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ABSTRACT 

The strength reduction factors in the Canadian masonry design standard were last calibrated in the 

1980s. The factors were last updated (2004) based on reliability studies performed on reinforced-

concrete structures, but no masonry-specific reliability analyses were conducted to support this 

change. Uncertainty remains as to whether the current masonry standard leads to unsafe or overly 

conservative designs.  

Modern masonry construction is comprised, in its majority, of walls (shear walls and out-of-plane 

walls). This study investigates the reliability levels for non-slender reinforced masonry walls under 

combined axial load and out-of-plane bending, and compares the results with reliability analyses 

performed in walls made of reinforced concrete. Comparing walls made of two materials under 

similar loads will allow an objective analysis of the reliability levels in the current masonry 

standard.  

The results show reliability indices for masonry and concrete walls are influenced by the amount 

of reinforcement in the walls and the compressive strength of the materials. Overall, for the same 

compressive strength and reinforcement ratio, masonry and concrete walls had similar reliability 

indices, although masonry showed higher sensitivity to changes in these parameters. The reliability 

of singly reinforced walls of either material was not significantly sensitive to changes in the 

compressive strength and reinforcement ratio. In contrast, doubly reinforced walls exhibited 

sensitivity to these parameters. Doubly reinforced masonry walls were more sensitive to changes 

in compressive strength and reinforcement ratios than doubly reinforced concrete walls. Doubly 

reinforced walls of either material generally had higher reliability values than singly reinforced 

walls. 
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Overall, the study shows that it is reasonable to assume similar reliability values for masonry and 

concrete walls with comparable compressive strengths and reinforcement ratios. However, 

enhanced supervision control is required for masonry construction because their reliability is very 

sensitive to workmanship factors. Reducing variability through enhanced supervision control of 

masonry would lead to increase in safety and, consequently, an increase in the strength reduction 

factor. This, in turn, results in a higher design capacity of structural masonry. 
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1 INTRODUCTION 

1.1 Background 

The Canadian standard for the design of masonry (CSA S304) has been in the limit states format 

since 1994. It was developed from reliability studies performed on masonry elements during 1970s 

and 1980s (Turkstra and Daly, 1978; Turkstra and Ojinaga, 1980; Turskstra et al., 1983; Turskstra, 

1989). The studies were based on working stress design approach, and utilised the limited 

experimental data and statistical information available at the time.  

In 2004, the material resistance factor for masonry (m) in the standard was revised from 0.55 to 

0.60 and the value was retained in the last revision of the standard, CSA S304-14. This change 

was justified by simple calculations (Laird et al., 2005), rather than being backed by masonry-

specific reliability analyses. There remains uncertainty as to whether the masonry standard leads 

to unsafe or overly conservative designs. 

More recent studies have been made to assess the reliability levels of the design expressions in the 

current standard (CSA-S304-14) using recent statistical information of loads and resistances. 

These studies proposed a more comprehensive limit state function (Moosavi, 2017), and tackled 

parameters such as slenderness, and second order and lateral load effects (Guzman, 2022). 

However, there is a lack of studies that compare the reliability levels of reinforced masonry walls 

with that of walls made of similar material, such as reinforced-concrete.  

Because of the similarities between reinforced masonry (RM) and reinforced-concrete (RC), many 

of the equations and principles used in their designs are similar. However, it is not known if the 

structural elements made from either material offer the same safety or reliability levels as the 

statistical parameters of masonry and concrete materials have fundamental differences. Clearly, 

there is a need to know how the reliability levels of masonry walls compare with that of walls 

made with reinforced-concrete.  

In this research, the reliability levels of non-slender reinforced masonry and concrete walls were 

assessed and compared for walls under combined axial load and out-of-plane bending. The 

assessment used the limit state function proposed by Moosavi (2017) and the fixed eccentricity 

approach for gravity loads. The First Order Reliability Method (FORM) was used to determine the 
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reliability index, making use of the most recent statistical information of loads and resistance. 

Walls having single and double reinforcement bars within the cross-section were analysed, 

reinforcement ratios and compressive strengths of masonry and concrete were varied, and their 

effects on the reliability indices were assessed.  

1.2 Problem Statement 

To the authors’ knowledge, there are no reliability-based studies that compare the safety levels of 

non-slender reinforced-masonry and reinforced-concrete walls subjected to gravity loads (dead 

load plus live load). There is a need of reliability studies that consider the most recent statistical 

information of loads and resistance to compare the safety levels of the current masonry standard 

(CSA S304-14) and concrete standard (CSA A.23.3-19) for loadbearing walls under out-of-plane 

effects.   

1.3 Objectives of the study 

The main objective of this study is to compare the reliability levels of non-slender masonry and 

concrete walls subjected to axial load and out-of-plane moments. To achieve this, the following 

specific objectives were defined: 

i. Conduct a literature review on the techniques available to perform reliability analyses of non-

slender masonry and concrete walls, and previous research efforts related to reliability 

analysis of masonry and concrete elements. 

ii. Determine the behavioural model for non-slender masonry and concrete walls and perform a 

sensitivity analysis to assess the effect of the material and geometrical parameters on the 

behaviour of non-slender walls under axial load and out-of-plane bending. 

iii. Perform a parametric reliability analysis comparison between masonry and concrete walls 

taken into consideration different reinforcement schemes (singly and doubly reinforced 

walls), different reinforcement ratios and compressive strengths. 

1.4 Scope 

This research focused on singly and doubly reinforced non-slender masonry and concrete walls 

designed as per the Canadian masonry and concrete design standard (CSA S304-14, CSA A23.3-

19). Only fully grouted masonry walls and concrete walls, under axial compression and out of 
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plane bending, with pinned-pinned boundary conditions were studied.  Out-of-plane shear is 

assumed not to govern the failure mode of the wall, which is assumed to be flexural.   

1.5 Thesis Organization 

This thesis is divided into five chapters, and their content is described as follows: 

Chapter 1: Presents an introduction to the problem investigated, and the objectives and 

scope of this thesis are discussed.  

Chapter 2: Contains a review of the literature available, including concepts and definitions 

of structural reliability analysis, a summary about previous research relevant to 

reliability analysis of masonry and concrete structures. 

Chapter 3: Contains the behavioural model used to build the interaction diagram between 

axial compression and out-of-plane bending moment, as well as the effect of the 

variation in the most important parameters (reinforcement ratio, compressive 

strength, thickness) on P-M interaction diagram. A sensitivity analysis is carried 

out to determine the effect of the material and geometrical parameters on the 

interaction diagram. 

Chapter 4: Presents the limit state function for eccentric gravity loads in non-slender 

elements. The first order reliability method is used to assess the reliability levels. 

The most recent statistical information for loading and resistance parameters is 

summarized. Properties of analyzed walls are discussed. Reliability levels of 

walls made of masonry and concrete are compared.  

Chapter 5: Outlines the conclusions drawn from this study and a series of recommendations 

for future studies on this topic. 
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2 LITERATURE REVIEW 

2.1 Introduction 

This chapter contains a review of the literature available, including concepts and definitions of 

structural reliability analysis. Firstly, the relevance of structural reliability analysis is presented, as 

well as definitions and descriptions of limit state, reliability analysis problem, and methods for 

structural reliability analysis. Secondly, a summary of the most relevant studies about reliability 

analysis of masonry and concrete structural elements subjected to an axial load and out of plane 

bending moment is presented. 

2.2 Structural Reliability Analysis 

The limit-state deign (LSD) philosophy was introduced in the Canadian masonry standard in 1994 

(CSA S304-94) and in the Canadian concrete standard in 1984 (CSA A23.3-84). The LSD states 

that the design of a structural member is satisfactory if the factored load effects are smaller than 

or equal to the factored design resistance (Equation 2.1): 

𝜙𝑅௡ ൒ 𝛾𝑆௡ (2.1) 

Where 𝜙 is the material strength reduction factor that accounts for variability of material properties 

and dimensions of structural elements, 𝑅௡ is the nominal resistance or the true resistance of a 

structural element, and 𝛾 is the so-called load factor, used to account for the variability of loading 

and the probability of having loads from different sources simultaneously. The parameter 𝛾 

depends on the type of load. Finally, the load effect, 𝑆௡, corresponds to a specific nominal load or 

a load combination acting on the member. 

In structural design, there are many sources of uncertainty either in the loads or in the resistance. 

Reliability analysis is an important tool for rational decision-making in the face of uncertainty, it 

deals with random variables instead of deterministic values, and the rational treatment of 

uncertainties. Because of these uncertainties, structures are expected to be designed with a 

reasonable safety level or finite probability of failure.  

Standards have evolved so that design criteria take into account some of the sources of uncertainty. 

Acceptable safety levels are achieved by specifying design values for minimum design loads, 
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maximum allow deflection as well as load/resistance factors in design guidelines. Such standard 

requirements are calibrated through reliability analyses (Moosavi, 2017).  

2.2.1 Limit State Function 

The first step to perform a reliability analysis is to establish a limit state that is a criterion for 

deciding whether the performance of the engineered product is satisfactory. It is the boundary that 

separates the safe (desired performance) and failure (undesired performance) domains (Nowak, 

2000). To perform a reliability analysis for a given limit state, the limit state needs to be defined 

mathematically as a limit state function (failure function). This function specifies the failure 

surface, typically obtained through a strength of materials or mechanical analysis for the structure. 

The limit state function (𝑔ሺ𝑿ሻ) for strength is normally defined as shown in Equation (2.2), 

𝑔ሺ𝑿ሻ ൌ 𝑅ሺ𝑿ሻ െ 𝑆ሺ𝑿ሻ (2.2) 

where R and S are the random variables that represent the resistance and the load effect, 

respectively, and X represents the vector containing all random variables such as those related to 

geometrical, material, load and workmanship parameters. 

2.2.2 Reliability Analysis Problem 

The reliability problem can be expressed as the calculation of the probability of failure, pf, defined 

as pf = Pሾ𝑔ሺ𝑋ሻ ൏ 0ሿ. Melchers and Beck (2018) generalized the reliability problem with n-

dimensional vector X of random variables involved, and it can be expressed as follows: 

𝑝௙ ൌ 𝑃ሾ𝑅ሺ𝑿ሻ ൑ 𝑆ሺ𝑿ሻሿ ൌ 𝑃ሾ𝑔ሺ𝑿ሻ ൑ 0ሿ ൌ න… න 𝑓𝑿ሺ𝑿ሻ𝑑𝑿
ீሺ௑ሻஸ଴

 (2.3) 

Here 𝑓௑ሺ𝑋ሻ is the joint probability density function (PDF) for the n-dimensional vector X of basic 

variables. Even for the case of 𝑔 ൌ 𝑅 െ 𝑆, which considers only two random variables, these 

integrals are difficult to evaluate, in general (Nowak, 2000). Therefore, the probability of failure 

is calculated indirectly using other procedures (Second Moment Reliability Index, First Order 

Reliability Method, the Monte Carlo Method, etc.). In the following section some of these methods 

are briefly discussed for completeness. 
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2.2.3 Second Moment Reliability Index 

As noted earlier, the probability of failure in Equation 2.3 is difficult to evaluate, so the concept 

of a reliability index is used to quantify structural reliability. The idea behind second moment 

reliability theory is that each variable is expressed solely in terms of its first two statistical 

moments, for example, by its mean and standard deviation. Some definitions of reliability indices 

proposed by different authors are presented as follows: 

The Cornell Reliability Index 

Cornell (1969) defined a reliability index (or safety index) 𝛽஼ as: 

β஼ ൌ
𝐸ሾ𝑔ሿ
𝐷ሾ𝑔ሿ

 (2.4) 

Where the symbols 𝐸ሾ𝑔ሿ, and 𝐷ሾ𝑔ሿ are the expected values and standard deviation of the limit 

state function (𝑔) respectively. This definition is illustrated geometrically in Figure 2.1. For one 

dimensional case the failure surface is simply the point 𝑔 ൌ 0. The concept behind this definition 

is that the distance from expected value to the limit state surface provides a good measure of 

reliability. The distance is measured in units of the standard deviation 𝐷ሾ𝑔ሿ. 

 
Figure 2.1: Geometrical illustration of the Cornell reliability index (Madsen et al., 1986). 

 

The original formulation by Cornell was written as the difference between a resistance 𝑅 and the 

corresponding load effect 𝑆: 

𝑔 ൌ 𝑅 െ 𝑆 (2.5) 

And if R and S are uncorrelated, the reliability index becomes. 

β஼ ൌ
𝐸ሾ𝑅ሿ െ 𝐸ሾ𝑆ሿ

ඥ𝑉𝑎𝑟ሾ𝑅ሿ ൅ 𝑉𝑎𝑟ሾ𝑆ሿ
ൌ

𝜇ோ െ 𝜇ௌ
ඥ𝜎ோଶ ൅ 𝜎ௌଶ

 (2.6) 

gβ
c
D[g]

SAFE
0

FAILURE E[g]
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Where the symbols 𝜇ோ, 𝜇ௌ, 𝜎ோ, 𝜎ௌ are the means and standard deviations of the resistance and 

loads. If the random variables are normally distributed and uncorrelated, the reliability index is 

related to the probability of failure by 

𝑃௙ ൌ Фሺെ𝛽ሻ (2.7) 

If the random variables are normally distributed and uncorrelated, then this formula is exact in the 

sense that 𝛽 and 𝑃௙ are related by Equation (2.7). Otherwise, this equation provides only an 

approximate means of relating 𝛽 to a probability of failure. 

If the failure surface is a hyperplane (linear limit state function): 

𝑔ሺ𝑋ଵ,𝑋ଶ, … ,𝑋௡ሻ ൌ 𝑎଴ ൅ 𝑎ଵ𝑋ଵ ൅ 𝑎ଶ𝑋ଶ ൅⋯൅ 𝑎௡𝑋௡ ൌ 𝑎଴ ൅෍𝑎௜𝑋௜

௡

௜ୀଵ

 (2.8) 

Where the 𝑎௜ terms (i=0, 1, 2, …, n) are constants and the 𝑋௜ terms are uncorrelated random 

variables. The reliability index is determined as: 

𝛽 ൌ
𝑎଴ ൅ ∑ 𝑎௜𝜇௑೔

௡
௜ୀଵ

ට∑ ሺ𝑎௜𝜎௑೔ሻ
ଶ௡

௜ୀଵ

 
(2.9) 

As seen in Equation (2.9), the reliability index, 𝛽, is calculated only using the means and standard 

deviations of the random variables. Therefore, this 𝛽 is called a second-moment measure of 

structural safety, only the first two moments (mean and variance) are required to determine 𝛽. 

First Order Second Moment Reliability Index 

In the case of a nonlinear function, its mean value and standard deviation cannot be calculated 

solely from the second moment representation of the random variables. One way to approach this 

is to linearize the limit state function. One possible procedure is to use the linear term in a Taylor 

series expansion around a point. The result is  

𝑔ሺ𝑋ଵ,𝑋ଶ, … ,𝑋௡ሻ ൎ 𝑔ሺ𝑥ଵ
∗, 𝑥ଶ

∗, … , 𝑥௡∗ሻ ൅෍ሺ𝑋௜ െ 𝑥௜
∗ሻ
𝜕𝑔
𝜕𝑋𝑖

ฬ
ሼ௫೔∗ሽ

௡

௜ୀଵ

 (2.10) 
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Where ሺ𝑥ଵ
∗, 𝑥ଶ

∗, … , 𝑥௡∗ሻ is the point about which the expansion is performed. One choice for this 

linearization point could be the mean values of the random variables. Since Equation (2.10) is a 

linear function, it can be written to look exactly like Equation (2.8), and after some algebraic 

manipulations, the following expression for 𝛽 results: 

𝛽 ൌ
𝑔൫𝜇௑భ ,𝜇௑మ , … , 𝜇௑೙൯

ට∑ ሺ𝑎௜𝜎௑೔ሻ
ଶ௡

௜ୀଵ

   𝑤ℎ𝑒𝑟𝑒    𝑎௜ ൌ
𝜕𝑔
𝜕𝑋𝑖

ฬ
ሼఓ೉೔ሽ

 (2.11) 

The reliability index above is called First-Order Second Moment Mean Value Reliability Index. 

First order because first-order terms in the Taylor series expansion are used. Second moment 

because only means and variances are needed. Mean value because the Taylor series is about the 

mean values. 

One severe drawback of First-Order Second-Moment Mean Value Index is the invariance problem. 

This refers to the fact that the value of the reliability index depends on the specific form of the 

limit state function. Since the limit state function represents the failure surface (𝑔ሺ𝑋ሻ ൌ 0), it is 

possible to determine a new limit state function, which is equivalent to the first one, by dividing 

the first one by positive quantity that could represent a positive random variable. By doing this, 

the boundary or the regions in which the limit state function is positive or negative does not change. 

Therefore, the same fundamental limit state forms the basis for both limit state functions, so the 

probability of failure (as reflected by the reliability index) should be the same, which is not true 

due to the invariance problem. Hasofer-Lind (1974) solved this problem in their modified 

reliability index (as outlined in the section below). 

Hasofer-Lind Reliability index 

Hasofer and Lind (1974) proposed a modified reliability index that did not exhibit the invariance 

problem. The correction is to evaluate the limit state function at a point known as the “design 

point” instead of the mean values. This point is a point in the failure surface 𝑔 ൌ 0. 

Hasofer and Lind (1974) expanded the Cornell reliability index definition (in which the reliability 

index can be interpreted as a measure of the distance to the failure surface) for the case of more 

basic variables.  
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Hasofer and Lind (1974) proposed a nonhomogeneous linear mapping of the set of basic variables 

into a set of normalized and uncorrelated variables 𝑍௜. The mean value point in x-space is mapped 

into the origin of z-space, and the failure surface 𝐿௑ in x-space is mapped onto corresponding 

failure surface 𝐿௓ in z-space as shown in Figure 2.2. The geometrical distance from the origin in 

z-space to any point on 𝐿௓ is simply the number of standard deviations from the mean value point 

in x-space to the corresponding point on 𝐿௑. The smallest distance from the origin to a point on 

the failure surface was proposed by Hasofer and Lind (1974) as definition of a reliability index. 

 

Figure 2.2: Geometrical illustration of the Hasofer and Lind index (Madsen et al., 1986). 

For the simple case of two random variables R and S, these can be expressed in its standard form 

or reduced variables (nondimensional form of the variables) as follows: 

𝑍ோ ൌ
𝑅 െ 𝜇ோ
𝜎ோ

 
(2.12) 

𝑍ௌ ൌ
𝑄 െ 𝜇ௌ
𝜎ௌ

 
(2.13) 

The limit state function 𝑔ሺ𝑅,𝑄ሻ ൌ 𝑅 െ 𝑆 can be expressed in terms of the reduced variables, by 

expressing the resistance R and the load Q in terms of the reduced variables: 

𝑔൫𝑍ோ ,𝑍ொ൯ ൌ 𝜇ோ ൅ 𝑍ோ𝜎ோ െ 𝜇ொ െ 𝑍ொ𝜎ொ ൌ ൫𝜇ோ െ 𝜇ொ൯ ൅ 𝑍ோ𝜎ோ െ 𝑍ொ𝜎ொ (2.14) 
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For any specific value of 𝑔൫𝑍ோ ,𝑍ொ൯, Equation (2.14) represents a straight line, in the space of 

reduced variables 𝑍ோ and 𝑍ொ. The line of interest to us in reliability analysis is the line 

corresponding to 𝑔൫𝑍ோ ,𝑍ொ൯ ൌ 0. 

