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Abstract

Steerable needles have been widely used in minimally-invasive surgical procedures such

as brachytherapy, biopsy, and neurosurgery in which long flexible needles are inserted into

the human body for treatment, diagnosis or sample removal. Prostate brachytherapy, known

as a cost-effective and minimally invasive method, is a type of radiotherapy treatment which

delivers radiation internally by implanting radioactive seeds at specific spots inside or around

the prostate. Here accurate positioning of the needle plays a vital role as no proper treatment

will happen if targeting accuracy is low. Moreover, poor placement of the radioactive seeds

can cause long-term side effects due to the disruption of neighboring tissues or organs. In-

vestigations reveal that using available techniques, even expert practitioners cannot achieve

an average accuracy of less than 5 mm in seed placement. This may be improved by em-

ploying computer-controlled robots to compensate for the placement errors caused by needle

deflection and tissue deformation.

This research aims to improve the needle placement accuracy using needle insertion

robotic assistants. To this end, steering algorithms and controllers are employed in a feed-

back closed-loop structure. In these structures, the controllers are fed by needle tip deflection

measurements, and perform any necessary control action to compensate the targeting errors.

In this research different control strategies are proposed to compensate for the needle po-

sitioning errors. All the proposed controllers in this work are based on needle deflection

measurements obtained from ultrasound images. To deal with system uncertainties, sliding
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mode control technique is used to control the needle tip position in 2D and 3D environments.

Considering the planar case, a switching controller is proposed to compensate the needle tip

deflection in one plane. Considering the trade-off between the performance (small targeting

error) and cost (tissue trauma), a controller tuning method is provided which ensures the

stability of the closed-loop system. This method is extended to the 3D environment using

model averaging and input transformation technique to produce a multi-mode PWM repre-

sentation of the system. Considering the constraints imposed by model averaging, proper

controllers are designed and implemented to compensate for the tip positioning errors. To

decrease the number of needle rotations and consequently decrease the tissue trauma, the

switching controller is replaced by a sliding mode controller. This method considers two

surfaces and finds the required rotation angle to compensate the tip defection error in 3D

space. The proposed method is then improved by using an adaptive structure in which the

sliding surfaces are rotated. Since ultrasound images can only provide measurements of the

needle tip position and no information about the needle tip orientation can be retrieved from

ultrasound images, model-based state observers are designed to overcome the measurement

limitations and used in a feedback control scheme. The controllers are designed to meet the

observer requirements and guarantee the stability of the system. As another step in compen-

sating needle tip placement errors, we propose an extension to kinematic unicycle/bicycle

model, which has been widely used for planning and control purposes. The goal of this

modeling is to add new parameters to the existing model to account for tissue motion.
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Chapter 1

Introduction

Steerable needles have been widely used in minimally invasive procedures such as brachyther-

apy, biopsy, and neurosurgery. In such methods, flexible beveled-tip needles are inserted into

human tissue for diagnosis, treatment, or sample removal. During these procedures, imaging

modalities such as ultrasound, X-ray, and fluoroscopy are used to monitor the organs and the

needle’s position. The efficiency of these methods is highly dependent on accurate control

and positioning of the needle tip since poor needle placement can cause undesirable side

effects on neighboring tissues or organs. However, due to the tissue deformation, needle

deflection and limitations in controlling the needle from outside the body, accurate needle

tip placement turns into a challenging problem.

1.1 Prostate Brachytherapy

Prostate cancer is recognized as the second frequent diagnosed cancer in men around the

world with an estimation of 1.1 million new cases to have occurred in 2012 [7]. Prostate

brachytherapy under ultrasound guidance is a treatment method for early-stage cancers. This

method is a type of radiotherapy, in which the radiations are delivered internally by implant-

ing radioactive seeds in or around the prostate gland. The seed implantation is preceded by

taking axial images to find the margins of the prostate and the target volume. Using these

images the distribution of the seeds is pre-planned to have the desired dose distribution. The

desired locations of the seeds are registered with respect to a template grid, and as a result,

it is desired to insert the needle to the final depth on a straight line. Several needles loaded

with rows of seeds are manually inserted through a 5 mm template grid. After reaching the

final depth, each needle is retracted, and the seeds are pushed out using a stylet. During the

insertion, the needles are visually tracked using a transrectal ultrasound probe (TRUS) to

help the needle guidance.

In brachytherapy, implanting the seeds at the pre-planned location is of great importance

as it determines the defined dosage of radiation to the cancerous tissue. Errors in seed

positioning reduce the efficiency of the method as instead of cancerous tissue, the radiations
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CHAPTER 1. INTRODUCTION

are imposed on the healthy tissue. As mentioned before, the assumption during the pre-

planning is to insert the needle on a straight trajectory. However, using beveled-tip needles,

due to the asymmetry of the forces at the needle tip, the needle bends in the same direction

of the bevel. This feature of the beveled-tip needles enables needle steering by rotating

the needle and changing the bevel orientation. In fact, this technique is commonly used in

prostate brachytherapy. The needle deflection should be controlled by an expert surgeon

to reach the desired depth and be close to a straight needle at the final insertion depth. The

absolute seed positioning error obtained from manual insertions by experienced practitioners

is approximately ±5 mm [8].

The accuracy of these procedures can be enhanced using intelligent assistant robots to

compensate for the targeting errors caused by needle deflection and tissue deformation. The

first step in semi-automating the insertion procedure is to have physical models that relate the

needle/tissue interaction to various inputs such as needle insertion velocity, axial rotation,

needle base lateral position and needle base force/torque. Such physical modeling of needle-

tissue interaction provides a means to estimate needle deflection and provides an opportunity

to minimize needle placement errors through feedback control.

For safety reasons, it is always desired to involve the clinician in the loop. In robot-

assisted procedures we envision, the steering action is divided between the robot and the

clinician to hit the right balance between improving the targeting accuracy of insertions and

the treatment safety issues. Consequently, in robot-assisted procedures, some of the inputs

such as needle rotations are adjusted automatically while the other inputs such as needle

insertion velocity and the initial insertion points are controlled by the surgeon.

1.2 Various Problems in Needle Insertion Research

1.2.1 Modeling Needle Deflection

Designing intelligent assistant systems to steer the needle from outside the body demands

having models to represent the needle/tissue interaction and estimate the needle deflection

during the insertion. Several needle/tissue interaction models have been developed which in-

clude finite element modeling, energy-based methods, flexible beam modeling and kinematic

models. DiMaio and Salcudean [9] have proposed a model using the 2D Finite Element
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CHAPTER 1. INTRODUCTION

Method (FEM) for quantifying the needle/tissue interaction and deformation. Alterovitz et

al. [10] developed an interactive simulation of needle insertion and radioactive seed place-

ments in soft tissues. Based on these, other models are developed considering the needle

flexibility [11]. Later Goksel et al. extended this model into 3D [12]. Using the FEM model

for the tissue, Dehghan et al. developed a planning method for rigid needles [13].

Other research groups have employed beam theories to develop mechanics-based mod-

els. Yan et al. proposed a spring-beam-damper model which, unlike the FEM method,

employs an unconstrained model for analysis and derivation of the dynamic equations [14].

This is improved by taking the tissue inhomogeneity into account using depth varying pa-

rameters to calculate the spring and damper effects [15]. Chentanez et al. modeled the

needle in 3D space as a 1D rod using Cosserat theory [16]. Goksel et al. developed three

different models to simulate the needle deformations and compared their efficiency and ac-

curacy [17]. Misra et al. presented an energy-based method to predict needle behavior

based on fundamental mechanical and geometrical properties of the needle and tissue [18].

Using Rayleigh-Ritz method, Misra et al. developed a mechanics-based model for needles

undergoing multiple bends [19]. Ignoring the tissue properties, Webster et al. proposed a

kinematic nonholonomic model for the needle using unicycle equations [20]. In this model,

the needle is assumed to move on a curved path with constant curvature (circle). For each

needle-tissue combination, the path curvature is found using curve fitting methods. This

model is advantageous as it provides a simple, intuitive model for analysis that is efficient

for numerical computations. These models provide a means for predicting the needle tip

position and model the needle/tissue interaction.

1.2.2 Path and Motion Planning

Considering the motion of the needle, the nonholonomic constraints on the needle kine-

matics limit the steerability of the needle. The desired needle path, however, depends on the

application. In biopsy, it is desired to reach a constant final deflection whereas in brachyther-

apy the needle should follow a straight path. In case of having obstacles on the needle path

(such as bones or nerves), the needle should follow a pre-planned curved path. To find a

feasible path, there have been different path planning methods proposed in the literature.

Hamze et al. proposed an optimization-based pre-operative algorithm to find an optimal
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CHAPTER 1. INTRODUCTION

needle trajectory, which accounts for needle flexibility and tissue motion. Their method

employs a parameterized finite element formulation to model the deformations caused by

needle/tissue interaction [21]. Girbacia et al. used genetic algorithms in brachytherapy to

find a trajectory to the target point while avoiding any intersections with vital organs [22].

Considering different initial insertion angles, Tsumura et al. proposed a planning method

for finding the optimal path to minimize the deflection [23]. Alterovitz et al. proposed a

planning algorithm in 2D space with obstacles using 2D finite element model to find the tis-

sue deformation and compute the optimal value for the initial insertion angle, position and

bevel orientation [24].

In addition to the path planning algorithms, there are different motion planning methods,

which not only calculate the feasible path, but also find the necessary actions to steer the nee-

dle on this desired path. Using beveled-tip needles, the path traveled by the needle depends

on the orientation of the bevel, which changes by needle axial rotations and provides a way

for steering the needle on different paths.

Authors in [25, 26] formulated the motion planning problem as a Markov decision pro-

cess to find an optimal discrete control sequence in 2D space using dynamic programming.

Park et al. considered the planning problem in 3D space for a stiff tissue with no obsta-

cles using the propagation of needle position probability [27]. Authors in [28] used an

ultrasound-based deflection predictor and developed a 2D semi-automated needle steering

strategy. In this approach, the surgeon is in charge of needle insertion to ensure the safety

of the operation, while the needle tip bevel location is robotically controlled to minimize the

targeting error. Xu et al. and Duindam et al. presented motion planners for 3D environment

with obstacles using rapidly exploring random tree (RRT) searching method [29, 30].

Duty cycle spinning is a method proposed by Minhas et al., which is based on simul-

taneous insertion and rotation of the needle. The duty cycle, which determines the time

intervals of pure insertion and simultaneous insertion and rotation, is found as a function

of the desired path curvature. It is shown that by duty cycle spinning of the needle, paths

with different curvatures can be achieved [31]. Many of the motion planning algorithms

in the literature are combined with the duty cycle spinning for steering the needle on the

desired path. Majewiez et al. presented two methods for duty cycle spinning to overcome

hardware limitations such as cable wind-up [32]. To have paths with variable curvature, this
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CHAPTER 1. INTRODUCTION

method is combined with 3D planners in [33] for environments with obstacles. Authors in

[34, 35, 36] employed RRT-based methods to perform real-time re-planning and combined

it with duty cycle spinning to steer the needle to the desired position. Sun et al. proposed an

LQR-based planning method and used it with duty cycle spinning [37]. Li et al. used a kine-

matic model of the needle and a potential field-based planning method along with the duty

cycle spinning [38]. The duty-cycle spinning method requires the maximum needle path

curvature which may vary during the insertions due to tissue inhomogeneity. The steering

method presented in [33] uses the needle path curvature as a constant model parameter to

perform any necessary rotations to move the needle toward the target point. To compensate

the effect of tissue inhomogeneity on needle path curvature Moreira et al. integrate online

curvature estimation to 3D planners and duty-cycle spinning [39]. Reed et al. combined

a 2D planner with a sequence of image-guided needle rotations which compensate the out

of plane motions of the needle [40]. During the insertion in these methods, if errors occur

due to tissue non-homogeneity or uncertainties, re-planning is required to find a new desired

path to compensate for the errors.

1.2.3 Needle Steering Control

Viewing the needle insertion system as a control system, the control objective can either be

regulation or tracking. In regulation, the goal is to reach the desired deflection, regardless

of the path traveled. In tracking, the goal is to control the needle to travel on a straight

path by minimizing needle bending or travel on an appropriate curved path that specifies the

desired deflection at every depth assuming the path satisfies the nonholonomic constraints,

which can be used to avoid obstacles. To this end, two control inputs affecting the system

are the insertion velocity and the needle axial rotations. The axial rotations change the bevel

orientation causing the needle to travel on different paths in 3D space. In this case, the

steering problem can be viewed as a feedback control loop shown in Fig.1.1.

To keep the needle moving as straight as possible, Abolhassani et al. has proposed a

method to perform the axial rotations when the needle deflection reaches some predefined

threshold [41]. In this method, the deflection and the rotation locations are calculated based

on the force data and needle’s model (flexible beam model) which may encounter uncertain-

ties.
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Needle tip 
position

Desired
(point/ path)

+      
      
      -

Controller
Needle

Tissue Measurement
(Images/Sensors)

Figure 1.1: Control loop for needle steering

From a control perspective, in [42], the controllability of the needle in soft tissue is

studied using a dynamic model. Khadem et al. proposed a mechanics-based model of nee-

dle steering and developed a nonlinear model predictive controller (MPC) for 2D needle

steering using iterative optimization of the predictions [43]. Authors in [44] proposed a

stochastic optimal steering method using Markov chain approach for 2D needle steering in

the presence of obstacles, uncertainty and tissue motion. Abayazid et al. combined plan-

ning and control methods and used the geometric and trigonometric relations between the

needle’s current position and the target in a feedback loop [45]. In some of these algorithms,

the exact knowledge of system parameters such as the needle’s path curvature or its max-

imum value is needed. In [46], a sliding mode controller is presented which is based on

the 3D unicycle model proposed in [20]. In this method, a 5DOF magnetic tracking sensor

is used which is combined with a with Kalman filter to provide the full information about

the needle tip position and orientation. Measuring the orientation requires utilizing a sensor

such as a needle-mounted electromagnetic tracking sensor, which itself suffers from ster-

ilization and size issues. Since suitable sensors are not accessible, state observers can be

employed to estimate the needle tip orientation using the measured needle tip position [47].

Besides, if orientation observers or estimators are going to be used, the overall stability of

the observer/controller loop should be studied, which is not a trivial task. Motaharifar et al.

proposed an adaptive output feedback controller to deal with parameter uncertainties. In this

method, a nonlinear high gain observer is designed to estimate the non-measurable system

states to be used in the adaptation law. [48].

There have been many different measurement methods utilized for planning and steering

such as acoustic radiation force impulse imaging method (ARFI) to find the needle curva-

ture [49], fiber Bragg grating sensors [50], and electromagnetic tracking [46, 51] for needle

tip position measurement. In [49], the on-line and off-line curvature estimation method are

incorporated using ARFI imaging technique for finding the value of variable curvature. This
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steering algorithm is an optimization-based method that uses the updated amount of curva-

ture to improve the targeting error.

1.3 Observers in Medical Robotics

The application of the robotics in medical procedures is very task dependent. According to

the application, observers can be used as a replacement for sensors or can be used in situa-

tions where sensors are not applicable. In rehabilitation applications replacing sensors with

observers provides a way to reduce the cost and the weight of the devices. In these applica-

tions where the rehabilitation devices (such as exoskeleton devices) are used by the patient

for a long duration, reducing the cost and the weight of the devices is very advantageous.

Moreover, due to the limited space in some devices such as hand exoskeleton [52], force sen-

sors should be replaced by other measurement or estimation methods. In MIS procedures,

where the fine tools are inserted into the body through small incisions, placing measurement

devices at the tip of the surgical tools to be inserted into the body is not practical. Besides,

one of the important issues in surgical procedures is the sterilization of the equipment, as

well as the sensors. Replacing sensors with observers relaxes this issue. There are also

different challenges in designing and using the observers. In medical procedures, safety is

a very important issue, which should also be considered in designing observers. The per-

formance of the observer (convergence to the real values) should be guaranteed to provide

the surgeon/assistant robot with realistic values to ensure the safety of the patient and the

efficiency of the method. Especially, when the observers are used to control the assistant

robots, the stability of the observer/controller should be guaranteed. Besides, effective ob-

servers require a good model describing the system’s behavior. In some applications, finding

such a model is not a trivial task.

1.3.1 Force Estimation

Rigid Tool: When it comes to human-robot interaction, using force control methods be-

come crucial for providing a safe and effective environment for the human and prevent any

excessive damage or trauma to patient’s body [53]. In robot-assisted surgeries or telesurg-

eries, the robot is in direct contact with the soft tissue. In this case, it is important to detect

7
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the contact and measure the force applied by the robot on the soft tissue. In such cases, force

control strategies provide better solutions for controlling the robotic manipulators [54]. In

rehabilitation tasks, in which the goal is to rehabilitate the musculoskeletal system, the robot

is also in interaction with the patient. There have been different types of wearable exoskele-

ton robots developed for rehabilitation of upper and lower limbs [55], spine [56], knee [57],

hand [58], etc. These robots are designed to improve the functionality of body joints and

limbs after stroke or other disability events [59, 60, 61]. These devices demonstrate an-

other example of direct interaction between a robot and human, in which measuring the

interaction forces is imperative. In both of aforementioned applications, using sensor-less

methods would be beneficial to decrease the costs and increase the applicability of the de-

signed devices; however, the difficulty arises in terms of designing observers and estimators

and analysis of the effects of the estimation error on combined observer/control strategies,

and guaranteeing stability, safety and efficiency.

Due to the nonlinear dynamics of rigid robots, nonlinear disturbance observer (NDOB)

are used. The main task of a disturbance observer (DOB) is to estimate the disturbances and

modelling uncertainties [62]. To design an NDOB, the robot’s unmodeled dynamics are con-

sidered as additive uncertainties and all these uncertainties and external forces are lumped

into one disturbance vector. In the conventional NDOB, it is assumed that the joint accel-

erations are measured. In the case that no acceleration sensors are available, an advanced

NDOB [63] provides a suitable structure. Kalman filters also provide another approach for

estimating the interaction forces. Mitsantisuk et al. use a Kalman-filter based state observer

for estimating the hand and wrist forces of the patient in robot-assisted rehabilitation [64].

Pehlivan et al. employ a Kalman filter and Lyapunov analysis to provide a stable and fast

force estimation in upper limb rehabilitation [65]. Fakoorian et al. use extended Kalman

filter as well as unscented Kalman filter (UKF) for estimating robot states and the ground

reaction forces in a prosthetic leg [66]. Mitsantisuk et al. propose a method that takes the

advantage of both DOB and Kalman filter [67].

