179].

NarGHI and Nap are induced by anaerobiosis and nitrate [88,
236], and Nap is additionally induced by nitrite [88]. In contrast,
NarZYX is expressed at low levels under aerobic conditions, and there is
no change in expression in the presence of nitrate or nitrite [105, 108].
The unusual regulation of NarZYV suggests i1t may be responsible for a
low level of nitrate respiration during transition from aerobiosis to
anaerobiosis prior to synthesis of NarGHI [81].

Of the homologous enzymes NarGHI and NarZYV, the former
has been studied in much more detail [33, 34]. However, they both
appear to possess catalytic subunits binding moco (NarG, NarZ),
electron transfer subunits with Fe-S clusters (one [3Fe-4S] and two
[4Fe-4S]) (NarH and NarY), and membrane anchors binding two hemes
(bs556) (Narl and NarV) [4, 34, 90]. Studies suggest the low- and high-

potential hemes are near the periplasmic and cytoplasmic surface of the
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membrane, respectively [163]. In addition, stoichiometric amounts of
MQ have been found attached to purified N arGH, suggesting MQ may
be an additional prosthetic group involved in electron transfer in NarG
or NarH [45]. The third gene in the NarGHJI and NarZYWV operons
coding for NarGHI and NarZYV encodes a fourth polypeptide, NarJ and
NarW, respectively. These polypeptides are important for assembly of
active enzyme [36, 73]. They are suggested to be system specific
chaperones that maintain NarG and NarZ in appropriate conformations
to bind moco [32, 156]. Subunits from NarGHI and NarZYV are
interchangeable, and can be used to compose heterologous nitrate
reductases, although the heterologous nitrate reductases are less stable
and have lower activity [35, 36].

Nap is believed to be composed of seven subunits, including one
moco containing (NapA), two c-type cytochromes, and three Fe-S
containing subunits. The function of this reductase, as well as sequence
of electron transfer through these subunits is at present speculative
[88]. The periplasmic nitrate reductase of Thiosphaera pantotropha
has been suggested to be involved in disposing of excess reducing
equivalents. However, in contrast to nap, this enzyme is expressed
under aerobic conditions [20].

1.3.6.3.5. S- and N-oxides

There are three enzymes responsible for growth on S- and N-
oxides in the presence of a non-fermentable carbon source - adenosine
N-oxide (ANO) reductase, TMAO reductase (TorA) and DmsABC. ANO
reductase is distinct from DmsABC and TorA, and conserves the energy
of ANO reduction [216]. The identity of this enzyme, and whether it
binds moco is not known.

TorA is encoded by the torCAD operon [176], and is purified from
the periplasm as a moco containing enzyme able to reduce TMAO and
other N-oxides [64, 228, 284]. TorC is a periplasmic penta-heme c
binding protein attached to the membrane by an amino terminal anchor,
while TorD is an integral membrane protein with unknown function
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(176]. A model of electron transfer has been proposed whereby the TorC
heme ¢ domain located closest to the membrane would accept electrons
from MQ [174, 176]. Subsequently the second heme domain of TorC
would transfer electrons to TorA [176]. However, this model does not
account for the function of TorD. In vivo reduction of TMAO is known to
be coupled to production of a pmf. However, it is not known whether
TorCAD is a coupled enzyme [81]. Since reduction of TMAO in the
periplasm consumes two periplasmic protons, translocation of protons to
the periplasm, must occur concomitantly to explain respiratory growth
on TMAO.

torCAD expression is induced by a variety of S- and N-oxides
(107, 185, 228]. Induction appears to be mediated by the non-essential
TorT - a periplasmic inducer-binding protein, TorS - a membrane
localized sensor/transmitter, and TorR - a positive regulator [131, 132,
186]. torCAD expression is not repressed by nitrate [185, 227], and its
anaerobic induction is not mediated by FNR [185, 232]. As a result no
NarL or FNR boxes are found in the 5' untranslated sequence of torCAD
[(176].

1.4. Bacterial Utilization of S- and N-oxides

1.4.1. Ecology of Substrates

DmsABC can reduce a variety of S- and N-oxides [270], including
the naturally occurring pyridine N-oxide (PNO), DMSO, and TMAO.
Substituted PNO's are found as soil contaminants. They are
constituents of crude petroleum and coal tar, and are used as organic
solvents and drugs [226].

DMSO and dimethylsulfide (DMS) are important components of
the global sulfur cycle, and are involved in the transfer of sulfur from
the sea through the air to land surfaces. DMS is believed to be the
major source of reduced sulfur, and is important in global climate
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regulation [134, 137, 159]. DMS is produced by planktonic algae and
zooplankton [8, 82], bacterial decomposition of animal manure, sewage,
and plant material [15], and degradation of sulfur-containing pesticides
[271]. DMS is volatile and escapes from oceans and soil surfaces, into
the atmosphere, where it can be oxidized to DMSO [8, 16, 135, 137, 159].
DMSO is hygroscopic and is scrubbed from the atmosphere [8, 16, 135,
137, 159]. It is found at nM concentrations in bodies of water and rain
(7, 8, 16, 135, 137, 159] Accumulation of DMSO is also the result of
bacterial degradation of dimethylsulfonioproprionate excreted by
planktonic algae and zooplankton (8], bacterial oxidation of DMS [94,
289], and manmade processes through its use as a solvent, and as
effluent from wood pulp mills [280].

TMAO may be produced by bacterial oxidation of trimethylamine
(TMA) [202]. In addition, TMAO is found at high concentrations (mM)
in marine fish and invertebrates [87, 183], while lower concentrations
are found in fresh water animals (uM) [87]. TMAO appears to be used
as an osmostabilizer [183], as it has been shown to counteract the effects
of urea and inorganic ions [42, 231]. When a marine fish or
invertebrate dies, bacteria reduce TMAO, producing the volatile and
odorous TMA, resulting in the characteristic smell of rotting fish [18].
In fact, TMA concentration can be used as a measure of bacterial fish
decomposition [18].

The widespread occurrence of DMSO and TMAO, suggests these
compounds serve as true physiological substrates for reductases (8, 16,
135, 137]. Characterization of the process of bacterial reduction of
DMSO and TMAO, may aid in our understanding of the global sulfur
cycle, and fish spoilage, respectively.