The general definition of reliability index was introduced by Hasofer and Lind (1974) as the 

shortest distance from the origin of reduced variables to the line 𝐺൫𝑍ோ ,𝑍ொ൯ ൌ 0, and it is illustrated 

in Figure 2.3: 

 

Figure 2.3: Reliability index defined as the shortest distance in the space of reduced variables 
(Nowak, 2000). 

2.2.4 First Order Reliability Method (FORM) 

In general, the basic random variables are not normally distributed. The fact that probability 

contents in various sets are well approximated in a standardized normal space leads to the idea of 

finding a one-to-one transformation. One of the most important improvements made to the Second 

Moment Reliability Index is that the actual probability distribution function can be approximated 

with normal probability distributions, and still good estimates of failure probability is obtainable. 

Also, the failure surface can be approximated by a linear surface. A reliability method based on 

this procedure is called First order reliability method (FORM). One drawback of this method arises 

when the failure surface exhibits very sharp curves (highly non-linear function). In such cases, 

FORM can provide practical approximations (Melchers, 1999). 
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Figure 2.4: Rackwitz-Fiessler procedure (Nowak, 2000) 

Obtain an initial design point ሼ𝑥௜∗ሽ by assuming values for 
n-1 of the random variables 𝑋௜. 

Solve the limit state equation 𝑔 ൌ 0 for the remaining 
random variable. 

For each of the design point values 𝑥௜∗ corresponding to a 
nonnormal distribution, determine the equivalent normal 

mean 𝜇௫೔
௘  and standard deviation 𝜎௫೔

௘ . 

Determine the reduced variates ሼ𝑧௜∗ሽ corresponding to the 
design point {𝑥௜∗}.  

Determine the partial derivatives of the limit state function 
with respect of each random variable and calculate 

column vector 𝐺௜ ൌ െ డ௚

డ௑௜
𝜎ቚ

ሼ௫೔∗ሽ
 

Calculate an estimate of  𝛽 ൌ
൛ீ೅ൟሼ௭∗ሽ

ඥሼீ೅ሽሼீሽ
 

ሼ𝛼ሽ ൌ
ሼ𝐺ሽ

ඥሼ𝐺்ሽሼ𝐺ሽ
 

Determine a new design point in reduced variates for n-1 
of the variables 𝑧௜∗ ൌ 𝛼௜𝛽 

Determine the corresponding design point values in 
original coordinates for the same n-1values 

 𝑥௜∗ ൌ 𝜇௑௜ ൅ 𝑧௜∗𝜎௑௜ 

Formulate the limit state function and determine the 
probability distributions and appropriate parameters for all 

random variables 𝑋௜ሺ𝑖 ൌ 1,2, …𝑛ሻ involved. 
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In this study, FORM is used to calculate reliability indexes (𝛽). This procedure considers the mean, 

Coefficient of variation (COV), and distribution type for each of the random variables. The 

algorithm for FORM procedure proposed by Rackwitz – Fiessler in 1978 is used in this research, 

following this procedure a computer code was developed in Wolfram Mathematica programming 

language (see Appendix A) and its validation was made by comparing results with those obtained 

with Rt software (Rt is a reliability software developed by researcher at University of British 

Columbia in Vancouver - Canada), see section 4.4. Details for the Rackwitz – Fiessler procedure 

can be found in Nowak (2000). The steps for the algorithm are described in Figure 2.4 above. 

2.2.5 Monte Carlo Simulation 

Simulation techniques are one possible way to solve reliability problems. The basic idea behind 

simulation is, as the name implies, to numerically represent some phenomenon and then observe 

the number of times some event of interest occurs (Nowak, 2000). The basic concept behind 

simulation is relatively straightforward, but the procedure can become computationally expensive 

and time consuming. 

Monte Carlo simulation uses a previous information data from testing that has certain mean and 

standard deviation and which can be fit with a certain probability distribution function in order to 

generate some results numerically without actually doing any physical testing. The basic idea of 

Monte Carlo Method is illustrated in Figure 2.5, where having information of test results, we can 

generate a sample of n test results using a special technique, this special technique is referring to 

Monte Carlo Method. 
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Figure 2.5: Schematic of the Monte Carlo Method (Nowak, 2000). 

The Monte Carlo method is often applied in three situations: 

1. It is used to solve complex problems for which closed-form solutions are either not possible 

or extremely difficult. 

2. It is used to solve complex problems that can be solved (at least approximately) in closed 

form if many simplifying assumptions are made. 

3. It is used to check the results of other solution techniques. 

2.2.6 Summary of the methods for structural reliability analysis 

Table 2.1 summarizes the main characteristics of the methods discussed above. 

Table 2.1: Main characteristics of methods for structural reliability analysis 

Method Characteristics 
  

Second Moment Reliability 
index 

Each variable is represented only by its mean and standard deviation 

  
First Order Reliability 

Method (FORM) 
In addition to the mean and standard deviation, the distribution type is 
considered. The problem arises when the failure surface exhibits very 

sharp curves   
  

Monte Carlo Simulation 
It can become computationally expensive and 

time consuming 
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2.3 Relevant studies about Reliability Analyses 

This section presents the most relevant studies on reliability analyses of masonry and concrete 

elements, with emphasis on those that refer to elements subjected to axial load and out-of-plane 

moment. The literature survey that follows is divided into two parts. The first part focuses on the 

reliability studies on masonry structures that are relevant to the development of a Canadian limit 

states masonry standard. In the second part, studies related to reliability studies on structural 

elements subjected to flexure and axial load are discussed. 

2.3.1 Development of a Canadian Limit States Masonry Standard  

As mentioned before, reliability analysis is often used in the development of design standards 

based on limit states. The scientific method of experiment and prediction began in Italy during the 

Renaissance with tests on the strength of trusses and beams, and test results were interpreted 

rationally in terms of stress (Madsen et al., 1986). Therefore, early design standards were 

formulated based on the concept of allowable stress. The Canadian masonry standard S304 was 

not an exception and was originally written in a working (allowable) stress design format. Then, a 

series of first order reliability analyses performed by Turkstra (1978, 1980, 1982, 1983, 1984, 

1989) helped to transform the Canadian masonry standard from working stresses to a limit states 

approach, with the objective of providing more uniform and economical designs. The load and 

resistance factors design philosophy was implemented in the 1994 edition of the Canadian masonry 

standard S304. 

Turkstra and Daly (1978) reviewed and compared the two moment criteria proposed by Hasofer 

and Lind (H-L), Paloheimo and Hannus (P-H), Ditlevsen and Skov (D-S), and the European Joint 

Committee on Structural Safety (J-C). One of the examples that was analyzed was a brick 

loadbearing masonry wall subjected to axial load and bending moment. Two nonlinear limit state 

function were analyzed based on a stress analysis, in which the stress due to the axial load and the 

out-of-plane bending moment applied to the wall was compared to the ultimate strength of the 

masonry material. The first limit state function was formulated for the case when the eccentricity 

was within one-sixth of the wall thickness, and the second was formulated when this limit was 

exceeded. The results indicated a significant sensitivity of the safety index to the criterion used in 
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analysis. The reliability index considering was found to be in the 4.25-2.70 range for the highest 

and lowest criterion, respectively. 

In standard calibration, the calculated reliability index (𝛽) are compared to target reliability 

indices, 𝛽், proposed by regional and national code committees. The target reliability index (𝛽்) 

depends on different variables such as the type of failure, the expected cost of failure, the cost of 

increasing the safety level, and the existing safety level. Table 2.2 shows recommended target 

reliabilities in the guidelines for the development of limit states design in Canada (CSA S408-11), 

and Table 2.3 shows the recommended values by the Joint Committee on Structural Safety (JCSS 

2001a). 

Table 2.2: Target Reliability Indices (βT ) from CSA S408 (2011) for 30-year (50-year). 

Safety Class Type of Failure 
 Gradual Sudden 

Not Serious 

  

2.5 (2.3) 3.0 (2.8) 
  

Serious (normal 
building) 

3.5 (3.4) 4.0 (3.9) 

 
Very Serious* 

 
4.0 (3.9) 

 
4.5 (4.4) 

   *It is assumed that for very serious consequences there is better quality control 

Table 2.3: Target Reliability Indices (βT ) from JCSS (2001a) for 1-year (50-year) reference 
period and ultimate limit states. 

Relative cost for enhancing 
the structural reliability 

Failure consequences 

 Minora Averageb Majorc 

Large 

   
3.1 (1.7) 3.3 (2.0) 3.7 (2.6) 

   

Medium 3.7 (2.6) 4.2 (3.2) d 4.4 (3.5) 

 
Small 

 
4.2 (3.2) 

 
4.4 (3.5) 

 
4.7 (3.8) 

ae.g. agricultural buildings 
be.g. office buildings, residential buildings or industrial buildings 
ce.g. bridges, stadiums or high-rise buildings 
d recommendation for regular cases 
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Due to the necessity and requirement of the building standard authorities in Canada to develop 

limit states design standards for all materials, Turkstra and Ojinaga (1980) conducted studies 

toward the development of a masonry standard based on limit states. Existing masonry wall design 

procedures were discussed and a reliability safety index for walls loaded by vertical forces causing 

minor axis bending was determined. Some of the challenges in the development of the masonry 

standard were the specification of basic material strengths, the treatment of the very significant 

uncertainties due to workmanship factor and the structural analysis available at the time. 

Tursktra et al. (1983) outlined the evolution of the limit states design procedures for masonry based 

on rational mechanics and a comprehensive safety index analysis. This study highlighted the 

workmanship factor as an important factor in masonry reliability because available test data shown 

that masonry strength depended on the construction practice, mason qualifications, and inspection. 

Three levels of workmanship factor were defined, namely, rigorous work inspection, moderate 

work inspection, and uninspected construction. Based on an analysis of available experimental 

data for masonry walls under axial compression and out-of-plane bending, Tursktra suggested to 

use 0.7 for masonry material resistance factor for rigorously inspected workmanship and 0.4 for 

normally inspected workmanship; however, these factors were determined with a value of 0.5 as 

strength reduction factor for reinforcement steel.  

In the early draft of the 1994 edition of the Canadian masonry design standard S304 (CSA 1994), 

the limit states design method was included as an alternative to the traditional allowable stress 

design method (ASD). Turkstra suggested a single class of inspection and a value of 0.40 for the 

masonry material resistance factor (𝜙௠) for both non-slender and slender elements. This value was 

not adopted because it was decided that slenderness effects would be taken into account separately 

using a resistance factor applied to the effective flexural stiffness of walls and columns. Based on 

an analysis by R.G. Drysdale (1992), published later as an appendix to the study by Laird et al. 

(2005), the masonry strength reduction factor was taken as 0.55.   

In the 1992 analysis by Drysdale, the reliability equation suggested by Lind (1971) was used. 

However, the Lind (1971) procedure was suggested to have several limitations (CSA S408-11), 

such as a lower accuracy than first order reliability methods that could overestimate material 
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resistance factors. Another disadvantage of the Lind equation is that load is separated from 

resistance, so different load combinations cannot be investigated. 

Laird et al. (2005) presented changes in the 2004 edition of Canadian masonry standard S304 from 

the previous 1994 edition. The most important changes were: the masonry material resistance 

factor changed from 0.55 to 0.60, and the resistance factor for member stiffness increased from 

0.65 to 0.75, and the limit state design became mandatory. These changes were motivated by the 

increase in the resistance factor for concrete in the 2004 edition of the Canadian standard A23.3 

from the previous 1994 edition (from 0.60 to 0.65). The changes in the masonry standard, however, 

were not accompanied by masonry-specific studies.                        

2.3.2 Reliability studies on Structural Elements subjected to flexure and axial load 

Reliability analyses of elements subjected to an axial load and bending moment can be broadly 

classified based on whether or not second order effects are considered. Section 10 of CSA S304-

14 addresses the requirements for design of reinforced masonry walls and columns. According to 

CSA S304, slenderness effects can be neglected when the ratio of effective height-to-thickness 

(slenderness ratio), 𝑘ℎ 𝑡ൗ , is less than (10 െ 3.5ሺ𝑒ଵ 𝑒ଶൗ ሻ), where 𝑘 is the effective length factor and 

𝑒ଵ and 𝑒ଶ are the smaller and larger virtual eccentricity of axial load acting on top and bottom of 

the wall. Slenderness effects are considered if 𝑘ℎ 𝑡ൗ ൏ 30. If 𝑘ℎ 𝑡ൗ ൐ 30 second-order effects are 

also considered and additional provisions apply such as: pinned conditions must be assumed at 

each end of the wall, walls shall be constructed with masonry units of 140 mm or more in thickness, 

the factored axial load cannot exceed 10% of the maximum axial load resistance, ductile response 

must be guaranteed.  

For non-slender elements, where the additional moment due to second order effects is negligible, 

the limit states are usually formulated comparing the resistance or capacity of the element, which 

is given by the axial load – bending moment interaction diagram, and the factored load effect, 

namely, the factored moment and axial load. The factored load effect is plotted as a point within 

the P-M interaction diagram and then related to the strength of the element based on the location 

of the point with respect to the interaction diagram (inside: safe, outside: not safe).    
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For slender elements, second order effects are accounted for in the determination of the total 

factored moment (𝑀௙௧), which is defined as the sum of the factored primary moment (𝑀௙௣) and a 

secondary moment arising from the combined effect of the axial load and out-of-plane deflections. 

the element can be designed using either the 𝑃𝛿 method or the Moment Magnifier (MM) Method. 

The 𝑃𝛿 method takes the designer to an iterative procedure until convergence is achieved; if the 

convergence is not achieved, then the wall is not stable. A simpler procedure is presented in the 

Moment Magnifier method, where the total moment is determined by multiplied the factored 

primary moment by a factor that takes into account the moments at each end of the wall, the critical 

axial load, the flexural stiffness of the wall, the factored axial load, etc. 

Tichy and Vorlicek (1962) proposed a new concept of safety for eccentrically loaded non slender 

reinforced-concrete columns based on the probabilities of occurrence of some minimum strength 

and allows to introduce statistical methods. For simple cases such as pure bending and pure 

compression, when one variable is analyzed, the concept of safety factor is straightforward. The 

problem is more complex for combined loading of axial load and moment because two different 

values of safety factors are associated, one for the axial load and another for the moment. It was 

pointed out that the safety levels depend on how the limit state function is defined. For a given 

load combination effect (𝑃௙ and 𝑀௙), expressed by a point S on the P-M interaction diagram, three 

possible distances can be drawn to the interaction curve (Figure 2.6). These can be seen as the 

reserve of strength that a column possesses. By taking the moment constant (“fixed moment” 

approach – line SA), the axial load is assumed to be the only parameter that varies, and the vertical 

distance between the load and the resistance is seen as reserve of strength or safety factor of the 

element.  By taking the axial load constant (the “fixed axial load” approach – line SC), the moment 

is allowed to vary, and the horizontal distance is seen as reserve of strength or safety factor of the 

element. Finally, if both variables , the axial load and the bending moment, are assumed to increase 

in the same proportion, the eccentricity is kept constant (the “fixed eccentricity” approach – line 

SB), and the distance in the direction of the given eccentricity is taken as a reserve of strength or 

safety factor of the element.  
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Figure 2.6: Three possible Limit-State Functions on the P-M interaction diagram. 

Ellingwood (1977) examined the resistance of a non-slender reinforced-concrete (RC) column 

using Monte-Carlo techniques, and determined the sensitivity of the uncertainty in resistance to 

changes in the section geometry, strength properties, quality control, and load eccentricity. 

Ellingwood agreed with Tichy that resistance of a reinforced-concrete column or its margin of 

safety may be defined in several ways, finding that the fixed eccentricity approach was often 

applicable in columns under axial load and bending moment. The quality control was addressed 

by considering different coefficient of variation in the concrete compressive strength variable, 𝑓௖ᇱ, 

pointing out three levels of quality control: coefficients of variation of 0.10, 0.15, and 0.25 were 

taken to represent good, average, and poor quality control, respectively. The workmanship factor 

was considered in the bar placement parameter, 𝑑 and 𝑑ᇱ, where 𝑑  is the effective depth to the 

tensile reinforcement and 𝑑ᇱ is the effective depth for the compressive reinforcement. Three levels 

of coefficients of variation were given: 0.04, 0.07, and 0.09 for good, average, and poor types of 

workmanship, respectively. This study concluded that good concrete quality control is essential 

for gravity loads applied at low eccentricities, and it is unimportant at large eccentricities. For the 

latter case bar placement is a key parameter. 

Grant et al. (1978) studied the effect of the variation of the strength of concrete and steel, the cross-

section dimensions, and the location of steel reinforcement on the variability of the ultimate 

strength of rectangular reinforced-concrete tied short columns (non-slender element). The Monte 
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Carlo Technique was used in this study, and the fixed eccentricity limit state was used. This study 

indicated that the variability in the concrete compressive strength and steel strength seem to be the 

major contributing factor to strength variability in the compression failure region and tension 

failure region, respectively.   

Israel et al. (1987) performed a reliability study of RC beams and short columns (non-slender 

element), analyzing flexure, compression plus bending, and shear limit states. First order second 

moment (FOSM) reliability method and the fixed limit state were used to calculate safety indices. 

Partial safety factors for concrete and steel were proposed: 0.60 and 0.90 for concrete and steel, 

respectively. Partial safety factors applied separately at each material resistance; conversely, 

overall safety factors (similar to those used in ACI 318) are based on the failure mode expected in 

the element and affect the overall resistance of the element.          

Ruiz (1993) conducted a reliability study of short columns (non-slender element) subjected to axial 

load and bending, and compared reliability levels of the ACI 318-89 standard and the Mexican 

standard NTC-87. The Monte Carlo simulation technique and the fixed eccentricity limit state were 

used to calculate reliability indices. The results revealed that the Mexican standard had higher 

reliability indices than the American code. Also, for greater values of reinforcement ratio, the 

reliability indices grow. Moreover, it was observed that the higher the load ratio (dead-to-live load 

ratio), the greater the magnitude of the reliability index, that was due to the decreasing influence 

of the coefficient of variation (COV) of the live load.    