Flexible Tool: As stated before, in order to increase the efficiency of needle insertion

procedures, accurate steering algorithms are required. Since the needle bends as a result

of forces acting on the needle, any information about the needle/tissue interaction will be

8
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Figure 1.2: Needle/tissue interaction forces. The cutting force is at the needle tip, friction
forces act along the needle shaft and tissue forces depends on tissue stiffness.

helpful for steering the needle. The needle/tissue interaction forces are composed of cutting,

stiffness and friction forces [68] as shown in Fig. 1.2. The cutting force is the force at the

needle tip causing the needle to slice the tissue and move through it, which is a constant

value. The friction force acts along the needle shaft during the insertion and the stiffness

force depends on the tissue properties. Since there are no clinically approved needle mounted

sensors available, it is not possible to measure the needle/tissue interaction forces. However,

a needle-based-mounted force sensor provides a practical way for measuring the total forces

acting on the needle at its base.

The force estimation methods in needle insertion procedures are mainly the techniques

described in the previously. In these methods, the force data is found using the deflection

information and the forces measured at needle base. Asadian et al. model the interaction

forces base on LuGre [69] model and estimate the parameters online using multiple EKFs

[70]. Fukushima et al. employ a DOB and the recursive least squares (RLS) technique to find

the tip and friction force acting on the needle [71]. Maghsoudi et al. propose two methods

for estimating the forces; a DOB and a model-based method [72]. The two methods are then

compared in a needle insertion control loop and the results show the robustness of DOB to

uncertainties. Having the total force acting on the needle, Suzuki et al. combine a reaction

force observer [73] with the RLS method to find the stiffness force of the tissue in a stiffness

assessment task in liver teleoperation biopsy [74].

1.3.2 Pose and Motion Estimation

Physiological Motion: To avoid inaccuracy during surgical interventions, it is desired to

remove any unwanted motions or disturbances. Even if the patient is still, there may be

physiological organ motion. There are two types of physiological motions: periodic mo-
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tion such as the heartbeat and respiration, and the non-periodic motions. The examples of

non-periodic motions, which are very relevant in surgical interventions, are the organ mo-

tion after opening the body such as brain [75] and abdominal cavity during MIS [76]. The

two main sources of periodic physiological motions are the respiration and the heartbeat.

Respiration causes low-frequency, large-amplitude cyclic motions while heartbeat produces

high-frequency, small-amplitude semi-periodic motion in the heart.

There have been different methods proposed in the literature for estimating the heart

motion using images. Sauv et al. consider two approaches based on landmark and texture

tracking for 3D heart surface tracking [77]. Richa et al. employ a thin-plate spline warping

model (TPS) for 3D tracking of beating heart using endoscopic images [78]. Yang et al. pro-

pose a robust 3D tracking scheme based on two methods [79]. To predict the heart motion,

there are non-model based methods proposed in the literature which use a long embedding

vector of past measurements of the heart motion and predict the motion by finding a previous

embedding vector similar to the current vector [80].

However, these methods lack the required robustness and accuracy, since they are only

based on the images and no information about the dynamics of the heart motion and the

respiratory system are taken into account. Also, imaging methods fail to predict the motion

in case of any occlusions such as surgical instrument, blood, and smoke. Another issue

in retrieving the heart motion only based on images is data acquisition delay. In this case,

predictive strategies can be used to compensate for the data acquisition and processing delay.

According to the nature of the physiological motion, a quasi-periodic model can be

used to estimate the heart and respiratory motion. The quasi-periodic motion is defined

as a time-varying Fourier series, for which the coefficients can be estimated using different

methods [81, 82]. Extended Kalman filter (EKF) is an estimation method in which the

current measurements and the mathematical model are simultaneously used to estimate the

unknown variables, which also overcomes the low update rate of the images and can be used

to predict the motion in case of any occlusions. Bowthorpe and Tavakoli have considered

the quasi-periodic model for the heart motion and found the coefficients using the Extended

Kalman filter [83]. Similarly, in the work done by Yuen et al., the heart motion is estimated

and is used to predict the future heart motion [84]. To model both the breathing and heart

10
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beat motions, Richa et al. [85] and Yang et al. [86] propose the summation of two Fourier

series and use Extended Kalman filtering method for estimating the parameters.

Tool Pose: In robotic-assisted surgeries, where the surgical tool is manipulated by a robotic

system, the position and orientation of the surgical tool are valuable information for con-

trolling the robotic manipulator. Some of that information can be obtained from imaging

modalities. Ultrasound imaging is a cost-effective and widely used imaging modality, which

has been employed in many applications. There have been different methods proposed in

the literature for localization (position estimation) of the surgical instruments and needles

inside the body using ultrasound images. Different issues in needle steering can be found

in the work done by Rossa et al. [87]. According to needle kinematics [47], the three fixed

angles of roll, yaw, and pitch, representing the needle tip orientation, are highly involved

in the system motion and having knowledge of them is very beneficial for controlling the

needle tip position. However, due to the small diameter of the needle and the low resolu-

tion of the ultrasound images, it is not possible to measure the needle tip orientation from

ultrasound images. This motivates the idea of designing state observers for estimating the

needle tip orientation using the needle tip position obtained from ultrasound images. There

are a few researches on estimating the needle tip orientation using observation methods. In

the sliding mode controller proposed by Rucker et al., the needle tip orientation is required

for calculation of the control action [46]. In this work, a 5 DOF magnetic tracking sensor is

used which is combined with a Kalman filter to find the full information about the needle tip

position and orientation. This may work in a lab setting but is not clinically feasible due to

sterilization issues.

1.4 Challenges and Objectives of This Work

In this work, the needle steering problem is viewed as a feedback control problem to com-

pensate for needle positioning errors in needle insertion procedures. In this case, the control

objective can either be regulation or tracking. In regulation, the goal is to control the needle

to travel on an appropriate curved path to reach a desired and feasible deflection at a given

final depth. In tracking, the goal is to control the needle to travel on a curved path that

specifies the desired deflection at every depth assuming the path is feasible. The feedback
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loop is completed by feeding the controller with the needle tip position obtained from ultra-

sound images. In this work, the needle tip position error, which is the difference between

the desired deflection and the actual tip deflection is used to evaluate the performance of

the proposed methods. As mentioned before, the absolute positioning accuracy in manual

brachytherapy seed placements performed by expert surgeons is ±5 mm. To introduce im-

provements to needle tip positioning, we consider the maximum acceptable tip error to be

±2 mm, which is the size of the smallest lesion detectable in ultrasound images [88].

Needle defection at each depth of insertion can be projected on two planes, represent-

ing in-plane and out-of-plane motion. From this point of view, the needle represents an

under-actuated system as there are two objectives; controlling the in-plane and out-of-plane

defections while there is only one control input, the axial needle rotations. Besides, due

to the bevel at the needle tip, the needle bends during the insertion, which shows that the

system does not have any equilibrium points. These issues along with some nonholonomic

constraints imposed on the needle kinematics, parameter uncertainties, and equation singu-

larities, turn the needle steering procedure into a challenging control problem.

Moreover, it is important to access a suitable model for the system which can be used

in controller design and real-time implementations. In this work, we use the kinematic

unicycle model for the needle [20]. The advantage of this model is its simplicity as it only

represents the kinematics of the needle with certain assumptions and ignores the effects

of the needle/tissue interaction forces. However, this simplicity may be limiting in certain

situations, some of which are considered in this work.

This thesis is divided into two main parts. Chapters 2, 3, and 4 are devoted to the design

and implementation of controllers for 2D and 3D needle steering. In Chapters 5, and 6

observation methods and observer-based control strategies are presented. The remainder of

this chapter is devoted to introducing the kinematic bicycle model for the needle and the

experimental setup which are used throughout the next chapters.

1.5 Experimental Setup

To verify the accuracy of the proposed methods, the experimental setup shown in Fig. 1.3

is used. The system consists of a carriage actuated by a DC motor through a belt and pul-
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ley mechanism which performs the translational motion of the needle. Another DC motor

is assembled on the translational stage to which the needle base is attached, and performs

the needle axial rotations. This motor is equipped with an encoder, and its position is con-

trolled using a PID controller. To track needle tip, 2D transverse ultrasound images are

used (SonixTouch, Ultrasonix, BC, Canada), which provide information about the needle

position. In clinical manual insertions, the surgeon uses the ultrasound images visually to

track the needle. Here this visual feedback is combined with image processing and Kalman

filtering technique to calculate the needle tip deflection from partial observations of the nee-

dle [89]. Since the ultrasound images are the only source providing us with the needle tip

position, this information should be accepted as the true measurement value. However, in

order to find the tip position, the needle tip should be visible in the images. Issues about

the required image quality and different artifacts affecting the needle position measurement

are discussed in [89], which is out of the scope of this work. Here, the information obtained

from ultrasound images is considered as the true value of the needle tip deflection, which

provides numerical measurements to be used by the controller. The needle tip deflection is

fed back to the controller and is updated every 0.05 sec. The ultrasound probe is attached to

a translational platform to track the needle tip.

1.6 An Introduction to Unicycle/Bicycle Model

Among several needle-tissue interaction models, the kinematic nonholonomic model has

been proposed as an empirical parameter-identifiable model that can estimate needle deflec-

tion based only on limited knowledge about tissue-needle interaction. This model describes

the kinematics of the needle tip based on constraints imposed by tissue and has been widely

used for path planning and needle steering [27, 46, 20]. The main assumption made in this

model is that the tissue is stiff relative to the needle. Inserting the needle into stiff tissue

causes negligible deformation in tissue as the needle bends. Thus, it is assumed that the

needle tip moves on a circular path with a constant curvature. Approximating the path fol-

lowed by the needle tip with a circle makes the path planning procedure simple as the radius

and center of the circular path can be analytically derived. However, if the tissue is not stiff
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Figure 1.3: Experimental setup used to perform needle insertion. The setup provides transla-
tional and rotational motion of the needle. An ultrasound machine (SonixTouch, Ultrasonix,
BC, Canada) is used to track the needle tip position. A 6DOF force/torque sensor is attached
to the needle base which is not used in this work.

relative to the needle, as the needle bends during insertion the tissue is compressed and in

turn displaces the needle tip from a circle, thus producing non-circular paths [90, 18].

A beveled-tip needle inserted into soft tissue is usually driven with two inputs, namely

longitudinal insertion, and axial rotation. During insertion, as a result of tissue reaction

forces, the needle bends in 3D space. In [20], it is shown that the needle tip posture i.e.,

position and orientation, resembles the posture of a bicycle moving on a circular planar path

with the insertion velocity acting as the riding speed.

Fig. 1.4 illustrates this model of a bevel tip needle with the associated bicycle wheels. In

this figure, frames {B} and {C} represent the moving body frames attached to the wheels.

The parameters `1 and `2 denote the distance between the two wheels and the distance be-

tween the back wheel and the needle tip, respectively. Using the procedure provided in

Appendix A the kinematic model for the needle is found as

ġab(t) = gab(t)

v
 e3

ke1

+ u

 0

e3

 (1.1)
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Needle tip

Figure 1.4: Bicycle model of a bevel tip needle. The frames {C} and {B} are attached to
front and back wheels.

In (1.1), v and u denote the insertion velocity and the needle axial rotational velocity, re-

spectively, and gab is given by gab =

Rab pab

0T 1

 with pab = [x, y, z ]T and Rab being

the position and orientation of the moving frame {B} with respect to the fixed frame {A},

respectively as shown in Fig. 1.5, and ei, i = 1, 2, 3, represent the standard basis vectors in

R3 and k is the needle path curvature. The insertion velocity v has minimal effect on the

tip path and is therefore assumed to be constant. A unicycle moving on a circular path with

constant curvature k has also exactly the same kinematic equations. Expanding (1.1), the

coordinate free needle equations can be re-written as

ṗ = R


0

0

v

 (1.2a)

Ṙ = R


0 −u 0

u 0 −kv

0 kv 0

 (1.2b)

Using the vector q =
[
x, y, z, α, β, γ

]
as the generalized coordinates which is

well defined on

U = {q ∈ R6 : α, γ ∈ R, β ∈ [−π/2, π/2]} (1.3)
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Figure 1.5: The needle in 3D space, desired path and obstacle. Frame {A} is the fixed frame
and frame {B} attached to the needle tip is the moving frame.

the needle kinematics (1.1) can be presented as: [47]

ẋ = v sinβ (1.4a)

ẏ = −v cosβ sinα (1.4b)

ż = v cosα cosβ (1.4c)

α̇ = kv cos γ secβ (1.4d)

β̇ = kv sin γ (1.4e)

γ̇ = −kv cos γ tanβ + u (1.4f)

Here,
[
x y z

]T
represents the position of the origin of the moving frame {B} with

respect to the fixed frame {A}. The angles α, β and γ are the yaw, pitch, roll angles,

representing the orientation of the frame {B} with respect to frame {A}. Using these three

angles, the orientation of the moving frame can be obtained by three successive rotations

about the axes of the fixed frame. Since the rotations are performed about the fixed axes,

the corresponding rotation matrix can be found by pre-multiplying the three basic rotation

matrices [91].

16



Chapter 2

Sliding-based Switching Control for Nee-

dle Steering

The main purpose of the chapter is to study the feasibility of a simple technique for a regulat-

ing problem to steer beveled-tip needles into a target point in soft tissue. The target point is a

2D point which is specified by the desired deflection at the desired insertion depth. To steer

the needle to the target point, the proposed algorithm only uses the information from visual

feedback, and no information about the needle or tissue parameters is involved in the con-

troller structure. Especially, the exact value of the needle path curvature is used extensively

in many other papers as a parameter in their planning or control algorithms. However, this

parameter can be variable due to the tissue inhomogeneity. In this chapter, we only require

a rough estimate of the curvature. It should be noted that since the value of the curvature

is not directly used in the steering algorithm, the algorithm is not sensitive to curvature un-

certainties. The parameter tuning process is an advantage as it provides a way to trade off

deflection errors with the number of rotations.

2.1 Controller

To analyze the proposed switching controller consider the planar needle motion equations


ż

ẏ

α̇

 =


cosα

sinα

k

 v.

Here ˙(×) denotes the time derivative and z and y represent the position of the needle tip in

the (y− z) plane (the insertion direction is z and the orthogonal direction is y, respectively).

α ∈ [−π/2, π/2] gives the needle tip angle found as the angle between the z-axis of the

moving frame {B} attached to the needle tip and the z-axis of the fixed frame {A}. v is the

constant insertion velocity and k denotes the needle path curvature. For a planar motion, k
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can be written as±k0 with k0 > 0 where± determines the orientation of the bevel tip, which

specifies the concavity of the needle path curve. The bevel orientation can be changed by

rotating the needle by 180◦. Using this equation, the needle is derived with two inputs, the

insertion velocity v and the needle axial rotations, which can be used to steer the needle to

the target point. In order to reach the desired deflection, one can perform sequences of 180◦

axial rotations. Assuming the axial rotation velocity to be much larger than the insertion

velocity, the out of plane motion can be neglected. The needles considered in this work are

flexible beveled-tip needles clinically used in prostate brachytherapy. The asymmetric force

at the needle tip due to the bevel will cause the needle to bend as it is inserted into the tissue.

For clinical reasons (radioactive seed implantation on a straight line), it is desired to steer

the needle tip into a target point. In this chapter, the target point in the plane is determined

either by a straight line or by a desired deflection at a desired depth. In both cases, the needle

targeting error equals the needle tip deflection when the needle reaches the specified depth.

As said above, the error is defined as the difference between the desired deflection and the

actual deflection of the needle tip as measured from US images.

In the planar case, since there are only two options available for the bevel orientation,

the sequence of axial rotations is determined by switching decisions between the two modes

of the system, i.e. mode 1 with k > 0 and mode 2 with k < 0. Here, we will use sliding

mode control to find the switching instants that steer the needle toward the desired position.

Let the sliding surface be

S = bėy + cey (2.1)

in which ey = y−yd is the deflection error, y is the needle tip deflection and yd is the desired

deflection. For a constant desired deflection yd, ẏd and ÿd equal zero and the sliding surface

simplifies to

S = bẏ + cey (2.2)

Starting from zero initial condition, i.e. y = 0, yd = 0 is equivalent to moving the needle on

a straight path. In the next section, we will show that by proper switching between the two

system modes, the stability of the closed-loop system and convergence of the error can be

guaranteed.
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2.2 Stability

2.2.1 Lyapunov Stability

To analyze the stability of the closed-loop system, consider the following Lyapunov function

V =
1

2
S2 (2.3)

For this positive valued function V , if V̇ < 0, V and hence |S|will be decreasing. Assuming

that |S| is initially bounded and it is decreasing, then S will remain bounded. If the switching

is performed such that

V̇ = SṠ < −η|S| (2.4)

for some η > 0, then S approaches zero [92]. This condition can be written as


Ṡ > η, if S < 0.

Ṡ < −η, if S > 0.

(2.5)

Taking the time derivative of (2.2), we have

Ṡ = bÿ + cẏ (2.6)

The parameters b and c of the sliding surface need to be chosen to meet (2.4).

Using (2.1), (2.6) can be written as

Ṡ = v{±bk0v cosα+ c sinα} (2.7)

since α ∈ [−π/2, π/2], the first term in (2.7) is strictly positive and strictly negative for

modes 1 and 2, respectively. Assuming the angle α is limited to |α| ≤ α∗ for some 0 <

α∗ < π/4, choosing the parameters b and c such that

bk0v

c
> tanα∗ (2.8)
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ensures that Ṡ > η for mode 1 and Ṡ < −η for mode 2 which is appropriate when S > 0

and S < 0, respectively. In other words, if (2.8) is satisfied and the switching is performed

such that when S > 0 the system resides in mode 2 (k < 0) at which Ṡ < −η, and when

S < 0 the system resides in mode 1 (k > 0) at which Ṡ > η, (2.5) will be satisfied. So,

choosing the sign of the switching surface as the switching rule makes S and consequently

the deflection error tend to zero.

It should be noted that how fast the tip deflection error approaches zero, i.e. the error

dynamics, are determined by parameters b and c. According to (2.8), since v and k0 are con-

stant, bc is lower bounded, which means that the time constant cannot be chosen arbitrarily.

This value should be selected as small as possible as it determines the time constant of the

error dynamics. For a constant b, a larger value of b
c is equivalent to having a smaller value

for c, which reduces the weight of the deflection error in the sliding surface, increasing the

time required for the error to approach zero.

In practical applications where the needle is manually inserted into the human body,

the surgeon usually performs 1-2 rotations to steer the needle into desired position. This

is because surgeons are concerned that too many rotations cause drilling and damaging the

tissue and increase trauma to tissue as a result of all the cutting and the heat produced by

the needle/tissue friction. This has been previously investigated in the literature [93, 94].

