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Abstract

The tension field generated by wrinkling in lightweight membrane structures has
long been a problem of concern to structural designers and analysts.

A numerical method for the static analysis of elastic membranes is presented. The
method is applicable to the study of tension fields associated with wrinkling in isotropic
elastic membranes undergoing finite deformations.

A relaxed strain energy density is constructed and employed in the wrinkled regions
in order to accommodate the wrinkling effect while retaining the analytical simplicity of
membrane theory. As a consequence, tension field theory is automatically incorporated
into ordinary membrane theory, extending the range of applicability of the membrane as a
physical model.

The numerical procedure is based on the Dynamic Relaxation Method. This is an
explicit, iterative technique in which the static solution forms the steady state part of the
transient response of the structure. The numerical scheme is obtained from the spatial
and temporal discretizations of the PDEs describing the damped motion of the membrane.
The internal forces are obtained from the Euler-Lagrange equations. A finite difference
technique derived from Green's theorem is used for the spatial discretization. The
resulting system of ODEs is further integrated in time by a central difference time
integrator. Fictitious mass and damping characteristics are chosen at each time step such
that the static solution is achieved with the smallest number of steps. Arbitrary,
conservative loading and arbitrary, planar geometries of the stress-free reference
configuration are considered. Solutions of a number of boundary value problems are
obtained and analyzed. The effects of various boundary and loading conditions on the
response of the membrane are examined. A good agreement with existing exact solutions
is observed. As well, the qualitative response obtained with experimental models
confirms the predictions of the numerical method.
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Chapter 1
Introduction

Very thin, flexible tensile structures find an increased use in space, marine and
terrestrial technology. The deformations occurring in such structures are mostly of the
large rotation and/or strain type and as a consequence are inherently nonlinear. Partial
or total wrinkling of membranes may be observed in some equilibrium configurations.
The tension field generated by wrinkling has long been a problem of concern in the
design and analysis of membrane structures.

Analysis of wrinkling is important for the prediction of structural response.
Wrinkling is initiated by the loss of prestress and appearance of compressive stresses,
under the action of a specific loading and/or certain boundary conditions. It represents
a localized buckling phenomenon. The configuration of the wrinkled region depends
on the small bending stiffness of the material. Membrane theory in its usual form
neglects this bending stiffness, so it cannot give the details of deformation in a wrinkled
region. Moreover, the presence of compressive stresses in equilibrium solutions makes
such states unstable (Steigmann, 1986), and therefore physically meaningless. Stable
solutions may be obtained by employing shell theory or alternatively, tension field

theory, the latter being much simpler from the point of view of the analysis. Based on
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these theories, various models of the wrinkled region have been reported in the
literature.

One of the first investigations into wrinkling as a load transmission mechanism in
membranes is due to Wagner (1929). He introduced the concept of the tension field, to
simplify the post-buckling analysis of flexible shear panels used in aircraft
construction. Applying shear loads to the edges of a thin panel and forcing it into the
post-buckling range, the load is transmitted mainly along one of the principal axes of
stress. Bending effects are minor. A wavy surface of the deformed panel is obtained,
the trajectories of tensile stress being approximately coincident with the crests of the
waves. Wagner neglected the bending stiffness and assumed the stress to be uniaxial.
This uniaxial state of stress defines a tension field. Based on these assumptions, and
considering the wrinkles as being spaced infinitesimally close together, Wagner
formulated tension field theory.

Later, Reissner (1938) developed the first mathematical theory of tension fields for
the case of plane stress and infinitesimal deformations. He generalized Wagner's
results by introducing an artificial orthotropy into the membrane model, whereby a
different elastic modulus is associated with each principal direction. In the presence of
wrinkling, the corresponding modulus is set equal to zero. He assumed that the
wrinkles are continuously distributed over a smooth surface and coincide with the
trajectories of the active principal stress. A finite-deformation version of this theory
was formulated by Wu and Canfield (1981), in the context of plane stress.

Further investigations into the wrinkling of membranes and the associated tension
field are due to Kondo (1943) and Kondo et al. (1955), Stein and Hedgepeth (1961),
Cherepanov (1963), Mansfield (1970), Zak (1982), Szyszkowski and Glockner (1984,
1987a,b) and others.

For isotropic elastic membranes with no bending stiffness, Pipkin (1986a) showed
that all of the basic hypotheses of tension-field theory follow as consequences of the

principle of minimum potential energy. In particular, states of strain associated with



unstable compressive stresses in conventional membrane theory may instead be
constructed as limits of energy-minimizing sequences of deformations involving
closely spaced wrinkles. Because of the absence of bending stiffness, there is no
energetic penalty associated with spacing the wrinkles more and more closely together.
The wrinkles are continuously distributed in the limit and the resulting configuration is,
in general, perfectly smooth and free of compressive stresses. Pipkin (1986a) used
these constructions to derive a relaxed strain energy that automatically accounts for
states with continuously distributed wrinkles.

Subsequently, Steigmann (1990) used the relaxed energy to develop a general
tension-field theory for application to the analysis of wrinkling in isotropic elastic
membranes undergoing finite deformations, for curved geometries of the stress-free
reference configuration. He derived a partial differential equation describing a
geometrical property of tension trajectories. As well, he showed that the state of stress
in the tension field is described by a statically determined system of two equations
which is strongly elliptic at any stable solution. This system does not involve the
deformation in the tension field, which is given by a system of parabolic type.

Pipkin (1986a) showed that tension field theory can be incorporated into ordinary
membrane theory by replacing the strain energy function by the relaxed energy
density. The relaxed strain energy represents the average energy per unit initial area
over a region containing numerous wrinkles. The stresses delivered by the stress-strain
relation derived from a relaxed strain energy are never compressive. In the presence of
wrinkling one principal stress component vanishes, and this theory reproduces all of the
main assumptions of tension field theory. However, a solution within this theory gives
only the average deformation in a wrinkled region. To predict the details of the
distribution, spacing and amplitude of the wrinkles, a theory that accounts for the strain
energy due to bending must be employed (Hilgers and Pipkin, 1992). Nevertheless, if
detailed information of this type is not of interest, then a pure membrane theory based

on a relaxed energy density constitutes a much simpler alternative. A number of exact



solutions have been obtained in this way (Li and Steigmann, 1993, 1994, Haseganu and
Steigmann, 1994a).

In this work a numerical method is developed for application to the analysis of
partially wrinkled membranes undergoing finite deformations, for arbitrary
conservative loading and planar geometries of the stress-free reference configuration.
To accommodate the wrinkling effect while retaining the analytical simplicity of
membrane theory, a relaxed strain energy is constructed and employed. The numerical
procedure is based on the Dynamic Relaxation Method (Frankel, 1950, Otter, 1965,
Day, 1965, Underwood, 1983). This is an explicit, iterative technique in which the
static solution is obtained as the steady state part of the damped dynamic response of
the structure. Dynamic Relaxation is particularly well suited for the class of problems
considered here, since it does not require the construction or inversion of the stiffness
matrix, which in the presence of wrinkling is ill-conditioned. Standard stiffness-based
iterative methods such as Newton-Raphson and modified Newton-Raphson cannot be
employed in this case, since such methods lead to ill-conditioned systems of equations
and the iterations may not converge. Dynamic Relaxation has also the advantage of
delivering asymptotically dynamically stable solutions. The numerical scheme is
obtained from the spatial and temporal discretizations of the PDEs describing the
damped motion of the membrane. The internal forces are obtained from the Euler-
Lagrange equations. For the spatial discretization, a finite difference technique derived
from Green's theorem is used (Wilkins, 1964, 1969, Silling, 1985). Besides its
simplicity, this technique avoids the inconvenience of mapping methods, being
applicable to uniform as well as irregular types of meshes, which can be fitted to any
shape of the boundary. Also, this technique allows for the solution of problems
involving concentrated loads. The analytical formulations of such problems contain
singularities. However, the present model can be used to obtain the associated
deformation, since the concentrated loads are applied at nodal points of the mesh,

whereas the stretches are evaluated at zone-centered points, where they remain finite.



The system of ODEs obtained after the spatial discretization is then integrated in time
by a central difference time integrator. Fictitious mass and damping characteristics are
chosen at each time step, such that the static solution is achieved with the smallest
number of steps. This general method can be employed to obtain solutions of a large
variety of boundary value problems involving partially wrinkled membranes. As well,
the method permits the analysis of the effects of various boundary and loading
conditions on the response of the membrane.

The remainder of this section gives brief descriptions of each of the following
chapters of the thesis.

Chapter 2 is concerned with the presentation of the direct theory of elastic
membranes, and with the necessary modifications of the theory such as to account for
the presence of wrinkling. Necessary conditions for stable equilibria are discussed and
the concept of the relaxed strain energy is introduced. It is shown that by replacing the
original strain energy with the relaxed strain energy, the effects of wrinkling are
incorporated into conventional membrane theory. Further, the stress-strain relation
obtained from the relaxed energy delivers stresses that are never compressive, and
therefore deformations that satisfy this necessary condition for stability.

In Chapter 3, the method of Dynamic Relaxation is presented. Stability and
cor:vergence requirements for the numerical solution are discussed. A finite difference
technique derived from Green's theorem for the use in the spatial discretization of the
PDEs governing the damped motion of the membrane is described. An adaptive
Dynamic Relaxation Method, especially developed for the analysis of partially
wrinkled membranes is presented.

The application of this method to the solution of boundary value problems
involving partially wrinkled membranes is discussed in Chapter 4. Two strain energy
functions are used for illustrative purposes: the neo-Hookean strain energy and Ogden
strain energy. Planar as well as 3D deformations are considered, starting in all cases

from a planar reference configuration. Displacement boundary conditions as well as



mixed displacement/null-traction boundary conditions are used. A variety of
geometrical shapes of the membrane are analyzed. Cases of zero distributed loading,

uniform pressure loading and concentrated forces are studied. A good agreement with

existing exact solutions is observed.
Chapter 5 contains a description of the experimental models constructed for the

analysis of the real behaviour of the membranes. It is shown that the qualitative

response obtained with these models confirms the predictions of the numerical method.



Chapter 2

Membrane Theory

2.1 General Considerations

An approach based on the direct theory of elastic membranes is considered (Green
et al,, 1965; Naghdi, 1972; Steigmann, 1990). According to the direct theory, a
membrane is regarded as a two-dimensional elastic continuum, endowed with a strain
e¢nergy W(F) measnred per unit area of a reference surface. Here F is the deformation
gradient. The membrane is assumed to be perfectly flexible, its bending stiffness being
considered as negligible. Further it is assumed to be isotropic, homogeneous and
incompressible.

The equivalence of the direct theory and the conventional approach, based on the
descent from three-dimensional elasticity (e.g. Green and Adkins, 1970), has been
established by Naghdi and Tang (1977), for isotropic elastic materials that are either
compressible or incompressible in bulk.

The case of finite deformations is considered.



2.2 Kinematics of Deformation

Attention is confined to planar geometries of the stress-free reference
configuration. Consider a membrane that initially occupies a bounded region £ of the
(x;, X;)-plane with a piecewise smooth boundary d€2. The position of a point x € Q
is then given by x = xpe,, where Greek indices range over {1, 2} and {ey, e,}is a fixed
orthonormal basis. A deformation carries the material point with coordinates (x;, x;)
to the position r(x)=r;(x)e; in three-dimensional space, where Latin indices take
values in {1, 2, 3} and e; = ¢, X e, is the unit normal to the plane containing 2. Here
r;(x) are the Cartesian coordinates of the material point on the deformed surface. The
basic kinematical variable in the direct theory is the deformation gradient F, which
maps the material element dx in the reference plane onto dr(x) = Fdx, tangential to the

deformed surface. This has the representation

F=F (x)e;®ey; Fig=riq. 2.1
The associated Cauchy-Green strain tensor C(x) is defined as

C=FTF=Cap eq ®eg; Cop = FigFyp. 2.2)

This is positive semi-definite, since v-Cv =|Fy[ for any vector ve R3. C(x) is also
symmetric for every xe 2. Therefore it possesses an orthonormal pair {L(x), M(x)} of
eigenvectors, with representations L = L,(x)e, and M = M, (x)e,. These can be used

to define non-negative scalars
A(x)=|FL|=(L-CL)?, u(x)=|FM|=M -CM)'/? (2.3)
and unit vectors

I(x)=A"'FL, m(x)=p"'FM. 2.4)



The unit tensor I may be represented in the form I =4 +e; ®e;, where
A=e,®e,. Using the orthonormality of (L,M), A can be written as

A=L®L+M®M forany xe £, and F becomes

F=FA=FL®L+FMQ®M. (2.5)
From equations (2.1) and (2.3) F is obtained as

F=Al®L+um®M. (2.6)
Then, the Cauchy-Green strain is

C=2LQL+u*MOM+Aul- m(LOM+MQL). Q2.7

As a consequence of the definition of L and M, 1-m =0, unless A=0or u=0. Thus,
{I1(x), m(x)} is an orthonormal basis for the tangent plane of the deformed surface at
the material particle x, representing the principal vectors of strain. {L(x), M(x)} are the
principal vectors of strain in the reference plane. Then, A and y are the principal
stretches representing the non-negative square roots of the eigenvalues of C. The

spectral form of C is
C=2LRL+u*MeM. (2.8)

The ratio J of the elemental area of the deformed surface to the elemental area of

the (x;, x,)-plane can be obtained from (2.8) as:

J = (detC)''? = Ap. (2.9)
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2.3 Stress and Equilibrium

The basic constitutive hypothesis of elastic membrane theory assumes the
existence of a strain energy W(F) per unit area of reference configuration £2 (e.g. Cohen
and Wang, 1984). The membrane is considered here to be uniform, in the sense that W
does not explicitly depend on x . Then, the total potential energy attributed to a

deformation x — r(x) is

E[r]= j j W(F)dA - P[r], (2.10)
2

where dA = dx,dx,, and P[r] is a load potential associated with the particular type of
conservative loading under consideration (e.g. certain kinds of pressure loading or dead
loading). In the absence of any loading, the total potential energy of the defcrmation

reduces to the strain energy

E[r]= HW(F)dA. (2.11)
2

If the values of the function W(-) are required to be unaffected by superposed
rotations, then there must be a function W( -) of the Cauchy-Green strain such that
W(F)= W(C). The local response of the membrane thus depends only on the intrinsic
or metric geometry of the surface, and not on the extrinsic or imbedding geometry.
This is in accordance with the conventional notion of an ideal membrane. It is assumed

that W( -)isa C? function and that
W()20, W(4)=0. (2.12)

A complete theory of material symmetry for membranes has been developed by

Cohen and Wang (1984). Briefly, the symmetry group G of the membrane consists of
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those tensors P = Pap ey ® eg that satisfy W(C) = W(PTCP), for all C in the domain

of W(-). Attention is restricted here to isotropic solids, defined by
G={P: P'P=A). (2.13)
For these, the strain energy depends on C only through its symmetric invariants
wC =A% +p?, deC = A%u?, (2.14)
and these in turn yield A% and u2 as the roots of the quad:atic equation
x2 —(trC)x + detC =0. (2.15)

Thus, the relation between the invariants and the principal stretches is globally

invertible. The strain energy may therefore be expressed as a symmetric function of A

and K,
W(C)=w(A,u)=wl,2), (2.16)

subject to the restrictions imposed by (2.12), namely w(A,u)20 and w(l,1) = 0. For

example, for neo-Hookean membranes the strain energy has the form
w(k,y):-lz-a(zz +p?+ A7 -3), (2.17)

where G is a positive constant with dimensions of force/leagth (see § 4.1).

Stress-like variables S, may be defincd as
Sap =W | 0Cpp+IW | Cpq, (2.18)

without restriction to strain energies of the form (2.16). These induce a tensor

S =Sqpea Beg that is work-conjugate to C in the sense that
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dW =} :dC, (2.19)

where dW is the first-order change of strain energy due to an increment dC of strain.
Here the notation A : B is used to denote the scalar product tr(A"B). Thus S is the
membrane-analogue of the second Piola-Kirchhoff stress of conventional elasticity.

