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Abstract

A survival dataset describes a collection of instances, such as patients, and

associates each instance with either the time until an event (such as death),

or the censoring time (eg, when the instance is lost to follow-up), which is a

lower bound on the time until the event. While there are several approaches to

survival prediction, this thesis focuses on models that produce an individual

survival curve (providing P (death ≥ t|x) for each t > 0) for each individual

patient, x – here based on a “Deep Weibull” model. Most survival prediction

methods assume that the event and censoring distributions are independent

given the instance’s covariates. This assumption is challenging to verify since

we only observe a single outcome (event xor censor time) for each instance.

Moreover, models that assume this independence can be substantially biased

when this independence does not hold. Moreover, the standard methods to

evaluate survival models do not provide meaningful values here.

In this study, we present a way to relax the assumption of conditional inde-

pendence, using a parametric model of survival that incorporates Archimedean

copulas to address residual dependency that cannot be explained by the co-

variates in the dataset. Additionally, we show how to extend this to a broader

range of dependencies by using a convex combination of members from the

Archimedean copula family, rather than relying on a specific member. Our

empirical studies, conducted on synthetic and semi-synthetic data, demon-

strated that our approach significantly improves the estimation of survival

distributions in terms of log-likelihood (which is a proper scoring for the sur-
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vival analysis task) and L1 survival distance (which we proposed), compared

to the standard approach that assumes conditional independence.
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Chapter 1

Introduction

Clinical and epidemiological investigations often want to predict the time until

the onset of an event of interest. As examples, (1) a clinical trial of a thera-

peutic cancer regimen may want to compare the time-to-mortality in patients

who received experimental therapy, against that of the patients in the control

arm who did not [16], and (2) a study developing a clinical risk score may want

to regress the time until patient mortality onto certain covariates of interest,

with the aim of leveraging the learned covariates as parameters in a predictive

risk algorithm [28].

In such time-to-event prediction tasks, it is common to only have a bound

of the time-to-event for some instances in the study cohort. Here, we focus on

right censored instances – e.g . patients who left the study prior to observing

their time of death (loss to follow up), or patients who did not die prior to the

conclusion of the study (administrative censoring) [43], [44].

Survival prediction refers to the development of statistical models that

support time-to-event prediction typically from data that includes censored

instances. Rather than discarding such censored instances, methods in survival

prediction leverage the censoring time as a lower bound on that individual’s

time-of-event [29]. Let X(i) ∈ X refer to a patient’s covariates, and let T
(i)
obs ∈

R+ refer to their time of last observation, taken to be the minimum of the

(potentially unobserved) event time T
(i)
E ∈ R+ and censorship time T

(i)
C ∈

R+. A common assumption in survival analysis is conditionally independent
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censoring [29] or censoring at random (CAR). This CAR assumption,

TE ⊥ TC | X. (1.1)

assumes that, once X is known, knowing either the event or censoring time

does not provide any additional information about the other quantity. Such

an assumption is often unrealistically strong since we never get to know if

we have included all of the covariates affecting the desired outcome in our

vector of covariates X; it is also difficult to verify in practice because we only

observe one outcome (either event or censorship) per instance, but never both.

Figures 1.1(b) and 1.1(c) show that this relationship is violated when the event

time affects the censoring time, or in the presence of unobserved confounding

variables. When the conditional independence assumption of Equation 1.1

does not hold, we say that the data features dependent censorship or censoring

not at random (CNAR), which is a common characteristic of survival data that

is often unaccounted for in modern methods of survival prediction.

This is not just a theoretical concern: consider the use of risk scores in or-

gan transplantation. Deceased-donor transplant organs are a scarce resource

that represents a life-saving intervention for patients suffering from end-stage

liver disease [38]. Under the Final Rule, the American federal policy of organ

allocation, patients are prioritized according to their degree of hepatic dys-

function [15]. Implicit in the implementation of the Final Rule is the notion of

a risk score, a function R : X → R+ that estimates the urgency of a patient’s

need for a deceased-donor transplant organ. This problem can be viewed as

a survival analysis where the event of interest is patient death pre-transplant,

and censoring is patient removal from the waitlist (for among other reasons,

receiving a transplant). The current implementation of the Final Rule in

the United States leverages the MELD-Na [2], a risk measure derived using

survival analysis based on four biomarkers: serum creatinine, serum sodium,

serum bilirubin, and INR (internal normalized ratio).

In reality, there are patient covariates not included in the MELD-Na that

may affect both TE and TC , such that Equation 1.1 does not hold (e.g . patient

sex). Specifically, serum creatinine, a biomarker that tends to be lower in
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Figure 1.1: Graphical models of survival analysis, showing three different depen-
dencies between covariates X, event/censorship times TE/TC , time of last observa-
tion Tobs and event indicator δ. Shaded nodes represent variables whose values we
can observe. Blue and magenta arrows represent the event and censoring functions
fE : X → R+, fC : X → R+, respectively, of arbitrary functional form. Green
arrows into the Tobs node represent the function R2

+ → R+ defined by min (te, tc).
Orange arrows into the δ node represent the indicator function R2

+ → {0, 1} de-
fined by 1 [te < tc]. Graph (a) demonstrates the case of conditionally independent
censoring (CAR) because conditioning on X d-separates [22] TE and TC – see 1.1.
Graphs (b) and (c) represent cases in which the censoring and event times may be
conditionally dependent (CNAR): in graph (b), this is through a direct dependency
between TE and TC , while in graph (c), this is via the unobserved confounding node,
U , that affects both TE and TC .
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women than in men, plays a key role in the calculation of the MELD-Na score;

consequently, Cholongitas et al. [8] argues that the MELD-Na systematically

underestimates women’s degree of medical urgency. Therefore, patient sex

may influence TE in a way that is not adequately captured by X, the MELD-

Na covariates. Additionally, biological factors that make the female body

habitus comparatively smaller reduce the pool of transplant organs available

to women [39], [47]. By influencing the time at which a viable deceased-donor

transplant organ can be found, patient sex may influence the censoring time,

TC . These factors suggest that the conditional independence assumption is

dubious if the covariates X under consideration are only those of the MELD-

Na.

Recent years have seen the emergence of a burgeoning subfield of survival

analysis focused on relaxing the conditional independence assumption of Equa-

tion 1.1. However, existing approaches either do not permit the incorporation

of covariates (e.g . [67], [54], [62]), or make strict assumptions over the form of

the marginal distributions of fTE and fTC (e.g . [19]). These limitations do not

admit the easy or direct application of these ideas to survival times modeled

via nonlinear functions (such as neural networks) that are increasingly being

used. In this vein, our work makes the following contributions:

1. We show how to leverage copulas (defined in Sec 2.2) to correct for de-

pendent censorship in survival models. We present a parametric proportional

hazards model that leverages neural networks to relax assumptions on the form

of the risk function and employs copulas to model dependence in censoring.

To our knowledge, this work represents the first neural network-based model

of survival analysis to account for dependent censoring. Note that it is still

a question to answer if using a neural network to estimate marginals could

impact the identifiability of the problem.

2. We devise a method to learn both the model and dependence parameters

from data.

3. We study the challenges associated with evaluating the performance of sur-

vival models under dependent censoring. We comment on the proprietary of
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common evaluation metrics under dependent censoring and prove that the

time-dependent concordance index and integrated Brier score are not capa-

ble of identifying the bias in survival models in the presence of dependent

censoring.

1.1 Related Work

Note: Unless stated otherwise, these authors all evaluate the quality of a

survival model based on the C-index.

Deep Learning in Survival Analysis: Linear models of survival anal-

ysis make the (often unrealistic) assumption that an individual’s time-to-event

is determined by a linear function of the covariates. Faraggi and Simon [20]

presented the first neural-network-based model of survival, by incorporating

a neural network into a Cox Proportional Hazards (CoxPH) model [10]. Al-

though subsequent experimentation found the Farragi-Simon model unable to

outperform its linear CoxPH counterpart [46], [65], DeepSurv [31] leveraged

modern tools from deep learning such as SELU units [35] and the Adam opti-

mizer [34] to learn a practical neural network-based CoxPH model that reliably

outperformed the linear CoxPH on nonlinear outcome data. Since then, vari-

ations of neural network-based models of survival, such as DeepHit [41] (and

its extension to time-varying data, Dynamic-DeepHit [40]), Deep Survival Ma-

chines [49], SuMo-net [53], Transformer-based survival models [26], [64], and

methods based on Neural ODEs [59] have been introduced to model survival

outcomes. Though these models successfully relax assumptions around the

functional form of marginal risk, they do not jointly model the event and cen-

soring times, a limitation that does not allow them to appropriately account

for dependent censorship.

DeepSurv has enjoyed enduring success in part due to its broad applicabil-

ity and strong performance on clinical data (e.g . [27], [33], [57]). Therefore, our

investigation will focus on relaxing the conditional independence assumption

in a parametric proportional hazards model. We decided to focus on para-

metric proportional hazard models for simplicity and we leave to future work
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the relaxation of the conditional independence assumption in other classes of

survival models.

Missing/Censored-Not-At-Random Data and Identification: Since

we do not simultaneously observe TE and TC , we can treat the problem of sur-

vival analysis as a missing data problem. The standard taxonomy of missing

data [55], [61] partitions variables into one of three classes: missing completely

at random (MCAR) where the missingness process is determined only by ran-

domness, missing at random (MAR) where the missingness process is deter-

mined by randomness and/or observed covariates, and missing not at random

(MNAR) where the missingness process may depend on unobserved variables

(such as unobserved confounding or self-masking). Similarly, censorship in

survival analysis can take place completely at random (CCAR), at random

(CAR), or not at random (CNAR) [44], [45]. The conditional independence

assumption of Equation 1.1 is equivalent to asserting either CCAR or CAR in

the data.