Since our proposed method is based on sliding mode control, it is desired to keep the sliding

surface close to zero. This means that rotations are needed whenever the switching surface

changes sign. However, this may cause a chattering in the response, which is equivalent

to continuous switching (too many needle rotations). To prevent such a phenomenon, the

rotation locations are determined based on a hysteresis framework. It should be noted that

adding a hard nonlinearity such as hysteresis may have undesirable effects such as instability

or limit cycle [95] and its effect should be studied. However, this study is ignored in this

work and only the switching thresholds are found as a function of the system parameters.

Using the hysteresis block, the needle rotates when the switching surface reaches some

switching threshold (and not as soon as it changes sign) as shown in Table 2.1. In this case,

a smaller switching threshold is more desirable for containing the needle deflection errors

however it increases the number of rotations. For a large switching threshold, the number of

rotations are reduced at the expense of increased needle tip deflection errors.
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Table 2.1: Selection of the operating mode based on S
Region System Mode sign(Ṡ)

S < −Ss Mode 1(k > 0) +
−Ss ≤ S ≤ Ss No mode change + or -

S > Ss Mode 2 (k < 0) -

2.2.2 Constraints on Switching Threshold

To find a proper value of Ss, for which the value of α remains in the desired range [−α∗, α∗],

let [t0, T ] be the time interval between two consequent switches. Since during this interval

the system resides in one mode, according to (2.1) and the switching rule, S and α will both

be monotonic. Therefore, using (2.2), the variations in S can be written as

∆S = b(ẏ(T )− ẏ(t0)) + c(y(T )− y(t0)) (2.9)

In this equation, y(T ) can be found by integrating (2.1), which leads to

α(T ) = kv(T − t0) + α(t0) = ∆α+ α(t0) (2.10)

y(T ) =
−1

k
(cosα(T )− cosα(t0)) + y(t0) (2.11)

substituting (2.10) and (2.11) in (2.9), the variations in S can be expressed as a function of

∆α

∆S = m1(cos ∆α− 1) +m2 sin ∆α (2.12)

with

m1 = − c
k

cosα(t0) + bv sinα(t0) (2.13)

m2 = bv cosα(t0) +
c

k
sinα(t0) (2.14)

Note thatm1 andm2 are functions of the initial angle α(t0) at the beginning of the switching

interval. Taking the partial derivative of (2.9) with respect to ∆α, the extremum of ∆S

occurs at ∆αm = tan−1(m2
m1

). From (2.8), for any |α(t0)| < α∗, m2 is positive and the sign

of ∆αm is determined by the sign of m1. Using the second derivative test for ∆S, it can
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be shown that for m1 > 0, ∆αm is positive and makes the function ∆S take its maximum,

and for m1 < 0, ∆αm is negative and makes the function take its minimum. If the system

is in mode 1 (k > 0), where ∆α > 0, for m1 < 0, the minimum point ∆αm < 0 ensures

that ∆S will be monotonically increasing with respect to ∆α and its maximum happens at

the upper boundary of ∆α. In order to have ∆αm < 0 for k > 0, the initial condition at the

beginning of the switching interval should satisfy

−k0bv

c
< tanα(t0) <

c

k0bv
(2.15)

in which the right hand side is imposed by m1 < 0 and the left hand side is obtained from

(2.8). The same analysis can be done for mode 2 (k < 0) which leads to

− c

k0bv
< tanα(t0) <

k0bv

c
(2.16)

However, since α(t0) at the beginning of each interval is the final result from the previous

interval, if
bk0v

c
< 1 (2.17)

both (2.15) and (2.16) are satisfied for any |α(t0)| < α∗ and ∆S will be monotonic with

respect to ∆α for both k > 0 and k < 0 which means that max|∆S| happens at max|∆α|.

Now in order to find the conditions under which α does not exceed the desired limit α∗,

consider the initial condition α0 = 0 and y0 with ẏ0 = ÿ0 = 0 which leads to S(0) =

ce(0) = c(y(0) − yd). At t = 0, according to sign(S(0)), the system will be in one of the

two system modes causing the value of the sliding surface to change until it reaches one of

the switching thresholds Ss or −Ss. During this phase α changes from the initial value zero

but it is assumed to remain within the desired range. To have such a condition, using (2.12),

S should be selected such that

Ss ≤ m1(cosα∗ − 1) +m2 sinα∗ + S(0) (2.18)

in which m1 and m2 are calculated from (2.13) and (2.14) for α(t0) = α0 = 0. From

this relation it can be seen that the initial condition |S(0)| should be small enough to have

Ss > 0. This inequality gives the upper bound on switching threshold value which ensures
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Figure 2.1: The procedure of finding the controller parameters and the steering algorithm

that the needle tip angle will not exceed the predetermined angle α∗ to guarantee the stability

of the system. The value of α∗ can be determined based on the maximum deflection that the

needle is allowed to have. Although choosing larger values for α∗ is equivalent to letting the

needle to bend more, it affects the ratio b
c and the maximum allowable value of Ss.

In (2.18), the initial value S(0) = ce(0) can be used to determine the initial insertion

point. For zero initial condition y0 = 0 and zero desired deflection yd = 0 the needle

is supposed to move on a straight path. For a nonzero S(0), the needle initial position

differs from the desired deflection and the needle is controlled to bend towards the desired

deflection.

In summary, selecting a maximum needle tip angle (α∗) and knowing a rough estimate

for the curvature (k0), the other three parameters (b, c and Ss) can be found using (2.8) and

(2.18). Since these equations involve inequalities, the value of the curvature can be chosen

conservatively such that the inequalities result in worst-case values for algorithm parameters.

An estimate of curvature can be obtained from previous insertion data and by adding some

safety margin, especially when pre-insertions are undesirable. The proposed algorithm and

the procedure for finding the corresponding parameters are shown in Fig. 2.1

2.3 Experiments

In this section, the steering method introduced in this chapter is implemented for needle

insertion into phantom and biological tissue using the experimental setup introduced in 1.5.
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The needle used to perform insertions is a standard 18-gauge brachytherapy needle (Eckert

& Ziegler BEBIG Inc., Oxford, CT, USA) made of stainless steel, with an outer diameter

of 1.27 mm, an inner diameter of 1 mm, and a bevel angle of approximately 20◦. In these

experiments the switches between two system modes are performed by 180◦ axial rotations.

The phantom tissue used in the experiments is gelatin made by mixing porcine gelatin

powder (Sigma-Aldrich Co., ON, Canada) with water at a temperature of 70◦C. Two dif-

ferent weight ratios of gelatin-to-water mixture, 15% and 20%, are considered for these

experiments. Here the tissue is considered to have a flat surface, however for non-flat tissue

phantoms the translational aspects of the system should be taken into account [96]. To eval-

uate the performance of the proposed method, five sets of experiments on phantom tissue,

with six trials each, and one set of experiments on biological tissue for ten trials are pre-

sented. In these experiments, the needle is inserted with a constant velocity and is stopped

when the desired depth of 120 mm is reached. To study the effect of the insertion velocity,

two different velocities of v = 2 mm/sec and v = 4 mm/sec are considered for the experi-

ments which are sufficiently smaller than the axial rotation velocity of 5π rad/sec that it can

be assumed that the needle remains in plane. In each set of experiments only one parameter

is changed so the results can be compared for the specific parameter change. In all experi-

ments, the needle is initially inserted for 5 mm to be detectable by the ultrasound probe and

the initial bevel orientation is assigned to be the same so that the needle initially deflects

in the same direction. According to (2.2), the algorithm requires the needle tip deflection

and its derivative. This signal is filtered by fitting polynomials to the deflection values. In

these calculations, the lack of data points at the first moments of the experiment leads to a

noisy response that may cause chattering. Consequently, the algorithm is ignored for the first

few seconds as far as switching the needle orientation is considered. To find the switching

parameters, a conservative estimate of needle curvature k0 = 10−3 1/mm is used.

In the first two sets of experiments we want the needle to be controlled on a straight

path, i.e. yd = 0, with different values of switching thresholds. In addition, since the desired

performance is to reach the target point on a straight line, the needle tip angle will be limited

to small values; we choose α∗ to be 0.03 rad which leads to Ss < 1.34. In the first and

second set of experiments, we have chosen Ss = 1 and Ss = 0.5, respectively. The results

are displayed in Fig. 2.2 and Fig. 2.3. The number of rotations and the error values are
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summarized in Table 2.2. The experiments show that for Ss = 1 and S = 0.5 in 15%

mixture tissue, the mean absolute error is 0.62 ± 0.39 mm and 0.47 ± 0.31 mm, with the

maximum targeting error of 1.23 mm and 0.91 mm, respectively. As we can see, reducing

the switching threshold from 1 to 0.5 causes a decrease of 0.12 mm in the mean error and an

increase of 3 in the maximum number of rotations between different trials. In the third set

of experiments, the insertion velocity is increased from v = 2 mm/sec to v = 4 mm/sec and

accordingly the value of the parameter b is updated to 8. As stated in section 2.2, smaller b

leads to a faster error dynamic that makes the error tend to zero faster. In this case the mean

absolute error is 0.37± 0.34 mm with a maximum targeting error of 0.89 mm.

In order to study the effect of the tissue on the system’s performance, in the next set of

experiments the weight ratio of gelatin to water is increased from 15% to 20%. The results

are shown in Fig. 2.3(a) and 2.3(b). Since the switching threshold is determined according to

(2.18), the deflection error will not change with the change in the tissue properties. However,

the number of rotations depend on how fast the sliding surface, which is a function of the

needle deflection, reaches the switching thresholds and is therefore affected by a change in

tissue properties. A stiffer tissue can cause more deflection as the needle is inserted and

consequently the number of rotations increases. Comparing the result in Table 2.2, it can

be seen that the error for 20% mixture is comparable with that for the 15% mixture but

the average number of rotations is slightly more as the higher weight ratio leads to a stiffer

tissue, which results in more needle deflection. The next set of experiments involve steering

the needle tip to reach a target regardless of its path, which is the case for applications such

as biopsy. According to equation (2.18), the value of S(0) = ce(0)) should be considered in

determining Ss. Moreover, in such a condition, the needle should be allowed to deflect more

to reach the desired deflection yd, and α∗ should be selected larger, which leads to different

values for b and c. By choosing a feasible value of α∗, other parameters can be found. Here,

for yd = −2 mm and α∗ = 0.05 rad, we have chosen b = 25 and c = 1, which satisfy

(2.8) and lead to Ss < 1.74 from which Ss is selected to be 1. The results in Table 2.2 show

a mean absolute error of 0.67 ± 0.75 mm with a maximum targeting error of 0.58 mm. In

the last set of experiments, the biological tissue (pork) is embedded into gelatin used in the

first set of experiments in order to simulate a 2-layer biological tissue. In these experiments,

the tissue is nonhomogeneous as the first layer is gelatin and the second layer is biological
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tissue (pork), which itself has different layers. Fig. 2.3(e),2.3(f) and Table 2.2 show the

results with a mean absolute error of 0.51 ± 0.32 mm and a maximum targeting error of

1.76 mm. The results show the insensitivity of the proposed method to tissue parameters,

meaning that the proposed algorithm has the capability of being used in real tissue with

different and nonhomogeneous layers.

From Fig. 2.2 and Fig. 2.3 it can be seen that there is a significant difference between

the individual trials. This can be caused by the needle tip initial condition. Though it is

attempted to have the initial angle equal to zero for all trials, it is difficult to account for and

adjust. Moreover, the insertions may be affected by the tracks made in the tissue caused by

previous insertions. Having said the above, the results show the insensitivity of the method

to such uncertainties.

In all of the experiments the maximum value of error is less than 2 mm which is the

size of the smallest lesion that can be detected by ultrasound images [49]. Moreover the

maximum number of rotations obtained in these experiments is comparable to other methods

proposed in literature [45].

Table 2.2: Summary of the experimental results using the switching method
System Parameters Results

# Tissue b c
Vins

[mm/sec]
Ss

yd
[mm]

Min # of
rotation

Max # of
rotations

Mean
Absolute

Error [mm]
σ

RMSE
[mm]

Mean
Max Error

[mm]

Max Targeting
Error [mm]

1 gelatin 15% 15 1 2 1 0 3 6 0.62 0.39 0.74 1.39 1.23
2 gelatin 15% 15 1 2 0.5 0 5 9 0.47 0.31 0.61 1.14 0.91
3 gelatin 15% 8 1 4 1 0 4 5 0.37 0.34 0.46 1.01 0.89
4 gelatin 20% 15 1 2 1 0 5 7 0.46 0.33 0.54 1.13 1.16
5 gelatin 15% 25 1 2 0.8 -2 4 7 0.67 0.75 0.92 2.1 0.58
6 biological 15 1 2 1 0 3 7 0.51 0.32 0.59 1.12 1.76

2.4 Discussion

Duty cycle spinning is a technique of simultaneously inserting and rotating the needle, en-

abling it to move on paths with different curvatures. Many control methods proposed in the

literature have combined this technique with different planning methods for needle steering.

In this method, the needle is inserted and rotated for the time duration Trot and is inserted

for the time duration Tins. The duty cycle factor a is defined as the ratio between these two

periods as

a =
Trot

Trot + Tins
(2.19)

26



CHAPTER 2. SLIDING-BASED SWITCHING CONTROL

0
20

40
60

80
10

0
12

0

D
ep

th
 [m

m
]

-2-1012

Deflection [mm]

018
0

Rotation [degree]

ne
ed

le
 ti

p
de

si
re

d 
de

fle
ct

io
n

ro
ta

tio
n 

pa
tte

rn

(a
)

0
20

40
60

80
10

0
12

0

D
ep

th
 [m

m
]

-2-1012

Error [mm]

(b
)

0
20

40
60

80
10

0
12

0

D
ep

th
 [m

m
]

-2-1012

Deflection [mm]

018
0

Rotation [degree]

ne
ed

le
 ti

p
de

si
re

d 
de

fle
ct

io
n

ro
ta

tio
n 

pa
tte

rn

(c
)

0
20

40
60

80
10

0
12

0

D
ep

th
 [m

m
]

-2-1012

Error [mm]

(d
)

0
20

40
60

80
10

0
12

0

D
ep

th
 [m

m
]

-2-1012

Deflection [mm]

018
0

Rotation [degree]

ne
ed

le
 ti

p
de

si
re

d 
de

fle
ct

io
n

ro
ta

tio
n 

pa
tte

rn

2

(e
)

0
20

40
60

80
10

0
12

0

D
ep

th
 [m

m
]

-2-1012

Error [mm]
(f

)

Fi
gu

re
2.

2:
E

xp
er

im
en

ta
l

re
su

lts
fo

r
ne

ed
le

in
se

rt
io

n
us

ig
n

th
e

sw
itc

hi
ng

m
et

ho
d.

(a
),(

b)
fo

r
ge

la
tin

tis
su

e
w

ith
b

=
1
5

,
c

=
1

,
S
s

=
1

,
y d

=
0
m
m

,v
in
s

=
2
m
m
/s
ec

an
d

15
%

tis
su

e
m

ix
tu

re
.(

c)
,(d

)f
or

ge
la

tin
tis

su
e

w
ith

b
=

1
5

,c
=

1
,S

s
=

0
.5

,y
d

=
0
m
m

,v
in
s

=
2
m
m
/
se
c

an
d

15
%

tis
su

e
m

ix
tu

re
.

(e
),(

f)
fo

r
ge

la
tin

tis
su

e
w

ith
b

=
8

,c
=

1
,S

s
=

1,
y d

=
0
m
m

,v
in
s

=
4
m
m
/
se
c

an
d

1
5
%

tis
su

e
m

ix
tu

re
.

(a
),

(c
),

(e
)d

em
on

st
ra

te
on

e
of

th
e

in
se

rt
io

n
tr

ia
ls

as
w

el
la

s
th

e
ro

ta
tio

n
pa

tte
rn

ob
ta

in
ed

fr
om

th
e

co
nt

ro
lle

r.
(b

),
(d

),
(f

)s
ho

w
th

e
de

fle
ct

io
n

er
ro

rf
or

th
e

tr
ia

ls
.

27



CHAPTER 2. SLIDING-BASED SWITCHING CONTROL

0
20

40
60

80
10

0
12

0

D
ep

th
 [m

m
]

-2-1012

Deflection [mm]

018
0

Rotation [degree]

ne
ed

le
 ti

p
de

si
re

d 
de

fle
ct

io
n

ro
ta

tio
n 

pa
tte

rn

(a
)

0
20

40
60

80
10

0
12

0

D
ep

th
 [m

m
]

-2-1012

Error [mm]

(b
)

0
20

40
60

80
10

0
12

0

D
ep

th
 [m

m
]

-3-2-1012

Deflection [mm]

018
0

Rotation [degree]

ne
ed

le
 ti

p
de

si
re

d 
de

fle
ct

io
n

ro
ta

tio
n 

pa
tte

rn

(c
)

0
20

40
60

80
10

0
12

0

D
ep

th
 [m

m
]

-2-1012

Error [mm]

(d
)

0
20

40
60

80
10

0
12

0

D
ep

th
 [m

m
]

-2-1012

Deflection [mm]

018
0

Rotation [degree]

ne
ed

le
 ti

p
de

si
re

d 
de

fle
ct

io
n

ro
ta

tio
n 

pa
tte

rn

(e
)

0
20

40
60

80
10

0
12

0

D
ep

th
 [m

m
]

-2-1012

Error [mm]
(f

)

Fi
gu

re
2.

3:
E

xp
er

im
en

ta
lr

es
ul

ts
fo

rn
ee

dl
e

in
se

rt
io

n
us

ig
n

th
e

sw
itc

hi
ng

m
et

ho
d.

(a
),(

b)
fo

rg
el

at
in

tis
su

e
w

ith
b

=
1
5

,c
=

1
,S

s
=

1
,y
d

=
0
m
m

,
v i
n
s

=
2
m
m
/s
ec

an
d

20
%

tis
su

e
m

ix
tu

re
.

(c
),(

d)
fo

r
ge

la
tin

tis
su

e
w

ith
b

=
25

,c
=

1
,S

s
=

0
.8

,y
d

=
−

2
m
m

,v
in
s

=
2
m
m
/
se
c

an
d

1
5
%

tis
su

e
m

ix
tu

re
.(

e)
,(f

)f
or

bi
ol

og
ic

al
tis

su
e

em
be

dd
ed

in
15

%
ge

la
tin

m
ix

tu
re

w
ith
b

=
1
5

,c
=

1
,S

s
=

1
,y
d

=
0
m
m

an
d
v i
n
s

=
2
m
m
/
se
c.

(a
),

(c
),

(e
)d

em
on

st
ra

te
on

e
of

th
e

in
se

rt
io

n
tr

ia
ls

as
w

el
la

s
th

e
ro

ta
tio

n
pa

tte
rn

ob
ta

in
ed

fr
om

th
e

co
nt

ro
lle

r.
(b

),
(d

),
(f

)s
ho

w
th

e
de

fle
ct

io
n

er
ro

rf
or

th
e

tr
ia

ls
.

