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Abstract

Sound waves can be generated by shining a pulsed laser on an object of interest. The

resulting sound waves can be observed with an ultrasound transducer, and then recon-

structed to form an image of the object. The entire process is called “photoacoustic imag-

ing”. Medical photoacoustic imaging aims to form high-quality images of parts of the

body, such as vasculature, to enable better diagnosis and treatment of diseases. The reso-

lution - the ability to tell apart objects that are very close - is an important measure of the

quality of a medical photoacoustic imaging system. In the absence of prior information,

the resolution of a photoacoustic imaging system is limited by the (center) wavelength

of the observed sound waves. However, it is desirable to reconstruct photoacoustic im-

ages where points closer than a wavelength-based resolution limit are still resolved, en-

abling the production of higher quality photoacoustic images with additional detail. One

approach to do this is to incorporate prior information about the nature of the imaged

object. In this thesis, we explore the particular case where the unknown object is known

to be a weighted sum of a small number of simple objects of known form. We call such

objects “sparse”. Photoacoustic images can be reconstructed while incorporating sparsity

information by using a convex optimization program, a process we refer to as “sparsity-

based reconstruction”. We hypothesized that sparsity-based reconstruction could enable

resolution enhancement in a photoacoustic setting. As a challenge to this approach, the

most straightforward implementation of sparsity-based reconstruction requires a very

large amount of memory. If sparsity-based reconstruction is to become a practical pho-

toacoustic reconstruction technique, strategies for reducing its memory requirements -
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while preserving enhanced image quality - are relevant.

In this work, we experimentally test the ability of sparsity-based reconstruction to

super-resolve points. Working first with a linear ultrasound receive array, and then with

a ring array, we reconstruct successive cross-sections of a target consisting of two crossed

wires. In these experiments, we found sparsity-based reconstruction was able to super-

resolve point sources. Two approaches for reducing the memory requirements of sparsity-

based reconstruction were also implemented, namely “random projection” and an “alter-

nating descent conditional gradient” (ADCG) approach. These approaches significantly

reduced the memory required for sparsity-based reconstruction, while preserving the

ability to experimentally super-resolve point sources. We feel that the ADCG approach is

also promising for enabling sparsity-based reconstruction of objects more complex than

point sources. To our knowledge, this work is among the first work to experimentally

demonstrate the ability of sparsity-based reconstruction to super-resolve photoacoustic

point sources. In addition, as far as we are aware, this work represents the first experi-

mental implementation of ADCG sparsity-based reconstruction for photoacoustic imag-

ing.

The work in this thesis experimentally demonstrates that sparsity-based reconstruc-

tion can be used to super-resolve photoacoustic point sources. In addition, it describes

and implements two strategies for reducing the memory required by sparsity-based re-

construction, while preserving resolution enhancement. Long term, we hope this work

will be a stepping stone to the development of photoacoustic imaging systems that are

able to efficiently incorporate prior information to form higher-quality images of the body.

iii



Preface

Parts of this thesis were previously published as papers. In this preface, we provide a
citation for each paper, and summarize the contribution of each author.

0.1 Chapter 3

The content of Chapter 3 of this thesis was previously published [22]:

David Egolf, Ryan Chee, and Roger Zemp. “Sparsity-based reconstruction for super-
resolved limited-view photoacoustic computed tomography deep in a scattering medium”.
In: Optics letters 43.10 (2018), pp. 2221–2224

The concept and experimental design of this work emerged through discussion be-
tween Dr. Roger Zemp and David Egolf. The experimental data was collected by Ryan
Chee, in consultation with the other authors. The reconstruction of the images and anal-
ysis of the data was carried out by David Egolf. The manuscript was composed by
David Egolf in consultation with Dr. Roger Zemp, and Dr. Roger Zemp contributed
to manuscript edits.

iv



0.2 Chapter 4

The content of Chapter 4 of this thesis was previously published:

David Egolf, Quinn Barber, and Roger Zemp. “Single laser-shot super-resolution pho-
toacoustic tomography with fast sparsity-based reconstruction”. In: Photoacoustics 22
(2021), p. 100258

The concept and experimental design of this work emerged through discussion be-
tween the authors. The experimental data was collected by Quinn Barber, in consultation
with the other authors. The reconstruction of the images and analysis of the data was car-
ried out by David Egolf. The manuscript was composed by David Egolf in consultation
with Dr. Roger Zemp and Quinn Barber, and Dr. Roger Zemp contributed to manuscript
edits.

v



Acknowledgments

I would like to thank my adviser, Dr. Roger Zemp, for his ongoing support, flexibility, and
willingness to adapt in the face of challenges. His ”people before projects” perspective
and wise advice is incredibly appreciated - especially in the context of my ongoing health
challenges relating to Crohn’s disease.

I would also like to thank those I met in the Zemp Lab for providing a welcoming and
supporting community. Special thanks to Quinn Barber, Kevan Bell, Christopher Ceroici,
Ryan Chee, Eric Dew, Tarek Kaddoura, Pradyumna Kedarisetti, and Mohammad Maadi
for support and for many helpful and interesting conversations. The work presented
in this thesis was carried out in collaboration with Quinn Barber and Ryan Chee, and I
would like to especially thank them.

Finally, I would like to thank my parents Richard and Susana and my sister Laura for
their continual loving support.

vi



Contents

Abstract ii

Preface iv
0.1 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
0.2 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgments vi

1 Introduction 1
1.1 The Structure of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 High-Level Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2.2 High-Level Aims Enumerated . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Specific Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Overview of Thesis in Context of Aims . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Context for Specific Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5.1 Context: Other Approaches for Enhancing Resolution . . . . . . . . . 4
1.5.2 Context: Sparsity-Based Reconstruction and Resolution . . . . . . . . 5
1.5.3 Context: Reducing Computational Demand of SBR . . . . . . . . . . 6

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 10
2.1 Photoacoustic Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Photoacoustic Imaging High-Level Concepts . . . . . . . . . . . . . . 10
2.1.2 Photoacoustic Imaging in More Detail . . . . . . . . . . . . . . . . . . 11

2.2 Resolution and Resolution Limits . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Estimated Resolution Limits in Absence of Sparsity Information . . . 12
2.2.3 Enhancing Resolution Using Compressive Sensing . . . . . . . . . . 13

vii



2.3 Compressive Sensing and Sparsity . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Compressive Sensing Intuition . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Sparsity and Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Reconstruction Reference Methods . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Delay and Sum Reconstruction . . . . . . . . . . . . . . . . . . . . . . 17
2.5.2 Universal Backprojection . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Sparsity-Based Reconstruction for Super-Resolved Limited-View Photoacoustic
Computed Tomography Deep in a Scattering Medium 19
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7 Funding Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Single Laser-Shot Super-Resolution Photoacoustic Tomography with Fast Sparsity-
Based Reconstruction 30
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.8 Declaration of Competing Interest . . . . . . . . . . . . . . . . . . . . . . . . 43
4.9 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Sparsity-Based Reconstruction Using an Alternating Descent Conditional Gra-
dient Algorithm 44
5.1 Introduction: Motivation and Context . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

viii



5.3.2 Implementing ADCG Reconstruction . . . . . . . . . . . . . . . . . . 47
5.3.3 Experimental Data Collection . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.4 Assessing Resolution Enhancement Provided by ADCG . . . . . . . 58
5.3.5 Assessing Memory Usage of ADCG . . . . . . . . . . . . . . . . . . . 58

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Conclusion 65

ix



List of Figures

3.1 Received pressure-over-time channel data is modeled as the linear super-
position of the responses due to individual point targets. Estimating f pro-
duces an image and can be done using SBR or DSB. . . . . . . . . . . . . . . 21

3.2 Experimental apparatus to measure the photoacoustic response of the cross-
section of two converging wires. . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 (a) and (b) are experimental B-scans formed using SBR, and (c) is a maxi-
mum amplitude projection C-scan formed using SBR. . . . . . . . . . . . . . 24

3.4 (a) and (b) are experimental B-scans formed using SBR, and (c) is a maxi-
mum amplitude projection C-scan formed using SBR. Gaussian smoothing
followed by 10-times upsampling was applied to generate these images
from the raw images in Fig. 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 (a) and (b) are experimental B-scans formed using DSB, and (c) is a maxi-
mum amplitude projection C-scan formed using DSB. . . . . . . . . . . . . . 25

3.6 A comparison between the smoothed SBR image to the point locations ex-
pected (vertical lines) using a linear fit of wire trajectories generated from
the DSB image. The linear fit vertical lines are at separations of 289, 209,
144 and 75 microns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.7 A comparison between the DSB image to the point locations expected (ver-
tical lines) using a linear fit of wire trajectories generated from the DSB
image. The linear fit vertical lines are at separations of 305, 241 and 201
microns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 In a noiseless setting, the received pressure-over-time channel data is the
superposition of responses from individual absorbers. Generating an im-
age corresponds to forming an estimate f̂ of the location and strength f of
these absorbers and can be done using methods including sparsity-based
reconstruction and back-projection. . . . . . . . . . . . . . . . . . . . . . . . . 34

x



4.2 To characterize resolution, we imaged two converging wires over a range
of cross-sections. This experiment was performed both in water and in
intralipid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 In both intralipid (a-f) and water (g-l), sparsity-based reconstruction (SBR)
(d-f,j-l) was able to resolve two wires to a closer separation than back-
projection (BP) (a-c,g-i). All reconstructions in this figure were generated
using the full data observed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 The wire separations reported by back-projection (BP) and sparsity-based
reconstruction (SBR) in both intralipid (a) and water (b) correlate well, and
follow the expected linear trend for the crossed-wire phantom. In each
case SBR was able to resolve the two wires at separations below the half-
wavelength limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 We found that using a random projection matrix accelerated sparsity-based
reconstruction while preserving super-resolution in the intralipid sub-experiment.
The reconstruction times listed are those required to perform optimization
after forming the dictionary matrix and calculating any projections. . . . . . 40

4.6 We explored the robustness of sparsity-based reconstruction resolution to
variable levels of noise, achieved with 10x (a), 2x (b), and 1x (c) averaging.
In intralipid, super-resolution was obtained with a single laser shot. . . . . . 40

4.7 Sparsity-based reconstruction (SBR) successfully imaged a less-sparse phan-
tom consisting of in-plane crossed wires and a through-plane wire. SBR
succeeded when used to reconstruct the entire field of view at once (b),
and when used to reconstruct one quarter of the field of view at a time
(c). SBR reduced ringing compared to back-projection (BP) (a) but failed to
reconstruct portions of the in-plane wires. . . . . . . . . . . . . . . . . . . . . 41

5.1 We use an interpolating spline to help compute Φ(δθi) from an experimentally-
obtained sampled reference sinogram. Note that θi can vary continuously. . 49

5.2 Starting at µk ∈ D, minimizing a local linearization of the loss function f

provides a direction to travel when seeking to minimize f . When using the
conditional gradient method, µk+1 will be somewhere between s and µk.
The local linearization is the orange line, and f is the blue curve. . . . . . . . 50

5.3 The black circles indicate the reconstructed point locations provided by
ADCG. These are overlaid on the corresponding reconstructions generated
using the gridded method from Chapter 4 [21]. . . . . . . . . . . . . . . . . . 60

xi



5.4 The gridded and ADCG methods agree in a slice-by-slice maximum am-
plitude projection, up until the gridded method no longer clearly localizes
a pair of points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 A comparison of the separation between the two wire point sources as es-
timated by the gridded and the ADCG methods. The half-wavelength res-
olution limit is estimated as 145 µm in Chapter 4. . . . . . . . . . . . . . . . . 61

5.6 The memory required to store the forward model Φ is much smaller in
ADCG than in the gridded approach. This figure compares memory usage
without any memory usage mitigation strategies in place, to illustrate how
the ADCG approach circumvents memory usage challenges faced by the
gridded approach of the previous chapter. . . . . . . . . . . . . . . . . . . . . 62

5.7 Some structures can be sparsely approximated by rectangles of fixed length,
which have both position and angle. . . . . . . . . . . . . . . . . . . . . . . . 63

xii



List of Algorithms

5.1 This algorithm uses the alternating descent conditional gradient (ADCG)
approach to estimate the location and weight of a collection of unknown
photoacoustic point sources. Each iteration first computes the location p

of the next point source added to the reconstruction. Next, a point source
is added at p, and block coordinate descent then adjusts the locations and
weights of each estimated point source. The variable gap holds an upper
bound on how much f can still be reduced by. It can be used to exit recon-
struction early. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 The solve local linearization algorithm is called on each iteration
by the alternating gradient descent reconstruction algorithm. It solves the
current local linearization of the optimization problem, specifying a single
photoacoustic point source s with location θ∗ and weight τ . It also returns
gap, an upper bound on the primal error. . . . . . . . . . . . . . . . . . . . . . 53

5.3 On each iteration, this algorithm optimizes (1) the weights and (2) the posi-
tions of the estimated photoacoustic point sources. The weights are tuned
while the positions are held fixed, and then the positions are tuned while the
weights are held fixed. This process is repeated while the loss is being re-
duced quickly enough, or until some loss threshold is reached. The updated
estimate µk+1 for the unknown target is then returned. . . . . . . . . . . . . . 57

xiii



Chapter 1

Introduction

1.1 The Structure of This Thesis

In this chapter, we motivate and describe the research aims of the work presented in this
thesis, in the context of prior work. Chapter 2 reviews a number of key concepts used
throughout the thesis, and is intended as a reference. Some readers may find it helpful to
review Chapter 2 prior to reading this introduction.

Following Chapter 2, the next three chapters each introduce, present, and discuss a
specific research project. Chapters 3 and 4 were previously published, and are reproduced
here with permission. Chapter 5 represents more recent, unpublished, work. Another,
more detailed, overview of these chapters is provided later in this introduction, in terms
of the research aims which we will now introduce.

Finally, this thesis concludes with Chapter 6, which reviews the work presented in the
context of our research aims, and notes some possible directions for future work.

1.2 High-Level Aims

1.2.1 Motivation

The ultimate aim of the work in this thesis is to help enable higher-quality photoacoustic
imaging, capable of producing images with finer resolution and fewer artifacts. In the
long term, this could help enable photoacoustic imaging at cellular scales at a depth of
several centimeters. Some possible areas of application could include imaging vascula-
ture at higher resolutions, tracking of individual immune system cells, and visualizing
neuron firing events.
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Our strategy to work towards this goal is to make use of the idea that objects have
some kind of structural simplicity. One approach towards reconstructing images is to
assign a value to each of a large collection of pixels. However, many objects we wish
to image exhibit a structure, and so intuitively can be described in a more concise way.
Recognizing this simplifying structure in the reconstruction process can lead to higher
quality images.