1.4.2. Bacterial DMSO/TMAO Reduction

Widespread microbial reduction of DMSO and TMAO has been
observed [10, 16, 29, 56, 67, 74, 75, 129, 150, 184, 212, 220, 221, 223,
228, 235, 239, 241, 256]. Many of these reductases have been purified
[10, 56, 149, 150, 172, 173, 219, 225, 227, 270, 284], their nucleotide
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sequences determined [27, 100, 142, 157, 176], been shown to possess
moco [10, 56, 172, 219, 270, 284], broad substrate specificity [10, 56, 161,
212, 219, 228, 270], and couple reduction of DMSO and TMAO to
extrusion of protons [235, 241]. Depending on the bacterial species,
TMAO and DMSO reductases show diversity in prosthetic groups,
subunit composition, and cellular location [10, 171].

1.4.3. Rhodobacter sphaeroides DMSO Reductase

The periplasmic DMSO reductase from Rhodobacter (R.)
sphaeroides (DMSOR) is the best characterized anaerobic respiratory S-
or N-oxide reductase [5]. It is encoded within an operon downstream
from genes coding for a pentaheme cytochrome, and transmembrane
protein. The proteins within this operon share sequence similarity with,
TorC, TorD, and TorA of 40%, 26%, 48% [252]. DMSOR also shares 54%
similarity, and 32% identity with DmsABC [245]. The operon is induced
by the divergently transcribed activator DmsR in the presence of DMSO
or TMAO [149, 253]. DMSOR has been kinetically characterized to some

extent, and has been shown to reduce TMAO as well as a variety of S-
oxides [1, 2, 219]. DMSOR has a sixty-six and three fold lower Km and

keat, respectively, for DMSO than TMAO [219]. In addition, DMSOR
has been shown to be enantioselective, and reduces S-oxides in the S
configuration when the two carbons adjacent to the sulfoxide are
distinct (aromatic versus non-aromatic) (1, 2].

DMSOR is a soluble protein [287], and as such, efforts to
crystallize it were successful [220]. The DMSOR protein structure can
be divided into four domains that surround the buried moco. These
domains are not formed by continuous stretches of polypeptide, and
residues that contact the moco are scattered throughout the sequence.
While the rest of the bis-MGD is buried, the Mo is exposed at the bottom
of a 35 A funnel. In the oxidized form, Mo(VI) is ligated by four
dithiolene sulfurs, S147 and an oxo-ligand. The dithiolene sulfurs are
asymmetrically coordinated to the Mo. This may be aided by distinct
differences in the conformations of the P and Q pterins. In the reduced
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state only three dithiolenes coordinate the Mo(IV), in addition to S147.
Although there are no major conformational changes to the protein on
reduction of the Mo, loss of one of the dithiolenes may be facilitated by a
conformational change of the Q pterin [220].

Four other Mo or W-moco containing enzymes have also been
crystallized. They are the aldehyde oxidoreductases from Pyrococcus
furiosus and Desulfovibrio gigas [55, 203], FdhF [43], and R. capsulatus
DMSO reductase [141, 170, 223]. The enzymes listed above do not all
share sequence homology, but rather fall into different moco containing
oxido-reductase enzyme families. They bind different forms of moco,
and some have additional prosthetic groups. Nonetheless, they share
the buried moco accessible at the bottom of what has been described as a
funnel, tunnel, or channel. It leads from the surface of the protein to
the Mo atom of the moco, located approximately in the center of the
protein [55, 203, 220, 223].

Examination of the oxidized and reduced forms of the DMSOR
crystal structure have allowed generation of a plausible mechanism of
DMSO reduction as shown in Figure 1.7. Binding of DMSO to Mo(IV)
through its oxygen (1) would weaken the S=0 bond (2). Subsequent
transfer of electrons to DMSO would result in release of DMS, possibly
aided by a conformational change of the Q pterin (3). The oxygen from
DMSO would be left as an oxo ligand. Reduction of Mo(VI) in two one
proton one electron steps, would regenerate the reduced enzyme, and
result in release of water (4,5) [220]. Examination of R. capsulatus
DMSO reductase in complex with DMSO confirms binding of DMSO to
Mo(IV) weakens the sulfur oxygen double bond [169].

1.4.4. S- and N-oxide Reduction in E. coli

In addition to the three terminal reductases DmsABC, TorA and
ANO reductase, there are three additional soluble monomeric S-oxide
reductases. The two biotin sulfoxide reductases (BisC and BisZ) [68, 69,
187] and methionine sulfoxide peptide reductase (MsrA) [46, 195] are
not involved in respiration. They are responsible for reducing oxidized
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Proposed Reaction Mechanism for DMSOR

S147 indicates the Mo ligand. P and Q refer to the two pterins [220].
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biotin and Met, respectivelyv, in a repair or scavenging mechanism (187,
195]. BisC and BisZ are homologous to DmsABC and are
molybdoenzymes (68, 193], while MsrA is not [46].

1.5. DmsABC
1.5.1. Bioenergetics of Growth on DMSO
1.5.1.1. In vivo Electron Donors and Acceptors

E. coli can grow by respiration in the presence of a variety of S-
and N-oxides and a non-fermentable carbon source [29, 215]. DmsABC
is solely responsible for growth on DMSO and methionine sulfoxide,
while both TorA and DmsABC are responsible for growth on TMAO and
PNO [216]. Glycerol, Hy, and formate have been shown to be suitable
electron donors for DMSO reduction (29, 30, 216, 277}, while lactate was
not (30, 292].

Using MQ and UQ mutants, it has been shown that DmsABC
utilizes MQ, and DMQ to a lesser extent, but not UQ [174, 277, 278]. A
comparison of the redox potentials for Q's (MQ “74, DMQ *36, UQ *+113)
and substrates (TMAO +130 mV, DMSO +160 mV) (Table 1.1) [277]
reveals the redox potential for UQ may be too high for reduction of S-
and N-oxides.

There is no evidence of cytochrome involvement in DMSO
reduction [271] even though DMSO and TMAO induce synthesis of b-
and c-type cytochromes [106, 213, 283]. The cytochrome inhibitors azide
and cyanide [30], and mutations in heme or siroheme biosynthesis do
not affect DMSO reduction [265].

1.5.1.2. H+*/e- Ratio and Model for the Generation of a Proton Gradient

E. coli can acidify the medium with the addition of DMSO or
TMAO to energized cells [30, 242]. An apparent 2.8-2.9 H+/2e" ratio was
obtained for DMSO reduction with energized cells {30, 38]. This
compares with a value of 3.3 H*/2e- for nitrate respiration [30].
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The simplest model to explain this H+/2e- would suggest two
protons are the result of scalar reactions involving Q, while an
additional proton is pumped across the membrane either by
dehydrogenase or DmsABC. However, a 0.4 H+/2e- ratio was observed
for DMSO reduction when NDH-I was inhibited with capsaicin, or when
using NDH-I mutants. This suggests DmsABC is minimally involved in
generation of a pmf (38]. In addition, it has been demonstrated that the
growth rate of a NDH-I mutant is half that of a wild-type strain when
grown anaerobically by respiration on DMSO. This indicates the
importance of NDH-I for respiratory growth on DMSO [243]. The
involvement of DmsABC in generation of a proton gradient by scalar or
vectorial reactions must be determined experimentally to answer this
question.

