This document has been digitized by the Oil Sands Research and Information Network, University of Alberta, with permission of Alberta Environment and Sustainable Resource Development.

WATER QUALITY OF THE ATHABASCA OIL SANDS AREA:

A REGIONAL STUDY

AOSERP Report L-85

1985

ENVIRONMENT Research Management Division 14th Floor, Standard Life Centre 10405 Jasper Avenue, Edmonton, Alberta, Canada T5J 3N4

ALBERTA OIL SANDS ENVIRONMENTAL RESEARCH PROGRAM RESEARCH REPORTS

These research reports describe the results of investigations funded by the Alberta Oil Sands Environmental Research Program. This program was designed to direct and co-ordinate research projects concerned with the environmental effects of development of the Athabasca Oil Sands in Alberta.

A list of research reports published to date is included at the end of this report.

Enquiries pertaining to the reports in the series should be directed to:

Research Management Division Publications Office 14th Floor, Standard Life Centre 10405 - Jasper Avenue Edmonton, Alberta T5J 3N4 (403) 427-3946

Water Quality of the Athabasca Oil Sands Area: A Regional Study

AOSERP Report L-85

This report may be cited as:

Corkum, L. 1985. Water quality of the Athabasca Oil Sands area: a regional study. Prep. for the Alberta Oil Sands Environmental Research Program by Water Quality Control Branch, Alberta Environment. AOSERP Report L-85. 273 pp. The Hon. F. Bradley Minister of the Environment 222 Legislative Building Edmonton, Alberta

Sir:

Enclosed is the report "Water Quality of the Athabasca Oil Sands Area: A Regional Study."

This report was prepared for the Research Management Division, through the Alberta Oil Sands Environmental Research Program.

Respectfully,

Ins Walter Solodzuk, P.Eng.

Walter Solodzuk, P.Eng. Deputy Minister, Alberta Environment

This report is made available as a public service. The Department of Environment neither approves nor disagrees with the conclusions expressed herein, which are the responsibility of the authors.

WATER QUALITY OF THE ATHABASCA OIL SANDS AREA:

A REGIONAL STUDY

Ьy

LYNDA D. CORKUM

Water Quality Control Branch Alberta Environment

for

RESEARCH MANAGEMENT DIVISION Alberta Environment

1985

TABLE OF CONTENTS

LIST OF TA	ABLES	i
LIST OF FI	IGURES	i
ABSTRACT		X
ACKNOWLED	GEMENTS	X
1. 1.1 1.1.1	INTRODUCTION	
1.1.2 1.1.3 1.2 1.2.1	Monitoring Program1Reports2Report Objectives3Description of the Athabasca Oil Sands Area4Ecoregions4	1 1
1.2.2 1.2.3 1.2.4 1.2.5 1.2.5.1	Climate	57788
1.2.5.2 1.2.6 1.2.7 1.2.7.1	Surficial Geology8Drainage Systems10Surface Water Hydrology12Water Balance: Precipitation, Runoff, and Evapotranspiration12)
1.2.7.2 1.2.7.3	Interaction of Surface Flows with Groundwater	ł
1.2.7.4 1.2.7.5 1.2.7.6	Response of Streamflow to Snowmeltand Rainfall15Erosion and Sedimentation17Impacts of Oil Sands Development	
1.2.7.0	on Hydrology	7
2. 2.1 2.1.1 2.1.1.1 2.1.1.2 2.1.1.3 2.1.1.4 2.1.2 2.1.2.1 2.1.2.1 2.1.2.2 2.1.2.3 2.1.3	APPROACH19Methods19Baseline Data10Land Formations20Discharge20Water Quality20Benthic Invertebrates20Data Presentation and Analysis21Within Regions21Among Regions22Statistical Analysis23Impact of Development23	

Page

TABLE OF CONTENTS (CONTINUED)

3. 3.1.1 3.1.2 3.1.3 3.2.1 3.2.2 3.2.2.1 3.2.2.2 3.2.2.1 3.2.2.2 3.2.2.1 3.2.2.2 3.2.2.1 3.2.2.2 3.3.2 3.3.3 3.3.1 3.3.2 3.3.3 3.3.1 3.3.2 3.3.3 3.3.1 3.3.2 3.3.3 3.3.1 3.3.2 3.3.3 3.3.1 3.3.2 3.3.3 3.3.1 3.3.2 3.3.3 3.3.1 3.3.2 3.3.3 3.3.1 3.3.2 3.3.3 3.3.1 3.3.2 3.3.3 3.3.1 3.3.2 3.3.3 3.3.1 3.3.2 3.3.3 3.3.1 3.3.2 3.3.3 3.3.1 3.3.2 3.3.3 3.3.1 3.3.2 3.3.3 3.3.1 3.3.2 3.3.3 3.3.1 3.3.2 3.3.3 3.3.1 3.3.2 3.3.3 3.3.2 3.3.3 3.3.3 3.3.3 3.3.2 3.3.3 3.3.4 3.3.3 3.3.3 3.3.8 3.8	ATHABASCA MAINSTEM24Basin Features24Land Formation24Watershed24Physical Description24Baseline Data25Discharge25Water Quality27Routine Parameters30Nutrients35Delineation of Impacts35Winter (Median Values)45Spring (Median Values)45Summer (Median Values)45Summer (Median Values)45Summer (Maximum Values)45Satistical Summer (Maximum Values)45Summer (Maximum Values)45Summer (Maximum Values)45Satistical Summer (Maximum Values) <td< th=""><th>4444557035703355880</th></td<>	4444557035703355880
3.3.9 4. 4.1 4.1.1 4.1.2 4.1.3 4.2 4.2.1 4.2.2 4.2.2 4.2.2.1 4.2.2.2 4.2.2.3 4.2.3 4.2.3 4.2.3	Summary50THE NORTH52Basin Features52Land Formations52Watershed54Physical Description of Water Bodies54Baseline Data56Discharge56Water Quality56Routine Parameters56Nutrients56Benthic Invertebrates62Relationships among Parameters64	222446668234
5. 5.1 5.1.1 5.1.2 5.1.3 5.2 5.2.1 5.2 2 5.2.2.1 5.2 2	THE EAST 69 Basin Features 69 Land Formations 69 Watershed 69 Physical Description of Study Streams 69 Baseline Data 73 Discharge 75 Water Quality 81 Routine Parameters 84	99935514

Page

viii

TABLE OF CONTENTS (CONTINUED)

5.2.2.3 5.2.3 5.3 5.4	Metals8Benthic Invertebrates8Relationships among Parameters9Impact of Development9	2
6. 6.1 6.1.1 6.1.2 6.1.3 6.2 6.2.1 6.2.2 6.2.2.1 6.2.2.2 6.2.2.3 6.2.3 6.3		8 0 1 1 8 6 7 0
7. 7.1 7.1.1 7.1.2 7.1.3 7.2 7.2.1 7.2.2 7.2.2.1 7.2.2.2 7.2.2.3 7.2.3 7.3 7.3.1 7.3.2	THE SOUTH Basin Features12 Land Formations12 WatershedWatershed12 Physical Description of Study Streams12 Physical Description of Study StreamsBaseline Data12 DischargeDischarge12 Water QualityWater Quality13 Routine ParametersNutrients13 Benthic InvertebratesRelationships among Parameters14 Relationships between Map Parameters	579991189911
8. 8.1 8.2 8.3	OVERALL ANALYSIS OF WATER QUALITY PARAMETERS14Routine Parameters14Nutrients15Metals15	5 2
9. REFE	RENCES CITED	5

ix

TABLE OF CONTENTS (CONCLUDED)

10. 10.1	List of Chemical Parameters Analysed and the Associated Code for Which Standard Methods	173
10.2	are Described	173
	Parameters, Nutrients, and Metals for 12 Sites	176
10.3	Water Quality Data Summary of Routine Parameters, Nutrients, and Metals for Water Bodies in the Northern	
	Region	220
10.4	Water Quality Data Summary of Routine Parameters, Nutrients, and Metals for Water Bodies in the Eastern	
		232
10.5	Water Quality Data Summary of Routine Parameters, Nutrients, and Metals for Water Bodies in the Western	
		246
10.6	Water Quality Data Summary of Routine Parameters, Nutrients, and Metals for Water Bodies in the Southern	
	Region	258