Ruiz and Aguilar (1994) presented an extension of previous study (Ruiz, 1993), in the latter 

research, values of reliability indices have been calculated for short (non-slender element) and 

slender columns, complying with ACI 318-89 and Mexico City concrete design regulations. The 

Monte Carlo simulation technique was used, and the reliability index was calculated using the 

Rosenblueth-Esteva formulation. It was found that reliability indices corresponding to slender 

columns are higher than those for short columns. Also, the Mexican standard was found to have 

higher reliability values than the American standard due to the maximum loads adopted by each 

standard, the definition of concrete compressive strength used in the design, and the reductions 

factors established in each standard.   
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Stewart and Lawrence (2002) proposed a method to calculate the structural reliability of 

unreinforced masonry walls subjected to out-of-plane bending moment, second order effects were 

not considered. The Monte Carlo simulation was used and a limit state that considered first-

cracking, the possible redistributions of stresses, possible additional cracking and continuing until 

collapse occurs was adopted. It was found that structural reliability was very sensitive to the effect 

of the workmanship factor. Also, it was observed that reliability indices obtained for masonry walls 

(for vertical bending β=4.92) are similar, although somewhat higher than, for other structural 

material such as concrete and steel (β=3.5-4.0). However, it was pointed out that such comparison 

is likely to be misleading since the calculation of the reliability indices depends of the failure 

criteria (limit state function). 

Stewart and Lawrence (2007) developed a probabilistic model to calculate the structural of typical 

unreinforced brick masonry walls in compression designed according to Australian standard 

AS3700-2001. This study compared design strengths with actual test data to estimate a model error 

in probabilistic terms, for slender and non-slender unreinforced masonry walls in compression. It 

was found that existing safety levels of masonry were much higher than expected, so it was 

recommended that design capacity for Australian masonry walls loaded concentrically in 

compression can be increased by up to 66%.  

Bartlett (2007) presented the rationale for increasing the material resistance factor for concrete in 

compression in the 2004 edition of the Canadian concrete standard association (CSA A23.3, 2004), 

from 0.60 to 0.65 for cast-in-place concrete. The concrete material resistance factor in compression 

was calibrated using first-order, second-moment formulations (Madsen al., 1986). The reliability 

index considering the new resistance factor of 0.65 was found to be in the 3.9-4.0 range. 

Zhai and Stewart (2008) performed structural reliability analyses of reinforced-concrete masonry 

walls designed according to Chinese Standard GB 50003. The walls were loaded concentrically 

and eccentrically. The limit state considered the effect of the probability distribution model error, 

materials strengths, live-to-dead ratio, reinforcement ratio, discretization of the walls thickness, 

and eccentricity. It was found that structural reliability is very sensitive to the probability 
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distribution of model error and slightly influenced by masonry compressive strength and live-to-

dead load ratio. 

Moosavi et al. (2014) performed a reliability analysis on concrete masonry under axial 

compression using First Order Reliability Method (FORM) to evaluate the safety levels of the 

2004 and 1994 editions of the Canadian masonry design standard S304.1. This study revealed that 

material resistance factors of 0.60 and 0.55 used in the 2004 and 1994 editions of the Canadian 

masonry design standard, respectively, did not achieve the target reliability value recommended 

by the Canadian standard S408.11 (Guidelines for the development of limit states design). 

Moosavi (2017) studied the reliability levels of non-slender masonry walls subjected to axial load 

and out-of-plane bending moment according to the Canadian masonry standard S304-14. The First 

Order Reliability Method (FORM) and the fixed eccentricity approach were used to determine the 

reliability indices. Different combinations were analyzed such as dead plus live load, dead plus 

snow load, and dead plus wind load. The dead plus snow load combination provides the lowest 

reliability values.  

Steward and Masia (2019) conducted a reliability study for single skin infill masonry walls 

subjected to a lateral load (wind) and where there is no vertical pre-compression. To evaluate the 

limit state based on resistance, the Monte Carlo simulation was used. To determine the resistance 

or the capacity of the wall two predictive models were used: (i) Finite Element Analysis (FEA) 

model, and (ii) AS3700 design model (Australian masonry structure code). The structural 

reliability analyses considered the random variability of model errors, flexural bond strength, and 

wind load. After comparing annual reliability indices to the target reliability recommended by 

AS5104-2017 (General Principles on Reliability for structures standard), it was found that there is 

some evidence to support increasing the reduction factor for flexure from 0.60 to 0.65, that is, and 

8% increase in design capacity. Also, Steward and Masia stated the importance in estimating the 

model error, which is the actual (experimental) capacity divided by the predicted capacity, because 

reliability values are sensitive to this. 

Gonzalez et al. (2021) presented a parametric analysis of single-storey slender masonry walls. A 

finite element 2D model was developed using the open-source FE software framework OpenSEES. 
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The results showed that increasing reinforcement ratio and rebar depth is the most efficient way to 

increase the stiffness of the walls. Also, changing the reinforcement arrangement from singly 

reinforced to doubly reinforced masonry walls increase the capacity of the wall section. 

Guzman (2022) presented a reliability analysis for slender reinforced-concrete masonry walls 

under axial compression and out-of-plane uniform load. It took into account second-order effects 

and realistic loads. The Monte Carlo simulation technique and the fixed axial load approach were 

used to calculate reliability indexes. The results showed that the reliability indices (β) increase as 

the slenderness factor increase, while for walls with low slenderness the reliability indices remain 

similar and constant over different eccentricities.   

Metwally et al. (2022) investigated the probabilistic behaviour of slender reinforced masonry walls 

under out-of-plane loading. Due to inherent uncertainties associated with masonry structures, 

experimentally or analytically predicted behaviour results in large scatter. A finite-element model 

was developed considering uncertainties in material and geometric properties. The masonry walls 

were modeled using displacement-based fiber beam-column elements in OpenSees. The results 

indicated that model uncertainty contributes to the variance in lateral load capacity more than all 

the other uncertainties in material and geometric properties, so in future reliability-based standard 

development special attention should be given in model accuracy and quantifying model error. 

This is consistent with results obtained by Steward and Masia (2019).  
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3 BEHAVIOURAL MODEL AND SENSITIVITY ANALYSIS  

3.1 Introduction 

As discussed in chapter 2, to solve a probability-based structural reliability analysis problem, it is 

necessary to have a behavioural model that predicts strength of the structure based on its 

mechanical and geometrical properties. 

The strength of a wall cross-section subjected to a combination of axial force (P) and bending 

moment (M) is represented by its P-M interaction diagram. The P-M interaction diagram of a wall 

defines the combinations of axial force and bending moments for which the wall is safe. It is 

usually nonlinear arising from the nonlinear constitutive stress-strain relation of masonry and 

concrete materials in compression, tensile cracking and yielding of the steel reinforcement. In 

addition, nonlinearity can arise from second order bending effects in geometrically slender walls.  

This chapter presents the behavioural model used to define the interaction diagram between axial 

compression and out-of-plane bending moment, as well as the sensitivity analyses carried out to 

determine the effect of the variation in the most important parameters (reinforcement ratio, 

compressive strength, thickness) on P-M interaction diagram. 

3.2 Stress-strain behaviour for Load-Bearing Walls  

3.2.1 Stress-strain relationship - Masonry 

In this research, the constitutive law for the material is constructed using a model proposed by 

Priestley and Elder (1983), in which the maximum stress occurs at a strain equal to 0.0015. This 

model has been shown to have a good agreement with experimental data for unconfined and 

confined masonry (Moosavi, 2017). Moosavi (2017) revised the strain value to 0.002 based on 

more recent data (Drysdale and Hamid, 2005), and the model with the revised strain was adopted 

in this study. Equations (3.1) and (3.2) are used to calculate the relationship between the stress (𝜎) 

and the strain (𝜀) on masonry walls.  

𝜎 ൌ

⎩
⎨

⎧ 𝑓௠ᇱ ൤
2𝜀

0.002
െ ቀ

𝜀
0.002

ቁ
ଶ
൨ ,          𝜀 ൏ 0.002

𝑓௠ᇱ ሾ1 െ 𝑍ሺ𝜀 െ 0.002ሻሿ,      0.002 ൏ 𝜀 ൏ 𝜀଴.ଶ௨

0.2𝑓௠ᇱ ,                                 𝜀଴.ଶ௨ ൏ 𝜀

 

(3.1) 

 Where: 
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𝑍 ൌ
0.5

൬
3 ൅ 0.29𝑓௠ᇱ

145𝑓௠ᇱ െ 1000൰ െ 0.002
 

(3.2) 

 

Where 𝑓௠ᇱ  is the maximum masonry compressive strength, 𝜀଴.ଶ௨ is the strain where the constant 

stress initiates, and 𝑍 is a parameter that controls the slope of the linear falling branch (0.002 ൏

𝜀 ൏ 𝜀଴.ଶ௨). Figure 3.1 shows the plot of the stress-strain relationship given by Equation 3.1. 

 

Figure 3.1: Stress-strain relationship for masonry 

3.2.2 Stress-strain relationship - Concrete 

In this investigation, the curve used for concrete stress-strain relationship is the one proposed by 

Thorenfeldt et al. (1987). The Thorenfeldt curve not only works well for most normal strength 

concrete but also for high-strength concrete, and it is one of the most common stress-strain 

relationship curves found in the literature. The concrete stress (𝑓𝑐) is calculated using Equations 

(3.3) – (3.6): 

𝑓𝑐ሺ𝜀௖ሻ ൌ 𝑓௖ᇱ
𝑛ሺ
𝜀௖
𝜀଴
ሻ

ሺ𝑛 െ 1ሻ ൅ ሺ
𝜀௖
𝜀଴
ሻ௡௞

 (3.3) 

Where: 
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𝑛 ൌ 0.8 ൅
𝑓௖ᇱ

17.2
 (3.4) 

𝜀଴ ൌ
𝑓௖ᇱ

𝐸௖
ሺ

𝑛
𝑛 െ 1

ሻ (3.5) 

𝑘 ൌ

⎩
⎨

⎧
1,          𝜀௖ ൑ 𝜀଴

𝑚𝑎𝑥 ቌ
0.67 ൅

𝑓௖ᇱ

62
1

ቍ ,      𝜀௖ ൐ 𝜀଴
 (3.6) 

 

Where 𝑓௖ᇱ is the maximum concrete compression stress, 𝜀௖ is the concrete strain, 𝜀଴ is the concrete 

strain at peak stress, 𝐸௖ is the concrete modulus of elasticity, 𝑛 and 𝑘 are shape modifier 

parameters. 

Figure 3.2 shows a plot of the stress-strain relationship given by Equation 3.3. 

 

Figure 3.2: Stress-strain relationship for concrete 

3.2.3 Stress-strain relationship – Steel Rebar 

In this study, the stress-strain relationship for steel reinforcement is assumed to be elastic-perfectly 

plastic that is a model broadly used in the literature, this model enables us to show behaviour in 

the elastic range and the plastic range within the same model. The steel reinforcement stress (𝜎௦) 

is calculated using Equation (3.7). 
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𝜎௦ ൌ ൜
𝐸௦𝜀௦,          𝜀௦ ൏ 𝜀௬
𝑓௬,      𝜀௦ ൒ 𝜀௬

 (3.7) 

 

Where 𝐸௦ is the steel modulus of elasticity, 𝜀௦ is the steel reinforcement strain, 𝜀௬ is the steel yield 

strain, and 𝑓௬ is the steel yield strength. The stress-strain relationship for steel reinforcement is 

shown in Figure 3.3. 

 

Figure 3.3: Stress-strain relationship for reinforcement steel 

3.3 Behavioural Model for Non-slender Walls  

The outcome of the behavioural model is an interaction diagram. The interaction diagram 

represents the structure’s capacity (strength) against a combined action of axial load and bending 

moment. The strength of a cross section of the structural element is calculated based on three 

mechanics principles: equilibrium, strain compatibility, and constitutive relationships of the 

materials. Failure of the cross section can occur by yielding of tensile reinforcement, tensile 

cracking of masonry or concrete, crushing of extreme compression fibre at the ultimate 

compressive strain or any combination of the three criteria. If slenderness effects are taken into 

account, a fourth failure mechanism at the element level is introduced (buckling or geometrical 

failure) – however, second-order effects are not part of the scope of this study.  The standard 

ultimate compressive strain in masonry (CSA S304-14) is taken as 𝜀௠௨=0.003 whereas the 

concrete crushing strain (CSA A23.3-19) is taken as 𝜀௖௨=0.0035. 
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A P-M interaction diagram for the wall section is built by adjusting the locations of the neutral 

axis of the section, while simultaneously setting the strain at the extreme compression fibre to be 

equal to the crushing strain. For each case, the stresses in the materials are calculated using the 

strain distribution and the relevant material constitutive relationships. The strain distribution is 

assumed to be linear, as the thickness of the wall-section is usually significantly smaller than the 

wall height (i.e., Bernoulli theory applies). Internal forces can be calculated from the material 

stresses, summed over the area of the different components of the section. The resulting internal 

forces and moments are then plotted as shown in Figure 3.4. 

 

Figure 3.4: P-M interaction diagram. 

3.3.1 The nominal and factored resistances 

The limit-state design (LSD) (explained in chapter 2) states that the design of a structural member 

is satisfactory if the factored load effects are smaller than or equal to the factored design resistance 

(Equation 3.8): 

𝜙𝑅௡ ൒ 𝛾𝑆௡ (3.8) 

Where 𝜙 is the material strength reduction factor that accounts for variability of material properties 

and dimensions of structural elements, 𝑅௡ is the nominal resistance or the true resistance of a 

structural element, and 𝛾 is the so-called load factor, used to account for the variability of loading 
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and the probability of having loads from different sources simultaneously. The parameter 𝛾 

depends on the type of load. Finally, the load effect 𝑆௡ corresponds to a specific nominal load or 

a load combination acting on the member. 

Analyzing the terms on the left-hand side in Equation 3.8, it follows that two different strengths 

of a structural element can be considered. The nominal resistance (𝑅௡) and the factored or design 

resistance (𝜙𝑅௡). 

Applying the same logic to a wall, it turns out that the behavioural model can be used to obtain 

both the nominal interaction diagram and the factored interaction diagram. The nominal interaction 

diagram represents the true strength of the section; therefore, it is built by setting the material 

resistance factor 𝜙=1.00 and the actual or curvilinear stress strain relationship of the materials 

should be used. Conversely, the factored or design interaction diagram is determined by setting 

the strength reduction factors to values to be less than 1. The Canadian masonry standard S304 

and the Canadian concrete standard A23.3 state material strength reduction factors of  𝜙௠ ൌ 0.60, 

𝜙௖ ൌ 0.65, 𝜙௦ ൌ 0.85 for masonry, concrete and steel structures respectively. The standards also 

direct designers to use rectangular stress blocks in lieu of the actual stress-strain relationships for 

the materials. Figure 3.5 shows the nominal and factored interaction diagrams.   

 

Figure 3.5: P-M interaction diagram. 
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In the next sections, the behavioural model for masonry and concrete walls is shown. The 

behavioural models of singly and doubly reinforced walls constructed out of concrete and masonry 

are derived and used to illustrate the differences between these two materials. 

3.3.1.1 Behavioural Model – Singly Reinforced (SR) Masonry Walls 

Figure 3.6 illustrates the procedure to obtain an interaction diagram described in section 3.3 for a 

singly reinforced (SR) masonry wall. 

 

Figure 3.6: Strain profile, stress profile, and resultant forces for SR masonry walls. 

The design axial force (𝑃௙௥) and design bending moment (𝑀௙௥) for the P-M factored interaction 

diagram are determined by the following equations: 

𝑃௙௥ ൌ 𝐶௠ െ 𝑇௦ (3.9) 

𝑀௙௥ ൌ 𝐶௠ሺ
𝑡
2
െ
𝑎
2
ሻ (3.10) 

Where 𝐶௠ and 𝑇௦ are the masonry compression force and reinforcement steel force, respectively. 

These are calculated with the material strength reduction factor taken as 𝜙௠=0.60 and 𝜙௦=0.85, as 

indicated in Canadian standard S304. Equations (3.11) and (3.12) show 𝐶௠ and 𝑇௦. The nominal 

resistance moment (𝑀௥) and axial load (𝑃௥ሻ are obtained by taking the strength reduction factors 

equal to 1.00 and the curvilinear stress-strain relationships. 

𝐶௠ ൌ 𝜙௠0.85𝑓௠ᇱ 𝛽ଵ𝑐𝑏 (3.11) 

Strain Actual stress Rectangular 
stress block 

Forces 
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𝑇௦ ൌ 𝜙௦𝐴௦𝑓௬ (3.12) 

3.3.1.2 Behavioural Model – Doubly Reinforced (DR) Masonry Walls 

Figure 3.7 shows the strain and stress profiles, rectangular stress block, and forces for doubly 

reinforced (DR) masonry walls. 

 

Figure 3.7: Strain profile, stress profile, and resultant forces for DR masonry walls. 

For doubly reinforced masonry wall, following the same procedure described in section 3.3, 𝑃௙௥ 

and 𝑀௙௥ can be determined. For this case, the tension force in the steel at the top (𝑇௦௧) of the wall 

section is considered: 

𝑃௙௥ ൌ 𝐶௠ െ 𝑇௦௕ െ 𝑇௦௧ (3.13) 

𝑀௙௥ ൌ 𝐶௠ ൬
𝑡
2
െ
𝑎
2
൰ ൅ 𝑇௦௕ ൬𝑑௕௢௧ െ

𝑡
2
൰ െ 𝑇௦௧ሺ

𝑡
2
െ 𝑑௧௢௣ሻ (3.14) 

Where 𝐶௠ is the compression force in the masonry, 𝑑௕௢௧ and 𝑑௧௢௣ are the effective depths of the 

bottom and top reinforcement steels, 𝑇௦௕ and 𝑇௦௧ are the tension force in the steel located at the 

bottom and at the top of the wall cross section, respectively. Equations (3.15) and (3.16) show 𝑇௦௕ 

and 𝑇௦௧. 

𝑇௦௕ ൌ 𝜙௦
𝐴௦
2
𝜎௦௕ 

(3.15) 

Strain Actual stress Rectangular 
stress block 

Forces 
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𝑇௦௧ ൌ 𝜙௦
𝐴௦
2
𝜎௦௧ 

(3.16) 

𝜎௦௕ and 𝜎௦௧ are the stresses at the bottom and top reinforcement steel. 

The Canadian masonry design standard CSA S304-14 (Clause 10.2.7) allows compression to 

develop in steel reinforcement only if it is adequately tied. In this study, compression in steel 

reinforcement is ignored, as tying reinforcement is not the normal practice in masonry wall 

construction. This fact is one of the major differences in building P-M interaction diagrams 

between masonry and concrete, as the bars in reinforced concrete walls usually will be laterally 

restrained by horizontal bars. 

Specifically, the Canadian concrete design standard CSA A23.3-19 Clause 14.1.8.7 states that 

distributed vertical reinforcement required as compression reinforcement shall be tied and detailed 

in accordance with the requirements for column reinforcement specified in Clause 7, except that 

ties may be omitted if the area of vertical steel is less than 0.005𝐴௚, and the size is 20M or smaller, 

both requirements are met in this study (see section 4.8 in the next chapter). In addition, Clause 

10.10.4 of the Canadian concrete design standard CSA A23.3-19 provides an equation for walls 

that are both tied and not tied along the full length. Both equations allow for compression in the 

steel reinforcement. 