1.5.2. Molecular Genetics of the dms Operon
1.5.2.1. Structure and Organization of the dms Operon

The dmsABC operon is located at 20.0 minutes on the E. coli
chromosome. The operon codes for three proteins with molecular
weights of 82 350 Da (DmsA), 23 070 Da (DmsB), and 30 789 Da (DmsC)
[27]. The type and location of proteins within the dmsABC operon
parallels that of E. coli nitrate reductase-A [33], and -Z [34], and
formate dehydrogenase H [39], O [191], and N [22]. The 5' proximal
gene in these operons codes for a moco containing catalytic subunit
(DmsA), followed by an Fe-S cluster containing electron transfer protein
(DmsB), and terminated by a hydrophobic anchor (DmsC).

Ribosome binding sites are found upstream of the putative
Initiating codons for DmsA, DmsB and DmsC. The latter two ribosome
binding sites overlap sequence coding for DmsA and DmsB, respectively

[27].

The transcription initiation start site falls 218 nucleotides
upstream of the putative initiating codon of DmsA. This results in an
unusually long 5' untranslated sequence [77]. This may be due to
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selection of an incorrect initiating Met [24]. Use of an upstream Met
would shorten the 5' untranslated sequence to a more reasonable length.
The transcriptional start site is preceded by a reasonable -10, but poor
35 sequence. This latter feature is characteristic of positively regulated
genes [77].

An FNR binding site is centered fifty nucleotides upstream of the
transcriptional start site, characteristic of genes positively regulated by
FNR [77]. In addition three NarL binding sites have been identified at
positions -39, -19, and +3, relative to the translational start site [77,
250]. Speculation would suggest binding of NarL to the NarL binding
sites, would impede transcription by RNA polymerase. The spacing of
the NarL binding sites suggests NarP may not bind to these sequences
[66].

The dmsABC transcript is likely terminated by a classical rho-
independent terminator downstream of dmsC [27].

1.5.2.2. Other Genes Required for DmsABC

FNR, moco (moa, mob, moe, and mog), and MQ biosynthetic
pathway mutants, are deficient for respiratory growth on DMSO [29,
265]. In addition, mutation of NDH-I results a drop in respiratory
growth on DMSO [243]. These results suggest FNR positively regulates
dmsABC expression, and DmsABC binds moco and oxidizes MQ. In
addition, NDH-1 is important for anaerobic growth with DMSO as
terminal electron acceptor.

1.5.3. Expression of DmsABC

1.5.3.1. Expression of Wild-type Chromosomal DmsABC

Expression of DmsABC varies depending on the presence of Og,
nitrate, and carbon source. A change in growth conditions from aerobic
to anaerobic results in a sixty-five fold increase in expression, and this
increase was abolished in an FNR mutant. Mo was required for both
complete induction by anaerobiosis and complete repression by
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aerobiosis. Addition of nitrate to anaerobically growing cells resulted in
a twelve fold decrease in expression that dropped to 1.4 and 1.6 fold, in
NarL, and NarX mutants, respectively [62]. Whether NarX/NarQ or
NarL/NarP mutants would relieve residual nitrate repression has not
been determined [238]. DmsABC expression was the highest for
anaerobic growth on sorbitol and glycerol. The effect of carbon source on
expression was not a result of catabolite repression [62].

1.5.3.2. Mutant Chromosomal and Plasmid Encoded DmsABC
Expression

Truncation or deletion of each of the three subunits in the
dmsABC operon separately, indicates expression of all three subunits is
necessary for anaerobic respiratory growth on DMSO. If dmsA is
deleted, or dmsB is truncated, both DmsA and DmsB are absent, as
indicated by immunoblot analysis. This suggests the stability of DmsA
and DmsB depends on the presence of the other subunit. Growth of
dmsABC mutants deleted for any of the chromosomally encoded
subunits can be restored if wild-type copies of the missing subunits are

plasmid expressed. This suggests post-translational protein assembly of
DmsABC [214].

1.5.4. Enzymology of DMSO reductase

DmsABC has been purified to homogeneity from the membrane
fraction, and has been demonstrated to possess a broad substrate

specificity reducing a number of compounds including DMSO, TMAO,
PNO, and chlorate. DmsABC has a lower Km and k¢at for DMSO than

TMAO [270]. As a result, whole cells challenged with DMSO and TMAO
reduce DMSO preferentially [28].

DmsABC will accept electrons in vitro from reduced benzyl

viologen (BVH-+), methyl viologen (MVH-+), flavin mononucleotide
(FMNH2), flavin adenine dinucleotide (FADH2) and the MQ analogues

2,3-dimethyl-1,4-napthoquinol (DMNHz), and 2-hydroxy-3-(3-methyl-2-
butenyl)-1,4-napthoquinone (lapachol) [29, 204, 214]. Interestingly,
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electron transfer from BVH-+ is not dependent on wild-type DmsABC
capable of electron transfer from the MQ pool [208, 214]. Electron

transfer from BVH-+ appears to bypass one or all of the Fe-S clusters
[208]. A similar result has also been found for NarGH, where the Fe-S
centers do not appear necessary for nitrate dependent BVH -+ oxidation
(60]. However, electron transfer from DMNH3 and lapachol requires
DmsA, DmsB, and DmsC, and this is inhibited by the quinone analogue
2-n-heptyl-4-hydroxyquinoline-N-oxide (HOQNO) [204, 205, 214].

1.5.5. Topological Organization of DmsABC

1.5.5.1. Topological Organization of DmsABC With Respect to the
Membrane

Approximately 56-77% of DMSO reductase activity is found in the
membrane fraction due to DmsABC. In addition, the soluble dimer
(DmsAB) accumulates in the soluble fraction, and accounts for 23-44%
of DMSO reductase activity [29, 214]. DmsABC was not released from
the membrane by washing with low or high ionic strength buffer.
However, a variety of detergents solubilized DmsABC, suggesting it is
localized to the membrane by a membrane intrinsic subunit [270].

A mutant was isolated that was unable to target DmsA to the
membrane, or NapA and TorA to the periplasm. Complementing DNA
has been sequenced, and has been suggested to compose membrane
targeting and translocation (MTT) machinery [267]. The structure and
function of this machinery has not yet been determined.