For isotropic membranes, (2.16) yields dw = w) dA +w,du, where dA and du are
the incremental stretches. The orthonormality of the eigenvectors {L, M} of C may be

used to show that
AdA =V2(L®L):dC and udu=Y%M®OM):dC. (2.20)

Then for the two expressions for dW to agree for all dC, it is necessary and sufficient

that

S=A"w,LO®L+pu"'w,M @M. (2.21)

This is the stress-strain relation for isotropic membranes.
As in conventional elasticity, a Piola stress T measuring forces in the membrane

per unit length of arc in the reference surface, is defined by

T=FS. (2.22)

This may be represented in the form T =T;,€;® e,, where Ty = ipSpe - From (2.2)

and (2.18) it is then easily shown that
Tiq = OWIOF;q. | (2.23)
For isotropic materials, (2.6), (2.21) and (2.22) combine to yield

T=w,l®L+w,m®M, (2.24)

with component form
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Tig = WAI"La + w#m;Ma. (2.25)

Consider the equilibrium of the membrane occupying the region £ of the (xy, x3)-
plane. The membrane is loaded by a pressure pn per unit of deformed area, body forces
being neglected. The exterior unit normal n to the deformed surface at r, may be

expressed in terms of the unit tangent vectors l and m as

n=Ixm. (2.26)

Let x(s) be an arc length parametrization cf a closed curve in £, enclosing an arbitrary
region D. Let v(s) be the unit normal .o the arc, defined by v = x’(s) xe;. Then, the
force transmitted across an element ds of the arc is #ds, wheret =TV is the traction
Vector.

In the presence of pressure loading, the equilibrium of the arbitrary part D c £ of

the surface requires that

$ Tvds+ [[pmaa=o. (2.27)
aD D

The contour integral in (2.27) is transformed to an area integral by using Green's

theorem. The theorem states that

H $,qdA = eqp §¢dxp, (2.28)
D oD

where ¢(x) is any piecewise differentiable field in the plane, e, is the unit alternator
(e, =—€y =1, €; =€y =0), and dD is the piecewise smooth boundary of D. Since
x(s) is the parametric equation of dD, it follows that ;g dxg = V,ds, where v, are the
components of the unit normal v. Substituting (2.28) with ¢ =T;, in (2.27) and then
summing on & from 1 to 2, yields the global form of the equilibrium equation of region

D, for any type of pressure loading:
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j j DivTdA + H pIndA=0, VYDc Q. (2.29)
D D

Then, by the localization theorem, the local (pointwise) equilibrium equation is
DT + pJn=0, (2.30)

or in component form

Tiq, +pJn; =0. (2.31)
Using (2.24), equation (2.30) can be written in the form

[V-(wy LY+ wy (L-VI+[V - (w,M)lm +w, (M- Vym + pJn =0, (2.32)

where V = ¢, (-),, is the two-dimensional gradient operator with respect to position
xefl.

Equations (2.30) - (2.32) represent the Euler-Lagrange equations for the total
potential energy given by equation (2.10). The load potential P[r] in (2.10) is a
potential associated with the particular type of conservative pressure loading under
consideration. For example, if the pressure intensity p is spatially uniform and
independent of deformation, and if the boundary dQ2is fixed, then the load potential has
the form (Steigmann, 1992):

Pirl=¢ g €apl Tro X1, dA. 2.33)

This is the type of pressure loading considered in the present work.

If a concentrated force .7:" is applied as a dead load at the point ¥ € £2, then the

load potential P[r] in (2.10) is
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Plrl=F -F. (2.34)

Here 7 is the corresponding r at the point ¥ € Q where the force is applied. For a
vertical force J = fe; for example, the load potential becomes Pr]=F73. The
equilibrium equation of an arbitrary part D of £ containing the application point ¥ of

the force is

$Tvds+F =0, EeD. (2.35)
aD

For the case of zero pressure and in the absence of point loads, the local

(pointwise) equilibrium equations are

DT =0; Ti5 =0 in Q, (2.36)

and can be identified with the Euler-Lagrange equations for the strain energy given by
(2.11). Equations (2.36) have to be supplemented by the corresponding boundary
conditions. For example, for the mixed displacement/zero-traction problem with r(x)

assigned on part dQ2 of the boundary, ¢ natural boundary condition is
Tv=0 on dQ\d2,. (2.37)

If the dynamics of the membrane is of interest, the global equation of motion of an
arbitrary part D of £, in the presence of pressure loading and having a concentrated

force JF acting at the point ¥ € D, can be obtained as:

§Tvds+ [[ pIndA+ F =|[jpordA, %eD, (2.38)
aD D D

where py is the mass density per unit initial area, and F is the acceleration.
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2.4 Relaxed Strain Energy Density

In order for the Euler-Lagrange equations (2.30) or (2.36) to deliver stable
equilibria, there are certain necessary conditions to be satisfied by the strain energy
density w(A, ).

According to the energy criterion of elastic stability (Knops and Wilkes, 1973), a
stable deformation r minimizes the functional E[ -] {representing the potential energy
of deformation given by equation (2.11)), in some specified class of functions. In

particular, it is assumed that r is a strong relative minimizer (Morrey, 1966), i.e.

E[r]< E[r+Ar], (2.39)

for all continuous Ar(x,) vanishing on 9€2,., such that [Ar(x,)| < & for some 8>0, and
for every (x,) € £2.

Further, Graves theorem (Graves, 1939) states that a deformation r(x,) is a strong
relative minimizer of the energy E[ -], only if its gradient F(x,) is a point of rank-one

convexity of W(-) at every point (x,) € 2, i.e.
W(F +a®b)~W(F)—a-T(F)b20, (2.40)

for all a=aye, +ases, b=bye,. Graves proved (2.40) for functionals of the form
(2.11), but the result is easily shown to be valid for problems of dead loading, uniform
pressure of fixed intensity as well as other types of conservative pressure loading
(Steigmann, 1991).

In the case of isotropic membranes, the inequality (2.40) is equivalent to

wA',1") = w(A,u)—wy (a-1)(b- L) —wy (a-m)(b- M) 20, (2.41)
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where A and u are the principal stretches furnished by F,w, and w,, are the associated
values of the principal stresses, and A and pu" are the principal stretches delivered by
the perturbed deformation gradient F* =F +a®b.

Inequality (2.41) implies that w, and w), are non-negative. This can be shown by
setting a=anand b=L. Then, F'=Al+an)® L+um®M, and it follows that
2= +a»)V?, u* =p. Consequently, (2.40) reduces to

wl(A2 +a®) %, ul-w(d,p) 20, (2.42)

for all a. The choice b= M leads similarly to
wid, (u? +a*)?1-w(d,p) 20, (2.43)
for all a. Inequalities (2.42) and (2.43) imply that

W, ZO,

wy 20. (2.44)

Thus, the deformation r(x,) minimizes E{ -] only if the associated principal stresses
w, and w, are non-negative at every (x,) € £2.

The following constitutive hypotheses on the behaviour of the function w(A, u) are
adopted: It is assumed that 4 =v(4) is the unique solution of w#(/l, -)=0, and that
Wy (A,-) is greater (respectively less) than zero when u is greater (respectively less)
than «(A). Further, it is assumed thatw; (1,v(4))is greater (respectively less) than zero
when A is greater (respectively less) than unity. In the terminology of Pipkin (1986a),
«(A) is the natural width in simple tension. For isotropic, incompressible materials the
natural width is »(1) =A7Y2 .

These assumptions imply that the function w(4,-) attains its global minimum at

the natural width:
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w(d) = w(d,v(4)). (2.45)
The partial derivative of w(A, y) with respect to A, at the natural width is

wy = W(A) =2 (A)wy, (2.46)
and since wy, =0, it follows that

w; =W(A). (2.47)

A

This is the uniaxial force-stretch relation.

Restrictions (2.44) and the adopted constitutive hypotheses require that

p2vd)=1"12
Azou)y=p""?,

(2.48)

at every energy minimizing deformation. However, a solution of an equilibrium
problem consisting of the Euler-Lagrange equations and assigned boundary conditions,
will generally deliver principal stretches that violate at least one of the inequalities
(2.48), on some parts of the domain . Such deformations are necessarily unstable.
Thus, the foregoing restrictions on A and y generally imply non-existence of energy
minimizers. The explanation for this is that the equilibrium equations and the Gauss
and Mainardi-Codazzi compatibility conditions together constitute six restrictions on
six functions, namely the three components of the strain C and the three components of
the second fundamental form on the deformed surface (e.g. the two principal
curvatures and the angle defining the principal axes). Further restrictions such as (2.48)
lead to an over-determined system, unless such restrictions happen to be satisfied
automatically. This generally limits the class of problems that can be solved.

An alternative approach is considered here, consisting in the modification of

membrane theory such as to account for the occurrence of a continuous distribution of
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wrinkles. Such a theory was originally proposed by Wagner (1929) and subsequently
developed by a number of investigators (e.g. Reissner, 1938, Kondo et al., 1955,
Mansfield, 1970, Wu, 1978, Pipkin, 1986a, Steigmann, 1990). Pipkin (1986a) showed
that such a theory emerges naturally from minimum-energy considerations.

The present model of the membrane is retained, but the original strain energy is
replaced by a relaxed strain energy, Wg(F), introduced by Pipkin (1986a). (The usage
of this term in the present context will differ slightly from the original one.) In this
way, the effects of wrinkling are incorporated into the conventional membrane theory.

The relaxed energy can be obtained from the original strain energy by constructing
a sequence of finely wrinkled configurations, with closely spaced discontinuities in the
deformation gradient. The limit of the sequence is a smooth deformation that is
achieved without compressive stress and at no expense in strain energy (Pipkin, 1986a).

To illustrate this idea, consider a unit square of isotropic membrane deformed into
a rectangle of dimensions 4 >1 and g =v(4) = A7Y2 According to the constitutive
hypotheses introduced earlier, the associated stresses are wy > 0and w, =0. Thus, the
membrane is in a state of uniaxial tension. To make y smaller than (4), a compressive
stress wy, <0 would be required, violating the stability conditions (2.44). However,
the following construction shows a way of reducing  without compressive stress, and
without expenditure of energy. Let the unit square be partitioned into n strips parallel
to the tensile axis, each of width 1/n . By folding the stretched membrane along the
boundaries of the strips, a corrugated surface is obtained. A fold angle of 6el0,m/2)
is used in alternating strips and -6 in the remaining strips. Then, taking the x;-axis

along the tensile axis, the deformation gradient is obtained as

F, (x)=Ae,®e +v(A)m, ®e,;

) (2.49)
m,, = cos Be, + S(x;)sin Oes,

where S(-) is a square wave function, equal to +1 for x, belonging to a strip folded at

angle £0 . This construction induces no change in the stretches. Since the strain
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energy in membrane theory is presumed to depend only on the stretches, it follows

that
W(F,)=w(d,v(A))=w(L), n=12,.... (2.50)

To find the deformation r,(x), (2.47) is integrated leading to

r,(x) = Ax,e; + v(1)x, cosOe; + {fS(x)dx}v( A)sin Ge;. (2.51)
0

The integral in the last term is O(1/n) for all x;, so the sequence {r,} converges

uniformly to r(x)= Fx, where
F=%e,®e +le;®e;  p=v(Ad)cosb. (2.52)

Thus, the limit of the sequence of wrinkled states is a smooth continuously wrinkled
deformation whose gradient yields a transverse stretch i Sv(4). Moreover, /i can take
any value in the interval u € (0,9(4)] by an appropriate selection of 8 €[0,7/2). In
view of (2.50), the strain energy associated with the limiting deformation is w(d),
independent of u, ard represents the global minimum of the function w(4,-).

Similarly, smooth deformations with stretches u >1 and 4 €(0,z(1)] may be
obtained by allowing fine scale wrinkling with folds parallel to the x,-axis. The
associated strain energy is w(u). Deformations with A <1 and u <1 can be achieved
by double wrinkling (Pipkin, 1986b), with no stress at all. These correspond to slack
states of the membrane. The associated stain energy is w(l, 1), which is taken to be
zero.

Thus, the issue of non-existence of energy minimizers is addressed by allowing for
the presence of continuously distributed wrinkles. The associated deformations deliver
principal stretches that violate (2.48) but nevertheless satisfy the requirement (2.44).

The minimum energy principle may be reformulated so as to account for fine scale
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wrinkling direcily. This is achieved by replacing the original strain energy w(4,u) by
the relaxed strain energy wg(4,u), defined by

(W(A,1); A>v(u), u>v(d),
w(l); A>1, p<vd),
We(F)= WR(’L#)EW (2.53)
wu); p>1, A <o),
0; A<, psl

The constiwtive hypotheses imply that the principal stresses furnished by the
relaxed strain energy automatically satisfy the necessary conditions (2.44) for all
(A,i) 2 0. The inequality constraints in (2.48) are no longer required.

For deformations with A >1 and u<»(4), w, =0 and w, =w’(4) is a function

of A alone. The associated state of stress is given by
T=w,I®L, (2.54)

and is called a tension field. The unit vectors L and I are tangential to the tension
trajectories.

By employing the relaxed strain energy in the Euler-Lagrange equations, tension
field theory is automatically incorporated into ordinary membrane theory, extending the

range of applicability of the membrane as a physical model.



Chapter 3
Numerical Method

3.1 General Considerations

A wide variety of nuraerical solution methods are available for nonlinear static
analysis of tensile structures (Barnes, 1980, Jenkins and Leonard, 1991). A review by
Barnes (1980) gives the following classification: iterative matrix methods, incremental
methods and direct vector methods, also termed minimization and relaxation methods.

Standard stiffness-based iterative methods such as Newton-Raphson and modified
Newton-Raphson have been widely applied to static analysis and form-finding of
tension structures ( Mollman and Mortensen, 1966, Poskitt, 1967, Haug and Powell,
1971, Haug, 1972, Argyris, Angelopoulos and Bichat, 1974, Felippa, 1974, Stricklin
and Haisler, 1977 and many other researchers). However, when wrinkling is indicated,
the equilibrium equations (2.32) are not strongly elliptic (Steigmann, 1990), and the
element stiffness becomes ill-conditioned. For this class of problems, such methods
lead to ill-conditioned systems of equations and the iterations may not converge.
Modifications of such methods, designed to account for the abrupt stiffness changes
that occur at the transition from tense states to wrinkled or slack states, have been

developed by Miller and Hedgepeth (1982), Miller et al. (1985), Magara, Okamura and

22
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Kawaguchi (1984), Nishimura, Tosaka and Honma (1986), Roddeman et al. (1987),
Contri and Schrefler (1988), Roddeman (1991) and Jeong and Kwak (1992). These
modifications typically involve iterative algorithms that eliminate compressive stress in
each stage of an incremental loading procedure.

From the incremental methods, the self-correcting Euler method (Barnes, 1980)
has been more often employed for the analysis of membrane structures (Greenberg,
1970, Jensen, 1971, Bergan and Soreide, 1973, Jonatowski, 1974). This is a
combination of the Euler and Newton-Raphson methods, and suffers from the same
difficulties as the previous method, when applied to partially wrinkled membranes.

An explicit vector method widely and very successfully applied to nonlinear static
analysis and form-finding of tensile structures, as well as to the solution of nonlinear
equilibrium problems of structural mechanics in general, is the Dynamic Relaxation
Method. This technique does not require the construction and inversion of the stiffness
matrix, thus avoiding the convergence problems that Newton-Raphson or similar
iterative methods experience when modeling loss of ellipticity. Therefore, the method
is particularly well suited to the class of problems considered here. Other vector
methods, such as the conjugate gradient method or the fixed point method, require the
inversion of the stiffness matrix and consequently are less appropriate for the analysis

of partially wrinkled membrane structures.

3.2 Dynamic Relaxation

3.2.1 Introduction

Dynamic Relaxation (DR) is an explicit iterative method developed for the static

analysis of structural mechanics problems. This numerical technique is based on the



24

fact that the static solution represents the steady state part of the transient response of
the structure.

As a solution strategy for static problems, DR involves converting first the
equilibrium equation into an equation of a damped motion, by artificially adding an
acceleration term as well as a viscous damping term, and then integrating explicitly in
time from the initial conditions until the transient dynamic response has damped out to
the static solution, with equilibrium satisfied.