3.3.1.3 Behavioural Model – Singly Reinforced (SR) Concrete Walls 

Figure 3.8 illustrates the procedure described in section 3.3 for a singly reinforced (SR) concrete 

wall. 
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Figure 3.8: Strain profile, stress profile, and resultant forces for SR concrete walls. 

Where 𝛼ଵ and 𝛽ଵ are the stress block parameters. For this case, the design axial force (𝑃௙௥) and 

design bending moment (𝑀௙௥) for the P-M factored interaction diagram are determined by the 

following equations: 

𝑃௙௥ ൌ 𝐶௖ െ 𝑇௦ (3.17) 

𝑀௙௥ ൌ 𝐶௖ሺ
𝑡
2
െ
𝑎
2
ሻ (3.18) 

Where 𝐶௖ is the concrete compression force, 𝑇௦ is the tension force in the steel. These are calculated 

with the material reduction factor taken as 𝜙௖=0.65 and 𝜙௦=0.85, as indicated in Canadian standard 

A23.3. Equations (3.19) and (3.20) show 𝐶஼  and 𝑇௦. The nominal resistance moment (𝑀௥) and 

axial load (𝑃௥ሻ are obtained by taking the strength reduction factors equal to 1.00 and the 

curvilinear stress-strain relationships. 

𝐶஼ ൌ 𝜙஼𝛼ଵ𝑓஼
ᇱ𝛽ଵ𝑐𝑏 (3.19) 

𝑇௦ ൌ 𝜙௦𝐴௦𝑓௬ (3.20) 

3.3.1.4 Behavioural Model – Doubly Reinforced (DR) Concrete Walls 

Figure 3.9 shows the strain and stress profiles, rectangular stress block, and forces for doubly 

reinforced (DR) concrete walls. 

Strain Actual stress Rectangular 
stress block 

Forces 
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Figure 3.9: Strain profile, stress profile, and resultant forces for DR concrete walls. 

For DR concrete wall, following the same procedure described in section 3.3, 𝑃௙௥ and 𝑀௙௥ can be 

determined. For this case the tension force in the steel at the top (𝑇௦௧) of the wall section is 

considered: 

𝑃௙௥ ൌ 𝐶௖ െ 𝑇௦௕ െ 𝑇௦௧ (3.21) 

𝑀௙௥ ൌ 𝐶௖ ൬
𝑡
2
െ
𝑎
2
൰ ൅ 𝑇௦௕ ൬𝑑௕௢௧ െ

𝑡
2
൰ െ 𝑇௦௧ሺ

𝑡
2
െ 𝑑௧௢௣ሻ (3.22) 

Where 𝐶௖ is the concrete compression force, 𝑑௕௢௧ and 𝑑௧௢௣ are the effective depths of the bottom 

and top reinforcement steels, 𝑇௦௕ and 𝑇௦௧ are the tension force in the steel located at the bottom 

and at the top of the wall cross section, respectively. Equations (3.23) and (3.24) show 𝑇௦௕ and 𝑇௦௧. 

𝑇௦௕ ൌ 𝜙௦
𝐴௦
2
𝜎௦௕ 

(3.23) 

𝑇௦௧ ൌ 𝜙௦
𝐴௦
2
𝜎௦௧ 

(3.24) 

𝜎௦௕ and 𝜎௦௧ are the stresses at the bottom and top reinforcement steel. 

The behavioural models were encoded in computer language and used to plot the P-M interaction 

diagrams of the walls. The computer codes of the behavioural models were developed based on 

the one developed by Moosavi (2017) for singly reinforced masonry walls. The computer code is 

provided in Appendix A to this thesis. 

Strain Actual stress Rectangular 
stress block 

Forces 
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3.3.1.5 Parameters for masonry and concrete walls - Summary 

Table 3.1 summarizes the values of concrete and masonry crushing strain, 𝜀௠௨ and 𝜀௖௨, stress 

block parameters, 𝛼ଵ and 𝛽ଵ, material resistance factors for masonry and concrete, 𝜙௠ and 𝜙௖, and 

the reinforcement steel, 𝜙௦, stress-strain relationships, used to derive the interaction diagrams. 

Table 3.1: Parameters for the nominal interaction diagram, and for the factored interaction 
diagram computation according to Canadian Standards Association (CSA). 

P-M Factor Masonry Concrete 
    

Factored interaction 
diagram 

𝜀௨ 0.003 0.0035 
𝜙௠ and 𝜙௖ 0.60 0.65 

𝜙௦ 0.85 0.85 
𝛼ଵ 0.85 0.85-0.0015𝑓௖ᇱ 
𝛽ଵ 0.80 0.97-0.0025𝑓௖ᇱ 

Nominal interaction 
diagram 

Stress-strain 
relationship 

Priestley and Elder curve Thorenfeldt curve 

Stress-strain 
steel 

Elastic-perfectly plastic Elastic-perfectly plastic 

 

3.3.2 Loads side of the reliability equation – Optimal design 

Masonry and concrete walls must resist a factored axial load (𝑃௙) plus a factored moment (𝑀௙), in 

addition to the out-of-plane factored shear force (Vf), which is assumed not to govern in this study. 

Combinations of axial load and moment that fall inside the design resistance boundary of the 

interaction diagram represent “safe” design scenarios and points that are outside represent “unsafe” 

designs. An optimal design, this is, the most economical while still safe, is to choose the wall 

properties and materials in such a way that the factored axial load (𝑃௙) and factored moment (𝑀௙) 

fall exactly at the boundary of the PM factored interaction diagram (Figure 3.10). 

Most reliability analyses assume an optimal design approach.  Therefore, to define the loads (𝑆) in 

the limit state function (𝑔 ൌ 𝑅 െ 𝑆), the factored load (S) can be taken to be equal to the factored 

resistance of the wall (Rn). 
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Figure 3.10: Optimal design on the P-M interaction Diagram. 

 

3.4 Sensitivity Analysis 

Using the behavioural model for masonry and concrete walls described above, the sensitivity of 

the P-M interaction diagram to different parameters, such as reinforcement ratio, compressive 

strength, and wall thickness, is presented in this section. The computer code developed in the 

previous section and presented in Appendix A was used to plot interaction diagrams for different 

walls and for different reinforcement ratios, material compressive strength, and wall thickness. 

3.4.1 Reinforcement Ratio Variation 

Figure 3.11 shows the effect of varying reinforcement ratios on the interaction diagram for singly 

and doubly reinforced masonry and concrete walls over the range of evaluated reinforced ratios. 

The thickness and compressive strength of both types of walls were kept constant to have and 

objective comparison. 
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Figure 3.11: Effect of the change in the reinforcement ratio: (a) Singly reinforced masonry wall; (b) 
Doubly reinforced masonry wall; (c) Singly reinforced-concrete wall; (d) Doubly reinforced-

concrete wall. 

Figures 3.11a and 3.11b show the interaction diagrams for the singly and doubly reinforced 

masonry walls, while Figures 3.11c and 3.11d are for reinforced-concrete walls.  

The change in the reinforcement ratio only had an effect in the tension zone of the interaction 

diagram of masonry walls. The lines of the interaction diagrams for masonry are bundled together 

within the region of high axial compression force, only separating in the tension region where the 

moments are large. This is true for all reinforcement ratios analyzed. The reason for this is the fact 

that in masonry constructions tying reinforcement is not the normal practice, so compression in 
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reinforcing bars is ignored (CSA S304-14). In contrast, for concrete walls (Figures 3.11c and 

3.11d), the compression in steel reinforcement is not ignored (CSA A23.3-19). This results in 

sensitivity to the capacity throughout the entire curves, as the steel reinforcement is always active, 

either in tension or compression. Overall, the P-M diagrams of singly reinforced concrete walls 

show less sensitivity to changes in reinforcement ratio, compared to those obtained for doubly 

reinforced concrete walls. 

For both materials, masonry and concrete, a double layer of reinforcement increases the capacity 

of the wall to take moments compared to placing the reinforcing bars in the center of the wall.  The 

increment in capacity is more noticeable for concrete walls compared to masonry walls, because 

in concrete walls both layers of reinforcement are activated, unlike masonry walls where the only 

reinforcement layer that is activated is the one in tension.  

3.4.2 Compressive Strength Variation 

Compressive strength is a very important parameter, commonly used to measure the quality of 

concrete and masonry. The interaction diagrams were plotted for masonry and concrete walls, 

using different compressive strengths while keeping the reinforcement ratio and thickness of the 

walls constant.  

As shown in Figure 3.12, the strengths of the walls in the compression-controlled zone (where 

moments are low) are directly proportional to the material compressive strengths of the wall 

material. Similarly, the maximum combination of bending moment and axial force a wall can 

withstand increased with material compressive strength. However, the compressive strength had 

no effect on the maximum strength of the wall in pure bending. 

As can be seen, for both materials, masonry and concrete walls, the maximum factored axial load 

are similar, having a little increment for reinforced-concrete walls because of the compressive 

resistance of the reinforcing bars. However, the difference between masonry and concrete walls in 

these points are more noticeable for the maximum nominal axial load, this is because these curves 

(nominal resistances) are constructed using the actual or curvilinear stress strain relationship of the 

materials ,which are different, the presence of compressive resistance of the reinforcing bars, and 

the ultimate compressive strain. The standard ultimate compressive strain in masonry (CSA S304-
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14) is taken as 𝜀௠௨=0.003 whereas the concrete crushing strain (CSA A23.3-19) is taken as 

𝜀௖௨=0.0035. 

   
 

   

Figure 3.12: Effect of the change in the compressive strength: (a) Singly reinforced masonry wall; 
(b) Doubly reinforced masonry wall; (c) Singly reinforced-concrete wall; (d) Doubly reinforced-

concrete wall. 

3.4.3 Thickness Variation 

As shown in Figure 3.13, the thickness variation is very important to the strength of the wall. It 

has an effect on the whole interaction diagram as demonstrated by the way the lines corresponding 

to wall thickness are separated from each other. 
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Figure 3.13: Effect of the change in the thickness: (a) Singly reinforced masonry wall; (b) Doubly 
reinforced masonry wall; (c) Singly reinforced-concrete wall; (d) Doubly reinforced-concrete wall. 

The capacity of the wall, as indicated by the P-M interaction diagram, is highly influenced by the 

changes in its thickness. When the thickness of the wall increases, the geometric area of the cross-

section also increases, resulting in an increase in the masonry and compressive forces available to 

resist moments and axial loads. Moreover, an increase in thickness leads to a greater moment arm, 

which in turn enhances the moment resistance of the cross-section. 
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3.4.4 Summary of the sensitivity analysis 

The effect of different parameters on P-M interaction diagrams of reinforced masonry and 

reinforced-concrete walls have been investigated and the results is used in the parametric reliability 

analysis in the next chapter. Table 3.2 shows a summary of the observations from the sensitivity 

analysis conducted. 

 

Table 3.2: Summary of the sensitivity analysis. 

Parameter Case Region where sensitivity is observed 
  Compression-Controlled Tension-Controlled 

Reinforcement 
Ratio (𝜌) 

Singly and Doubly 
reinforced masonry wall 

NO** YES** 

Singly reinforced-
concrete wall* 

YES YES 

Doubly reinforced-
concrete wall 

YES YES 

Compressive 
Strength (𝑓′௠,

𝑓′௖) 
All the walls YES NO 

Thickness 
Variation (𝑡) All the walls YES YES 

*The point of the maximum moment remains unchanged 
**YES: changing the parameter have effect in the specified zone, NO: changing the parameter 
do not have effect in the specified zone. 

  



 

42 
 

4 STRUCTURAL RELIABILITY ANALYSIS OF MASONRY AND 
CONCRETE WALLS, RESULTS AND DISCUSSION  

4.1 Introduction 

This chapter presents the methodology to evaluate the reliability levels of masonry and concrete 

walls and the findings. Firstly, the definition of the limit state function for gravity loads is 

introduced, the statistical information for loading and the resistance parameters are discussed, and 

the properties of the analyzed walls are shown. Secondly, parametric analyses conducted on 

masonry and concrete walls are presented. Lastly, comparisons of the reliability levels of singly 

and doubly reinforced masonry and concrete walls are discussed. 

4.2 The Structural Reliability Approach  

As explained in Chapter 2, to perform a reliability analysis, the resistance (𝑅) and the load (𝑆) 

components of the limit state function (𝑔 ൌ 𝑅 െ 𝑆) must be determined. To determine the 

resistance and load components, the nominal and factored P-M interaction diagrams of the 

structural element are required, as discussed in Chapter 3. This needs to be done for both masonry 

and concrete walls. 

The nominal interaction diagram is determined from the behavioural model (section 3.3) by setting 

the strength reduction factor of the material, 𝜙, equal to 1.00 (CSA S304-14; CSA A23.3-19). The 

factored interaction diagram of the material is determined by setting the strength reduction factors 

to values that are smaller than 1. For instance,  𝜙௠ ൌ 0.60, 𝜙௖ ൌ 0.65, and 𝜙௦ ൌ 0.85 for 

masonry, concrete and steel materials respectively (CSA S304-14; CSA A23.3-19). Figure 4.1a 

shows a typical nominal and factored interaction diagram. The factored interaction diagram 

represents the standard-compliant, allowable resistance of the structure, while the nominal 

resistance is the actual resistance of the structure. In the reliability analysis procedure, the 

resistance component (R) is obtained from the nominal interaction diagram, and the load 

component (S) is obtained using the factored interaction diagram by applying the concept of 

optimal design (section 3.3.2).  

Optimal design is defined as the most economical, yet still safe scenario, where the designer 

chooses the  properties of the structural element and materials in such a way that the factored axial 
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load (𝑃௙) and factored moment (𝑀௙) fall exactly at the boundary of the interaction diagram as 

shown in Figure 4.1b. 

  

Figure 4.1: (a) Nominal and factored P-M interaction diagrams; (b) Optimal design on the P-M 
interaction diagram. 

4.3 Limit state function for Eccentrically Applied Gravity Loads  

To determine how the R and S components are related, a limit state function is necessary. Tychy 

and Vorlicek (1962) pointed out that the safety levels depend on how the limit state function is 

defined. For instance, for a given load combination effect (𝑃௙ and 𝑀௙), expressed by a point S on 

the P-M interaction diagram (Figure 2.6 reproduced below as Figure 4.2 for clarity), three possible 

distances can be drawn to the interaction curve, these can be seen as the reserve of strength that a 

structural element possesses, and three possible of safety measures can be indicated.  

 

(a) (b) 
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Figure 4.2: Three possible Limit-State Functions on the P-M interaction diagram. 

The limit-state represented by line SA is known as “fixed moment.”  For this function, the axial 

load is assumed to be the only load parameter that is permitted to vary according to a suitable 

probability distribution while the moment remains constant.  Line SB, representing a “fixed 

eccentricity,” illustrates the case in which both variables, the axial load and the bending moment, 

are assumed to increase in the same proportion.  This is the case for a short column subjected to 

an eccentric axial load, in which the eccentricity is kept constant, but the load is allowed to vary.  

Finally, Line SC, called the “fixed axial load” function, represents a situation in which the moment 

is allowed to vary but the axial load remains constant. 

The fixed eccentricity approach is widely used to solve reliability problems for non-slender walls 

and columns under concentric and eccentric axial load. In this study, the fixed-eccentricity limit 

state was used, similarly as Moosavi (2017).  The element experiences a constant moment along 

its height (h), that is proportional to the axial load (P) multiply by the eccentricity (𝑒) (Figure 4.3). 
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Figure 4.3: Wall under axial load and equal eccentricities. 

 

As discussed in the previous section, the response of a non-slender structural element subjected to 

eccentric gravity load can be represented by an interaction diagram (Figure 4.4). R(X) is the 

probability distribution curve for resistance that is derived from the nominal resistance, and S(X) 

is the probability distribution curve for loads that is derived from the nominal loads. The curve 

labelled nominal loads represents the arbitrary unfactored loads acting on the structure that is 

obtained from the factored resistance curve and using the concept of optimal design previously 

described. X represents the vector containing all random variables such as those related to 

geometrical, material, load and workmanship parameters. 
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Figure 4.4: P-M interaction diagram with nominal and factored resistance, and nominal load 
curves. 

(Mr, Pr) is a point on the probability distribution curve for resistance, (M, P) is a point on the 

probability distribution curve for loads, and (Ms,n, Ps,n) is a point on the nominal load curve. The 

eccentricity of the load is denoted e and is defined as the ratio of the resulting moment to the 

applied axial load.  As mentioned in the previous section, the nominal resistance diagram is 

constructed using the principles of mechanics of materials, equilibrium, strain compatibility, and 

constitutive relationships, taking into consideration the geometric and material properties of the 

structural element, and using strength reduction factors 𝜙 ൌ 1. Conversely, the factored or design 

interaction diagram is determined by setting the strength reduction factors to values less than 1. 

The Canadian masonry standard S304 and the Canadian concrete standard A23.3 state material 

resistance factors of  𝜙௠ ൌ 0.60, 𝜙௖ ൌ 0.65, 𝜙௦ ൌ 0.85 for masonry, concrete and steel structures 

respectively, and the design standards allow for the use of a rectangular stress block. 
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Mathematically, the limit state function (𝑔ሺ𝑿ሻ) is expressed by Equation (4.1): 

𝑔ሺ𝑿ሻ ൌ 𝑅ሺ𝑿ሻ െ 𝑆ሺ𝑿ሻ (4.1) 

The resistance component (R) of the limit state function has the variables (Mr and Pr), representing 

the contributions by the moment resistance and axial load resistance. Similarly, the Load 

component (S) has the variables (M and P), representing the contributions of applied moment and 

axial force respectively. In practice, M and P exist as combined dead loads and live loads, denoted 

as MD and ML (dead and live moments), and  PD and PL (dead and live axial loads). 

For a constant eccentricity (Figure 4.4), the limit state function (𝑔ሺ𝑿ሻ) for reliability analysis can 

be re-cast as shown below: 

𝑔ሺ𝑋ሻ ൌ ට𝑀௥
ଶ ൅ 𝑃௥

ଶ െ ඥሺ𝑀஽ ൅𝑀௅ሻଶ ൅ ሺ𝑃஽ ൅ 𝑃௅ሻଶ 
(4.2) 

The resistance variables 𝑀௥ and 𝑃௥ are expressed in terms of the random variables related to the 

geometric and mechanical properties of the material such as material compressive strength, 

reinforcement yield stress, element (wall) thickness and width, and reinforcement bar location 

measured from compression face of the element. For the special case of masonry walls, a 

workmanship factor as one of the resistance random variables because workmanship affects the 

strength of masonry assemblies. Its value depends on the judgement and experience of the 

responsible engineer conducting the reliability analysis. The effect of the workmanship factor on 

the reliability of structural masonry is very significant. Based on limited experimental data and 

judgment, three sets of bias coefficients (ratio between mean value to nominal value) and 

coefficient of variations (COV) were proposed by Turkstra (1989) for the workmanship factor: 1.0 

and 0.1 for well inspected, 0.8 and 0.15 for regularly inspected, and 0.7 and 0.2 for uninspected 

masonry. Moosavi and Korany (2014) based on the Turkstra study proposed a bias coefficient of 

0.85 and a COV of 0.15 for regularly inspected masonry and these values were adopted in this 

study.  