One mathematical concept for describing simplicity is called “sparsity”. If an object
can be expressed as the weighted sum of a small number of building blocks selected
from some collection, then the object is said to be sparse with respect to that collection of
building blocks. In this thesis we aim to take initial steps towards applying optimization
approaches developed in the field of compressive sensing, to employ sparsity to form
higher-quality images. The first aim of this thesis is to experimentally investigate whether
a sparsity-based reconstruction approach can enhance the resolution of a photoacoustic
imaging system. To keep things simple, we focus our efforts on the reconstruction of
point-like objects. We hope the work we carry out in this simple setting will act as a
stepping stone to more complex settings, with more complex building blocks.

The second aim of this thesis is to experimentally implement approaches that reduce
the computational intensity of a sparsity-based reconstruction approach for photoacous-
tic imaging. As we will discuss, the most straightforward implementation of this ap-
proach requires the manipulation of huge matrices of sensor data. Further, these com-
putational problems only intensify if one wishes to reconstruct larger or more complex
objects. We aim to experimentally test approaches for reducing the computational inten-
sity of sparsity-based reconstruction, and to assess whether these approaches preserve
enhanced resolution.

1.2.2 High-Level Aims Enumerated

In summary, here are the two high-level aims of this thesis:

1. Experimentally investigate the ability of sparsity-based reconstruction to enhance
photoacoustic imaging resolution when imaging point objects.

2. Determine and implement approaches for reducing the computational intensity of
sparsity-based reconstruction for photoacoustic imaging. Assess whether enhanced
resolution is preserved by these approaches.

2



1.3 Specific Aims

We now list the specific aims of this thesis, which seek to enable progress on the high-level
aims described above:

1. Experimentally assess whether sparsity-based reconstruction enhances our ability
to resolve two photoacoustic point sources. Perform comparisons to a wavelength-
based limit for resolution in the absence of prior information. Do this in two cases:
when using a linear array receive transducer, and when using a ring array receive
transducer.

2. Implement a random projection approach to reduce the computational intensity of
the photoacoustic sparsity-based reconstruction problem. Experimentally assess if
the resulting reconstruction algorithm retains the ability to enhance resolution of
point sources beyond a wavelength-based limit.

3. Implement and experimentally assess the ”alternating descent conditional gradi-
ent” (ADCG) method for sparsity-based reconstruction. Assess whether the ADCG
approach reduces computational intensity, and if it preserves resolution enhance-
ment.

1.4 Overview of Thesis in Context of Aims

In the remainder of Chapter 1, we provide context for the specific aims described above.
In Chapter 2, we review background concepts useful for understanding the following
chapters. In Chapter 3, we experimentally assess whether SBR can super-resolve points
when using a linear array. In Chapter 4, we experimentally assess whether SBR can super-
resolve points when using a ring array, seeking to determine whether SBR can surpass
the half-wavelength resolution limit. Also in Chapter 4, we explore whether a random-
projection approach can reconstruct super-resolved images while significantly reducing
the memory usage of SBR. In Chapter 5, we describe an experimental implementation of
an ADCG-based SBR reconstruction approach for photoacoustic imaging, and explore its
capability for reconstructing super-resolved images while reducing the memory require-
ments of SBR. In Chapter 6, we will discuss the work accomplished in the context of our
research aims and prior work.
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1.5 Context for Specific Aims

We next provide some context for the specific aims presented above, including a discus-
sion of prior work. This section is a synthesis of the introduction sections of Chapter 3,
Chapter 4, and Chapter 5. Please see those chapters for additional discussion of context.
Note that the material in Chapter 3 is adapted from [22] with permission and the material
in Chapter 4 is adapted from [21] with permission. Our discussion of prior work reflects
the state of the literature at the time when the work in this thesis was performed.

1.5.1 Context: Other Approaches for Enhancing Resolution

We aim to use sparsity-based reconstruction to experimentally enhance the resolution
of photoacoustic point sources. Before discussing prior work using sparsity-based ap-
proaches, we first mention some other approaches.

One strategy to enhance resolution is to modify the physical mechanism by which
targets are interrogated by the imaging system. If such a modification decreases the spa-
tial extent of the reconstructed point spread function, and the imaging system can be
modelled as linear, then such a modification will improve the resolution of the imaging
system. In the context of fluorescence microscopy, stimulated emission depletion mi-
croscopy [32] and structured illumination microscopy [26] both make use of this strategy.
However, our focus in this thesis is to enhance the resolution of a photoacoustic imaging
system without modifying the way in which it interacts with the target.

Another strategy for obtaining super-resolution images is by super-localization of iso-
lated point sources. If an image can be constructed from a collection of isolated points,
and each point can be super-localized, the resolution of the resulting image may be en-
hanced. This approach generally requires the isolated point sources to change in some
way over time, either in intensity [11, 10] or in location [53, 19, 23, 12]. In an acoustic
imaging setting, the point sources can be created by using microbubble contrast agents,
which naturally change in location over time as they flow through blood vessels [23, 12].
Obtaining a resolution-enhanced image using this approach generally requires a longer
acquisition time, as multiple intermediate images are required to form the final image.
Movement of the imaging target provides a challenge for this approach. In this thesis,
we chose to instead focus our efforts on sparsity-based reconstruction, which by contrast
does not necessarily require multiple acquisition events to form an image.

In the related setting of optically-resolved photoacoustic microscopy, there are a num-
ber of approaches for resolution enhancement [64, 52, 14, 60]. Some approaches make
use of nonlinear effects such as optical absorption saturation [15], Grüneisen relaxation
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[34], or reversible photoswitching [63]. However, in this thesis, we focus our attention on
enhancing the resolution of acoustically resolved photoacoustic imaging systems.

1.5.2 Context: Sparsity-Based Reconstruction and Resolution

In addition to the strategies for enhancing resolution discussed above, it is also possible
to make use of “sparsity” to enhance resolution. Sparsity is a mathematical approach for
measuring the simplicity of an object. An object that can be viewed as the weighted sum
of a small number of reference objects is said to be sparse. It is possible to reconstruct
images by solving an optimization problem that seeks to form as sparse an image as
possible, while respecting observational data (see Chapter 2). We refer to this approach
as “sparsity-based reconstruction” (SBR).

SBR has a number of advantages compared to the resolution-enhancing methods de-
scribed above. These advantages derive from the generality of SBR as an image recon-
struction approach. SBR does not require a specific imaging mechanism, and can be
applied (with varying quality of results) to any linear imaging system. Because of this
generality, SBR can be applied to acoustically resolved photoacoustic imaging without
making use of contrast agents, multiple acquisitions, or modifications of the interrogation
mechanism. For example, it is possible that SBR could provide resolution-enhanced pho-
toacoustic images using only a single acquisition. It is the focus of this thesis to use SBR
to experimentally enhance resolution, while exploring strategies to make this approach
computationally practical.

SBR has been successfully applied to enhance resolution in the related context of ul-
trasound imaging [16, 47]. This suggests that applying SBR to acoustically resolved pho-
toacoustic imaging may also allow for resolution enhancement. Although, to our knowl-
edge, SBR has not been demonstrated to resolve points closer than half the center acoustic
wavelength in an ultrasound context.

SBR has also previously been used in a photoacoustic setting. Much of the prior work
in this direction, however, seeks to enhance image quality in ways different than enhanc-
ing the ability to resolve points sources [1, 41, 40, 46, 27, 28, 25, 56]. By contrast, in this
thesis we explore using SBR to enhance our ability to resolve point sources. Prior work
using SBR for photoacoustic reconstruction also often aims to improve image quality in
the context of undersampling. However, the focus in this thesis is to improve resolution
in a fully-sampled setting.

When we published the paper [22] reproduced in Chapter 3, to our knowledge, the
only prior work using SBR to enhance photoacoustic resolution of point sources was [29].
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The work in [29] uses spatial sparsity to enhance photoacoustic resolution, working from
post-beamformed data. However, the primary focus of [29] was to use randomly struc-
tured illumination together with spatial sparsity to enhance resolution. See Chapter 3 for
additional discussion of [29].

Since the publication of our first paper [22], additional work has made use of SBR to
enhance the resolution of point sources in a photoacoustic context [48, 54, 18, 9]. However,
to our knowledge, none of this work experimentally demonstrated the ability to resolve
point sources closer than a half-wavelength. Further improving resolution beyond that
limit by using a ring array combined with SBR is a focus of Chapter 4 [21].

1.5.3 Context: Reducing Computational Demand of SBR

In our initial implementation of SBR for resolution enhancement in a photoacoustic set-
ting (see [22], reproduced with permission in Chapter 3), we found that the memory us-
age of our approach was a significant challenge. The matrices required by the approach
were so large that they were difficult to store and manipulate in a time-efficient manner.
We were able to reconstruct images despite this challenge by making use of a computer
with 64 GB of RAM, by carefully cropping observed data in time, and by limiting the
reconstructed area to a smaller two-dimensional area. To allow for a greater scope for
application, we are therefore interested in exploring approaches that reduced the mem-
ory usage of SBR. We hope such approaches will preserve resolution enhancement, while
allowing for reconstruction over larger areas (and perhaps eventually over volumes). In
Chapter 4 and Chapter 5, we implement two such approaches for reducing computational
requirements in experiment. We next discuss why SBR as implemented in Chapter 3 [22]
requires large amounts of memory, and then review prior work addressing this challenge
in a photoacoustic setting.

Computational Intensity of a Straightforward SBR Implementation

The memory requirements of SBR in its most straightforward implementation (as in [22]),
can be understood by considering a simple matrix model for photoacoustic imaging. To
apply SBR to photoacoustic reconstruction, one approach begins by modelling photoa-
coustic observations by a matrix equation:

y = Ax+ n.
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We discuss this model in greater detail in later chapters. In brief, y is a vector of observed
ultrasonic data, x represents the unknown target to be imaged, n is a noise vector, and A

is a matrix relating the unknown target to expected ultrasonic responses. To apply SBR
using this equation requires storage and manipulation of the A matrix. If the A matrix is
large, this will be computationally intensive.

Unfortunately, the A matrix tends to be quite large in a photoacoustic setting. If there
are N channels that each observe for M samples, then A has NM rows. In addition,
if we wish to reconstruct an image on a W by H grid, then A has WH columns. To
illustrate how this may be problematic, if there are 256 sensing channels that each record
1000 samples, and we wish to reconstruct a 250x250 pixel image, then the A matrix has
(256)(1000)(250)2 entries. If each entry takes eight bytes to store, then this matrix takes
128 GB to store in its entirety. Storing and manipulating such a large matrix is practically
challenging and computationally slow.

In some cases, the matrix A could be even larger than described above. For example,
this could occur if a reconstruction with more than 250x250 pixels is desired, or if the
observed data has temporal extent of more than 1000 samples. Reconstructing in 3D
would tend to hugely increase the size of A, for example.

So, the above straightforward matrix-based approach for implementing SBR is com-
putationally intensive. Approaches that reduce computational intensity while preserving
resolution enhancement could help enable additional applications for SBR reconstruc-
tion.

Prior Work Reducing Computational Demand of SBR

As discussed above, the most straightforward implementation of SBR is computationally
intensive. A number of strategies have been explored to implement SBR in a less com-
putationally intensive way. One approach is to reduce the size of the model by making
use of symmetries [35], by splitting the model into smaller sub-models [36, 43], or by dis-
carding negative frequencies [17]. A different approach to making computations more
practical is to perform matrix calculations in parallel and on-the-fly with a GPU [20, 55].
The approach we will explore in Chapter 4 follows the approach of randomly projecting
the observed data to reduce model size. This has been done in prior work, which uses ei-
ther hardware or software to perform a random projection [30, 18, 4, 5]. In Chapter 4 [21],
we will experimentally implement such a random projection approach for photoacoustic
imaging, and assess whether resolution enhancement beyond a half-wavelength limit is
still achieved. The work in [54] does demonstrate photoacoustic resolution enhancement
using SBR in the context of data-reduction. However, in [54] the data reduction is per-
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formed by taking data only from a subset of the transducer elements available - not by
taking a random projection.

In Chapter 5, we will explore a different approach for implementing SBR in a less
computationally demanding way. While we found some success with random projection
(as detailed in Chapter 4 and [21]), we were not fully satisfied with the approach. The
process of carrying out the random projection itself is slow, although it is a one time
process. In addition, we qualitatively observed that more aggressive random projections
occasionally lead to degraded reconstructed images. Further, although random projection
significantly reduced the model size involved, the model size would increase significantly
when reconstructing in 3D. We were concerned with the ability of random projection to
reduce the model to a computationally practical size in this context. Finally, it seemed
inefficient to store and manipulate a huge matrix of point-responses, when each point
response can be (approximately) computed from the other. Searching for an alternate way
to reduce the computational intensity of SBR, we discovered an approach in the literature
which implements SBR while avoiding the huge system matrix entirely.

The ”alternating descent conditional gradient” (ADCG) algorithm introduced in [7]
describes an approach for carrying out SBR that does not require a large system matrix.
Instead, the information about the forward model is held in a function which can be
queried as needed. ADCG performed well in a super-localization competition [45] in a
simulated fluorescence microscopy setting. At the time we completed the work in Chap-
ter 5, to the best of our knowledge, there was no prior work that implemented ADCG
in a photoacoustic setting. It is an aim of this thesis to implement ADCG to reconstruct
experimental photoacoustic data. In addition, we aim to perform an initial exploration
of its practicality for implementation, its ability to reduce computational intensity, and its
ability to preserve resolution enhancement.

1.6 Conclusion

Our broad aim is to work towards improving the resolution of photoacoustic imaging
systems. In this thesis, we aim to experimentally demonstrate enhanced resolution of
point sources using sparsity-based reconstruction. In our initial work [22] (see Chapter 3)
we found a straightforward implementation of sparsity-based reconstruction to be com-
putationally intensive. Therefore, to help enable a broader range of applications, we also
explore approaches to reduce the computational intensity of sparsity-based reconstruc-
tion while preserving resolution enhancement. The remainder of this thesis presents the
work completed in pursuit of these aims.
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Chapter 2 provides background information on key concepts, including photoacous-
tic imaging, sparsity, compressive sensing, and concepts relating to assessing resolution
improvement. Chapter 3, which was previously published as [22] and is reproduced here
with permission, experimentally demonstrates enhanced resolution using a linear array
with sparsity-based reconstruction. Chapter 4, which was previously published as [21]
and is reproduced here with permission, experimentally demonstrates enhanced resolu-
tion below a half-wavelength limit using a ring array, even when using a random pro-
jection strategy to reduce computational intensity. Chapter 5 experimentally implements
sparsity-based reconstruction using ADCG, and demonstrates its ability to substantially
reduce computational intensity while preserving resolution enhancement.
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Chapter 2

Background

In this section we review some concepts relevant to the work that follows. Specifically, we
discuss photoacoustic imaging, photoacoustic resolution, compressive sensing, and ref-
erence reconstruction methods for photoacoustic imaging. Portions of this chapter were
developed from Chapter 3 and Chapter 4. Chapter 3 and Chapter 4 were previously pub-
lished [22, 21] and are reproduced in this thesis with permission.