The amino terminal sequence of purified DmsA as determined by
Edman degradation, aligns downstream from the putative translational
start site. This suggested the nascent polypeptide was proteolytically
cleaved [27]. This sixteen residue peptide cleaved from DmsA shares
properties characteristic of signal sequences [63], and initially suggested
DmsA may be localized to the periplasm.
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Studies carried out to determine the cellular localization of DmsA
and DmsB using a variety of biochemical, immunological, and electron
microscopic techniques, indicated DmsAB was located on the
cytoplasmic face of the membrane [214], while DmsC provided
anchoring for the dimer to the membrane [216]. The results were the
following : Chloroform and osmotic wash techniques revealed no DmsA
or DmsB in the periplasm, and DMSO reductase activity in whole cells
was stimulated by the addition of detergent for a membrane
impermeable electron donor. DmsAB was susceptible to proteases,
lactoperoxidase iodination, and DmsAB-antibody agglutination, only in
inverted vesicles. In addition, electron microscopic observation of thin
sections showed labeling of DmsA and DmsB on the cytoplasmic surface
of the inner membrane [214]. Independent studies using dysprosium-
ethylenediaminetetraacetic acid (DyEDTA) and electron paramagnetic
resonance (EPR), and examination of B-lactamase fusions in DmsA and
DmsB, also confirmed their cytoplasmic orientation. DyEDTA alters
EPR features of Fe-S centers, and as a result, addition of DyEDTA to
whole cells or inside-out vesicles allows the distance between DyEDTA
and Fe-S clusters to be determined. Dy-EDTA was found to be closer to
the DmsB Fe-S clusters in inverted vesicles [209]. All B-lactamase
fusions in DmsA and DmsB were sensitive to ampicillin, indicating the
DmsA and DmsB B-lactamase fusions were found in the cytoplasm. In
addition, fusion of alkaline-phosphatase (PhoA) within the terminating
codon of DmsC resulted in assembly of functional DmsABC. This
indicates the fused periplasmic PhoA does not interfere with binding of
DmsAB to DmsC [272]. It has also been shown that in the absence of
DmsC, DmsA and DmsB are localized to the periplasm, suggesting
DmsC acts as a stop transfer signal [267].

Due to these overwhelming results, it was postulated the DmsA
"leader” was an evolutionary vestige [27], since other related soluble S-
and N-oxide reductases are known to be periplasmically localized [56,
75, 220, 223]. Cleavage of the sixteen residue leader may have resulted
from proteolysis during cell lysis or purification [27]. Only recently have
inhibitors for leader peptidase I been found [63], thus at the time it was
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not possible to use protease inhibitors during cell lysis to prevent
cleavage of the leader from DmsA.

Recent sequence analysis has suggested DmsA may initiate at a
Met twenty-nine residues upstream from the originally proposed Met.
If correct, DmsA would possess a double-arginine leader, postulated to
be responsible for translocating fully folded proteins to the periplasm
[24]. This observation suggests DmsA should be localized to the
periplasm. However, as indicated above, there is overwhelming
evidence that DmsAB is located on the cytoplasmic face of the
membrane [209, 214]. Experiments will be needed to determine the
correct initiating Met, and if necessary the importance of the double-
arginine leader in production of functional DmsABC.

1.5.5.2. Topological Organization of DmsA, DmsB, and DmsC with
Respect to Each Other

Both anti-DmsA and anti-DmsB antibodies label inverted
vesicles, and both DmsA and DmsB are protease sensitive when
attached to the membrane, indicating both DmsA and DmsB are
accessible to the cytoplasm [214]. This is in contrast to FrdABCD,
where FrdA is thought to umbrella FrdB, protecting FrdB from
proteolysis and iodination [58, 154].

1.5.6. DmsC

Although there is substantial sequence similarity between DmsA
and DmsB, and other moco and Fe-S cluster containing proteins,
respectively, there is little sequence conservation between DmsC and
other anchor subunits for respiratory enzymes. Unlike DmsA and
DmsB, DmsC is not antigenic and is not visualized on Coomassie blue
polyacrylamide stained gels [249].

1.5.6.1. Topology of DmsC

Hydropathy analysis predicts DmsC contains eight
transmembrane helices [27]. The use of B-lactamase and PhoA gene
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fusions within DmsC revealed the amino and carboxyl termini are
exposed to the periplasm, and the polypeptide threads though the
membrane as predicted [272].

1.5.6.2. DmsC Anchors DmsAB to the Membrane

Unlike FrdABCD and SdhABCD where the membrane anchors
are composed of two small subunits [54, 58, 60], the large single subunit
DmsC is responsible for anchoring DmsA and DmsB to the membrane.
This interaction is stabilized by substrate [214]. The entire DmsC
appears to be necessary for this function, as gene fusions that truncate
DmsC resulted in accumulation of DmsAB in the soluble fraction [272].

1.5.6.3. DmsAB is More Stable in the Presence of DmsC

Like FrdCD [58], DmsC stabilizes the catalytic dimer. While
membrane bound or purified DmsABC is stable to freezing in liquid N9

and thawing, incubation at 4°C for four hours, or 30°C for 45 minutes,
the DmsAB dimer is not, with only 30%, 40%, and 12% activity left,
respectively [216].

1.5.6.4 DmsC is Responsible for MQ Binding

DmsABC catalyzes the oxidation of DMNHg2 and lapachol in the
presence of S- or N-oxide, but DmsAB cannot. This suggests DmsC
retains the MQ binding site [205, 214]. H65 in DmsC is suggested to

compose part of this binding site, as DmsABCHS65R is unable to oxidize
reduced MQ (MQHz2) in vivo, and HOQNO no longer effects the

lineshape of DmsB cluster 1 altered from a [4Fe-4S] to [3Fe-4S] cluster
[210]. More recently, 1:1 HOQNO binding to DmsC has been
demonstrated, and is abolished in the H65 mutant [290]. Sequence

comparisons suggest H65 is equivalent to H82 in FrdC. Mutation of this
residue in FrdC also blocks in vivo MQHs and ir vitro DMNH3 oxidation

by FrdABCD, as well as HOQNO effects on Fe-S cluster 3 of FrdB are
similar [211, 268].