MNAR data, in the general case, is non-identifiable which means that there

is no unique answer to the problem we are solving [48]; but survival analy-

sis imposes stronger assumptions on the data than general models of missing

data, since observed event time acts as a lower bound for unobserved event

time (in the case of censored data). Therefore, prior work has focused on in-

vestigating the scenarios in which model parameters of survival data can be

uniquely identified. Tsiatis [60] established that, in the general case, the joint

distribution over M variables, Pr(T1, ..., TM) is not generally identifiable from

observations of the random variable T = min (T1, ..., TM); although if the joint

distribution is defined in terms of a known copula C, which is a mathemat-

ical tool to define dependence structure between random variables, and the

marginals are continuous, then identifiability holds [6], [68]. Crowder [12] ex-

tended the work of Tsiatis, showing that even if all the marginal distributions

f1, ..., fM are known, the joint distribution remains non-identifiable. Research

has since defined tuples of marginals and copulas for which the joint distri-

bution is identifiable. Notably, Schwarz et al.[56] focus on the bivariate case,

and prove that if the marginals fE and fC are known, several sub-classes of
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Archimedean copulas are identifiable. Zheng and Klein [68], Carrière [6] high-

light conditions for identifiability when the form and parameter of the copula

are known a priori. Schwarz et al. [56] categorize copulas into sub-classes

wherein the ground-truth copula, Cθ∗ , is identifiable. Our current analysis

does not touch upon the identifiability of the joint distribution in the context

of neural network based models of survival outcomes though the success of

our method does suggest this as an important area for future study. Many

machine learning models remain non-identified [3] while remaining useful as

predictive and descriptive models. Our method is similar in this respect.

Copula-Based Models of Dependent Censoring: Prior literature

has leveraged copulas to model the relationship between the event and cen-

soring distributions in order to account for the effect of dependent censoring

[18]. To our knowledge, the first such work was that of Zheng and Klein [67]

and Rivest and Wells [54], whose development of the nonparametric Copula-

Graphic Estimator extended the Kaplan-Meier Estimator [30] to cases where

the dependence between TE and TC takes the form of an assumed copula (both

form (C) and parameter of the copula (θ) assumed to be known). Though

parametric estimators for this problem have been proposed in prior literature,

they tend to make strict assumptions over the distributional form of fT |X (e.g .

that it is a linear-Weibull function [19]1). Proposed semi-parametric estima-

tors [7], [13], [17] suffer from the same problem, as both of these approaches

assume that the hazard is a linear function of the instance covariates. To our

knowledge, no such copula-based model exists to accommodate more complex

relationships between covariates and risk while also accounting for dependent

censoring. This is the gap our research aims to fill.

1Although Escarela does not directly model dependent censoring, but rather dependent
competing events, the approach can be directly extended to this domain.
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Chapter 2

Background

In this chapter, we present the basics of survival analysis and introduce the

concept of copula as a tool to account for dependency between marginal dis-

tributions.

2.1 Survival Analysis

2.1.1 Survival Time and Censoring

Survival time, in the context of survival analysis, is defined as the duration

between the initial time point of observation and the occurrence of the event

of interest. In medical studies, the initial time point can correspond to the

initiation of a treatment regimen, the date of surgical intervention, or the date

of admission to a hospital, while the event of interest may involve observing

an improvement after treatment, death following surgery, or discharge from

the hospital.

In the course of studying a survival problem, it is possible that the occurrence

of the event of interest is not observed in certain samples. This can arise due to

a range of factors, including premature study termination, loss of contact with

participants who are no longer interested in participating in the study, or the

occurrence of other events preceding the event of interest. Such a phenomenon

is referred to as censoring [36]. Censoring is typically classified into three

principal categories [42]: right censoring, left censoring, and interval censoring.

• Right censoring occurs when the observed survival time is either equal
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to or less than the actual survival time.

• Left censoring refers to a situation where the observed survival time is

either equal to or greater than the actual survival time.

• Interval censoring is a circumstance where the precise timing of the oc-

currence of the event of interest is not known, and it is only known

that the event occurred at some point between two distinct known time

points.

Of the different censoring scenarios described, right censoring is the most

frequently encountered in real-world settings. This thesis will analyze the

survival data when some instances leave the study due to right censoring.

In a survival analysis problem, the occurrence time of an event of interest and

the time of censoring for the i-th subject are denoted by Ti and Ci, respectively,

with xi representing the corresponding covariate vector. In the presence of

censoring, we observe exactly one of Ti or Ci. Specifically, if the event of

interest occurs before censoring, then only Ti is observed (Ti ≤ Ci). Conversely,

if censoring happens prior to the event of interest, then only Ci is observed

(Ti > Ci). In the latter situation, the sole information available about Ti is

that it is greater than Ci. Thus, a survival dataset is typically represented as

(xi, yi, δi), where:

• xi: vector of covariates

• yi: The time of occurrence of the event of interest or the time of censor-

ing, whichever comes first.

• δi: Censoring indicator (δi = 1 if yi = Ti, δi = 0 if yi = Ci)

Survival models that operate under the assumption of independent censoring

postulate that the random variables Ti and Ci are statistically independent,

given the covariate vector xi. In mathematical terms, this assumption is ex-

pressed as Pr(Ti, Ci|xi) = Pr(Ti|xi) Pr(Ci|xi).

Figure 2.1 provides an illustrative example for understanding survival data

and the associated challenges. The study depicted in Figure 2.1 spans over
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12 months and involves 6 participants. As shown in the figure, only two par-

ticipants (S4 and S6) experienced the event of interest (denoted by X), while

the remaining participants were censored (denoted by red dots). Specifically,

subjects S2 and S6 are censored due to the end of the study, whereas subjects

S1 and S3 are censored due to withdrawal or loss of follow-up.

Figure 2.1: An illustration of survival data and problem

2.1.2 Event Time Distributions

There are several ways to specify the probability distribution over the non-

negative continuous random variable T , which represents the event time. In

this context, we will discuss three such methods that are commonly utilized

in survival analysis.

The survival function [36], [42] can be defined as the probability that the event

time exceeds a certain value t, given by the expression:

S(t) = Pr(T > t), 0 ≤ t <∞ . (2.1)

Note the survival function can be expressed as:

S(t) = Pr(T ≥ t) = 1− Pr(t < T ) = 1− CDF (t) . (2.2)
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The probability density function (PDF) can be obtained using Equation 2.2

as:

f(t) = −dS(t)
dt

. (2.3)

Another concept in survival analysis is the hazard function [14], which rep-

resents the instantaneous rate of occurrence of the event of interest for an

instance that has survived up to time t.

λ(t) = lim
h→0

Pr(t ≤ T < t+ h | T ≥ t)

h
. (2.4)

By using the definition of PDF given in Equation 2.3, we can obtain the

following expression for small intervals (h):

f(t)h ≃ Pr(t ≤ T < t+ h) = S(t)− S(t+ h) . (2.5)

Based on Equation 2.5, the hazard function can be defined as:

λ(t) = f(t)/S(t) = −d log(S(t))
dt

. (2.6)

By integrating both sides of Equation 2.6 with respect to t and considering

S(0) = 1, we obtain:

S(t) =exp(−
∫ t

0

λ(s)ds)

= exp(−Λ(t))
. (2.7)

Λ(t) =
∫ t
0
λ(s)ds, is known as the cumulative hazard function [42].

2.1.3 Survival Analysis Methods

Survival analysis methods can be broadly classified into three categories: Non-

parametric, Semi-parametric, and Parametric methods.

1. Non-parametric methods are employed when there is no prior assump-

tion regarding the underlying distribution of event times or when co-

variates are unavailable. Two of the simplest non-parametric methods

are the Kaplan-Meier estimator (KM) [30] and the Nelson-Aalen esti-

mator (NA) [1], [51], [52]. These methods work on a population level
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and do not consider the covariates of each sample. There are also non-

parametric methods that can work on an individual level by including

patients covariates such as DeepHit [41] and MTLR [66].

2. The semi-parametric category of survival analysis methods is led by the

widely used Cox Regression method [10], which is built on the propor-

tional hazard assumption [10] and partial likelihood [11]. This method

involves using a non-parametric approach to determine the baseline cu-

mulative hazard function and a regression method to estimate the risk

associated with each instance.

3. Parametric methods are employed when there is an assumption about

the underlying distribution of event times. These methods assume that

event times originate from a fully parametric known distribution, such

as the Exponential or Weibull distribution; user can then estimate the

parameters of these distributions based on the covariates [42].

In the remainder of this section, we provide an example from each of the

three categories mentioned above:

Kaplan-Miere

The Kaplan-Meier estimator is one of the simplest methods used in survival

analysis, which belongs to the non-parametric family of methods and assumes

independent censorship. The derivation of the Kaplan-Meier estimator is pre-

sented below:
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Ŝ(t) = Pr(T > t)

=
∏

ti≤t,δi=1

(1− Pr(T = ti)

Pr(T ≥ ti)
)

=
∏

ti≤t,δi=1

(1− Pr(T = ti, C ≥ ti)

Pr(T ≥ ti, C ≥ ti)
)

=
∏

ti≤t,δi=1

(1−
∑n

l=1 1(tl = t, δl = 1)/n∑n
l=1 1(tl ≥ t)/n

)

=
∏

ti≤t,δi=1

(1− di
ni
)

. (2.8)

The estimator is expressed as a step function with jumps at the times an event

occurs, given by the formula Ŝ(t) =
∏

ti≤t,δi=1(
ni−di
ni

), where ni is the number

of instances at risk at time ti (instances who have not experienced the event or

censoring yet) and di is the number of events that occur at time ti. The KM

estimator is capable of handling both uncensored and (right) censored data.

As we mentioned before, this method does not include covariates and provides

a curve on a population level.

Figure 2.2 depicts two different scenarios using the KM estimator, where

for the blue curve, all of the samples have experienced the event of interest

while for the black curve, four instances have experienced censoring at time

points indicated with (+). Tables 2.1 and 2.2 provide datasets used to generate

the blue and black curves respectively.

Cox-Regression

Cox-regression, belonging to the second family of methods mentioned earlier,

incorporates the vector of covariates for each patient to predict their corre-

sponding survival rate.