For a reliability analysis, the statistical means, variance (or standard deviations) of the random 

variables are used as inputs in the limit state equation to represent the resistance and the load 

components of the equation. The mean (µ) is also referred to as the first statistical moment of the 
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variables while the variance (or standard deviation σ) is referred to as the second statistical 

moments. In this study, the first and second statistical moments of the resistance random variables 

were adopted from previous studies (Moosavi, 2017).  

 To determine the first and second statistical moments for the load combination random variables 

(𝑃஽,𝑃௅,𝑀஽ ,𝑀௅), the nominal loads and the bias coefficients are required as input. The nominal 

loads are the unfactored load combinations. The bias coefficients are the ratio between the mean 

values to nominal loads. Therefore, having the nominal loads and the bias coefficients, the mean 

values of the load random variables can be determined. The bias coefficients and COV for loads 

have been adopted from Bartlett et al. (2003).  

Usually, in the calibration of design standards, two generic procedures are used (Ellingwood et al. 

1980, Israel et al. 1987). The first procedure considers that the total factored load effects are 

known. Then, the structural element is designed to resist the factored load effects. The second 

approach assumes that the actual structural element to be designed is given, and the total design 

load effect is assumed to be equal to the factored design resistance of that structural element 

(optimal design approach). The components of the design load effects associated with nominal 

dead load and nominal live load are obtained by using the total design load effect (which is known) 

and the ratios of nominal dead load to live load (which in this study are considered equal to one to 

represent the same level of dead and live load). This second procedure has been shown to be 

effective for various design cases (Hong, 1999) and was adopted in this study to determine the 

nominal loads. 

Considering the load factors as per NBCC (2015) for dead load plus live load, the second procedure 

can be expressed as:   

𝑃௙௥ ൌ 1.25 𝑃஽,௡ ൅ 1.50 𝑃௅,௡ (4.3) 

𝑀௙௥ ൌ 1.25 𝑀஽,௡ ൅ 1.50 𝑀௅,௡ (4.4) 

Where 𝑃௙௥, 𝑀௙௥ and 𝑃஽,௡, 𝑃௅,௡, 𝑀஽,௡, 𝑀௅,௡ are the factored resistance and the nominal loads, 

respectively. To calculate the nominal loads it is necessary to assume the live-to-dead load ratios 

(𝛼௉ 𝑎𝑛𝑑 𝛼ெሻ for axial load and moment: 
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𝛼௉ ൌ
𝑃௅,௡

 𝑃஽,௡
 

(4.5) 

𝛼ெ ൌ
𝑀௅,௡

 𝑀஽,௡
 

(4.6) 

Substituting these values in Equations (4.3) and (4.4), it follows that, 

 𝑃஽,௡ ൌ
𝑃௙௥

1.25 ൅ 1.50𝛼௉
 

(4.7) 

 𝑃௅,௡ ൌ
𝛼௉𝑃௙௥

1.25 ൅ 1.50𝛼௉
 

(4.8) 

 𝑀஽,௡ ൌ
𝛼ெ𝑀௙௥

1.25 ൅ 1.50𝛼ெ
 

(4.9) 

 𝑀௅,௡ ൌ
𝛼ெ𝑀௙௥

1.25 ൅ 1.50𝛼ெ
 

(4.10) 

An analysis of a variety of loadbearing masonry buildings performing by Moosavi and Korany 

(2014) revealed that the vast majority of live-to-dead load ratios are greater than 0.5 and less than 

2.0. If only loads on floor and roof are considered for light wood flooring, the live load is higher 

than dead load. This translates into a live-to-dead load ratio higher than one. However, the self 

weight of the wall affects this ratio considerably. In this research, a value of live-to-dead ratio 

equal to 1.00 is adopted as an average value. It is important to note that axial load and the moment 

are not statistically independent because the bending moment is equal to the axial load multiplied 

by an eccentricity. Therefore, linear correlations are assumed between 𝑃஽ and 𝑀஽ and between 𝑃௅ 

and 𝑀௅. Equations (4.7) to (4.10) are used to determine the nominal loads, which are then used to 

calculate their statistical means for reliability analysis. 

4.4 Analysis procedure 

In this study, the first order reliability method (FORM) (Madsen et al., 1986; Nowak, 2000) was 

used to assess the safety levels of non-slender masonry and concrete walls under combined axial 

load and out-of-plane bending. This method considers not only the means and coefficients of 

variation of the random variables but also the distribution type for each random variable. 
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A script was written in Mathematica programming language (Appendix A). The algorithm for the 

FORM procedure proposed by Rackwitz – Fiessler was followed in this research (section 2.2.4) to 

develop the script. To validate the computer code, reliability indices of a doubly reinforced-

concrete wall obtained with the computer code are compared with those obtained with the 

computer program Rt, Rt is a reliability software developed by researcher at University of British 

Columbia in Vancouver – Canada (Mahsuli and Haukaas, 2013). Table 4.1 show the reliability 

indices obtained using Rt software and those obtained using the computer code developed in this 

study (see Appendix A). 

Table 4.1: Reliability index comparison. 

Eccentricity Reliability index Reliability index Variation (%) 
 Rt software Computer Code 

developed 
 

0.1tn 3.8903 3.8901 0.005% 

0.5tn 3.5915 3.5915 0.000% 

1.0tn 3.1696 3.1696 0.000% 

2.0tn 2.9642 2.96422 0.000% 
 

4.5 Analysis of non-slender walls - Summary 

The procedure for the reliability analysis of non-slender walls that was followed in this research is 

summarized below. Steps 1-3 relate to the loads, step 4 relates to the resistance, and step 5 

evaluates the limit state function. 

1. Define the wall’s cross-sectional geometry. 

2. Build the nominal and the factored interaction diagram and prescribe load eccentricity. 

3. From the factored interaction diagram, calculate the design axial force (𝑃௙௥) and design 

bending moment (𝑀௙௥), which automatically determines the maximum factored loads 

(𝑃௙,𝑀௙) that the section can resist. To simplify the symbols, let 𝑃௙௥ ൌ 𝑃௙,𝑎𝑛𝑑  𝑀௙௥ ൌ 𝑀௙  

represent the factored axial load and moments respectively. 
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4. From the nominal interaction diagram, calculate the moment and axial load resistance 

(𝑀௥ ,𝑃௥) and express them in terms of material and geometric random variables (𝑓௠ᇱ , 𝑓௖ᇱ,𝑓௬, 

𝑡,𝑑, 𝑎𝑛𝑑 𝜌௪-the workmanship factor). 

5. Finally, by solving the limit state function Equation (4.2), calculate the reliability index 

(𝛽). 

4.6 Statistical Information for Loading 

In this study, the statistical information for the load has been adopted from Bartlett et al. (2003). 

There are loads (such as dead load) that do not depend on the frequency of occurrence; in other 

words, the time dependence of the loads is not considered. Conversely, there are other loads (such 

as live load) that is time-dependent. From the statistical point of view, there are two categories of 

live load: sustained live load (point-in time load) and transient load. Sustained live load is the 

typical weight of people and their possessions, furniture, movable partitions, and other portable 

fixtures and equipment (Nowak, 2000). The term “sustained” is used to indicate that the load can 

be expected to exist as a usual situation (nothing extraordinary). Transient live load is the load that 

might exist during an unusual event such as an emergency, when everybody gathers in one room, 

or when all the furniture is stored in one room (Nowak, 2000). The maximum live load is used for 

design purposes, it considers the expected combinations of sustained live load and transient loads 

that may occur during the buildings’ design lifetime (around 50 years). Additionally, to convert 

the load into load effect (internal forces and moments) a new random variable that is called 

transformation to load effect is required. This variable considers modelling and analysis factors.  

Table 4.2 shows the statistical characteristics for the maximum load (based on 50-year return 

period), the point-in-time load, and the load effect modelling factors. 
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Table 4.2: Statistical Information for loads (Bartlett et al., 2003). 

Load Bias C.O.V. Distribution 
Dead load 1.050 0.100 Normal 
Live load       
  50-year maximum load 0.900 0.170 Gumbel 
  Point-in time load 0.273 0.674 Weibull 
  Transformation to load effect 1.000 0.206 Normal 
Snow load       
  50-year maximum depth 1.100 0.200 Gumbel 
  Point-in time depth 0.196 0.882 Weibull 
  Density 1.000 0.170 Normal 
  Transformation to load effect 0.600 0.420 Log-Normal 
Wind load       
  50-year maximum velocity 1.039 0.081 Gumbel 
  Point-in time velocity 0.156 0.716 Weibull 
  Transformation to load effect 0.680 0.220 Normal 

 
 
4.7 Statistical Information for Resistance Parameters 

The resistance part in the reliability problem is obtained from the behavioural model where 

mechanical and geometrical properties are involved. The model used in this study considers a 

nonlinear stress-strain relationship for masonry and concrete compressive strength. The 

constitutive law for masonry is constructed using a similar model proposed by Priestley and Elder 

(1983), but in this study, the maximum stress occurs at a strain equal to 0.002. For the case of 

concrete, the curve used is the one proposed by Thorenfeldt et al. (1987). The stress-strain 

relationship for reinforcement is assumed to be elastic-perfectly plastic.  

To solve the reliability problem not only the statistical information for loading is necessary but 

also the statistical information for the mechanical and geometrical parameters involved in the 

behavioural model. The statistical information for the random variables used to calculate the 

resistance cross section is summarized in Table 4.3. 
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Table 4.3: Statistical Information for loads. 

Parameter Mean COV Distribution Reference 
Grouted masonry 

compressive strength 
(𝑓௠ᇱ ) 

1.60𝑓௠௡ 0.236 Gumbel Moosavi & Korani, 
2014 

Concrete compressive 
strength (𝑓௖ᇱ) 

1.30𝑓௖௡ 0.18 Normal Bartlett 2007, 1999; 
Mirza et al. 1979 

Wall thickness (𝑡) 1.00𝑡௡ 0.010 Normal Moosavi & Korani, 
2014 

Reinforcement location 
(𝑑) (mm) 

1.00𝑑௡ 4
𝑑௡

 
Normal Ellingwood 1980 

Reinforcement yield 
strength (𝑓௬) 

1.14𝑓௬௡ 0.07 Normal Bournonville 2004 

Workmanship factor 
(𝜌௪)  

0.85 0.15 Normal Moosavi & Korani, 
2014 

Rate of loading* 
(𝜌௥ሺ஽ା௅ሻ) 

0.88   Bartlett 2007, Mirza et 
al. 1979 

*Considered as reduction factor on 𝑓௠ᇱ  and  𝑓௖ᇱ. 

4.7.1 Masonry compressive strength   

After collecting 860 tests for grouted masonry prisms, Moosavi and Korany (2014) proposed the 

statistical characteristics for the masonry compressive strength. It was found that the Gumbel 

distribution is the most appropriate for grouted masonry. The statistical parameters for masonry 

compressive strength were determined using the concept of the professional factor. The 

professional factor is defined as the ratio of the measured axial load resistance from prims testing 

(test capacity) to the resistance predicted using the prescribed 𝑓௠ᇱ  (predicted capacity). The 

professional factor computed from test results includes variation in the test procedures and 

specimen variability in addition to the theoretical model error. The variability in the professional 

factor was adjusted as follows: 

 𝑉௉ ൌ ට𝑉௠௢ௗ௘௟
ଶ െ 𝑉௧௘௦௧

ଶ െ 𝑉௦௣௘௖
ଶ 

(4.11) 

Where 𝑉௉ is the coefficient of variation (COV) of the professional factor, 𝑉௠௢ௗ௘௟ is the COV of 

the theoretical model, 𝑉௧௘௦௧ is the COV of the measured capacity due to inaccuracies in the test 

measurements and/or the definition of failure, and 𝑉௦௣௘௖ represents the COV related to the 

variability in test specimens. The COV of the professional factor was calculated as 0.236. 
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4.7.2 Concrete compressive strength   

The statistical values for the compressive strength of concrete were proposed by Bartlett (2007). 

Based on concrete compressive strength characterizations presented elsewhere (Mirza et al., 1979; 

Bartlett and MacGregor, 1996), material strength properties were represented by the following 

equation: 

𝑀 ൌ 𝑓௖,௜ି௣/𝑓′௖ ൌ 𝐹ଵ𝐹ଶ𝐹௜ି௣𝜌௥ (4.12) 

Where 𝑓௖,௜ି௣ is the in-place compressive strength of the concrete, and 𝑓′௖ is the 28 days specified 

concrete strength. The ratio 𝑓௖,௜ି௣/𝑓′௖was modelled using parameters 𝐹ଵ, 𝐹ଶ, 𝐹௜ି௣, and 𝜌௥ as 

described in this section. The parameter 𝐹ଵ represents the ratio of the average 28-day control 

cylinder strength to the specified 28-day strength, which was assumed to have a mean value of 

1.27 and a coefficient of variation of 0.122 (Bartlett and MacGregor 1996). The parameter 𝐹ଶ, the 

ratio of the mean in-place strength at 28 days to the mean 28-day cylinder strength, for cast-in-

place concrete, is taken as F2 ൌ 1.03 with a coefficient of variation of 0.113, and it is adopted from 

Bartlett and MacGregor (1996). The parameter 𝐹௜ି௣ accounts for the variation of the in-place 

strength in structures. It has a mean value of 1.0 and a coefficient of variation of 0.130 for a cast-

in-place structure composed of many members (Bartlett and MacGregor 1999). The parameter 𝜌௥ 

accounts for rate-of-loading effects and in this study is taken as a deterministic variable, with a 

detailed discussion in section 4.7.6. 

The strength of concrete in a structure may differ from its specified design strength and may not 

be uniform throughout the structure (Mirza et al, 1979). The major sources of variation in concrete 

strength are the variations in mixing, transporting, placing, and curing methods, the variation in 

testing procedure, and variations due to concrete being in a structure rather than in control 

specimens. 

The quality control of the concreting operation has an important role in the variability of concrete 

strength. The coefficient of variation of field-cast laboratory-cured specimens is, in many cases, 

between 15% and 20%, which suggests that 20% is a reasonable maximum value for average 

controls. However, the standard deviation and the coefficient of variation are not constant for 

different strength levels. In consequence, the average coefficient of variation can be taken as 
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roughly constant at 10%, 15%, and 20% for strength levels below 4000 psi (27.6 MPa) for 

excellent, average, and poor control, respectively (Mirza et al. 1979). Based on these results, 

MacGregor (1996) suggested that the coefficient of variation for concrete in a structure should be 

taken as 0.18. 

4.7.3 Wall thickness 

The statistical information for wall thickness was taken based on the research presented by 

Moosavi and Korany (2014). A normal probability distribution was proposed, with a bias 

coefficient of 1.00 and COV of 0.010. 

4.7.4 Reinforcement location  

The statistical values for the reinforcement location were taken based on a study presented by 

Ellingwood et al. (1985). A normal distribution with a mean of 𝑑௡ and COV of 4 𝑚𝑚/𝑑௡ was 

suggested by Ellingwood. 

4.7.5 Yield strength  

Bournonville et al. (2004) evaluated the variability of mechanical properties and weight of steel 

reinforcing bars produced in the United States and Canada. Based on this study a normal 

distribution was assumed for the yield strength, with a bias coefficient of 1.14, and COV of 0.07. 

4.7.6 Rate of loading  

The rate of loading (𝜌௥) has a significant influence on the strength of concrete. According to Mirza 

et al. (1979): 

 𝜌௥ ൌ 0.89ሺ1 ൅ 0.88 logଵ଴ሺ𝑅ሻሻ (4.13) 

Where R is the loading rate in psi/s. The loading time to failure was assumed to be 1 hour for live 

loads, 10 min for wind loads, and 1 day for snow loads. The resulting values of 𝜌௥ are 0.88, 0.96, 

and 0.79 for the dead plus live, dead plus wind, and dead plus snow load combinations, 

respectively. These values were adopted by Bartlett (2007) and the study conducted by Moosavi 

and Korany (2017). The variability in the rate of loading is negligible compared to the large 

coefficient of variations for the other parameters and therefore ignored in this analysis. 
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4.7.7 Workmanship factor  

The effect of the workmanship factor on the reliability of structural masonry is very significant. 

The strength of masonry is highly sensitive to construction practices, mason qualifications, and 

inspection. Some of the problems that are included in the workmanship factor are the thickness 

and furrowing of mortar joints, grouting procedures, wall verticality, geometrical compliance with 

design values, and the quality control of construction materials. Based on limited experimental 

data and judgment, three sets of bias coefficients and COV were proposed by Turkstra (1989) for 

the workmanship factor: 1.0 and 0.1 for well inspected, 0.8 and 0.15 for regularly inspected, and 

0.7 and 0.2 for uninspected masonry. Moosavi and Korany (2014), based on the Turkstra study 

proposed a bias coefficient of 0.85 and a COV of 0.15 for regularly inspected masonry and these 

values were used in this study. 

4.8 Properties of Analyzed Walls 

The thickness of the walls analyzed in this investigation was 290 mm, corresponding to a nominal 

30 cm block. The masonry compressive strengths, 𝑓௠ᇱ , that were selected to observe their effect on 

the reliability analysis, were 5 MPa, 10 MPa, 15 MPa, 20 MPa, and 25 MPa. The minimum 

compressive strength for grouted masonry recognized by the Canadian masonry standard, without 

laboratory testing, is 5 MPa, and the maximum is 13 MPa – higher values than these were also 

considered to achieve a range that would overlap with the lower end of typical concrete 

compressive strengths. For concrete walls, the concrete compressive strengths, 𝑓௖ᇱ, were taken as 

20 MPa, 25 MPa, and 30 MPa. The minimum concrete compressive strength given by the Canadian 

concrete standard CSA A23.3-19 is 20 MPa. 

The minimum reinforcement ratio for masonry and concrete walls 0.0013 and 0.0015 (CSA S304-

14, CSA A23.3-19), respectively. Upper ranges of reinforcement ratios (𝜌௦) were taken as 0.0025 

and 0.0035. From a practical point of view, 𝜌௦ ൌ 0.0013, 𝜌௦ ൌ 0.0025 and 𝜌௦ ൌ 0.0035 translate 

into 20M bars spaced at 𝑠 ൌ 800 mm, 20M bars spaced at 𝑠 ൌ 400 mm and 15M bars spaced at 

𝑠 ൌ 200 mm, respectively. The properties of the analyzed walls are summarized in Table 4.4 and 

Table 4.5. 
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Table 4.4: Properties of masonry analyzed walls. 