28



CHAPTER 2. SLIDING-BASED SWITCHING CONTROL

This factor determines the relation between the desired curvature kdes and the maximum

needle curvature kmax as

kdes = kmax(1− a) (2.20)

However, to find a, both kmax and kdes should be known. kmax can be found by pre-

operative insertions and by fitting circles to the needle path and kdes should be determined

by path planning methods. As stated before, for brachytherapy application, it is desired to

keep the needle moving on a straight path. For a straight line path with minimum curvature

(kdes = 0), a equals 1 which is equivalent to Tins = 0 or continuously rotating the needle.

This leads to a large number of rotations and potentially excessive tissue trauma. Moreover,

this method requires an exact estimation of the maximum curvature kmax, which may be

variable during the insertion due to tissue inhomogeneity. The method presented in this

chapter does not require any accurate estimation of curvature as some conservative value of

it can be employed to determine the switching parameters. Besides, for regulating the needle

position to a stationary point, no planning is needed. Moreover, the number of switches can

be reduced by increasing the value of switching threshold Ss and accepting some reasonable

values of error.

2.5 Concluding Remarks

In this chapter, we have proposed a control structure for steering flexible beveled-tip needles

toward fixed points in soft tissue using a two-mode switching control scheme. As a feedback

system, the controller is supplied with the needle deflection error obtained from ultrasound

images and constructs the control law to switch the system to the proper mode for reducing

the targeting error. Using kinematic unicycle equations for the needle, the constraints on

switching parameters are derived to ensure the stability of the system and convergence of

the error. The experiments show an average error of 0.62 ± 0.39 mm with a maximum

number of rotations of 6 in phantom tissue and for the biological tissue an average error

of 0.51 ± 0.32 mm with the maximum number of rotations of 7. In the next chapter, this

switching idea is extended to control both the in- and out-of-plane deflection to steer the

needle to any feasible point or along a desired feasible trajectory in the presence of obstacles

in the 3D environment.
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Chapter 3

Model Averaging and Input Transfor-

mation for 3D Needle Steering

In this chapter, the continuous 3D needle steering problem is modeled as a four-mode switch-

ing system, and a new average-based formulation is provided to transform the continuous

input into a switching sequence. In this structure, the continuous 3D system is mapped as

two, 2-mode switching subsystems with virtual inputs for in-plane and out-of-plane motions.

Time-averaging each subsystem across the PWM period can be representative of the orig-

inal subsystem, which provides a map between the binary-input subsystems and their duty

cycle. Each averaged subsystem has its own input, for which a controller can be designed to

adjust a switching duty cycle. The duty cycles from the two subsystems are then combined

to provide an axial needle rotation command to control the needle deflection in 3D. In or-

der to show the application of the proposed formulation, robust sliding mode technique is

employed to design controllers for each subsystem and, thus for the total system in 3D. The

controllers are designed to be robust with respect to uncertainties in the value of the needle

path curvature and to deal with measurement limitations. The performance of the proposed

framework is shown by performing experiments in different scenarios.

Compared to the motion planning methods, in which the errors are compensated through

re-planning, the proposed structure is computationally less expensive as the error is compen-

sated by the controller in a feedback loop. Moreover, this new formulation provides a way to

utilize different control strategies proposed in the literature and to implement those strategies

through a PWM framework. Any controllers designed for continuous-input time-averaged

systems that satisfy the system constraints and provide good performance can be used in this

framework.
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3.1 Switched Four-mode System

For the 2D planar case, there are two possibilities for the bevel, assuming that the needle

flips instantly as explained in Chapter 2. In the 3D case, assuming the roll angle γ in 1.4 can

only take two fixed values separated by 180◦ in two opposing quadrants, each subsystem is

defined as a two-mode switching system. The needle deflection dynamics in the x direction

can be written as

ẋ = v sinβ (3.1a)

β̇ = (kv)ūx (3.1b)

or equivalently based on (1.4)

ẍ = bxūx (3.2)

where bx = kv2 cosβ and ūx = sin γd with | sin γd| being constant and γd ∈ [0, π] to have

ūx > 0, or γd ∈ [π, 2π] to have ūx < 0, representing the two switching modes. Assuming

the switching happens according to the normalized PWM period Dx =
[
dx 1− dx

]T
with ‖Dx‖1 = 1, the averaged system is obtained as

ẍa = dxbx|ūx| − (1− dx)bx|ūx| = bxux (3.3)

with

ux = (2dx − 1)|ūx| (3.4)

Similarly, for the y direction the subsystem equations can be written as

ẏ = −v cosβ sinα (3.5a)

α̇ = (kv) secβūy (3.5b)

where ūy = cos γd with | cos γd| being constant. γd can have only two values either in

[−π/2, π/2] to have ūy > 0 or [π/2, 3π/2] to have ūy < 0. Using this, (3.5) can equiva-
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lently be written based on (1.4) as

ÿ = fy + byūy (3.6)

with fy = kv2 sinα sinβ sin γd and by = −kv2 cosα. Using the PWM period Dy =[
dy 1− dy

]T
with ‖Dy‖1 = 1, the time-averaged model of (3.6) can be written as

ÿa = dy(fy + by|ūy|) + (1− dy)(fy − by|ūy|) = fy + byuy (3.7)

in which

uy = (2dy − 1)|ūy| (3.8)

In this format, ux and uy are continuous virtual inputs to be designed for the subsystems

(3.3) and (3.7), respectively. Regardless of the control strategy used for calculating ux and

uy, in order to use these signals in the switched control, these values should be converted to

the duty cycles Dy and Dx using

di =
(ui/|ūi|+ 1)

2
i = x, y (3.9)

The values dx and dy determine the duty cycle for switching between the two modes in

each subsystem. However, from (3.8) and (3.4), it is clear that uy and ux are not independent

as they both depend on the value of γd. Since ūx and ūy depend on sin γd and cos γd,

respectively, it is possible to integrate the two 2-mode subsystems to build up a four-mode

composite system. The four modes can be defined based on the fact that for each subsystem,

γd is selected to be in a half-plane, i.e., up/down half plane for x direction and left/right half

plane for y direction, as shown in Fig. 3.1. These four modes cover the four possibilities for

sin γd and cos γd as each mode represents one quadrant in the plane. Through this selection,

the magnitude γd can also be considered as a weighting parameter to change the magnitude

of ūx and ūy. If | tan γ| = 1, the weights over x and y directions are equal; however,

it is possible to emphasize error in the x and y directions by selecting | tan γd| > 1 and

| tan γd| < 1, respectively. Since the duty cycles Dx and Dy determine the time required

for the system to stay in each mode, in one cycle, the system uses a maximum number of
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(a)

Normalized PWM Period

(b)

Normalized PWM Period

(c)

Figure 3.1: The switching pattern for the combined four-mode system. (a): Half planes
representing two modes for each subsystem and the corresponding four modes: 1) sin γd >
0, cos γd > 0, 2) sin γd > 0, cos γd < 0, 3) sin γd < 0, cos γd < 0, 4) sin γd < 0, cos γd >
0. (b): The switching pattern when dx > dy. (c): The switching pattern when dy > dx

Table 3.1: The four-mode switching pattern based on the duty cycle
dx > dy dy > dx

time dy dx − dy 1− dx dx dy − dx 1− dy
mode 1 2 3 1 4 3

three of the four available modes. The switching sequence can be performed according to

the time required for each direction as shown in Table 3.1.

Using this formulation, any continuous control law uy and ux which provides the desired

performance for the averaged subsystems can be transformed into duty cycles Dy and Dx

using (3.8) and (3.4). This provides the possibility of using different control strategies and

translating them into a switching framework for steering the needle to the desired position.

In the next section, the sliding mode technique is employed for controlling the two subsys-

tems. Due to the uncertainties in the system parameters and the presence of non-measurable

states, sliding mode control provides a robust approach for overcoming the uncertainties and

disturbances while reaching the desired performance.

The above formulation is based on the assumption that the angle γ can accurately be

controlled to the desired value γd. However, since the orientation of the needle cannot

be measured using ultrasound images, accurate measurement of this angle is not possible.

However, since clinically used needles (also used in this work) are torsionally highly stiff and

also the curvature for these needles is very small, considering some bounds on the orientation

angles, we have assumed that angle γ is equal to the needle base angle.
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3.2 Controller

While the average transformed model can be used with more than one control method, we

use sliding mode control to show the utility of the averaged model. From equations (3.7) and

(3.3), the needle path curvature k enters in the subsystem equations. This parameter depends

on needle and tissue properties, which due to tissue inhomogeneity, encounters uncertain-

ties. However, this parameter can be considered to be bounded, with bounds determined

by pre-operative tests. Moreover, the angles α and β, representing the needle tip orienta-

tion, are also present in the system equations (1.4). Incorporating these angles in the control

law requires good measurements or estimations of the needle tip orientation, which is not

a trivial task and requires using orientation measurement sensors that are not compatible

with clinical realities. Besides, the combination of a state observer with a feedback con-

troller represents new challenges, which require additional analysis for ensuring the stability

of the closed-loop system. However, fortunately, the orientation-dependent terms appear

as bounded nonlinear functions, which can be considered as an uncertainty around some

nominal model.

Sliding mode control is a technique that provides high robustness with respect to para-

metric uncertainties and other disturbances [97]. According to the uncertainties present

in the system, i.e the uncertainty in the curvature and the effects of the bounded orientation

terms, the sliding mode control technique seems to suit the requirement of the system. In this

section, the nominal model and its associated uncertainties are presented for each subsystem

and then a robust sliding mode controller is designed which guarantees the convergence of

the uncertain equations.

3.2.1 Model Incorporating Uncertainty

As stated before, the angles α and β are not measurable through ultrasound images. How-

ever, these values are considered to be bounded. In reality, due to the presence of the tissue

and the limited curvature of the needles, α and β cannot go unbounded. In practice, larger

values of these angles correspond to more needle bending, which depends on the desired

path travelled by the needle, thus having a feasible desired trajectory for the needle also

puts limits on α and β ranges. The limitation can be imposed at the path planning level.
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Therefore, it is assumed that |α| < α∗ and |β| < β∗, where α∗, β∗ ∈ (0, π/2) which are

determined according to the application at the path planning level. Besides, the value of the

curvature k represents a bounded uncertain value as k < k < k̄. Using these bounds, by and

bx in (3.7) and (3.3) satisfy the following inequalities

kv2 cosβ∗ ≤ bx ≤ k̄v2 (3.10a)

kv2 cosα∗ ≤ by ≤ k̄v2 (3.10b)

Defining k̂, b̂y and b̂x as the geometric mean of the above bounds, i.e., k̂ =
√
kk̄, b̂y =

−k̂v2
√

cosα∗ and b̂x = k̂v2
√

cosβ∗, and substituting in (3.3) and (3.7), the nominal sub-

system in the x direction can be expressed as

ˆ̈xa = b̂xûx (3.11)

with (
k cosβ∗

k̄

)1/2

≤ b̂x
bx
≤
(
k̄ cosβ∗

k

)1/2

(3.12)

Similarly, the nominal subsystem in the y direction can be written as

ˆ̈ya = f̂y + b̂yûy (3.13)

with

|f̂y − fy| ≤ 2k̄v2 (3.14a)(
k cosα∗

k̄

)1/2

≤ b̂y
by
≤
(
k̄ cosα∗

k

)1/2

(3.14b)

3.2.2 Sliding Mode Controller

Considering the y direction, the sliding surface Sy is defined as

Sy = ėy + cey (3.15)
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with c being a positive constant and ey = y − yd, where yd is the desired deflection in y

direction to be followed. Taking the time derivative of this sliding surface and substituting

from (3.6) gives

Ṡy = fy + byuy − ÿd + cėy (3.16)

This equation gives the equivalent control law for the averaged system, which constraints

the sliding surface to remain on zero.

Substituting (3.13) in (3.16) and solving Ṡy = 0 for ûy gives

ûy =
1

b̂y

(
−f̂y + ÿd − cėy

)
(3.17)

However, this control law is only valid for the nominal system, which is different from the

real system. This can be dealt with by changing the control signal in the following theorem:

Theorem 1. Consider system (3.7). Selecting Fy = 2k̄v2, λy =
(
k̄ cosβ∗

k

)1/2
and η > 0,

the control law

uy = ûy −
1

b̂y
Kysgn(Sy) (3.18)

with Sy defined in (4.2) and

Ky = λy(Fy + η) + (λy − 1)|b̂yûy| (3.19)

ensure the convergence to the sliding surface Sy = 0.

Proof. Consider the Lyapunov candidate function

Vy =
1

2
S2
y > 0 (3.20)

Taking the time derivative of Sy and substituting from (3.7), (3.17) and (3.18) gives

Ṡy =

(
fy −

by

b̂y
f̂y − (1− by

b̂y
)(ÿd − cėy)−

by

b̂y
Ksgn(Sy)

)
(3.21)
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Using (3.19), the above equation can be written as

Ṡy = −sgn(Sy)

(
−(fy − f̂y)sgn(Sy) +

by

b̂y
λyFy

)

− sgn(Sy)

(
|b̂yûy|(λy − 1− (

by

b̂y
− 1)sgn(Sy)sgn(b̂yûy))

)

− sgn(Sy)
by

b̂y
η

(3.22)

From (3.14), since |fy − f̂y| < Fy and λy >
by

b̂y
> 1, the above equations leads to

Ṡy ≤ −ηsgn(Sy) (3.23)

which by multiplying the sides of this inequality by Sy gives

SyṠy ≤ −η|Sy| (3.24)

which shows the finite time convergence of the sliding surface Sy.

Similarly, for the x direction the sliding surface Sx is defined as

Sx = ėx + cex (3.25)

in which ex = x − xd with xd being the desired deflection in the x direction and c being a

positive constant. The equivalent control law ûx is found as

ûx =
1

b̂x
(ẍd − cėx) (3.26)

Theorem 2. Consider system (3.3). Selecting λx =
(
k̄ cosβ∗

k

)1/2
and η > 0 the control law

ux = ûx −
1

b̂x
Kxsgn(Sx) (3.27)

with

Kx = λxη + (λx − 1)|b̂xûx| (3.28)
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ensure the convergence to the sliding surface Sx = 0, where Sx and ûx are defined in (3.25)

and (3.26), respectively.

Proof. Similar to Theorem 1.

3.3 Path Planner

In the presence of anatomical obstacles, the needle should be guided on a pre-planned path.

This path should be found as a feasible trajectory that minimizes the targeting error and

avoids any obstacles. In this case, the steering problem turns into a trajectory tracking prob-

lem, which is explained in the next section. The control method proposed in the previous

section is a general controller that does not depend on any specific planning method as only

the position error and its time derivative are involved in the control algorithm. The feasible

path can be found using offline path planning methods. However, the targeting accuracy

can be improved by doing online re-planning to compensate for any disturbances caused by

tissue inhomogeneity. This online re-planning can be updated at a slower rate with respect

to the control loop to ensure that there will be a feasible path from the current position to the

target while manoeuvring around the obstacles.

Here, an offline path planner is used to find a desired path that reaches the target point

and avoids collisions with anatomical obstacles. The location of the target point and the

obstacles are determined by pre-operation scans which are fed to the planner which uses

the kinematic 3D unicycle equations (1.4). In this planning method, the insertion depth

is divided into n points at which needle rotations should occur. The values of the needle

roll angle at these n intervals are the output of the planner. Having a closed-form response

[20], Algorithm 1 can be used to find the rotation values at n samples. In this algorithm,

the function costfunction calculates the tip deflection at each sample n and also at the

obstacle to minimize the tip deflection error at the target and maximize the distance from

the obstacle. However, the proposed control method is not limited to this planner and any

other offline or online path planning methods can be used to produce the desired trajectory

or make corrections to find a feasible path from current needle’s position to the target.

38



CHAPTER 3. MODEL AVERAGING AND INPUT TRANSFORMATION

Algorithm 1: Path Planner

1 Initialize : T0

2 Select T randomly
3 Cost0 = costfunction(T0)
4 while i < Max iteration do
5 Cost = costfunction(T )
6 if Cost < Cost0 then
7 T0 ← T
8 Cost0 ← Cost

9 end
10 else if prob(Cost, Cost0, T0, T ) > random() then
11 T0 ← T
12 Cost0 ← Cost

13 end
14 update(T )
15 i = i+ 1

16 end

3.4 Experiments

In this section, the performance of the proposed controller implemented in the switching

framework is verified using the experimental setup shown in Fig. 1.3. Validation is per-

formed by conducting three sets of experiments, each having nine trials. The insertion points

for all trials are spaced far enough apart to prevent any crossing with previous needle tracks

in the tissue. The experiments are implemented for two different scenarios. The first scenario

is aligned with the main goal of this work, in which the needle is moved on a straight line

and is applicable to brachytherapy procedures. It should be noted that in this scenario, it is

desired to steer the needle on a straight path in 3D space, which is equivalent to keeping the

needle deflection in both the x and y direction close to zero. Two different plastisol phantom

tissues are used in these experiments. These tissues are made of 80% plastic and two differ-

ent percentage of softener (M-F Manufacturing Co., Fort Worth, TX, USA), 20% and 10%,

to have with different stiffness. The Young’s modulus of elasticity of these tissues is 25 kPa

and 35 kPa. The needles used in these experiments are standard 18-gauge brachytherapy

needles (Eckert & Ziegler BEBIG Inc., Oxford, CT, USA) made of stainless steel, with an

outer diameter of 1.27 mm, an inner diameter of 1 mm, and a bevel angle of approximately

20◦. In order to show the ability of the proposed structure for steering the needle on a curved
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path, in the second scenario, the needle is moved on a pre-planned path, which is applicable

in the presence of obstacles on the needle’s way to the target. In this scenario, since it is

aimed to steer the needle on a curved path, highly flexible notched needles [98] are used.

The trials are performed for a constant insertion velocity of v = 2 mm/sec and an inser-

tion depth of 140 mm. Using previous data and pre-operative experiments, the curvature is

selected as 0.0024 ≤ k ≤ 0.0027 mm−1, which is used in the simulations to find the bounds

α∗ and β∗ as 0.2 rad. γd is selected such that | tan γd| = 1 and the value of the sliding mode

parameters c and η are selected as 0.1 and 0.5, respectively, using simulations and trial and

error.

In the first scenario, the desired path is defined as a straight line, which is equivalent to

keeping the needle deflection in both the x and y directions equal to zero. The results for

tissue 1 show a mean absolute error of 0.37 mm in x and 0.3 mm in y. Implementing the

same scenario for tissue 2 results in a mean absolute error of 0.28 mm and 0.4 mm for x and

y, respectively. Since the control method used here is robust with respect to uncertainties,

the errors obtained from two different tissues are of the same order, which shows show that

the method does not depend on the tissue parameters.