To integrate covariates in survival analysis, patient-specific hazard func-

tion can be defined as λ(t|x) = limh→0 Pr (t ≤ T < t+ h|T ≥ t, x) /h, where

x represents the vector of covariates of each patient used to predict the cor-

responding survival rate. The Cox proportional hazard model is one of the

methods used in this context, which assumes that the hazard function of an

individual is proportional to the hazard function of the population at all times.
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Table 2.1: Dataset for KM curve
without censoring

Patient’s ID time δ

1 1 1

2 2 1

3 2 1

4 2 1

5 4 1

6 5 1

7 6 1

8 6 1

9 8 1

10 9 1

Table 2.2: Dataset for KM curve
with censoring

Patient’s ID time δ

1 1 0

2 2 1

3 2 1

4 2 1

5 4 0

6 5 0

7 6 1

8 6 1

9 8 1

10 9 0
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Figure 2.2: KM curve without censoring

Mathematically, the model is expressed as below in terms of hazard function:

λ(t|xi) = λ0(t) exp(β
Txi) (2.9)

The non-parametric approach is used to obtain the baseline cumulative hazard
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function Λ0, whereas the vector of coefficients β can be determined indepen-

dently of Λ0 by maximizing the partial likelihood function. Specifically, the

partial likelihood function can be expressed as [11]:

L(β) =
n∏
i=1

(
exp(βTxi)∑
l∈Ri exp(β

Txl)
)δi . (2.10)

The Breslow estimator [4], which is defined as:

Λ(t) =
∑
i:ti≤t

(
di∑

l∈Ri exp(β
Txl)

) . (2.11)

can be used to obtain the baseline cumulative hazard function Λ0(t), where Ri

denotes the set of patients at risk at time ti, and di is the number of events

at time ti. As we can see, in comparison with KM method, Cox-Regression

includes patients covariates in the computation and provides and provides

survival curves on an individual level.

Parametric Models

As previously stated, a parametric model, assumes that the distribution of

event times comes from a specific family. Our objective is to determine the

parameters of the distribution based on the covariates. Two of the most

commonly utilized distributions in survival analysis are the Exponential and

Weibull distributions. After introducing these distributions we will explain

how we can include covariates in a parametric model.

• Exponential Distribution [42]: The hazard function for this distri-

bution is invariant with respect to time.

λ(t) = λ ∀t > 0

S(t) = exp(−λt)
. (2.12)

• Weibull Distribution [42]: This is an extension of the Exponential

distribution that permits the hazard function to be dependent on time.

It is a two-parameter distribution with the hazard and survival function

defined as:

λ(t) = (
γ

ρ
)(
t

ρ
)γ−1

S(t) = exp(−( t
ρ
)γ)

. (2.13)
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In the case of parametric models, assuming proportional hazard is a com-

mon approach. Consequently, the hazard function will be in the form of:

λ(t|x) = λ0(t) exp (f (x)) . (2.14)

In this context, f(x) is commonly referred to as the risk function. As a result,

the cumulative hazard function will be expressed as:

Λ(t|x) = Λ0(t) exp (f (x)) . (2.15)

The parameters of the model may be derived by maximizing the log-likelihood

function, which will be discussed in Chapter 3. For this thesis, we will utilize a

parametric model featuring a Weibull distribution as the baseline distribution,

assuming proportional hazards.

2.2 Copula

A copula refers to a function that connects two random variables by defining

their dependence structure. It provides a way to separate the marginal distri-

bution of each random variable from the dependence structure between them.

The word ”copula” is derived from the Latin term ”copulare,” meaning ”to

join together” [50]. Abe Sklar introduced the term ”copula” in his research

on probabilistic metric space, where he presented a mathematical definition

of copulas and established the Sklar theorem, the most fundamental theorem

concerning copulas [58]. Copulas can handle any number of variables, but in

this thesis, our focus is on bivariate copulas.

To illustrate how copulas relate to survival analysis, we will start with a

simple example. Suppose all patients leave the study one day before the event

of interest (death) occurs. In this scenario, the time of censoring is strongly

dependent on the event time and can be modeled using a copula. However,

this is an extreme case. In reality, there may be some variability in both the

time of censoring and the event time, which decreases as the study duration

increases. This type of dependence can be modeled using a Clayton copula,

which we will introduce later.
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Bivariate Copula

A bivariate copula is a distribution function that involves two variables and

has uniform marginals ranging from 0 to 1. Let Cθ : [0, 1]
2 → [0, 1] be a copula

with a dependence parameter θ. By definition [50], any copula must satisfy

the following conditions:

• Cθ(0, v) = Cθ(u, 0) = 0 for 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1

• Cθ(1, v) = v and Cθ(u, 1) = u for 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1

• Cθ(u2, v2)−Cθ(u2, v1)−Cθ(u1, v2) +Cθ(u1, v1) ≥ 0 for 0 ≤ u1 ≤ u2 ≤ 1

and 0 ≤ v1 ≤ v2 ≤ 1

The initial two conditions demand that the marginals are uniformly distributed,

while the final condition states that the probability mass on any rectangular

region [u1, u2]× [v1, v2] is non-negative.

Additionally, we define the partial derivatives of the copula function as:

• C
[1,0]
θ (u, v) = ∂

∂u
Cθ(u, v)

• C
[0,1]
θ (u, v) = ∂

∂v
Cθ(u, v)

• C
[1,1]
θ (u, v) = ∂2

∂u∂v
Cθ(u, v)

Archimedean Copulas

Archimedean copulas are a class of copulas that are defined by [50]:

Cθ(u, v) = ϕ−1 (ϕ (u) + ϕ (v)) (2.16)

for some strictly decreasing function ϕ : [0, 1] → [0,∞] which is referred to

as the generator of the copula. The Clayton [9], Frank [21], and independent

copulas are a few examples of this family of copulas.

Kendall’s tau(τ)

Kendall’s tau (τ) [32] is a well-known measure used to assess the dependence

between two random variables U and V :

τ = Pr {(U2 − U1)(V2 − V1) > 0} − Pr {(U2 − U1)(V2 − V1) < 0} . (2.17)
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Table 2.3: Examples of Archimedean copulas

Copula Closed Form: Cθ(u, v) Generator: ϕ(t) Parmeter

Independent uv ln(t) NA

Clayton (u−θ + v−θ − 1)−1/θ (tθ − 1)/θ θ > 0

Frank −1
θ
log{1 + (e−θu−1)(e−θv−1)

e−θ−1 } − log( e
−θt−1
e−θ−1 ) θ ̸= 0

Note this is independent of the marginals from which U and V are sampled.

For an Archimedean copula, Kendall’s tau is equal to [50]:

τ(Cθ(u, v)) = 4

∫ 1

0

∫ 1

0

Cθ(u, v)
∂2

∂u∂v
Cθ(u, v) du dv − 1 . (2.18)

To provide a better understanding of Kendall’s τ , let’s revisit our previous

example. In this case, Kendall’s τ measures the probability of sample i cen-

soring earlier than sample j, given that the event occurred earlier for sample

i. In other words, it quantifies the likelihood of the two samples being ordered

similarly with respect to the time of censoring, based on their respective event

times.
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Figure 2.3: Scatter plot of 1000 pairs of (u, v) generated from Clayton and
Frank Copula for τ = 0.01, τ = 0.4, and τ = 0.8

Note that the parameter of a copula is denoted as θ, while the strength of

dependence is measured using Kendall’s τ . For a given copula, each value of

θ corresponds to a specific value of τ . For instance, in the case of the Clayton
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copula, we have τ = θ/(θ+2). However, the same θ value in a different family

of copulas may not represent the same level of dependence. Therefore, in

this thesis, we adopt Kendall’s τ as a standard metric to evaluate the degree

of dependence in a dataset. The structure of the dependency between pairs

sampled from a copula can be influenced by the type of copula and the strength

of the dependency(τ), as shown in Figure 2.3.

Dependent Censoring Example

We conclude this chapter with an example that illustrates the distinction be-

tween dependent and independent censoring. Returning to our initial scenario

where all patients exit the study the day before experiencing the event if we

assume independent censoring, our censoring model will be accurate, but the

model for the event will indicate a constant survival probability of 1 at all time

points. However, if we acknowledge the strong dependence between censoring

and the event, we can construct a model for the event that is nearly identical to

the censoring model. Both event models will perform similarly under standard

survival metrics, such as the IBS [5] and C-index [23], [25], [63] (introduced

in Chapter 3). Similar performance in terms of survival metrics indicates the

shortcoming of these metrics to identify the bias in survival curves we are try-

ing to address in this thesis. This example is an extreme case that serves to

clarify the problem addressed in this thesis.
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Chapter 3

Methodology

This thesis will explore ways to incorporate dependent censorship into any

given survival model. We define our task as learning individual survival curves,

for both event and censoring, given a survival dataset in which we do not know

if independent censorship is a valid assumption. Our framework is capable of

estimating the true parameters of underlying distributions based on covariates

for both event of interest and censoring in addition to recovering the strength

of dependency in the dataset. In the context of this thesis, we have made the

following assumptions:

Assumption 1 (Known Form of the Copula). We assume prior knowledge of

the functional form of the copula (e.g. that Cθ∗, the copula associated with the

data-generating process, is a Clayton copula).

Assumption 2 (Proportional Hazards [10]). The hazard function of each out-

come, i.e., event or censorship, can be expressed as a composite of a base-line

hazard, denoted by λ0(t), which is solely dependent on time, and a risk func-

tion, denoted by g(x), which is dependent only on the covariates X. More

specifically, there exist appropriate choices of λ0 and g such that the haz-

ard function conditional on X, denoted by hT |X(t|x), can be represented as

hT |X(t|x) = λ0(t) exp(g(x)).
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3.1 Models

Our methodology involves modeling each possible outcome, namely event, and

censorship, separately using a modified version of a model from the Cox Pro-

portional Hazards family, and linking them through a copula in the likelihood

function during the training process. With regard to Assumption 2, we have

developed two distinct models:

• Parametric Weibull: We assume that the underlying distribution fol-

lows a Weibull distribution and that the risk score for each instance can

be described by a linear model over the covariates.

• Non-Parametric Weibull: Our assumption is that the underlying dis-

tribution is Weibull and that the risk score lacks a known general form.