 Reinforcement Ratio ρ 
  0.0013 / 0.0015 0.0025 0.0035 

Compressive 
strength 
𝒇𝒎ᇱ  (MPa) 

5 
 

 
 

 

 

10 

15 

20* 

25* 

*Considered to masonry and concrete comparison (see section 4.9.3). 

Table 4.5: Properties of concrete analyzed walls. 

 Reinforcement  Ratio ρ 
  0.0013 / 0.0015 0.0025 0.0035 

Compressive 
strength 
𝒇𝒄ᇱ  (MPa) 

 
 
 

 

 

20* 

25* 

30 

* Considered to masonry and concrete comparison (see section 4.9.3). 

4.9 Results and Discussion  

4.9.1 Parametric Analysis  

i. Effect of Reinforcement Ratio Variation on reliability of non-slender walls 

The reliability was calculated for different amounts of reinforcement in singly reinforced (SR) and 

doubly reinforced (DR) masonry and concrete walls (Figure 4.5). 
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Figure 4.5: Effect of the change in the reinforcement ratio: (a) Singly reinforced (SR) masonry 
wall; (b) Doubly reinforced (DR) masonry wall; (c) Singly reinforced (SR) concrete wall; (d) 

Doubly reinforced (DR) concrete wall. 

As can be seen in Figure 4.5b, the DR masonry walls show highest sensitivity/variability of 

reliability indices with the change of the reinforcement ratio, followed by DR concrete walls 

(Figure 4.5d), and then SR masonry walls (Figure 4.5a). SR concrete walls (Figure 4.5c) are not 

influenced by the change in the reinforced ratio. One of the major differences between masonry 

and concrete walls is their COV of their compressive strength (masonry COV=0.236 and concrete 

COV=0.18). The COV is a convenient dimensionless measure of uncertainty that conveys the 

concept of variability of the predictable (mean) value. This statement is used to explain the 

difference in sensitivity. Figure 4.6 shows the reliability values of DR masonry walls for these two 

COVs. These results show that COV of the compressive strength (𝑓௠ᇱ ) matters in terms of 

sensitivity even in the variation of reinforcement ratio. Lower COV increases the reliability 

indices, and also reduce the sensitivity of the curves. The resistance component (R) of the limit 
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state function, for both materials, takes into account statistical characteristics of 𝑓௠ᇱ  and 𝑓௖ᇱ even 

when this is taken constant and reinforcement ratio varies. In addition, this variability is aggravated 

by the presence of the workmanship random variable in masonry wall construction. 

 
Figure 4.6: Effect of the change in the coefficient of variation (COV): Doubly reinforced (DR) 

masonry wall. 

 

It is worth mentioning that the changes in the reinforcement ratio have higher influence in the 

tension region (region of large eccentricities) than in the compression region (region of low 

eccentricities), especially for masonry walls (Figures 4.5a and 4.5b). It is seen that the changes in 

the reinforcement ratio produce large variations in reliability index within the tension zone of the 

masonry graphs, but reliability within the compression zone remains unaffected by changes in 

reinforcement ratio. Similar observations were made when conducting sensitivity analysis. The 

tension zones of the interaction diagrams for masonry were found to be sensitive to changes in 

reinforcement ratio while the compression zones were not (Figure 4.7).  This is attributed to the 

fact that in the compression zone the effect of the reinforcement ratio is negligible, since the 

behaviour is dominated by the masonry or concrete compressive strengths. In addition, 

compression in steel rebars is ignored in masonry walls because the bars cannot be laterally 

restrained within the cells of the masonry unit. For the compression zone and a given eccentricity, 

the resistance (derived from the nominal P-M interaction diagram) and the loads (derived from the 

0

1

2

3

4

5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

β

e/t

f'm=20MPa, ρ=0.0035
f'm=20MPa, ρ=0.0035
f'm=20MPa, ρ=0.0025
f'm=20MPa, ρ=0.0025
f'm=20MPa, ρ=0.0015
f'm=20MPa, ρ=0.0015

D+L, α=D/L=1.00, t = 290 mm𝐶𝑂𝑉 ൌ 0.18

𝐶𝑂𝑉 ൌ0.236



 

60 
 

factored P-M interaction diagram) at different reinforcement ratios have the same values, the 

curves overlap each other (see Figure 4.7); therefore, the resistance (R) and the load (S) 

components are the same in the limit state equation (g(X)=R-S), so the reliability indices are equal 

as well (Figures 4.5a and 4.5b). 

 

Figure 4.7: Effect of the change in the reinforcement ratio: (a) Singly reinforced masonry wall; (b) 
Doubly reinforced masonry wall. 

 

For concrete walls (Figures 4.5c and 4.5d), particularly for doubly reinforced walls, it is seen that 

the compression-controlled region is sensitive to the change in the reinforcement ratio. The reason 

for this is that vertical reinforcement is laterally restrained by the horizontal reinforcement in the 

wall and is thus able to carry compression forces.    

The higher the reinforcement ratio, the higher the reliability indices for all walls. This observation 

is consistent with results obtained by H.P. Hong and W.Zhou (1999) on their study on reliability 

evaluation of reinforced-concrete columns. Moreover, Gonzales et al. (2021) showed that 

increasing the steel area greatly improves the response in term of resistance of masonry walls, 

which results in safer structures. 
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ii. Effect of the compressive strength variation on the reliability of non-slender walls 

Figure 4.8 shows the effect of varying the material compressive strength on the reliability levels 

for doubly reinforced (DR) and singly reinforced (SR) masonry and concrete walls. The 

compressive strength for masonry was varied from 5 to 25 MPa and its effect on reliability index 

at different eccentricities was determined. The procedure was repeated for reinforced-concrete 

walls with compressive strength value ranging from 20 to 30 MPa. 

The reliability of DR masonry wall (Figure 4.8b) is the most sensitive to the changes in 

compressive strength, followed by DR concrete walls (Figure 4.8d), and SR masonry walls (Figure 

4.8a). The reliability of SR concrete walls (Figure 4.8c) is not affected by change in the 

compressive strength of the concrete. The reason for this is the higher variability in strength data 

for masonry walls (COV =0.236) than concrete walls strength data (COV=0.18). This higher 

variability in masonry is due to the fact that its strength is highly dependent on construction 

practices, mason qualifications, and inspection. In addition, this variability is aggravated by the 

presence of the workmanship random variable in masonry wall construction. 
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Figure 4.8: Effect of the change in the compressive strength on reliability index: (a) SR masonry 
wall; (b) DR masonry wall; (c) SR concrete wall; (d) DR concrete wall. 

At low eccentricities (e/t<0.15), the reliability of masonry walls increases with compressive 

strength of the wall (Figures 4.8a and 4.8b). The behaviour is reversed at higher eccentricities, 

where the lower compressive strength walls have higher reliability index. It is important to point 

out that in the initial region (e/t<0.15) the curves almost overlap with each other. This means that 

the effect of the compressive strength is negligible; therefore, it is seen that as the compressive 

strength increases, the reliability values decrease.  

Generally, the reliability of concrete walls decreased with an increase in the compressive strength, 

regardless of the eccentricity level.  The drops in reliability were more evident in doubly 

reinforced-concrete walls than in singly reinforced-concrete walls (Figures 4.8c and 4.8d). 

In order to confirm the relationships between the compressive strength of walls and reliability, a 

Monte Carlo simulation was performed to determine means and standard deviations of the 
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resistance (R) and load (S) variables in the limit state function. Then, their COV is determined 

using the definition of the Cornell reliability index (β஼): 

β஼ ൌ
𝜇ோ െ 𝜇ௌ

ඥ𝜎ோଶ ൅ 𝜎ௌଶ
ൌ

1
𝐶𝑂𝑉

 (4.14) 

The results of this analysis are summarized in Tables 4.6-4.9. 

Table 4.6: Results of Monte Carlo simulation – SR concrete wall - 𝒆/𝒕 ൌ 𝟏.𝟓. 

Parameter 
𝒇𝒄ᇱ ൌ 𝟐𝟎 𝑴𝑷𝒂  𝒇𝒄ᇱ ൌ 𝟐𝟓 𝑴𝑷𝒂 𝒇𝒄ᇱ ൌ 𝟑𝟎 𝑴𝑷𝒂 
𝝁 σ 𝝁 σ 𝝁 σ 

Resistance (𝑅) 
9.47734
∗ 10଻ 

1.71071
∗ 10଻ 

9.84102
∗ 10଻ 

1.77454
∗ 10଻ 

1.00384
∗ 10଼ 

1.81142
∗ 10଻ 

Load (𝑆) 
4.36055
∗ 10଻ 

6.51383
∗ 10଺ 

4.56640
∗ 10଻ 

6.82220
∗ 10଺ 

4.70821
∗ 10଻ 

7.02548
∗ 10଺ 

𝜇ோ െ 𝜇ௌ 5.11679 ∗ 10଻ 5.27462 ∗ 10଻ 5.33019 ∗ 10଻ 

ඥ𝜎ோଶ ൅ 𝜎ௌଶ 1.83053 ∗ 10଻ 1.90116 ∗ 10଻ 1.94289 ∗ 10଻ 

COV 0.35775 0.36044 0.36451 

Table 4.7: Results of Monte Carlo simulation – DR concrete wall - 𝒆/𝒕 ൌ 𝟏.𝟓. 

Parameter 
𝒇𝒄ᇱ ൌ 𝟐𝟎 𝑴𝑷𝒂  𝒇𝒄ᇱ ൌ 𝟐𝟓 𝑴𝑷𝒂 𝒇𝒄ᇱ ൌ 𝟑𝟎 𝑴𝑷𝒂 
𝝁 σ 𝝁 σ 𝝁 σ 

Resistance (𝑅) 
9.21756
∗ 10଻ 

1.54074
∗ 10଻ 

9.76778
∗ 10଻ 

1.72948
∗ 10଻ 

1.00399
∗ 10଼ 

1.80811
∗ 10଻ 

Load (𝑆) 
4.27651
∗ 10଻ 

6.38539
∗ 10଺ 

4.48349
∗ 10଻ 

6.68718
∗ 10଺ 

4.66674
∗ 10଻ 

6.96462
∗ 10଺ 

𝜇ோ െ 𝜇ௌ 4.94105 ∗ 10଻ 5.28429 ∗ 10଻ 5.37316 ∗ 10଻ 

ඥ𝜎ோଶ ൅ 𝜎ௌଶ 1.66782 ∗ 10଻ 1.85426 ∗ 10଻ 1.93761 ∗ 10଻ 

COV 0.33754 0.35090 0.36061 
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Table 4.8: Results of Monte Carlo simulation – SR masonry wall - 𝒆/𝒕 ൌ 𝟏.𝟓. 

Parameter 
𝒇𝒎ᇱ ൌ 𝟓 𝑴𝑷𝒂  𝒇𝒎ᇱ ൌ 𝟏𝟓 𝑴𝑷𝒂 𝒇𝒎ᇱ ൌ 𝟐𝟓 𝑴𝑷𝒂 
𝝁 σ 𝝁 σ 𝝁 σ 

Resistance (𝑅) 
4.68503
∗ 10଻ 

1.18306
∗ 10଻ 

9.99860
∗ 10଻ 

2.504863
∗ 10଻ 

1.06405
∗ 10଼ 

2.55690
∗ 10଻ 

Load (𝑆) 
1.69974
∗ 10଻ 

2.16861
∗ 10଺ 

3.97002
∗ 10଻ 

5.53349
∗ 10଺ 

4.53328
∗ 10଻ 

6.75579
∗ 10଺ 

𝜇ோ െ 𝜇ௌ 2.98529 ∗ 10଻ 6.02858 ∗ 10଻ 6.02858 ∗ 10଻ 

ඥ𝜎ோଶ ൅ 𝜎ௌଶ 1.20278 ∗ 10଻ 2.56525 ∗ 10଻ 2.64464 ∗ 10଻ 

COV 0.40290 0.42552 0.43304 

 

 

Table 4.9: Results of Monte Carlo simulation – DR masonry wall - 𝒆/𝒕 ൌ 𝟏.𝟓. 

Parameter 
𝒇𝒎ᇱ ൌ 𝟓 𝑴𝑷𝒂  𝒇𝒎ᇱ ൌ 𝟏𝟓 𝑴𝑷𝒂 𝒇𝒎ᇱ ൌ 𝟐𝟓 𝑴𝑷𝒂 
𝝁 σ 𝝁 σ 𝝁 σ 

Resistance (𝑅) 
7.41716
∗ 10଻ 

1.54469
∗ 10଻ 

8.97213
∗ 10଻ 

1.83557
∗ 10଻ 

9.79725
∗ 10଻ 

2.04992
∗ 10଻ 

Load (𝑆) 
3.04857
∗ 10଻ 

4.55426
∗ 10଺ 

3.97504
∗ 10଻ 

5.93374
∗ 10଺ 

4.36779
∗ 10଻ 

6.52326
∗ 10଺ 

𝜇ோ െ 𝜇ௌ 4.36859 ∗ 10଻ 4.99709 ∗ 10଻ 5.42946 ∗ 10଻ 

ඥ𝜎ோଶ ൅ 𝜎ௌଶ 1.61043 ∗ 10଻ 1.92910 ∗ 10଻ 2.15121 ∗ 10଻ 

COV 0.36864 0.38604 0.39621 
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Figure 4.9: Effect of the change in the coefficient of variation (COV) with an increment of the 
compressive strength: (a) Singly reinforced-concrete wall; (b) Doubly reinforced-concrete wall; (c) 

Singly reinforced masonry wall; (d) Doubly reinforced masonry wall. 

As can be seen in Tables 4.6-4.9 and Figure 4.9, higher compressive strengths have the highest 

coefficient of variation, -i.e., more variability and consequently, the least reliability value. These 

results are related with engineering practice since higher compressive strength is more difficult to 

achieve and it is subjected to more variability. This observation is consistent with results obtained 

by Guzman (2022) on their study on reliability assessment for loadbearing reinforced-concrete 

masonry walls subjected to gravity and lateral loads. 
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4.9.2 Comparison between Singly and Doubly Reinforced Walls  

i. Singly and Doubly reinforced masonry walls. 

The reliability of singly and doubly reinforced masonry walls were compared to determine the 

effect of reinforcement placement on the reliability indices. 

 Effect of reinforcement ratio on reliability 

Figures 4.10 shows the effect of varying reinforcement ratio on the reliability index of singly 

reinforced (SR) and doubly reinforced (DR) masonry walls. The reinforcement ratios were varied 

from 0.0013 to 0.0035, while keeping the masonry compressive strength constant at 25MPa and 

the wall thickness at 290mm.  

 

 
 

 

Figure 4.10: Comparison between SR masonry and DR masonry walls for the same 𝒇𝒎ᇱ ൌ 𝟐𝟓 𝑴𝑷𝒂 
and for different reinforcement ratios. 
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 Effect of compressive strength on reliability     

The effect of compressive strength on reliability of singly and doubly reinforced masonry walls 

was assessed by varying the compressive strength of masonry from 5 to 25 MPa, while keeping 

the reinforcement ratio constant at 0.0035 (Figure 4.11). 

 

 
   

 

 

 

Figure 4.11: Comparison between SR masonry and DR masonry walls for the same 𝝆 ൌ 𝟎.𝟎𝟎𝟑𝟓 
and for different compressive strength. 
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As shown in Figure 4.10 and Figure 4.11 DR masonry walls generally had higher reliability values 

than SR masonry walls. At lower eccentricities (e/t<0.4), the whole cross section of the wall is in 

compression, so the reinforcing bars are not activated This explains why SR and DR have equal 

reliability levels in this range, as only the masonry is participating in the resistance. For higher 

eccentricities, the double layer of reinforcement in the DR masonry walls increases the capacity 

of the wall (leading to a safer structure, with higher reliability values) compared to placing a single 

layer of reinforcing bars in the center of the wall. This increment in the capacity is due to higher 

moment arms in DR walls. The finding is consistent with results obtained by Gonzalez et al. 

(2021).  The reliability index increased with the reinforcement ratio (Figure 4.10) but dropped with 

increase in compressive strength (Figure 4.11), mirroring the findings previously discussed in 

section 4.9.1.  

The differences in reliability of singly and doubly reinforced masonry walls become more 

noticeable for higher reinforcement ratios (Figure 4.10) and for lower compressive strengths 

(Figure 4.11). This is because the high sensitivity of DR to the change of the reinforcement ratio 

and compressive strength (Parametric Analysis section 4.9.1).  

ii. Singly and Doubly reinforced-concrete walls 

The reliability index of singly and doubly reinforced-concrete walls were compared. Figure 4.12 

shows the variation of the reliability of these walls with respect to their reinforcement ratio, while 

Figure 4.13 shows the reliability variation with respect to the compressive strength of concrete. 
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Figure 4.12: Comparison between SR concrete and DR concrete walls for the same 𝒇𝒎ᇱ ൌ 𝟑𝟎 𝑴𝑷𝒂 
and for different reinforcement ratios. 
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Figure 4.13: Comparison between SR concrete and DR concrete walls for the same 𝝆 ൌ 𝟎.𝟎𝟎𝟑𝟓 
and for different compressive strength. 

 

The findings in this section largely mirrored those obtained for masonry walls.  Doubly reinforced-

concrete walls had higher reliability than singly reinforced-concrete walls. As found by Gonzalez 

et.al (2021), a double layer of reinforcement increases the capacity of the wall. Unlike masonry 

walls, the reliabilities of concrete walls differed across all eccentricities (including lower e/t <0.5). 

This is because for concrete walls reinforcements are tied together and are always activated. 

Therefore, the steel bars are allowed to take compressive forces even for lower eccentricities 

(Figure 4.12 and 4.13). 
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The reliability of singly and doubly reinforced-concrete walls increased with the reinforcement 

ratio but dropped with an increase in concrete compressive strength. 

The differences in reliability of singly and doubly reinforced-concrete walls become more 

noticeable for higher reinforcement ratios (Figure 4.12) and for lower compressive strengths 

(Figure 4.13). This is because the highest sensitivity of DR concrete walls to the change of the 

reinforcement ratio and compressive strength (Parametric Analysis section 4.9.1).  

Also, DR walls of either material were more sensitive to the change of the compressive strength 

and reinforcement ratio than SR walls because in DR walls the moment capacity considered the 

moment arms of both reinforcement layers. Therefore, additional random variables such as the 

effective depth of the compressive reinforcing bars (d’) and yield stress (fy) of the compressive 

steel are involved, adding more variability to the limit state function (Figure 4.14).  

 

Figure 4.14: Contribution to the moment capacity: (a) Doubly reinforced wall; (b) Singly reinforced 
wall. 

Walls with higher compressive strength and lower reinforcement ratio had similar reliabilities 

irrespective of whether they were doubly or singly reinforced. However, for walls made of lower 

compressive strength materials and having higher reinforcement ratios, the reliability index for 

singly reinforced wall was lower than for doubly reinforced wall. These observations are consistent 

with the higher sensitivity of DR masonry and concrete walls to the change of the reinforcement 

ratio and compressive strength (Parametric Analysis section 4.9.1). 