In the second scenario, the needle is steered on a pre-planned path to reach a depth of 140

mm and to avoid an obstacle at a depth of a 80 mm to simulate pubic arch interference (PAI)

[99], which is common in patients with a large prostate. PAI obstructs the needle path to the

anterior prostate, resulting in poor seed placement and dose reduction [100]. According to

[101], the average prostate size for men between the ages of 40 and 50 is 44 mm in width, 31

mm in height and 37 mm in length. To simulate a severe PAI, a 10 mm interference between

pubic arch and prostate is considered and modeled as an obstacle with radius of 2 mm. The

desired path is found using the algorithm introduced in section 3.3 for n = 5.

The results show a mean absolute error of 0.36 mm and 0.24 mm in the x and y direc-

tions, respectively. The maximum targeting error obtained from the experiments is 0.83 mm

for x and 1.08 mm for y, as summarized in Table 3.2. Fig. 3.2(a), 3.2(d) and 3.2(g) represent

the results for one of the trials in the x direction from each experimental set. The deflection

in the y direction is shown in Fig. 3.2(b), 3.2(e) and 3.2(h), and the four switched modes are

shown in Fig. 3.2(c), 3.2(f) and 3.2(i). To have a better idea of the path followed, a 3D plot

for one of the trials for case 3 is shown in Fig. 3.3.
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The switching framework proposed in this chapter provides the opportunity to use dif-

ferent control strategies. Any controller designed for the two subsystems which satisfies the

system constraints can be used. Here, the sliding mode controller is used as an example to

show the effectiveness of the method, however, it is not the only choice. Comparing the

results, the maximum error obtained in the experiments is 1.5 mm which is less than 2 mm,

the size of the smallest lesion detectable in ultrasound images [88]. The errors are also of the

same order as for other methods proposed in the literature, such as [102] and [46], in which

the final targeting errors are 1.08 mm and 1.3 mm, respectively. This new formulation also

has the capability to be used with other control strategies to improve performance, which

requires further research.

Table 3.2: Summary of the experimental results using the PWM framework
x direction y direction

Case Tissue Scenario
Mean

Absolute
Error [mm]

Standard
Deviation
σ [mm]

RMSE
[mm]

Max
Targeting

Error [mm]

Mean
Absolute

Error [mm]

Standard
Deviation
σ [mm]

RMSE
[mm]

Max
Targeting

Error [mm]
1 Tissue 1 Move on a straight line 0.37 0.4 0.48 1.5 0.3 0.31 0.31 0.6
2 Tissue 2 Move on a straight line 0.28 0.26 0.34 0.94 0.4 0.44 0.44 1.4
3 Tissue 1 Obstacle Avoidance 0.36 0.33 0.47 0.83 0.24 0.25 0.25 1.08

3.5 Concluding Remarks

In this chapter, a formulation for transforming the needle steering problem in 3D space

into a switching framework is proposed. In this formulation, the needle tip deflection is

projected into two directions, for which two controllers can be designed independently and

translated as duty cycles. The duty cycles are then combined to form a four-mode switching

system which simultaneously compensates for deflections in both directions. Later using

the sliding mode technique, a robust sliding mode controller is designed for each subsystem

and implemented in the proposed switching framework. The proposed framework can be

combined with other available control strategies for minimizing the deflection error. The

sliding mode controller proposed here is a conservative method, in which all unknown values

are incorporated as uncertainties. In the next chapter, a sliding-based method is introduced

to replace the switching behavior with continuous rotations to reduce the number of rotations

and the possible tissue trauma.
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Figure 3.3: 3D representation of the needle following the desired curved path in one of the
trials.
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Chapter 4

Sliding-based 3D Needle Steering

This chapter presents a sliding-based control method to steer the needle in 3D space as the

needle is inserted to the desired depth and toward the desired position. In the needle/tissue

system, due to the tissue inhomogeneity, the needle/tissue interaction and the needle’s path

curvature encounter uncertainties, for which it is desired to design controllers robust with

respect to uncertainties and disturbances. The proposed method compensates for position

errors by performing the required needle rotations, which can be tiny adjustments to the

needle orientation. This removes any unnecessary rotations and reduces the trauma on tissue

caused by continuous rotations. In this method, the position information from the ultrasound

images is used, and no information about the needle tip orientation and/or tissue properties

is required to find the control signal.

In this work, two surfaces are considered and the required rotation angle is found using

these two sliding surfaces to compensate the tip deflection error in 3D space. The proposed

method is then improved by using an adaptive-structure controller, in which the sliding sur-

faces are rotated. This modification relaxes some constraints imposed by stability conditions.

Moreover, it removes any dependence of the parameters on the needle path’s curvature.

4.1 Steering Method

The proposed method is based on determining the desired value of the needle roll angle γ

that steers the needle to the desired deflection, which depends on the application. There

are different applications for needle insertion systems such as biopsy and brachytherapy.

In biopsy it is desired to reach a constant desired deflection, regardless of the path. In

brachytherapy, the path traveled by the needle is important as the seeds are implanted on

the needle track during the needle retraction. In this procedure the goal is to minimize the

deflection at all depths, which is equivalent to having zero deflection at all times. In both

cases the desired deflection values are constants. Having the desired value γd, the needle

axial rotation velocity u can be found such that γ tracks the desired value γd, which steers

the needle to the desired deflection. According to (1.4), having full control over γ requires
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Figure 4.1: The closed-loop structure consisting of system, controller and path planner.

knowledge of needle tip orientation, i.e., the angles γ and β. Measuring the orientation

requires utilizing a needle-mounted sensor, which itself suffers from sterilization and size

issues. Since suitable sensors are not accessible, state observers can be employed to estimate

the needle tip orientation using the measured needle tip position [47]. The estimation of the

needle tip orientation is not a trivial task, which is not the focus of this work. In this chapter

the control strategy finds the desired value of the angle γ which is considered as the desired

needle base angle. Since clinically used needles (also used here) are torsionally highly stiff

and also the curvature for these needles is very small, we have assumed that angle γ is

equal to the needle base angle γd. Besides, since the method used here is based on sliding

mode control, the method will be robust with respect to these errors. The control structure is

shown in Fig. 4.1. In this figure, the control structure is implemented as a cascade loop. The

inner loop uses a PID controller to control the needle base angle. The outer loop is a sliding

mode controller which determines the desired angle as the input of the inner loop. In other

words, the sliding mode controller determines when and how much for the needle be rotated

to decrease the error, and the PID controller in the inner loop is responsible for rotating the

needle to the desired angle. This PID controller is totally independent from the sliding mode

controller and is designed to be fast enough so its dynamics can be neglected.

4.1.1 Fixed Structure

The main idea of a sliding mode controller is to define a suitable error dependent sliding

surface S and the corresponding switching law to bring the system manifolds onto the sliding

surface and decrease it. To this end the switching law should make the time derivative of the

Lyapunov function V = 1
2S

2 negative definite, which is equivalent to a decreasing surface
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and consequently a decreasing error. Here, two sliding surfaces are defined for the x and

y directions and the needle roll angle is switched in four different modes. Like all sliding

based controllers, the system response consists of two phases, the reaching phase and the

sliding phase [97]. In the reaching phase the system moves towards the desired surface

Si = 0, (i = x, y) and in the sliding phase, in the ideal case, the system states remain on

the desired surface, which makes the error go to zero. For the system considered here, the

reaching phase is when the value of Sx and Sy are decreasing, however the sliding phase

will never happen for this system as it does not have any equilibrium point other than the

velocity being equal to zero. As long as the needle is being inserted, the velocities are

changing and the needle bends. This will make the sliding phase involve chattering, which

can be compensated for by accepting some bounds on error and performing the switches at

some time intervals. This is equivalent to keeping the sliding surfaces close to zero. To this

end, define the following sliding surfaces

Sx = bxėx + ex (4.1)

Sy = by ėy + ey (4.2)

Having xd and yd as the desired deflections in the x and y directions which should be reached

at a certain depth, ex = x− xd and ey = y − yd represent the position errors in the x and y

directions, respectively, and bx and by are the design parameters to be chosen later.

Considering the desired position in 3D space is a constant deflection at a certain depth,

i.e. ẋd = ẏd = 0, the time derivatives of the sliding surfaces are:

Ṡx = bxẍ+ ẋ (4.3)

Ṡy = byÿ + ẏ (4.4)

Taking the time derivative of ẋ and ẏ in (1.4) and substituting from (1.4), the above equations

can be written as

Ṡx = bxkv
2 cosβ sin γ + v sinβ (4.5)
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Ṡy = −bykv2 cosα cos γ − bykv2 sinβ sinα sin γ + v cosβ sinα (4.6)

In these equations, since −π/2 ≤ β ≤ π/2, it is assumed that cosβ is always positive. As

stated before, since in sliding mode control the sign of the sliding surface and its derivative

are of interest, considering the x direction, (4.5) consists of two terms on the right hand side,

which can be positive or negative. If the absolute value of the first term is greater than the

second term, regardless of the sign of the second term, Ṡx will have the same sign as the first

term. Mathematically, this can be written as

|bxkv2 cosβ sin γ| > v sinβ (4.7)

If (4.7) is satisfied, using the assumption that cosβ > 0, k > 0, bx > 0 and v > 0, then

sgn(Ṡx) is the same as sgn(sin γ). This inequality is equivalent to

| sin γ| > 1

bxkv
| tanβ| (4.8)

Similarly for the y direction, if

| cos γ| > | sinβ tanα sin γ|+ 1

bykv
| cosβ tanα| (4.9)

sgn(Ṡy) is determined by −sgn(cos γ). Assuming (4.8) and (4.9) are satisfied, (which later

will be considered as a constraint), the sign of Sx and Sy can be used to determine in which

quadrant γ should reside. The four different possibilities are shown in Fig. 4.2. For example,

if Sx > 0 and Sy < 0, in order to have a decreasing error it is needed to have Ṡx <

0 and Ṡy > 0, which is equivalent to sin γ < 0 and cos γ < 0 or having γ in the 3rd

quadrant. Moreover, in order to incorporate the magnitude of the sliding surfaces Sx and Sy

in compensating the error, the desired angle γd is defined as

γd = atan2(−Sx, Sy) (4.10)

where γd ∈ [−π, π] and the function atan2 is the tangent inverse function, which takes into

account the sign of the two inputs to return the appropriate quadrant of the calculated angle.
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Figure 4.2: The four possibilities for Sx and Sy and the corresponding quadrant for γd.

This selected quadrant (or mode) plays the main role in decreasing the error as it ensures

that both sliding surfaces Sx and Sy decrease simultaneously.

To ensure that (4.8) and (4.9) are satisfied simultaneously, the system parameters can be

selected such that these two inequalities are satisfied for the worst case of α and β. Assume

|α| < α∗ and |β| < β∗ where α∗ > 0 and β∗ > 0 are the bounds of angles α and β,

respectively. The above inequalities can be written as

arcsin

(
1

bxkv
tanβ∗

)
< |γd| <

arccos

(
sinβ∗ tanα∗ +

1

bykv
cosβ∗ tanα∗

) (4.11)

in which α and β are substituted by α∗ and β∗, respectively. The values of bx, by and the

upper bounds α∗ and β∗ should be selected such that the arguments of arcsin and arccos are

less than 1 and (4.11) is feasible. According to the target point, the value of α∗ and β∗ can

be determined at the planning level considering that larger values of α∗ and β∗ correspond

to more needle bending leading to a larger reachable workspace.

This condition is also affected by the value of the sliding surface parameters, bx and by,

which should be selected in accordance with α∗, β∗ and k. According to (4.1) and (4.2), in

order to have a faster response, it is desired to have smaller values of of bx and by because
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Figure 4.3: The effect of the design parameters on the feasible range of γd for k = 0.002
mm−1 and bx = by = b. (a) shows the effect of increasing α∗ for different values of b and
β∗ = 0.2 rad. (b) shows the effect of increasing β∗ for different values of b and α∗ = 0.2
rad. (c) shows the effect of increasing b for α∗ = β∗ = 0.2 rad.

they determine the convergence time of ex and ey as Sx and Sy tend to zero. However, this

condition forces α∗ and β∗ to be small to make (4.11) feasible. The effect of α∗, β∗ and

bi (i = x, y) on the desired value γd is shown in Fig. 4.3 for k = 0.002 mm−1 and bx = by.

Fig. 4.3(a) and 4.3(b) show that small values of α∗ and β∗ lead to a larger range for γd. For

example, if α∗ = β∗ = 0, (4.11) simplifies to 0 < |γd| < π/2, the maximum acceptable

region. In this case, the sliding surface parameters can be selected arbitrarily, however,

having α∗ = β∗ = 0 is equivalent to having no deflection at the needle tip throughout the

insertion, which according to the physical nature of the system is not possible. Moreover,

increasing α∗ and β∗ makes the acceptable range for γd smaller until no value for γd can

be found. Fig. 4.3(c) shows the effect of sliding parameter bx = by for the fixed values of

α∗ = β∗ = 0.2 rad. As can be seen, by increasing b the feasible range for γd gets larger, and

smaller values of bi (i = x, y) might lead to a non-feasible value for γd.

4.1.2 Adaptive Structure

As stated before, it is desired to have small sliding surface parameters as they determine

the convergence time of the error in both the x and y directions. From (1.4), it is clear that

as the needle is moving forward, there are no equilibrium points for the system and it is not

possible to make the time derivative of the system state errors zero. Using the sliding surface

in the previous section, the system is pushed toward the constant sliding surface and kept as
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fixed surface
rotating surface

Figure 4.4: Fixed and adaptive sliding surfaces in the phase plane.

close as possible to this surface, which moves the errors in the x and y directions and their

first derivative toward zero. Since the time derivatives of the system states are changing, it

is only possible to focus on the deflection error and not its derivative. This can be done by

rotating the sliding surface at a constant rate in such a way that as the needle is inserted, the

error signals in the x and y directions approach zero. This is shown in Fig. 4.4. The sliding

surfaces defined by (4.1) and (4.2) represent a line in the phase plane whose slope equals
1
bi

(i = x, y). By changing bi, the lines rotate about the origin. As is shown, by increasing

the slope of the line and rotating the sliding surface toward the vertical axis, the error in the

phase plane approaches zero. In this case, the sliding surfaces are defined as in (4.1) and

(4.2) but the parameters bx and by are variable, which leads to

Ṡi = biëi + ėi

(
ḃi + 1

)
, i = x, y (4.12)

Selecting ḃi = −1 leads to

Ṡx = bxkv cosβ sin γ (4.13)

Ṡy = −bykv cosα cos γ + bykv sinβ sinα sin γ (4.14)

It should be noted that the parameters bx and by should always be positive. This can be

guaranteed by knowing the desired insertion depth, D, the constant insertion velocity, v, and

choosing the initial value bi(0) ≥ D
v . With the proposed fixed and adaptive structures, the

rotating sliding surface removes the constraint imposed by (4.8) and relaxes the constraint

50



CHAPTER 4. SLIDING-BASED 3D NEEDLE STEERING

imposed by (4.9) as

| tan γd| <
1

sinβ∗ tanα∗
(4.15)

in which there is no dependence on the needle path curvature k. This condition is obtained

for the worst case representing a conservative performance. The effect of this saturation is

shown in Fig. 4.5 by performing simulations for different values of the upper bound for γd

and ignoring the stability. The results are shown for b(0) = 80, with an insertion velocity

of 2 mm/sec, a maximum insertion depth of 140 mm, and the desired path being a straight

line. The figure shows that the effect of limiting γd is negligible; however, having saturation

on γd ensures the stability of the system. In the fixed structure, the values of sliding surface

parameters bi are lower bounded due to the constraints imposed by the stability condition,

and for these fixed values, the weight of the error in the sliding surface does not change.

In the adaptive structure, as the needle reaches the desired depth, bi gets smaller and the

position error in the sliding surface gets more heavily weighted, leading to smaller errors.

Equations (4.13) and (4.14) obtained for the adaptive structure are simpler than (4.5) and

(4.6), for which (4.10) still ensures ṠxSx < 0 and ṠySy < 0. Assuming γ = γd at each time

interval, substituting γd in (4.13) gives:

Ṡx < −ηxSx, Sx > 0 (4.16a)

Ṡx > −ηxSx, Sx < 0 (4.16b)

Ṡy < −ηySy, Sy > 0 (4.17a)

Ṡy > −ηySy, Sy < 0 (4.17b)

with

ηx =
bxkv cosβ∗√
S2
x0 + S2

y0

> 0 (4.18a)

ηy =
bykv| cosα− cosα∗|√

S2
x0 + S2

y0

> 0 (4.18b)
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where Sx0 and Sy0 are the values of Sx and Sy, at the beginning of the time interval, re-

spectively. Multiplying the sides of (4.16) and (4.17) by Sx and Sy, respectively, gives

SxṠx < −ηxS2
x and SyṠy < −ηyS2

y , which show the finite time convergence of the sliding

surface during the reaching phase.

4.1.3 Stability

It should be noted that according to the physical properties of the system, it is not possible

for the three angles, representing the orientation, to go unbounded. With its desired value

being γd, which is bounded, the roll angle will obviously remain bounded. Unbounded β

and α would be equivalent to the needle tracking a full circle in the tissue, which according

to the curvature of the needle and in the presence of tissue, is not possible. However, In order

to use the proposed method, the system states should stay in (1.3) so that the equations are

valid. Since the control law is updated at the beginning of the intervals, assuming γ = γd

and taking its time derivative gives

γ̇ = − ṠxSy − ṠySx
S2
x + S2

y

= − cos γ tanβ (4.19)

from which

tanβ =
1

cos γ

ṠxSy − ṠySx
S2
x + S2

y

(4.20)

Note that cos γ 6= 0 as γ is selected according to (4.15). Consider the following Lyapunov

function:

V =
1

2

(
tan2 β +M

(
S2
x + S2

y

))
(4.21)

Here, M is a large positive constant. Taking the time derivative of (4.21) and substituting

from (4.20) and using tan γ = Sx
Sy
sgn(SxSy) gives

V̇ = SxṠx

(
M + kv

sgn(SxSy)(1 + tan2 β)

S2
x + S2

y

)
+

SyṠy

(
M − kv sgn(SxSy)(1 + tan2 β)S2

x

(S2
x + S2

y)S2
y

) (4.22)

Since SxṠx < 0 and SyṠy < 0, choosing M > max(kv (1+tan2 β∗)
S2
x+S2

y
), kv (1+tan2 β∗)S2

x
(S2

x+S2
y)S2

y
)

, the above equation ensures that V̇ ≤ 0, which is equivalent to V being decreasing during
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Figure 4.5: The effect of upper bound on γd on performance in simulations for moving the
needle on a straight line.

the reaching phase, in which Sx 6= 0 and Sy 6= 0. During the sliding (i.e. chattering) phase,

if Sx = 0 then γd = 0 and still the above inequality holds. If Sy = 0, γd should be saturated

by the constraint (4.15), for which γ̇ 6= 0 and Sy moves away from zero. This shows that V

remains bounded or β 6= ±π/2.