Note that the Exponential distribution is a particular instance of the more

general Weibull distribution. Thus, our methodology encompasses both para-

metric and non-parametric versions of the Exponential distribution.

Let λ0(t) denote the baseline hazard of the model, and let gψ : X → R

represent a function (such as a neural network or a parametric model) with

parameters ψ that maps the covariate space X to the real line. Exploiting

the proportional hazards assumption, we construct our model in terms of its

hazard function:

ĥT |X(t|x;ψ) = λ̂0(t) exp (gψ (x)) . (3.1)

Through rearranging Equation 3.1, this category of models naturally yields

estimates of the survival function, denoted by Ŝ(T |X), and the correspond-

ing probability mass function, denoted by f̂(T |X), for each outcome. These

estimates are beneficial in performing maximum likelihood estimation.

ŜT |X (t|x;ψ) = exp
(
−Λ̂ (t|x;ψ)

)
=exp

(
−Λ̂0 (t) exp (gψ (x))

) (3.2)

f̂T |X (t|x;ψ) = ŜT |X (t|x;ψ) ĥT |X (t|x;ψ)

= exp
(
−Λ̂0 (t) exp (gψ (x))

)
λ̂0 (t) exp (gψ (x))

(3.3)
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By substituting the general form of the hazard function for the Weibull distri-

bution in place of λ0(t), we can derive the equations presented above for the

Weibull distribution.

ĥT |X (t|x; ρ, γ, ψ) =
(
γ

ρ

)(
t

ρ

)γ−1
exp (gψ (x)) (3.4)

ŜT |X (t|x; ρ, γ, ψ) = exp

(
−
(
t

ρ

)γ
exp (gψ (x))

)
(3.5)

3.2 Maximum Likelihood

Consider a dataset
{(
X(i), T

(i)
obs, δ

(i)
)}N

i=1
comprising N independent and iden-

tically distributed (i.i.d.) draws from a data-generating distribution D. Each

draw consists of a set of baseline covariates X(i) ∈ X , the time of last obser-

vation T
(i)
obs ∈ R≥0, and an event indicator δ(i) ∈ {0, 1}, which takes the value

1{T (i)
E < T

(i)
C }, where T

(i)
E ∈ R≥0 and T

(i)
C ∈ R≥0 are the event and censoring

times, respectively. We define Tobs(i) to be the minimum of T
(i)
E and T

(i)
C .

This will help us to understand the difference between models trained under

the independent censoring assumption and our model. It also gives us an in-

sight into why the model learned under the independence assumption can be

biased.

In the remainder of this section, we present a complete derivation of the

likelihood of a survival dataset subject to dependent censoring, which is char-

acterized by a copula C.

To begin, we provide a general expression for the survival likelihood. Next,

for comparison purposes, we derive the survival likelihood assuming condi-

tional independence, which will illustrate how the likelihood factorizes in a

clear manner under this assumption.

Next, we will provide Lemma 1, which enables us to determine the survival

likelihood in cases where dependence is defined by a specified copula. Then,

we will utilize Lemma 1 to the general form of the survival likelihood, which

will produce the learning objective utilized in our dissertation.

22



3.2.1 The General Likelihood of Survival Data under
Right-Censorship

To set the foundation for the following derivations, we explain the reasoning

behind the overall probability for survival data that has been right-censored

and introduce its expression in Equation 3.6.

Let us consider a survival dataset that comprisesN independent and identi-

cally distributed samples of the form
{(
X(i), T

(i)
obs, δ

(i)
)}N

i=1
⊂
(
X × R≥0 × {0, 1}

)N
.

The likelihood, as shown in Equation 3.6, incorporates the δ(i) terms in the

exponent as a binary filter that acts conditionally: raising a term to the power

of δ(i) ensures that it is only non-degenerate when the patient experiences

an event while raising a term to the power of 1 − δ(i) ensures that it is only

non-degenerate when the patient is censored.

The joint density function of the event and censoring times, conditional on

the patients’ covariates, can be denoted by fTE ,TC |X . We aim to optimize the

likelihood for a given patient i in two possible scenarios:

1. Case 1 (Uncensored): If δ(i) = 1, maximize the likelihood that TE =

T
(i)
obs, and T

(i)
C > T

(i)
obs. This corresponds to the observation that the

patient experienced the event at time T
(i)
obs, and was not censored prior

to experiencing the event. The probability mass of this likelihood under

our density function is
∫∞
T

(i)
obs
fTE ,TC |X(T

(i)
obs, tc |X(i)) dtc.

2. Case 2 (Censored): If δ(i) = 0, maximize the likelihood that T
(i)
C =

T
(i)
obs, and TE > T

(i)
obs. This corresponds to the observation that the pa-

tient is censored at time T
(i)
obs, and did not experience an event prior to

being censored. The probability mass of this likelihood under our density

function is
∫∞
T

(i)
obs
fTE ,TC |X(te, T

(i)
obs |X(i)) dte.

Combining these two cases, and applying the assumption that our data

is independent and identically distributed (i.i.d.), yields the following form of

the likelihood:
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L (D) =
N∏
i=1

[∫ ∞
T

(i)
obs

fTE ,TC |X(T
(i)
obs, tc |X

(i)) dtc

]δ(i)
︸ ︷︷ ︸

Pr
(
TE=T

(i)
obs,TC>T

(i)
obs |X(i)

)
[∫ ∞

T
(i)
obs

fTE ,TC |X(te, T
(i)
obs |X

(i)) dte

]1−δ(i)
︸ ︷︷ ︸

Pr
(
TC=T

(i)
obs,TE>T

(i)
obs |X(i)

)

. (3.6)

3.2.2 Derivation of the Likelihood Under Conditional
Independence

To derive the likelihood under conditional independence, we start from the

general form of the likelihood, as expressed in Equation 3.6. Under the assump-

tion that TE ⊥ TC |X, the distribution fTE ,TC |X factorizes into fTE |XfTC |X ,

yielding:

L(D) =
N∏
i=1

[
fTE |X

(
T

(i)
obs |X

(i)
)∫ ∞

T
(i)
obs

fTC |X
(
tc |X(i)

)
dtc

]δ(i)
[
fTC |X

(
T

(i)
obs |X

(i)
)∫ ∞

T
(i)
obs

fTE |X(te |X(i)) dte

]1−δ(i)

=
N∏
i=1

[
fTE |X

(
T

(i)
obs |X

(i)
)(

1− FTC |X
(
T

(i)
obs |X

(i)
))]δ(i)

[
fTC |X

(
T

(i)
obs |X

(i)
)(

1− FTE |X(T
(i)
obs |X

(i))
)]1−δ(i)

=
N∏
i=1

[
fTE |X

(
T

(i)
obs |X

(i)
)
STC |X

(
T

(i)
obs |X

(i)
)]δ(i)

[
fTC |X

(
T

(i)
obs |X

(i)
)
STE |X

(
T

(i)
obs |X

(i)
)]1−δ(i)

. (3.7)

3.2.3 Derivation of the Likelihood Under Dependence

First, we start with Sklar’s Theorem [58]. Then we will use this theorem to

estimate the conditional survival function.
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Theorem 1. Sklar’s Theorem Let H be a joint distribution function with

margins F and G. Then there exists a copula C such that ∀x, y ∈ R:

H(x, y) = C(F (x), G(y)) . (3.8)

Lemma 1 (Conditional Survival Function using Sklar’s Theorem). If STE ,TC |X(te, tc |x) =

C(u1, u2)

∣∣∣∣∣u1=STE |X(te |x)
u2=STC |X(tc |x)

, then,

∫ ∞
tc

fTC |TE ,X(tc | te, x) =
∂

∂u1
C(u1, u2)

∣∣∣∣∣u1=STE |X(te |x)
u2=STC |X(tc |x)

(3.9)

Proof.∫ ∞
tc

fTC |TE ,X(tc | te, x) =
∫∞
tc
fTC ,TE |X(tc, te |x)dtc
fTE |X(te |x)

=
−∂
∂TE

∫∞
te

∫∞
tc
fTC ,TE |X(tc, te |x)dtcdte
fTE |X(te |x)

=
−∂
∂TE

STC ,TE |X(tc, te |x)
fTE |X(te |x)

(3.10)

Applying Sklar’s Theorem [58] to the numerator:

=

−∂
∂TE

(
C(u1, u2)

∣∣∣∣∣u1=STE |X(te |x)
u2=STC |X(tc |x)

)
fTE |X(te |x)

, (3.11)

Chain rule of differentiation:

=

−∂
∂u1

(
C(u1, u2)

∣∣∣∣∣u1=STE |X(te |x)
u2=STC |X(tc |x)

)
∂

∂TE
STE |X(te |x)

fTE |X(te |x)

=
−∂
∂u1

(
C(u1, u2)

∣∣∣∣∣u1=STE |X(te |x)
u2=STC |X(tc |x)

)
�

���
����*−1

−fTE |X(te |x)
fTE |X(te |x)

=
∂

∂u1

(
C(u1, u2)

∣∣∣∣∣u1=STE |X(te |x)
u2=STC |X(tc |x)

)
. (3.12)

25



The application of this lemma to the censored case – modeling fTE |TC ,X –

follows immediately from a symmetric argument. That argument yields:∫ ∞
tc

fTE |TC ,X(te | tc, x) =
∂

∂u2
C(u1, u2)

∣∣∣∣∣u1=STE |X(te |x)
u2=STC |X(tc |x)

. (3.13)

We now have the tools required to derive the likelihood under dependence, as

follows. As before, we begin with the general likelihood function from Equation

3.6. Without the assumption TE ⊥ TC |X, we apply the chain rule instead of

factorizing:

=
N∏
i=1

[fTE |X (T (i)
obs |X

(i)
)∫ ∞

T
(i)
obs

fTC |TE ,X(tc |T
(i)
obs, X

(i)) dtc

]δi
[
fTC |X

(
T

(i)
obs |X

(i)
)∫ ∞

T
(i)
obs

fTE |TC ,X(te |T
(i)
obs, X

(i)) dte

]1−δi .