37




FrdABCD, NarGHI, and CyoABCD have been suggested to
possess two Q binding sites. MQHs is suggested to bind to FrdABCD at

QB (low affinity/dissociable - Qy,) site. It is released once oxidized, after
its electrons have been transferred to non-dissociable Q at the Qa (high
affinity/non-dissociable - Qp) site [275, 276]. Narl and CyoO are also
suggested to possess Qr, and Qg binding sites [164, 165, 218]. For Narl,
Q is suggested to bind to QL site and electrons are subsequently
transferred through the low and high potential hemes and QH before

being transferred to NarH [164, 165]. Analysis using HOQNO has
demonstrated there is one dissociable Q site in DmsC [290]. The
possibility of an additional high affinity site has not been explored.
However, two Q binding sites would be difficult to reconcile with
existing data. If DmsC had two Q binding sites, HOQNO would bind at
the QL site, and there would be an additional Q bound at the Qg site
between HOQNO and the Fe-S clusters. This would make interaction
between HOQNO and the Fe-S clusters improbable. However, HOQNO
has been observed to alter the lineshape of DmsB Fe-S cluster 1 when
altered from a [4Fe-4S] cluster to a [3Fe-48S], indicating their close
proximity and lack of intermediate redox centers [210].

1.5.6.5 The Role of DmsC in Electron and Proton Transfer

In contrast to DmsC, the membrane anchor subunits of NarGHI
[163], NarZYV, FdhGHI [25], FdoGHI, and HyaABC, are suggested to
bind two heme b's [81], while SAhABCD binds only one [140]. It is
likely these hemes facilitate electron transfer between the Q pool, and
electron transfer subunits. In addition, the cytochrome oxidases each
bind one heme b involved in electron transfer from the Q pool to the site
of Og2 reduction [81]. NrfABCD, TorCAD, and Nap are anaerobic
periplasmic respiratory enzymes that all appear to use multiple heme
¢'s in electron transfer from the Q pool [88, 104, 176]. Since DmsC is
missing these extra prosthetic groups, electron transfer through DmsC
must occur by an alternate mechanism.
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The MQ binding site in DmsC may either be near the periplasmic
or cytoplasmic surface of the membrane and this results in different
consequences for proton and electron transfer within DmsC. With
DmsAB on the cytoplasmic face of the membrane [209, 214, 267], and
the MQ binding site near the periplasmic surface, a pmf would be
generated by scalar reactions, but a mechanism would be needed for the
translocation of electrons to the Fe-S clusters (Figure 1.8. Al.). If the
MQ binding site is near the cytoplasmic surface, there is no difficulty in
electron transfer to the Fe-S clusters. However, this would require a
mechanism for proton translocation if DmsABC were found to generate
a pmf (Figure 1.8. C.).

DmsC residue H65 has been demonstrated to be part of the
MQH2 binding site [210, 290], and topological analysis suggests H65 is
near the periplasmic surface of the membrane [272]. With DmsAB on
the cytoplasmic face of the membrane (209, 214, 267] these observations
support a model for the scalar generation of a proton gradient by
DmsABC involving MQH2 binding to DmsC near the periplasmic
surface of the membrane. To explain electron transfer from the
periplasmic half of DmsC to the DmsB Fe-S clusters, DmsB may
protrude into DmsC to make the distance between the MQH3> binding
site and the Fe-S clusters shorter (Figure 1.8. B.), and/or residues in
DmsC may aid in movement of electrons to the Fe-S clusters. The first
hypothesis is consistent with the observation that HOQNO affects the
lineshape of Fe-S cluster 1 altered from a [4Fe-4S] to a [3Fe-4S] cluster.
In addition, DmsB mutants altered in cluster 1 were unable to oxidize
the Q pool, but maintained the ability to reduce the Q pool. This

suggests mutation of cluster 1 in DmsB results in decreased binding of
MQH3 to DmsC, but MQ binding remains unchanged [210]. Together

these results suggest the MQH> binding site and Fe-S cluster 1 are in
close proximity (210]. DyEDTA/EPR analysis suggests cluster 1 is close
to the interface between DmsB and DmsC [209]. However, the method
1s not accurate enough to differentiate between DmsB residing on the
top of DmsC, or slight penetration of DmsB into DmsC. However, an
alternate explanation for the interaction of HOQNO with cluster 1
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Schematic of MQH; Binding to DmsC and Electron
Transfer to DmsB

Scenarios of MQH, binding are shown, with the MQH, binding site
shown on DmsC as a square patched circle. The location of the binding

site has ramifications for generation of a pmf by DmsABC, and electron
transfer to DmsB. In B. DmsB is shown to protrude into DmsC.
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would suggest the MQH3 binding site is closer to the cytoplasmic

surface of the membrane due to a shift in DmsC helix II (Figure 1.8.C.).
This would abolish production of a pmf by DmsABC via scalar reactions.
If DmsABC were proven to generate a pmf, this could still be explained
by DmsC translocating protons to the periplasm by a proton wire. This
hypothesis is consistent with the following result. Over-expression of
DmsC in E. coli, in the absence of DmsAB is lethal. However, lethality
can be overcome by expression in a FoF1 ATPase mutant, or in
eukaryotic cells. This suggests lethality by DmsC may be the result of
uncoupling of the cells to protons by forming a proton wire or channel,
and FoF; ATPase depleting cellular ATP in an effort to maintain the

pmf [249].
1.5.7.DmsB

The ultraviolet (UV) absorption spectra of DmsABC between 325
and 450 nm is rather non-descript, but is somewhat characteristic of Fe-
S containing proteins [270].

1.5.7.1. DmsB is an Fe-S Protein

DmsB has sixteen Cys residues arranged in four groups
(numbered I-IV starting at the amino terminus), and the spacing
between the Cys's is characteristic of enzymes binding [4Fe-4S] clusters

(Figure 1.9.) [27]. Beginning at the amino terminus, the four Cys's in
each of the groups are labeled Cp, Cg, Cc, and Cp. The first three Cys's

of a group (Ca-I, Cg-I, Cc-I) ligate one cluster, as well as a fourth (Cp-x)
distant Cys from another group [53]. Four [4Fe-4S] cluster binding
motifs exist consisting of four Cys's with specific spacing, and in some
cases an additional conserved Lys or Pro. DmsB possesses one of each
of the four [4Fe-4S] cluster binding motifs. Group I is motif I, group II
is motif II, group III is motif ITI, and group IV is motif IV [81].