It should be noted that β∗ is selected properly according to the application and the nee-

dle/tissue specifications as follows. From the system equations (1.4), |β̇| ≤ kv. Starting

from zero initial condition (which is true as the needle is unbent at the beginning), the max-

imum value of β can be found by taking the integral of this inequality. Since the needle

length, L, is bounded and the variation of the needle length inside the tissue is ˙̀ = v, the

maximum value of β can be found as β < kL. Using this maximum value, β∗ can be se-

lected accordingly. In practice, since the needle path curvature is small and the needle length

is limited, |β| will also remain bounded and less than β∗. Similar discussion can be made

for the angle |α|.

4.1.4 Simulations

In this section simulations are presented to study the effectiveness of the proposed method

and to compare it with other methods proposed in the literature. Here, the proposed method

is compared with methods based on continuous rotations [31, 46]. In practical applications,

it is desired to limit the number of needle rotations since too many rotations may cause tissue

damage and trauma by cutting the tissue and by heating produced by needle/tissue friction.
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Figure 4.6: Simulation results comparing the deflection and tissue trauma for different meth-
ods with the desired trajectory of a straight line. (a): Norm of needle tip deflection. (b):
Tissue trauma

This issue has been previously studied in the literature [93, 94]. The tissue trauma can be

measured as the heat and energy transferred to the tissue caused by needle rotations. The

measure for tissue trauma is defined as

Trauma =

∫ t

0
u2dt (4.23)

where t is the insertion time and u is the rotational velocity. The simulations are performed

for the adaptive structure proposed in the previous section with an insertion velocity of 2

mm/sec and an insertion depth of 140 mm. The constant rotational velocity for the com-

parison is selected as 2π rad/sec and the desired performance is to move the needle on a

straight line. As a needle rotates with constant velocity, it moves on a helical path whose

radius depends on the rotational velocity, faster rotations leading to smaller errors. However,

this behavior gives rise to the drilling effect, which causes tissue trauma. In our proposed

method, the needle is only rotated when necessary, which is equivalent to making small ad-

justments to reduce the error in both the x and y directions. The results depicted in Fig. 4.6

show that the proposed method yields a maximum position error of 0.08 mm, which is still

negligible, but results in reduced trauma on tissue.
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4.1.5 Tracking Method

The desired path generated by the planner is the reference input to the control loop that

should be followed by the needle tip. The sliding mode controller is then responsible

for calculating the angle γd to make this tracking happen. The difference between a de-

sired trajectory and a straight line is that the time derivatives of the desired trajectory are

not necessarily zero. However, in the constraints derived in section 4.1, it is assumed

ẋd = ẍd = ẏd = ÿd = 0. In order to apply the same conditions and control strategy to

trajectory tracking, it is possible to discretize the desired path by sampling and holding to

break the tracking problem into several small regulation problems. In this method, the de-

sired trajectory turns into a set of successive small steps, each of which should be reached by

the needle during the discretization sample time. In order to have small errors at the end of

each step, a sawtooth wave is applied to the sliding surface parameters bx and by by resetting

them at each discretization step to their initial values such that they remain positive all the

time. This discretization is the only modification made for the tracking problem and can be

performed at the planner/re-planner level.

4.2 Experiments

To verify the accuracy of the proposed controller, the experimental setup shown in Fig. 1.3 is

used. In our experiments highly flexible notched needles proposed in [98] with experimen-

tally identified mean deflection radius of curvature of 400 mm are used. The phantom tissue

used in these experiments is plastisol, made of 80% liquid plastic and 20% plastic softener

(M-F Manufacturing Co., Fort Worth, TX, USA) with an estimated Young’s modulus of

elasticity of 35 kPa. The position signal obtained by image processing, is filtered to reduce

noise and the velocity is found by taking the time derivative of the position signal. Since

the needle tip deflection changes are much slower than the noise imposed on the signals, the

effects of the filter on the system dynamics can be neglected. The insertions are performed

for a constant insertion velocity of v = 2 mm/sec. The settling time of the needle axial

rotation with the PID controller is about 0.2 sec, which is considered in the update time of

the desired value γd. The upper bounds α∗ and β∗ are selected as 0.15 rad. The experiments

are performed in two different scenarios, in each of which eight trials were conducted.
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In the first scenario, the needle is inserted to the desired depth of 140 mm and aimed to

move on a straight line as in a conventional brachytherapy procedure, i.e., xd = yd = 0.

The initial value b(0) is selected to be 80. The results indicate a mean absolute error of

0.54±0.37 and 0.23±0.2 mm and a maximum targeting error of 1.0 and 0.81 mm for the x

and y directions, respectively, as summarized in Table 6.1. The needle tip error for different

trials as well as the needle tip track for one of the trials are shown in Fig. 4.7 and Fig. 4.8.

In the second scenario, the needle is inserted to the target point at a depth of 140 mm and is

steered to avoid an obstacle at a depth of a 80 mm. The desired path is obtained using the

algorithm introduced in section 3.3.

Here, the path is the reference to the closed-loop system and the controller keeps the

needle on the desired path. The path generated by the planner is then discretized by a sample

time of 1 sec. The initial values of the sliding surface parameters bi are selected as 3, which

are reset to their initial values every 1 second. From Table 6.1, the mean absolute error of

0.48 ± 0.55 and 0.51 ± 0.61 mm is obtained for the x and y directions, respectively. The

maximum targeting error is 1.14 mm for the x direction and 1.03 mm for the y direction.

The needle tip error for eight trials and tip position for one of the trials are shown in Fig. 4.7

and Fig. 4.8, respectively. The experimental results show a maximum position error of 1.14

mm.

4.3 Concluding Remarks

In this chapter, a non-model-based control structure for steering beveled-tip needles in soft

tissue is presented. In this control scheme, two sliding surfaces are defined to account for

the needle tip deflection error in the x, and y directions, as the needle is inserted to reach

the desired depth. The controller compensates the positioning errors by performing adjust-

ments of the needle roll angle to reduce the tissue trauma. The convergence of the deflection

error is shown using the 3D unicycle equations. The constraints imposed by this conver-

gence analysis are relaxed by using an adaptive-structure controller and rotating the sliding

surfaces. From the experiments, the mean absolute and maximum error are 0.5 mm and

1.14 mm, respectively, which are comparable with the results in the literature. The proposed

method only uses information about the needle tip position obtained from ultrasound im-
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Table 4.1: Summary of the experimental results using the sliding mode controller
Results- x direction Results-y direction

Desired
Position

Mean
Absolute

Error [mm]

Standard
deviation (σ)

RMSE
[mm]

Max Targeting
Error [mm]

Mean
Absolute

Error [mm]
σ

RMSE
[mm]

Max Targeting
Error [mm]

1st scenario 0.54 0.37 0.63 1.0 0.23 0.20 0.28 0.81
2nd scenario 0.45 0.52 0.55 1.03 0.44 0.5 0.54 1.03
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Figure 4.7: Needle tip error for needle insertion in plastisol tissue. (a),(b): show the needle
tip error for 8 trials in the x and y directions for moving on a straight line (xd = 0 mm,
yd = 0 mm). (c),(d): show the needle tip error for 8 trials in the x and y directions for
moving on a desired trajectory.

ages and no information about the needle tip orientation is involved in finding the control

action. However, since the needle path depends on the tip orientation, having knowledge

about the needle tip pose, i.e., its Cartesian position and orientation, would be helpful for

accurate needle steering, although only the Cartesian position of the needle tip can be mea-

sured from ultrasound images. In the next chapters, the problem of estimating system states

in robot-assisted brachytherapy using state observers and their application in needle steering

is studied.
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Chapter 5

Image-Based Partial Observation of Nee-

dle Orientation

Since the needle path depends on the tip orientation, knowing the needle tip pose, i.e., its

Cartesian position and orientation, will be helpful for accurate needle steering. The needle

tip pose can be measured using different methods; however, these methods should satisfy

the clinical requirements. Ultrasound imaging is a low-cost non-invasive imaging modal-

ity, which has been widely used in clinical applications. Ultrasound images combined with

image processing techniques can be used for measuring the needle tip position; however,

due to the small diameter of the needle and the low resolution of the images, the needle tip

orientation cannot be measured from the ultrasound images. Moreover, due to the steriliza-

tion issues, the use of needle-mounted sensors is not clinically feasible. Alternatively, using

mathematical models for the needle-tissue interaction and the measured variables, i.e., the

position data, state observers can be employed to get an estimate of the needle tip orientation.

In this chapter, we propose a nonlinear observer that uses Cartesian position measure-

ment data to estimate the orientation of the needle tip as the needle is inserted into the tissue.

With certain assumptions and constraints on system states and inputs, the zero convergence

of the proposed observer error is shown using Lyapunov-based methods. Both simulations

and experiments evaluate its performance.

5.1 Observer Equations

Consider the following transformation:

s =


x

sinβ

− cosβ sin γ

 (5.1)
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from which the pitch and yaw angles can be found as

β = arcsin(s2) (5.2a)

γ = atan2(−s3/ cosβ, cos γ) (5.2b)

where atan2(a, b) is the function that calculates arctan( ba) taking the sign of both arguments

into account. Defining sf = cosβ cos γ and taking time derivative from it we have

ṡf =
d

dt
(cosβ cos γ) = −(sin γ cosβ)u = us3 (5.3)

and consequently

sf =

∫ t

0
us3(τ)dτ (5.4)

which can be used to find cos γ. Moreover, it is easy to see that cos γ can be found as

cos γ = ζ

√
1− (s2

2 + s2
3)

cosβ
(5.5)

where ζ = sign(cos γ) depends on the bevel orientation. From (1.3) we have cosβ > 0 and

using (5.1) and (5.5), the transformed system equations can be written as

ṡ =


vsinβ

kv cosβ sin γ

kv sinβ − u cosβ cos γ

 =


vs2

−kvs3

kvs2 − ζu
√

1− (s2
2 + s2

3)


y =

[
1 0 0

]
s = x

(5.6)

in which the deflection of needle tip in the x direction has been considered as the output and

the needle rotation velocity u acts as the input. The system equations can be re-written in

the form

ṡ = As+ φ(u, s) (5.7)
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with

A =


0 v 0

0 0 −vk

0 0 0

 (5.8a)

φ(u, s) =


0

0

kvs2 − u
√

1− (s2
2 + s2

3)

 (5.8b)

Now consider the following observer [103]

˙̂s = Aŝ+ φ(u, ŝ) + ∆θL(ŷ − y) (5.9)

where L =
[
L1 L2 L3

]T
is the observer gain, which should be selected such thatA+LC

is Hurwitz, and

∆θ = diag{θ, θ2, θ3} (5.10)

with θ > 1.

5.1.1 Convergence of the Observer

In this section, it is shown that under certain assumptions and by proper choice of the ob-

server gain, the observation error will tend to zero. To show the convergence of the proposed

observer, define the observation error as e = ∆θ(ŝ − s). Using the system equation (5.7)

and observer equation (5.9), we have

ė = θ(A+ LC)e+ ∆−1
θ δφ(u, s) (5.11)

with δφ1(u, s) = δφ2(u, s) = 0 and

δφ3(u, s) = kv(ŝ2 − s2)

+ ζu(
√

1− (ŝ2
2 + ŝ2

3)−
√

1− (s2
2 + s2

3))
(5.12)
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If the nonlinear term δφ(u, s) is a Lipschitz function, i.e. ∃c > 0 such that ‖φ(u, s) −

φ(u, ŝ)‖ ≤ c‖s − ŝ‖, where ‖.‖ denotes the euclidean norm of Rn, for θ > 1, equation

(5.9) forms an exponential observer [103]. However, since the function
√

1− (s2
2 + s2

3)

does not satisfy the Lipschitz continuity condition as (s2
2 + s2

3) → 1, using the fact that

|si| ≤ 1 (i = 2, 3), assume √
1− (s2

2 + s2
3) ≥ ε (5.13)

due to which (5.12) can be upper bounded as

|δφ(3)| ≤ ū

2ε
((ŝ2

2 − s2
2) + (ŝ2

3 − s2
3)) + kv|ŝ2 − s2| (5.14)

where ū > 0 is the upper bound for the input signal u. (5.14) can be simplified to

|δφ| ≤ (kv +
ū

ε
)‖e‖ (5.15)

Now consider the Lyapunov function

V (e) =
1

2
eTPe (5.16)

with P being a positive definite matrix. Since L is chosen such thatA+LC is Hurwitz, then

P can be found as the response of the algebraic Lyapunov equation (A+LC)TP +P (A+

LC) = −I . We have

V̇ = −θ‖e‖2 + 2eTPδφ(s, u) (5.17)

From (5.15) the above equality can be written as

V̇ ≤ (−θ + 2‖P‖( ū
ε

+ kv))‖e‖2 (5.18)

Choosing θ > 2‖P‖( ūε + kv) leads to V̇ < 0.

5.1.2 Assumptions and Constraints

In the previous section, the convergence of the proposed observer was shown for the region

obtained from (5.13). However if
√

1− (s2
2 + s2

3)→ 0, which is equivalent to | sinβ| → 1
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Needle/Tissue

Ultrasound,
Image Processing

Unicycle
 Equations

TransformationObserver Equations
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For Simulations

For Experiments

Compare

System Observer Comparison

Figure 5.1: Block diagram of the observation system for (a): Simulation, (b): experiments

or | sin γ| → 1, there is no guarantee for convergence of the estimation error at these points

as the Lipschitz continuity condition is not satisfied. However if the observer is combined

with path planning methods and/or controllers, it is possible to use the proposed observer.

The kinematic equations (1.2) are well defined on U in (1.3). If path planners are employed

to steer the needle on a desired path, β = ±π
2 can be avoided in planning level. On the

other hand, since γ is directly related to the input u, it may have any value. Moreover, to

have cos γ > 0 or cos γ < 0, which affects the needle path in the y-direction, the angle γ

should pass the critical point cos γ = 0, meaning that it is not possible to limit the angle γ to

[−π/2, π/2]. Nevertheless, in practice, if the input u is designed such that γ = nπ/2 is only

a transient via point, i.e. the point that has to be passed to reach other points, and the goal is

to keep γ at angles other that nπ/2, then the proposed observer can be used to estimate the

angles β and γ and the convergence of the observation error to zero is guaranteed.

5.1.3 Implementation Considerations

According to (5.9), in order to avoid any numerical problems in implementing the observer

equations, the term 1−(ŝ2
2 + ŝ2

3) should always be positive. In all simulations in this chapter,

in any case that this condition is not satisfied, this term is substituted by zero.
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5.2 Evaluation

5.2.1 Simulations

In this section, simulation results are presented to evaluate the performance of the proposed

observer. As shown in Fig. 5.1 The system and observer are simulated using the kinematic

unicycle equations (1.2) and observer equations (5.9), respectively. The simulations are

performed for the insertion velocity v = 2 mm/sec and the needle path curvature k = 0.0019

mm−1 for system and k = 0.002mm−1 for the observer to simulate 5% uncertainty for this

parameter. The inputs to the observer are the input signal u (needle rotation velocity) and

the needle tip position in the x direction and the outputs are transformed system states ŝ,

from which the angles β and γ can be calculated using (5.2). In simulations, the value of γ

is controlled to have different values other than nπ/2. The observer gain is selected to be

L = [−100 − 1.05 1.37] to make the matrix A + LC Hurwitz θ = 6π × 104. The initial

values for x and β is considered to be zero and for γ is 3◦. The results are shown in Fig.

5.2. The results show a maximum estimation error of 10−14 mm and 10−7 rad for x and β

and a maximum estimation error of 0.05 rad for γ. The results show the convergence of the

proposed observer for the considered region.

5.2.2 Experiments

This section shows the results from implementing the proposed observer in real-time for esti-

mating the angles β and γ as the needle is inserted into phantom tissue. In these experiments

the needle base’s angle is measured by an encoders whose time derivative is considered as

the input signal u in (1.2) and the control algorithm proposed in chapter 2 is employed in

which the main goal is compensating for the needle deflection in y direction by 180◦ axial

rotations at appropriate depths. This method only requires the needle deflection in the y

direction. The needle path curvature is selected as 0.002 mm−1 The insertion velocity in

the experiments is 2 mm/sec and the maximum insertion depth is 100 mm. The experiments

are performed 6 times. The observer gain L is identical to the values used in the simulations

and θ = 106.
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Table 5.1: Summary of the experimental results using the proposed observer
Average Absolute
Estimation Error

MRSE Standard Deviationσ

ex[mm] 2e-14 5e-13 5e-13
eβ[rad] 0.02 0.04 0.037
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Figure 5.2: Simulation results using unicycle equations and the proposed observer.
(a),(b),(c): the system and observer response for x, β and γ. (d),(e),(f): estimation error

The evaluation is performed by comparing the estimated variables with the real values

obtained from experiments. As stated before, only the position of the needle tip can be

measured from 2D ultrasound images and the angles β and γ can not be measured in real-

time. However, the angle β can be considered as the angle between the Z axis of the moving

frame {B} with respect to the z axis of the fixed frame {A} in x − z plane, which can be

found by off-line curve fitting on position data. However, there is no way for measuring the

angle γ from 2D ultrasound images. The results are shown in Fig. 5.3. This figure represents

the estimation error for position in the x direction and the the angle β for 6 trials. In this

figure, to compensate for noisy position measurements, polynomials are fitted to the position

data and the real value β is calculated at each insertion depth. The observer response is also

smoothed by fitting polynomials to the estimated value β̂, as shown in Fig. 5.3 . The results

are summarized in Table 5.1, which shows the performance of the observer in estimating the

position in the x direction and the angle β representing average errors of 2× 10−14 mm and

0.02 rad, respectively. Due to impossibility of measuring the real value of the angle γ using

the current equipment, this value is not shown in the figures.
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Figure 5.3: Experimental results for needle insertion and observer state estimation for gelatin
tissue and insertion velocity of 2 mm/sec and insertion depth of 100 mm . (a) demonstrates
the estimated position in x direction as well as the real values for one of the trials. (b)
demonstrate the polynomial fitted values of estimated and real value of pitch angle for one
of the trials. (c),(d), show the estimation error for the trials.
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5.3 Concluding Remarks

In this chapter, we have presented an observer for partially estimating the needle tip orienta-

tion during insertion. In this method, nonlinear transformations are applied on a 3D unicycle

model of the needle, based on the observer equations. The inputs to the observer are the input

signal u (needle rotation velocity) and the position measurements in the x direction which

is obtained from 2D ultrasound images. Due to the singularities imposed by the nonlinear

transformations, the convergence of the observer is shown under some assumptions and con-

straints. The proposed observer in this chapter is able to estimate the needle tip orientation

in terms of β and γ. The yaw angle α is not estimated using this structure. Moreover, in

this formulation, the critical points limit the observer to some extent. In the next chapter an

approximate high gain observer is introduced, which guarantees the boundedness of the es-

timation error and relaxes limited workspace constraint. The designed observer is combined

with a controller and used in a feedback control loop for needle steering.
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Chapter 6

Image-Guided Observer-Based Control

for Needle Steering

In the previous chapter, we designed a nonlinear observer for partial estimation of the nee-

dle tip orientation, where the convergence and stability of the observer were only guaranteed

for a limited workspace. In this chapter, an approximate high-gain observer is used to es-

timate the rotation matrix representing the needle tip orientation. The proposed observer

is shown to be stable even at singularities, which guarantees the boundedness of the obser-

vation error. Moreover, the upper bound of the error can be obtained as a function of the

observer gain, system parameters and the input upper bound. It is shown that without any

state transformations the system equations can be written as three subsystems including lin-

ear terms. Although these equations are simple, they fail to meet the Lipschitz continuity

condition, which makes the observer design more challenging. To overcome this limitation,

the method introduced in [104], which deals with non-Lipschitz systems is used. Com-

pared to other observers developed in this context [47, 5], the proposed observer does not

impose any limitation on the operation region as it deals with the singularities. However,

this method can only guarantee the boundedness of the observation error, i.e., the difference

between the actual value and the estimated value of the needle tip orientation. The observer

gain can be appropriately selected to achieve the desired error bound. When combined with

a closed-loop controller, this is sufficient for satisfactory needle tip positioning performance.