LIST OF TABLES

Page

1.	Summary of Climatic Data for Alberta Ecoregions	6
2.	Description, Period of Record, and Number of Samples Obtained for Water Quality Sampling Stations along the Athabasca River	28
3.	Number and Location of Samples Collected at Sites along the Athabasca River	38
4.	Sample Sites Used in Data Analysis	39
5.	Description, Period of Record, and Number of Samples Obtained for Water Quality Sampling Stations within the Northern Region	59
6.	Summary of Regression Equations of Total Organic Carbon, Total Phosphorus, Total Kjeldahl Nitrogen, Aluminum, Copper, and Iron with Conductivity for Water Bodies of the Northern Region	66
7.	Water Survey of Canada Gauging Stations in the East	76
8.	Description, Period of Record, and Number of Samples Obtained for Water Quality Sampling Stations within the Eastern Region	82
9.	Summary of Benthic Invertebrate Studies in Streams of the East	89
10.	Summary of Regression Equations of Conductivity, Ammonia, Iron, and Manganese with Discharge for the Major Eastern Rivers	93
11.	Water Survey of Canada River Gauging Stations in the West	103
12.	Description, Period of Record and Number of Samples Obtained for Water Quality Sampling Stations within the Western Region	110
13.	Summary of Benthic Invertebrate Studies in Streams of the West	121
14.	Summary of Regression Equations of Conductivity and Total Inorganic Carbon with Discharge for Poplar Creek, and Ells and MacKay Rivers	123

LIST OF TABLES (CONTINUED)

Page

15.	Water Survey of Canada Gauging Stations in the Southern Region	132
16.	Description and Period of Record for Water Quality Sampling Stations within the Southern Region	135
17.	Summary of Regression Equations of Conductivity with Discharge for the Clearwater and Hangingstone Rivers	142
18.	Data Set Used in Multiple Regression Analysis Relating Map Parameters and Biological Components	144
19.	Site Numbers with Corresponding NAQUADAT Codes Which Were Used in the Cluster and Principal Component Analysis of Water Quality Parameters	146
20.	Principal Component Coefficients (Loadings) for the First Two Components (PC1 and PC2): Routine Parameters	147
21.	Mean of Routine Parameters Indicated by the Highest and Lowest Loading Coefficients for the First Two Principal Components	151
22.	Principal Component Coefficients (Loadings) for the First Two Components (PC1 and PC2): Nutrient Parameters	153
23.	Mean of Nutrients Indicated by the Highest and Lowest Loading Coefficients for the First Two Principal Components	156
24.	Principal Component Coefficients (Loadings) for the First Two Components (PC1 and PC2): Metal Parameters	159
25.	Mean Values of Metals for Sites within Groups Determined by Principal Component Analysis	163
26.	List of Chemical Parameters Analysed and the Associated Code for Which Standard Methods are Described	174
27.	Seasonal Summary of Routine Water Quality Parameters for Site CCOO12 (Centre) on the Athabasca River (1976 to 1983)	177
28.	Seasonal Summary of Routine Water Quality Parameters for Site DA0203 (Left Bank) on the Athabasca River (1976 to 1983)	178

xiii

LIST OF TABLES (CONTINUED)

			Page
29.		Summary of Routine Water Quality Parameters DA0203 (Right Bank) on the Athabasca River 1983)	180
30.	for Site	Summary of Routine Water Quality Parameters DA0205 (Left Bank) on the Athabasca River 1983)	182
31.		Summary of Routine Water Quality Parameters DA0205 (Right Bank) on the Athabasca River 1983)	184
32.	for Site	Summary of Routine Water Quality Parameters DA0206 (Left Bank) on the Athabasca River 1983)	186
33.		Summary of Routine Water Quality Parameters DA0206 (Right Bank) on the Athabasca River 1983)	188
34.		Summary of Routine Water Quality Parameters DA0207 (Left Bank) on the Athabasca River 1983)	190
35.	Seasonal for Site (1976 to	Summary of Routine Water Quality Parameters DA0207 (Right Bank) on the Athabasca River 1983)	192
36.	for Site	Summary of Routine Water Quality Parameters DA0208 (Left Bank) on the Athabasca River 1983)	194
37.		Summary of Routine Water Quality Parameters DA0208 (Right Bank) on the Athabasca River 1983)	196
38.		Summary of Routine Water Quality Parameters DD0010 (Centre) on the Athabasca River 1983)	198
39.		Summary of Nutrients for Sites CCOO12 (Centre) LO (Centre) on the Athabasca River (1976 to 1983)	200

LIST OF TABLES (CONTINUED)

40.	Seasonal Summary of Nutrients for Sites DAO2O3 (Left and Right Banks) on the Athabasca River (1976 to 1983)	201
41.	Seasonal Summary of Nutrients for Sites DAO2O5 (Left and Right Banks) on the Athabasca River (1976 to 1983)	202
42.	Seasonal Summary of Nutrients for Sites DAO2O6 (Left and Right Banks) on the Athabasca River (1976 to 1983)	203
43.	Seasonal Summary of Nutrients for Sites DA0207 (Left and Right Banks) on the Athabasca River (1976 to 1983)	204
44.	Seasonal Summary of Nutrients for Sites DA0208 (Left and Right Banks) on the Athabasca River (1976 to 1983)	205
45.	Summary of Total Coliforms for 12 Sites along the Athabasca Mainstem	206
46.	Summary of Fecal Coliforms for 12 Sites along the Athabasca Mainstem	207
47.	Seasonal Summary of Metals for Site CCOO12 (Centre) on the Athabasca River (1976 to 1983)	208
48.	Seasonal Summary of Metals for Site DA0203 (Left Bank) on the Athabasca River (1976 to 1983)	209
49.	Seasonal Summary of Metals for Site DA0203 (Right Bank) on the Athabasca River (1976 to 1983)	210
50.	Seasonal Summary of Metals for Site DA0205 (Left Bank) on the Athabasca River (1976 to 1983)	211
51.	Seasonal Summary of Metals for Site DA0205 (Right Bank) on the Athabasca River (1976 to 1983)	212
52.	Seasonal Summary of Metals for Site DA0206 (Left Bank) on the Athabasca River (1976 to 1983)	213
53.	Seasonal Summary of Metals for Site DA0206 (Right Bank) on the Athabasca River (1976 to 1983)	214
54.	Seasonal Summary of Metals for Site DA0207 (Left Bank) on the Athabasca River (1976 to 1983)	215

Page

xiv

LIST OF TABLES (CONCLUDED)

55.	Seasonal Summary of Metals for Site DAO2O7 (Right Bank) on the Athabasca River (1976 to 1983)	216
56.	Seasonal Summary of Metals for Site DAO2O8 (Left Bank) on the Athabasca River (1976 to 1983)	217
57.	Seasonal Summary of Metals for Site DA0208 (Right Bank) on the Athabasca River (1976 to 1983)	218
58.	Seasonal Summary of Metals for Site DD0010 (Centre) on the Athabasca River (1976 to 1983)	219
59.	Northern Region Water Quality Data Summary (Routine Parameters), 1976 to 1980	221
60.	Northern Region Water Quality Data Summary (Nitrogen and Phosphorus), 1976 to 1980	227
61.	Northern Region Water Quality Data Summary (Metals), 1976 to 1980	228
62.	Eastern Region Water Quality Data Summary (Routine Parameters), 1976 to 1982	233
63.	Eastern Region Water Quality Data Summary (Nitrogen and Phosphorus), 1976 to 1982	241
64.	Eastern Region Water Quality Data Summary (Metals), 1976 to 1982	243
65.	Western Region Water Quality Data Summary (Routine Parameters) 1976 to 1980	247
66.	Western Region Water Quality Data Summary (Nitrogen and Phosphorus), 1976 to 1980	253
67.	Western Region Water Quality Data Summary (Metals), 1976 to 1980	254
68.	Southern Region Water Quality Data Summary (Routine Parameters), 1976 to 1983	259
69.	Southern Region Water Quality Data Summary (Nitrogen and Phosphorus), 1976 to 1983	263
70.	Southern Region Water Quality Data Summary (Metals), 1976 to 1983	264

xvi LIST OF FIGURES

		Page
1.	AOSERP Study Area	2
2.	Bedrock Geology of the AOSERP Study Area	9
3.	Surface Water Drainage of the AOSEP Study Area	11
4.	Water Quality Sampling and Gauging Station - Location	13
5.	Mean Annual Streamflow Balance	16
6.	Mean Monthly Discharge at Fort McMurray and Embarras Airport on the Athabasca River	26
7.	Maximum and Minimum Values (me/L) of Major Ions at Sites along the Athabasca River	31
8.	Principal Component Analysis of Sample Sites on the Athabasca River (Winter)	41
9.	Reach Definition from Cluster Analysis of Water Quality Parameters Using Median Values	42
10.	Reach Definition from Cluster Analysis of Water Quality Parameters Using Maximum Values	44
11.	Principal Component Analysis of Sample Sites on the Athabasca River (Spring)	46
12.	Principal Component Analysis of Sample Sites on the Athabasca River (Summer)	47
13.	Principal Component Analysis of Sample Sites on the Athabasca River (Fall)	49
14.	Bedrock Geology of the Delta Area	53
15.	Delta Area Surface Water Drainage	55
16.	Approximate Average Distribution of Athabasca River Flow among Four Main Delta Distributaries	57
17.	Maximum and minimum values (me/L) of Major Ions in the Northern Region	61

continued . . .