Due to its explicit nature, the method is highly suitable for computations, since all
quantities may be treated as vectors, eliminating the need for matrix manipulations of
any kind. Therefore, the method is easily programmable and has low storage
requirements. Its explicit form makes it also ideal for the case of large deformations
and finite strains, the method being especially attractive for problems with highly
nonlinear geometric and material behavior, which include limit points or regions of
very soft stiffness characteristics (U nderwood, 1993).

Since DR solutions are large-time limits of time-dependent motions, equilibrium
solutions obtained by DR may be regarded as asymptotically dynamically stable, as
they do not spontaneously decay to other configurations (Silling, 1988a).

Moreover, the simplicity, versatility, tenacity and reliability of the method make it

an attractive alternative for the solution of nonlinear structural mechanics problems.

3.2.2 History

The DR method originates from the second-order Richardson method developed
by Frankel (1950). Richardson (1911, 1925) used central difference approximations for
partial derivatives to obtain numerical solutions to PDEs describing a variety of
boundary value problems by an iterative process, the technique being termed "the

Richardson method" (Shortley, Weller and Fried, 1942). Frankel (1950) states that the
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formal equivalence of the Richardson algorithm to first order time dependent equations
suggests the extension to a solution algorithm equivalent to a second order time
dependent equation. Thus Frankel first made the connection with dynamics. The
second-order Richardson algorithm is also known as "Frankel's method", as it was
referred to by Rutishauser (Engeli et al,, 1959, Cassel, 1970). Hansen (1956)
develcped independently a similar algorithm for tidal computations. After analyzing
this algorithm (Otter and Day, 1960), Day suggested in 1961 to Otter the idea of
applying it to obtain static solutions of elastic continuum problems by introducing a
viscous damping term (Otter, 1965). Day named the method Dynamic Relaxation and
later described it in a paper (Day, 1965) containing applications to the static analysis of
a portal frame, a flat plate and a thick cylinder. However, Otter was the first to develop
and apply the method (with near critical damping) in the context of stress and
displacement analysis in prestressed concrete reactor pressure vessels (Otter, 1965). A
description of the technique identifying the second order Richardson method developed
by Frankel as the basis for DR, is given by Otter, Cassel and Hobbs (1966), together
with a comparison with other iterative methods and some applications to the analysis of
elastic structures. Another early paper that compares DR with other iterative methods
is due to Wood (1967). The use of fictitious mass densities was suggested by Welsh
(1967), leading to a substantial improvement of DR. This idea was first employed by
Cassel, Kinsey and Sefton (1968) for the analysis of a cylindrical shell. Later Cassel
(1970) analyzed the relation between fictitious densities and the numerical stability of
DR. The use of finite elements for the spatial discretization in DR was first approached
by Lynch, Kelsey and Saxe (1968), ‘n the context of plane stress analysis. They also
empioyed fictitious mass densitizs and mass proportional dampirg to optimize the
iteration process. Rushton (1968a) made the first application of DR to a nonlinear
problem.

Since 1970 the DR literature has expanded considerably. More complex problems

concerned with a large variety of structural configurations have been analyzed using
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DR. Geometrical and maierial nonlinearities have been successfully incorporated in the
procedure. The technique has been successfully used for form-finding as well as
nonlinear static analysis of lightweight tensile structures, such as cable networks and
membranes (Barnes, 1974, 1975, 1976, 1984, 1986, Lewis et al., 1984, Wakefield,
1986, Barnes and Wakefield, 1988, Moncrieff and Topping, 1990, Lewis and Gosling,
1993). Cundall (1976) suggested an effective damping procedure, termed "kinetic
damping", which has been frequently applied in the context of form-finding and static
analysis of cable nets and membranes (Wakefield, 1986, Barnes and Wakefield, 1988,
Lewis, 1989, Lewis and Shan, 1990, and others). Solutions of plate and shell problems
- especially the large deflection case - have also been successfully obtained with DR
(Alwar and Ramachandra Rao, 1974, Frieze, Hobbs and Dowling, 1978, Pica and
Hinton, 1980, Lim and Turvey, 1985, Al-Shawi and Mardirosian, 1987, Zhang and Yu,
1989, Turvey and Salehi, 1990, Salehi and Turvey, 1991, Turvey and Osman, 1993,
Kant and Kommineni, 1993, Ramesh and Krishnamoorthy, 1993). As well, a variety of
other problems have been solved using DR, such as large deformation inelastic
response of solids (Key, Stone and Krieg, 1981), tensegrity systems analysis (Motro,
1984, Motro, Najari and Jouanna, 1986), incompressibility in large deformations
(Silling, 1987), phase changes and localization in elasticity (Silling, 1988a,b, 1989),
elasto-plastic response (Caridis and Frieze, 1988, 1989, Zhang and Yu, 1989, Zhang,
Yu and Wang, 1989, Turvey and Der Avanessian, 1989), and nonlinear viscoek._.¢
response (French and Jensen, 1991). Contributions to a better understanding and
improvement of the DR method were made by many authors: Wood (1971), Brew and
Brotton (1971), Bunce (1972), Cassel and Hobbs (1976), Cundall (1976), Papadrakakis
(1981, 1986), Underwood (1983), Tarakanow (1984), Zienkiewicz and Léhner (1985),
Silling (1985), Zhang and Yu (1989), Lewis (1989), and Sauve and Metzger (1992).
Of special importance is the work by Underwood (1983), which presents a detailed
review on the subject of DR, as well as ar adaptive DR algorithm for nonlinear

problems. Also, the papers by Papadrakakis (1981) and Silling (1985) should be
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mentioned. The former presents a method for the automatic evaluation of the DR
iteration parameters, whereas the latter introduces — in the context of DR analysis in
finite elastostatics — a versatile spatial discretization method based on Green's theorem

that avoids the inconvenience of mapping techniques.

3.2.3 Second- Order Richardson iviethod

DR is based on the second-order Richardson algorithm (Frankel, 1050). This is
an explicit iterative technique for the solution ¢(x,y) of boundary-value problems

described by PDEs approximated as difference equations in the form

Lp=0, (3.1)

where L is a finite difference operator.

Frankel (1950) introduced artificial second order time dependency of 9,
transforming equation (3.1) into

%-zt—gi+$%if-—z,¢=0. (3.2)
By using central difference approximations for the temporal derivatives, an iteration
process is carried out in time until the long-term solution ¢ of equation (3.2) is
obtained. This solution eventually satisfies equation (3.1) too, i.e. ¢ = 9.

This method proved to be very successful in solving structural mechanics problems
(Otter, 1965, Day, 1965) and it is in this context that it evolved to the method known
as DR.
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3.2.4 Transient Response and DR

The discretized equilibrium equation of a structure may be represented in the

general form:

F +P@)=0, (3.3)

where F is the vector of external forces (body forces, point loads, forces due to
distributed loads such as pressure acting on a membrane, and forces prescribed on the
boundary), & is the displacement vector (F=x+i ) and P(a) is the vector of
internal forces.

Equation (3.3) may be obtained by a finite difference or a finite element
discretization technique, applied to the equilibrium equations governing the structural
behaviour,

For a membrane structure, a spatial discretization of the global equilibrium
equation (2.29) or (2.35) would lead to an equation of the form (3.3). In this case, the
problem is highly nonlinear, due to the geometric and material behavior and a tangent
stiffness matrix ‘K (i) may be obtained from

'l((ﬁ>=-a‘§f“’. (3.4)
U

As mentioned at § 3.1, when wrinkling is present the equilibrium equations of the
niembrane are not strongly elliptic (Steigmann, 1990), and the element stiffness derived
from (3.4) becomes ill-conditioned. For this class of problems, standard stiffness-based
iterative methods such as Newton-Raphson and modified Newton-Raphson lead to ill-
conditioned systems of equations and the iterations may not converge. Therefore, one
cannot employ this type of methods to obtain a solution & to equation (3.3).

If a displacement vector ¥ which is not an equilibrium solution (i.e. w## ) is

introduced in equation (3.3), then F +P(u)+#0, and an oscillatory motion of the
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structure will occur. However, if damping is present, the oscillations will decrease in
time and the structure will eventually reach the equilibrium configuration 7 =x+u
given by (3.3). Thus, by transforming the static problem to a damped dynamic
problem, the static solution of (3.3) may be obtained as the steady-state part of the
transient response of the structure, with no need to construct or invert stiffness
matrices.

For a membrane, the transient response is described by the global equation of
motion (2.38). A spatial discretization of this equation may be represented as a form of

Newton's second law:

Mi"+Du"=F"+Pu"), 3.5)

where <M is the mass matrix, 9D is the damping matrix, superscript n represents the
label of the time increment (with n ='0 corresponding to ¢ = 0, ¢ being the time), and a
superimposed dot indicates a temporal derivative (thus & = F is the velocity vector and
ii = F is the acceleration vector).

The DR algorithm (second order Richardsor) developed by Frankel (1950) is
obtained by employing central difference approximations for the temporal derivatives

in equation (3.5) (Underwood, 1983):

un-llZ = (un _ un—l )/h, (3.6)

it = @ - "y /h, 3.7)

where # is the time increment. The expression for 4" is given by the average value:

@=L+ a), (3.8)

L
2
Since only the steady-state part of the dynamic response is of interest, the mass matrix

and damping matrix need not charact: rize the physical structure. However, F and
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%P u) must represent the physical problem. A diagonal mass matrix as well as mass
proportional damping (Lynch, Kelsey and Saxe, 1968, Underwood, 1983) is an
advantageous choice, resulting in decoupled scalar equations for each degree of

freedom of the structure. Thus
D =cM, (3.9)

where c is the damping coefficient. Substituting (3.6) - (3.9) into (3.5) gives the pair of

equations needed to advance to the next velocity and displacement:

 n+1/2 = (Z—Ch) «n=-1/2 2h -1 n A
W = Tt T GranSt TP,
(3.10)

unﬂ =uu +huu+l/2

The differencing method is explicit, since u'*' depends only on quantities which are

known from time step n. Denoting the sum ui w.ie forces as the residual R_"
R"=F"+Pu"), (3.11)
the scalar equations corresponding to (3.10) are :

stz _ (2=Ch) \p 2h ~lpn
A B v 1. +___.__ M. jR
“ (2+ch)u' (2+ch)( i) ’
(3.12)

B+l 0 -n+1/2 —
o=y +hui , n=1,...... ,N,

where N is the total number of degrees of freedom of the structure, and m;; the ith
diagonal element of ¢M (no sum on i ). As clready mentioned, equations (3.12a) are
decoupled, since ¢M is diagonal.

To start the DR algorithm, the initial conditions are usually of the form

W0 4°=0. (3.13)
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Equations (3.8) and (3.13b) give

l-‘-ll2 = l-‘lIZ’ (3.14)

and the velocity at time step 1/2 can be determined from (3.10a), where (3.11) is also

substituted:
a2 =.’2£gu"1 R . (3.15)

It can be observed that the damping coefficient c is not needed to start the algorithm.
Hence, the central difference time integrator for mass proportional damping and

diagonal mass matrix has the form (Underwood, 1983):

2 =-g-cm" R, for n =0,

. 2 - Ch) . 2h -1 n

iz = 27 pan 2R , for n #0, 3.16
2+ch) asent R (3.16)

u™t =y + ha"?, for ali n.

The mass matrix <M, damping coefficient ¢ and the time increment s needed in
(3.16) are chosen such that the static solution R = 0 is obtained in a minimum number

of steps. However, the choice of h must ensure stability of the iterations.

3.2.5 DR Algorithm and Properties

Based on the central difference time integrator (3.16), the DR algorithm may be
written in the form (Cassel, 1970, Bunce, 1972, Underwood, 1983):

()  choosec, h, andM; u® given; u°=0; n=0,
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(1D R =T"‘ +Pw"),
(Ilf) if R,"=0 stop, else continue,

(V) forn=0, u'*= gcm TR, (3.17)
. pt 2"Ch) . g 2h -1
f " 0’ n+l/2 - ( 1/2 + u,
orn#0, &= e R

(V) uuﬂ = un + hau-HIZ’

(V) n=n+l; return to (II).

The transient response obtained with this algorithm does not represent the real
behavior of the structure, due to the fictitious mass and damping characteristics.
However, since F and P(u) correspond to the physical problem, the steady state part
of the response, which satisfies the equilibrium equation (3.3), represents the static
solution. A rapid convergence of the solution u obtained from (3.17f) to the static
solution & of the equilibrium equation (3.3) is desirable, and the stability of the
solution u has also to be ensured. Therefore the choice of ¢, <M and h must satisfy
certain conditions.

The optimum convergence rate of the solution u to & is of interest. For th.s
purpose, the characterization of the mode-by-mode convergence rate in terms of the
spectral radius of the iterative error equation may be used. Frankel (1950), Lynch,
Kelsey and Saxe (1968), Cassel (1970), Key, Stone and Krieg (1981), Papadrakakis
(1981) and Underwood (1983) present discussions on this topic.

For linear structural mechanics problems (Underwood, 1983), P =—K u, where K,

is the stiffness matrix, and the residual becomes

R =F -Ku. (3.18)

Equations (3.17¢, f), (3.6), (3.18) and the notation
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2h? 2-ch
a= , = s .1
2+ch p 2+ch G-19)
give the displacement needed to advance to the next iteration
™ =ut + Bt —u) + (M TIF - Au”), (3.20)

where 4 =M 'K . The error e of the iteration at the n time step is defined as:
e"=u"—u, (3.21)

Substituting (3.20) in (3.21) gives the error equation, showing the relationship between

successive error vectors:
e =(1+ - oeA)e” - e (3.22)

A solution of (3.22) may be obtained by assuming the error vector to decay with each
iterative step

e = xe", (3.23)
where 1 kl=p is the spectral radius (Strang, 1980). Obviously, convergence requires

|ki<1. Denoting by 4 any eigenvalue of <4, and using (3.22) and (3.23) leads to a

quadratic equation forx':
KP-1+B-aa)k+B=0. (3.24)

Optimum convergence is obtained for k, which is the minimum x that produces
uniform convergence over the entire range of eigenvalues A9 S A S Apy. This

condition is achieved for

(1+p-aa)=+2p"2, (3.25)
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which gives
|Ki=p = p"2. (3.26)

Since (3.25) holds for all possible eigenvalues of <A, the two equations that satisfy

the condition for p are

1+ B - aay =282, 14 B - Ay = -2, (3.27)
leading to
p=p?=fi-2 |20 | (3.28)
max

where Ay << A, has been assumed. Deoting the fundamental and the nighest
circular frequencies of the undamped equation (3.5) by @, and @,,,, respectively,

equation (3.28) becomes:

ﬁzb—ziﬂL. (3.29)

wma.x

Minimizing p produces more rapid convergence. This can be achieved by
maximizing the ratio @,/®,,, through a judicious choice for <M, which is tantamount
to scaling <A to maximize the ratio Ag/Apgy -

For optimum convergence, the values of the time increment h and damping
coefficient ¢ to be used in the DR algorithm (3.17) have to satisfy the condition (3.25).

Equations (3.9), (3.27), (3.19) and the earlier assumption Ay << 4,4, lead to:

hs—2m =2, (3.30)

¢ =22, = 20,. (3.31)
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Equation (3.30) derived from the optimum convergence condition represents the
expression for the stability limit for the central difference time integrator (O'Brien,
Hyman and Kaplan, 1951, Leech, 1965). This is the Courant-Friedrichs-Lewy
condition (Courant, Friedrichs and Lewy, 1928), which states that h can be uo larger
then the time it takes for the information to travel between two adjacent nodes in the
mesh. This condition has becn exploited to develop the idea of fictitious mass (Welsh,
1967, Lynch, Kelsey and Saxe, 1968, Cassel, 1970, Key, Stone and Krieg, 1981 and
many othiers), which minimizes p , while retaining stability. Equation (3.31), derived
from the optimum convergence condition as well, is the expression for the critical
damping of the fundamental natural frequency (Thompson, 1988). The critical
damping property of ensuring optimum convergence has been extensively used in the

choice of c.