2.1 Photoacoustic Imaging

2.1.1 Photoacoustic Imaging High-Level Concepts

At a high level, photoacoustic imaging uses the photoacoustic effect to make images. The
term “photoacoustic” hints at the nature of the underlying mechanism: the photoacoustic
effect refers to the generation of sound waves by shining a (pulsed laser) light on a target.
Images can then be formed from observations of the resulting sound waves. An advan-
tage of photoacoustic imaging is that it can provide images “in colour” as the absorption
of a given wavelength varies between materials.

There are different kinds of photoacoustic imaging. In the kind we discuss in this the-
sis, the entire area to be imaged is simultaneously illuminated, and an image is formed
using a beamforming algorithm. We may refer to this approach as either “photoacoustic
tomography” or “acoustically resolved photoacoustic microscopy”. A different kind of
photoacoustic imaging, which we will not discuss in this thesis, instead scans a laser light
over the material and observes photoacoustic responses from each small area individu-
ally. Photoacoustic tomography allows for imaging at greater depths than approaches
which rely on ballistic photon trajectories. However, a drawback is that the resolution of
the resulting images is generally limited by the wavelength of the recorded sound waves.
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2.1.2 Photoacoustic Imaging in More Detail

Photoacoustic tomography (PAT) is an imaging modality that can provide ultrasonic
acoustic resolution with optical absorption contrast [59, 65]. We now review some ba-
sic concepts of PAT, following [65]. PAT uses an unfocused excitation and reconstructs
an image using a beamforming algorithm on data recorded from an array of transducer
elements. Consequently, PAT can image deeper than purely optical approaches that rely
on ballistic photons, but is limited to acoustic resolution.

PAT is enabled by the photoacoustic effect, which converts light into pressure waves.
When a pulse of light is absorbed, the result is a local increase in temperature, which then
results in a local increase in pressure. Under thermal confinement and stress confinement,
the initial rise in pressure upon absorption of optical energy at a point is given by [65]:

p0 = ΓηthAe.

Here p0 is the initial rise in pressure, Γ is the dimensionless Gruneisen parameter, ηth is
the fraction of absorbed light energy converted into heat, and Ae is the specific optical
energy deposition (having units of energy per volume). This local increase in pressure
then generates a pressure wave, which can be detected by an ultrasound transducer. The
observations of the ultrasound transducer can then be reconstructed to form an image of
the initial pressure rise profile across the illuminated area. Assuming that Ae is constant,
this image is proportional to an image of Γηth, which corresponds to spatially varying
material properties of interest.

PAT generates images with optical contrast, as different targets will absorb different
wavelengths to different extents. For example, this can be used to estimate the oxygena-
tion of blood [65]. In this way PAT extends the capabilities of ultrasound imaging, which
does not form images with optical contrast.

PAT also extends the capabilities of imaging modalities that rely on ballistic photons,
such as confocal microscopy, two-photon microscopy, and optical coherence tomogra-
phy [57]. PAT can also image to greater depths than optically-resolved photoacoustic
miroscopy (OR-PAM), an imaging modality which also makes use of the photoacoustic
effect. OR-PAM can achieve high resolution by using a scanned focused beam but is con-
sequently limited by scattering to imaging depths less than the transport mean free path.

In general, purely optical methods which rely on ballistic photons are unable to pro-
vide high resolution images beyond shallow depths, with a maximum depth roughly
given by the transport mean free path [57]. The number of ballistic photons decays with
depth due to scattering and absorption, as described by the transport interaction coeffi-
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cient µ′
t. The reciprocal of the transport interaction coefficient 1/µ′

t is called the transport
mean free path, and roughly corresponds to the depth at which non-absorbed photons
have achieved a randomized trajectory due to scattering [51].

By contrast, PAT only requires illumination of a target that is sufficient to generate a
photoacoustic response. This can be achieved using non-ballistic photons, and can con-
sequently be achieved at depths larger than a transport mean free path. PAT does require
the direction of the resulting acoustic waves to be preserved, but this is possible at depths
larger than a transport mean free path because acoustic waves scatter much less than opti-
cal waves - scattering of ultrasound in tissue is roughly two to three orders of magnitude
weaker than that of optical waves [58]. Consequently, PAT can image at depths of a few
millimeters in tissue [59]. By contrast, methods that operate in the ballistic regime have a
depth of imaging limited to roughly one millimeter [51].

In this thesis, we seek to improve the resolution of PAT. Having discussed some of the
key concepts relating to PAT, we next discuss concepts relating to resolution.

2.2 Resolution and Resolution Limits

2.2.1 Resolution

We would like to generate clear and accurate images of biological targets using PAT. One
measure of the clarity of the images generated is the resolution of the imaging system.
In what follows, when discussing “resolution”, we will be referring to the ability of an
imaging system to distinguish (”resolve”) objects that are near to one another. This is in
contrast to another usage, where “resolution” is used to refer to the precision with which a
point source can be localized. Measures of the precision of localization do not necessarily
translate to measures of resolution, although the two concepts are closely related.

2.2.2 Estimated Resolution Limits in Absence of Sparsity Information

Estimated Linear-Array Resolution Limit

To assess resolution enhancement in a linear-array context through the use of prior spar-
sity information, we compare against delay-and-sum beamforming - a reconstruction al-
gorithm which does not incorporate prior sparsity information. We additionally wish to
compare our results against an estimate of the best-achievable resolution in the absence
of prior information. For a focused concave ultrasound transducer, at the focus, we have
the following expression for the full-width at half maximum (FWHM) of the transmitted
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sound field [13]:

FWHM = 1.4(F#)λ

where λ is the transmitted sound wavelength, and F# = F/D (where F is the focal length
and D is the aperture). In this thesis, we use this as an estimate of the resolution limit for
an acoustically resolved photoacoustic imaging system with a linear array in the absence
of prior information.

Estimated Ring-Array Resolution Limit

To assess resolution enhancement in a ring-array context through the use of prior spar-
sity information, we compare against a simplified form of universal backprojection - a
reconstruction algorithm which does not incorporate prior sparsity information. We ad-
ditionally wish to compare our results against an estimate of the best-achievable resolu-
tion in the absence of prior information. For an optical microscope, Abbe’s limit provides
a wavelength-based minimum separation d to which two point sources of light can be
resolved [38]:

d =
λ

2 · NA

where λ is the wavelength of the light observed, and NA is the numerical aperture of the
objective lens of the microscope.

In this thesis, we use this expression as an estimate of the wavelength-based resolution
limit for an acoustically resolved photoacoustic imaging system. In our context, λ is the
(center) acoustic sensing wavelength, and NA is the acoustic numerical aperture. When
using a ring array, which has a larger than half-view sensing geometry, we approximate
this wavelength-based resolution limit as λ/2.

2.2.3 Enhancing Resolution Using Compressive Sensing

We would like to significantly enhance the resolution of PAT when using either a linear
array or a ring array. In this thesis, we aim to do this by making use of concepts from the
field of “compressive sensing”, which we now briefly discuss.
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2.3 Compressive Sensing and Sparsity

2.3.1 Compressive Sensing Intuition

The concept of ”compression” normally refers to expressing some piece of data more con-
cisely, so that less memory is required to store the data of interest. For example, images
taken with a camera are often compressed using the JPEG standard. These compressed
images can still have excellent quality, suggesting that - in some sense - the raw measure-
ments acquired by the camera were in excess of what was required for a good image. The
field of compressive sensing seeks to ”compress” the measurements made while imag-
ing, so that less superfluous information is collected. Using the techniques of compres-
sive sensing, it is possible to create excellent images while collecting a surprisingly low
number of observations [24]. The key for image formation in this context is to incorporate
prior formation about the nature of the object being imaged. We hypothesize that apply-
ing the techniques of compressive sensing to normally sampled observations could lead
to resolution enhancement for PAT.

We now illustrate the concept of compressive sensing in the context of sampling a
bandwidth limited signal. In this setting, the Nyquist-Shannon sampling theorem (roughly)
tells us that when a real-valued function x has a maximum frequency of M Hz in magni-
tude, then sampling x at a frequency of at least 2M Hz generates a sequence of samples
that totally determine the signal x [3]. Samples generated by a sampling rate lower than
N < 2M Hz would potentially fail to unambiguously identify the signal. Intuitively, this
is because the signal could “wiggle” in different ways between samples in this case

However, in some cases, it is possible to unambiguously reconstruct a signal when
sampling at a rate lower than that indicated by the Nyquist-Shannon sampling theorem.
For example, this is possible if the signal is a sinusoid of known frequency (but perhaps
unknown phase shift and amplitude). It turns out that is a general phenomenon: if some
unknown structure has a sufficiently concise description of a known form, then we can
often make a good estimate of the structure from measurements that would otherwise be
highly ambiguous. The field of compressive sensing [24] explores this approach in the
setting of linear measurements.
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2.3.2 Sparsity

Following [24], we now introduce the concept of “sparsity” from compressive sensing.
Consider the following noiseless linear measurement equation:

y = Ax.

Here x is some unknown vector, A is a matrix, and y is an observed vector of measure-
ments. Assume our aim is to estimate x given y. If A has a non-trivial kernel, then in the
absence of additional information the measurements y are insufficient to unambiguously
specify the unknown target x. This is because A(x + n) = y for any n in the kernel of A,
so both x and x + n would yield the same measurement vector. However, if the vector x
is simply described in terms of some known “building blocks”, then it may be possible to
still uniquely determine x from y. To encode this simplicity mathematically, we say that x
is s-sparse when it has no more than s nonzero coordinates with respect to some specified
basis. In this case, we say that ∥x∥0 = s. The smaller that s is, the simpler or “sparser”
x is, and the more likely it is we can recover the structure x given samples y. Note that
although every vector is sparse in some basis, we need to choose a basis to estimate x using
this approach - and it can be challenging to discover a basis where x is sparse when x is
unknown.

Once a basis is selected, the compressive sensing approach to recovering a sparse x

from noiseless linear measurements is to find the simplest possible structure x̂ that would
yield the measurements obtained:

x̂ = arg min
{x|y=Ax}

∥x∥0.

We hypothesize that such a reconstruction approach would not only be capable of form-
ing acceptable reconstructions from undersampled data, but that it would be able to gen-
erate higher quality images from regular measurements. Unfortunately, the above opti-
mization problem is NP-hard in general [24]. However, there is a way to reformulate the
optimization problem as one that is “convex”, potentially enabling (approximate) solu-
tion of the problem in practice.

2.4 Sparsity and Convex Optimization

If an optimization problem is “convex”, powerful tools, including algorithms and soft-
ware, are available for its rapid and efficient solution [8]. A convex optimization problem
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has the following form:

minimizex∈Uf(x)

where f is a convex function, and U is a convex subset of a vector space [31]. Intuitively,
a convex function is ”bowl-shaped”, so that a local minimum of a convex function is also
a global minimum. A convex subset of a vector space is a set where the line segment
connecting any two points in the subset lies entirely in the subset. A convex function is
a function with a convex epigraph; that is, the area above the graph of the function is
a convex set. Norm functions are convex and a non-negative weighted sum of convex
functions is convex. For much more about convex optimization, see [8].

Given linear measurements y = Ax of an unknown target x, we would like to esti-
mate x. If x is known to be sparse in a known basis, then it is reasonable to estimate x

as the sparsest vector that would yield the observed measurements. Directly optimiz-
ing for sparsity is intractable in general. However, we can approximate this intractable
optimization problem by a convex optimization problem:

x̂ = arg min
{x|y=Ax}

∥x∥1.

Here ∥ · ∥1 is the 1-norm operator, which acts like this: ∥x∥1 =
∑︁

i |xi|. This approach to
finding a sparse x̂ is called “basis pursuit” [24].

In practice, basis pursuit is usually not an appropriate approach, due to the presence
of noise. Let us now assume that additive noise is present, so that y = Ax + h for some
noise vector h. Then it is unreasonable to require our estimate x̂ for x to satisfy y = Ax̂.
One approach to estimating x in the presence of noise is called “basis pursuit denoising”
[24]. This approach solves the following convex optimization problem over some feasible
convex region K given some λ ≥ 0:

x̂ = argmin
x∈K

∥Ax− y∥22 + λ∥x∥1.

Here ∥ · ∥2 is the 2-norm operator, which acts like this: ∥x∥2 = (
∑︁

i x
2
i )

1/2. The parameter
λ determines the relative weighting of the two terms. As λ is increased, the optimization
problem will yield increasingly sparse estimates at the cost of (potentially) increasing the
“data-fidelity” mismatch ∥Ax̂ − y∥22. Setting the value of λ is one way to incorporate
known information about the level of sparsity of x.

A second approach for estimating a sparse unknown target x in the presence of noise
is known as the LASSO [24], which solves the following convex optimization problem
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given some τ ≥ 0:

x̂ = arg min
{x|∥x∥1≤τ}

∥Ax− y∥22.

The parameter τ corresponds to the level of desired sparsity. As τ is decreased, the spar-
sity of x will tend to increase. Note that {x|∥x∥1 ≤ τ} forms a convex set, so this is indeed
a convex optimization problem.

In this thesis, we will explore approaches in the spirit of both basis pursuit denoising
and the LASSO for PAT image reconstruction. The approaches are closely linked. For
example, if x∗ is a minimizer of the LASSO problem for a given value of τ , then there is a
choice of λ so that x∗ is also a minimizer of the basis pursuit denoising problem [24]. We
will discuss the optimization approaches we used in detail in following chapters.

In this thesis, we explore the ability of sparsity-based convex optimization to enhance
PAT resolution. In the next section, we discuss baseline PAT reconstruction methods we
use for comparison.

2.5 Reconstruction Reference Methods

In what follows, we will want to compare the performance of a sparsity-based reconstruc-
tion approach to that of some simple reference approaches. In this section, we briefly
describe the two reconstruction methods we will uses as references.

2.5.1 Delay and Sum Reconstruction

One way to form a photoacoustic image from signals observed at the ultrasound trans-
ducer is called delay-and-sum beamforming (DSB). DSB is useful as a baseline method,
and does not take prior information about the structure of the target into account. We will
use DSB as a reference method when reconstructing using a linear array.