xvii LIST OF FIGURES (CONTINUED)

		Page
18.	Land Formations of the Eastern Region	70
19.	East Surface Water Drainage	71
20.	Elevation Profiles of Rivers in the Eastern Region \ldots .	74
21.	Daily Discharge (1 in 5) in the Steepbank River	77
22.	Daily Discharge (1 in 5) in the Muskeg River	78
23.	Daily Discharge (1 in 5) in Hartley Creek, 1976 to 1981	78
24.	Daily Discharge (1 in 5) in the Firebag River, 1976 to 1979	79
25.	Daily Discharge (1 in 5) in the Richardson River, 1977 to 1979	80
26.	Maximum and Minimum Values (me/L) of Major Ions in Rivers of the East	85
27.	Land Formations of the Western Region	97
28.	West Surface Water Drainage	99
29.	Elevation Profiles of Rivers in the Western Region	102
30.	Daily Discharge (1 in 5 days) in Poplar Creek, 1976 to 1982	105
31.	Daily Discharge (1 in 5 days) in the Mackay River, 1976 to 1980	106
32.	Daily Discharge (1 in 5 days) in the Ells River, 1975 to 1978	107
33.	Daily Discharge (1 in 5 days) in the Asphalt Creek, 1975 to 1977	109
34.	Daily Discharge (1 in 5 days) in the Pierre River, 1975 to 1977	109
35.	Maximum and Minimum Values (me/L) of Major Ions in the Beaver-Poplar Drainages	113

continued . . .

xviii LIST OF FIGURES (CONCLUDED)

36.	Maximum and Minimum Values (me/L) of Major Ions in the Ells and Mackay Drainages	114
37.	Maximum and Minimum Values (me/L) of Major Ions in Streams Draining the East Slopes of the Birch Mountains	115
38.	Land Formations of the Southern Region	126
39.	South Surface Water Drainage	128
40.	Elevation Profiles of Southern Tributaries	1 30
41.	Daily Discharge (1 in 5) in the Hangingstone River, 1976 to 1982	133
42.	Daily Discharge (1 in 5 days) in the Clearwater River at Draper, 1976 to 1981	134
43.	Maximum and Minimum values (me/L) of Major Ions in Rivers of the South	137
44.	Cluster Analysis of Routine Parameters at Sample Sites Within the Four Subregions	148
45.	Principal Component Ordination of Sampling Sites Using Routine Parameters from the Four Subregions	148
46.	Site Groupings based on Principal Component Analysis Using Median Values of Routine Parameters	150
47.	Cluster Analysis of Nutrients at Sample Sites within the Four Subregions	154
48.	Principal Component Ordination of Sampling Sites Using Nutrient Parameters from the Four Subregions	154
49.	Site Groupings based on Principal Components Analysis Using median Values of Nutrients	157
50.	Cluster Analysis of Metals at Sample Sites within the Four Subregions	160
51.	Principal Component Ordination of Sampling Sites Using Metal Parameters from the Four Subregions	160
52.	Site Groupings based on Principal Component Analysis Using Median Values of metals	161

ABSTRACT

The objective of this report is to summarize water quality constituents in the AOSERP study area and to examine relationships between these constituents and changes in land formation, hydrology, and development.

Summaries of routine parameters, nutrients, and metals are presented for sampling sites along the Athabasca River to detect longitudinal and seasonal changes in water quality and to determine the effects of point source effluents on the river. Changes in ion concentrations on the Athabasca River were attributed to inputs from the Clearwater River rather than industrial saline discharge via Poplar Creek. The downstream effect of the Fort McMurray sewage treatment plant was limited to the mainstem upstream of the confluence with the Muskeg River. Elevated concentrations of nickel and vanadium occurred during high flow periods, indicating that concentrations of these metals in surface waters were associated with weathering of natural bitumen rather than with industrial effluents. A principal component analysis (PCA) was used for the simultaneous examination of selected water quality parameters on the Athabasca River. Sites exhibiting similar water quality characteristics were delineated on schematic maps of the river.

Baseline data and relationships among parameters also are presented for east, west, and south drainages entering the Athabasca River between Fort McMurray and Embarras Airport, as well as the Athabasca Delta drainage. An overall analysis of the four regions was conducted using PCA to delineate those sites with similar water quality characteristics. Site groupings often reflected the geological type of the region.

xix

ACKNOWLEDGEMENTS

I thank Lorraine Jorgenson and Ron Tchir of the Alberta Environment, Pollution Control Division, Water Quality Control Branch for assistance in data retrieval. I also thank Terry Zenith and his staff in Alberta Environment's Drafting Services for preparing the figures and Shannon Lowry for typing the manuscript. This study was funded by Alberta Environment, Research Management Division.

1. INTRODUCTION

1.1 ATHABASCA OIL SANDS AREA

The Alberta Oil Sands Environmental Research Program (AOSERP) study area encompasses about 28 400 km² in northeast Alberta (Figure 1). The area occurs between 56° and 59° north latitude and 111° and 113° west longitude, excluding Wood Buffalo National Park.

The AOSERP study area includes most of the mineable area of the Athabasca Wabiskaw-McMurray deposit of oil sands. Suncor Inc. and Syncrude Canada Ltd. are the two oil sands mining and processing plants in the study area. Fort McMurray, located in the southern part of the study area, is a major population centre. Anzac, Fort Chipewyan, and Fort MacKay are small settlements. Increased demands on surface waters associated with mining development include recreational, domestic, and commercial uses. Despite these demands there is a concern to minimize impacts of development on water quality within the Athabasca Basin.

This report summarizes regional water quality data and, when applicable, impacts of development on surface water quality.

1.1.1 Regional Surface Water Quality Monitoring Program

Several specific water quality studies related to industrial development were initiated in 1976 throughout the AOSERP area. In 1977, a three-year co-ordinated regional sampling program was conducted by the Water Quality Control Branch, Pollution Control Division, Alberta Environment. Sampling sites were selected in four major regions of the study area including:

- 1. Mainstem Athabasca River
- 2. Tributaries
- 3. Lakes
- 4. Athabasca Delta

All recorded data were stored in the National Water Quality Data Bank (NAQUADAT). Water quality monitoring activities have continued from 1981 to the present, focussing on the Athabasca mainstem and the Athabasca Delta.

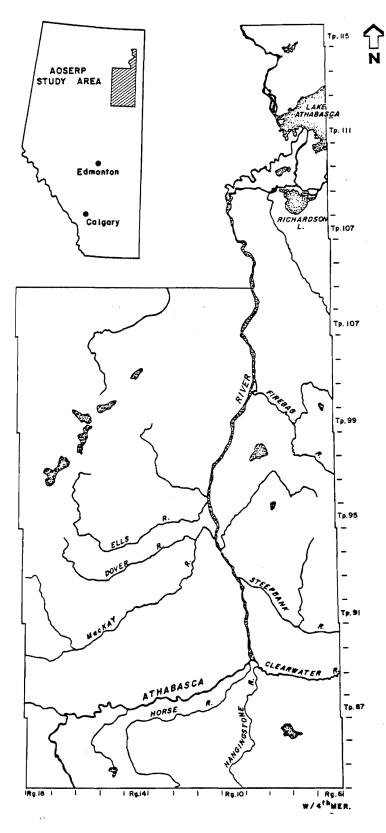


Figure I. AOSERP study area .