Remembering the primary goal of designing an observer, the observer/controller com-

bination, is designed such that the stability and performance of both the controller and the

observer are guaranteed. As with any observer, a requirement of the proposed observer is to

have a bounded input signal for the system, which is equivalent to the boundedness of the

control input in a feedback configuration. This leads to the idea of limiting the control signal

before applying to the system and designing the controller accordingly. This assumption is

not very limiting as in practice eventually the actuators saturate, and the magnitude of the

control signal has some upper bound. Nevertheless, saturation should be considered in the
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controller design to ensure the stability and performance of the observer-based controller.

The observation error and the effects of the introduced saturation on the control signal are

considered as an additive uncertainty. Taking the uncertainty into account, a parametrized

state feedback controller is designed using pole placement method and is analyzed using

LMI optimizations to find the region of attraction for the tracking error.

6.1 Needle Orientation Observer

From (1.2a), it is easy to see that the vector ṗ is the last column of matrix R multiplied

by v. By expanding (1.2b), the second column of R can also be presented by second time

derivative of the position vector multiplied by 1/kv2. Moreover, from the orthogonality

property of the rotation matrix, the elements ri1, i = 1, 2, 3, can be written as

ri1 = ±
√

1− (r2
i2 + r2

i3) (6.1)

Assuming the needle is inserted continuously in the Z direction without retractions, the

needle position in 3D space can be projected intoX−Z and Y −Z planes, forming 2D maps

of needle deflection. Using (1.2) and defining the new vector si =
[
p(i) vri3 (−kv2)ri2

]
,

the planar motion of the needle in the X − Z plane for i = 1 and in the Y − Z plane for

i = 2 can be expressed in state space as

ṡi = Asi +Bφ(si) (6.2a)

y = Csi (6.2b)
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with

A =


0 1 0

0 0 1

0 0 0

 (6.3a)

B =
[
0 0 1

]T
(6.3b)

C =
[
1 0 0

]
(6.3c)

φ(si) = −(kv)2si2︸ ︷︷ ︸
φL

± (kv2)
√

1− ((si2/v)2 + (si3/kv2)2)︸ ︷︷ ︸
φ∆

u (6.3d)

Since the equations representing the planar motion have the same form for i = 1, 2, in

the sequel, the index i is omitted for simplicity. The new state vector s is related to the

position and orientation of the needle tip. Whereas s1 is directly measured from images, s2

and s3 need to be observed. The following section is devoted to observer design process for

the 2D case because, as explained above, the 3D observation problem can be resolved to two

2D problems. Later in Section 6.2, a controller is designed.

For the observable system (6.2)-(6.3), the main challenge in designing a state observer

for (6.2) is the nonlinear term φ(s) as the function φ∆ =
√

1− ((s2/v)2 + (s3/kv2)2) is

both continuous and bounded but does not satisfy the Lipschitz continuity condition when

((s2/v)2 + (s3/kv
2)2) → 1. To deal with this constraint, the following the high-gain ap-

proximate observer is used [104]

˙̂s = Aŝ +Bφ(ŝ) +
1

2
M−1
θ CT (y − Cŝ) (6.4a)

ŷ = Cŝ (6.4b)

where A, B, C and φ are defined in (6.3) and ŝ is the estimated state vector. Mθ is a

positive-definite matrix that satisfies the algebraic Lyapunov equation

−θMθ −ATMθ −MθA+ CTC = 0 (6.5)
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with θ > 1. Defining the estimation error as e = ŝ − s and the Lyapunov function V (e) =

eTMθe, the time derivative of V (e) is obtained as

V̇ (e) = −θeTMθe+ 2eTMθ (φ(u, ŝ)− φ(u, s)) (6.6)

Since φL in (6.3) is a Lipschitz function with some Lipschitz constant ` and the non-

Lipschitz term involving φ∆ to be bounded by some sup |uφ∆| = δ/2, in [104] it is shown

that the observation error is upper-bounded as

‖e‖ ≤ θ2

(
c2

c1

)
‖e(0)‖ exp(−µt) +

δM̄

c1µ
(1− exp(−µt)) (6.7)

In this equation, c1 =
√
|λmin(M1)|, c2 =

√
|λmax(M1)|, in which λ denotes the eigen-

value of the matrix and M̄ =
√
M13,3 , where M1 is the solution of (6.5) for θ = 1. Also,

µ = 1
2θ − (`/c1)M̄ and θ is chosen such that µ > 0. In this equation, the first term ex-

ponentially approaches zero; however, the second term increases exponentially to the value

δM̄/c1µ. Therefore, there exists some T ≥ 0 such that the observation error is upper

bounded by

‖e(t)‖ ≤ β̄ δM̄
c1µ

, t ≥ T (6.8)

in which β̄ is slightly greater than one.

6.2 Controller

6.2.1 Controller Structure

In this section, the observer introduced in the previous section is combined with a controller

to control the needle tip position in a plane. As stated in the previous section, with the

assumption of bounded input signal u, the designed observer ensures the boundedness of the

estimation error. In this section, the designed controller is a nonlinear state feedback. By

redefining the nonlinear term φ(s) = Ω, (6.2) turns to a linear system with Ω as its input.

Using this definition the control input u is found by

u =
Ω− φL
φ∆

(6.9)
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Remark 1. The above equation can be used for finding the control signal u when φ∆ 6= 0.

However, if φ∆ → 0, using (6.9) is not practical as it will yield an unbounded control signal.

To overcome this problem, φ∆ can be replaced by φ′∆ defined as

φ′∆ =


φ∆ |φ∆| > φ0

φ0 |φ∆| ≤ φ0

(6.10)

where φ0 is a small positive number.

If Ω is bounded, (6.10) ensures the control signal u is bounded. In this case, the closed-

loop system equation can be written as

ṡ = As +B
φ∆

φ̂′∆
Ω +B(φ̂L −

φ∆φL

φ̂′∆
) (6.11)

where (̂.) represents evaluation at estimated values ŝ. Assuming φ∆

φ̂′∆
→ 1, the above equa-

tion can be written as

ṡ = As +BΩ̄σ(Ω/Ω̄) + w(t) (6.12)

where Ω̄ > 0 is the upper bound of Ω. The saturation function is defined as σ(t) =

sign(t)min(1, |t|) and w(t) is a disturbance term.

Remark 2. Since the system state vector s is estimated using the observer introduced in the

previous chapter, as long as the input signal to the system is bounded, the estimation error

remains bounded. Remembering that the columns of a rotation matrix are unit vectors, using

the assumptions |ŝ2| ≤ 1+ ē, where ē is the upper bound for the observation error, the upper

bound on the disturbance term can be found as

|w(t)| ≤ (kv)2(1 + ē) (6.13)

From here, the goal is to design the state feedback control law Ω = F ŝ in the presence

of the saturation function and the bounded disturbance w(t), from which the control signal

u can be found as

u =
F ŝ + (kv)2ŝ2

φ̂′∆
(6.14)
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6.2.2 Controller Design

The state feedback gain F should be designed to ensure the convergence of the response

in the presence of the input saturation. The following notations are used in the sequel to

re-formulate the design problem [105].

Notation. Denoting the system trajectories starting from initial condition x0 by ψ(t, x0), the

domain of attraction of the origin (DOA) is defined as J = {x0 ∈ R3 : limt→∞ ψ(t, x0) =

0}. If w(t) = 0, an ellipsoid E(P, ρ) = {x ∈ R3 : xTPx ≤ ρ} with P being a positive-

definite matrix is contractively invariant if the time derivative of the Lyapunov function

V (x) = xTPx is negative-definite for all x ∈ E(P, ρ). If w(t) 6= 0, an ellipsoid E(P, ρ)

is called strictly invariant if the time derivative of the Lyapunov function V (x) = xTPx is

negative-definite for all w(t) with |w(t)| < 1 and all x ∈ ∂E(P, ρ), the boundary of E(P, ρ).

A set is called invariant if all the trajectories starting from this set remain inside it for all

times, regardless of the disturbance w(t).

Using the above notations, when w(t) = 0, the convergence of the system can be ex-

pressed as ensuring for the desired set, all the trajectories starting from this set converge to

zero. The problem is then defined as designing the state feedback gain F such that a pre-

defined set resides in the DOA. Moreover, to have some control over the convergence rate,

the controller gain F is designed using pole placement method. For simplicity, the feedback

gain F is parameterized by a control design parameter ε to shift the system poles by −2ε to

the left. This leads to having the state feedback gain Fε elements as polynomials in ε. The

desired state feedback gain Fε, which places the eigenvalues of A at −2ε can be found as

Fε =
[
−8ε3 −12ε2 −6ε

]
(6.15)

Since in reality w(t) 6= 0, the state feedback control gain should be designed to ensure

disturbance rejection. The problem here will be to ensure that for the designed state feed-

back gain, there exist two invariant sets E(P, ρ1) and E(P, ρ2) with ρ1 < ρ2 and ρ1 small

enough such that the system trajectories starting from E(P, ρ2) enter the smaller invariant

set E(P, ρ1).
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Lemma. [105] Given two ellipsoids E(P, ρ1) and E(P, ρ2) with ρ2 > ρ1 > 0, if there exist

H1, H2 ∈ Rn and a positive number η such that

(A+BM(F,Hi))
TP + P (A+BM(F,Hi))

+
1

η
PEETP +

η

ρi
P < 0

i = 1, 2 (6.16)

and E(P, ρi) ⊂ L(Hi), where M(F,H) = {H,F} and L(H) = {x ∈ Rn : |hx| ≤ 1} then

for every ρ ∈ [ρ1, ρ2], there exist an H such that (6.16) is satisfied and E(P, ρ) ⊂ L(H)

which is equivalent to E(P, ρ) being strictly invariant.

In order to guarantee that the designed controller is convergent in the presence of non-

zero disturbance, it is only required to find two invariant ellipsoids E(P, ρ1) and E(P, ρ2)

with ρ1 < ρ2 and ρ1 small enough satisfying the conditions of the lemma. This can be

expressed as the following optimization problem with LMI constraints [105]:

inf
Q>0,g1,g2

δ (6.17a)

s.t. (a)

XR2 I

∗ Q

 ≥ 0 (6.17b)

(b)

Q/ρ1 Q

∗ δXR1

 ≥ 0 (6.17c)

(c)
ρiQA

T + ρiAQ+M(ρiFQi, G)TBT

+BM(ρiFQ,G) +
ρi
η
EET +

η

ρi
Qi < 0

(6.17d)

(d)

1 gi

∗ ρiQ

 ≥ 0 (6.17e)

where i = 1, 2, Q1 = ρ1

ρ2
Q and Q2 = ρ2Q. XR2 and XR1 are estimations of the DOA and

the guaranteed convergence area, respectively. For simplicity and in order to have a convex

optimization, it is possible to assume ρ2 = 1 and fix ρ1 and η. Changing ρ1 from 0 to 1 and

η from 0 to∞, the infimum δ∗ can be found. From this optimization, the matrix P defining

the two ellipsoids can be found by P = Q−1.
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6.3 Evaluation

6.3.1 Controller Implementation

According to the rotational nature of the system, the closed-loop behavior of the system is

different from usual control problems causing the designed controller not working properly.

In a usual state feedback control loop, larger errors lead to a larger control signal to put

the maximum effort to compensate the error. Here, since the system states, i.e., velocity

and acceleration, are related to the rotation matrix entries, their maximum and minimum

are defined in a full 2π rotation, and any excessive 2π rotations cause the states to oscillate

between their maximum and minimum values. To compensate this, the rotations should

be limited to 2π, and large control inputs should be interpreted as maximum effort or the

maximum acceleration. In the planar case, if the needle is rotated by 180◦, the bevel and

consequently the needle path is flipped. This can also be seen from the± sign in (6.3). From

here it can be seen that to apply the maximum effort, the bevel should be kept in one half-

plane. This can be done by keeping the needle base angle θb in one half-plane by multiplying

the control input u by sgn(cos(θb)). Whenever the bevel passes one half-plane, u is reversed

to bring it back. Also, the chattering caused by the sign function can be reduced by replacing

this function with a hysteresis block.

6.3.2 Simulation

The block diagram of the system and the proposed observer is shown in Fig. 6.1. The sim-

ulations are performed in Matlab/Simulink for the constant insertion velocity of 2 mm/sec

and the curvature of 0.0014 mm−1, however, the value of the curvature used in the observer

equations is considered as 0.002 mm−1 to simulate the uncertainty of 5% in the value of

this parameter. The upper bound for the rotational velocity u is selected to be ū = 3π. Us-

ing these values the observer parameter θ is selected as 15 for which using (6.8), the upper

bound of error norm is obtained as 0.03. In a real application, there might be a difference

between the initial needle tip position and the observer initial values. This can also be true

for the needle base angle, as the needle can be inserted with an arbitrary initial bevel orien-
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Figure 6.1: The block diagram of the observer/controller loop.
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Figure 6.2: State feedback design and its effect on DOA. (a): The effect of different values
of ε on δ∗ for different values of η. (b): The 2D projection of the DOA and the guaranteed
disturbance rejection area for ε = 0.11.

tation, however, since there will are initial bending in the needle shaft, the initial condition

is selected as s(0) =
[
5 0 0.001

]
.

To find the state feedback gain F and the guaranteed DOA and the disturbance rejection

area, ρ1 is fixed to 0.03. F is found for different values of ε and the optimization (6.17) is

solved for XR1 = I3×3, XR2 = diag(0.1, 1, 50) and different values of η such that the LMI

constraints are feasible. The results are shown in Fig. 6.2(a). The value of ε which gives the

minimum value of δ∗ is selected for finding the controller gain. Fig. 6.2(b) also represents

the guaranteed DOA and the disturbance rejection area. It should be noted that these results

show the conservative guaranteed convergence region.
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Figure 6.3: The simulation results for ε = 0.11, the desired deflection xd = 0 and the initial
condition s1(0) = 5 mm, s2(0) = 0 mm/sec and s3(0) = 0.001 mm/sec2

6.3.3 Experiments

To evaluate the performance of the proposed method experiments are performed at constant

insertion velocity of 2 mm/sec and the insertion depth of 120 mm for eight trials and two dif-

ferent scenarios. In the first scenario, it is desired to keep the needle deflection equal to zero,

which is equivalent to holding the needle in one plane. In the second scenario, the needle is

steered to reach the desired deflection of 3 mm, which can be interpreted as compensating

the initial insertion error. Both scenarios are implemented using two different tissues. The

first tissue is plastisol phantom tissue, which is made of 80% liquid plastic and 20% plastic

softner (M-F Manufacturing Co., Fort Worth, TX, USA) with Young’s modulus of elasticity

of 35 kPa. Both scenarios are also implemented on the biological tissue (beef) embedded

into 15% gelatin mixture to simulate a 2-layer non-homogeneous tissue. Moreover, since the

position data obtained from ultrasound images are noisy, the position data is filtered before

applying to the observer.

The results are shown in Fig. 6.4(a)-6.4(l). These figures show the planar deflection

error for eight different trials as well as the real needle position, the estimated position and

the needle base angle for one of the trials. Though other states estimated by the observer

are used in calculating the control signal, the responses are not shown here as there are no

ground truth measurements available for comparison. The summary of the results is shown

in table 6.1. As the results show, the mean final deflection error and the maximum final error

are 0.73 mm and 1.24 mm, respectively, which are less than 2 mm.
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Figure 6.4: Experimental results using the proposed observer/controller for insertion veloc-
ity of 2 mm and insertion depth of 120 mm in different tissues and different scenarios. (a),
(e), (i): results for inserting the needle into phantom tissue with xd = 0 mm, representing
deflection error for different trials, one of the trials and the needle base angle, respectively.
(b), (f), (j): results for inserting the needle into phantom tissue with xd = 3 mm, representing
deflection error for different trials, one of the trials and the needle base angle, respectively.
(c), (g), (k): results for inserting the needle into phantom tissue with xd = 0 mm, rep-
resenting deflection error for different trials, one of the trials and the needle base angle,
respectively. (d), (h), (l): results for inserting the needle into phantom tissue with xd = 3
mm, representing deflection error for different trials, one of the trials and the needle base
angle, respectively.
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Table 6.1: Summary of the experimental results using the proposed observer/controller

Tissue
xd

[mm]

Mean
Absolute

Error
[mm]

σ RMSE

Mean
Final
Error
[mm]

Max
Final
Error
[mm]

Phantom
Tissue

0 0.27 0.44 0.5 0.49 0.71
3 1.58 1.05 1.8 0.36 0.99

Biological
Tissue

0 0.51 0.43 0.62 0.73 1.24

3 1.6 1.01 1.9 0.53 1.22

6.4 Concluding Remarks

In this work, 3D unicycle needle equations are used, and it is shown that without any change

in the variables, the equations represent partially linear sets of equations, which incorpo-

rate both position and orientation data. A high gain observer is designed to deal with the

non-Lipschitz property of the equations and estimate the needle tip pose. Using LMI op-

timizations, the controller is designed to compensate for the out of plane motions. The

performance of the proposed observer/controller combination is verified using simulations

and experiments for different scenarios. Further developments are required to extend this

structure to 3D needle steering. However, it should be noted that 3D unicycle model used

in designing the observer is a very simple model that ignores the effects of the needle/tissue

interaction forces. Further studies are required to investigate the effectiveness of this model

in designing observers.
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Chapter 7

Conclusions and Future Works

This thesis proposed and validated the feasibility of different control strategies in steering

flexible needles in soft tissue. From the control perspective, the main challenges in design-

ing the controller for needle/tissue system arise from the under-actuation property and the

nonholonomic constraints imposed on the needle kinematics. In this work, we proposed

different control strategies to deal with these challenges as well as the uncertainties and

measurement limitations. In Chapter 2 a 2D control strategy is proposed to steer the needle

toward fixed points in soft tissue. Two possible bevel orientations (0◦ and 180◦) are consid-

ered for the needle, which lead to a switching control system with two modes. The controller

is a sliding-based method which is supplied with the needle deflection error obtained from

ultrasound images and switches the system to the proper mode for reducing the targeting er-

ror. The constraints on switching parameters are derived using kinematic unicycle equations

for the needle to ensure the stability of the system and convergence of the error. Experiments

are performed on phantom tissues and biological tissue using the experimental setup.