DSB is a standard reconstruction approach used in an ultrasound imaging setting [49],
and can also be applied to photoacoustic reconstruction. To reconstruct a point source at
location r in an image, DSB calculates the time at which the photoacoustic pressure wave
emanating from r is expected to arrive on each channel, and then sums up the corre-
sponding observations in a weighted fashion. In simplified form - ignoring sampling,
enveloping, normalization, and log-scaling - it computes a value for a raw image at loca-
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tion r as:

DSB(r) =
N∑︂
i=1

ai(r)gi

(︃
∥ri − r∥2

c

)︃
.

Here DSB(r) is the value of the raw DSB image at location r, ai is the weighting associated
with the ith receiving element when reconstructing at the location r, gi(t) is the observed
data on the ith sensing element of the ultrasound transducer at time t after the illumi-
nation event, ri is the location of the ith sensing element of the ultrasound transducer, c
is the speed of sound, and N is the total number of sensing elements. The expression
∥ri − r∥2 denotes the usual Pythagorean distance between points r and ri. The functions
ai determine the “apodization” used. We will use “unit apodization” which means that
ai(r) is a boxcar function with non-zero portion centered laterally about r. Intuitively, this
corresponds to only using some subset of receiving elements centered laterally about r to
reconstruct the raw DSB image at r.

2.5.2 Universal Backprojection

In Chapter 5, we use a simplified version of the universal back-projection reconstruction
method to provide a baseline for comparison. The universal backprojection algorithm
forms an estimate p0̂ for the initial photoacoustic pressure p0 in terms of pressure obser-
vations on a sensing surface S0. Up to a scaling factor, this estimate is given by [62]:

p0̂(r) =

∫︂
S0

(︃
p(r0, t̄ = |r − r0|)− t̄

∂p

∂t̄
(r0, t̄)

)︃
dΩ0.

Here t̄ = ct, t is time after photoacoustic excitation, r denotes a location in space, c is
the speed of sound, p(r, t) is the pressure at location r and time t, r0 is a position on the
sensing surface and the integration is performed in terms of solid angles dΩ0. For more
details, see [62].

2.6 Conclusion

This concludes our review of key background concepts. In the remaining chapters, we
present our research work exploring the use of SBR to enhance photoacoustic resolution.
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Chapter 3

Sparsity-Based Reconstruction for
Super-Resolved Limited-View
Photoacoustic Computed Tomography
Deep in a Scattering Medium 1

3.1 Abstract

Delay-and-sum beamforming (DSB) of photoacoustic data does not incorporate a priori
spatial sparsity of the imaging target. By incorporating this information into beamform-
ing for limited-view photoacoustic computed tomography, we experimentally obtained
enhanced resolution images of wires at a depth of 8.5 mm in a tissue mimicking scatter-
ing medium. Using a 21 MHz transducer, we improved resolution from the 200− 250 µm

achieved by DSB to 75 µm. The sparsity-based technique also generated a cleaner image
with a background signal level of roughly −50 dB, much lower than the roughly −18 dB

background signal level of DSB.

3.2 Background and Motivation

High resolution imaging with optical contrast in deep scattering tissue has been a long
sought-after goal, challenged by multiple scattering. Photoacoustic imaging is a rapidly
developing modality providing ultrasonic acoustic resolution in deep tissue with optical
absorption contrast [59, 65]. A standard beamforming technique used to form photoa-

1The material in this chapter is adapted from [22] with permission.
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coustic images is delay-and-sum beamforming (DSB). DSB is effective in a broad range of
contexts, but does not naturally support the incorporation of a priori information about
the imaging target. In this work we demonstrate photoacoustic imaging resolution im-
provement at depth by incorporating a priori spatial sparsity in the beamforming process,
referring to the approach as “sparsity-based reconstruction” (SBR).

Some recent work has sought to improve photoacoustic resolution, such as in the con-
text of optically resolved photoacoustic microscopy (OR-PAM) [64, 52, 14, 60]. OR-PAM
can achieve high resolution by using a scanned focused beam but is consequently lim-
ited by scattering to imaging depths less than the transport length. However, since we
focus on improving resolution at greater depths than the transport length, we restrict
our attention to the photoacoustic computed tomography (PACT) setting. PACT uses an
unfocused excitation and reconstructs an image using a beamforming algorithm on data
recorded from an array of transducer elements. Consequently, PACT can image deeper
than OR-PAM, but is limited to acoustic resolution due to the presence of significant scat-
tering.

It should be noted that some work has focused on using spatial sparsity to improve
resolution in an ultrasound imaging context [16, 47]. We aim to apply similar ideas to a
PACT context. In this context, some recent work has sought to incorporate a priori spar-
sity, but primarily in non-spatial domains or for the purpose of reducing the number of
measurements [42, 46, 25, 39, 33]. The work in [29] uses spatial sparsity to improve PACT
resolution on post-beamformed data (with mixed results), but primarily focuses on using
randomly structured illumination together with spatial sparsity to increase resolution. In
addition, [29] limits testing to the imaging of point-like beads, and uses DSB output as
input for the reconstruction algorithm. We extend this work by imaging wires (allow-
ing for resolution characterization), and by using raw channel data (avoiding informa-
tion loss) as input to the reconstruction algorithm. Beyond these conceptual differences,
we additionally use a high-frequency (21-MHz) transducer, which is important for high-
resolution imaging in small animals. This is significant because our long-term objective
is to image to cm-scale depths with cellular-scale resolution, important for many small
animal imaging studies.

3.3 Method

The key idea of SBR is to incorporate known spatial sparsity during beamforming. To
do this, we first write a linear model for the channel data generated by photoacoustic
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Figure 3.1: Received pressure-over-time channel data is modeled as the linear superpo-
sition of the responses due to individual point targets. Estimating f produces an image
and can be done using SBR or DSB.

excitation, illustrated in Figure 3.1:

g = Hf + n. (3.1)

Here g is the received pressure-over-time channel data generated by all the optical ab-
sorbers when a single laser pulse is fired. The jth column Hj of the “dictionary” matrix
H is the receive channel data obtained from a unit strength point absorber located at lo-
cation rj , reshaped into a column vector. We define f as a column vector of absorber
strengths so its jth component fj is the strength of the source at location rj . Finally, n is a
noise vector. The dictionary matrix relates input information (absorber locations) to out-
put information (photoacoustic channel data). So, we model the receive channel data due
to a collection of optically-absorbing point targets as a linear combination of the receive
channel data due to each source individually, weighted by source strength.

DSB can be used to solve (3.1), but it does not incorporate sparsity information. This
is because DSB simply consists of summation across channel data aligned in time so that
pressure data that originated from the receive focus point of interest interferes construc-
tively, but so that other information interferes incoherently. To incorporate sparsity infor-
mation during the image formation process, we use the following optimization program
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Figure 3.2: Experimental apparatus to measure the photoacoustic response of the cross-
section of two converging wires.

[37]:

f̂ = arg min
f

{τ∥f∥1 +
1

2
∥g −Hf∥22}, with each fi > 0. (3.2)

Here, the ℓ1-norm term (∥f∥1 =
∑︁

i |fi|) encourages a sparse solution and the ℓ2-norm
term (∥f∥2 = (

∑︁
i |fi|2)1/2) encourages selection of ultrasound sources f̂ with an expected

response similar to the measured response, so g ≈ Hf̂ . The weighting parameter τ ∈ R
sets the relative importance of each term. Reshaping f̂ results in an image optimized for
sparsity. This optimization program forms an image while incorporating sparsity and
working with pre-beamformed raw channel data. For an investigation of the theoretical
performance of this beamforming system in an ocean acoustic data context, see [61]. To
solve (3.2) we used the L1-homotopy solver [2], as we found it to quickly generate rea-
sonable estimates f̂ . Its out-of-the-box ability to make effective use of multiple cores was
especially helpful. To use the solver, we had to provide the inputs τ, H , and g and so we
now discuss how these were generated.

To set τ , we manually selected a value that simultaneously generated qualitatively
acceptable output across a range of cross-section sub-experiments. This took a handful of
iterations.

To construct the dictionary elements of the H matrix, we first tried to generate ex-
pected point responses using a simulation package. However, we found that experimen-
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tal data worked better in practice. To generate dictionary elements experimentally, we
extracted channel data from a single wire at a fixed location. The SBR reconstruction (us-
ing an initial, imprecise, dictionary) for this single wire yielded a small cluster of points
(when the sparsity weighting was de-emphasized) rather than an individual point. We
used the location of these cluster-points to then generate a superposition of channel-data
point responses to represent a single experimental dictionary element for a fixed wire
location. Applying this technique in a two-wire context allowed us to extract an experi-
mental estimate for the response due to a single point in a two-wire setting. Dictionary
elements for other wire locations were then generated using appropriate delays and am-
plitude scaling of the channel data.

We used a dictionary H with pressure-over-time responses from a 60×60 grid, balanc-
ing the need for precision in the formed image against the computational time required.
The grid stretched from −0.25 mm to 0.35 mm laterally and stretched from 8.5 mm to
8.75 mm axially (where the transducer surface was defined to be at 0 mm axially).

We generated the channel data g using the experimental setup we now describe. We
performed photoacoustic imaging using a 10 Hz repetition rate Nd:YAG laser (Surelite
OPO Plus, Continuum) and a high frequency ultrasound transducer (LZ-250, FUJIFILM
Visualsonics) controlled by a programmable ultrasound system (Vantage 256, Verasonics,
US). The experimental configuration is illustrated in Figure 3.2. The ultrasound trans-
ducer used had a center frequency of 21 MHz, a bandwidth spanning 13 − 24 MHz, 256
channels, a kerf of 18 µm, and an element width of 72 µm. Channel data was sampled at
62.5 MHz, upsampled to 200 MHz, and the channel data vector g was formed as an av-
erage across 16 measurements to reduce noise. The excitation laser had a wavelength
of 710 nm, and imaging was conducted through ≈ 8.5 mm of 1% intralipid solution,
a common choice for a tissue mimicking medium. The imaging target was chosen to
test the resolving ability of the imaging technique, and therefore we imaged successive
cross-sections of two non-parallel wires. We used a programmable stage to achieve a
58.6 µm step size between cross-sections, striking a compromise between image fineness
and imaging time. The wires used were 17.8 µm in diameter and made of aluminum
(ALW-29S, Heraeus) .

To conduct the optimization routine on the experimental data, both g and the columns
of H were first normalized to the same maximum. In addition, we used a sparsity weight-
ing value of τ = 115 for all transverse slices. This value of τ was selected manually after
a few iterations, made possible by the fact that the results were not very sensitive to τ .
However, it should be noted that as τ is increased both low-intensity artifacts and low-
intensity portions of the desired image tend to disappear.
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Figure 3.3: (a) and (b) are experimental B-scans formed using SBR, and (c) is a maximum
amplitude projection C-scan formed using SBR.

We also performed DSB on the collected channel data, allowing for a comparison with
SBR. DSB was performed using unity apodization and the receive beamforming aperture
size was selected to set f# ≈ 1 at the depth of the target.

3.4 Results

The raw experimental SBR results are shown in Figure 3.3. The C-scan images were
formed by taking maximum amplitude projections of B-scans. Each B-scan shows the
intensity estimated for each element in the 60× 60 dictionary. We also show the results of
applying a Gaussian blurring operation to the raw image and upsampling by a factor of
ten in Figure 3.4. Finally, the 10-times upsampled DSB image is shown in Figure 3.5.

We now calculate the theoretical view-limited lateral resolution of 1.4f#λ for compar-
ison with experimental results. For f# = 1, the expected theoretical lateral resolution is
1.4f#λ ≈ 117 µm. For this calculation, we used the mean received frequency (averaged
with respect to power spectral density) of 17.7MHz, and a speed of sound of c = 1480 m/s.

It is a challenge to rigorously characterize the resolution of the SBR method. Using
the full width at half maximum (FWHM) is not appropriate as the uncertainty of the
localization is not reflected in the FWHM of points in the SBR image. In addition, the
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Figure 3.4: (a) and (b) are experimental B-scans formed using SBR, and (c) is a maxi-
mum amplitude projection C-scan formed using SBR. Gaussian smoothing followed by
10-times upsampling was applied to generate these images from the raw images in Fig.
3.3.
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Figure 3.5: (a) and (b) are experimental B-scans formed using DSB, and (c) is a maximum
amplitude projection C-scan formed using DSB.
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Figure 3.6: A comparison between the smoothed SBR image to the point locations ex-
pected (vertical lines) using a linear fit of wire trajectories generated from the DSB image.
The linear fit vertical lines are at separations of 289, 209, 144 and 75 microns.
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Figure 3.7: A comparison between the DSB image to the point locations expected (vertical
lines) using a linear fit of wire trajectories generated from the DSB image. The linear fit
vertical lines are at separations of 305, 241 and 201 microns.
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FWHM varies significantly with the discretization of the dictionary and the value of τ .
To address this challenge, we used photographic knowledge of straight wire trajec-

tories in an attempt to provide validation of our SBR resolution estimates, and we used
the smallest observable separations as our resolution criterion. We created a linear wire-
trajectory model for each of the two wires past the intersection (for transverse locations
larger than ≈ 2 mm), creating the linear fit by using cross-sections in the delay and sum
beamformed image that clearly resolved the two points. Extrapolating these linear fits
beyond the cross-sections with points resolved by DSB provided a check on the SBR re-
sults. The comparison is shown in Figure 3.6. Using these linear models, we estimated
the resolving power of SBR as the separation between the linear fit estimated point loca-
tions on the last cross-section where SBR provides two high intensity peaks with a lower
intensity middle region. This resulted in an estimate of 75 µm for SBR’s resolution.

Looking at cross-sectional slices of DSB B-scans, we found that DSB distinguished
points to closer separations than the separations to which it was able to well-localize
points (see Figure 3.7). If we required a localization error of less than 50 µm relative to the
linear models, we found that DSB was only able to acceptably resolve the two points at
separations of ≈ 240 µm or more. If we required DSB to only distinguish the two points
(produce a cross-section line plot with two distinct peaks), then it was able to do this for
separations of ≈ 200 µm or more.

The DSB resolution (200− 240 µm) observed is significantly worse than the theoretical
limited-view value (≈ 117 µm), possibly due to presence of lower frequencies. However,
on the upper side of the intersection of the DSB C-scan (with transverse location less
than 2 mm) we found that DSB resolved points to roughly 120 µm, close to the theoretical
limited-view value.