3.2.6 Choice of Iteration Parameters

There are different approaches described in the literature for the choice of the
iteration parameters <M, hand ¢, from the simple trial and error technique based on
visnalizing the evolution of the solution in time (Day, 1965, Frieze, Hobbs and
Dowling, 1978, Turvey and Salehi, 1950), to automatic and adaptive methods based on
optimum convergence conditions (Papadrakakis, 1981, Underwood, 1983, Zhang and

Yu, 1989).

Choice of ¢M and h

Several methods are used to determine the elements m;; of the fictitious mass

matrix ¢M and the time step A.
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The simplest approach, proposed by Day (1965), consists in using the real mass
and adjusting the time increment h by trial and error, until a suitable value which
satisfies the stability condition is found. This is achieved by visualizing the behavior of
the solution in time, at representative nodes. However, this is not an efficient method,
unless the damping coefficient ¢ satisfies the optimum convergence condition, i.e.
damping is near critical. Otter (1965) also used real mass, but calculated the stable
time increment from the Courant-Friedrichs-Lewy condition, mentioned at § 3.2.5.

A frequently used method based as well on the Courant-Friedrichs-Lewy
condition, introduces a fictitious diagonal mass matrix, whose elements m;; have to be
chosen such that the transit time for information transfer for degree of freedom i to
adjacent and like degrees of freedom is a constant. This approach, proposed by Welch
(1967), has been used for linear as well as nonlinear problems (Cassel and Hobbs,
1976, Key, Stone and Krieg, 1981, Silling, 1988a). However, it is considered
cumbersome for discrete structural models containing different element types
(Underwood, 1983).

Another common method to determine the elements m; of the fictitious mass
matrix and the time increment 4 is based on Gerschgorin's circle theorem. The theorem
states (Strang, 1980): Every eigenvalue of A lies in at least one of the circles
Cs.....Cn» where C; has its center at the diagonal entry aj; and its radius r; = z#ila,-jl
equal to the sum of the moduli of the elements along the rest of the row. By scaling
every row such that the absolute sum along any row is identical, according to this
theorem all the circles will be coincident for equal mesh spacing, and they will be
nearly coincident for unequal spacing (Underwood, 1983). Moreover, Gerschgorin's
first theorem shows that the largest eigenvalue of o4 cannot exceed [[cA],,, which is the
largest sum of the moduli of the elements along any row, ie. A < m?x zydla,-jl.
This gives a good estimate of the highest frequency @png- Using equation (3.30), this

approach gives the following general expression for m;;:
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N
my; 2 %h22|x,-j|, (i=1mN ), (3.32)
Jj=1

where X;; are the elements of the stiffness matrix K.

Underwood (1983) shows that the scaling produced by selecting m;; frem (3.32)
will at least preserve and in general increase the ratio Wo/Wmax» for faster
convergence. Also, this way of selecting m;; is not hindered by the variety of elements
in the structural model.

This approach may be used for nonlinear problems as well, by substituting the
tangential stiffness matrix 'l((u") in (3.32) (Park, 1977, Underwood, 1983). The
elements of ‘K (u") can be obtained at any time step n by numerical differentiation of

P(u") (Underwood, 1983):

oP(u")

= (3.33)

t K (") =—
However, for nonlinear problems, the fictitious mass matrix computed initially (n = 0)
from (3.32) may not satisfy the condition of stability throughout the analysis, due to the
si.Hfening or softening of the structure. Consequently, the elements of the fictitious
mass matrix should be updated (Park and Underwood, 1980, Underwood and Park,
1980, Underwood, 1983), or computed at each time step (Zhang and Yu, 1989).

An approach proposed by Papadrakakis (1981) assumes m;; ~Xj;. The stable time
step is then determined from Gerschgorin's theorem. However, this approach is not
suitable for partially wrinkled membrane structures, since the regions of very soft
stiffness may lead to a singular stiffness matrix and thus to a singular mass matrix as

well, the latter having to be inverted in the DR algorithm.
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Choice of ¢

There are several approaches for determining ine damping coefficient ¢, which

according to (3.31) should be near its critical value for optimum convergence of the

solution.
Day (1965) used a trial and error procedure to find suitable values for c. Other

authors (Cassel, Kinsey and Stefton, 1968, Rushton, 1968a, Cassel, 1970, Frieze,
Hobbs and Dowling, 1978) determine ¢ from a numerical experiment, which consists of
forming the fictitious mass matrix by using a certain approach, and then with ¢ =0,
computing the response for a number of iterations. This number must be sufficient to
observe the lowest natural frequency @,. The damping coefficient is then obtained
from (3.31). Rushton (1968a), Frieze, Hobbs and Dowling (1978) and other authors
determine a distinct damping coefficient for each intrinsic coordinate. Another
alternative, due to Rushton (1968b), is to observe the variation of the total kinetic
energy of the undamped system, again after determining the fictitious mass matrix.
Since the kinetic energy varies at twice the fundamental frequency of the structure, @,
can be obtained and then the damping coefficient computed. The major disadvantage
of these techniques is that as much computer time is required in finding w, as is needed
for solving the original problem. Bunce (1972) estimates the critical damping
coefficient by using Rayleigh's quotient to evaluate the lowest natural frequency, and
this approach is very common. Papadrakakis (1981) calculates a series of
approximations to the dominant eigenvalue from A pp =llu"* —u"lI/liu" —u""'Il. When
Apg has converged to an almost constant value, then this is the minimum eigenvalue
needed to determine c.

For nonlinear problems, an adaptive method for obtaining ¢ has been developed by
Underwood (1979). It is based on estimating the lowest frequency from Rayleigh's
quotient as wg? <u'Ku/u"<Mu (Meirovitch, 1986). The damping matrix coefficient

is then computed from (3.31), at each iteration as
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a\T{grn_n 172
=2 (_“_)_T_&l_ , (3.34)
(uﬂ) cmﬂuu

where [K" is a diagonal local stiffness matrix, with elements ‘Kj} (no sum on i),

given by
xn =2, - 2,/ hig ™. (3.35)

Equation (3.34) gives actually an estimate of the critical damping for the current
deformation mode u", based on an estimate of the local tangent stiffness. This has the
virtue that the lowest active mode will be found in the event that the fundamental mode
is not participating. The use of (3.34) has proven to be very effective (Key, Stone and
Krieg, 1981, Zhang and Yu, 1989), and it requires no unproductive iterations
(Underwood, 1983).

A very different approach proposed by Cundall (1976), is to neglect viscous
damping (c = 0), and to use instead kinetic damping. In this case the total kinetic
energy of the structure is constantly monitored, and when an energy peak is detected,
all the current velocities are set to zero. This approach has been successfully used for
form-finding and static analysis of cable networks and membrane structures

(Wakefield, 1986, Barnes and Wakefield, 1988, Lewis, 1989, Lewis and Shan, 1990).

3.2.7 DR Algorithms for Nonlinear Problems

A variety of DR algorithms are available for nonlinear problems (Papadrakakis,
1981, Underwood, 1983, Zhang and Yu, 1989). Papadrakakis' automatic algorithm is
not suitable for the DR analysis of structures containing regions of very soft stiffness

characteristics, for reasons already mentioned at § 3.2.6. However, the adaptive DR

algorithm developed by Underwood (1983), as well as a version of it by Zhang and Yu
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(1989), termed modified adaptive DR algorithm are of special interest in the context of

the present work, since these algorithms are adaptable to the analysis of partially

wrinkled membrane structures.
For the adaptive method the fictitious mass is computed from (3.32), with a time

increment i > h, to provide a safety margin for stability. The iterations are then
performed with & . Since the problem is nonlinear, Xjj in (3.32) must represent the
tangential stiffness matrix (3.33), such that the stability requirements of the central
difference time integrator are maintained (Park, 1977). The elements of ‘&(u) are
obtained by numerical differentiation of the internal force P att=0(n=0). The
elements of the initial fictitious mass matrix may not satisfy the conditions for stability
throughout the analysis, due to the stiffening or softening of the structure. The
"perturbed apparent frequency” error measure (Park and Underwood, 1980,
Underwood and Park, 1980, 1982) may be used to determine when the mass matrix
should be updated, or a smaller time increment h should be chosen. The damping
matrix coefficient is computed at each iteration from (3.34), employing the local
stiffness matrix (3.35). The adaptive DR algorithm (Underwood, 1983) may be

formally written as :

) u® given; u°=0; n=0,

(I  compute <M from (3.32) with h= i, where h> h
and Xj; is determined from (3.33),

A R P=F"+Pu"),
(IV) if R "=0 stop, else continue,

(V) forn=0, 11”2=-l21cm_1 R.°,

w2 _ (2= ch) M __ZLJW'I R ", (3.36)

forn20, u
(2+ch) (2+ch)

(VI) uu-t-l =uu + hl-‘n+l/2,



41

(VID) evaluate error and reform <M if necessary;
repeat (III) — (VI),
(VIII) n=n+l,
(IX) compute damping matrix coefficient ¢" from (3.34),

where ‘%2 is determined from (3.35),

(X) return to (I11).

Since this algorithm is adaptive, the robustness of the DR method is increased
considerably. This method has consistently produced good results (Underwood,

1983).
A modified adaptive DR algorithm is proposed by Zhang and Yu (1989). A few

steps are added to Underwood's adaptive DR algorithm: the fictitious mass matrix is
updated at each time step from (3.32), improving the convergence rate; the damping
matrix coefficient is obtained from ¢* = 2[(u")" P ")/ (") M "u"1/2, eliminating
the need to calculate the local stiffness matrix from (3.35); the initial displacement
vector «° in the main program is determined from ul =; +u;")/2 with ¢ =0and an
initial mass matrix is computed from (3.32), where u; and u;" are the values of two
neighboring but opposite peaks of the locus ;. This modified adaptive method has
been successfully applied to the analysis of elastic-plastic bending and wrinkling of
circular plates (Zhang and Yu, 1989 Zhang, Yu and Wang, 1989). However, the
computing time needed to obtain u® is substantial, compared with the computing time

needed to solve the original problem.
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3.3 Spatial Discretization
3.3.1 Introduction

The DR algorithm has been developed from equation (3.5), which represents a
spatial discretization of the PDE governing the transient response of a structure.
Equation (3.5) may be obtained by applying a finite difference (Forsythe and Wasow,
1981) or finite element (Oden, 1972, Zienkiewicz, 1977) discretization technique. For
a membrane structure, a spatial discretization of the global equation of motion (2.38)
would lead to an equation of the form (3.5).

In the early stages of DR, central differences with interlacing meshes were used to
approximate partial derivatives in space (Otter, 1965, Otter, Cassel and Hobbs, 1966).
Rushton (1968a,b, 19692,b,c, 1972) approximated spatial derivatives by central
differences (without interlacing meshes) to solve plate problems. Finite elements in the
context of DR were first employed by Lynch, Kelsey and Saxe (1968). The technique
has been frequently used for form-finding and static analysis of lightweight tensile
structures such as cable networks and membranes (Barnes, 1976, Lewis et al., 1984,
Barnes and Wakefield, 1988, Lewis and Shan, 1990, Lewis and Gosling, 1993).
Finite elements in the context of DR are likewise employed for solving plate and shell
problems (Estefen and Harding, 1986, Eriksson, 1987, Marchertas, Kennedy and
Pfeiffer, 1988, Sauve and Badie, 1993), as well as for other nonlinear structural
analyses (Rericha, 1986, Kulak and Fiala, 1988, Rao and Shantaram, 1990, Sauve and
Metzger, 1992). However, due to its simplicity, the method of central differences with
or without interlacing meshes continued to be preferred by some authors (Alwar and
Ramachandra Rao, 1973, Frieze, Hobbs and Dowling, 1978, Lim and Turvey, 1985,
Turvey and Der Avanessian, 1986, 1990, Turvey and Lim, 1986, Zhang and Yu, 1989,
Turvey and Osman, 1993).
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Silling (1985, 1987, 1988a,b, 1989) used a spatial finite difference discretization
technique based on Green's theorem, in the context of DR analysis of plane strain
problems in nonlinear elasticity. Besides its simplicity, this method avoids the
inconvenience of mapping techniques, being applicable to uniform as well as irregular

types of meshes, which can be fitted to any shape of boundary.

3.3.2 Green's Theorem Differencing Method

The Green's theorem differencing method for the evaluation of spatial partial
derivatives was developed by Wilkins (1964, 1969) in connection with elastic-plastic
flow problems. The method is used for gradient approximations in a number of codes
such as HEMP (Wilkins, 1964, 1969), STEALTH (Hoffman, 1975), PISCES (Hancock,
1976), TODDY (Swegle, 1978), CHIMP (Silling, 1985, 1987, 1988a, 1989). A
description of this technique is given by Belytschko (1983) under the name "contour
integral finite difference method". Herrmann and Bertholf (1983) present a detailed
discussion on finite-difference approximations of gradients, including Green's theorem
method. According to the authors the latter is to be preferred because of its simplicity.

The codes developed by Wilkins (1964) for elastic-plastic flow problems use the
Cauchy stress tensor and perform differencing in the deformed configuration, whereas
Silling's codes (Silling, 1985) which were designed for plane strain problems in
nonlinear elasticity use the first Pica-Kirchhoff stress and perform all differencing in
the reference configuration. The latter method is considered to be m~re convenient for
the purposes of finite elasticity (Silling, 1987).

In this work, Green's theorem differencing method is adapted to finite elasticity
problems concerned with deformations of membranes starting from plane reference
configurations, evolving to curved deformed configurations in 3-D. The method may

be readily adjusted to curved reference configurations as well. Further, the Piola stress
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tensor T is employed, and differencing is performed in the plane reference
configuration £2.

The plane region 2 is discretized into a Q xS mesh of nodes. Quadrilateral non-
uniform meshes are considered here, but the results can be extended to non-
quadrilateral meshes as well. Each node is labeled by a pair of integer superscripts
(£,0). The location of the node (K,{) in the reference configuration £2 is given by its
position vector x*/, or by its Cartesian coordinates x&!, where @ = 1, 2. In the
deformed configuration, the location of the node (k,[) at time step n is given by the
time-dependent position vector rt"=x* +u*", where u®’" is the nodal
displacement vector. The corresponding Cartesian coordinates are réin, withi = 1,2,
3.

The quadrilateral region formed from each set of four adjacent nodes represents a
zone. Zones and zone centers are labeled by half-integers. In Fig. 3.1, zone (k+1/2,
£+1/2) may be identified with the shaded area. Certain quantities termed node-centered
variables are associated with nodes, bearing the nodal label as superscript. These
include position x*‘ and r¢*, displacement u*"*, velocity a4, acceleration @*"",
fictitious nodal mass m*, internal forces P** due to the divergence of Piola stress
tensor (DivT)~*, with componentsTj5 5 , and external forces Frt (or FE,if
loaded in steps) such as body forces, point loads, or forces due to pressure acting on a
membrane. Zone-centered variables are identified over zones, bearing the zonal label

£+1/2,0+1/2,n

as superscript. These include the Piola stress tensor T , the deformation

gradient F&*/2412% and the real mass density p**"/>*2, which may be needed to
calculate body forces.
A spatial discretization of the damped equation of motion of a structure at node

(k.,0) of the mesh may be written in the form:

ML 4 et = R 4 PR, (3.37)



k+1, (+1

k-1, [+1

k-1,£-1
k+1,£-1

Fig. 3.1 Mesh for spatial discretization, with integration paths used in

Green's theorem method for differencing gradient components
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For a membrane, (3.37) may be obtained either by discretizing the global equation of
equilibrium (2.29), and then transforming it into an equation of motion by artificially
adding an acceleration term as well as a viscous damping term, or by discretizing the
global equation of motion (2.38) and then adding viscous damping. The term
HD T;q,xdA in equations (2.29) or (2.38) can be approximated using Green's theorem
(2.28). Substituting ¢ =T (x,?") in (2.28), and applying a one-point integration rule
to the components T, of the Piola stress with dD taken to be the dashed quadrilateral

path shown in I . to the following difference formula

Edpk i _ L 1/2, K041 k+1,0 =1/2,0+1/2, k-1.( K+
2A T:'o_'_l = '(XB * — X3 Y+ Ty * n(Xp - X )

(3.38)

RLIRFY,

L ] IE,,: -1 x;}—u) +T§;1/2.{-1/2,u(xﬁ+1.1 _ xﬁ'm )}.