Under Sklar’s Theorem (Survival), we can apply Lemma 1, yielding:

=
N∏
i=1


fTE |X (T (i)

obs |X
(i)
) ∂

∂u1

C(u1, u2)
∣∣∣∣∣∣∣u1=STE |X(T

(i)
obs |X

(i))

u2=STC |X(T
(i)
obs) |X

(i)



δi

fTC |X (T (i)
obs |X

(i)
) ∂

∂u2

C(u1, u2)
∣∣∣∣∣∣∣u1=STE |X(T

(i)
obs |X

(i))

u2=STC |X(T
(i)
obs) |X

(i)




1−δi
.

(3.14)

For the sake of numerical stability, we instead optimize the log-likelihood:

ℓ(D) =
N∑
i=1

δi
log fTE |X (T (i)

obs |X
(i)
)
+ log

∂

∂u1

C(u1, u2)
∣∣∣∣∣∣∣u1=STE |X(T

(i)
obs |X

(i))

u2=STC |X(T
(i)
obs) |X

(i)


+

(1− δi)

log fTC |X (T (i)
obs |X

(i)
)
+ log

∂

∂u2

C(u1, u2)
∣∣∣∣∣∣∣u1=STE |X(T

(i)
obs |X

(i))

u2=STC |X(T
(i)
obs) |X

(i)





In this expression, the first term corresponds to the log-likelihood of observing

the event at time T
(i)
obs. C(u1, u2) is the joint survival function estimating the

probability that both event and censoring occur after T
(i)
obs. By applying a

partial derivative with respect to u1 it becomes the conditional probability
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that censoring happens after T
(i)
obs given that event occurred at T

(i)
obs. Under

independent copula, this term reduces to STC |X(T
(i)
obs|X i). The third and fourth

terms, by symmetry, represent the same quantities for the censorship time.

Despite the visual complexity of Equation 3.15, the partial derivatives of the

Clayton and Frank copulas admit closed form solutions, so the log-likelihood

function has a closed form and can be maximized via gradient-based methods

using software packages like PyTorch.

3.3 Optimization

We assume that we possess know the copula’s form. However, optimizing with

an assumed copula can prove challenging since the copula parameter may fail

to converge to the optimal value that minimizes the objective function. To

overcome this difficulty, we experimented with several optimization methods

but ultimately decided to use the same learning rate for all model parameters,

including the copula parameter. Furthermore, we discovered that multiplying

the loss gradient with respect to the copula parameter and constraining it

within an acceptable range can enhance the model’s performance.

Algorithm 1: Learning Under Dependent Censorship

Input: D: survival dataset of the form
{(
X(i), T (i), δ(i)

)}N
i=1

; Cθ: a bivariate copula,
parameterized by θ;M, a class of survival model parameterized by ϕ that can produce

Ŝ
(M)
T |X (t|X), f̂

(M)
T |X (t|X), for each X(i) ∈ D; α: learning rate, NUM EPOCHS: number of

iterations for optimization.
Result: θ̂, ϕ̂E , ϕ̂C : learned parameters of the copula and each marginal survival model.

ME ← Instantiate(M; ψ̂
(0)
E ) ;

MC ← Instantiate(M; ψ̂
(0)
C ) ;

Cθ ← Instantiate(C; θ̂(0)) ;
for i = 1, ... , NUM EPOCHS do

Li ← ℓ
[
D; f̂ (ME)

T |X , f̂
(MC)
T |X , Ŝ

(ME)
T |X , Ŝ

(MC)
T |X , Cθ̂(i)

]
;

ψ̂
(i)
C ←Adam(LEPOCH, ψ̂C , α) ;

ψ̂
(i)
E ←Adam(LEPOCH, ψ̂E , α) ;

θ̂(i).gradient← θ̂(i).gradient ∗ 1000 ;
θ̂(i).gradient← clip(θ̂(i).gradient,−0.1, 0.1) ; # clip limits the input into the range

of [−0.1, 0.1]
θ̂(i) ←Adam(LEPOCH, θ̂, α) ;

end

return θ̂(i), ψ̂
(i)
E , ψ̂

(i)
C
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3.4 Evaluation

It is well-known in the literature that informative censoring has the potential

to bias survival models [53]. However, such bias is often defined informally. In

this section, we formalize the notion of bias in an estimated survival function

and prove that the standard metrics of evaluation in survival analysis - con-

cordance index [23], [25], [63] and Integrated Brier Score (IBS) [5] - may not

always adequately reflect this bias. The significance of bias arises in scenarios

that involve the computation of the difference between survival curves. For

instance, consider the situation where we aim to determine the extent to which

a surgical procedure or therapy can increase a patient’s lifespan.

This discussion motivates our introduction and use of the Survival-ℓ1 mea-

sure that compares the ground truth curve with the estimation of the curve; we

subsequently demonstrate that the Survival-ℓ1 method provides an accurate

characterization of bias in estimating a survival function. We also introduce an

algorithm to compute the Survival-∆ metric between a pair of survival curves

(e.g. one estimated survival curve and one ground-truth survival curve). Fi-

nally, we introduce Log-likelihood as another metric to evaluate the perfor-

mance of our method.

Before introducing evaluation metrics and discussing their shortcomings in

identifying the distributional bias, we first provide an example to illustrate

what we mean by distributional bias. Let’s consider a survival scenario where

all men are censored just before the event occurs. As a result, a model will

learn a survival curve with a constant value of 1 for all time points. However,

this curve does not represent the actual survival function that generated the

data for males. The discrepancy between the true survival function and our

estimate at each time point is what we refer to as distributional bias.

3.4.1 Concordance Index

Theorem 2. The Concordance Index is not sensitive to the distributional

bias in the survival function, meaning that there exist other survival functions

different from the ground truth survival function that can result in the same
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Concordance Index.

We prove the theorem using an example in the rest of this section, but first,

we need to have a few definitions. Earlier, we claimed that measuring the bias

in survival function estimation provides a general means of measuring the bias

in a survival model. To formalize this notion, we introduce the concept of

d-Survival-∆ bias.

Definition 1 (d-Survival-∆ Bias). The d-Survival-∆ Bias is the distance be-

tween the ground truth and estimated survival curves at each time point T

under some distance metric d (in our case, this is the ℓ1 metric). Given some

true survival curve ST , and some estimated survival curve, ŜT , the d-Survival-

∆ bias is:

Ξd-Survival-∆(S, Ŝ) =

∫ ∞
0

d(S(t), Ŝ(t)) dt . (3.15)

Next, we will introduce Harrell’s concordance index, and the concept of

the risk score, on which the definition of the concordance index relies:

Definition 2 (Risk Score). A risk score, Ri ∈ R is a real-valued number

defined for each instance i. Ri has the property that a large value of Ri cor-

responds to a prediction of a small time-to-event, while a small value of Ri

corresponds to a prediction of a large time-to-event. For the purposes of this

proof, we define Ri as the cumulative hazard function.

Ri(t) ≜ Λ(t|xi) (3.16)

Definition 3 (Concordance Index). The concordance index evaluates the rel-

ative rank-ordering of each instance’s risk score with their observed ordering

by time-to-event in the dataset. Given a dataset D, and a corresponding risk

score Ri for each instance, the concordance index is calculated as follows [25]:

ΞConc.(D) =

∑
i ̸=j∈[1,N ]×[1,N ] 1 [Ri(ti) > Rj(ti)]1

[
T

(i)
obs < T

(j)
obs

]
δ(i)∑

i ̸=j∈[1,N ]×[1,N ] 1
[
T

(i)
obs < T

(j)
obs

] . (3.17)

Having introduced these terms, below we prove that biased estimates of the

survival function may yield the same concordance index as the true survival
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curves themselves, under the assumption of proportional hazards.

Consider the following toy example with two patients, 1 and 2. In this example,

D =
{(
X(1), T

(1)
obs, δ

(1)
)
,
(
X(2), T

(2)
obs, δ

(2)
)}

. Additionally, assume that 1 and 2

have the following ground-truth survival curves:

S
(1)
TE |X =

{
−t+ 1 if t < 1

0 otherwise
S
(1)
TC |X = 1 , (3.18)

S
(2)
TE |X =

{
−2t+ 1 if t < 0.5

0 otherwise
S
(2)
TC |X = 1 . (3.19)

Figure 3.1 plots these survival curves, along with their biased counterparts,

which will be introduced later.

Moreover, assume that each patient experiences the event at the time cor-

responding to the survival rate of 0.5 under their respective survival curves.

Since in this example, no patient is censored, we can therefore evaluate the

inverse of S
(1)
TE |X , S

(2)
TE |X at T (1),Quantile = T (2),Quantile = 0.5 to obtain:


T

(1)
obs ≜ E

[
S
(1)
TE |X

]
= 0.5

T
(2)
obs ≜ E

[
S
(2)
TE |X

]
= 0.25

. (3.20)

Concordance Under Unbiased Survival Curves. Here, we calculate

the concordance index under the true survival curves specified in Equations

3.18 and 3.19. To do so, we compute R1,R2 at t = 0.25, to yield:{
R1 = Λ(0.25|x1) = 0.125

R2 = Λ(0.25|x2) = 0.3
. (3.21)

Thus, we can compute the concordance index as follows:

ΞConc.(D) =

∑
i ̸=j∈[1,N ]×[1,N ] 1 [Ri(ti) > Rj(ti)]1

[
T

(i)
obs < T

(j)
obs

]
δ(i)∑

i ̸=j∈[1,N ]×[1,N ] 1
[
T

(i)
obs < T

(j)
obs

]
=
1

1
= 1

. (3.22)

We, therefore, see that a risk score computed from the ground-truth survival

curves yields perfect concordance.
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Concordance Index toy example
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Figure 3.1: A figure representing the ground-truth survival functions for pa-
tients 1 and 2 in our toy example. The horizontal axis shows the progression
of time, while the vertical axis shows the likelihood that the patient has not
yet experienced the event of interest at the current time. The solid lines show
S
(1)
TE |X(t), S

(2)
TE |X(t), while the dashed lines show Ŝ

(1)
TE |X(t), Ŝ

(2)
TE |X(t). The

hatched area highlights the difference between each curve and its biased coun-
terpart.
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Concordance Under Biased Survival Curves. Next, we show that a bi-

ased set of survival curves can also yield perfect concordance. To do so, we

will define the concept of a biasing function, apply it to the ground-truth sur-

vival curves in Equations 3.18 and 3.19, and then compute the corresponding

concordance index.