Using SBR increased the localization precision relative to using DSB. The full width at
half maximum (FWHM) for the smoothed SBR image was about 25 µm and 10 µm in the
lateral and axial directions respectively. Note that these values are strongly dependent on
the size of the Gaussian kernel used for blurring. DSB had much larger FWHM maximum
values of 180 µm and 120 µm in the lateral and axial directions respectively. These approxi-
mate FWHM values were obtained from B-scans where the two points were clearly distin-
guished and the point-spread functions were regular in shape and small, corresponding
to approximate best-case FWHM performance. The reduction in FWHM achieved by SBR
should be taken in the context of Figure 3.6, which suggests that the localization provided
by the points in the smoothed SBR image is accurate to within 25 µm.

Using SBR reduced the intensity of artifacts outside high intensity regions relative to
using DSB. In the B-scans shown in Fig. 3.4(a) and (b) SBR has a mean signal level in
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regions below the half maximum level of -50 dB and -51 dB respectively. By contrast, in a
subview of the same size as that used in Fig. 3.4(a) and (b), in the B-scans shown in Fig.
3.5(a) and (b) DSB has a mean signal level in regions below the half maximum level of -18
dB and -17 dB respectively.

3.5 Discussion

We presented a photoacoustic imaging reconstruction strategy which incorporates spa-
tial sparsity information during the beamforming process. SBR improved on the lat-
eral resolution of DSB, with its 75 µm experimental lateral resolving power beating the
200 − 240 µm of DSB by more than a factor of 2.5. SBR’s resolution also beat the stan-
dard resolution limit for a view-limited transducer, which was 117 µm for our system.
Additionally, SBR enjoyed greater precision in its localization and created images with
fewer artifacts outside of high intensity regions. It should be noted that the approach pre-
sented should be scalable with transducer frequency and should be applicable to other
transducer geometries.

Experimental results were obtained while imaging wires through a scattering medium,
hinting at the possibility of applying SBR to extended objects such as vasculature in vivo.
Future work should investigate the applicability of the proposed approach to the imag-
ing of more complex objects with lower sparsity, and also investigate the robustness of the
proposed techniques to tissue heterogeneities and aberration. Future work could also in-
volve adaptive or multi-scale grids, dictionary optimization for reduced coherence, and
automation of the process for finding the optimal value of the weighting parameter τ

(following the work in [37, 61]).

3.6 Conclusion

This work represents the first demonstration of SBR to achieve super-resolved photoa-
coustic computed tomography images deep in a scattering medium. This is a step to-
wards future application of SBR to areas including immune cell and stem cell tracking,
high resolution imaging of microvasculature, and visualization of sparse neuron firing
events.
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Chapter 4

Single Laser-Shot Super-Resolution
Photoacoustic Tomography with Fast
Sparsity-Based Reconstruction 1

4.1 Abstract

Recently, ℓ1-norm based reconstruction approaches have been used with linear array sys-
tems to improve photoacoustic resolution and demonstrate undersampled imaging when
there is sufficient sparsity in some domain. However, such approaches have yet to beat
the half-wavelength resolution limit. In this work, the ability to beat the half-wavelength
diffraction limit is demonstrated using a 5 MHz ring array photoacoustic tomography
system and ℓ1-norm based reconstruction approaches. We used the array system to im-
age wire targets at ≈ 2 − 3 cm depth in both intralipid scattering solution and water.
The minimum observable separation was estimated as 70 ± 10 µm, improving on the
half-wavelength resolution limit of 145 µm. This improvement was demonstrated even
when using a random projection transform to reduce data by 99%, enabling substantially
faster reconstruction times. This is the first photoacoustic tomography approach capable
of beating the half-wavelength resolution limit with a single laser shot.

4.2 Introduction

Photoacoustic tomography is a relatively recent imaging modality that provides opti-
cal absorption contrast with acoustic resolution. While optical resolution photoacous-

1The material in this chapter is adapted from [21] with permission.
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tic imaging provides micron-scale resolution at superficial depths, ultrasound diffraction
limits spatial resolution at depths beyond an optical transport mean free path. Abbe’s
diffraction limit of λ/(2 · NA), where λ is the received sensing wavelength and NA is
the acoustic numerical aperture, has long stood as a lower bound on resolution of wave-
based imaging systems. In the case of half-view (or more) detector geometries this limit
becomes ≈ λc/2, where λc is the center wavelength.

Significant widespread attention has been given to approaches capable of beating
this diffraction limit. One approach to super-resolution is to modify target interroga-
tion to sharpen the point spread function (PSF). Examples of this approach in a fluo-
rescence microscopy setting include stimulated emission depletion (STED) microscopy
[32] and structured illumination microscopy [26]. In an optical resolution photoacoustic
microscopy setting, this approach generally requires additional laser excitation, and har-
nesses nonlinear effects such as optical absorption saturation [15], Grüneisen relaxation
[34], or reversible photoswitching [63]. However, these approaches are only appropriate
for superficial optical imaging.

Super-resolution can also be obtained by super-localizing point sources, without nec-
essarily seeking to sharpen the PSF of the interrogation system. This is done by esti-
mating the centroids of sufficiently separated signal sources. Examples of this approach
in a fluorescence microscopy setting include stochastic optical reconstruction microscopy
(STORM) [44] and photoactivated localization microscopy (PALM) [6]. Localization-based
methods have also been explored in the context of ultrasound imaging [23, 12].

In the acoustic resolution photoacoustic imaging context, localization-based methods
have achieved super-resolution by localization of time-varying point sources [11, 10], and
by localization of flowing absorbing particles [53, 19]. These localization-based methods
require that signal sources be sufficiently well separated. Consequently, these approaches
generally require multiple acquisition events, with sufficient sparsity in each frame. Such
approaches require long acquisition times and may be challenged by tissue motion.

Another approach being investigated to improve spatial resolution compared to diffraction-
limited imaging is sparsity-based reconstruction (SBR). SBR poses reconstruction as an
optimization problem and incorporates prior information about the phantom in a reg-
ularization term that promotes sparsity in a specified domain. The inclusion of prior
information then makes it possible to surpass traditional resolution limits. In contrast to
the super-resolution methods reviewed above, SBR does not necessarily require external
agents, multiple acquisitions, or other target interrogation modifications. In addition, in-
stead of requiring signal sources to be well-separated, as required by super-localization
methods, SBR requires the target to be sufficiently sparse in a known domain. In an ultra-
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sound setting, SBR has enabled improved resolution of point targets [16], although to our
knowledge it has not yet been demonstrated to enable resolution below the λc/2 limit. In
a photoacoustic setting, application of SBR has primarily made use of sparsity different
from point-target sparsity (e.g. gradient sparsity) and often seeks to improve reconstruc-
tion while undersampling [1, 41, 40, 46, 27, 28, 25, 56]. In addition, some work applying
SBR to improve resolution begins by applying a backprojection or delay and sum algo-
rithm [40, 29], a step which may lose information. For these reasons, much of the prior
work on photoacoustic SBR tells us little about the limits of the technique to resolve point
targets.

Some recent work has used a SBR approach optimized for resolving point targets but
did not surpass the λc/2 resolution limit. This recent work [48, 22, 54, 18, 9] makes use
of linear arrays and a dictionary designed to sparsify point targets and performs recon-
struction directly in the channel-data domain. The approach in [48] was able to reduce
artifacts and obtain higher signal-to-noise ratio. Prior work from our group [22] used a
high-frequency linear array transducer and a SBR approach to beat the aperture-limited
diffraction limit. The work in [54] used a similar approach to surpass the aperture-limited
diffraction limit with a focus on using a sparse linear array. The approach in [18] also uti-
lized a similar reconstruction approach, with a focus on reducing the data used for recon-
struction. The work in [9] incorporated attenuation compensation into the SBR algorithm.
However, none of these approaches demonstrated resolution below the λc/2 limit.

While SBR has been shown to improve spatial resolution, its high computational bur-
den (and hence slow reconstruction speed) poses a barrier to practical application. The
computational problem arises from the fact that, as a model-based reconstruction ap-
proach, SBR involves the manipulation of very large matrices. Various approaches have
been explored for reducing the size of the data to be manipulated in model-based re-
construction, such as exploiting symmetries to reduce model size [35], splitting the re-
construction problem into several smaller problems [36, 43], using a GPU to perform
matrix calculations in parallel and on-the-fly [20, 55], reducing sampling rate by discard-
ing negative frequencies [17], and using hardware or software to obtain measurements
corresponding to projections of scrambled versions of the original data to be measured
[30, 18, 4, 5]. However, to our knowledge, the only work exploring data-reduction while
obtaining super-resolved photoacoustic images is [54], which used as little as ≈ 6% of
the available data by using a subset of the transducer elements available. To date, the
robustness of SBR to retain super-resolution capability even under the application of data
reduction schemes remains largely uncharacterized.

In addition to computational burden, the potential presence of non-sparse signal sources
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is an additional challenge for the practical implementation of SBR. However, to our knowl-
edge, none of the recent work applying SBR optimized for point-target reconstruction has
sought to characterize reconstruction performance in the presence of less-sparse signal
sources [48, 54, 18, 22]. Instead, testing of this SBR approach so far has been restricted to
the imaging of point targets.

In this work we sought to demonstrate resolution surpassing the λc/2 limit with a sin-
gle laser shot, while taking initial steps towards characterizing the robustness of SBR to
data reduction (for reconstruction acceleration) and to the presence of non-sparse signals.
Given that a full-view tomography system can achieve a resolution close to the λc/2 limit
to begin with, we hypothesized that SBR methods could surpass the half-wavelength
limit when applied to full-view tomography data. To explore the robustness of SBR to
data reduction, we performed SBR using a randomly projected version of the channel
data, and also performed SBR in several smaller quadrants partitioning the field of view.
Finally, to explore robustness to the presence of less-sparse signals, we imaged a phan-
tom containing a less-sparse target, as well as a sparse target. We found that SBR could
surpass the half-wavelength diffraction limit by roughly a factor of two, even when re-
ducing the size of the data by 99% using a random projection approach. This enabled
rapid reconstruction (< 1 s, corresponding to > 60-fold acceleration) of super-resolved
images. Our results demonstrate resolution beyond the λc/2 limit with a single laser shot
and indicate at least some robustness of the method to the presence of less-sparse signal
sources and to the application of data reduction techniques.

4.3 Theory

SBR reconstructs an image by optimizing an objective function that incorporates a pri-
ori sparsity information, making use of ideas from compressive sensing (see [24] for an
overview). To define the optimization problem, we begin by modeling the imaging sys-
tem as g = Hf + η, where f is a vector of optical absorption coefficients for a collection
of points in space, H is a system matrix (“dictionary”) with columns corresponding to
photoacoustic responses from these same points in space, η is a noise vector, and g is the
observed photoacoustic channel data (see Figure 4.1). We include a spatial sparsity pro-
moting ℓ1-norm regularization term, and an ℓ2-norm term which ensures an approximate
match between the observed channel data g and the expected channel data Hf̂ under the
estimated absorber intensity vector f̂ . Finally, we introduce a parameter τ > 0 which
controls the extent to which sparsity is encouraged in the reconstructed image. The SBR
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Figure 4.1: In a noiseless setting, the received pressure-over-time channel data is the su-
perposition of responses from individual absorbers. Generating an image corresponds to
forming an estimate f̂ of the location and strength f of these absorbers and can be done
using methods including sparsity-based reconstruction and back-projection.

image is then obtained by solving the following optimization problem:

f̂ = argmin
f

{τ∥f∥1 +
1

2
∥g −Hf∥22}, with each fi ≥ 0.

One drawback of the SBR implementation described above is that it requires working
with a very large dictionary matrix H , which increases rapidly in size as the reconstruc-
tion grid is refined or as the reconstruction area is increased. We hypothesized that
we could reduce computational burden by modifying the system g = Hf to a system
Rg = RHf , where R is some random (fixed) projection matrix to a lower dimension. The
optimization problem then becomes:

f̂ = argmin
f

{τ∥f∥1 +
1

2
∥Rg −RHf∥22}, with each fi ≥ 0.

Calculating Rg can be done rapidly, while on the other hand calculating RH is intensive,
but only must be done once. This modification effectively changes the sensing matrix
to RH , which is much smaller and consequently requires much less memory and com-
putation to manipulate. We can justify this approach by noting that random projection
matrices have excellent theoretical properties that allow for recovery of sparse signals af-
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Figure 4.2: To characterize resolution, we imaged two converging wires over a range of
cross-sections. This experiment was performed both in water and in intralipid.

ter they have been applied (see e.g. [24]). We hypothesized that this projection approach
should enable high-speed, low-memory, acceptable-quality SBR imaging.

4.4 Material and Methods

To estimate the minimum separation at which SBR can resolve point sources, we im-
aged a crossed-wire target at successive cross-sections (see Figure 4.2), using a ring array
to detect photoacoustic signals generated by pulsed illumination. Experimental channel
data was collected using a 532 nm pulsed nanosecond Nd:YAG laser (Surelite OPO Plus,
Continuum), a 5 MHz Imasonic ring array (with 256 elements spread over 256◦), and a
programmable ultrasound system (Vantage 256, Verasonics, US). The crossed-wire target
was constructed from aluminum wires 17.8 µm in diameter (ALW-29S, Heraeus) angled at
≈ 20◦ relative to each other. We first imaged the target through ≈ 2-3 cm water, and then
repeated the experiment at a similar depth in 1% intralipid tissue mimicking solution.
Cross-sectional images of the target were taken at 13 µm steps. To improve the signal-
to-noise ratio, we collected data repeatedly at each cross-section (50x per cross-section in
water and 100x per cross-section in intralipid) for selectable levels of signal averaging,
including for reconstructions with no averaging.

As an initial step towards characterizing the applicability of SBR for obtaining super-
resolution in less-sparse contexts, we also imaged a less spatially-sparse phantom, con-
taining both in-plane (as opposed to through-plane) crossed wires and a single through-
plane wire. The same laser, ring array, ultrasound system, and aluminum wire were
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used as in the resolution sub-experiment described above. We imaged the target through
≈ 10 cm of water with 43 times averaging.

To generate the dictionary matrix H , we made use of the dictionary refinement pro-
cedure described in [22]. This procedure forms a dictionary by starting with an initial
approximate dictionary (estimated using simulation), and then modifying this dictionary
to sparsify estimated absorber locations (for an experimental reference image of a point in
water) at a low τ value. The responses from other points are then estimated by delaying
and scaling this calibrated point response. For numerical stability, we normalized H to
have the maximum element normalized to unity magnitude, so that after normalization
max
i,j

|Hij| = 1. The location of the points corresponding to the dictionary entries were

selected by taking points generated by a uniform random distribution, and then moving
these selected points apart to avoid clustering. This was done by applying displacements
proportional to the reciprocal of the squared distance between points until clustering was
visually minimized. Future work could select these points using a regular grid, or utilize
an automated approach such as perturbation of a regular grid to reduce clustering, such
as in [50].