2

1.1.2 Reports

Several water quality AOSERP reports have been published which dwell on specific water quality aspects within the study area (Akena 1979; Costerton and Gessy 1979; Nix et al. 1979). Seidner (1980) summarized regional water quality in the AOSERP study area based on 1976 and 1977 data sets. Description of sampling sites and analytical procedures used in the regional sampling program have been prepared by Akena (1980). Non-AOSERP surface water quality data for the region have been compiled by Akena and Christian (1981). Recently, a compilation of non-NAQUADAT and NAQUADAT water quality data (historical to 1982) has been prepared for the Athabasca River Basin (Alberta Environment, Planning Division 1983a, 1983b). In these reports, the AOSERP study area data are presented for Reach 7 of the Athabasca Basin. A detailed water quality summary for the mainstem Athabasca within the AOSERP study area is being prepared (Akena in prep.). The present report will emphasize regional characteristics of the study area.

1.1.3 Report Objectives

The objective of the co-ordinated regional water quality program was to establish baseline data for aquatic resources in the AOSERP study area, thus providing a standard against which any impact could be measured. Oil sands development, however, had already occurred: Suncor Ltd. (originally, Great Canadian Oil Sands Ltd.) began operations in 1967; Syncrude Canada Ltd. began operations in 1977. Because additional oil sands development was planned for several watersheds in the area, a broad regional data base was required. This regional report is a summary of water quality constituents characteristic of watersheds associated with the Athabasca River in the north, east, west, and south.

Specific objectives of the report include:

- 1. descriptions of regional baseline states;
- identification of physical, chemical, and biological processes affecting surface water quality;

3

- identification of significant correlations between water quality constituents and hydrology;
- evaluation of the significance of natural levels of physical and chemical parameters to biological communities; and
- when possible, an assessment of impacts of development on surface water quality.

1.2 DESCRIPTION OF THE ATHABASCA OIL SANDS AREA

1.2.1 Ecoregions

Ecoregions are land areas "characterized by a distinctive regional climate as expressed by vegetation" (Subcommittee on Biophysical Land Classification 1969). Strong and Leggat (1981) delineated ecoregions for Alberta using map units identified by vegetation, climate and, to a lesser extent, soils. The approach used was similar to that of the Canadian Committee on Ecological Land Classification (Hills 1976).

Turchenek and Lindsay (1982) used the ecoregions defined by Strong and Leggat (1981) as a framework for studying soils in the AOSERP area. Vegetation (a reflection of climate) is often used to describe ecoregions when climatological data are insufficient. Turchenek and Lindsay (1982) subdivided ecoregions into ecodistricts and physiographic units (adapted from Pettapiece 1981). Ecodistricts are land areas with distinct patterns of "relief, geology, geomorphology and associated regional vegetation" (Turchenek and Lindsay 1982). The Boreal Mixedwood and the Northern Boreal are the two ecoregions represented in the AOSERP study area.

Boreal Mixedwood, which constitutes the largest land area (43%) of Alberta, is characterized by deciduous forests underlain by gray luvisolic soils. Jack pine communities are found on sandy material; aspen poplar/white spruce occur on moderately drained soils. More than 70% of the annual precipitation in this region occurs in summer. July is the wettest month.

The Northern Boreal Ecoregion is characterized by deciduous (aspen) and coniferous (white spruce) forests underlain by gray luvisolic soils. The Northern Boreal region is distinguished from the Mixedwood by an increase in abundance of white spruce and a colder, drier climate.

1.2.2 Climate

Longley and Janz (1978) present summary climatological data for the AOSERP study area. A climatic summary for the Northern Boreal Forest and the Boreal Mixedwood Forest is presented in Table 1.

Climatologists rely on a continuous record of 30 years to develop sets of normal values for weather stations. Such long-term climatic information is available for Fort McMurray (1944 to present). Other data are available for Embarras Airport (February 1943 to September 1962) and Fort Chipewyan (October 1962 to present), plus several forestry lookout stations (summer data only). The climate of the AOSERP study area is continental, characterized by cold winters with relatively little snow, and cool, wet summers. Most precipitation occurs in summer as major rainfalls.

Mean daily temperatures for both Fort McMurray and Fort Chipewyan are 16.3°C in July and -21.5° and -26.2°C for the two locales in January. Fort McMurray and Fort Chipewyan receive 223 and 226 days of frost each year, respectively. At Fort McMurray, the average annual precipitation is 435 mean (305 mm rainfall and 140 cm snowfall). The amount of precipitation decreases northward from Fort McMurray to Fort Chipewyan.

1.2.3 Vegetation

Thompson et al. (1978) present a classification scheme for the AOSERP study area, based on major vegetation types described by Stringer (1976). Turchenek and Lindsay (1982) identified the vegetation and soil types associated with each drainage system and presented descriptions of ecological units.

5

Summary of climatic data for Alberta ecoregions	(adapted from Strong and Leggat 1981).
Values expressed as (minimum to maximum) mean.	

	Ecoregion	
May to September	Boreal Mixedwood	Boreal Northlands
Mean T (°C) Growing degree days Freeze free period (Days) Number days (_O°C) Total precipitation (mm) % of annual precipitation	(10.5 to 14.0) 12.0 (970 to 1310) 1190 (50 to 120) 85 (10 to 30) 20 (200 to 440) 300 72	$(10.0 to 12.0)11.0_{3}$ $(1010 to 1080)_{3}1050$ (65 to 105) 85 (25 to 30) 25 (180 to 340) 250 55
October to April		
Total precipitation (mm)	(120 to 250) 170	(140 to 170) 160 ³
<u>Annua 1</u>		
Temperature (°C) Total precipitation (mm) No. of days precipitation (0.2 mm) Hours of bright sunshine	(-3.0 to 3.0) 0.5 (350 to 520) 440 (60 to 135) 105 (1840 to 2340) 2060	(-4 to -3.5)-3.5 ₃ (300 to 450) 340 ₂ (115 to 130) 120 2040

1,2,3,4 Superscipts indicate the number of stations when less than 5.

σ

Northern Alberta is located within the Boreal Forest region (Rowe 1972). The four subdivisions of the Boreal Forest which occur within the AOSERP study area are Boreal Mixedwood, Athabasca South, Northwest Transition Zone, and Upper Mackenzie.

The Boreal Mixedwood Forest region occupies most of the study area. Here, aspen poplar (<u>Populus tremuloides</u> Michx) and white spruce (<u>Picea glauca</u> Voss) are the main tree species. Aspen poplar, a species capable of rapid regeneration in disturbed regions, covers the largest areal extent of the study area (Thompson et al. 1978). White spruce is the climax species in well drained areas. Jack pine (<u>Pinus banksiana</u> Lamb.) occupies the eastern sand hills. Larch (<u>Larix laricina</u> Koch) and black spruce (<u>Picea mariana</u> BSP) grow in open muskeg.

The Athabasca South Forest region occurs in the northeast part of the study area (Richardson and Firebag uplands). Jack pine inhabits dry, sandy areas and black spruce, wetlands.

The Northwest Transitional Forest region is found north of Lake Athabasca within the Precambrian Shield. Black spruce is the dominant tree species.

The Upper Mackenzie Forest region occurs in the north of the study area. Alder (<u>Alnus tenuifolia</u> Nutt.), balsam poplar (<u>Populus</u> <u>balsamifera</u> L.), and white spruce are found in lowlands bordering rivers. Jack pine and aspen poplar with black spruce and larch occur in the uplands.

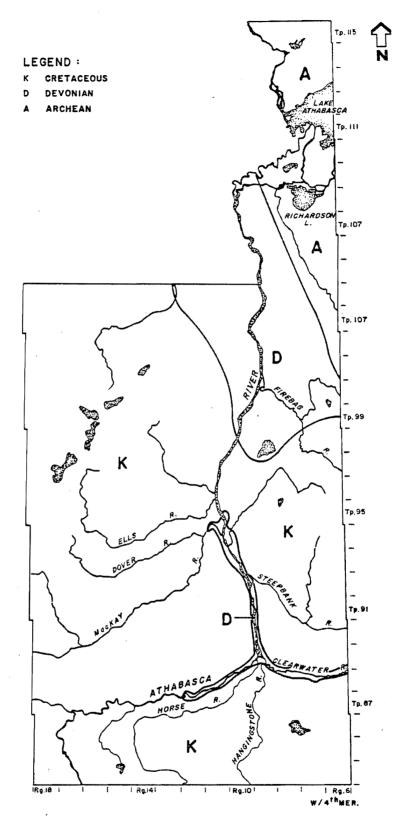
1.2.4 Physiography

The two major physiographic provinces within the AOSERP study area are the Interior Plains and the Precambrian Shield (Atlas of Alberta 1969). Pettapiece (1981) has subdivided the provinces into regions, sections, and districts. Detailed descriptions of these units are presented by Thompson et al. (1978) and Turchenek and Lindsay (1982).