Definition 4 (Biasing function). A biasing function, B : S → S, is any

function mapping the space of survival curves to itself.

For the second part of this proof, define the biasing function, B, as follows:

S ′T ≜ B(ST ) = S2
T . (3.23)

Our definition of B yields the following biased survival curves. It is trivial

to see from these definitions, and from Figure 3.1, for each k ∈ {1, 2}, that

Ξℓ1-Survival-∆(S
(k)
TE
, S

′(k)
TE

) > 0.

S
′(1)
TE |X =

{
(−t+ 1)2 if t < 1

0 otherwise
S

′(1)
TC |X = 1 (3.24)

S
′(2)
TE |X =

{
(−2t+ 1)2 if t < 0.5

0 otherwise
S

′(2)
TC |X = 1 (3.25)

Next, we calculate the concordance index under the biased survival functions

above. As before, we use the function Λ(t|xi) to obtain risk scores from the

biased survival functions:{
R′1 = Λ(0.25|x1) ≈ 0.25

R′2 = Λ(0.25|x2) ≈ 0.6
(3.26)

As before, we can compute the concordance index:

ΞConc.(D) =

∑
i ̸=j∈[1,N ]×[1,N ] 1 [R′i(ti) > R′j(ti)]1

[
T

(i)
obs < T

(j)
obs

]
δ(i)∑

i ̸=j∈[1,N ]×[1,N ] 1
[
T

(i)
obs < T

(j)
obs

]
=
1

1
= 1

. (3.27)

Since the concordance index is the same under both the biased and unbiased

survival functions, this proves that bias in the underlying estimation of a sur-

vival function may not manifest itself in the concordance index.

32



3.4.2 Brier Score and Integrated Brier Score

Now we will explain how the bias in the survival curve can not be identified

using IBS.

Theorem 3. The Integrated Brier Score (IBS) is not sensitive to the distri-

butional bias in the survival function, meaning that there exist other survival

functions different from the ground-truth survival function that can result in

the same IBS.

We need to first define Brier Score(BS) [5], based on which we can define

Integrated Brier Score(IBS).

Definition 5 (Brier Score). The Brier Score evaluates the accuracy of the

survival curve at each time t, representing the average squared distance between

the predicted survival probability and the survival status at time t. Given a

dataset D =
{
(X(i), T

(i)
obs, δ

(i))
}N
i=1

, and the predicted survival curve Ŝ(t, x),

the Brier score is:

BS(t,D, Ŝ) =
1

N

N∑
i=1

(
1 (ti > t)− Ŝ (t, xi)

)2
. (3.28)

BS is always a number between 0 and 1, where 0 means the best possible

performance and 1 means the worst. BS defined in Equation 3.28 is valid for a

scenario without censoring. In the presence of right censoring, the score must

be adjusted using inverse probability of censoring weights. The adjusted score

is defined as below [24]:

BS(t,D, Ŝ, Ĝ) =
1

N

N∑
i=1

((0− Ŝ (t, xi)
)2
· 1 (ti ≤ t) · δi

Ĝ
(
t−i
)

+

(
1− Ŝ (t, xi)

)2
· 1 (ti > t)

Ĝ (t)

) , (3.29)

where ti is the time of the event or censoring for sample i and Ĝ(t) = P (C > t)

is the probability of censoring after time t calculated using a Kaplan-Meier

algorithm with censoring bit reversed(consider the censored patient as patients

who experienced an event and patients who experienced an event as censored).
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Definition 6 (Integrated Brier Score (IBS)). The Integrated Brier Score (IBS)

[24] provides a comparison of a model to the perfect model, which is a step

function that drops from 1 to 0 at the time of the event.

IBS(tmax, D, Ŝ, Ĝ) =

∫ tmax

0

BS(t,D, Ŝ, Ĝ)dt (3.30)

Consider the following toy example with one patientD =
{(
X(1), T

(1)
obs, δ

(1)
)}

and assume that the patient has the following ground-truth survival curve:

S
(1)
TE |X =


1− 0.5t2 t ≤ 1

1− 0.5t 1 < t ≤ 2

0 otherwise

S
(1)
TC |X = 1 . (3.31)

Assume that the event happened at t = 1, therefore, T
(1)
obs = 1. Then consider

the following survival curve as our estimation:

Ŝ
(1)
TE |X =


1− 0.5t t ≤ 1

0.5(t− 2)2 1 < t ≤ 2

0 otherwise

Ŝ
(1)
TC |X = 1 . (3.32)

Figure 3.2 plots biased and unbiased survival curves for the example along-

side the step Function we use to calculate BS and IBS. Both S and Ŝ have the

same BS (at event time which is t = 1) and IBS. Since the BS and IBS are

the same under both the biased and unbiased survival functions, this proves

that bias in the underlying estimation of a survival function may not manifest

itself in BS and IBS.
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Figure 3.2: A figure representing the ground-truth survival function, ST |X(t),
for a patient. The horizontal axis shows the progression of time, while the
vertical axis shows the likelihood that the patient has not yet experienced the
event of interest at the current time. ŜT |X(t) shows a biased survival curve
and Step Function shows the perfect survival curve in terms of the IBS metric.
The hatched area in each subplot shows the region used for calculating IBS
for ST |X(t), ŜT |X(t). This visualization showcases how the BS and IBS are

the same under both ST |X(t), ŜT |X(t).
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3.4.3 The Survival-ℓ1 Metric

Due to the drawbacks of conventional scoring rules, we introduce the Survival-

ℓ1 measure as a means of quantifying bias in survival analysis due to dependent

censoring. The Survival-ℓ1 metric CSurvival-ℓ1 : S × S → R+, is the ℓ1 distance

between the ground-truth survival curve, ST |X , and the estimate achieved by

a survival model, ŜT |X (Figure 3.3), over the entire range of the curves. Below

we prove that the Survival-ℓ1 score is proper under dependent censoring.

However, the scale of the naive ℓ1 measure between survival curves is pro-

portional to the total amount of time taken by each survival curve. To en-

sure that survival curves over a longer range do not contribute proportionally

more to the evaluation metric than those over a shorter range, we define the

small constant normalizing quantile, Q∥·∥ (in our experiments, Q∥·∥ = 0.01).

We can loosely think of the time when each survival curve reaches the nor-

malizing quantile as the “end time” of that survival curve. By normaliz-

ing the area between the survival curves by the temporal normalization value

T
(i)
max = S−1

T |X(i)

(
Q∥·∥

)
, we ensure that the duration spanned by a patient’s sur-

vival curve does not influence that patient’s contribution to CSurvival-ℓ1 relative

to other patients.

Then, our Survival-ℓ1 metric takes the following form:

CSurvival-ℓ1(ST |X , ŜT |X) =
N∑
i=1

1

N × T (i)
max

∫ ∞
0

∣∣∣ST |X(t |X(i))− ŜT |X(t |X(i))
∣∣∣ dt .

(3.33)

Theorem 4. The Survival-ℓ1 metric is sensitive to the distributional bias in

the survival function, meaning that there is no function different from the

ground truth survival function that can result in the same score under this

metric.

First, we prove the following theorem.

Theorem 5. For any Si, Sj ∈ S, if Si ̸= Sj, then CSurvival-ℓ1(Si, Sj) > 0.
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Figure 3.3: The Survival-ℓ1 metric, CSurvival-ℓ1(S, Ŝ), for event and censoring distri-
butions. Dashed lines represent the predicted survival curves, ŜTE |X , and ŜTC |X ,
while solid lines represent the corresponding ground-truth survival curves, STE |X ,
and STC |X . The black horizontal line represents the normalizing quantile, Q∥·∥. The

area of the hatched blue region above Q∥·∥ is the value of CSurvival-ℓ1(STE |X , ŜTE |X),
while that of the hatched pink region is the value of CSurvival-ℓ1(STC |X , ŜTC |X).

Proof. If Si ̸= Sj, then this means that there is some time t ∈ [0,∞), and

some ϵ ∈ R\{0} for which:

Si(t) = Sj(t) + ϵ . (3.34)

Therefore, at this time, the inner term of the integral in CSurvival-ℓ1 will

be equal to |ϵ|. Then, because N and T
(i)
max are non-negative, and because∣∣∣S(i)

T (t)− Ŝ(i)
T (t)

∣∣∣ is non-negative, we know that all other terms summed into

the computation of CSurvival-ℓ1(Si, Sj) must be at least zero. Therefore, CSurvival-ℓ1(Si, Sj) ≥

|ϵ|, which, since ϵ ̸= 0, implies that CSurvival-ℓ1(Si, Sj) > 0.

Now Considering CSurvival-ℓ1(Si, Sj) = 0 if Si = Sj, it is obvious that the

Survival-ℓ1 metric is sensitive to the distributional bias in the survival function.

This means that for any survival curve other than the ground truth curve the

value of the metric is greater than zero, which means Survival-ℓ1 is a proper

score.
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Computing the Survival-ℓ1 Metric Algorithm

Here, we expand on the computation of the Survival-ℓ1 metric by providing

an algorithm for the explicit computation of the inner term of the Survival-ℓ1

metric, stated in Equation 3.33, as well as the value Tmax for the given pair of

survival curves, S, Ŝ:

Algorithm 2: Discrete Approximation of the Inner Term of the
Survival-ℓ1
Input:

1. S1, S2: Survival curves to compare under the Survival-ℓ1 metric. Here,
we assume S1 is the ground-truth survival curve, and S2 is the
estimated curve.