The Fe-S clusters in DmsB are visible by EPR spectroscopy, and
the intensity of the Fe-S clusters corresponds to 3.82 spins per
DmsABC. The EPR spectra could be best fitted by four [4Fe-4S]
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Gene Insertion and Gene Duplication Models for
Fe-S Cluster Binding in DmsB

The predicted group ligation is indicated for the gene insertion
(A.) and gene duplication (B.) models for formation of DmsB
from two bacterial two [4Fe-4S] ferredoxin progenitors. The
polypeptide is schematically indicated, and the amino (N) and
carboxy (C) termini are indicated. The Cys's are indicated by
filled circles, and the Fe-S clusters are depicted by boxes. Cys
groups I-IV and labelled, and the Cys residues belonging to
them are underlined. The Cys's Ca, Cg, C(, and Cp, are
labelled for Cys group I in the gene insertion model, but the
labels apply for all groups. In A. groups I and IV are paired,
while in B. groups I and II are paired.
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clusters with midpoint potentials at pH 7.0 (Ep,7) of -50/-60, -120/-122,

“240, and -330 mV, referred to as clusters 1-4, in order of decreasing
potential. (The two values for Em,7 for cluster 1 and 2 are for alternate
determinations [53, 210]). The reduced EPR signal is quite complex.
This is due to magnetic interactions between the reduced Fe-S clusters.
As a result, specific features of the reduced EPR signal cannot be
assigned to particular Fe-S clusters. There appears to be a strong
magnetic interaction between Fe-S clusters 1 and 2 (the 50 and -120
mYV clusters). However, due to the overall complexity of the EPR signal,
once clusters 1 and 2 are reduced, it is not possible to determine
whether clusters 3 and 4 interact (the 240 and -330 mV clusters).
However, the EPR spectrum can generally be interpreted as two pairs of
interacting [4Fe-4S] clusters, with each pair sharing spectroscopic
similarities with the bacterial [4Fe-4S] ferredoxins [210].

1.5.7.2. Mutagenesis of DmsB Cys Residues to Define the Cys Groups
(I-IV) that Ligate Each of the Four Fe-S Clusters (1-4)

In an effort to identify the Cys groups (I-IV) that ligate each of
the four Fe-S clusters in DmsB (1-4), site-directed mutagenesis was
employed to alter the Fe-S cluster composition of DmsB. This was
attempted by mutation of Cg from each group [208]. Similar efforts
have been made for respiratory enzymes with Fe-S clusters including
NarGHI [11, 12, 91], and FrdABCD (167, 274], by mutating numerous
Cys residues believed to ligate the Fe-S clusters.

Mutation of C102, Cgin group III, to Trp, Ser, Tyr, and Phe,
resulted in loss of the 50 mV [4Fe-48] cluster, and appearance of a new
+220 or *260 mV [3Fe-4S] cluster for the Trp and Ser mutants,
respectively [208, 210]. Alteration of cluster 1 results in loss of growth

on glycerol/DMSO minimal media (Gly/DMSO), indicating the
importance of cluster 1 in DmsABC function, and indicating Cp in group

III ligates cluster I [208].
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Unfortunately, mutation of Cys Cg from groups II and IV,

resulted in an inability of DmsAB to assemble onto the membrane,
suggesting structural alteration of the mutated enzymes. Mutation of
Cys Cp from group I resulted in poor accumulation of DmsB on the
membrane, and as a result, mutants were difficult to characterize by
EPR spectroscopy [205].

Models for ferredoxins with two [4Fe-4S] clusters suggest Cj,
Cg,and Cg, ligate the first cluster, and Cp ligates the paramagnetically

interacting cluster and vice versa [271]. If DmsB is composed of two
ferredoxin motifs (two [4Fe-4S] clusters) [271], this could either be the
result of a gene duplication, or gene insertion event (Figure 1.9.). Group
III has been demonstrated to ligate the “50 mV cluster (see above) [210].
Since the -50 mV and -120 mV clusters are known to interact [208], the
gene insertion (Figure 1.9. A.) and gene duplication models (Figure 1.9.
B.) predict group II and IV ligate the “120 mV cluster, respectively.
In addition, the gene insertion and gene duplication models predict
group I and II, and group I and III, respectively, share more sequence
similarity. Sequence analysis suggests clusters I and I, and III and IV,
are most similar supporting the gene insertion model [205].
Determination of the Cys groups responsible for ligating the clusters 1-4
in NarH also support the gene insertion model for evolution from two
[4Fe-4S] ferridoxin progenitors [91]. Mutation of additional Cys
residues will be required to unequivocally identify the clusters (1-4) that
are ligated by each of the Cys groups (I-IV).

1.5.7.3. Electron Flow Through DmsB

Reduction of DMSO requires two electrons. However, there are
four Fe-S clusters, each that could carry one electron. This indicates all
the Fe-S clusters may not be needed for electron transfer to the Mo
[271]. With the redox potentials of MQ and DMSO being -80 and +160
mV, respectively, it appears only clusters 1 and 2 (-50 and -120 mV,
respectively) have reasonable midpoint potentials to mediate electron
transfer. Clusters 3 and 4 (-220 and -330 mV, respectively) appear to
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have potentials that are too low to mediate electron transfer for the
reaction. [53]. A similar situation is observed in FrdABCD [143], and
NarGHI [25]. However, since the low potential Fe-S clusters are found
along an electron pathway, their low potential may not exclude them
from electron transfer. For example, lowering the midpoint potential of
the -330 mV cluster of FrdB even further impaired function, suggesting
this low potential cluster may be used for electron transfer [143].
Alternatively, the low potential clusters may play a structural role.
Mutagenesis studies on DmsB, NarH, and FrdB, have indicated
disruption of Fe-S clusters often leads to defects in enzyme assembly
(11, 143, 167, 205]. Finally, it has been suggested that low potential
clusters may play a role in regulating the activity of the enzyme. In the
case of NarH, exposure to low redox potentials has been observed to
activate the enzyme. This has been suggested to be mediated by
reduction of the low potential clusters, and would occur in vivo under
anaerobic conditions [21].

Cluster 1 (-50 mV) appears to be the entry point for electrons into
DmsB, since alteration of this cluster affects electron transfer from the
MQHz3 pool, but does not affect the ability of the rest of the clusters to be
oxidized by DMSO [210]. This is consistent with results indicating
cluster 1 is near the MQ binding site, as addition of HOQNO results in
lineshape changes to cluster 1 when altered from a [4Fe-4S] cluster to a
[3Fe-4S] cluster [210]. In addition, DyEDTA/EPR analysis suggests
cluster 1 is close to the interface between DmsB and DmsC [209].

HOQNO has no effect on the lineshape of clusters 2, 3, and 4, indicating
they are more distant from the MQH3 binding site [210]. Although

these results suggest electron transfer from MQH32 to cluster 1, the
pathway of electrons from cluster 1 to DmsA is at present unknown.
However, the Mo and Fe-S clusters appear to be in close proximity,

between 8 and 12 A, as suggested by their EPR spin-spin interactions
[53].
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1.5.8. DmsA
1.5.8.1. DmsABC is a Molybdoenzyme

Tungstate inhibits growth of E. coli on Gly/DMSO [207], as does
mutation at the moa, mob, and moe loci (Figure 1.5.) [29]. This suggests
one of the enzymes necessary for growth on Gly/DMSO is a
molybdoenzyme with a dinucleotide form of the cofactor [89, 119, 120].