The physical geography of a region is based on surficial deposits, geology, and vegetation. Chemical characteristics of surface

7

water differ significantly between physiographic regions (Dillon and Kirchner 1975; Kirchner 1975) and geological type (Naumann 1929). Accordingly, water quality constituents of surface waters within the same physiographic region should be similar.


1.2.5 <u>Geology</u>

1.2.5.1 <u>Bedrock geology</u>. A bedrock geology map of the AOSERP area, presented in Figure 2, was derived by Turchenek and Lindsay (1982).

The geology of the AOSERP study area is characterized by material from the Pleistocene and Recent eras (Carrigy 1959; McPherson and Kathol 1977). Since surface mining for oil sands does not extend beneath the McMurray formation, most regional studies have focussed on rocks of the Cretaceous age or younger (Mellon and Wall 1956). Saline water may occur in the basal McMurray formation, presenting ecological and engineering concerns in oil sands development.

Cretaceous rocks (sandstone and shale) dominate most of the study area. Sandstones including the oil sands are exposed in the Athabasca River valley. Shales, with some sandstone, occupy the uplands. Devonian rocks (limestone, dolomite and gypsum) occur in the north and Precambrian granite, the extreme northeast.

1.2.5.2 <u>Surficial geology</u>. Thompson et al. (1978) developed surficial geological maps (1:50 000) for the AOSERP study area that provided detailed information on deposits and land forms. Surficial geological maps also have been prepared for specific mining areas (McPherson and Kathol 1977). Bayrock (1971, 1972a, 1972b) and Bayrock and Riemchen (1974) mapped (1:250 000) surficial geology on several National Topographic Sheets (74C, 74L, 74M, 74P, 84I). Turchenek and Lindsay (1982) prepared a soil parent materials map (1:500 000) and detailed soil maps (1:126 720) for the AOSERP area.

Surficial geology is determined by glacial and post glacial deposition and erosion. Soil classification is based on genetic types of material on which soil develops (Turchenek and Lindsay 1982). Three main types of surficial geology in the AOSERP study area include (Thompson et al. 1978):

- Ground and hummocky morain (till) Birch Mountains and Methy Portage Plain;
- 2. Silt and clay lake deposits Birch Mountains; and
- Silt and gravel deposits from fluvial, lacustrine, and aeolian sources - lower valley areas, eastern study area, and delta.

Surficial geology affects the rate of water percolation, groundwater storage, surface runoff, land erosion, and vegetation cover. All these factors affect water quality.

1.2.6 Drainage Systems

A map of watersheds associated with the AOSERP study area presented by Neill and Evans (1979) is reproduced in Figure 3. Neill and Evans (1979) consider the following drainages to be major components of the surface water drainage within the area:

- The Athabasca River enters the study area from the southwest and extends to the Athabasca Delta.
- 2. The Clearwater River, which originates in Saskatchewan, enters the study area from the southeast and joins the Athabasca River at Fort McMurray.
- 3. Major tributary streams south of Fort McMurray include the Horse, Hangingstone, and Christina rivers. The Horse River enters the Athabasca River. The Hangingstone and Christina rivers are tributaries of the Clearwater.
- Major tributaries flowing from the east to the Athabasca River north of Fort McMurray include the Steepbank, Muskeg, and Firebag rivers. For the purpose of this

report, the Richardson River will be included in the eastern region. The Richardson River originates in Saskatchewan and enters the Athabasca mainstem in the delta area.

- 5. Major tributaries flowing from the west to the Athabasca River north of Fort McMurray include the Beaver/Poplar, MacKay, and Ells. Several smaller tributaries drain the east slopes of the Birch Mountains.
- 6. Water bodies associated with the Athabasca Delta, including lake distributary channels, will be discussed in the section of this report concerning the northern region.

1.2.7 Surface Water Hydrology

Stream gauging data for tributaries in the AOSERP study area were complied by Loeppky and Spitzer (1977), Warner and Spitzer (1979), and Warner (1979). Neill and Evans (1979) provided an overview of surface water hydrology of the study area. Sekerak and Walder (1980) included some hydrological data in their biophysical inventory of major tributaries in the AOSERP area. Schwartz (1979) summarized the hydrology of the Muskeg River. Locations of stream gauging stations within the study area are indicated in Figure 4.

Gauging stations on the Athabasca River above Fort McMurray and the Clearwater above Fort McMurray have been in operation since 1957. The downstream gauge at Embarras was installed in 1971. Short-term records (since 1975) are available for most of the tributaries entering the mainstem.

1.2.7.1 <u>Water balance: precipitation, runoff, and evapotranspiration</u>. Water is supplied by precipitation and lost through runoff and evapotranspiration. Water also may remain as surface or subsurface storage, but over the long term this component is assumed to be negligible (Neill and Evans 1979). Thus, a water balance equation may be expressed as follows:

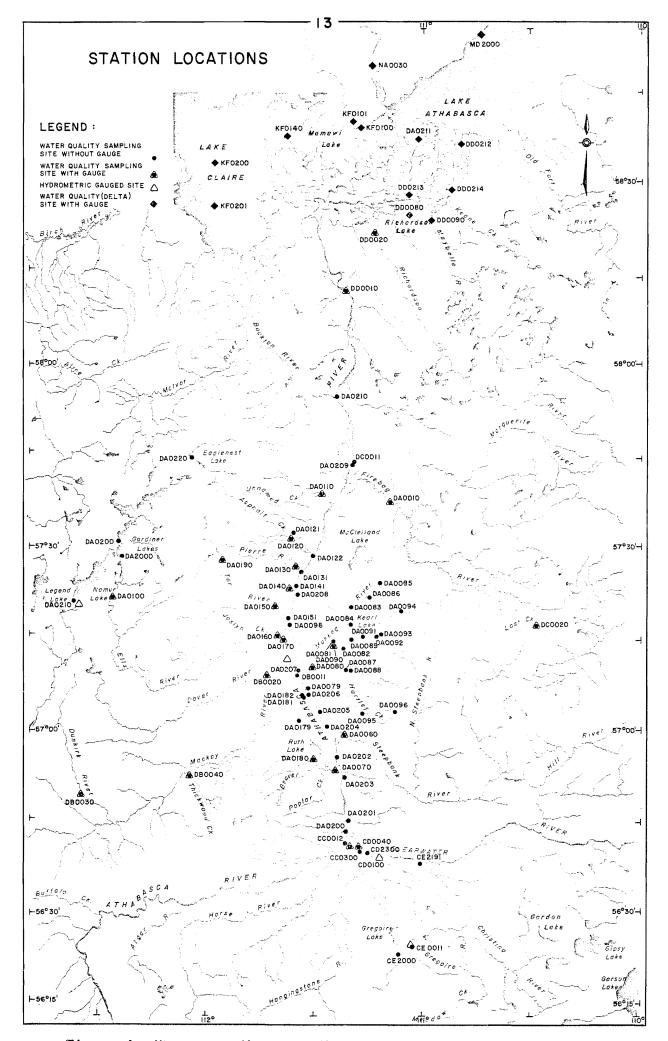


Figure 4. Water quality sampling and gauging station locations.

P = R + ETwhere: P = total precipitation;

F - LOCAT PRECIPICATION

R = runoff; and

ET = evapotranspiration.

When values for all three components are known, there are often inconsistencies in the water balance because of inadequate estimates of precipitation and evaporation (Neill and Evans 1979; Hydrological Atlas of Canada 1978). Errors in runoff estimates (stream discharge data) are minor.

Neill and Evans (1979) presented the mean annual water balance for Fort McMurray and the Athabasca Delta based on data provided in the Hydrological Atlas of Canada (1978). In the AOSERP study area, evaporation accounted for 78 to 80% of precipitation; accordingly, runoff accounts for 20 to 25% of precipitation. This high evapotranspiration:runoff ratio results from high summer temperatures, long hours of sunshine, low humidity, abundant vegetation, open water, and muskeg (Neill and Evans 1979).

The annual water balance determined for the region using the limited local data set (1976-77) generally supported the findings presented in the Hydrological Atlas of Canada (1978). Runoff and derived evapotranspiration (precipitation-runoff) estimates from the limited data set were lower than the long-term means (Neill and Evans 1979).