4.9.3 Comparison between Masonry and Concrete Walls   

As shown in Table 4.4 and 4.5, masonry and concrete walls will be compared using the same 

compressive strength (20 MPa, 25 MPa) and the same reinforcement ratio (𝜌=0.0015, 0.0025, 

0.0035). 

Figures 4.15, 4.16, 4.17 and 4.18 show the step by step process of this comparison. For this process, 

a compressive strength of 25 MPa and a reinforcement ratio of 0.0015 were taken. Figure 4.15 

(a)  (b)  
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shows the reliability values for singly reinforced (SR) masonry walls. In Figure 4.16, reliability 

values for SR concrete walls are added to Figure 4.15. In Figure 4.17, reliability values for doubly 

reinforced (DR) masonry walls are added to Figure 4.16. In Figure 4.18, reliability values for DR 

concrete walls are added to Figure 4.17.    

 

Figure 4.15: Reliability levels comparison for the same 𝒇𝒎ᇱ ൌ 𝒇𝒄ᇱ ൌ 𝟐𝟓 𝑴𝑷𝒂 and 𝝆 ൌ 𝟎.𝟎𝟎𝟏𝟓: 
Singly reinforced (SR) masonry wall. 

 
Figure 4.16: Reliability levels comparison for the same 𝒇𝒎ᇱ ൌ 𝒇𝒄ᇱ ൌ 𝟐𝟓 𝑴𝑷𝒂 and 𝝆 ൌ 𝟎.𝟎𝟎𝟏𝟓: SR 

masonry and concrete walls. 
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Figure 4.17: Reliability levels comparison for the same 𝒇𝒎ᇱ ൌ 𝒇𝒄ᇱ ൌ 𝟐𝟓 𝑴𝑷𝒂 and 𝝆 ൌ 𝟎.𝟎𝟎𝟏𝟓: SR 
masonry, concrete walls and Doubly reinforced (DR) masonry wall. 

 

Figure 4.18: Reliability levels comparison for the same 𝒇𝒎ᇱ ൌ 𝒇𝒄ᇱ ൌ 𝟐𝟓 𝑴𝑷𝒂 and 𝝆 ൌ 𝟎.𝟎𝟎𝟏𝟓: SR 
and DR masonry and concrete walls. 
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the different sensitivity of the analyzed cases to the variation of the parameters in comparison (i.e., 

compressive strength and reinforcement ratio), it is necessary to see these differences in reliability 

values for different reinforcement ratios. Therefore, following the same procedure a more general 

comparison varying the reinforcement ratio is provided in Figures 4.19, 4.20, and 4.21. 

Figures 4.19, 4.20 and 4.21 show a comparison in terms of reliability levels between masonry and 

concrete walls, the graphs correspond to a compressive strength of 25 MPa and reinforcement ratio 

varying from 0.0015 to 0.0035. 

 

 

 

Figure 4.19: Reliability levels comparison between masonry and concrete walls, 𝒇𝒎ᇱ ൌ 𝒇𝒄ᇱ ൌ
𝟐𝟓 𝑴𝑷𝒂 and 𝝆 ൌ 𝟎.𝟎𝟎𝟏𝟓. 
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Figure 4.20: Reliability levels comparison between masonry and concrete walls, 𝒇𝒎ᇱ ൌ 𝒇𝒄ᇱ ൌ
𝟐𝟓 𝑴𝑷𝒂 and 𝝆 ൌ 𝟎.𝟎𝟎𝟐𝟓. 

 

 

Figure 4.21: Reliability levels comparison between masonry and concrete walls, 𝒇𝒎ᇱ ൌ 𝒇𝒄ᇱ ൌ
𝟐𝟓 𝑴𝑷𝒂 and 𝝆 ൌ 𝟎.𝟎𝟎𝟑𝟓. 

As can be shown in Figures 4.19-4.21, when comparing reliability indices between masonry and 

concrete walls, it is seen that the reliability indices are similar (average reliability index of 3.5). 
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However, masonry walls exhibit higher sensitivity in reliability indices with a change in the 

reinforcement ratio compared to walls made of concrete. It has been shown that the resistance 

component (R) of the limit state function takes into account the variability (COV) of the 

compressive strength, even when it remains constant and reinforcement ratio varies (parametric 

analysis 4.9.1). Decreasing this variability increases the reliability level and reduces sensitivity. 

The compressive strength for masonry possesses higher COV than the compressive strength of 

concrete, which means higher sensitivity.  Another important factor is the workmanship random 

variable in masonry wall construction, which adds uncertainty to the problem. The curve that 

shows highest sensitivity to the reinforcement ratio is DR masonry wall, followed by DR concrete 

wall, SR masonry wall, and SR concrete wall. 

The reliability of doubly reinforced walls is more sensitive to the load eccentricity than singly 

reinforced walls. Consequently, the differences between the curves are higher when the 

reinforcement ratio is higher, and the reliability curves are very close each other for the lowest 

reinforcement ratio. This is consistent with results obtained in the comparison between singly and 

doubly reinforced walls and the observed sensitivity of the curves.  

For the other compressive strength comparison (20 MPa), the behaviour of the curves is similar to 

that described above for 25 MPa (see section 4.9.2).  The data is shown in Appendix B. 

Walls with minimum strength and reinforcement ratios 

The standards requirements give minimum acceptable safety levels. Canadian concrete standard 

(CSA A23.3-2019) require concrete walls to have a minimum strength of 20MPa, and a minimum 

reinforcement ratio of 0.0015. The Canadian masonry standard (CSA S304-14) limit grouted 

masonry strength to not less than 5MPa, without laboratory testing, and reinforcement ratios of 

0.0013. Figure 4.22 shows a comparison of the reliabilities of masonry and concrete walls designed 

to the minimum standard requirements (𝑓௠ᇱ ൌ 5 𝑀𝑃𝑎,𝜌௦ ൌ 0.0013; 𝑓௖ᇱ ൌ 20 𝑀𝑃𝑎,𝜌௦ ൌ 0.0015). 
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Figure 4.22: Comparison between masonry and concrete walls, minimum standard requirements. 

For smaller eccentricities (e<0.40), the reliability values between masonry and concrete walls are 

very similar. For larger eccentricities than this value DR masonry walls have higher reliability 

values than the other curves, which still have the same reliability levels. This observation is 

expected since the parametric analyses show that for lower compressive strengths correspond 

higher reliability values (5 MPa for masonry, 20 MPa for concrete).   

The difference in reliability levels for concrete and masonry are in part due to variations in material 

resistance factors 𝜙௠=0.60 and 𝜙௖ ൌ 0.65 used in factored resistance interaction diagram. 

Similarly, parameters such as 𝛼ଵ and 𝛽ଵ are different for masonry and concrete. Additionally, for 

the nominal interaction diagram, the material behavioural models are different, as well as the 

ultimate compressive strain. In the method to solve the limit state function, the statistical 

parameters such as the bias factor, coefficient of variations and probability distribution function of 

the material compressive strength are different. 
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5 CONCLUSIONS AND RECOMMENDATIONS 

Comparison of the reliability of masonry and concrete walls 

For the same compressive strength (in the range of 20-25 MPa), both concrete and masonry walls 

had similar reliability values for different reinforcement ratios (average reliability value of 3.5).  

However, masonry walls exhibit higher sensitivity in reliability indices with a change in the 

reinforcement ratio compared to walls made of concrete. It has been shown that the resistance 

component (R) of the limit state function takes into account the variability (COV) of the 

compressive strength, even when it remains constant and reinforcement ratio varies (parametric 

analysis 4.9.1). Decreasing this variability increases the reliability level and reduces sensitivity. 

The compressive strength for masonry possesses higher COV than the compressive strength of 

concrete, which means higher sensitivity. Another important factor is the workmanship random 

variable in masonry wall construction, which adds uncertainty to the problem.  

Therefore, enhanced supervision control is required for masonry construction and this will reduce 

the variability in masonry walls. Reducing variability through enhanced supervision control of 

masonry would lead to increase in safety and, consequently, an increase in the strength reduction 

factor. This, in turn, results in a higher design capacity of structural masonry.  

The reliability of singly reinforced walls of either material was not significantly sensitive to the 

changes in the compressive strength and reinforcement ratio. In contrast, doubly reinforced walls 

exhibited sensitivity to these parameters. In DR walls the moment capacity considered the moment 

arms of both reinforcement layers; therefore, additional random variables such as effective depth 

of the reinforcement bars and their yield stress play a role, adding more variability to the limit state 

function. 

Due to the sensitivity of the curves to changes in reinforcement ratio and compressive strength, it 

is expected that, for compressive strengths lower than 20-25 MPa (rare for concrete elements but 

possible with poor supervision) the differences between masonry and concrete reliability curves 

will be greater. Conversely, for compressive strengths higher than the studied range (20-25 MPa), 

which is more likely to occur in concrete walls and less likely in masonry walls, the differences 
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between reliability curves will be smaller. Both cases are exacerbated by higher reinforcement 

ratios.  

Effect of Reinforcement ratio variation on reliability of concrete and masonry walls 

 Changes in the reinforcement ratio have greater influence on reliability of walls when the 

eccentricity is high (i.e., the moment is high, since e = M/P). This is because the role of the 

steel reinforcement is dominant when the moment is high while the value of the 

compressive strength is dominant for low eccentricity (i.e., behaviour dominated by axial 

load).  

 The following relationships can be observed: the higher the reinforcement ratio, the higher 

the reliability indices. Increasing the steel area greatly improves the response in term of 

resistance of walls, which translates into safer structures.  

Effect of Compressive strength variation on reliability of concrete and masonry walls 

 When the compressive strength increases, the reliability indices decrease for both masonry 

and concrete walls. This is consistent with results obtained in a Monte Carlo analysis 

carried out on singly and doubly reinforced masonry and concrete walls. It was observed 

that walls with higher compressive strength possess higher coefficient of variation, -i.e., 

more variability and consequently, smaller reliability values. 

Overall conclusion for both previous analyses (reinforcement ratio variation, compressive 

strength variation) 

 Doubly reinforced masonry (DR) walls are the most sensitive to the variation of these 

parameters, followed by DR concrete walls, and singly Reinforced (SR) masonry wall.  

 The reliability of SR concrete walls seemed not to be affected by the change in these 

parameters. 

 Masonry walls possess higher sensitivity than concrete walls. The reason for this is the 

higher variability in strength data for masonry walls (COV =0.236) than concrete walls 

strength data (COV=0.18). This higher variability in masonry is due to the fact that its 

strength is highly dependent on construction practices, mason qualifications, and 
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inspection. In addition, this variability is aggravated by the presence of the workmanship 

random variable in masonry wall construction. 

Effect of Single vs Double reinforcement on reliability  

 It was observed that the reliability indices of DR walls, for both masonry and concrete, 

were generally higher than reliability indices of SR walls. The differences are more 

noticeable for walls with higher reinforcement ratios and lower compressive strengths. A 

double layer of reinforcement increases the capacity of the wall (leading to a safer structure, 

with higher reliability values) compared to placing the reinforcing bars singly at the center 

of the wall This increment in the capacity is due to higher moment arms in DR walls. 

 Reliability indices of DR walls, for both materials masonry and concrete, are more sensitive 

to changes in design parameters than the reliability of SR walls. In DR walls the moment 

capacity considered the moment arms of both reinforcement layers; therefore, additional 

random variables such as effective depths, yield stress of the compressive steel are 

involved, adding more variability to the limit state function. 

 Walls, for both materials masonry and concrete, made of higher compressive strength and 

lower reinforcement ratio had similar reliabilities irrespective of whether they were doubly 

or singly reinforced, although slightly higher for DR walls. However, for walls made of 

lower compressive strength materials and having higher reinforcement ratios, the reliability 

index for singly reinforced wall was much lower than for doubly reinforced wall. This is a 

consequence of the higher sensitivity of DR walls than SR walls to the change in 

reinforcement ratio and compressive strength. 

5.1 Recommendations for future work 

Based on the outcomes of this study, the following recommendations can be made: 

 This study only considered gravity loads: dead load plus live load. Future studies should 

evaluate reliability indices considering different load conditions such as dead load plus 

snow load, dead load plus wind load. These have different factored load in their 

combination and different statistical information. 
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 This study focused on gravity loads where the moment is linearly correlated with the axial 

load. Future studies can be carried out for the cases where the axial load is not linearly 

correlated with the moment (lateral loads, second order effect due to slenderness) This can 

imply a selection of a new limit state function whose fundamentals are according to the 

behaviour of the analyzed wall case. Because of the selection of new limit state function, 

different reliability levels can be expected.  

 In this study a particular behavioural model for masonry (Priestley and Elder modified 

model) and concrete (Thorenfeldt model) were chosen to construct the nominal and 

factored interaction diagrams. Future studies can select different models for masonry 

(Romano model, Naraine and Sinha model) and concrete walls (Hognestad concrete curve, 

kent and Park model, Popovics curve). Different behavioural models might lead to different 

reliability values. 
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COMPUTER CODE FOR DOUBLY REINFORCED-CONCRETE WALL 

Do[ 

(*Nominal Values*) 

es=2*10^5; 

{fcn,fyn,dbn,dtn,tn,ρ}={25,400,240,50,290,0.0035}; 

(* Stress‐strain relationship – Steel rebar*) 

σsTop[ϵt_,fy_]:=If[ϵt<‐(fy/es),‐fy,If[ϵt<fy/es,es*ϵt,fy]]; 

σsBot[ϵb_,fy_]:=If[ϵb<‐(fy/es),‐fy,If[ϵb<fy/es,es*ϵb,fy]]; 

(* Stress‐strain relationship – Concrete*) 

γc = 2400; 

fc0=fcn*0.87; 

ec = If[20<=fc0<= 40, 4500*Sqrt[fc0], 

(3300*Sqrt[fc0]+6900)*(γc/2300)^1.5]; 

n = 0.8+fc0/17.2; 

ϵ0 =‐ (fc0/ec)*(n/(n‐1)); 

k1=1; 

k2=Max[0.67+fc0/62,1]; 

σc[ϵc_,fc_]:=If[ϵc>0,0,If[ϵc>=‐ϵ0,s=‐fc*(n*(ϵc/ϵ0))/((n‐

1)+(ϵc/ϵ0)^(n*k1)),s=‐fc*(n*(ϵc/ϵ0))/((n‐1)+(ϵc/ϵ0)^(n*k2))]]; 

(*FACTORED INTERACTION DIAGRAM*) 

A23[fc_,fy_,dBot_,dTop_,t_,e_]:=Module[{ϕc,ϕs,ae,ag,ast,ϵy,β1,prmax,cb

,a,cm,sTop,tr,prb,mrb,eb,pr,mr,list,cO,c,a1,listp,pA23,pmA23,mA23,thru

st,sub,guessP,ϵu,order,guessP2,b,λ,α1}, 

list={}; 
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ϕc=0.65;ϕs=0.85;ϵu=0.0035; 

b=1000; 

λ=1; 

ρ; 

ae=b*t; 

ag=b*t; 

ast=ρ*ag;  

α1 = 0.85‐0.0015*fc; 

β1=0.97‐0.0025*fc; 

fr = 0.6*λ*Sqrt[fc]; 

ρb = (α1*ϕc*fc*β1)/(ϕs*fy)*(ϵu/(ϵu+ϵy));  

(*Axial Load*) 

pro = (ϕc*α1*fc*(ag‐ast)+ϕs*fy*ast)/1000; 

prmax=If[(0.15+0.002*t)*pro <= 0.75*pro,(0.15+0.002*t)*pro,0.75*pro]; 

Print["Prmax: ",prmax]; 

(*Balanced Case*) 

cb=ϵu/(fy/es+ϵu) dBot; 

a=β1* cb; 

cm=ϕc*α1*fc*b*a; 

sTop=ϕs*ρ/2*ag*σsTop[ϵu (dTop‐a/β1)/(a/β1),fy]; 

tr=ϕs*ρ/2*ag*fy; 

prb=cm‐sTop‐tr; 

mrb=cm(t/2‐a/2)+tr(dBot‐t/2)‐sTop*(t/2‐dTop); 
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eb=mrb/prb; 

(*Pure bending*) 

a=a1/.Solve[{ϕc*α1*fc*b*a1‐ϕs*σsTop[(dTop‐a1/β1)/(a1/β1) 

ϵu,fy]*ρ/2*ag==ϕs*σsBot[(dBot‐a1/β1)/(a1/β1) ϵu,fy]*ρ/2*ag, 

a1>0},a1][[1]] ; 

If[ϵu (dBot‐a/β1)/(a/β1)>fy/es,yield="Steel Yields in pure 

bending",Print["Steel does not yield in pure bending"]]; 

cm=ϕc*α1*fc*b*a; 

sTop=ϕs*ρ/2*ag*σsTop[ϵu (dTop‐a/β1)/(a/β1),fy]; 

tr=ϕs*σsBot[ϵu (dBot‐a/β1)/(a/β1),fy]*ρ/2*ag; 

mr=cm*(t/2‐a/2)+tr*(dBot‐t/2)‐sTop*(t/2‐dTop); 

AppendTo[list,{mr/10^6,0}]; 

cO=a/β1; 

(*Other points*) 

c=cO+1; 

While[c<t,{a=β1*c, cm=ϕc*α1*fc*b*a,sTop=ϕs*ρ/2*ag*σsTop[ϵu*(dTop‐

a/β1)/(a/β1),fy],tr=ϕs*σsBot[ϵu*(dBot‐a/β1)/(a/β1),fy]*ρ/2*ag,pr=cm‐

sTop‐tr,mr=cm*(t/2‐a/2)+tr*(dBot‐t/2)‐sTop*(t/2‐dTop), 

AppendTo[list,{mr/10^6,Min[pr/1000,prmax+c/10000]}],c=c+1} ]; 

(*Last Point*) 

c=t; 

a=β1 *c; 

cm=ϕc*α1*fc*b*a; 

sTop=ϕs*ρ/2*ag*σsTop[ϵu*(dTop‐a/β1)/(a/β1),fy]; 
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tr=ϕs*σsBot[ϵu (dBot‐a/β1)/(a/β1),fy]*ρ/2*ag; 

pr=cm‐sTop‐tr; 

mr=cm*(t/2‐a/2)+tr*(dBot‐t/2)‐sTop*(t/2‐dTop); 

AppendTo[list,{mr/10^6,Min[pr/1000,prmax+c/10000]}]; 

AppendTo[list,{0,prmax+(c+1)/10000}]; 

listp=Table[{list[[i,2]],list[[i,1]]},{i,Length[list‐5]}]; 

pmA23=Interpolation[listp,InterpolationOrder‐>1]; 

guessP=10^‐3; 

order=10^IntegerPart[Log[10,list[[‐1,2]]]]; 

Do[{While[ 

And[guessP<list[[‐

1,2]],pmA23[guessP]/guessP>e/1000],guessP=guessP+order], 

guessP=guessP‐order, 

order=order/10},{10}]; 

sub=FindRoot[pmA23[guessP2]/guessP2==e/1000,{guessP2,guessP}]; 

mA23=pmA23[guessP2/.sub]; 

pA23=guessP2/.sub; 