Membrane bound DmsABC binds stoichiometric amounts of Mo,
as indicated by mass spectrometry, and EPR spin quantitations of the
Mo in comparison to the DmsB Fe-S signals [205]. Only 0.34 moles of
Mo were found per mole of purified DmsABC, indicating Mo loss during
purification [270]. This is in contrast to DMSOR where 0.93 moles of
Mo were found per mol of purified enzyme [99]. The redox poised EPR
spectra of DmsABC demonstrates the presence of Mo(V). The Mo has
Em,7's of -90/-175 and -75/-15 mV for the IV/V and V/VI1 couples,
respectively. (The two values are for alternate determinations [53, 245]).
The Mo EPR lineshape suggests DmsABC and NarGHI have similar
binding geometries. However, they possess different Mo Ep 7's
(NarGHI : +180 and +220 mV for the IV/V and V/VI couples,
respectively) that fit well with their alternate substrates (Table 1.1)
[271].

The UV absorption spectra for purified DmsABC has a peak at
290 nm, presumably from bound moco [270]. The presence of moco in
DmsABC has been shown unequivocally by conversion of released
cofactor to the fluorescent derivative FormA, and reconstitution of moco
deficient Neurosporra crassa NADH-phosphate (NADPH) nitrate
reductase with denatured extract from DmsABC [270].

The pathway of moco insertion into DmsABC has been studied
using cells grown on Gly/DMSO in the presence of tungstate, or with a
mob mutation. Growth in the presence of tungstate inhibits insertion of
moco into DmsABC, as does a mob mutation. These results indicate
nucleotide and Mo addition to MPT precedes cofactor insertion into
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DmsABC [207]. A similar study has recently been performed on
NarGHI, with similar results obtained, confirming the pathway of moco
insertion as suggested from results with DmsABC [206].
Molybdoenzyme crystal structures reveal the moco is buried within the
protein, suggesting cofactor addition should precede the final folding of
the polypeptide (43, 55, 203, 220, 223].

1.5.8.2. DmsA Binds Moco

Preparations enriched in DmsA indicate strong Mo EPR signals,
but weak Fe-S signals, indicating the Mo is ligated by DmsA [53].

Multiple sequence alignments of moco containing subunits from
prokaryotic enzymes reveal blocks of sequence homology separated by
sequence that differs in length and composition (Figure 1.10.) [25, 271,
281]. The alignments suggest the enzymes share a similar polypeptide
fold and active site [220, 223, 281]. This has been confirmed by analysis
of the crystal structures of DMSOR, FdhF, and R. capsulatus DMSO
reductase [43, 220, 223]. Sequence comparisons confirm DmsA binds
moco, and is the site of DMSO reduction [27, 244, 271].

Molybdoenzymes in the family that do not possess an additional
Fe-S cluster containing subunit (BisC, BisZ, and TorA), are missing the
first homologous sequence block [176]. As a result, it has been
suggested to be important in electron transfer between the moco and Fe-
S binding subunits [244].

DmsA is found on the surface of the cytoplasmic membrane [2 14,
272], and is the site of DMSO reduction [27, 244, 271]. This has
implications for S- and N-oxide accessibility to the active site. Although
no transporter has been implicated in the transfer of S- and N-oxides
across the membrane, whole cells are capable of using S- and N-oxides,
indicating they are able to reach the cytoplasmic compartment (chapter
6 and [229]).
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Figure 1.10.

Blocks of Sequence Homology are Shared
Between Prokaryotic Moco Containing Enzymes

Selected E. coli molybdoenzymes are shown. The polypeptides
and their blocks of homology are represented as rectangular
units, and different patterned blocks, respectively.
Molybdoenzymes in the family that do not possess an additional
Fe-S cluster containing subunit (BisC, BisZ, and TorA), are
missing the first homologous sequence block [176]. A portion of
the second homologous sequence block has been demonstrated
to compose a large portion of the active site funnel [169, 220,
223), and possess the Mo ligand [169, 220, 223, 245].
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1.5.8.3. Engineering a Novel Fe-S Cluster into DmsA

There are a number of conserved Cys residues within the first
homologous sequence block in prokaryotic molybdoenzymes with Fe-S
cluster containing subunits. For some of the proteins in the family,
including NapA, FdhG, FdoG, and FdhF, the Cys spacing resembles an
Fe-S cluster binding motif [244]. In fact, FdhF and the periplasmic
Thiosphaera pantotropha nitrate reductase have been shown to ligate a
[4Fe-4S] cluster [43, 44]. These Fe-S clusters are likely involved in
electron transfer between subunits [43]. However, for other proteins in
this family, including DmsA, NarG, and NarZ, the spacing is incorrect
for ligation of an Fe-S cluster. Three residues are found between the
first His/Cys and the second Cys of the motif, rather than correct
spacing of two residues [244].

Site-directed mutagenesis of DmsA was used to remove the
second Cys of the motif (creating DmsA mutants C38S and C38A), and
correct the spacing between the first two Cys residues (creating DmsA
mutant N37C,C38S). The C38S, C38A, and N37C,C38S mutants, were
each observed to have incorporated a novel [3Fe-4S] cluster, with Em7's
of +75/+140, +165/+200, and +40/+200 mV, respectively. The large range
in En, 7 for each of the novel Fe-S cluster's is likely a result of Fe-S
cluster instability. These results confirmed wild-type DmsA does not
ligate a Fe-S cluster [246] as suggested for those prokaryotic
molybdoenzymes with the correct Cys spacing in the first homologous
sequence block [81]. However, alteration of the sequence will allow an
Fe-S cluster to be ligated. The ability of DmsA to ligate a Fe-S cluster
at its N-terminus may have been lost during evolution [246].