2. Q∥·∥: Normalizing quantile.

3. Nsteps: Number of discretization steps.

Result:

1. ∆total: a discretized approximation of the integral∫∞
0

∣∣∣S1(t |X(i))− Ŝ2(t |X(i))
∣∣∣ dt

2. Tmax: This is used as a normalization weight when computing the full
expression for the Survival-ℓ1 metric.

Tmax ← S−11

(
Q∥·∥

)
;

∆total ← 0
for i = 1, ... , Nsteps do

∆i;S1,S2 ← Tmax

Nsteps
× ℓ1

[
S1

(
i×Tmax

Nsteps

)
, S2

(
i×Tmax

Nsteps

)]
;

∆total ← ∆total +∆i;S1,S2 ;

end
return ∆total, Tmax

3.4.4 Log-likelihood

The properness of log-likelihood as a scoring rule has been demonstrated for

independent censoring [53]. However, its suitability for dependent censoring

is contingent upon the copula’s identifiability, whereby identifiability means

there exists a unique copula that can fit the data. We have not been able to
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prove that log-likelihood is a strictly proper score for dependent censoring, but

our experiments have shown that it can be a trustable metric. In this case, we

presume the copula is identifiable and present our approach’s log-likelihood-

based performance evaluation.
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Chapter 4

Experiments and Results

In this chapter, we show the results of our experiments, highlighting how our

approach improves the learning of patient-specific survival curves. Further-

more, we demonstrate the proficiency of our method in estimating Kendall’s

tau (τ), which is a critical metric used for evaluating the dependency intensity

within the dataset.

The Survival -ℓ1 metric places strong assumptions on our knowledge of the

data-generating process by assuming access to the ground-truth survival func-

tions for each outcome. For this reason, we predominantly make use of syn-

thetic data to evaluate the merits of our approach. We also compare the

performance of our methods based on log-likelihood.

Furthermore, we demonstrated that our proposed method is not restricted to

a singular type of copula, and instead can proficiently handle a convex combi-

nation of Archimedean copula members. This ability to relax the assumption

of prior knowledge regarding the copula type highlights the versatility and

adaptability of our methodology.

4.1 Synthetic Data Experiments

Initially, we present an algorithm to generate synthetic data while adhering

to a prescribed copula C with Weibull CoxPH margins. Then we will explain

the results that we present for each set of experiments.
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4.1.1 Synthetic Data Generating Algorithm

Algorithm 3 has the capability to generate data under risk functions that can

be either linear or non-linear, depending on what function is provided in the

input.

Algorithm 3: Generating Synthetic Dependent Survival Data
Input: X ∈ RN×d: a set of covariates, gψ : X → R: a class of risk function parameterized by ψ,

Cθ: a class of copula parameterized by θ to impose upon the data,
(ν∗E , ρ

∗
E , ψ

∗
E), (ν

∗
C , ρ

∗
C , ψ

∗
C), θ

∗: data-generating parameters associated with each outcome
model and the copula, respectively.

Result: D, a survival dataset with the desired dependence.

D = ∅;
for i = 1, ... , N do

u
(i)
1 , u

(i)
2 ∼ Cθ∗ ;

T
(i)
E ←

(
− log(u1)

gψ∗
E

(X(i))

) 1
ν∗
E
ρ∗E ;

T
(i)
C ←

(
− log(u2)

gψ∗
C

(X(i))

) 1
ν∗
C
ρ∗C ;

D ← D ∪
{(
X(i),min

(
T

(i)
E , T

(i)
C

)
,1
[
T

(i)
E < T

(i)
C

])}
;

end
return D

4.1.2 Results Explanation

We report the performance of methods for each experimental set using the Sur-

vival -ℓ1 metric and Negative Log-likelihood, across various values of Kendall’s

τ . Additionally, we evaluate Kendall’s τ estimated by our method against the

true Kendall’s τ employed during data generation. Lastly, we include a graph

displaying the proportion of samples that have encountered the event (uncen-

sored). We used Kendall’s τ as a measure of dependence as it allows for the

comparison of copulas with the same level of dependency, whereas the same

Copula’s parameter does not necessarily indicate the same level of dependency

for different Copulas.

• Survival -ℓ1 plots: These plots show the CSurvival-ℓ1 bias of the model, as

a function of the dependence (true Kendall’s τ), for both independence-

assuming and copula-based models on synthetic data. Going from left to

right on the x-axis denotes stronger dependence between the survival and

event time in the data-generating process. The y-axis is overloaded; the
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scales on the left-hand side of each y-axis correspond to bias incurred

in the prediction of the event times and the scales on the right-hand

side correspond to bias incurred in the prediction of the censoring times.

Dotted lines represent the bias in the event and censoring survival curves

incurred by independence-assuming models, while solid lines represent

the bias incurred by our copula-based approach.

• Estimated vs True τ plots: For each value of τ , we plot the estimated

copula value τ̂ as a function of the dependence, τ ∗. The dotted line,

representing τ̂ = τ ∗, is plotted for reference. Points close to the line

indicate that the learned dependence parameter was close to that of the

data-generating process.

• Negative Log-likelihood plots: These plots compare the negative log-

likelihood of our method, referred to as the Dependent Model, the base-

line method, labeled as the Independent Model, and the data generating

model, DGP1. The Negative log-likelihood values obtained from each

model are plotted as a function of τ , where a lower metric indicates su-

perior performance. We believe that the DGP has the lowest possible

negative log-likelihood and can be considered as a lower bound for other

methods.

• Event Percentage: Lastly, we display a plot presenting the mean of the

indicator beat, δ, across the dataset, demonstrating the percentage of

samples that encounter the event, as a function of Kendall’s τ . This

plot illustrates the impact of dependence strength on the distribution of

samples that experience event or censorship.

4.2 Linear Risk Experiments

For the Linear-Risk experiments, we generate data according to Algorithm

3 with X ∈ RN×10 ∼ U[0,1], ν∗E = 4, ρ∗E = 14, ψ∗E(X) = βTE(X), ν∗C =

3, ρ∗C = 16, ψ∗C(X) = βTC(X), where βE, βC ∈ [0, 1]10 ∼ U[0,1]. Experiments

1DGP: Data generating process
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were performed on 20, 000 train, 10, 000 validation, and 10, 000 test samples.

Our method was subjected to testing with five varying levels of dependency

(τ = [0.01, 0.2, 0.4, 0.6, 0.8]) for both Clayton and Frank copula.

Results for this set of experiments are presented in Figure 4.1. As shown,

our approach effectively reduces the Survival-ℓ1 bias, while the Survival-ℓ1

bias under the assumption of independence increases as the strength of depen-

dency (Kendall’s τ) grows. In comparison with the model trained under the

independence assumption, our method demonstrates superior performance in

terms of negative log-likelihood. Furthermore, our approach successfully re-

trieves Kendall’s τ used in data generation.

4.3 Nonlinear Risk Experiments

For the NonLinear-Risk experiments, we generate data according Algorithm

3 with X ∈ RN×10 ∼ U[0,1], ν∗E = 4, ρ∗E = 17, ψ∗E(X) =
∑10

i=1X
2
i , ν

∗
C = 3, ρ∗C =

16, ψ∗C(X) =
∑10

i=1 βCiX
2
i , where βC ∈ [0, 1]10 ∼ U10

[0,1]. Experiments were

performed on 20, 000 train, 10, 000 validation, and 10, 000 test samples.

For the NonLinear-Risk experiments, we employed a neural network with

hidden layers composed of [10, 4, 4, 4, 2] nodes and an ELu activation function.

Additionally, we included an l2 regularizer with a weight of 1e−3 during the

training process. Similar to Linear-Risk experiments, we tested our method

on five different levels of dependency for both Clayton and Frank copula.

Figure 4.2 demonstrates that our method can handle arbitrary risk func-

tions, for which a closed-form solution is not available, using neural networks.

Our approach outperformed the model trained under the independence as-

sumption in both Survival-ℓ1 bias and negative log-likelihood metric. Addi-

tionally, we accurately estimated Kendall’s τ used in data generation.
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Figure 4.1: Linear experiments plots. The first row of plots exhibits CSurvival-ℓ1
bias. The second and third rows display negative log-likelihood and true versus
estimated Kendall’s τ . The final row’s plot depicts the percentage of events.
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Figure 4.2: Non-Linear experiments plots. The first row of plots exhibits
CSurvival-ℓ1 bias. The second and third rows display negative log-likelihood and
true versus estimated Kendall’s τ . The final row’s plot depicts the percentage
of events. 45



4.4 Convex copula with Linear Risk

Requiring prior knowledge of the copula type can be a limiting assumption.

To address this, we proposed utilizing a convex combination of the Frank and

Clayton copulas, which enables us to handle scenarios where the copula fam-

ily is unknown. We replicated the experimental setup from the Linear-Risk

experiments, except for using a combination of a Clayton and a Frank copula,

Cθ1,θ2(u, v) = 0.5 ∗ Claytonθ1(u, v) + 0.5 ∗ Frankθ2(u, v), instead of using a

Frank or Clayton copula to generate the data. Here we used a simple combi-

nation of Frank and Clayton copula with the same Kendall’s τ for simplicity.

But our method can handle any number of copulas with different Kendall’s τ .

The results of experiments with a convex copula, as shown in Figure 4.3,

demonstrate that our method effectively reduces the Survival-ℓ1 bias in survival

curves while accurately retrieving the strength level of the dependency used

in data generation. Moreover, our method achieves a negative log-likelihood

score that is similar to the ground truth model’s score, regardless of the de-

pendence strength, whereas the difference between the model trained under

the independence assumption and the ground truth model’s score increases in

this metric as the dependence becomes stronger.

4.5 Semi-Synthetic Experiments

In addition to conducting fully synthetic experiments, we also attempted a

semi-synthetic approach where we incorporated covariates from a real-world

dataset and substituted the outcomes with a synthetic function. To do so, we

utilized the SUPPORT dataset [37] renowned in survival analysis, which was

curated for creating a predictive model for the survival of hospitalized adults.

This dataset comprises 8,873 patients, and we were able to access 11 covariates

for each patient.