We solved the SBR optimization problem using the L1-homotopy package [2], as we
found it to provide fast and high-quality reconstruction performance relative to other SBR
packages available. To accelerate the speed of reconstruction and reduce memory usage,
we broke this reconstruction into two steps. We began by performing an initial recon-
struction using a coarse dictionary. Working from the resulting image, we then formed a
second finer dictionary, omitting spatial locations more than some small radius from loca-
tions with estimated nonzero signal. The radius used was 50 µm in the experiment where
we imaged two wires in cross-section in water, and the radius used was 25 µm in the
other experiments. We refer to the discarded set of points far from the initial phantom re-
construction and having zero amplitude as the non-relevant point set. For reconstruction,
the value of τ on each reconstruction step was selected manually (to maximize qualitative
image quality) and held constant across all cross-sections. A final B-scan image was then
formed by using a kernel smoothing operator (with respect to a fine regular grid) which
calculated image intensity at a point as a distance-weighted average of nearby intensities
within a specified radius of 25 µm. All reconstructions were performed on a system with
a Ryzen 3 1300X Quad-Core 3.5 GHz Processor and 16 GB of RAM.

We now detail the specific parameter values used for reconstruction. In the first sub-
experiment (with through-plane wires) when imaging in intralipid, we set τ = 10 and
used a dictionary with 2500 points for initial reconstruction, and then set τ = 60 and used
a dictionary with 22500 points (prior to the removal of the non-relevant point set) for finer
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reconstruction. When imaging in water we set τ = 80 and used a dictionary with 2500
points for initial reconstruction, and then set τ = 80 and used a dictionary with 22500
points (prior to the removal of the non-relevant point set) for finer reconstruction. In the
second sub-experiment (with in-plane wires) when reconstructing the entire field of view
at once, we set τ = 2 and used a dictionary with 2500 points for initial reconstruction,
and then set τ = 0.2 and used a dictionary with 22500 points (prior to the removal of
the non-relevant point set) for finer reconstruction. We also performed reconstruction in
the second sub-experiment using one quarter of the field of view at a time, with the aim
of further testing robustness to less-sparse background signals. For each reconstruction
quadrant we used τ = 2 and a dictionary with 2500 points.

In addition to reconstructing the data using SBR, we also used a simple form of back-
projection (BP) to provide a basis for comparison. The BP reconstruction algorithm used
is the universal back-projection algorithm [62] with the derivative term omitted. In addi-
tion, to reduce the level of generated artifacts, we truncated negative absorbance values.
It should be noted that further reduction of oscillatory BP artifacts can be obtained by
applying deconvolution, although we did not do this in this work.

To test the ability of the projection approach to provide acceptable-quality images at
accelerated reconstruction rates, we applied the projection approach to a cross-section
close to the SBR resolution limit in the intralipid sub-experiment. The random projection
matrix R was generated by drawing each entry from a standard normal distribution. We
used R to project from a space with 256256 dimensions to a space with 2078 dimensions.
To reconstruct quickly in a phantom independent way, we used only the first step in the
reconstruction process described above. That is, we omitted the second step that uses a
dictionary determined using an initial rough reconstruction.

4.5 Results

The reconstructed experimental images of the through-plane crossed-wire phantom are
shown in Figure 4.3. The C-scan images were generated by taking maximum amplitude
projections of a collection of B-scans, and then upsampling by a factor of 10. We observe
that SBR resolved the two wires to a smaller separation than BP, as well as providing
reduced background signal.

To quantify the performance of SBR, we compared its estimated wire separation to that
estimated by BP, as shown in Figure 4.4. The reported separation on a given frame was
calculated as the distance between the two highest intensity points in the reconstructed
image, while requiring that the second highest intensity point be more than 35 µm or
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Figure 4.3: In both intralipid (a-f) and water (g-l), sparsity-based reconstruction (SBR)
(d-f,j-l) was able to resolve two wires to a closer separation than back-projection (BP) (a-
c,g-i). All reconstructions in this figure were generated using the full data observed.
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Figure 4.4: The wire separations reported by back-projection (BP) and sparsity-based re-
construction (SBR) in both intralipid (a) and water (b) correlate well, and follow the ex-
pected linear trend for the crossed-wire phantom. In each case SBR was able to resolve
the two wires at separations below the half-wavelength limit.

90 µm from the first point in the case of SBR and BP, respectively. The failure point of
a method was assessed qualitatively by observing when the image generated no longer
contained two distinct peaks. In the case of BP, we also report the “half-maximum reso-
lution”. We define this as the BP peak-separation just before the two BP intensity peaks
are no longer separated by a dip in intensity (in a maximum amplitude projection) to half
the value of the average of the two peaks. The half-maximum resolution of SBR is not
plotted, as it is roughly equal to the separation between the points at SBR failure.

In both the water and intralipid case, we observe in Figure 4.4 a strong correlation be-
tween the separations reported by the two reconstruction approaches up until BP fails to
resolve the two wires. Beyond the separations at which BP fails, SBR provides separation
estimates that are consistent with a roughly linear rate of reduction in separation, which is
reasonable for the crossed-wire target. The source of the jump in separations seen in Fig-
ure 4.4 (a) is not currently well understood, but could simply be an experimental artifact
due to vibrations causing small movements in the wire during the imaging procedure.

We estimated the final separation of the points prior to SBR failure by using a linear fit
on BP-estimated separations up to BP failure. This approach produced point separation
estimates of 70 µm and 75 µm prior to SBR failure in the intralipid and water experiments,
respectively. In each case, these estimates for wire separation prior to SBR failure are sub-
stantially below the 145 µm half-wavelength resolution limit corresponding to the 5 MHz

center frequency assuming 1450 m/s speed of sound in water.
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Figure 4.5: We found that using a random projection matrix accelerated sparsity-based
reconstruction while preserving super-resolution in the intralipid sub-experiment. The
reconstruction times listed are those required to perform optimization after forming the
dictionary matrix and calculating any projections.
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Figure 4.6: We explored the robustness of sparsity-based reconstruction resolution to vari-
able levels of noise, achieved with 10x (a), 2x (b), and 1x (c) averaging. In intralipid,
super-resolution was obtained with a single laser shot.

We also wished to determine whether random projection could be used to accelerate
reconstruction while preserving super-resolution. As illustrated in Figure 4.5, we were
able to use random projection to accelerate the reconstruction process by a factor of > 60,
while retaining the ability to separate targets closer than λc/2.

To explore SBR resolution with variable levels of noise, we additionally used only 10x,
2x and 1x averaging to reconstruct images of Figure 4.3. These results are shown in Figure
4.6.

SBR was able to successfully reconstruct the less-sparse phantom containing in-plane
wires, as show in Figure 4.7 (b). We note that SBR largely recovers the in-plane wires,
albeit with some gaps, and that it also localizes the through-plane wire. This was achieved
even when reconstructing one quarter of the field of view at a time (Figure 4.7 (c)).
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Figure 4.7: Sparsity-based reconstruction (SBR) successfully imaged a less-sparse phan-
tom consisting of in-plane crossed wires and a through-plane wire. SBR succeeded when
used to reconstruct the entire field of view at once (b), and when used to reconstruct one
quarter of the field of view at a time (c). SBR reduced ringing compared to back-projection
(BP) (a) but failed to reconstruct portions of the in-plane wires.

4.6 Discussion

We found that SBR was able to resolve points separated by a distance roughly half of the
λc/2 resolution limit. To our knowledge, this is the first time that this limit has been sur-
passed in photoacoustic tomography without making use of super-localization of mov-
ing absorbers. This could be important for imaging structures where there is no motion
(e.g. micro-metastases). The resolution improvement ratio, defined as the ratio of the ob-
tained super-resolution to the diffraction resolution limit, was 75/145 = 0.52 in water and
70/145 = 0.48 in intralipid. These results using a ring array system offer a larger resolu-
tion improvement than that reported in prior work using linear arrays (125/155 = 0.81 in
[54], and 75/117 = 0.64 in [22]).

The super-resolution results obtained here were achieved using sparse targets in an
idealized imaging environment. Compressive sensing performance in general depends
on the properties of the sensing matrix H , on the sparsity level, and on the noise level
of the system. So, the best resolution obtainable will be context specific. That is, we can
expect it to vary with the geometry and impulse response of the imaging system used,
the noise level, the level of sparsity actually present in the imaged target, the effective
sparsity obtained by using approximate point-response estimates, the size of the projec-
tion matrix used for data reduction, and the locations in space selected for reconstruction.
Future work could seek to precisely characterize the impact these parameters have on
the resulting SBR images. Importantly for application to in vivo imaging, we can expect
performance to degrade as the imaging target becomes less sparse or as our ability to
characterize the (potentially spatially varying) impulse response of the imaging system
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decreases. For applications involving sources of signal that are not spatially sparse, it may
be appropriate to reconstruct with respect to a different sparsifying prior. In this case,
performance may be improved by using a total variation prior or a linear combination of
priors that includes spatial sparsity. Future work could explore the relative performance
of SBR and traditional reconstruction approaches in these more challenging contexts.

Besides noise, an additional source of uncertainty in our super-resolution measure-
ments was the selected pseudorandom reconstruction locations generated by a user-supervised
algorithm. We explored this briefly for the transverse slice shown in Figure 4.3 (e). Us-
ing five different realizations of the reconstruction locations, we found that the estimated
distance between the two wires in this transverse slice varied by 7.4 µm. This along with
the uncertainty in localization over multiple noise realizations is contained within the
±10 µm uncertainty we report in the abstract.

The high degree of computational burden associated with SBR poses another chal-
lenge to its practical implementation. The computational burden increases with the fine-
ness of the dictionary used and the size of the field of view. By using a random projection
operator R to reduce the size of the dictionary matrix H by 99%, we reduced reconstruc-
tion time to < 1 s per frame, while preserving super-resolution capability. This corre-
sponded to a speed up by a factor of ≈ 60 compared to when random projection was
not used. While results did depend on the projection used, even an aggressive random
projection allowed us to create super-resolved images, as illustrated in Figure 5. We also
found that we could reconstruct a larger field of view by performing several reconstruc-
tions independently over a collection of smaller areas. In the particular case shown in
Figure 4.7, each quadrant took ≈ 20 s to reconstruct with a dictionary containing 2500
point responses, but a 100 × 100 dictionary (roughly 20 GB) would not fit in the RAM of
the computer used for reconstruction. Both random projection and piecewise reconstruc-
tion may help enable faster SBR imaging, or help enable SBR imaging with larger fields
of view or in three dimensions.

In regard to Figure 4.6, note that the results in intralipid indicate the ability to achieve
super-resolved images with a single laser shot. This is in contrast to super-localization
approaches which typically require thousands of laser shots. It was seen that different
realizations of the random projection matrix as well as different experimental noise re-
alizations could impact image reconstruction and lead to failure of super-resolution and
should be investigated in future work.
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4.7 Conclusion

We implemented a photoacoustic tomography ring-array system with sparsity-based re-
construction to demonstrate super-resolution imaging with a single laser shot. We found
we were able to experimentally resolve points with separation of roughly half the half-
wavelength resolution limit (70± 10 µm vs. 145 µm). By making use of a random projec-
tion matrix, we were able to accelerate reconstruction to < 1 s per frame while preserving
super-resolution. In addition, we found that our SBR implementation optimized for point
targets was able to generate a reasonable image in the presence of a less-sparse target, and
even when reconstructing only a quarter of the field of view at a time. This suggests SBR
has some robustness to non-sparse background signals. Both data reduction approaches
explored (sub-region piecewise reconstruction and random projection) may help enable
SBR imaging in contexts with larger field of view or in three dimensions. Future work
may explore whether SBR can achieve super-resolution in less ideal contexts, where it is
harder to form a high-quality dictionary of point responses and there is substantial non-
sparse background signal.
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Chapter 5

Sparsity-Based Reconstruction Using an
Alternating Descent Conditional
Gradient Algorithm

5.1 Introduction: Motivation and Context

Computational Practicality of Sparsity-Based Reconstruction

We saw in Chapter 3 (previously published as [22]) and Chapter 4 (previously published
as [21]) that sparsity-based reconstruction algorithms can enhance resolution. They do
this by making use of prior information about the structure of the target to be imaged.
However, as we will argue, the practicality of the specific reconstruction algorithms uti-
lized in Chapter 3 and Chapter 4 is limited by intensive computational requirements. In
this chapter, we will motivate the practical need for an alternative sparsity-based recon-
struction algorithm, and explore its experimental performance.

In earlier chapters, we used a model of the following form to describe the generation
of photoacoustic observations:

y = Φx+ η.

In this model, y is a column vector holding the observations collected on the transducer
element array. It is generated by taking the sample vectors observed by each transducer
element over time and stacking them vertically. The Φ matrix describes the point re-
sponses of the system. Given a grid of points G, which we think of as a reconstruction
grid, the ith column of Φ holds the expected noiseless observation vector if a single unit-
strength source was present at the ith location in the grid G. The column vector x models
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the (unknown) target, with xi corresponding to the strength of the photoacoustic signal
generated from a point target at location i in the grid G. The column vector η models the
addition of noise.

Given this model, and a sparsity-weighting parameter τ ≥ 0, the gridded reconstruc-
tion approach used in prior chapters is described by the following optimization routine:

x̂ = arg min
x

1

2
∥Φx− y∥22 + τ∥x∥1, with xi ≥ 0 for each i,

where x̂ is a column vector that estimates the unknown target x. However, it is often the
case that Φ becomes so large that it becomes computationally impractical to perform the
optimization routine described above. The size of this matrix Φ is m rows by n columns,
where m is the number of samples in the observed data y and n is the number of points in
the grid G. Note that m = TN , where T is the number of samples collected per transducer
element and N is the number of transducer elements.

The m×n size of Φ becomes prohibitively large in settings that are more complex than
those explored in the previous chapters. Here are some ways in which this can happen:

• The field of view is increased, so that the number of relevant observations per sens-
ing element T increases. This causes m to increase.

• The density of points in the reconstruction grid is increased, or the spatial extent of
the reconstruction grid is increased. This causes n to increase.

• Construction is performed in three dimensions. This causes n to increase.

• More generally, the unknown target is expressed in terms of a collection of “building-
blocks” which are parametrized by more than two parameters. This causes n to
increase.