A similar study performed on NarGHI confirms the observation
above. Mutation of the first conserved residue (His-50) suggested to be
involved in Fe-S cluster ligation resulted in no alteration in the number
or redox potential of Fe-S clusters in NarGHI. This indicates both the
conserved residues in DmsA, and NarG, are not involved in the ligation
of an Fe-S cluster [162].
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1.5.8.4. Electron Transfer Through DmsA

The first block of sequence homology found in prokaryotic
molybdoenzymes with Fe-S cluster containing subunits have five
conserved residues (K28, C38, C42, C75, and R77). These residues were
mutated in DmsA, and their function was examined by the ability of
DmsABC to support growth on Gly/DMSO, reduce DMSO using BVH-+
and DMNHj3, and accept electrons from the Q pool. Two of these
residues (K28 and C75) showed no measurable effect on any of the
parameters tested, while C38, C42, and R77, had variable effects on the
parameters measured. This suggests electrons from the various
electron donors follow different paths to reach the Mo. All three
residues were necessary for electron flow to and from the Q pool, and
growth on Gly/DMSO. R77 was essentijal for DMNH3 oxidase activity,
while mutation of C38 and C42 showed lowered activity with this

substrate. Only C42 was found to be important for BVH-+ oxidase
activity [244]. Although the N-terminal portion of DmsA does not ligate
an Fe-S cluster (see above section 1.5.8.3.) as has been demonstrated for
some other prokaryotic molybdoenzymes [43, 44, 246], some of the
conserved residues still appear important for electron transfer to the Mo
[246]. The crystal structure of FdhF implicates K44 in electron transfer
from the pterin ring of the moco to the [4Fe-4S] cluster [43]. K44 in
FdhF is equivalent to R77 in DmsA [25], confirming a role for R77 in
electron transfer from DmsB to the moco in DmsA.

1.5.8.5. The Protein Ligand of Mo

The DMSOR and FdhF crystal structures reveal a single protein
ligand to the Mo, a Ser and Seleno-Cys (Se-Cys), respectively [43, 220].
Alignment of prokaryotic moco containing enzymes reveals the protein
ligand in DMSOR and FdhF is a conserved residue, being either a Ser
(DmsA, BisC, BisZ, and TorA), Cys (NarG, NarZ, and NapA), or seleno-
Cys (FdhF, FdoG, and FdnG) [25, 245]. Mutation of this residue in
DmsA (S176) to Ala, Cys, or His, resulted in an inability to grow on

Gly/DMSO, or reduce DMSO in the presence of BVH-+. In addition, the
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mutated enzymes showed altered Mo redox potentials and EPR
lineshapes, consistent with S176's role as a Mo ligand. The S176A
mutant was trapped in the Mo(V) state, while the Mo(V) state was
completely inaccessible in the S176H mutant. In addition, Mo(V) in the
S176C mutant appeared to interact with the -240 mV cluster [245].

1.6. Thesis Objectives

The objectives of this thesis were -

[y

. Examination of the Soluble Subunits (DmsAB) of DMSO Reductase
(DmsABC)

[\

. Structural Identification and Quantitation of the Molybdenum
Cofactor in DmsABC

3. Determination of the Initiating Met for DmsA and Importance of the

DmsA Leader Sequence
4. Assay Examination and Development for DmsABC

5. Examination of the Substrate Specificity of DmsABC and TMAO
Reductase (TorA)

o

. Modulation of the Substrate Specificity of DmsABC

3

. Elucidation and Characterization of Pyridine N-oxide Reductase

This thesis focuses on DmsABC (Chapters 2, 3, 4, 5, 6, and 7).
However, our research led us to discover a previously uncharacterized
S- and N-oxide reductase (Chapter 8), and our collaboration with Dr.
Giordano led to our involvement in the kinetic characterization of TorA
(Chapter 9). The research performed in this thesis was also influenced
by various interests in the lab (Chapters 2, 5, and 6), and by
developments in our field of research : observation of a nucleotide
appended to MPT in DMSOR [119] (Chapter 3), sequence analysis of
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redox cofactor containing enzymes [24] ( Chapter 4), and the DMSOR
crystal structure [220] (Chapter 7).

Due to the potential usefulness of soluble DMSO reductase for
X-ray crystallographic studies or cyclic voltametry, we examined the
properties of soluble DmsAB lacking the DmsC anchor subunit
(Chapter 2). This included reconstitution of moco into apo-DmsA. We
outlined a preliminary purification scheme for DmsAB, and
characterized some salient features of DmsABC structure and function.

The structure of the moco in DmsA was addressed (Chapter 3.
Studies indicated the locus responsible for addition of nucleotide to MPT
[119] was required for DmsABC function [29]. To determine whether
nucleotide was appended to MPT in DmsA, and the identity of the
nucleotide, DmsABC was purified, and moco from DmsABC was
characterized by fluorescence and absorption spectroscopy.

Sequence analysis of redox cofactor-containing proteins [24]
suggested the proposed initiating Met for DmsA was incorrect. In
addition, this analysis suggested the DmsA N-terminal leader contained
a novel double-arginine consensus, important for the translocation of a
subset of redox cofactor containing proteins across the membrane. W
determined the correct initiating Met for DmsA, and the importance of
the DmsA leader and double-arginine consensus for production of
functional DmsABC (Chapter 4). This was achieved by creating a
number of site-directed mutants, and using polymerase chain reaction
(PCR) and cloning to create a number of tac promoter constructs. These
DmsABC mutants and constructs were examined for growth on
Gly/DMSO, accumulation, and expression.

Chapter 5 presents the results of a kinetic characterization of
DmsABC, and further results are presented in Chapters 6 and 7. In an
effort to understand assay parameters influencing DmsABC activity, we
examined two commonly employed assays (Chapter 5). We also
examined the usefulness of nuclear magnetic resonance (NMR)
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spectroscopy for kinetic analysis of DmsABC. In addition, the kinetic
constants for the electron donor part of the reaction were determined.

The substrate specificity of DmsABC [270] was examined in
detail (Chapter 6), in order to gain an understanding of the parameters
affecting substrate binding and turnover. The kinetic constants for
more than fifty S- and N-oxides and miscellaneous compounds were
determined. The ability of these substrates to serve as anaerobic
terminal electron acceptor in wild-type E. coli was monitored.

Key residues potentially influencing substrate specificity were
identified by examination of the DMSOR crystal structure [220], and
comparison of DmsA and DMSOR sequences (Chapter 7). Site-directed
mutagenesis was employed to alter active site residues in DmsA.
Seventeen DmsA mutants were created, and their growth,
accumulation, and kinetic parameters were examined.

An effort was made to determine the role of DmsABC and TorA in
respiratory growth (Chapter 8). As a result, we identified an additional
anaerobically expressed energy conserving terminal reductase, that
allows anaerobic growth on substituted PNO's in the presence of
glycerol. This enzyme, PNO reductase (PNOR), was characterized for
activity, accumulation, localization, and was partially purified. We also
isolated a mutant with increased PNOR activity. The identity of this
newly identified terminal reductase is proposed.

With a desire to compare the substrate specificities of DmsABC
and TorA, we performed a kinetic analysis of TorA (Chapter 9). It was
similar to that performed on DmsABC (Chapter 6).

The work reported herein has broadened our understanding of
the structure and function of DmsABC, TorA and PNOR. The data
obtained allows us to pursue previously unavailable avenues of research
for proteins involved in electron transport.
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