Here A% is the equivalent nodal area (Herrmann and Bertholf, 1983), equal to one half

of the area enclosed by the dashed quadrilateral in Fig. 3.1, and given by

1 - - - -
A = _4_{(xlzc 1 _x§+l,l )(xl(,m _xlu 1)__(x14 1,4 __x1k+l,l )(xg.m —Xé'{ 1)}. (3.39)

The left hand side in (2.28)is approximated by the product of T;y o at the node
(k,0) and the area contained within the dashed contour, which is twice the equivalent
nodal area. On each of the four edges that comprise the boundary of the region, the
contribution to the right hand side of (2.28) is approximated by setting the integrand
equal to its value at the center of the zone. Thus, the stresses T;q on the right hand side
of (3.38) are zone-centered, and these in turn depend through the constitutive equations
on the zone-centered components of the deformation gradient Fi,. These latter
components are obtained by applying Green's formula (2.28) with¢ = r‘.(x,t"), to the
shaded zone in Fig. 3.1. Here the contributions from the edges of the zone are

approximated by setting the integrand equal to the average of its end-point values along
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each zone edge. After some simplifications, this leads to the following difference
formula for the zone-centered components of the deformation gradient at time step n:

e
E+1/2441/28 _ af £+l _K+LEL KHLI+LA Ko
Fig = A2 {( ~xg ") =)

P (3.40)

PR N R NV ST R R TSN
(xp ‘p Xr; £ )}.

“where A%*/2*'/2 j5 the area of the shaded zone, given by

1
A(+l/2.l+l/2 {(x§.l+l xéﬁ.l )(“{(H,l-ﬂ xlk_.l)

_(xlg.m _ xlrm.l )(xén.m _ x%.l )}

Herrmann and Bertholf (1983) indicate that the same difference approximations
(3.38) or (3.40) may be obtained by using Taylor series expansions. Defining the mesh

distortion parameters as

R+1,(+1:6~1,0-1 __ l k+1,0+1 -1,0~1 &0,
a = E(xa + xé )=Xg's
1 (3.42)
Sl Hlesl0-1 _ -1,041 1=l £
‘kz +1;6+ __Z_(x‘kz + +x‘£1+ )_x(kz ,

they show that the local truncation error arising from each of the difference
approximations (3.38) and (3.40) is of order mesh size times the mesh distortion
parameters. When the mesh distortions are very small, the difference expressions
involve error terms which are third order in mesh size. However, when the mesh
distortions are of the same order as the mesh size, then the error terms are of second
order in the mesh size. Thus, for uniform rectangular meshes, the local truncation error
is O(g®) and for other types of meshes it is O(g?), where € is a typical zone width.
Since the stress gradient difference operator acts on stresses found using the

deformation gradient approximation, their truncation errors combine (Silling, 1988a).
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Therefore, the local truncation error for the method is O(&?) for uniform rectangular

meshes and O(g) for other types of meshes.

3.3.3 Internal and external forces

The quantity A*‘T%/" in (3.38) may be interpreted as the i-th force component

acting on the node (k,/) due to the internal stresses at time step n:
Tik,l.n = Ak.llea.l'.; . (3.43)

Using the right hand side in (3.38) gives

e
&hon OB Jrkeriae1i2,m, k041 _ _&41( L2 k=L kA
?‘- —*—Z-'{T‘-(; * n(Xp * —xB+ )+Tia * (.Xp * —xﬁ +)
(3.44)

£-1/2,0-1/2m p KJL=1 _ k=11 —U20-12um p KHLE _ kd=)
+TE; (x4 = x5+ TS (g - x5 D).

To calculaie the internal force ‘P""", the zonu-centered stress components Tia are
needed. These depend on the zone-centered components F,, of the deformation
gradient. In the DR algorithm, the position r®“* of each node in the deformed
configuration is known from the previous time step, thus (3.40) may be employed to
determine the zone-centered components of the deformation gradient. Further,
equation (2.2b) gives the zone-centered components Cyg of the Cauchy-Green strain
tensor. To simplify the notation, the superscripts representing the labels of the zone
center and time step have been suppressed. The principal stretches A, u are then
obtained as the roots of equation (2.15). These roots are always ordered such that
A2u. From CL=AL and CM = uM, the components L,, M, of the associated

principal vectors of strain are:
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1/2

1/2 -
, L =Cia[(B2-Cp)? +ChH]

I = Cp[(A* - Ciy)* + Ch]
(3.45)

1/2

_1/2 -
, My = Clz[(#2 -Cp)? +C122] ,

M, = sz[(ﬂz -Cp)’? +C122]
and these are chosen such that Lx M =e,, i.e. LoMgegg =1. Equation (2.4) then

gives /; and m; as:

L =A""FiuLy, mi=p""FigM,. (3.46)

These are the components of the images of the of the principal vectors of strain on the
tangent plane of the deformed surface. All these quantities characterizing the strain are
zone-centered.

The Piola stress is then obtained from equation (2.25), where the relaxed strain
energy Wx(F) given by (2.53) is employed, in order to account for the possibility of
wrinkling. The natural width in simple tension for isotropic, incompressible materials
is considered in (2.53), i.e. »(A)=2A"Y2and w(u)=p"V?. The ordering of the
stretches implies that the second branch of the relaxed energy is operative whenever
partial wrinkling is indicated. The third branch is never encountered. Then, the zone-

centered Piola stress derived from the relaxed energy is

Tig =4 W(A)Ly; A>1, p<a? (3.47)
0; A<l u<l,

and this delivers the node-centered divergence of the stress and rspectively the internal
force P&, according to equation (3.44).
For a membrane structure, the external forces may be point loads, body forces,

such as gravity forces, or forces due to ~sessure loading. To calculate the gravity
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forces, the real mass density of the membrane material is employed, but this type of

force is very small compared to :he internal forces arising as a consequence of even

moderate strain.
In the case of uniform pressure loading, the external forces may be obtaired by a

spatial discretization of the term HD pnJdA in equation (2.29). Since the Jacubian
J =Ap and the unit normal n={ xm are zone centered, the integral HD pnJdA is

approximated as a zone-centered external force due to pressure acting over the area ofa
zone:

£+1/2,(+1/2,n

! =p “‘kd/2.l+lIZ.ul&HIZ,lHIZ.n#k+1/2,l+l/2.uA(+l/2.l+1/2, (348)

where n; = ey [jmy. Here ey is the permutation symbol (e =1 if (i, J, k) is & cyclic
permutation of (1, 2, 3), e =-1if (i,), k) is an anti cyclic permutation of (1, 2, 3),
and €jix = 0 if any two numbers of (i, j, k) are equal). Then, the node-centered external

force due to uniform pressure loading is obtained as the average:

i{.l.u ( i&+1/2.l+l/2.u+9-i(—l/2.l+1/2.n+9-ik-l/2.l-112.n+}-‘§,+1/2.l-l/2.n)- (349)

N

If a concentrated force F is acting at a point ¥ on the membrane, the mesh has to
be arranged such that a nodal point x*‘ coincides with the application point of the

force. Then, the external force due to the point load at x* is

Ll 7, (3.50)

The concentrated load may be applied in steps if necessary.

Having calculated the internal forces 28" and external forces ¥ at node (K, ()

and time step n, the DR algorithm can be applied.
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3.3.4 Boundary Conditions

Displacement boundary conditions on a part 0Q of the membrane boundary Q2
are easily enforced by arranging the mesh such that dQ contains nodal points. The
prescribed displacements are then imposed at the nodes lying on 9dQp. The
deformation gradient at the center of the zones adjacent to 942 is further obtained
from equation (3.4J), the internal forces at the in:ernal nodes adjacent to JQ2 are
given by e ation (3.44), and then the DR algorithm can be applied.

In the case of a traction boundary condition on d€2\dQr, the mesh is also
arranged such that the boundary contains nodal points. A phantom mesh is provided
outside the boundary carrying zero densities and appropriate stresses derived from the
boundary conditions, so that the calculations with the DR algorithm of velocities and
positions of a boundary node become identical to those for an interior node (Herrmann
and Bertholf, 1983). If AOB in Fig. 3.2 is a traction boundary, the added phantom
mesh is represented by the dashed lines.

For a traction-free boundary ACB, the zone-centered stresses in the phantom mesh

shown in Fig. 3.2 are set equal to zero:

k+1/2,(+1/2,n __
Tia = 0'

(3.51)
TEH2ZR 2,

Also, node (K, &+1) is set coincident with node (K, [). Equation (3.44) gives the
internal force at node (£, [) on the boundary, and then the DR algorithm may be
applied.

If AOB in Fig. 3.2 has a prescribed boundary stress, then appropriate average
values of the boundary stress acting over AO and OB are considered at the zone centers

(k+1/2, (+172) and (k#1/2, [-1/2). Again node (k, &1)is set coincident with node (K, D)
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Fig. 3.2 Phantom mesh at boundary
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and equation (3.44) gives now the force at node (K., £) due to internal stresses as well as

boundary tractions.

3.4 Adaptive DR Method
for Analysis of Membranes

An adaptive DR method is presented here, which has been especially developed for
the static analysis of elastic membranes undergoing finite deformations. The algcrithm
accounts for the possibility of partial wrinkling of the membranes by cruploying the
relaxed strain energy density, introduced in § 2.4. Isotropic membranes are considered.

This adaptive technique is based on the Dynamic Relaxziion method, inhe:iting its
advantages of simplicity, tenacity, robustness and reliability. Being an explicit vecto:
method, there is no need to manipulate or store matrices, so complicated problems may
be solved using a microcomputer. The algorithm is desig:'=d for problems starting
from plane reference configurations and evolving to arbitrarily curved deformed
configurations in 3D. However, it may be readily adapted to curved reference
configurations. Green's theorem differencing method has been employed for the spatial
discretization. Besides its simplicity, this method avoids the inconvenience of mapping
techniques, being applicable to uniform as well as irregular meshes, which can be fitted
to any shape of boundary. Regarding the stability of the equilibrium solution, Silling
(1988a) has remarked that equilibria obtained by the DR method may be considered as
asymptotically dynamically stable, since they do not spohtaneously decay to other
configurations.

According to the DR methodology, the global equilibrium equation of the
membrane (2.29) is first discretized in space and then transformed into the equation of

a damped motion of the form (3.5) or (3.38), by artificially introducing an acceleration
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as well as a viscous damping term. Fictitious mass density and mass proportional
damping are used. Equation (3.5) is then explicitly integrated in time by using the
central difference time integrator (3.16). The problem being nonlinear, stability and
convergence of the solution are ensured by updating the itcration parameters at each
time step. This is the reason for terming the method adaptive, since the information
generated during the computation is used to modify system parameters in order to
maintain optimum convergence. Thus, the elements of the fictitious mass matrix mj;
are evaluated at each iteration from <;crsciigorin's circle theorem, such as to satisfy the
stability condition (3.30) for the central difference time integrator (see equation (3.32),
derived for m;;). The stiffness matriz; Xj; in (3.32) is repiaced by the current tangential
stiffness matrix '9(;’}- which is computed at each time step by numerical differentiation
of the internal force P" (see equation (3.33)). The differentiation does not have to be
particularly accurate, as only an estimate is being sought (Underwood, 1983). The
summation in (3.32) is performed with the differentiation, so provisions for storing a
matrix are not required. The damping coefficient ¢" is also evaluated at each iteration,
by estimating the lowest participating frequency from Rayleigh's quotient and using the
expression (3.31) for critical damping (see equation 3.34 derived for ¢"). The local
stiffness matrix ° X in (3.34) is computed from (3.35) at each time step, by numerical
differentiation of the internal force P".

To start the DR algorithm, the initial conditions u° and 4° are required at step (),
(t=0, n=0). The expression of the strain energy density w(A, u) of the material is
also needed. Further, an arbitrary time increment h has to be chosen, which is
maintained constant during the iteration process. However, a time increment %> h has
to be used at siep (VIII) in the computation of the elements m; of the mass matrix, in
order to provide a safety margin for stability. At step (II) the zone centered variables
characterizing the deformation and strain are computed. Next, the algorithm checks

for wrinkling and computes the Piola stress by choosing the appropriate branch of the
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relaxed strain energy wg(A*,4") (step (II)). The internal and external forces P" and
F* are computed at steps (IV) and (V), and their sum gives the residual R_" at step

(VI). If the residual is close to zero (i.e. max
¢

R}‘I < £=107% for example), the solution
u is considered to approximately satisfy the equilibrium equation (3.3), and the
program stops. If this is not the case, the elements of the fictitious mass matrix are
computed at step (VIII) and if n# 0 the damping coefficient is computed at step (IX).
At steps (X) and (XI) the velocity and displacement vectors are obtained using the
central difference time integrator, and the next iteration starts with step (II).
Displacement boundary conditions are enforced at step (I) and (XI), whereas traction
boundary conditions are enforced at step (IV).

To simplify the notation, the superscripts representing labels of nodes or labels of
zone centers have been omitted. However, for the computations occurring at steps (II)
and (II1), which involve zone centered variables, this has been specified. At these
steps, the subscripts i and & refer to the orthonormal bases {¢; } and {e,}. For the
remaining steps, computations involve node-centered variables, but to avoid repetition
this has not been mertioned. Instead, a sul.s=ript i referring to the (1,......, N') nodal
degrees of freedom of the structure has heen used in the steps involving scalar
equations, but this has been specified. Formally, this adaptive DR algorithm may be

written as:

49)] initial conditions:
u® given; u°=0; n=0,
w(A, W) given;
choose A, 71; (l-z > h),

(I  compute zone-centered quantities :
deformation gradient F" from (3.40),
Cauchy-Green strain C" from (2.2b),
principal stretches A", u" from (2.13), order A" 24",
principal vectors of strain L', M"; I", m" from (3.45) and (3.46),



(I1I)  check for wrinkling; compute zone centered Pioia stress :™":

if "> @™ V2, u*>(A")V2, tense zone;
wr(A%,u") = w(A®,u"),
Ti=wi L+ wﬁ miMg,

if A°>1, p"<(A")V2, wrinkled zone;
wp{A",u") = w(d"),
Tig =W(ANIILy,

if A" <1, u" <1, slack zone;

WR(ln’un) = Ov

T{x =0, i=1,2,3 a=12,
(IV) compute internal forces <P" from (3.44),
(V)  compute external forces F " if any;
for pressure loading use (3.48) and (3.49),
(VD) compute residual R "=F"+P",
(VII) if R "=0 stop, elsecontinue,
(VII) compute elements of fictitious mass matrix <M ":
1~ A :
mf =2 Y[KG|,  i=leN, (cosumoni),
Jj=1

- 1.0 _ p0 0
n=0, &j—?i/uj,

n#0, 'K§=(2 -2/ hij",

56
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(IX) compute damping coefficient (n# 0):

C" {(u )T[ u }1/2’
W) M u"

‘gt = (@} -2/ hif™?, (nosumoni),

(X) compute velocity at time step n +1/2:

n= 0 u112 (m“)—l R.; ,

. nt 2- Ch) + -1

¢0, 1/2 ( u l/2+

nED W= e (2+ Gaop M &L
i=1....... ,N, (nosumoni),

(XI) compute displacement at time step 2 +1:

u™' =u" + ha'?,

(XII) n=n+1, return to (II).

If the square root at the step (IX) is greater than 2/h, then it is set to a value less
than 2/h, since step (VIII) gives Wy <2 /h. Furthermore, if the argument of the
square root at the same step is not positive, ¢” is set to zero. This is required for
problems which traverse an unstable region (Underwood, 1983).

A simpler, non-adaptive but still efficient version of this algorithm is obtained by
omitting steps (VIII) and (IX). Real mass density is used for the computation of the
elements of the diagonal mass matrix, and a stable time increment is obtained by
visualizing the behavior of the solution. To evaluate the critical damping coefficient,
the variation of the total kinetic energy of the undamped motion of the system is

observed. Since the kinetic energy varies at twice the fundamental frequency of the
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system, an estimate of the lowest natural frequency can be obtained. Then, a damping
coefficient which ensures rapid convergence can be computed from (3.31). This
version does not require the formation of the tangential and local stiffness matrices.
For the solution of a variety of problems with different boundary conditions, adapting
the code for the computation of the stiffness matrices to the geometry of the boundary
is a very time consuming operation. However, if a commercial software package
should ever be developed from this program, a subroutine could be generated to

perform the adaptation automatically, by using the input data describing the geometry

of the problem.