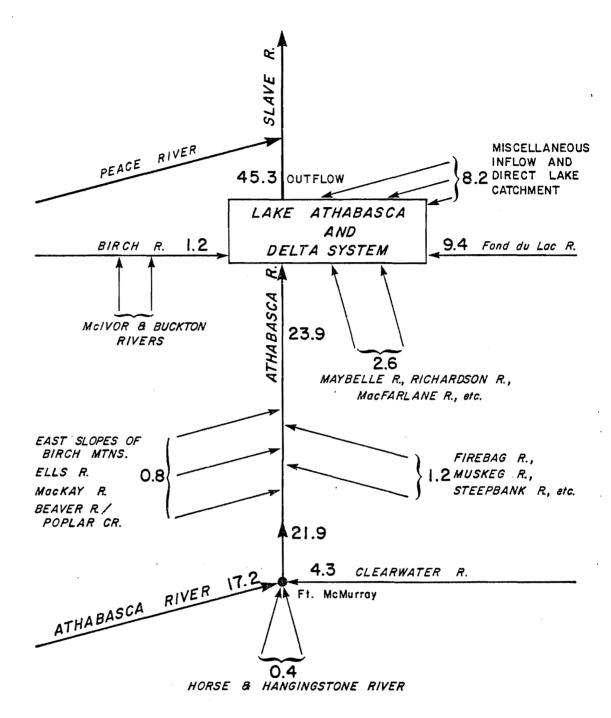
1.2.7.2 Interaction of surface flows with groundwater. The Alberta Research Council conducted a regional hydrogeological evaluation of the Athabasca Oil Sands area (Hackbarth and Nastasa 1979). A total of 75 observation wells were installed at 15 locations within the study area during 1974-75 and 1975-76. Hackbarth and Nastasa (1979) estimate that groundwater contributions entering the Athabasca River between Fort McMurray and Embarras are negligible. 1.2.7.3. <u>Streamflow balance</u>. The Athabasca (17.2 km³/a) and Clearwater (4.3 km³/a) rivers provide the major discharge inputs into the AOSERP study area (Neill and Evans 1979). The contribution of flows from tributary streams are relatively minor (Figure 5). Flow from the southern tributaries (Horse and Hangingstone rivers) contribute about 0.4 km³/a. Flow contribution from the west bank (0.8 km³/a) is less than the east bank (1.2 km³/a) tributaries. The mean annual inflow from the Athabasca River system to Lake Athabasca is 23.9 km³/a.

Several northern rivers drain directly into Lake Athabasca, the largest of which is the Fond du Lac River (9.4 km³/a). The average outflow from Lake Athabasca and the delta to the Slave River is about $45.3 \text{ km}^3/a$.

1.2.7.4 <u>Response of streamflow to snowmelt and rainfall</u>. Neill and Evans (1979) developed runoff snowmelt and rainfall coefficients for various basins within the AOSERP study area.

Hydrographs for streams in the area depict a snowmelt response beginning at the end of March and peaking in mid-April. Estimated snowmelt runoff coefficients (volume of runoff divided by volume of snowwater equivalent on the ground) ranged from 18% (Muskeg River) to 56% (Joslyn and MacKay rivers). These values are underestimates because some snowmelt is stored in the soil and subsequently used by vegetation or is lost to evaporation (Neill and Evans 1979).

Estimated rainfall runoff coefficients were calculated using the following formula (Neill and Evans 1979):


RR = SF - SR

where:

RR = rainfall runoff coefficient;

SF = stream flow (01 April to 31 December 1976); and SR = snowmelt runoff.

Values for rainfall runoff coefficients were low (4 to 19%) for most basins except for those in the southern region (Horse River, 28%; Hangingstone, 32%). Rainfall runoff coefficients were lower than snowfall runoff coefficients for basins on the west bank of the Athabasca River.

Athabasca River inflow to lake system : 17.2 + 0.4 + 4.3 + 0.8 + 1.2 = 23.9Lake outflow to Slave River : 23.9 + 1.2 + 2.6 + 9.4 + 8.2 = 45.3Units of km³ (= 10^9 m^3)

Figure 5.

Mean annual streamflow balance . (Adapted from Nell and Evans, 1979) 1.2.7.5 <u>Erosion and sedimentation</u>. Suspended materials follow a seasonally cyclical pattern, with high levels occurring during high flow periods. Suspended sediment data have been recorded at WSC gauging stations along the Athabasca River within the AOSERP study area at sites below Fort McMurray and at Embarras. Other sediment samples have been obtained at infrequent intervals throughout the study area.

Doyle (1977) described the suspended sediment regime of the Athabasca River using suspended sediment rating curves. During high flow conditions, the upstream section of the Athabasca River within the study area has a higher capacity to transport sediments; whereas during lower flows, the carrying capacity of the downstream section becomes more important.

The average annual sediment load upstream of Fort McMurray is 13.6 x 10^6 tonnes/a (Thurber et al. 1975), of which 5% is bedload. The average annual sediment load from the Clearwater River is 0.9 x 10^6 tonnes/a. Griffiths and Walton (1978) estimated that the average annual sediment load entering the Athabasca River between Fort McMurray and Embarras from tributary streams represents 5% of the load at the downstream site.

Most tributaries entering the Athabasca maintream have characteristically stable channels. Little erosion of the bank materials occurs within the basin because of dense vegetation cover and low runoff. Also, downstream reaches are entrenched in bedrock. Erosion, however, is prevalent in streams draining the east slopes of the Birch Mountains. Here, there is extensive slumping in the headwater reaches, resulting in eroded material being transported into alluvial fans at the confluence with the Athabasca mainstem (Griffiths and Walton 1978; Corkum et al. 1982).

1.2.7.6 <u>Impacts of oil sands development on hydrology</u>. Hackbarth and Nastasa (1979) outline hydrogeological difficulties associated with oil sands development, including groundwater depressurization, natural gas occurrence, saline water, and induced infiltration.

Oil sands development places increasing demands on water supply. Surface waters and groundwaters are used in processing and are later discharged into waterways. Groundwater associated with oil sands must be disposed of before the sands can be mined. This water is highly saline and frequently toxic to aquatic organisms (Tsui et al. 1980).

Depressurization (reduction of pore pressure) and dewatering (removal of pore water) are required to ensure pit slope stability and dry pit conditions. Chemical characteristics of mine depressurization water (high saline levels, range of heavy metals, and organic constituents) have been described by McMahon et al. (1977), Lake and Rogers (1979), and Giles et al. (1979). Natural gas has been produced from the basal McMurray aquifer and may present problems for depressurization (Hackbarth and Nastasa 1979). High saline levels will be most severe during low flow (winter) conditions and where groundwater constitutes base flows.

Infiltration may occur from the Athabasca River to oil sands mines which are located close to the mainstem (Hackbarth and Nastasa 1979). Infiltation may reduce saline concentrations of groundwater during mining operations, but may be detrimental once operations cease and water moves from the basal McMurray aquifer to the Athabasca River.

2. APPROACH

This report is a study of water quality parameters within and among four sub-basins of the AOSERP study area and the Athabasca mainstem. The sub-basins include south, west, and east drainages entering the Athabasca River between Fort McMurray and Embarras Airport, and the Athabasca Delta drainage.

The objective of this report is to establish relationships among water quality parameters which can be used to reflect changes in water quality owing to developmental impact or hydrological regime. Within each region or sub-basin such relationships will be established between water quality and surface water discharge. Other relationships will be established (depending on available data) among habitat characteristics of rivers, land formations (ecodistrict, geology) through which rivers flow, and benthic invertebrates (environmental indicators) inhabiting the rivers.

This report is organized by region, concluding with an overall summary analysis. The aim is to establish relationships among parameters in regions without perturbations and then to determine the effect of point source effluents on the Athabasca mainstem.

When analysing data by regions, there is a difficulty in that the study area may be so homogenous that no significant relationships exist. Also, the various data sets have not always been retrieved from the same location, with the same frequency, or within the same time frame.

2.1 METHODS

The following information will be presented for each region:

- 1. baseline data;
- 2. analysis; and
- 3. impact of development.

19

2.1.1 Baseline Data

2.1.1.1 <u>Land formations</u>. Maps of watersheds, ecoregions, ecodistrict, physiology, and bedrock geology that were prepared for the AOSERP study area by other workers are presented and enlarged for the regions. The delineation of watersheds were obtained from Neill and Evans (1979). Ecoregion and ecodistrict maps as well as physiographic regions were obtained from Turchenek and Lindsay (1982) based on work by Pettapiece (1981). The bedrock geology maps were derived by Turchenek and Lindsay (1982).