In any of the above cases, the matrix Φ used in the previous two chapters becomes sub-
stantially larger. This is problematic, as the matrix Φ was already large enough to be
difficult to work with. In Chapter 4 [21], we used a random projection to effectively
reduce its size. However, we can in general expect this approach to degrade reconstruc-
tion quality, especially if a more aggressive projection (in terms of number of dimensions
lost) is required for computational tractability. A number of other approaches to this
problem are mentioned in Chapter 4, including exploiting symmetries to reduce model
matrix size, splitting reconstruction into several smaller problems, using a GPU for paral-
lel computation, and using random projections in either software or hardware to reduce
model-matrix size.
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However, we will now explore a different approach, which seeks to circumvent the
problem of manipulating a huge Φ model matrix. The key idea is that the information in
Φ can be stored much more efficiently in the form of a continuous function. This approach
makes use of our knowledge of equations that (approximately) describe the propagation
of sound from point sources.

Using an Alternating Descent Conditional Gradient Algorithm

To avoid working with a huge model matrix, we make use of the “alternating descent
conditional gradient” (ADCG) algorithm introduced in [7]. ADCG replaces the Φ model
matrix with a Φ function, which takes much less memory to store. This approach is intu-
itively appealing because it uses a more efficient encoding of model information, making
use of prior information about the physics of sound waves. The ADCG algorithm is
relatively straightforward to implement, and performed well in a super-localization com-
petition [45]. Finally, ADCG has the advantage of not limiting reconstruction resolution
to a relatively coarse grid; it instead provides a list of finely-localized point sources. We
wish to assess the ability of ADCG to perform sparsity-based reconstruction while (1) en-
hancing the resolution of point sources and (2) using much less memory than required by
the algorithms we employed in the previous chapters.

To our knowledge, the ADCG method has not been previously applied to photoa-
coustic imaging. However, it has been successfully applied to the similar problem of the
localization of point sources in a simulated fluorescence microscopy setting [45]. To our
knowledge, most of the work on the characterization of ADCG has been done in theo-
retical or simulated settings. In this chapter, we aim to explore the ability of ADCG to
reconstruct resolution-enhanced photoacoustic images directly from experimental chan-
nel data.

5.2 Hypothesis

ADCG was presented in [7] as a method for carrying out sparsity-based optimization. It
avoids the use of a large model matrix, and does not restrict reconstruction precision to
a relatively coarse grid. We hypothesize that ADCG will allow for reconstruction of two-
dimensional resolution-enhanced experimental photoacoustic images without requiring
the manipulation of huge dictionary matrices. We also hypothesize that ADCG will re-
construct images at a quality comparable to that obtained in Chapter 4 [21].

46



5.3 Methods

5.3.1 Overview

We used MATLAB to implement ADCG for sparsity-based reconstruction, and then tested
the resulting implementation using the experimental data acquired in Chapter 4. Work-
ing from the resulting images, we then assessed the resolution enhancement provided by
ADCG by comparing it to the images reconstructed in Chapter 4. Finally, we compared
the memory usage of ADCG to the approach used in Chapter 4.

5.3.2 Implementing ADCG Reconstruction

We now describe our MATLAB implementation of the ADCG algorithm for super-resolution
photoacoustic imaging of points in two dimensions.

The Terms of the Optimization Problem

We first describe the terms of the optimization problem:

• y ∈ Rn is photoacoustic channel data generated by an unknown object. In MATLAB,
we form y by y = [c1(:); c2(:); ...; cm(:)] where ci is the vector of channel data observed
on sensor i, and there are m sensors in total.

• Θ ⊆ R2 is a subset of the plane. This models the area of space to which we restrict
our 2D reconstruction.

• τ > 0 is a non-negative real number, used to encourage sparsity in the reconstructed
image. Smaller values of τ lead to sparser reconstructed images.

• In contrast with earlier chapters, the forward model Φ is now a function, instead of a
matrix. It assigns to each target of a certain form a modelled channel data response,
and as such is a function Φ : D → Rn. We next define D, which is a set of imaging
targets of a certain form.

To define D, we first need to define FP . Let FP be the collection of subsets of Θ
corresponding to a finite number of points from Θ. That is:

FP = {S ⊆ Θ||S| < |N|},

where |S| < |N| indicates that the subset S has a finite number of elements.
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To define D, we next define δθ. For any θ ∈ Θ, let δθ : FP → [0,∞) be the function
defined as follows:

δθ(S) =

⎧⎨⎩1, θ ∈ S

0, otherwise

for any S ∈ FP . The function δθ determines whether a finite subset S of our imaging
region Θ contains the point θ ∈ Θ.

Now we can define D to be the following set of functions:

D = {f : FP → [0,∞)|f =
N∑︂
i=1

wiδθi with
N∑︂
i=1

wi ≤ τ for some wi, δθi , N}

where N is some non-negative integer, each wi is some non-negative real number,
and each θi ∈ Θ. Intuitively, each element of D describes an imaging target, by
providing the total “strength” of photoacoustic signal generation associated with
any finite subset of the imaging region Θ. Each wi describes the strength of the
photoacoustic signal from location θi. Note that we will search over D to estimate
the unknown object.

We can now describe our forward model Φ. It is a function Φ : D → Rn assigning to
each element of D the corresponding modelled expected photoacoustic response. It
does so linearly:

Φ

(︄
N∑︂
i=1

wiδθi

)︄
=

N∑︂
i=1

wiΦ(δθi).

To specify Φ in MATLAB, we provide a function that can evaluate Φ(δθi) for each
θi ∈ Θ. These are the ”point responses”, corresponding to the channel data that is
observed when a single absorber of unit strength is at location θi. These estimated
point responses are computed in MATLAB by shifting and scaling an experimen-
tally obtained reference point-response. To enable sub-sample shifting of a sampled
reference point-response, we used a spline fit to the reference point-response, as il-
lustrated in Figure 5.1. This reference spline is shifted, scaled, and then sampled to
produce Φ(δθi).
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Figure 5.1: We use an interpolating spline to help compute Φ(δθi) from an experimentally-
obtained sampled reference sinogram. Note that θi can vary continuously.

The Optimization Problem

Using the terms defined above, we can now define our loss function f : D → R:

f(µ) = ℓ(Φ(µ)− y),

where µ ∈ D and ℓ : Rn → R is defined by ℓ(r) = 1
2
∥r∥22.

We can now state our optimization problem:

µ̂ = arg min
µ∈D

f(µ), (5.1)

where µ̂ is our estimate for the target we are imaging.

Motivating the Alternating Descent Conditional Gradient (ADCG) Method

To solve our optimization problem, we use ADCG, which is a modification of the “condi-
tional gradient” method. We first describe the conditional gradient method, following [7].
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Figure 5.2: Starting at µk ∈ D, minimizing a local linearization of the loss function f
provides a direction to travel when seeking to minimize f . When using the conditional
gradient method, µk+1 will be somewhere between s and µk. The local linearization is the
orange line, and f is the blue curve.

Letting µk be our current estimate for the solution of the optimization problem, the idea is
to form a linear approximation of f about µk, and to solve the corresponding optimization
problem. The local linearization of the optimization problem at µk is:

s = arg min
x∈D

f(µk) +Dx−µk
f(µk),

where Dx−µk
f(µk) denotes the directional derivative of f at µk with respect to the

vector x − µk. Intuitively, Dx−µk
f(µk) is a linear estimate for the change in f as we move

from µk to x.
When using the conditional gradient method, our next estimate for the x ∈ D that

minimizes f is a convex combination of µk and the minimizing s ∈ D of the local lin-
earization at µk. The exact combination specifying µk+1 is governed by a weighting factor
α ∈ [0, 1]:

µk+1 = µk + α(s− µk).

Note that µk+1 is in the feasible region D, due to the convexity of D.
The conditional gradient method then repeats this process, starting by forming a new

linear approximation of f at µk+1. This process is iterated until a chosen stopping condi-
tion is met.
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ADCG modifies the conditional gradient method to obtain faster convergence to a
sparse solution. In a photoacoustic setting, it does this by tuning the weights and loca-
tions of each estimated photoacoustic point source after each iteration. (By the “weight”
of a photoacoustic source, we mean a real number proportional to the amplitude of the
signal from that source). This tuning involves a local descent step, called ”block coordi-
nate descent”. Thankfully, these modifications for faster convergence do not impact the
convergence guarantees provided by conditional gradient descent [7].

Algorithm 1 overviews our MATLAB implementation of ADCG for photoacoustic re-
construction. The sub-algorithms local linearization and
block coordinate descent are described in the following sections.

Alternating Descent Conditional Gradient Reconstruction

global data : y,Θ, τ,Φ,D, f, ℓ

define µ0 ∈ D by µ0(S) = 0 for all finite S ⊆ Θ

local data : ϵ
for k = 0 to kmax do

[gap, τδp] = solve local linearization(µk)

if gap< ϵ then
break

end
µk+1 = block coordinate descent(µk, δp)

end

Algorithm 5.1: This algorithm uses the alternating descent conditional gradi-
ent (ADCG) approach to estimate the location and weight of a collection of un-
known photoacoustic point sources. Each iteration first computes the location
p of the next point source added to the reconstruction. Next, a point source is
added at p, and block coordinate descent then adjusts the locations and weights
of each estimated point source. The variable gap holds an upper bound on how
much f can still be reduced by. It can be used to exit reconstruction early.
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Solve the Local Linearization

Having outlined the ADCG algorithm above, it remains to describe the sub-algorithms.
We first describe the steps of the sub-algorithm which involve solving a local linearization
of the optimization problem about µk. These steps are first discussed, and then summa-
rized in pseudocode form.

1. Form the local linearization of 5.1 at µk, following [7]. To do this, first form a local
linearization at µk of the loss function, f̂k : D → R, which is defined by:

f̂k(x) = f(µk) + (Dx−µk
f)(µk).

Here (Dx−µk
f)(µk) is the directional derivative of f with respect to the vector x−µk,

evaluated at the point µk. Setting rk = Φ(µk) − y, and using a result from [7], this
can be rewritten as follows:

f̂k(x) = f(µk) + ⟨∇ℓ(rk),Φ(x− µk)⟩.

To minimize this with respect to x, it suffices to minimize ⟨∇ℓ(rk),Φx⟩. We can now
state a local linearization of 5.1 at µk:

s = arg min
µ∈D

⟨∇ℓ(rk),Φµ⟩.

2. Solve the local linearization. We can solve this problem by solving a simpler opti-
mization problem. First, note that for us ∇ℓ(r) = r. Second, as noted in [7], the min-
imizing µ ∈ D of the local linearization is τδθ∗ where θ∗ ∈ arg minθ⟨∇ℓ(rk),Φ(δθ)⟩.
This corresponds to a single photoaocustic point source at location θ∗ with weight
τ . So, we can first solve this simpler optimization problem

θ∗ ∈ arg min
θ∈Θ

⟨rk,Φ(δθ)⟩,

and then obtain the solution of the local linearization as s = τδθ∗ .

An approximate solution to this this simpler optimization problem can be obtained
using three steps:

(a) Define a grid G ⊆ Θ of points.

(b) Search over the grid to find sg = argming∈G⟨rk,Φ(δg)⟩.
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(c) Perform local descent at sg to obtain θ∗. We perform the local descent in MAT-
LAB using the trust-region-reflective method called by the fmincon
function.

We obtain an approximation for the solution of the local linearization as s = τδθ∗ .
Note that the grid G is used as a starting point for reconstruction, but that we end
up finding an off-grid location θ∗.

3. Compute the gap function.

We can bound the primal error in the conditional gradient method. This can be
useful for halting optimization without specifying a specific number of iterations.
In our pseudocode, the gap variable computes an upper bound on the primal error,
which for an estimate µk ∈ D is f(µk) − f(µ∗), where µ∗ minimizes f over D. We
compute this upper bound by:

gap = ⟨Φ(µk)− Φ(s),∇ℓ(rk⟩).

solve local linearization

input : µk

global data : y,Θ, τ,Φ,D, f, ℓ

local data : G ⊆ Θ

rk = Φ(µk)− y

sg = arg min
g∈G

⟨∇ℓ(rk),Φ(δg)⟩

h = θ ↦→ ⟨∇ℓ(rk),Φ(δθ)⟩
θ∗ = fmincon(fun = h,x0 = sg,trust-region-reflective)

s = τδθ∗

gap = ⟨Φ(µk)− Φ(s),∇ℓ(rk⟩)
output : gap, s

Algorithm 5.2: The solve local linearization algorithm is called on each
iteration by the alternating gradient descent reconstruction algorithm. It solves
the current local linearization of the optimization problem, specifying a single
photoacoustic point source s with location θ∗ and weight τ . It also returns gap,
an upper bound on the primal error.
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Perform Block Coordinate Descent

The next sub-algorithm we discuss is the block coordinate descent algorithm. We first
describe this algorithm, and then summarize it in pseudocode form. There are two sub-
steps to this algorithm. The first tunes the weights of the photoacoustic point sources,
and the second tunes the locations of these sources. We begin by discussing how to tune
the weights of the photoacoustic point sources while holding their locations fixed.

In the conditional gradient optimization method, the estimate µk is refined using the
solution s of the local linearization. The next estimate is formed using this equation, for
some α ∈ [0, 1]:

µk+1 = µk + α(s− µk).

Making an analogy to our problem, a choice of α corresponds (after some generalization)
to a reweighting of each of the photoacoustic point sources θi in µk and the single source
s. We now describe the approach used to perform this reweighting in ADCG, following
[7].

Let Sk = {θ1, . . . , θN−1} be the set of the locations of the point photoacoustic sources
in µk. Let Sk+1 = Sk ∪ p, where p is the location of the single point in s, the solution of
the local linearization at µk. Then, we wish to re-weight the sources so as to minimize the
objective function f . That is, we wish to solve this optimization problem:

minimize
µ∈D, µ(Sc

k+1)=0
ℓ

⎛⎝Φ

⎛⎝ ∑︂
θ∈Sk+1

µ({θ})δθ

⎞⎠− y

⎞⎠ .

Here Sc
k+1 indicates the complement of the set Sk+1 with respect to the set Θ. Intuitively,

this expression seeks to minimize the loss function by re-weighting the point sources in
our estimated reconstruction, without moving them.

This optimization problem can be rewritten, using the linearity of Φ:

minimize
µ∈D, µ(Sc

k+1)=0
ℓ

⎛⎝ ∑︂
θ∈Sk+1

µ({θ})Φ(δθ)− y

⎞⎠ .