Chapter 4

DR Solutions
to Membrane Problems

4.1 General Considerations

A variety of boundary value problems were solved by applying the adaptive DR
method as well as its non-adaptive version, presented in § 3.4. Two strain energy
functions for incompressible rubber-like materials were used in the applications: the neo-
Hookean strain energy and Ogden strain energy.

For the neo-Hookean material, the strain energy per unit of initial volume has the

form (Pipkin, 1986a):
U(al,az,zg,):%é(ﬁw%+/1§—3), 4.1

where the A; are the principal stretches and G is a positive constant with dimensions
force/area (the shear modulus for infinitesimal strain). Incompressibility requires that
A3 =1/A4,. For a membrane with a thickness h in the undeformed state, the
corresponding strain energy per unit initial area may be approximated by setting

A=A, Ay =u. Then A3 =1/ Ay, and the strain energy becomes

59
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WA, 1) = -;-0(12 +pu2+ 2722 -3), (4.2)

where G =Gh. A diagram representing the original neo-Hookean strain energy as a
function of A and ut is shown in Fig. 4.1a.
In the wrinkled regions, where A >1, p <v(d)= AV2r u>1, A<u(u)= u““ 2,

the strain energy in uniaxial tension w(A), respectively w(x) is given by
w(x) = wx,x /2 = %(x"2 +2x71-3). (4.3)

The relaxed neo-Hookean strain energy wg(4,4) is then constructed according to
(2.53), the result being represented in Fig. 4.1b. This relaxed energy has the property
that equilibrium states automatically furnish the global minimum of the potential energy,
for a certain class of boundary value problems (Haseganu and Steigmann, 1994b).

For deformations involving stretches larger than some modera.: values, the
experiiiental results do not support neo-Hookean predictions, and ai-other more suitable
strain energy should be employed. In the case of membranes subjected to pressure
loading, Ogden energy is preferred since it is known to furnish good quantitative
agreement with experiments, over a large range of stretch values (Ogden, 1984).

For the Ogden material, the strain energy function per unit initial volume has the

form (Ogden, 1984):

3
U(AjA2.43) = GY g, (AT + A5 +43" -3)/ o, (4.4)
r=1
where o= 1.3, oy = 5.0, O3 = —2.0;

8 =1.491, g, =0.003, g;=-0.0237.

Setting 4; =4, A, =u and taking A; =1/ Au, the associated membrane energy (i.e.

strain energy per unit initial area) may be approximated as
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Fig. 4.1a Original neo-Hookean strain energy function,
for 0.02<4,u<10.0
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Fig. 4.1b Relaxed neo-Hookean strain energy function,
for 0<A,u<10.0
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3
wd,1)=G Y g A% +u™ +(Awy™* -3)/ a,, (4.5)

r=1

where again G = Gh. This is represented in Fig. 4.2a.
As in the previous case, in the wrinkled regions, where A>1, usv(d, - A7Y2 or
u>1 A<o(u)= U2 the strain energy in uniaxial tension w(4), respectively w(),

is given by

Wx) = wix,x 2y = Gig,(x“' +2x %2 -3)/q,. (4.6)

r=1

The relaxed Ogden strain energy wg(A,u) is then constructed according to (2.53).
A graphical representation is shown in Fig. 4.2b.

A comparison between Fig. 4.1a and Fig. 4.2a, as well as between Fig. 4.1b and
Fig. 4.2b shows that at stretches larger than some moderate values, the Ogden material
gives much larger values of the strain energy per unit initial area than the neo-Hookean
material (for the same A and y).

Planar as well as 3D deformations of the membranes were considered, starting in all
cases from a plane reference configuration. Square, rectangular, circular-annular, and
square-annular geometrical shapes of the membrane were analyzed, along with hybrid
shapes such as square sheet with centrally located circular hole, and rectangular sheet
with a slot.

Displacement boundary conditions as well as mixed displacement/null-traction
boundary conditions were used.

In some of the problems certain axes of symmetry are rexdily apparent, but no prior
assumption was made about the symmetry of the solution. In this respect, consideration
was given to Silling's observarions on the asymmetries that may develop when non-
relaxed strain energies are used, symmetry axes notwithstanding (Silling, 1988b).

However, it has been found that the solutions obtaine:! using the relaxed energy do
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Fig. 4.2a Original Ogden strain energy function,
for 0.02<A,u<10.0



Fig. 4.2b Relaxed Ogden strain energy function,
for 0<A,u<10.0
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exhibit symmetry. Moreover, the equilibria appear to be wholly insensitive to variations
in the initial data. In contrast, equilibria are highly sensitive to these data when the
original (non-relaxed) energy is used.

Cases of zero distributed loading, uniform pressure loading and loading by
concentrated forces were studied.

Stability and convergence of the DR solution u to the solution u of the equilibrium
equation (3.1) have been ensured by a:: adequate choice of the iteration parameters, as
described in § 3.4.

The magaitudc of the spanal discretization err.r of the method is given by the local
truncation error. Asshownin§25. " of 0(82) for uniform rectangular meshes
and O(€) for other types of meshes, where € is a typical zone width. Graded rectan gular
interl=cing meshes were used for most of the applications. For a few applications
uniform rectangular interlacing meshes were considered to be more suitable. A
refinement of the mesh is usually carried cut untii convergence of the solutien is
obtained. However, in all the applications the mesh hus been refined beyond the needs
of the convergence of the DR solution, especially in the zones where wrinkling ~ccurred.

To reduce the rounding errors introduced during the computation, double jzecision
has been exclusively employed.

Comparing the two methods, adaptive versus non-adaptive, the efficiency in terms
of C' ' "ime is superior for the adaptive method, since the optimum convergence
conditiois are satisfied at each time step. However, in terms of piogramming time, the
non-adaptive version is by far more efficient, since it does not require the adaptation of
the code for the computation of the stiffness matrices to the mesh and the geometry of the
boundary of every particular problem; ¢his is a very time consuraing and labor-intensive
operation. Since both methods yield approximately the same DR solution - within
reasonable limits of accuracy - the non-adaptive version has been preferred in most cases.

A non-dimensional form of the algorithm (3.52) was used. This was obtained by

non-dimensionalizing equation (3.3) by a force scale consisting of the product of the
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material constant G in the expression of the strain energy and a characteristic length,
specific for each problem. The numerical value of the constant G was obtained from

G =Gh. For a thickness of the memb=si: h=0.1mm and a shear modulus for
infinitesimal strain G =4 kg / em? =400 N/m? (Varga, 1966), the resulting G is
40 N/m..

The DR solution was considered reasonably accurate if the residual at step (VII) of

the algorithm (3.52) satisfied mgaxﬂ(j‘l< g, where €=10"% was chosen in the
[}

computations.

4.2 Neo-Hookean Membranes Subjected to
Displacement Boundary Conditions

4.2.1 Simple Shear of Square Membrane

A unit square £2 of a membrane is considered as the reference configuration. The
boundary dQ is subjected to the planar simple shear deformation x — r(x) = Fx, where
F=A+ye®e,and y=1/ /3; thus the shear angle is 7/6. The relaxed ene:3y is
defined in such a way that in the interior of the region {2, the hcmogeneous deformaticn
with gradient F minimizes the energy absolutely. This deformation is trivially in
equilibrium. Using the relaxed energy, it is found that the entire membrane is wrinkled,
with a total strain energy E/G = 0.5438. The same results are obtained by using the
adaptive DR method, regardless of the degres of mesh refinement or the choice of initial
conditions. For a uniform rectangular 21 x 21 mesh, the reference configuration is
shown in Fig. 4.3a, and the deformed configuration in Fig. 4.3b. The trajectories of
tensile stress are represented by dashed lines at zone-centered points. indicating

wrinkling over the entire membrane. The principal stretches obtained from the



Fig. 4.3a Square membrane; meshed reference configuraiion
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Fig. 4.3b Square membrane in simple shear; deformed configuration
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computation are A = 1.33 and = 0.75.

A strong sensitivity to initial data is found in the same boundary value problem when
the original strain energy is employed. If purely planar initial conditions are chosen, with
no transverse displacements, then homogeneous equilibria with deformation gradient F
are always obtained. The associated stress has a compressive principal value, so the
deformation is unstable with respect to out-of-plane perturbations, but such perturbations
are never generated as the solation advances in time. The total equilibrium energy is
found to be E/G = 0.666/. In contrast, when the initial data contain non-zero transverse
displacement components, the equilibria obtained appear to be weakly dependent on their
nodal variations. In such cases the solutions cxhibit a strong dependence on the mesh,
the deformed surfaces being corrugated or wrinkled, and the characteristic wave lengt of
the wrinkles decreasing with mesh refinem=nt. Successive refinement yields equilibria
whose tot4l energies approah the relaxed energy from above. For example, a 26 X 26
uniform rectangular mesh yields a total energy ranging from 0.5527 to 0.5529,
depending on the choice of initial data. The equilibrium stress has compressive and
tensile components that are comparable in magnitude. Fora 51 x 51 uniform mesh, the
total equilibrium energy is 0.5484, with minor fluctuations due to variations in initial
data. In this case, the tensile principal stress is several orders of magnitude larger than
the compressive component. A cross section hrough the deformed mesh is shown in
Fig. 4.4.

Thus it appears that when the original energy is used, successive mesh refinement
furnishes equilibria whose energies tend to the relaxed energy, provided that the initial
data include transverse displacements. The equilibria exhibit a wrinkly structure that is
reminiscent of the minimizing sequences constructed in section 2.4. These results
support Ball's conjecture (Ball 1984) that minimizing sequences may be realized, to some

degree of approximation, by the dynamics (see also Swart and Holmes, 1992).
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4.2.2 Plane Twisting of Annular Membranes

The problem of twisting an annular membrane bounded by concentric circles was
considered by Reissner (1938) in his original formulation of the mathematical theory of
tension fields. A similar problem was reconsidered much later by Stein and Hedgepeth
(1961) and Mikulas (1964). Li and Steigmann (1993) recently extended the analysis of
this problem to finite deformations for a certain class of strain energy functions.

A neo-Hookean annular membrane bounded by concentric circles is considered first.
The graded mesh shown in Fig. 4.5a was used. The ratio of the radii of the i..:crnal and
external circular boundaries was taken to be 0.5. Holding the external boundary fixed,
the inner boundary is rotated counterclockwise through an angle of 5°. The deformed
configuration of the mesh is represented with continuous lines in Fig. 4.5b. The dashed
lines at the zone centered peints of the mesh layers adjacent to the inner boundary indicate
the trajectories of tensile stress in the wrinkled part of the membrane. The extent of the
wrinkled region can be also seen in Fig. 4.5c, where the mesh has been removed for
clarity. The membrane is tense ¢lsewhere. The m:ximum principal stretch in the
solution was 1.13, and occurred at the zone-centered points situated on a circle
immediately adjacent to the inner boundary.

A similar problem was solved for an annular membrane with square boundaries.
The ratio of the sides of the interior square to the exterior square is 0.35. The graded
rectangular mesh shown in Fig. 4.6a was used. As in the previous case, the exierior
boundary is fixed and the interior boundary is rotated counterclockwise through an angle
of 5°. The deformed mesh is shown in Fig. 4.6b, where the tension trajectories in the
wrinkled region are also indicated. The membrane is tense elsewhere, as in the previous
example. The DR method cannot be used to detect the expected stretch singularities at the
comers of the inner square, because the stretches are evaluated at zone-centered points.
The largest computed stretch is 1.17 and occurs at the zone-centered points adjacent to

the four corers of the inner square.



Fig. 4.5a Circular annular membrane; meshed reference configiration
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Fig. 4.5c Plane twisting of circular annular membrane;
deformed configuration, mesh removed
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4.2.3 Combined Twist and Lateral Deflection
of Annular Membranes

The circular annular membrane with the ratio of the radii of the internal and external
boundaries of 0.5, and with the meshed reference configuration shown in Fig. 4.5a is
considered. Holding the external boundary fixed, the ratio of the radii is reduced to
0.25. This intermediate deformed configuration is represented in Fig. 4.7a. Wrinkling
occurs in a zone immediately adjacent to the inner boundary. The radial tension
trajectories indicate the extent of the wrinkled region. Fig. 4.7b shows the deformed
configuration with the mesh removed for clarity. Next, the inner boundary is displaced
vertically by an amount equal to the radius of the external boundary. As can be seen in
Fig. 4.7c, the extent of the wrinkled region decreased. This is followed by a
counterclockwise rotation of the inner boundary through an angle of 90°. The deformed
configuration of the mesh is shown in Fig. 4.7d, the tension trajectories indicating an
increase in the width of the wrinkled region. The membrane is tense elsewhere. It was
found that the extent of wrinkling increased with the increase in rotation angle and
diminished with increasing lateral displacement. This behavior is in qualitative agreement
with the analysis of Roxburgh, Steigmann and Tait (1993), in which axisymmetry was
assumed at the outset, and a more refined strain energy function was used.

The maximum principal stretch computed increased from 1.82, in the solution
represented in Fig. 4.7a, to 3.39 for the solution in Fig. 4.7c, and finally to 3.98 for the
solution in Fig. 4.7d. It occured in all three cases on the circle of zone-centered points
immediately adjacent to the inner boundary. The last two values are outside the range for
which the neo-Hookean material furnishes quantitative agreement with experimental data
on rubber. For less severe deformations the stretches obtained are within this range.
Nevertheless, the solution exhibited in Fig. 4.7d is useful for studying some qualitative
aspects of the problem and for verifying the numerical method. In particular, one of the

analytical results known from tension-field theory is that stress trajectories form families
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Fig. 4.7a Circular annular membrane; radial displacement and reduction
in circumference of inner boundary; intermediate deformed configuration
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Fig. 4.7b Circular annular membrane; radial displacement and reduction
in circumference of inner boundary; intermediate deformed configuration,
mesh removed
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Fig. 4.7c Combined radial displacement and lateral deflection
of circular annular membrane; intermediate deformed configuration
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Fig. 4.7d Combined radial displacement, lateral deflection and twist
of circular annular membrane; final deformed configuration
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of straight lines or the deformed surface, independent of the form of the strain erercy
(Steigmann, 1990). For axisymmetric deformations, the surface must then be a sector
of a singlc-snent hyperboloid of revolution wherever it is wrinkled. The computed
results confsrm to this requirement.

Another analytical result pertains to the variation of the stretch A along a stress

trajectory as a function of radius  in the reference configuration. According to this result

the implicit relation (Steigmann, 1990)

rt=[a/ fAOP + b/ 1), (4.7)

is valid in the wrinkled region, where a and b are constants and f(A)=w'(4) is the
stress-stretch relation in uniaxial tension. To use this relation, the values of A are
substituted on the extreme inner and outer circles of zone-centered points delimiting the
wrinkled region. Then (4.7) yields two equations for the constants a® and b%, and the
refation between r* and A may be plotted. This is given by the solid curve in Fig. 4.8,
where r has been non-dimensionalized by the radius of the external boundary. By
construction, the extreme zone-centered values are located at the endpoints of the
analytical curve. The three intermediate values shown in Fig. 4.8 are taken from the
computed solution at the remaining zone-centered points. The results indicate an
acceptable degree of accuracy in the representation of the spatial variation of A , despite
the relative coarseness of the mesh.

For the annular membrane with square boundaries, the mesh in the reference
configuration is shown in Fig. 4.6a. In this case the exterior boundary is fixed, the
interior square is rotated counterclockwise through an angle of 90°, and simultaneously
displaced vertically by an amount equal to one-half of the side of the outer boundary.
The deformed mesh is shown in Fig. 4.9, where the tension trajectories in the wrinkled

regions are also indicated. The membrane is tense elsewhere, as in the previous

example.
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Fig. 4.8 Variation of stretch A along a tension trajectory with initial radius r
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Fig. 49 Combined twist and lateral deflection of square annular membrane;
deformed configuration
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Althongh no detailed analytical results are available for comparison in this case, it is
observed that the tension trajectories again form families of straight lines, as required by
the analytical theory. As mentioned in § 4.2.2, the adaptive DR method cannot be used
to detect the expected stretcii singularities at the corners of the inner square, because the
stretches are evaluated at zone centered points. The largest computed stretch is 5.63 and

occurs at the zone-centered points nearest the four corners of the inner square.