{list,{{mrb/10^6,prb/10^3}},{{mA23,pA23}}}; 

Print["mA23=",mA23]; 

Print["pA23=",pA23]; 

{mA23, pA23} 

]; 

{mn,pn}=A23[fcn,fyn,dbn,dtn,tn,en]; 
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mn; 

pn; 

(*NOMINAL INTERACTION DIAGRAM*) 

realPM[fc_,fy_,dBot_,dTop_,t_,e_]:= 

Module[{interaction,interaction2, list,b,listn, 

sub,ae,ag,cO,cO1,cO2,ϵui,cm,tr,mr,c,yield,pr,listp,listnp,mReal,pReal,

cReal,thrust,maxp,finalInteraction,finalInteraction2,finalList,guessP,

cStep,order,z,cb,mrb,prb,ec,n,ϵ0,k1,k2,sTop}, 

interaction={}; 

list={}; 

listn={}; 

b=1000; 

ae=b*t; 

ag=b*t; 

maxp=0; 

interaction= 

Table[list={}; 

(*Pure bending*) 

cO1=0.01; 

order=10; 

Do[{While[‐b*NIntegrate[σc[‐(ϵui/cO1)*x,fc],{x,0,cO1}]‐σsTop[(dTop‐

cO1)/cO1*ϵui,fy]*ρ/2*ag<σsBot[(dBot‐

cO1)/cO1*ϵui,fy]*ρ/2*ag,{cO1=cO1+order}],cO1=cO1‐

order,order=order/10},{3}]; 
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sub=FindRoot[‐b*Integrate[σc[‐(ϵui/cO2)*x,fc],{x,0,cO2}]‐σsTop[(dTop‐

cO2)/cO2*ϵui,fy]*ρ/2*ag==σsBot[(dBot‐

cO2)/cO2*ϵui,fy]*ρ/2*ag,{cO2,cO1}]; 

cO=cO2/.sub; 

sTop=σsTop[ϵui (dTop‐cO)/cO,fy]*ρ/2*ag; 

tr=σsBot[(dBot‐cO)/cO*ϵui,fy]*ρ/2*ag; 

If[ϵui*(dBot‐cO)/cO>fy/es,{mr=‐b*NIntegrate[(t/2‐cO+x)*σc[‐

(ϵui/cO1)*x,fc],{x,0,cO}]‐sTop*(t/2‐dTop)+tr*(dBot‐t/2)},{mr=‐

b*NIntegrate[(t/2‐cO+x)*σc[‐(ϵui/cO1)*x,fc],{x,0,cO}]‐sTop*(t/2‐

dTop)+tr*(dBot‐t/2)}]; 

Print["mr=",mr]; 

AppendTo[list,{mr/10^6,0}]; 

AppendTo[listn,{cO,0}]; 

(*BALANCED POINT*) 

cb=ϵui/(ϵui+fy/es) dBot; 

cm=b*NIntegrate[σc[‐(ϵui/cb)*x,fc],{x,Max[0,cb‐t],cb}]; 

sTop=σsTop[ϵui (dTop‐cb)/cb,fy]*ρ/2*ag; 

tr=σsBot[(dBot‐cb)/cb*ϵui,fy]*ρ/2*ag; 

mrb=‐b*NIntegrate[(t/2‐cb+x)*σc[‐(ϵui/cb)*x,fc],{x,Max[0,cb‐t],cb}]‐

sTop*(t/2‐dTop)+tr*(dBot‐t/2); 

prb=‐(cm+tr+sTop); 

Print["mrb=",mrb]; 

Print["prb=",prb]; 

Print["cb=",cb]; 
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(*Other Points*) 

If[cO<0, Print["Error c is negative"]]; 

cStep=1; 

c=cO+cStep; 

While[Or[mr>10000,Length[list]<10],{cm=b*NIntegrate[σc[‐

((ϵui*x)/c),fc],{x,Max[0,c‐t],c}], 

sTop=σsTop[ϵui (dTop‐c)/c,fy]*ρ/2*ag, 

tr=σsBot[(dBot‐c)/c*ϵui,fy]*ρ/2*ag, 

mr=‐b*NIntegrate[(t/2‐c+x)*σc[‐(ϵui/c)*x,fc],{x,Max[0,c‐t],c}]+‐

sTop*(t/2‐dTop)+tr*(dBot‐t/2), 

pr=‐(cm+tr+sTop), 

AppendTo[list,{mr/10^6,pr/1000}], 

AppendTo[listn,{c,pr/1000}], 

cStep=Min[1/Abs[list[[‐1,1]]‐list[[‐2,1]]],20/Abs[list[[‐1,2]]‐list[[‐

2,2]]]]*cStep, 

c=c+cStep}]; 

listp=Table[{list[[i,2]],list[[i,1]]},{i,Length[list]}]; 

listnp=Table[{listn[[i,2]],listn[[i,1]]},{i,Length[listn]}]; 

interaction2=Interpolation[listnp,InterpolationOrder‐>1]; 

AppendTo[listp,{listp[[‐1,1]]+10^‐3,0}]; 

maxp=Max[maxp,listp[[‐1,1]]]; 

Interpolation[listp,InterpolationOrder‐

>1],{ϵui,0.0035,0.0035,0.0002}]; 
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finalInteraction=interaction[[1]]; 

finalInteraction2=interaction2; 

guessP=10^‐3; 

order=10^IntegerPart[Log[10,maxp]]; 

Off[InterpolatingFunction::dmval]; 

Do[{While[And[guessP<maxp,finalInteraction[guessP]/guessP>e/1000],gues

sP=guessP+order], 

guessP=guessP‐order, 

order=order/10},{3}]; 

sub=FindRoot[finalInteraction[guessP2]/guessP2==e/1000,{guessP2,guessP

}]; 

mReal=finalInteraction[guessP2/.sub]; 

pReal=guessP2/.sub; 

cReal=finalInteraction2[guessP2/.sub]; 

{list,{{mrb/10^6,prb/10^3}},{{mReal,pReal}}}; 

Print["mReal=",mReal]; 

Print["pReal=",pReal]; 

Print["cReal=",cReal]; 

{mReal,pReal,cReal} 

]; 

{mReal,pReal,c}=realPM[fcn*0.87,fyn,dbn,dtn,tn,en]; 

mReal; 

pReal; 
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c; 

(*Random Variables*) 

RANDOMVAR[fco_,fyo_,dBoto_,dTopo_,to_,ρo_,c_]:=Module[{wo,bo,ϵui,ag,ϵb

,ϵt,σsrBot,σsrTop,γc,fc0,ec ,n,ϵ0,k1,k2,σcr,s,cm,sTop,tr,mrb,prb}, 

fc; 

fy; 

dTop; 

dBot; 

t; 

ϵui=0.0035; 

bo=1000; 

ag=bo*to; 

tied="False"; 

ϵt=((dTopo‐c)/c)*ϵui; 

ϵb=((dBoto‐c)/c)*ϵui; 

(*Steel rebar ‐ Constitutive Law*) 

σsrTop[ϵt_,fyr_]:=If[ϵt<‐(fyr/es),‐fy,If[ϵt<fyr/es,fy/0.002*ϵt,fy]]; 

σsrBot[ϵb_,fyr_]:=If[ϵb<‐(fyr/es),‐fy,If[ϵb<fyr/es,fy/0.002*ϵb,fy]]; 

(*Thorenfeld curve*) 

γc = 2400; (* normal density *) 

fc0=fco*0.87; 

ec = If[20<=fc0<= 40, 4500*Sqrt[fc0], 

(3300*Sqrt[fc0]+6900)*(γc/2300)^1.5]; 
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n = 0.8+fc0/17.2; 

ϵ0 =‐ (fc0/ec)*(n/(n‐1)); 

k1=1; 

k2=Max[0.67+fc0/62,1]; 

σcr[ϵc_,fcr_]:=If[ϵc>0,0,If[ϵc>=‐ϵ0,s=‐fcr*(n*(ϵc/ϵ0))/((n‐

1)+(ϵc/ϵ0)^(n*k1)),s=‐fcr*(n*(ϵc/ϵ0))/((n‐1)+(ϵc/ϵ0)^(n*k2))]]; 

cm=bo*Integrate[σcr[‐(ϵui/c)*x,0.87*fc],{x,Max[0,c‐to],c}]; 

sTop=σsrTop[ϵt,fyo]*ρo/2*ag; 

tr=σsrBot[ϵb,fyo]*ρo/2*ag; 

Print["cm=",cm//FullSimplify//Expand]; 

Print["cm=",sTop//FullSimplify//Expand]; 

Print["tr=",tr//FullSimplify//Expand]; 

mrb=‐bo*Integrate[(t/2‐c+x)*σcr[‐(ϵui/c)*x,0.87*fc],{x,Max[0,c‐

to],c}]‐sTop*(t/2‐dTopo)+tr*(dBoto‐t/2); 

prb=‐(cm+tr+sTop); 

Print["pr = ", prb/1//FullSimplify//Expand]; 

Print["mr = ", mrb/1//FullSimplify//Expand]; 

{mrb//FullSimplify//Expand,prb//FullSimplify//Expand} 

]; 

{mr,pr}=RANDOMVAR[fcn,fyn,dbn,dtn,tn,ρ,c]; 

mr; 

pr; 
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(*FORM – Rackwitz‐Fiessler procedure*) 

fc; 

μfc=1.30*fcn; 

σfc=0.18*μfc;  

fy; 

μfy=fyn*1.14; 

σfy=0.07*μfy; 

t; 

μt=1.00*tn; 

σt=0.010*μt; 

Pr=pr; 

Mr=mr; 

α =1.0; 

β=1.0; 

mdn=(mn*10^6 )/(1.50*α+1.25); 

mln=(α*mn*10^6)/(1.50*α+1.25); 

pdn=(pn*10^3)/(1.50*β+1.25); 

pln=(β*pn*10^3)/(1.50*β+1.25); 

Pd; 

μPd=1.05*pdn; 

vpd=0.100; 

σPd=vpd*μPd; 

Md; 
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μMd=1.05*mdn; 

vmd=0.100; 

σMd=vmd*μMd; 

Pl; 

μPl=0.90*pln;(*Gumbel Distribution*) 

vpl=0.170; 

σPl=vpl*μPl; 

Ml; 

μMl=0.90*mln;(*Gumbel Distribution*) 

vml=0.170; 

σMl=vml*μMl; 

el; 

μel=1.000; 

σel=0.206; 

po={{1,0,0,0,0,0,0,0}, 

{0,1,0,0,0,0,0,0}, 

{0,0,1,0,0,0,0,0}, 

{0,0,0,1,1,0,0,0}, 

{0,0,0,1,1,0,0,0}, 

{0,0,0,0,0,1,1,0}, 

{0,0,0,0,0,1,1,0}, 

{0,0,0,0,0,0,0,1}}; 
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(*Limit State Function*) 

M=Sqrt[Mr^2+Pr^2]‐Sqrt[(Md+el*Ml)^2+(Pd+el*Pl)^2]; 

Equ=M/.{fc‐>μfc,fy‐>μfy,t‐>μt(*,el�μel*),Pd‐>μPd,Md‐>μMd,Pl‐>μPl,Ml‐> 

μMl}; 

sol=NSolve[Equ==0,el,PositiveReals]; 

el^*=el/.sol[[1]]; 

(*Equivalent normal Parameters*) 

(*fc is normal*) 

σfce=σfc; 

μfce=μfc; 

(*fy is Normal*) 

σfye=σfy; 

μfye=μfy; 

(*Pl*) 

betha=Sqrt[(6*σPl^2)/Pi^2];(*1/a*) 

alpha=μPl‐0.5772*betha;(*u*) 

fq=PDF[ExtremeValueDistribution[alpha,betha],μPl]; 

Fq=CDF[ExtremeValueDistribution[alpha,betha],μPl]; 

IN1=InverseCDF[NormalDistribution[0,1],Fq]; 

σPle=(1/fq)*PDF[NormalDistribution[0,1],IN1]; 

μPle=μPl‐σPle*IN1; 

(*Ml*) 

betha=Sqrt[(6*σMl^2)/Pi^2];(*1/a*) 
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alpha=μMl‐0.5772*betha;(*u*) 

fq=PDF[ExtremeValueDistribution[alpha,betha],μMl]; 

Fq=CDF[ExtremeValueDistribution[alpha,betha],μMl]; 

IN1=InverseCDF[NormalDistribution[0,1],Fq]; 

σMle=(1/fq)*PDF[NormalDistribution[0,1],IN1]; 

μMle=μMl‐σMle*IN1; 

(*Reduced Variates*) 

zs1=(μfc‐μfce)/σfce; 

zs2=(μfy‐μfye)/σfye; 

zs6=(μPl‐μPle)/σPle; 

zs7=(μMl‐μMle)/σMle; 

zs8=(el^*‐μel)/σel; 

zs={zs1,zs2,0,0,0,zs6,zs7,zs8}; 

(*Determine {G} vector*) 

G1=‐D[M,fc]*σfce/.{fc‐> μfc,fy‐> μfy,t‐> μt,Pd‐> μPd,Md‐>μMd,Pl‐> 

μPl,Ml‐>μMl,el‐> el^*}; 

G2=‐D[M,fy]*σfye/.{fc‐> μfc,fy‐> μfy,t‐> μt,Pd‐> μPd,Md‐>μMd,Pl‐> 

μPl,Ml‐>μMl,el‐> el^*}; 

G3=‐D[M,t]*σt/.{fc‐> μfc,fy‐> μfy,t‐> μt,Pd‐> μPd,Md‐>μMd,Pl‐> μPl,Ml‐

>μMl,el‐> el^*}; 

(*G4=‐D[M,el]*σel/.{fc� μfc,fy� μfy,t� μt,Pd� μPd,Md�μMd,Pl� 

μPl,Ml�μMl,el� el^*};*) 

G4=‐D[M,Pd]*σPd/.{fc‐> μfc,fy‐> μfy,t‐> μt,Pd‐> μPd,Md‐>μMd,Pl‐> 

μPl,Ml‐>μMl,el‐> el^*}; 
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G5=‐D[M,Md]*σMd/.{fc‐> μfc,fy‐> μfy,t‐> μt,Pd‐> μPd,Md‐>μMd,Pl‐> 

μPl,Ml‐>μMl,el‐> el^*}; 

G6=‐D[M,Pl]*σPle/.{fc‐> μfc,fy‐> μfy,t‐> μt,Pd‐> μPd,Md‐>μMd,Pl‐> 

μPl,Ml‐>μMl,el‐> el^*}; 

G7=‐D[M,Ml]*σMle/.{fc‐> μfc,fy‐> μfy,t‐> μt,Pd‐> μPd,Md‐>μMd,Pl‐> 

μPl,Ml‐>μMl,el‐> el^*}; 

G8=‐D[M,el]*σel/.{fc‐> μfc,fy‐> μfy,t‐> μt,Pd‐> μPd,Md‐>μMd,Pl‐> 

μPl,Ml‐>μMl,el‐> el^*}; 

G={G1,G2,G3,G4,G5,G6,G7,G8}; 

(*Reliability Index Value*) 

β=G.zs/Sqrt[G.po.G]; 

(*α Values*) 

α=po.G/Sqrt[G.po.G]; 

(*New Values of Z*) 

zs=β*α; 

(*Working with list*) 

X={fc,fy,t,Pd,Md,Pl,Ml,el}; 

μ={μfce,μfye,μt,μPd,μMd,μPle,μMle,μel}; 

σ={σfce,σfye,σt,σPd,σMd,σPle,σMle,σel}; 

For[j=1,j<=12,j++, 

xs=Table[i,{i,1,8}]; 

For[i=1,i<=8,i++, 

xs[[i]]=μ[[i]]+zs[[i]]*σ[[i]]; 

Print["xs",xs[[i]]]; 
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]; 

Equ=M/.{fc‐> xs[[1]],fy‐> xs[[2]],t‐> xs[[3]](*,el� xs[[4]]*),Pd‐> 

xs[[4]],Md‐> xs[[5]],Pl‐> xs[[6]],Ml‐> xs[[7]]}; 

sol=NSolve[Equ==0,el,PositiveReals]; 

xs[[8]]=el/.sol[[1]]; 

Print["xs[[8]]",xs[[8]]]; 

(*Equivalent normal Parameters*) 

(*fc is normal*) 

σfce=σfc; 

μfce=μfc; 

(*fy is normal*) 

σfye=σfy; 

μfye=μfy; 

(*Pl*) 

betha=Sqrt[(6*σPl^2)/Pi^2];(*1/a*) 

alpha=μPl‐0.5772*betha;(*u*) 

fq=PDF[ExtremeValueDistribution[alpha,betha],xs[[6]]]; 

Fq=CDF[ExtremeValueDistribution[alpha,betha],xs[[6]]]; 

IN1=InverseCDF[NormalDistribution[0,1],Fq]; 

σPle=(1/fq)*PDF[NormalDistribution[0,1],IN1]; 

μPle=xs[[6]]‐σPle*IN1; 

(*Ml*) 

betha=Sqrt[(6*σMl^2)/Pi^2];(*1/a*) 
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alpha=μMl‐0.5772*betha;(*u*) 

fq=PDF[ExtremeValueDistribution[alpha,betha],xs[[7]]]; 

Fq=CDF[ExtremeValueDistribution[alpha,betha],xs[[7]]]; 

IN1=InverseCDF[NormalDistribution[0,1],Fq]; 

σMle=(1/fq)*PDF[NormalDistribution[0,1],IN1]; 

μMle=xs[[7]]‐σMle*IN1; 

μ[[1]]=μfce; 

σ[[1]]=σfce; 

μ[[2]]=μfye; 

σ[[2]]=σfye; 

μ[[6]]=μPle; 

σ[[6]]=σPle; 

μ[[7]]=μMle; 

σ[[7]]=σMle; 

(*Reduced Variates*) 

For[i=1,i<=8,i++, 

zs[[i]]=(xs[[i]]‐μ[[i]])/σ[[i]]; 

]; 

For[i=1,i<=8,i++, 

G[[i]]=‐D[M,X[[i]]]*σ[[i]]/.{fc‐> xs[[1]],fy‐> xs[[2]],t‐> xs[[3]],Pd‐

> xs[[4]],Md‐> xs[[5]],Pl‐> xs[[6]],Ml‐> xs[[7]],el‐> xs[[8]]}; 

]; 

β=G.zs/Sqrt[G.po.G]; 
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Print["Reliability index Value:",β]; 

α=po.G/Sqrt[G.po.G]; 

zs=β*α;]; 

PutAppend[β,"results.txt"]; 

Print["en=",en],{en,{11.6,29,58,87,116,145,174,232,290,435,580,725,870

}}] 
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APPENDIX B 

 

Comparison between Masonry and Concrete walls 20 MPa 

 

 

 

 

Figure A.1: Reliability levels comparison between masonry and concrete walls. 
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