Recognizing that each µ({θ}) corresponds to a real number, if there are N points in Sk+1

we can equivalently optimize:

minimize
w∈RN

ℓ

(︄
N∑︂
i=1

wiΦ(δθi)− y

)︄
.
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subject to
∑︁N

i=1wi ≤ τ and wi ≥ 0 for each i ∈ {1, . . . , N}.
For our specific loss function ℓ, the optimization problem becomes:

minimize
w∈RN

1

2

⃦⃦⃦⃦
⃦

N∑︂
i=1

wiΦ(δθi)− y

⃦⃦⃦⃦
⃦
2

2

,

subject to
∑︁N

i=1 wi ≤ τ and wi ≥ 0 for each i ∈ {1, . . . , N}. Let Ψk+1 be the matrix having
Φ(δθi) as its ith column for each i. Then we can rewrite the above in matrix form:

minimize
w∈RN

1

2
∥Ψk+1w − y∥22,

subject to
∑︁N

i=1 wi ≤ τ and wi ≥ 0 for each i ∈ {1, . . . , N}. Let A be the row matrix having
N entries, each equal to 1. Then the first constraint on w can be written as Aw ≤ τ . We
have now rewritten the optimization problem in a form that MATLAB can solve for us,
as a ”constrained linear least-squares problem”. The MATLAB function lsqlin can be
used to solve this convex optimization problem. This optimization problem lets us tune
the weights of the photoacoustic point sources while holding their positions constant.

The second part of the block coordinate descent algorithm involves tuning the po-
sitions of the photoacoustic point sources while holding their weights constant. In this
setting, our optimization problem is as follows:

minimize
θ∈ΘN

ℓ

(︄
N∑︂
i=1

wiΦ(δθi)− y

)︄

where the wi are the weights held fixed. This is a non-convex problem, and so we only
seek a local minimum. The performance of this substep of the optimization algorithm
(or any other tuning step) thankfully does not impact the convergence guarantees that
conditional gradient descent enjoys [7].

Letting gw be the following function

gw : θ ↦→ ℓ

(︄
N∑︂
i=1

wiΦ(δθi)− y

)︄
,

then our aim is to find a local minimum gw over ΘN , starting at the element of ΘN specified
by the source locations Sk+1.

To do this, while making use of the differentiable nature of Φ, we use the MATLAB
function fmincon with the algorithm trust-region-reflective, while supplying
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the function ∇gw to this algorithm. We are able to supply the gradient ∇gw because gw is
defined in terms of θ ↦→ Φ(δθ), which is differentiable.

We conclude our discussion of the tuning of the locations of the point sources with a
practical note. After moving the photoacoustic point sources during this step, some of the
sources may become extremely close to one another. We would like to be able to merge
points that are extremely close, to incorporate prior knowledge of sparsity (and also accel-
erate the algorithm). In the pseudocode below, we call this process merge close points.

This process replaces two sufficiently close photoacoustic point sources with their
weighted average. If two sources at location θ1 and θ2 are too close - within some specified
radius r - we then replace the two sources with a new source at the location θ1,2, where

θ1,2 = (w1θ1 + w2θ2)/(w1 + w2).

We assign this new source the weight w1,2 given by w1,2 = w1 + w2.
The overall block coordinate descent algorithm alternates between tuning the weights

and tuning the locations of the photoacoustic point sources. Tuning continues until the
loss is no longer decreasing rapidly enough, or the loss is considered to be small enough.
Once the conditions for exiting this loop are met, the block coordinate descent al-
gorithm returns the tuned estimate for the weights and locations of the point sources.
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block coordinate descent

input : µk, δp

global data : y,Θ, τ,Φ,D, f, ℓ

local data : ϵr, ϵℓ
previous loss = ∞
current loss = ∞
while loss reduction ≥ ϵr and current loss ≥ ϵℓ do

w∗ = arg min
w∈RN ,w≥0,

∑︁
i wi≤τ

1
2
∥
∑︁N

i=1 wiΦ(δθ)− y∥22 (using lsqlin)

gw∗ = θ ↦→ ℓ
(︂∑︁N

i=1 w∗
iΦ(δθi)− y

)︂
θ∗ = argmin

θ∈ΘN
gw∗(θ) (using fmincon with ∇gw∗ provided)

θ∗ = merge close points(θ∗)
µ∗
k+1 =

∑︁N
i=1w

∗
i δθ∗i

current loss = ℓ(Φ(µ∗
k+1)− y)

loss reduction = previous loss - current loss

end
µk+1 = µ∗

k+1

output : µk+1

Algorithm 5.3: On each iteration, this algorithm optimizes (1) the weights and
(2) the positions of the estimated photoacoustic point sources. The weights are
tuned while the positions are held fixed, and then the positions are tuned while
the weights are held fixed. This process is repeated while the loss is being re-
duced quickly enough, or until some loss threshold is reached. The updated
estimate µk+1 for the unknown target is then returned.
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5.3.3 Experimental Data Collection

To explore the capability of ADCG to create resolution-enhanced images, we re-analyzed
experimental observations of a crossed-wire target collected for Chapter 4 [21]. As de-
scribed in Chapter 4, we performed photoacoustic interrogations of successive cross-
sections of a crossed-wire target. To improve the signal-to-noise ratio, we collected and
averaged data 50 times at each cross-section. We used a 5 MHz Imasonic ring array (with
256 elements over 256 degrees), a programmable ultrasound system (Vantage 256, Vera-
sonics, US), and a 523 nm pulse nanosecond Nd:YAG laser (Surelite OPO Pluse, Contin-
uum). The crossed-wire target was formed from aluminimum wires 17.8 µm in diameter
(ALW-29S, Heraeous), with the two wires forming an angle of roughly 20 degrees. The
data analyzed in this chapter is the portion of the experimental data from Chapter 4 ob-
tained while imaging the target in water.

5.3.4 Assessing Resolution Enhancement Provided by ADCG

To compare the resolution-enhancement performance of ADCG relative to the algorithm
of Chapter 4, we created a number of figures. First, we generated a figure overlaying
the reconstructions provided by the two methods for several cross-sectional slices. This
allows for qualitative assessment of agreement between the two methods, as well as illus-
trating the relative precision of localization provided. We also formed figures comparing
maximum amplitude projections, and the estimated distance between the two wires as
provided by the reconstructed images.

5.3.5 Assessing Memory Usage of ADCG

To assess relative memory usage, we created a figure that compares the memory used
to store the forward model when using ADCG and when using the approach of Chap-
ter 4. This comparison was made without making use of any memory usage mitigation
strategies, such as random projection.
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5.4 Results

Figure 5.3 compares the reconstruction performance of ADCG and the gridded method of
Chapter 4 on several cross-sections. For clarity, only the estimated position (and not the
weight) of the two points is shown for the ADCG reconstruction. Figure 5.3(a) illustrates
that the two methods tend to agree well when the points are relatively well-separated.
Figure 5.3(b,c) illustrate that the ADCG method clearly reconstructs two points at some
separations where the gridded method does not.

Figure 5.4 compares the two methods after taking a maximum-amplitude projection
on each cross-section. The two methods are in good agreement up until the gridded
method no longer clearly localizes two points in the projection.

Figure 5.5 compares the estimated separation between the two points on each recon-
structed cross-section. We found that ADCG agrees closely with the gridded method
for estimated separations at least as large as ≈ 130 µm. For context, note that the half-
wavelength resolution limit for reconstruction without prior information was estimated
as 145 µm in Chapter 4. There is also a rough agreement (within ≈ 20%) between the two
methods up until the point where the gridded method no longer clearly localizes two
points. For smaller separations, the estimated separations provided by ADCG appear
to vary continuously with the slice index. However, the non-linearity of the localization
provided by ADCG at separations below ≈ 100 µm is difficult to interpret. This could
indicate a failure of ADCG reconstruction, or possibly nonlinear separation behaviour
between the wires near their closest approach.

Figure 5.6 compares the memory required to store the forward model Φ in the ADCG
approach and in the gridded approach. This figure compares memory usage without any
memory usage mitigation strategies in place, to illustrate how the ADCG approach cir-
cumvents memory usage challenges faced by the gridded approach of Chapter 4. The
memory required by ADCG to store the full-quality forward model was ≈ 3.6 × 103

smaller than that required by the gridded method.
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Figure 5.3: The black circles indicate the reconstructed point locations provided by
ADCG. These are overlaid on the corresponding reconstructions generated using the grid-
ded method from Chapter 4 [21].
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Figure 5.4: The gridded and ADCG methods agree in a slice-by-slice maximum amplitude
projection, up until the gridded method no longer clearly localizes a pair of points.
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Figure 5.5: A comparison of the separation between the two wire point sources as esti-
mated by the gridded and the ADCG methods. The half-wavelength resolution limit is
estimated as 145 µm in Chapter 4.
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Figure 5.6: The memory required to store the forward model Φ is much smaller in ADCG
than in the gridded approach. This figure compares memory usage without any memory
usage mitigation strategies in place, to illustrate how the ADCG approach circumvents
memory usage challenges faced by the gridded approach of the previous chapter.
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Figure 5.7: Some structures can be sparsely approximated by rectangles of fixed length,
which have both position and angle.

5.5 Discussion

On the whole, the ADCG method achieved qualitatively good agreement with the grid-
ded method of Chapter 4. Agreement was best when the point targets were most sepa-
rated, but a rough agreement (within ≈ 20%) was also achieved for smaller separations.
A number of the cross-sections in this comparison involved separations below the half-
wavelength resolution limit. So, it appears that ADCG is able to provide enhanced reso-
lution of point sources. In addition, ADCG achieved this resolution enhancement while
using ≈ 3.6× 103 fewer times the memory to store its forward model, as compared to the
gridded approach. So, ADCG was indeed able to super-resolve points, while circumvent-
ing the problem of huge memory usage associated with the forward model.

Interestingly, we found that ADCG clearly localized two points even on cross-sectional
slices where the gridded method failed to do so. It seems plausible that ADCG may be
able to resolve closer separations than the gridded method. Future work could seek to
characterize this more carefully, making use of an experiment where the ground truth
target is more exactly known. In that context, it would also be interesting to compare the
performance of the two methods in terms of their accuracy when localizing points.

ADCG does have a significant disadvantage. The time ADCG takes to reconstruct a
target scales upward rapidly with the number of point sources being reconstructed. This
is potentially a limiting factor for the applicability of this approach to less sparse targets.
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Future work could consider the option of parallelizing various steps of the reconstruction
algorithm. Intuitively, it seems possible that different parts of a locally sparse target could
be reconstructed largely in parallel, with occasional exchanges of information.

We experimentally found that the ADCG method was able to provide enhanced res-
olution of point targets. Encouraged by this result, we believe it would be interesting to
try using ADCG to reconstruct targets that are sparse when expressed in terms of more
complicated objects. As a starting point, one could explore the ability of ADCG to re-
construct targets that are sparsely expressed as linear combinations of line segments (see
Figure 5.7). Doing this with the gridded approach would be infeasible due to memory
constraints, which ADCG circumvents.

5.6 Conclusion

The gridded approach to sparsity-based reconstruction described in the previous chapters
achieved super-resolution, but was highly memory intensive. In this chapter, we found
that the ADCG approach also enhanced our ability to resolve point targets, while requir-
ing much less memory to store the forward model. Future work could explore whether
ADCG can resolve points at closer separations than the gridded approach. It would also
be interesting to explore using ADCG for reconstruction of more complex targets. Specif-
ically, ADCG could be helpful for reconstructing objects that are sparsely described in
terms of more complex building blocks, parametrized by three or more parameters.
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Chapter 6

Conclusion

To conclude this thesis, we summarize the work presented while revisiting our aims from
the introduction. We also note some possible directions for future work.

Our first high-level aim was to investigate the ability of sparsity-based reconstruction
(SBR) to better resolve photoacoustic point sources. In Chapter 3 we found that SBR en-
hanced our ability to resolve point sources when using a linear array receive transducer.
In Chapter 4 and Chapter 5, we found that SBR enhanced our ability to resolve point
sources when using a ring array receive transducer. In each case, SBR was able to re-
solve point sources closer than our estimated wavelength-based limit for resolution in
the absence of prior information.

Our second high-level aim was to determine and implement approaches for reducing
the computational intensity of SBR, while assessing whether these approaches preserved
resolution enhancement. In Chapter 4, we implemented a random projection approach
to reduce model size. We found that this approach significantly reduced computational
intensity, while still providing enhanced resolution of point sources. In Chapter 5, we
implemented the “alternating descent conditional gradient” algorithm, which further re-
duced memory requirements while still providing enhanced resolution.

One of our specific aims was to use SBR to experimentally reconstruct photoacoustic
point sources, and to determine whether this would enhance resolution beyond wavelength-
based limits. We were able to surpass a limited-view wavelength-based resolution limit
using a linear array, as described in Chapter 3. We were also able to surpass a half-
wavelength resolution limit using a ring array, as described in Chapter 4. In Chapter 4,
we also found that the SBR method could provide enhanced resolution even when using
a single laser shot. To our knowledge, in each case, our work was the first to demon-
strate that these resolution limits could be surpassed in a photoacoustic imaging context
by making use of SBR.
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A second specific aim of our work was to experimentally implement a random pro-
jection approach for SBR, and to assess whether this approach preserved enhanced res-
olution while reducing computational intensity. In Chapter 4, we found that SBR with
random projection could still resolve point sources separated by less than half the cen-
tral sensing wavelength. This was the case even when using a projected system matrix
with 0.8% the size of the original system matrix. To our knowledge, our work is the first
to demonstrate the ability to super-resolve photoacoustic point sources using SBR while
using random projection.

A third specific aim of our work was to implement an alternating descent conditional
gradient (ADCG) algorithm for SBR, and to assess whether it preserved resolution en-
hancement while reducing computational intensity. We did this in Chapter 5, where we
implemented the ADCG method to reconstruct experimental observations of photoacous-
tic point sources. By using ADCG, we were still able to achieve resolution enhancement,
and we were able to reduce the memory required for the forward model by a factor of
≈ 3.6 × 103. To our knowledge, our work represents the first experimental test of ADCG
for SBR in a photoacoustic setting.

We conclude by mentioning a few possible directions for future research. The applica-
tion of ADCG to SBR would be interesting to explore further, especially with regards to its
potential ability to enable SBR for targets sparsified by more complex dictionaries. This
line of investigation could help apply SBR to the reconstruction of 3D targets. It would
also be interesting to explore whether ADCG reconstruction can be performed in parallel
across multiple spatial regions covering a large area, potentially accelerating reconstruc-
tion. A related research direction would be to investigate the effectiveness of applying
SBR to targets that are only locally sparse.
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coustic microscopy”. In: Optics letters 43.4 (2018), pp. 947–950.
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