2.1.1.2 <u>Discharge</u>. Discharge data (m³/s) have been obtained from the Water Survey of Canada (Environment Canada 1974) for the network of stations within the AOSERP study area (Figure 4). The gauging stations, period of record, and plots of discharge with time are presented for each region to correspond with the water quality sampling record.

2.1.1.3 <u>Water quality</u>. The water quality records used in this study were restricted to those monitoring programs conducted by Alberta Environment throughout the AOSERP region. Procedures for the collection, preservation, and transport of water samples are outlined in Akena (1980). Most samples were analysed by Chemex Labs (Alberta) Ltd. under contracts with AOSERP and Alberta Environment. The analytical methods are registered with the National Water Quality Data Bank (NAQUADAT) (Appendix 10.1). Bacteriological samples (fecal and total coliforms) were analysed by the Public Health Laboratory, Edmonton.

Field data sheets for each sampling event included on-site water quality measurements and details on location and depth at which samples were retrieved. This information as well as tabulated data may be obtained from the Water Quality Control Branch, Alberta Environment.

2.1.1.4 <u>Benthic invertebrates</u>. Aquatic invertebrates are frequently used as environmental indicators of water quality (McCart and Mayhood

1980). Site-specific studies frequently were instituted to determine the effects of effluents on the abundance and species composition of invertebrates by analysing samples above and below point sources as well as before and during development. Other invertebrate studies were conducted to provide baseline data in watersheds where government or industry anticipated development.

Most studies were conducted by private consulting firms or government agencies under contract to Alberta Environment and industrial proponents. With permission, data for analysis have been retrieved from AOSERP reports.

2.1.2 Data Presentation and Analysis

2.1.2.1 <u>Within regions</u>. The relationships examined within each region depended on which parameters were measured at the same location and time. For example, there were more water quality sampling locations than gauging stations in the study area and, for site-specific investigations, there were more biological sampling sites than water quality sites.

Tabular summaries were prepared representing number of samples, and median and maximum values for water quality parameters. Values representing the Alberta Surface Water Objectives (ASWO) and Canadian Drinking Water Guidelines (CDWG) also are provided.

A correlation analysis (Sokal and Rohlf 1969) was performed using median values for water quality parameters (routine, nutrients, and metals) for each site with more than 10 samples. Results of the correlation analysis of water quality parameters were used to select those parameters to be used in subsequent regression analysis (Draper and Smith 1966) relating water quality and discharge.

For those WSC sites with continuous discharge data, a data set was prepared using all available water quality data obtained at or near that locale and corresponding mean daily discharge values for the period of record during which water quality values were obtained. Water quality parameters vary directly (e.g., suspended solids) or indirectly (e.g., specific conductance) with discharge. Since values for specific conductance and total dissolved solids were frequently determined by calculation of ions, it seemed inappropriate to present relationships for ions which are autocorrelated with conductivity.

When benthic invertebrate data were available, an analysis of variance (Sokal and Rohlf 1969) was used to test if significant differences occurred in mean abundance of invertebrates among sampling sites. If differences occurred in mean abundance, the <u>a posteriori</u> test, Student Newman's Kuels procedure (Sokal and Rohlf 1969), was used to determine which sites were similar to one another. Multiple regression analysis was used to determine which few (if any) of the physical and land formation parameters would be useful in predicting the abundance or percentage of clean water organisms. Codes were assigned to the various land formation parameters.

A monitoring program of water quality and biological parameters was conducted on the Athabasca mainstem in 1981 and 1983. Results from these studies are being prepared as separate reports for Alberta Environment.

Differences in study objectives, habitat type, and sampling bias resulted in the use of a variety of invertebrate sampling techniques in the AOSERP region. Sampling differences which hinder data comparisons could be alleviated if guidelines were established for monitoring studies in erosional and depositional habitats.

2.1.2.2 <u>Among regions</u>. Cluster analysis (Wishart 1975) was used to determine grouping of similar sites for three sets of water quality parameters (routine, nutrients, and metals) at sites throughout the AOSERP study area. Dendrograms were used to display groupings among sites.

A principal component analysis (PCA) was used to reduce the number of water quality parameters for use in subsequent analysis. The

details of PCA are outlined by several authors including Davis (1973), Orloci (1975), and Morrison (1967). Green (1979) discusses the application of the analyses to environmental problems.

A PCA summarizes the information from a correlation or covariance (abundance data) matrix in terms of new components. The first principal component accounts for the greatest proportion of total variation among sites, with successive components contributing progressively smaller portions of the total variation. The first two or three principal components generally account for most of the variability in the original data. The principal component scores for each river site can be used in subsequent analysis (in place of the original data) with little loss of information.

2.1.2.3 <u>Statistical analysis</u>. In this study, data were entered into files on the Michigan Terminal System (MTS) at the University of Alberta. Cluster analysis was performed using Ward's method of the Clustan C-1 computer package (Wishart 1975). Analyses of variance and covariance were performed using the APL (A Programing Language) library of statistical packages. Correlation and multiple regression analyses were performed using the BMDP (Biomedical Computer Programs-P Series) package of computer programs (Dixon and Brown 1979).

2.1.3 Impact of Development

Increased demands on surface waters associated with oil sands development include recreational, domestic, and commercial demands on water quality. This study will consider diffuse and point source effluents into the Athabasca mainstem. Diffuse inputs occur as a result of runoff from various land use activities or weathering of surficial material. The effluent from the Fort McMurray sewage treatment plant, saline discharge by Syncrude Canada Ltd. via Poplar Creek, and waste discharge (industrial and lagoons) from the Suncor oil sands facility, all of which enter the Athabasca River from the west bank, are the major cultural point source effluents within the AOSERP study area. The effects of the Clearwater River (the major tributary of the Athabasca River) on the mainstem also will be examined.

3. ATHABASCA MAINSTEM

The Athabasca River originates in the Columbia Glacier of Jasper National Park and flows unregulated 1450 km to Lake Athabasca via the delta distributaries.

This section of the report will focus on the lower Athabasca River from the Fort McMurray area (upstream of the confluence with the Horse River) to the Embarras Airport, a distance of about 190 km.

3.1 BASIN FEATURES

3.1.1 Land Formation

The Athabasca River flows easterly to Fort McMurray where the bedrock geology changes from Cretaceous rocks (shale and sandstone) to Devonian limestone and the river is directed northward. With the exception of a 35 km stretch of Cretaceous rocks between the Ells and Eymundson rivers, the Athabasca River flows over Devonian rocks to the delta. The Clearwater River, a major tributary of the Athabasca River, enters the mainstem at Fort McMurray.

The Athabasca River flows through the Methy Portage and Great Slave (Muskeg-Embarras-Athabasca Delta ecodistricts) plains of the Boreal Mixedwood Forest. The transition between the southern Methy Portage and northern Great Slave plains occurs between the confluences of the Steepbank and Muskeg rivers with the mainstem.

3.1.2 Watershed

The Athabasca River below Fort McMurray (WSC gauging station 07DA001) drains $1.33 \times 10^5 \text{ km}^2$. At Embarras (WSC station 07DD001), the river drains $1.52 \times 10^5 \text{ km}^2$. The river distance between the two locations is 180 km. The southern lowlands and northern plains of the river valley are moderately forested.

3.1.3 Physical Description

The river reach upstream of Fort McMurray is gorge-like with many meanders confined within steep banks and rapids (Grand, Brule,

Bortes, Cascade, and Mountain) (Bond and Berry 1980). The Mountain Rapids are located 2 km upstream of Fort McMurray. The river bed is composed of coarse gravel, cobble, and boulders.

There are high clay bluffs with exposed bitumen at Fort McMurray where the river turns northward. The river gradient is gradual between Fort McMurray and Fort MacKay (0.144 m/km) and further reduced between Fort MacKay and the Embarras Airport (0.117 m/km) (Kellerhals et al. 1972).

The Athabasca River below Fort McMurray has a mean channel width of 448 m and mean depth of 1.37 m. The channel is straight with occasional islands and mid-channel bars. The riverbed is sand with some local gravel over limestone. Bank materials consist of silt and clay.

At the Embarras Airport, the river channel has a mean width of 384 m and mean depth of 2.65 m. The channel has irregular meanders with occasional islands, point bars, and mid-channel bars. The riverbed consists of deep sand; the bank is of sand, silt, and clay.

3.2 BASELINE DATA

3.2.1 Discharge

The two Water Survey of Canada gauging stations located on the Athabasca River within the study area are below Fort McMurray (07DA001) and the Embarras Airport (07DD001). Stage records only are available at Fort McMurray and at Shott Island upstream of the Firebag River.