For this set of experiments we used generated data according to Algorithm

3 with X ∈ RN∗11 ,where X are from SUPPORT dataset, ν∗E = 4, ρ∗E =

17, ψ∗E(X) = log(
∑10

i=1 βEiXi), ν
∗
C = 3, ρ∗C = 16, ψ∗C(X) = log(

∑10
i=1 βCiXi),
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Figure 4.3: Plots for linear experiments with convex copulas. The plots on the
first row consist of the left and right plots, displaying CSurvival-ℓ1 bias and true
versus estimated Kendall’s τ plot, respectively. The left plot on the second
row displays the negative log-likelihood plot, and the last plot shows the event
percentage for each experiment.

where βE, βC ∈ [0, 1]10 ∼ U10
[0,1]. We split the dataset into 60% for training,

20% for validation, and the last 20% for the test set.

For the semi-synthetic experiments, we employed a neural network with

hidden layers composed of [10, 8, 4] and an ELu activation function. Addition-

ally, we included an l2 regularizer with a weight of 1e−3 during the training

process. Similar to other experiments, we tested our method on five different

levels of dependency for both Clayton and Frank copula.

Figure 4.4 shows the outcomes of the experiments, using both Frank and

Clayton Copulas, demonstrated identical performance to that of the fully syn-

thetic experiments. Furthermore, our approach has demonstrated the ability

to generate satisfactory results even in smaller datasets with a high percentage

of censoring.
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Figure 4.4: Semi-Synthetic experiments plots. The first row of plots exhibits
CSurvival-ℓ1 bias. The second and third rows display negative log-likelihood and
true versus estimated Kendall’s τ . The final row’s plot depicts the percentage
of events. 48



4.6 Survival Analysis Metrics

While we demonstrated that the Concordance Index (CI) and Integrated Brier

Score (IBS) are insufficient for fully capturing the Survival-ℓ1 bias, these met-

rics are widely accepted within the survival community. As such, we include

these metrics in our experimental results. Our findings indicate that our ap-

proach does not compromise either of these two metrics in order to achieve a

lower Survival-ℓ1 bias.

4.6.1 Concordance Index

We start with the Concordance Index, which is a well-known metric in sur-

vival analysis. We present the performance of the ground truth model, la-

beled as DGP, our model, labeled as Dependent, and the baseline model

trained under the independence assumption, labeled as Independent. Since

we work with synthetic data, we have access to the ground truth time for

both events and censoring. Therefore, we report the C-index for two scenar-

ios: in the first scenario, we do not consider censoring and assume that we

have access to both event and censoring time. In the second scenario, we

include censoring and only observe the minimum of the event and censoring

time. We report the C-index for 5 different levels of dependency (Kendall’s

τ = [0.01, 0.2, 0.4, 0.6, 0.8]). For each level of dependency, we provide six bars

where the three bars on the left side represent the C-index based on the no-

censoring scenario, and the three bars on the right represent the C-index based

on the observational dataset.

We expect that the DGP and the model trained using a copula exhibit

better performance compared to the model trained based on the independence

assumption. However, it is noted that the C-index values are quite similar

in most cases, indicating that the C-index is not effective in detecting any

potential bias in the survival curve.

It can be observed that the C-index derived from the observational dataset

differs significantly from the C-index calculated based on the no-censoring

dataset. Furthermore, this difference tends to increase with stronger depen-
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dence. Additionally, the C-index based on the observational dataset does not

align with the ordering of methods provided by the C-index based on the

no-censoring dataset.
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Clayton Copula

0.0 0.2 0.4 0.6 0.8
Kendall's τ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C-
in
de

x

C-index for Event With Clayton Copula

DGP No Censoring
Copula based model No Censoring
Independent model No Censoring

DGP with Censoring
Copula based model with Censoring
Independent model with Censoring

Figure 4.5: C-Index for Event in Linear Risk Experiments with Clayton Copula
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Figure 4.6: C-Index for Censoring in Linear Risk Experiments with Clayton
Copula
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Frank Copula
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Figure 4.7: C-Index for Event in Linear Risk Experiments with Frank Copula

0.0 0.2 0.4 0.6 0.8
Kendall's τ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C-
in
de

x

C-index for Censoring With Frank Copula

DGP No Censoring
Copula based model No Censoring
Independent model No Censoring

DGP with Censoring
Copula based model with Censoring
Independent model with Censoring

Figure 4.8: C-Index for Censoring in Linear Risk Experiments with Frank
Copula
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Non-Linear Risk Experiments
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Figure 4.9: C-Index for Event in Non-Linear Risk Experiments with Clayton
Copula

0.0 0.2 0.4 0.6 0.8
Kendall's τ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C-
in
de

x

C-index for Censoring With Clayton Copula

DGP No Censoring
Copula based model No Censoring
Independent model No Censoring

DGP with Censoring
Copula based model with Censoring
Independent model with Censoring

Figure 4.10: C-Index for Censoring in Non-Linear Risk Experiments with Clay-
ton Copula
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Frank Copula
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Figure 4.11: C-Index for Event in Non-Linear Risk Experiments with Frank
Copula
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Figure 4.12: C-Index for Censoring in Non-Linear Risk Experiments with
Frank Copula
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Convex Experiments
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Figure 4.13: C-Index for Event in Linear Risk Experiments with Convex Cop-
ula
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Figure 4.14: C-Index for Censoring in Linear Risk Experiments with Convex
Copula
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Semi-Synthetic Experiments
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Figure 4.15: C-Index for Event in Semi-Synthetic Experiments with Clayton
Copula
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Figure 4.16: C-Index for Censoring in Semi-Synthetic Experiments with Clay-
ton Copula
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Frank Copula
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Figure 4.17: C-Index for Event in Semi-Synthetic Experiments with Frank
Copula
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Figure 4.18: C-Index for Censoring in Semi-Synthetic Experiments with Frank
Copula

57



4.6.2 Integrated Brier Score

IBS is a metric frequently used in survival analysis. Similar to our methodology

for the C-index, we will evaluate the performance of the DGP, dependent, and

independent models for both fully observed scenarios and scenarios where we

can only observe the minimum of the event and censoring time.

Our observations suggest that IBS is a reliable metric when there is no cen-

soring, and the model trained with a copula performs comparably well across

all levels of dependence. However, we note that the performance gap between

the DGP and the independent model widens with increasing dependence.

Based on our observations, we found that IBS is a biased metric under

censoring, meaning that the IBS calculated based on the observational dataset

differs from the IBS for the dataset without censoring. This bias tends to

increase as the level of dependence increases. Additionally, we found that the

ranking of methods based on the IBS calculated from the observational dataset

does not align with the true IBS calculated based on the no-censoring dataset.
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Linear Risk Experiments
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Figure 4.19: IBS for Event in Linear Risk Experiments with Clayton Copula
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Figure 4.20: IBS for Censoring in Linear Risk Experiments with Clayton Cop-
ula
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Frank Copula
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Figure 4.21: IBS for Event in Linear Risk Experiments with Frank Copula
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Figure 4.22: IBS for Censoring in Linear Risk Experiments with Frank Copula
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Non-Linear Risk Experiments
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Figure 4.23: IBS for Event in Non-Linear Risk Experiments with Clayton
Copula

0.0 0.2 0.4 0.6 0.8
Kendall's τ

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

IB
S

IBS for Censoring With Clayton Copula

DGP No Censoring
Copula based model No Censoring
Independent model No Censoring

DGP with Censoring
Copula based model with Censoring
Independent model with Censoring

Figure 4.24: IBS for Censoring in Non-Linear Risk Experiments with Clayton
Copula
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Frank Copula
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Figure 4.25: IBS for Event in Non-Linear Risk Experiments with Frank Copula

0.0 0.2 0.4 0.6 0.8
Kendall's τ

0.00

0.02

0.04

0.06

0.08

0.10

0.12

IB
S

IBS for Censoring With Frank Copula

DGP No Censoring
Copula based model No Censoring
Independent model No Censoring

DGP with Censoring
Copula based model with Censoring
Independent model with Censoring

Figure 4.26: IBS for Censoring in Non-Linear Risk Experiments with Frank
Copula
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Linear Risk Experiments with Convex Copula
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Figure 4.27: IBS for Event in Linear Risk Experiments with Convex Copula
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Figure 4.28: IBS for Censoring in Linear Risk Experiments with Convex Cop-
ula
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Semi-Synthetic Experiments
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Figure 4.29: IBS for Event in Semi-Synthetic Experiments with Clayton Cop-
ula
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Figure 4.30: IBS for Censoring in Semi-Synthetic Experiments with Clayton
Copula
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Frank Copula
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Figure 4.31: IBS for Event in Semi-Synthetic Experiments with Frank Copula
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Figure 4.32: IBS for Censoring in Semi-Synthetic Experiments with Frank
Copula
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Chapter 5

Conclusion

5.1 Contributions

Modern statistical methods in survival analysis increasingly rely on complex,

nonlinear functions of risk; however, existing applications of deep learning

to survival analysis do not accommodate dependent censoring that may be

present in the data. This work relaxes this key assumption, and presents

the first neural network-based model of survival to accommodate dependent

censoring.

Our experimental results demonstrate the promise of our method: our

approach significantly reduces the Survival-ℓ1 (bias) in estimation and shows

superior performance in terms of negative log-likelihood. Furthermore, our

optimization technique is reliably able to recover the underlying dependence

parameter (Kendall’s τ) in survival data across datasets of varying feature

sizes and different levels and types of dependencies.

We have demonstrated that two commonly used metrics in survival anal-

ysis, namely C-index, and IBS, can not identify the bias in survival curves

properly. Furthermore, these metrics are biased in the presence of dependent

censoring and can be misleading when evaluating the performance of different

methods.
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5.2 Future Works

The method of using copulas to couple marginal survival distributions is a

general one. As future work, we consider extending this approach to other

classes of survival models, such as those that do not assume either proportional

hazards or a Weibull baseline hazard. We also explore the utilization of neural

network-based non-parametric copulas(Archimedean or non-Archimedean) to

expand the dependence structure that our method can accommodate.

Though the Survival-ℓ1 metric is a sufficient metric to demonstrate the

promise of our approach, it relies on knowledge of the complete survival curve

for each instance. In real-world data, we instead typically only have access to

point-wise time-of-event or censoring time. The careful study of the behavior

of conventional evaluation metrics under dependence, and the design of novel

metrics that are faithful reflections of model performance under dependent

censoring, remains an open avenue for future work.
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