In Chapter 3, we extended the 2D switching structure to the 3D environment. In this

chapter, the model-averaging technique is used to provide a new formulation, in which the

3D needle equations are divided into two subsystems, representing the in- and out-of-plane

motions. Each subsystem is considered as a planar switching system with two modes deter-

mining the two possible bevel orientations which are 180◦ apart. Assuming the switching

between the two modes is performed according to some duty cycle in a PWM framework, the

performance of each subsystem is approximated with the averaged subsystem in the PWM

period. Each averaged subsystem has its virtual input, for which controllers can be designed.

The virtual inputs are used to find the duty cycle for each subsystem. A switching pattern is

represented using the duty cycle of both subsystems to steer the needle on the desired path.

However, since the method proposed in Chapter 3 is based on the PWM switching, in

Chapter 4 a sliding mode controller is proposed to find the desired value of the needle base

angle to reduce the number of rotations and the tissue trauma. In this method, for each

subsystem, a sliding surface is defined, and the two sliding surfaces are combined to find the
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desired needle base angle. The proposed structure improves the number of rotations and the

tissue trauma by making small adjustments at the needle base.

The methods proposed in the previous chapters use only the position data obtained from

ultrasound images. However, since the path traveled by the needle depends on the needle tip

orientation, having information about the needle tip orientation will be helpful in the con-

troller design process. Due to the small diameter of the needle and the low resolution of the

images, it is not possible to retrieve the orientation information from the ultrasound images.

In this work, this problem is dealt with by using state observers. In Chapter 5, an observer is

proposed for partially estimating the needle tip orientation during insertion. In this method,

nonlinear transformations are applied on a 3D unicycle model. The inputs to the observer are

the input signal u (needle rotation velocity) and the position measurements in the x direction

which are obtained from 2D ultrasound images. The convergence of the observer is shown

under some assumptions and constraints, and the evaluation of the observer is performed

using simulations and experiments. In Chapter 6, using the coordinate-free 3D representa-

tion of the needle equations, it is shown that without any state transformations the system

equations can be written as three subsystems including linear terms. Using these equations,

the high gain observer designed in this chapter guarantees the boundedness of the estimation

error. The observer is combined with a controller, which accounts for constraints imposed

by the observer and guarantees the stability of the controller/observer combination.

The goal in all methods above is to improve the needle tip positioning. This improvement

is defined as reducing the 5 mm positioning error obtained from manual insertions to a

maximum value of 2 mm, which is the size of the smallest lesion detectable in the ultrasound

images. In this work, error compensation is considered in either 2D or 3D environments.

The methods proposed in Chapter 2 and Chapter 6 deal with 2D error compensation and

the methods proposed in Chapter 3 and Chapter 4 represent 3D needle steering. The errors

obtained from all these methods are less than 2 mm, which are in the same order of the error

in other methods proposed in the literature, like [102], in which the final targeting error is

1.08 mm and 1.3 mm in [46]. Besides, considering the characteristics of the controllers,

the methods proposed in Chapters 2 and 4 are non-model-based controllers, which do not

depend on the system’s equation, whereas the methods in Chapters 3 and 6 are based on
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the system’s model. Moreover, the switching-based methods in Chapters 2 and 3 may cause

more trauma on the tissue compared to the other methods in Chapters 4 and 6.

In this report, we presented a fully-automated control structure; however, it is always

possible to involve a clinician during the operation. The automated needle insertion exper-

iments in this thesis are only meant for repeatability of the trials. There is no reason the

proposed method cannot be used in robot-assisted procedures where the control action in

the steering algorithm is the axial needle rotation while the other degree of freedom of the

system, which is the insertion velocity, can be commanded directly by the clinician. In other

words, the steering algorithm is only there to find and implement the best rotations as the

clinician performs the insertion.

Moreover, in this work, a modified kinematic bicycle model is developed for better es-

timating the needle tip defection in soft tissue. The proposed model adds new parameters

to the conventional bicycle model to account for the effect of variable tissue stiffness on

the needle path. This alleviates the assumption made in the bicycle model that the tissue is

stiff relative to the needle. When this assumption is violated, the tissue compression forces

caused by needle deflection cause the needle path to deviate from a constant curvature path

as predicted by the conventional bicycle model. To account for this, the back wheel of the

bicycle is replaced in our work with an omnidirectional wheel enabling us to add correction

terms to the bicycle equations.

7.0.1 Future Work

The proposed methods can be further expanded to have moving targets and obstacles, on-

line estimation of the system parameters and observer/controller combination for trajectory

tracking in the 3D environment. Further developments and experiments are required to verify

the performance of the proposed structures. The designed observer can be studied separately

to provide information about the needle tip orientation to improve the image processing and

needle tip tracking.

Other controllers can be used in the PWM switching framework, and the performance

of these methods regarding positioning error and tissue trauma can be studied. Moreover,

the observers can be combined with other controllers taking the parameter uncertainties into

account. As well, the proposed controller, observer and extended model can be combined
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to account for tissue inhomogeneity and form a general needle steering structure in the 3D

environment. Adaptation laws can also be incorporated into these structures to have an on-

line estimation of the needle path curvature to improve the accuracy of the methods. Finally,

the methods can be combined with path planning techniques to avoid stationary and moving

obstacles. To this end, further developments and different structures and controller/observer

combinations are required which remain as future goals.
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Appendix A

Bicycle Model for Needle

Consider the needle shown in Fig. 1.4. In this model, the insertion velocity is equal to wheel

rolling velocity vz in the body frame {B}. Due to the planar motion of the bicycle, the

velocity of frame {B} along its x axis is zero. Writing in body frame this constraint can be

expressed as

eT1 v
b
ab = 0 (A.1)

Since the velocity of frame {B} does not have any projections along its y axis, it can be

written in the body frame as

eT2 v
b
ab = 0 (A.2)

Moreover, since the front wheel frame {C} is rigidly connected to the back wheel frame the

relative linear and angular velocity of the frame {C} with respect to frame {B} is zero. The

velocity constraints of the body frame {C} can be expressed in body frame as

eT1 v
b
ac = eT2 v

b
ac = 0 (A.3)

in these equations vbab and vbac denote the linear velocity of the body frames {B} and {C}

with respect to the fixed frame {A} expressed in body frames, respectively and the vectors

ei, i = 1, 2, 3, represent the standard basis vectors in R3. Equations (A.1)-(A.3) can be

simplified to 
1 0 0 0 0 0

0 1 0 0 0

0 0 1 − 1
k 0 0

0 0 0 0 1 0

V
b
ab = 0 (A.4)

in which k = tanφ`1
−1 denote the constant curvature of the needle tip path. V b

ab =[
vbab ωbab

]T
is the 6-DOF representation of linear and angular velocities of the moving

frame {B}. For `1 6= 0 and φ ∈ [0, π/2], solving for the null space of the matrix in (A.4)

leads to the kinematic equation (1.1).
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Appendix B

Extended Bicycle model

In this chapter, we propose an extension to the kinematic bicycle model that will account

for needle tip deflection with non-constant curvature. Using experimental data from needle

insertion into different phantom tissues, we show that the radius of curvature of the needle

tip path is influenced by the tissue stiffness. The kinematic bicycle model is modified to have

new parameters enabling one to account for path variations caused by tissue deformation.

B.1 Equations

In this section, we extend the bicycle model for a needle that follows a non-constant cur-

vature path in tissue. The modified model incorporates new parameters to the bicycle’s

kinematic equations to account for deviations of the needle path from a circle. The effect

of tissue deformation can be interpreted as letting the needle have sideways movements or-

thogonal to the insertion direction. These movements are modeled by slippage of the bicycle

wheels. As explained in the previous section, the original kinematic bicycle equations were

derived by imposing the pure roll and non-slip constraints on the wheels.

In order to allow for sideways motion of the needle, we replace the back wheel of the

bicycle with a wheel that is able to move in two directions. Omni-directional wheels shown

in Fig. B.1(a) can move independently in two orthogonal directions. Such wheels satisfy the

wheel plane constraint but violate the non-slip constraint. Orthogonal to the wheel plane,

the motion constraint will be
Bvy − ωR = 0 (B.1)

in which ωR denotes the rotation velocity of the rollers. This is the degree of freedom added

to the system allowing the wheel to have lateral movements.

Here, we replace the back wheel of the bicycle with the omni-directional wheel of Fig.

B.1(a), as shown in Fig. B.1(b). In this figure, φ, ` and α denote the fixed front wheel angle,

the distance between the two wheels and the rotation angle of the needle tip in body frame

{B}, respectively. This rotation of the needle tip from the insertion direction by angle θ is
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Rollers

(a)

| | | | | | | | |
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Omni-directional wheel

 

Needle tip path

Needle tip velocity

(b)

Figure B.1: (a): An omni-directional wheel represents the bicycles back wheel. (b): Modi-
fied bicycle model of a bevel tip needle. The frames {C} and {B} are attached to front and
back wheels. The back wheel is located at needle tip

due to the lateral movement of the back wheel causing the needle to be tangent to the non-

circular path. The inputs u1 and u2 denote the insertion velocity along the z axis of frame

{B} (which equals Bvz) and the rotation velocity of the needle about its axis, respectively.

The lateral movements of the back wheel enables us to model the deviations of the needle

tip trajectory from a circular path predicted by the conventional bicycle model. While the

front wheel satisfies the pure rolling and non-slipping constraints of conventional wheels,

the back wheel satisfies the roll and slip constraints Therefore, the kinematic constraints on

the front and back wheels are different.

The non-zero slip velocity is our modification to the conventional bicycle model. This

value simulates the tissue deformation that deviates the needle tip position from a circular

path. Since the amount of tissue compression depends on needle deflection, and the tip

deflection and tip angle are related through trigonometric functions, we will consider Bvy

as a function of needle tip angle. Moreover, the lateral movements can only happen when

the needle is moving forward into tissue. In other words, when the insertion velocity Bvz is

zero there will be no lateral movements. Accordingly, let us define the slippage equation of

the back wheel as
Bvy = f(α′, λ)Bvz (B.2)

in which λ is a tissue specific parameter (related to its mechanical properties) and f is an

arbitrary function that we will define later that relates λ to the amount of lateral movements.
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APPENDIX B. EXTENDED BICYCLE MODEL

The angle α′ is the needle tip rotation in the fixed frame {A} and is equal to α + θ. For a

stiff tissue, λ equals zero and the needle tip travels on a circular path with Bvy = 0, which

implies f(α, 0) = 0. Using (B.2) and the constraints on the front and back wheels, the time

variations of the back wheel angle is obtained as

α̇ =
1

l
[tanφ+ f(α′, λ)]Bvz (B.3)

In (B.3), α̇ is composed of two terms. The latter term represents the correction done to

the original constant curvature solution using slippage of the back wheel. Using (B.2), the

needle tip angle in body frame {B} is found as

θ = tan−1

(Bvy
Bvz

)
= tan−1(f(α′, λ)). (B.4)

Using (B.2) and (B.4), the kinematics of the modified bicycle can be written as

ẏ =

(
sinα′

cosθ

)
Bvz (B.5a)

ż =

(
cosα′

cosθ

)
Bvz (B.5b)

α̇′ =
α̇

1− ∂θ/∂α′
(B.5c)

in which ∂θ/∂α′ is the partial derivative of α with respect to α′ and α̇ is defined in (B.3).

Similar to equations (A.1) and (A.3), (B.5) can be written in the body frame {B} as

eT1 v
b
ab = 0 (B.6a)

eT2 v
b
ab = f(α′, λ)eT3 v

b
ab (B.6b)

eT1 ω
b
ab =

1

`
(tanφ− f(α′, λ))eT3 v

b
ab (B.6c)

eT2 ω
b
ab = 0 (B.6d)
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The equations (B.6b)-(B.6d) can be simplified to


1 0 0 0 0 0

0 1 −f(α′, λ) 0 0 0

0 0 1 − `
`k−f(α′,λ) 0 0

0 0 0 0 1 0

V
b
ab = 0 (B.7)

in which k = tanφ`−1. As expected for λ = 0, (B.7) is equivalent to (A.4). Thus, the kine-

matic model (1.1) is found as ġab(t) = gab(t)(u1V1+u2V2) with V1 =
[
0 f(α′, λ) 1 k − f(α′,λ)

` 0 0
]T

and V2 =
[
0 eT3

]T
.

B.2 Constraints on the Slippage Equation

In this section, we determine the constraints on the parameters of (B.2) for which the kine-

matics equations (B.5) can be solved. Assuming that the needle tip angle relative to the fixed

and the body frames take values in the range [−π/2, π/2], the kinematic equations of the

modified bicycle model can only be solved if the following conditions are satisfied:

cos(θ) 6= 0→ θ 6= ±π
2

(B.8)

1− ∂θ

∂α′
6= 0 (B.9)

in which ± is selected depending on whether the needle tip points upward or downward.To

derive these conditions and in order to keep the analysis traceable and avoiding complexities,

the angle θ that gives the slippage of the back wheel through (B.4) is defined as

θ = λ1α
′2 + λ2α

′. (B.10)

To simplify the equation, we will assume the needle path points toward the negative y axis

and α′, α ∈ [−π/2, 0]. In this case, (B.8) simplifies to

λ1 >
λ2

2

2π
. (B.11)
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Using this inequality, (B.9) can be written as

(1− λ2)− 2λ1α
′ > −λ2

2α
′/π + (1− λ2). (B.12)

For the right hand side of this inequality to be non-zero requires α′ > −π/4, which for

α′ ∈ [−π/2, 0] is acceptable and the right hand side will always be positive satisfying (B.9).

From (B.11), if λ1 = 0 then λ2 = 0 and λ2 6= 1, which satisfies (B.9) for α′ = 0. Although

this condition seems to be restrictive, one can see that the absolute value of needle angle

obtained from experiments for soft tissues is usually less than π/4.

B.3 Experiments

In order to study the effect of tissue stiffness on the needle path, experiments are performed

on different types of tissues samples with different stiffness using the experimental setup

introduced in section 2.3. To assess the accuracy of the proposed model (B.5), the experi-

ments are performed in two different transparent phantom tissues of two different types. The

first tissue is made of plastisol gel (M-F Manufactoring Co., Fort Worth, USA) for which

the amount of added plastic softener determines the stiffness of the tissue. The needle is

inserted at two different velocities of 20 and 40 mm/sec. The second tissue is made of agar

of type A360-500 (Fisher Scientific International Inc., Hampton, NH, USA) for which the

ratio of agar to water used adjusts the stiffness of the tissue sample. The needle is inserted

with constant insertion velocities of 20 and 60 mm/sec. In these experiments the insertion

depth and needle tip deflection, are calculated from recorded images.

From (B.10), the unknown constant parameters λ1 and λ2 are to be found by using ex-

perimental data. These parameters are found by fitting (B.5c) to time variations of needle

tip angle, α̇′, calculated from the experimental data. To this end, third order time dependent

polynomials are fitted to the depth and deflection data and the needle tip angle is approxi-

mated by

α′ = sin−1(
∆y

∆d
) (B.13)

in which ∆y and ∆d denote the variations of the deflection and depth between two sample

times, respectively. Using the approximated α′, its time variations is fitted to (B.5c) using
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Figure B.2: Experimental results for needle insertion in agar tissue for different velocities.
(a), (b): Needle deflection estimated from the modified bicycle model and the original bi-
cycle model compared to experimental data for the insertion velocity of 20 mm/sec and 60
mm/sec, in agar tissue. (c), (d): Comparison of needle tip deflection estimation error for
the modified bicycle model and the original bicycle model for the insertion velocity of 20
mm/sec and 60 mm/sec.

the lsqcurvefit function in Matlab. The obtained values for λ1 and λ2 are imported to

the model equations (B.5) and the model is simulated for the same velocities as experiments.

For comparison, the experimental data is also fitted to standard bicycle model in which

the needle path is estimated by a constant curvature path (circle). The results from both

methods are shown in Fig. B.2 and Fig. B.3. In these figures, the simulated deflection is

compared to the average of three trials. For the agar tissue, the maximum prediction error

obtained is 0.66 mm and 3.79 for the extended bicycle model and the original bicycle model,

respectively. For plastisol tissue, the maximum prediction error is 0.43 mm and 1.46 mm

for the extended bicycle model and the original bicycle model, respectively. The results are

summarized in Table B.1. Comparing the maximum errors, we can conclude that for these

combination of needle and tissue, the modified bicycle model generates smaller errors which

is obtained by introducing new parameters to the kinematic equations of bicycle.
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Figure B.3: Experimental results for needle insertion in plastisol tissue for different veloci-
ties. (a), (b): Needle deflection estimated from the modified bicycle model and the original
bicycle model compared to experimental data for the insertion velocity of 20 mm/sec and 60
mm/sec in plastisol tissue. (c), (d): Comparison of needle tip deflection estimation error for
the modified bicycle model and the original bicycle model for the insertion velocity of 20
mm/sec and 60 mm/sec.

Table B.1: Identified model parameters and maximum error in needle tip estimation
Insertion parameters Fitted model parameters Maximum Error [mm]

Velocity
λ1 λ2

Extended Bicycle
Tissue [mm/sec] model model

Agar
20

0.49 0.22
0.66 3.79

60 0.33 3.49

Plastisol
20

0.144 0.032
0.43 1.46

40 0.63 0.76
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