4.3 Neo-Hookean Membranes Subjected to
Mixed Displacement/ Null Traction
Boundary Conditions

4.3.1 Combined Stretching and Shearing of Rectangular
Membrane with Traction-Free Lateral Boundaries

The plane deformation involving combined stretching and shearing of a rectangular
strip with ratio of height to length of 0.370 is investigated. The lateral boundaries are
traction-free. The meshed reference configuration is represented in Fig. 4.10a. The
sheet is first deformed by holding the lower boundary fixed and displacing the upper
boundary normal to itself so that the perpendicular distance between the boundaries
increases by 20%, to 0.444. Holding this distance constant, the upper boundary is then
translated to the right until the chord connecting the left endpoints of the boundaries
forms an angle of 30° with the vertical. The deformed mesh is shown in Fig. 4.10b.
The dashed lines again indicate trajectories of tensile stress in the wrinkled region, which
nearly covers the entire membrane. The tense regions are confined to thin layers near the

traction-free boundaries and to small zones at the lower left and upper right corners. The



Fig. 4.10a Rectangular membrane with traction-free lateral boundaries;
reference configuration
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largest computed stretch is 2.38 and occurs at the zone-centered points, closest to these
corners.

Next, the perpendicular distance between the upper and lower boundaries is adjusted
10 0.481 (representing a 30% increase of the initial value), while holding the chord angie
fixed. The result is that wrinkling in the interior of the sheet is suppressed (Fig. 4.10c;.
This effect is similar to the competing influences of twist and transverse displacement
observed in the annular membrane. The maximum computed stretch of 2.53 is located as
previously at the zone centered points adjacent to the lower left and upper right corners.

Then, the chord angle is increased to 45° without altering the spacing between the
houndaries. As expected, this substantially increases the extent of wrinkling. In this
latest configuration the maximum stretch is 3.29 and occurs at the same location as in the
previous two cases (Fig. 4.10d).

Finally, the case of shearing with no prestretch is considered. The upper boundary
is translated to the right until the cord forms an angle of 30° with the vertical, while the
length of the chord is maintained constant. The deformed configuration is represented in
Fig. 4.10e. The wrinkled zone has the shape of a parallelogram, covering the main part
of the membrane. Two triangular-shaped slack regions can be identified at the upper left
and lower right corners. The presence of two narrow tense regions immediately adjacent
to the lower third of the left traction-free boundary, respectively to the upper third of the
right traction-free boundary is also noticed. To distinguish these, single dashes are used
at the centers of the zones to indicate stress trajectories in the wrinkled regions and
crosses to indicate the principal stress directions in tense regions. The siack regions do
not contain markings of either type. Details of the deformation near the left traction-free
boundary are shown in Fig. 4.10f. The largest computed stretch is 1.826, and occurs in
the tense regions, at the zone-centered points closest to the lower left and upper right

corners.
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4.3.2 Shearing of Square Sheet with Traction-Free Circular Hole

The plane deformation induced by shearing of a square sheet with a traction-free
circular central hole (Fig. 4.11a) is studied. The ratio of the hole diameter to the side of
the square is 0.20. The sheet is deformed by mapping points x on the boundary onto the
parallelogram described by r(x) = Fx, where F is a simple shear with y=1/ 3.
Were it not for the presence of the hole, the minimum-energy deformation of the sheet
would have the uniform gradient F(x) = F, x e £, and the deformed configuration for
this homogeneous deformation would be as shown in Fig. 4.3b, which indicates
complete wrinkling.

However, in the presence of the hole, the deformation is highly non-homogeneous,
consisting of a complicated distribution of tense, wrinkled and slack (stress-free)
regions. As in the previous case, single dashes are used at the centers of the zones to
indicate stress trajectories in the wrinkled regions and crosses to indicate the principal
stress directions in tense regions. The membrane is slack in regions that do not contain
markings of either type. The deformed mesh together with the distribution of the tense,
wrinkled and slack regions are represented in Fig. 4.11b, whereas Fig. 4.11c shows a
mapping of this distribution onto the meshed reference configuration. In the present
problem, the slack regions are confined to the immediate vicinities of the extreme ends of
the deformed hole boundary. These can be seen more clearly in Fig. 4.11d. It should be
noted that the relative lengths of the dashes are dictated by the mesh spacing and do not
indicate the intensities of stress or strain. The maximum principal stretch 4 in the sheet
was 1.82 and occurred at zone-centered points about half way along the major axis of the
hole. This can be seen in the contour plot in Fig. 4.11e, representing contour lines of
equal A . The localized slack regions near the extreme endpoints of the hole can be
identified by being bounded by the contour line with A = 1.03. The presence of these

slack regions was also confirmed by experiments on a thin rubber sheet (see § 5, Fig.

5.3b).
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Fig. 4.11d Shearing of square sheet with traction-free circular hole;
details of deformation around the hole
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Fig. 4.11e Contour plot representing lines of equal principal stretch 4
on deformed configuration of square sheet with traction-free circular hole
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4.3.3 Stretching of Rectangular Sheet with Traction-Free Slot

A rectangular sheet containing a traction-free slot with semi-circular ends subjected
to stretching is considered. All dimensions are scaled by the height of the rectangle in the
reference configuration. The length of the base is 1.3 and the distance between the
centres of the semi-circles at the ends of the siot is 0.3. The radii of these semi-circles
are 0.015. The meshed reference configuration is shown in Fig. 4.12a. The parts of the
mesh above and below the slot consist of rectangular regions with mesh spacings that
vary abruptly from one region to the next. The transition from one region to another is
accomplished by collapsing nodal points to form an interpolation layer with triangular
zones. These layers are not shown in the figure.

The sheet is deformed by extending the lateral sides to a length of 1.2 and
contracting the lower and upper sides to a length of 1.17 each. In the absence of the slot,
the sheet would be homogeneously wrinkled with the tension trajectories oriented parallel
to the lateral sides. The deformed mesh in the presence of the slot is shown in Fig.
4.12b. Four narrow zones of localized mesh distortion are observed in laterally opposed
pairs near the ends of the slot.

Figure 4.12c shows the distributions of tense, wrinkled and slack regions in the
entire sheet. The mesh has beer; removed for clarity. The nairow-zones of distortion
correspond to highly stressed wrinkled regions. The stress then decays in the transition
to triangular slack regions above and below the slot. The results of the analysis indicate
that the membrane is tense at the extreme endpoints of the slot. The maximum principal
stretch occurs there and is equal to 2.23. The details of the solution in the vicinity of the
slot can be seen in Fig. 4.12d. The presence of the slack regions was also confirmed by

experiments on slotted rubber sheets.
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4.4 Neo-Hookean and Ogden Membranes
Subjected to Uniform Pressure and
Displacement Boundary Conditions

4.4.1 Square Neo-Hookean Membrane Subjected
to Simple Shear and Uniform Lateral Pressure

The unit square membrane with meshed reference configuration represented in Fig.
4.3a, is first subjected to a planar simple shear deformation as described in § 4.2.1. The
shear angle is 30°. The deformed configuration shown in Fig. 4.3b indicates that the
entire membrane is wrinkled, the deformation being homogeneous. Next, the membrane
is subjected to a uniform non dimensional pressure of 2.0. Fig. 4.13a shows the
deformed configuration, where wrinkling is still present, the deformation being highly
non-homogeneous. A top view of the deformed configuration is represented in Fig.
4.13b. This gives a better image of the change from the homogeneous deformation in
Fig. 4.3b, to the actual non-homogeneous deformation due to pressurization. The
tension trajectories are represented as previously by dashed lines at zone-centered points,
showing the existence of two small wrinkled regions situated at the opposite obtuse
corners. The rest of the membrane is tense, the wrinkling here being suppressed as a
consequence of the pressurization; however the associated principal directions of stress
are not represented this time, since slack regions are not present. The maximum stretch
is 1.515 and occurs at the centers of the zones immediately adjacent to the middle of the
lateral sides forming the boundary. Increasing the shear angle to 45° and maintaining the
same uniform pressure, an extension of the wrinkled zones occurs, as can be seen in the
top view in Fig. 4.13c. This latter deformation is accompanied by an increase in the

maximum stretch to 1.738.



Fig. 4.13a Combined shear ard pressurization of square membrane;
deformed configuration for shear angle of 30°
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Fig. 4.13c Combined shear and pressurization of square membrane;
deformed configuration for shear angle of 45°, top view
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4.4.2 Circular Ogden and Neo-Hookean Membranes
Subjected to Uniform Pressure Combined with the
Reduction in Length of Boundary Circumference

A circular membrane with unit radius subjected to uniform pressure and
displacement boundary conditions is analyzed. The meshed reference configuration is
represented in Fig. 4.14a. The Ogden material is used first. The mmembrane is subjected
to a uniform non dimensional pressure equal with 1.0, and at the same time the radius of
the boundary is decreased to 0.8 of its initial value, leading to a 20% reduction in the
length of circumference. Fig. 4.14b shows the deformed configuration, which is
axisymmetric. Wrinkling occurs in a region of constant width immediately adjacent to the
boundary, the tension trajectories being represented as usual by dashed lines at zone-
centered points. The rest of the membrane is tense, and the principal directions of stress
are not shown in the tense region. The maximum stretch A4 is 1.15 and occurs at the zone
centered points immediately adjacent to the apex of the deformed surface.

Maintaining the boundary fixed, the pressure is increased to 2.0. The axisymmetric
deformation is shown in Fig. 4.14c. A decrease in the width of the wrinkled region is
noticed. The maximum stretch increases to 1.44, and occurs at the same location as
previously.

Next, the radius of the boundary is decreased to 0.5 of its initial value, and the
uniform pressure is maintained equal with 2.0. The corresponding deformed
configuration is shown in Fig. 4.14d, and it is no longer axisymmetric. Radial, partially
wrinkled folds may be observed in the region adjacent to the boundary. The maximum
stretch has the same location as previously, its value being 1.25.

In the following examples, the radius of the boundary is maintained at 0.5 of
its initial value, and the pressure is increased in steps. Cross sections through the
meridians of the deformed configurations obtained for numerical values of the non

dimensional pressure p of 1.0, 2.0, 2.5, 2.675, 2.6775, 3.0 and 3.5 are represented
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Fig. 4.14a Circular membrane; meshed reference configuration
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Fig. 4.14b Circular Ogden membrane
subjected to a non dimensional pressure of 1.0
combined with a 20% reduction in the length of boundary circumference
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Fig. 4.14c Circular Ogden membrane
subjected to a non dimensional pressure of 2.0
combined with a 20% reduction in the length of boundary circumference
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Fig. 4.14d Circular Ogden membrane
subjected to a non dimensional pressure of 2.0
combined with a 50% reduction in the length of boundary circumference
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in Fig. 4.15. The corresponding maximum stretches 2 are: 1.11, 1.25, 1.44, 1.77,
9.38, 10.20 and 11.36, respectively. These occur at the zone centered points
immediately adjacent to the apex of the deformed surface. Comparing the cross sections
for the pressures 2.675 and 2.6775, it is observed that for an increase in pressure of only
0.93%, a considerable expansion in the volume enclosed by the deformed configuration
and the horizontal plane occurs. As expected, a substantial growth in the maximum
stretch A from 1.77 to 9.38, representing a 429.94% increase is found. This behavior is
characteristic of bifurcation observed in spherical membranes with Ogden strain energies
subjected to controlled pressure, where for a critical value of the pressure there is more
than one equilibrium solution (Ogden, 1984). At this pressure, the solution "snaps
through" from the smaller to the larger volume. In spherical equilibria, the variation of
the pressure versus the stretch (or the volume) exhibits an increase to a maximum, a
decrease to a minimum and again an increase. For large enough pressures, the computed
configurations are nearly spherical, so qualitatively similar behavior is expected. In
particular, DR does not pick up the unstable branch on which descending pressure
accompanies increasing stretch or volume. Since these are DR solutions, it is concluded
that in the class of dynamics and initial conditions considered, the solutions obtained for
pressures above the critical value are asymptotically dynamically stable. It is also found
that partial wrinkling is present in all solutions below the critical pressure, whereas
above this pressure no wrinkling is observed.

Next, a circular membrane of neo-Hookean material is analyzed. The dimensions
and the meshed reference configuration are the same as for the Ogden membrane. The
radius of the membrane is reduced from its initial value of 1.0 to 0.5. Maintaining the
boundary fixed, the pressure is increased in steps. Cross sections through the meridians
of the deformed configurations obtained for numerical values of the non dimensional
pressure p of 1.0, 2.0, 2.5 and 2.612 are shown in Fig. 4.16a. The corresponding

maximum stretches A are: 1.11, 1.27, 1.55 and 1.84 respectively. These occur as in the
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Fig. 4.15 Cross-sections through meridian of deformed configurations
of circular Ogden membrane for different numerical values of pressure
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Fig. 4.16a Cross-sections through meridian of deformed configurations
of circular neo-Hookean membrane for different numerical values of pressure
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Fig. 4.16b Comparison of cross-sections through meridian of deformed
configurations of circular neo-Hookean and Ogden membranes,
for the same numerical values of pressure
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previous case at the zone centered points immediately adjacent to the apex of the
deformed surface. All solutions exhibit partial wrinkling in a zone adjacent to the
boundary, the width of the region decreasing with the increase in pressure. No
solutions are obtained beyond the pressure of 2.612. Thus, with increasing pressure, the
neo-Hookean material exhibits a different behaviour than the Ogden material: the
variation of pressure versus stretch shows only an increase toward a maximum, beyond
of which no solutions exist. At low pressures (< 1.0), both materials deliver the same
solutions. For pressures greater than 1.0, the neo-Hookean material gives larger
principal stretches A. The difference in A between the neo-Hookean and Ogden matcrial
increases with increasing pressure. This can be observed in Fig. 4.16b, showing a
comparison between the cross sections through the meridians of the deformed
configurations of both neo-Hookean and Ogden membranes, for the numerical values of
the non dimensional pressure p of 1.0, 2.0, 2.5 and 2.612. The corresponding
maximum principal stretches for the neo-Hookean material are 1.11, 1.27, 1.55 and
1.84, as mentioned above, whereas for the Ogden material these are 1.11, 1.25, 1.44

and 1.56.
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4.5 Ogden Membranes Subjected to Point Loads,
Uniform Pressure and Displacement
Boundary Conditions

4.5.1 Circular Membrane Subjected to a Central Poiint Load

A circular membrane with unit radius subjected to a vertical, central point load and
displacement boundary conditions is analyzed. The :neshed reference configuration is
represented in Fig. 4.14a. The boundary of the membrane is maintained fixed and the
concentrated force is oriented upwards and has a non-dimensional intensity of 0.25.

The analytical forinulation of a similar problem (Li and Steigmann, 1994) shows that
the larger principal stretch is singular at the point of application of the force. However,
the present model can be used to describe the associated deformation, since the
concentrated force is applied at a node of the mesh, whereas the stretches are evaluated at
zone centered points, where they remain finite.

The deformed configuration is shown in Fig. 4.17a. It is axisymmetric and
completely tense. The largest computed principal stretch 4 is 6.94, and is located at the
zone centered points immediately adjacent to the central node, where the force is applied.

Next, the lateral (vertical) displacement of the central node caused by the previously
applied force is maintained constant, no force is applied, and the radius of the boundary
is decreased from its initial value of 1.0 to 0.8, leading to a 20% reduction in the length
of the circumference of the boundary circle. (The intensity of the point load needed to
produce the imposed displacement at the central node can be easily computed.) The
resulting deformed configuration is shown in Fig. 4.17b, and is axisymmetric, with
wrinkling present in the lower 2/3 of the lateral surface of the cone. It can be observed
that the stress trajectories form straight lines on the deformed surface, as predicted by

tension field theory. The largest computed principal stretch A is 5.76, and is located at
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Fig. 4.17a Circular Ogden membrane subjected to a central
vertical point load; deformed configuration.
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Fig. 4.17b Circular Ogden membrane subjected to a central
ertical point load, combined with a 20% recuction in the length of
circumference of boundary; deformed configuration
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the zone centered points immediately adjacent to the central node, where the displacement

is prescribed.

4.5.2 Circular Membrane Subjected to Uniform Pressure
and a Central Point Load

The circular membrane with unit radius and meshed reference configuration
represented in Fig. 4.14a is next subjected to uniform pressure, a central vertical point
load, directed downwards and different displacement boundary conditions.

First, the numerical value of the non-dimensional uniform pressure is set equal to
1.0 and a concentrated force of intensity 0.4 is applied at the central node. The boundary
is maintained fixed. The deformed configuration is represented in Fig. 4.18a. The
frontal view of a central cross section through the deformed membrane (Fig. 4.18b)
shows the details of deformation of the region adjacent to the application point of the
force. The deformed configuration is axisymmetric and no wrinkling is indicated. The
largest computed principal stretch 4 is 6.35, and is located at the zone centered points
immediately adjacent to the central node, where the concentrated force is applied.

Next, the lateral (vertical) displacement of the central node caused by the previously
applied force is maintained constant, no force is applied except for the uniform pressure
which is kept equal to 1.0, and the radius of the boundary is decreased trom its initial
value of 1.0 to 0.8, leading to a 20% reduction in the length of the circumference of the
boundary circle. (The magnitude of the concentrated force needed to produce the
imposed lateral deflection at the central node can be easily computed.) Fig. 4.18c shows
the frontal view of a central cross section through the dcformed configuration. The
deformation is axisymmetric and wrinkling is present in the region adjacent to the

boundary. The maximum computed principal stretch A is 6.46, and is located at the zone
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Fig. 4.18a Pressurized circular membrane
subjected to a central vertical point load directed downwards
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Fig. 4.18b Cross section through pressurized circular membrane
subjected to a central vertical point load directed downwards
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Fig. 4.18c Cross section through pressurized circular membrane
subjected to a central vertical point load directed downwards, combined
with a 20% reduction in the length of boundary circumference
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centered points immediately adjacent to the ceriral node, where the displacement is
prescribed.

An unexpected response of the membrane is obtained by further reducing the radius
of the boundary to a value of 0.5, while maintaining the pressure and the lateral
displacement of the central node at their previous values. The resulting deformation is
no longer axisymmetric. An oblique view, a top and a frontal view of the deformed
configuration are represented in Fig. 4.19a, b, and c respectively. The oblique and the
frontal view of a central cross section through a meridian of the deformed configuration
show details of the deformation (Fig. 4.19d, e, and f ). A combination of fine, medium
and large wrinkles is observed. The maximum computed principal stretch 4 is 5.9, and
occurs at the zone centered points immediately adjacent to the central node, where the
displacement is prescribed.

The numerical results reveal a periodic non-axisymmetric structure in the
deformation, corresponding to pleats in the membrane. These are reminiscent of the
pneumatic hinges observed in flexure of pressurized membrane tubes (Lukasiewicz and
Glockner, 1984-1985). The computed deformation contains regions of self penetration
of the membrane which would not occur in practice. The model does not preclude this
possibility, and that is why this occurs in the solution. To model this behaviour
properly, the effects of self contact would need to be taken into consideration. However,
this is beyond the scope of the present work.

In an experimental study on spherical membranes subjected to vertical concentrated
loads, Szyszkowski and Glockner (1987b) observed a change in the wrinkling pattern,
from a large number of regularly distributed small wrinkles present during the initial
stages of deformation, to a wrinkled area dominated by a few 'large’ wrinkles appearing
at advanced stages of deformation. The authors explained the difference in wrinkling
patterns as a consequence of the small, but finite real bending stiffness existing in the
membrane material. The numerical results obtained with the present model show the

development of such a change in the wrinkiing pattern, from the uniformly distributed
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Fig. 4.19a Pressurized circular membrane subjected to a central
vertical point load directed downwards, combined with a 50%
reduction in the length of boundary circumference
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Fig. 4.19b Pressurized circular membrane subjected to a central
vertical point load directed downwards, combined with a 50%
reduction in the length of boundary circumference; top view



129

Fig. 4.19¢ Pressurized circular membrane subjected to a central
vertical point load directed downwards, combined with a 50% reduction
in the length of boundary circumference; frontal view
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Fig. 4.19d Cross section through pressurized circular membrane subjected
to a central vertical point load directed downwards, combined with a 50%
reduction in the length of boundary circumference; oblique view
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Fig. 4.19¢ Cross section through pressurized circular membrane subjected
to a central vertical point load directed downwards, combined with a 50%
reduction in the length of boundary circumference; frontal view
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Fig. 4.19f Meridian of pressurized circular membrane subjected
to a central vertical point load directed downwards, combined with a 50%
reduction in the length of boundary circumference; frontal view
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wrinkles in Fig. 4.18c, corresponding to the initial stages of wrinkling, to the three large
dominating wrinkles in Fig. 4.19a,b, corresponding to an advanced stage of
deformation. However, the mode! used for these computations does not account for the
bending stiffness of the membrane.

These serendipitous findings regarding self contact of the membrane, a condition

rarely encountered in elasticity, should generate additional interest in tension field theory.



Chapter 5

Experimental Models

A number of experimental models were constructed for the analysis of the real
behaviour of the membranes. Planar as well as 3D deformations of the membranes
were considered, starting in all cases from plane reference configurations. Although
some of the geometries of the models are slightly different from those used in the
numerical analysis, the qualitative response obtained with these models confirms the
predictions of the numerical method.

First, a quadrilateral wooden frame is used as a support for the membranes. The
frame is composed of four equal-length bares, articulated together at their extremities.
A thin polyethylene sheet of square or rectangular shape is attached to the support in
certain ways, ensuring the required boundary conditions.

Fig. 5.1a shows the reference configuration of a square sheet having all four
margins attached to the frame. Displacement boundary conditions are imposed by
deforming the square frame into a rhombus. The lateral bares, initially in a vertical
position, are each rotated clockwise through an angle of 30° about the axes passing
through the lower hinges, perpendicular to the plane of the membrane, while the
inferior bar is maintained fixed in a horizontal position. The upper bar has a circular

translation. As a consequence, the shearing of the membrane occurs in conditions close
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Fig. 5.1a Experimental model of square membrane;
initial configuration
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to those of the numerical example at § 4.2.1, where a homogeneous deformation due
to simple shear was analyzed. The deformed configuration obtained with this
experimental model is shown in Fig. 5.1b. Since the bending stiffness of the membrane
is very small, a high number of small height wrinkles can be observed. This is a
homogeneous deformation, the trajectories of tensile stress coinciding with the crests of
the wrinkles. Comparing this deformation to the one in Fig. 4.3b (§ 4.2.1), obtained
with the numerical model, a very good qualitative agreement is observed.

The next model consists of a rectangular membrane with traction-free lateral
boundaries and displacement boundary conditions imposed on the lower and upper
sides by attaching them to the corresponding bares of the frame. The reference
configuration is represented in Fig. 5.2a. As in the previous case, the frame is
deformed into a rhombus, the lateral sides being each rotated clockwise through an
angle of 30° (measured from the vertical). The deformed configuration in Fig. 5.2b
shows a non-homogeneous deformation. A parallelogram shaped wrinkled region
covers most of the membrane surface. Two triangular slack regions that bulge out of
plane are located at the upper left and lower right comners, and two narrow tense regions
can be identified immediately adjacent to the upper third of the right traction-free
boundary, respectively to the lower third of the left traction-free boundary. Although
the ratio of height to length of the membrane is different from the one used in the
numerical example at § 4.3.1, a very good qualitative agreement is observed when
comparing the deformed configuration in Fig. 5.2b obtained with the experimental
model, to the one in Fig. 4.10e,f obtained with the numerical method.

Another experimental model is shown in Fig. 5.3a, and represents the reference
configuration of a square membrane with a traction-free central, circular hole. As in
the previous two examples, the membrane is sheared by deforming the square frame
into a rhombus, the lateral sides being again rotated through an angle of 30°.

Displacement boundary conditions are imposed on all four membrane margins which
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Fig. 5.1b Experimental model of square membrane
subjected to shearing
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Fig. 5.2a Experimental model of rectangular membrane
with traction-free lateral boundaries; initial configuration
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Fig. 5.2b Experimental model of rectangular membrane
with traction-free lateral boundaries subjected to shearing
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Fig. 5.3a Experimental model of square membran -
with traction-free circular hole; initial configuration
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are attached to the frame, while the circular hole remains traction-free. The deformed
configuration in Fig. 5.3b consists of a combination of tense, wrinkled and slack
regions. Were it not for the presence of the hole, the deformation would be
homogeneous, as shown in Fig. 5.1b. However, in the presence of the hole the
deformation is highly non-homogeneous. The circular hole deforms into an ellipse,
while two cone-shaped slack regions that bulge out of plane appear at the extremities of
the hole. Four tense regions can be easily identified, the rest of the membrane being
wrinkled. A very good qualitative agreement is observed when comparing the
deformed configuration in Fig. 5.3b, obtained with the experimental model, to the one
in Fig. 4.11b,d (§ 4.3.2), obtained with the numerical method.

Next, an experimental model is constructed by attaching the external boundary of
an annular membrane to a circular plexiglass frame, while the internal boundary is
attached to an aluminum hub mounted at the center of the annulus. The hub can be
rotated with respect to a central axis, perpendicular to the plane of the membrane,
leading to a plane deformation. As well, it can be displaced out of plane, parallel to
itself, causing a 3D deformation of the membrane. In this case a thir latex rubber
sheet is used. The ratio of the radii of the inner and outer circular boundaries of the
membrane is 0.25. The reference configuration is represented in Fig. 5.4a.
Displacement boundary conditions are enforced on both internal and external
boundaries by maintaining the circular frame fixed, while rotating the hub
counterclockwise through an angle of 5°. As can be seen in Fig. 5.4b, a tension field
forms in an annular region immediately adjacent to the hub, the rest of the membrane
being tense. By increasing the rotation angle to 20°, the extent of the wrinkled region
increases (Fig. 5.4c). The trajectories of tensile stress are in both cases straight lines.
These findings are in accordance with the results of the numerical analysis obtained
with DR (§ 4.2.2), as well as with the results of Li and Steigmann (1993). It appears
that the bending stiffness of the rubber sheet is greater than the bending stiffness of the
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Fig. 5.3b Experimental model of square membrane
with traction-free circular hole subjected to shearing
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Fig. 5.4a Experimental model of circular annular membrane;
initial configuration
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Fig. 5.4b Experimental model of circular annular membrane
subjected to plane twisting (5°)
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Fig. 5.4c Experimental model of circular annular membrane
subjected to plane twisting (20°)
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Fig. 5.4d Experimental model of circular annular membrane
subjected to combined lateral deflection and twisting (90°)
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Fig. 5.4e Experimental model of circular annular membrane
subjected to combined lateral deflection and twisting (90°);
details of deformation near hub
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Fig. 5.4f Experimental mo-lel of circular annular membrane
subiected to combined lateral deflection and twisting (180°)
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polyethylene sheet, since fewer wrinkles of larger height are observed in the tension
field of the deformed membrane when rubber is used, than in the case of polyethylene.
However, a difference in thickness of the two membranes may also influence the
results, the rubber membrane being thicker than the polyethylene one.

Finally, a 3D deformation of the annular membrane is obtained by rotating th> Yub
through an angle of 90°, whi' simultaneously displacing it out of planc a ir..unt
equal with the outer radius of the annulus. The deformed configuratior. .. s*.own in
Fig. 5.4d and Fig. 5.4e. A wrinkled region appears in the vicinity of the hub, the
trajectories of tensile stress forming again straight lines. This can also be observed in
Fig. 5.4f, where the rotation angle was increased to 180°. This is in accordance with
the analytical result known from tension field theory, which requires that stress
trajectories form families of straight lines on the deformed surface (Steigmann, 1990).
For axisymmetric deformations, the surface must then be a sector of a single-sheet
hyperboloid of revolution wherever it is wrinkled. This can be particularly well
observed in Fig. 5.4f. Although the present experimental model does not permit the
reduction in circumference of the inner boundary, a comparison of the deformed
configuration in Fig. 5.4.d obtained with the experimental model for combined rotation
and lateral displacement of the membrane, and the one in Fig.4.7d, obtained with the
numerical model for the case of combined twist and lateral deflection with reduction in
circumference of the inner boundary (§ 4.2.2), snows a good qualitative agreement of

the results.



Chapter 6

Summary and Conclusions

A numerical method for the static analysis of elastic membranes is presented in this
thesis. The method is applicable to the study of tension fields sssociated with
wrinkling in isotropic elastic membranes undergoing finite deformations.

The tension field generated by wrinkling has long been a problem of concern in the
design of membrane structures, the analysis of wrinkling being important for ti-e
prediction of structural response. Wrinkling is initiated by the loss of prestress and
appearance of compressive stresses, urder the action of a specific loading and/or
certain boundary conditions. It represents a localized buckiing phenomenon. The
configuration of the wrinkled region depends on the small Lunaing stiffness of the
material. Membrane theory in its usual form neglects this bending stiffness, delivering
compressive stresses in the wrinkled regions. Such deformations are unstable and
therefore not observable as equilibrium states. Stable solutions may be obtained by
employing shell theory. Another alternative is tension field theory, which is much
simpler from the point of view of the analysis. However, by employing a relaxed
strain energy density, tension field theory is automatically incorporated into ordinary
membrane theory, leading to stresses that are never compressive and therefore to

deformations that satisfy this necessary condition for stability.
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A relaxed strain energy density is constructed and employed in the method
developed in this thesis, in order to accommodate the wrinkling effect while retaining
the analytical simplicity of membrane theory.

The numerical procedure is based on the Dynamic Relaxation Method. This is an
explicit, iterative technique in which the static solution is obtained as the steady state
part of the damped dynamic response of the structure. Dynamic Relaxation does not
require the construction or inversion of the stiffness matrix and is therefore particularly
well suited for the present class of problems, which are characterized by ill-conditioned
stiffness matrices, due to the presence of wrinkling. Dynamic Relaxation has also the
advantage of delivering asymptoticall:' dynzmically stable solutions.

The numerical scheme is obtained from the spatial and temporal discretizations of
the PDEs describing the damped motion of the membrane. The internal forces are
obtained from the Euler-Lagrange equations. A finite difference technique derived
from Green's theorem is used for the spatial discretization. The resulting system of
ODE:s is further integrated in time by a central difference time integrator. Fictitious
mass and damping characteristics are chosen at each time step such that the static
solution is achieved with the smallest number of steps.

Eesides its simplicity, Green's theorem differencing method avoids the
inconvenience of mapping techniques, being applicable to uniform as well as irregular
types of meshes, which can be fitted to any shape of the boundary.

Also, this method allows for the solution of problems involving concentrated loads.
The analytical formulations of such problems contain singularities. However, the
present model can be used to obtain the associated deformation, since the concentrated
loads are applied at nodal points of the mesh, whereas the stretches are evaluated at
zcne-centered points, where they remain finite.

Arbitrary, conservative loading and arbitrary, planar geometries of the stress-free
reference configuzation are considered. Solutions of a number of boundary value

problems are obtained and analyzed. The effects of various boundary and loading
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conditions on the response of the membrane are examined. A good agreement with
existing exact solutions is observed. As well, the qualitative response obtained with
experimental models confirms the predictions of the numerical method.

The method developed in this thesis can be further adapted in order to permit the
analysis of problems involving initially curved surfaces, nonuniform pressure loading,
the presence of gravity, the case of orthotropic materials (e.g. networks) as well as the
case of anisotropic materials. Also, temperature effects may be included. The problem
of self contact, a condition rarely encountered in elasticity, but which occurred in one
of the boundary value problems considered in chapter 4, could as well bc modeled in

the present context. This are some possible directions to be pursued in the future.
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