Mean monthly discharge is presented for the McMurray (1976 to 1983) and Embarras (1977 to 1983) gauging stations in Figure 6. This period of record corresponds to the water quality sampling regime.

During the eight years of record, the mean annual discharge for the Athabasca River below Fort McMurray ranged from 481 m³/s (1981) to 773 m³/s (1978). With one exception (August 1976), maximum mean monthly flows occurred in June and July and ranged from 1010 to 1990 m³/s. Minimum mean monthly "winter" flows ranged from 107 m³/s (1982) to 208 m³/s (1980).

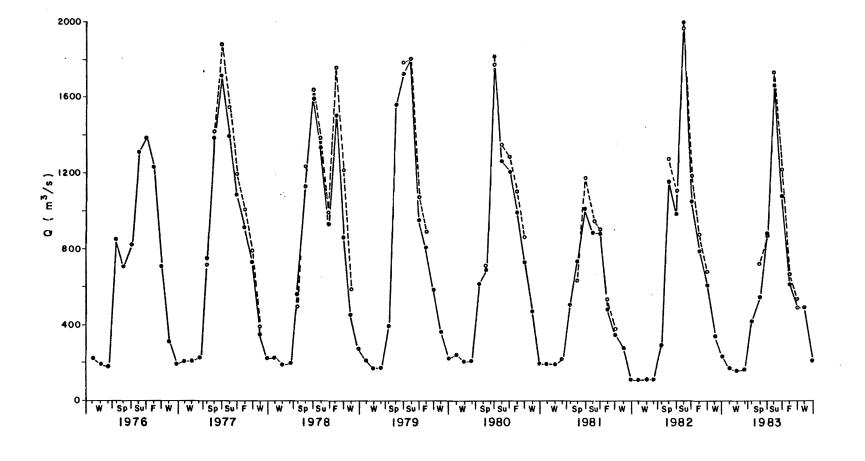


Figure 6. Mean monthly discharge at Fort McMurray and Embarras Airport on the Athabasca River

Mean annual long-term discharge for the Athabasca River at Embarras Airport is estimated to be 766 m³/s (Kellerhals et al. 1972). Actual values are unavailable because of interrupted flow measurements between November and May. Maximum mean monthly flow typically occurred in June and July, with flows ranging from 1170 to 1960 m³/s. In 1978, maximum flow occurred in September when mean monthly discharge was $1755 \text{ m}^3/\text{s}$.

The Hydrology Branch, Technical Services Division of Alberta Environment (Alberta Environment 1984) conducted a low flow analysis of the Athabasca River Basin based on 21 years of data using a water year from July 1 to June 30. The 1:10 year, 7-year draught for the Athabasca River below Fort McMurray (WSC Station 07DA001) is 119 cms. The 7-day low flows (119 cms) were recorded in 1961-62, 1967-68, 1970-71 and 1981-82. The 1981-82 low flow event of 95.1 cms for December 16 to 22 represented the lowest sequence for the Athabasca River below Fort McMurray. This draught represented a 1 in 100 year low flow event.

3.2.2 Water Quality

Seven water quality locations were regularly monitored along the Athabasca River from 1976 to 1983. Generally, samples were taken from the centre of the river at the site upstream of Fort McMurray (CC0012) and at Embarras (DD0010), the furthest downstream site. At the other five stations (DA0203, DA0205, DA0206, DA0207, and DA0208), samples were taken from the left and right banks of the river. A total of 12 sites was examined.

A brief description of the historical water quality sampling stations is presented in Table 2. A seasonal summary of water quality constituents for the 12 sites is presented in Appendix 10.2. Seasons were designated on the basis of discharge regimes: winter (Nov. 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31) and Fall (Sept. 1 to Oct. 31).

Since such a large data set is available for the Athabasca mainstem, the discussion of routine, nutrient, and metal parameters will be as follows:

Code (00AT07-)	Latitu Longit (D M	Description	Period of Record	Number of Samples
CC0012	56 43 111 24	Above Fort McMurray 100 m above Horse Rive	1976-83 er	74
DA0200	56 44 111 23	Off McDonald Island	1976	15
DA0201	56 46 111 24	Km 10.5	1976	7
DA0202	56 58 111 27	Above Suncor plant	1976	8
DA0203	56 56 111 26	 Above Poplar Creek km 30.6	1976-77 1981-83	69
DA0204	57 01 111 29	At old AOSERP dock km 42.3	1976-77	11
DA0205	57 04 111 31	Below Suncor km 47.9	1976-77 1982-83	51
DA0206	57 07 111 36	Above Muskeg River km 55.5	1976-77 1980-83	107
DA0207	57 11 111 37	At Fort MacKay	1976-83	111
DA0208	57 21 111 39	Above Tar River km 84.3	1976-77 1980-83	49

Table 2. Description, period of record, and number of samples obtained for water quality sampling stations along the Athabasca River.

continued . . .

Table 2. Concluded.

Code		itude gitud M		Description	Period of Record	Number of Samples	
DA0209	57 111	44 21	23 58	Above Firebag River	1976-77, 1980	12	
DA0210	57 111	55 26	31 41	Below Firebag River	1976-78	8	
DD0010	58 111	12 23	18 24	At Embarras Airport, WSC gauge	1977-83	47	

- 1. Those not found above the detection limit;
- Those found not to vary longitudinally or seasonally (i.e., in space or time);
- 3. Those exhibiting seasonal but not longitudinal changes;
- Those exhibiting longitudinal but not seasonal changes; and
- 5. Those that change longitudinally and seasonally.

3.2.2.1 <u>Routine parameters</u>. Routine parameters include the major inorganic ions, parameters related to suspended particulates, organic constituents such as total organic carbon, phenolic substances, and oil and grease. The major ions reflect the influence of seasonal discharge changes on the river. The ions and suspended substances occur in water as a result of natural erosion of bedrock and surficial materials. Ions are considered to be conservative parameters (i.e., they may be used as tracers in the river system because they are not affected by chemical or biological processes). Chloride, however, may vary in surface waters because of the use of chlorine in domestic or industrial processes.

The surface waters of the Athabasca River are characterized as well buffered (elevated pH and alkalinity levels) and hard to very hard, with median hardness concentrations ranging from 84 to 177 mg/L (Appendix 10.2, Tables 27 to 38).

The maximum and minimum values (expressed as me/L) of major ions are displayed in Figure 7. Specific conductance or conductivity, which is a measure of the total ion composition, expresses the degree to which water conducts an electrical current. Changes in conductivity are a function of mineral concentration in the river water. Thus, increases in conductivity in the downstream direction reflect increases in the mineral content and sediment load.

The dissolved salts, sodium chloride and calcium bicarbonate, vary indirectly with discharge (i.e., seasonally) and among sites. Accordingly, conductivity, filterable residue (dissolved solids), hardness (a measure of calcium and magnesium), and alkalinity (a measure of carbonate, bicarbonate, and hydroxides) change in the same manner.

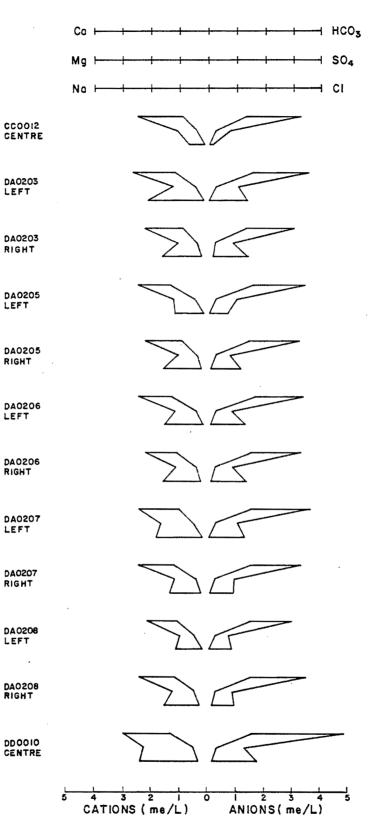


Figure 7.

٩

RIGHT

LEFT

RIGHT

Maximum and minimum values (me/L) of major ions at sites along the Athabasca River.

Although calcium bicarbonate is the dominant dissolved salt, sodium chloride is prevalent at several sites. Sources of sodium chloride include the inputs from the Clearwater watershed, saline groundwater discharge from Syncrude Canada Ltd.'s mining operation via Poplar Creek (upstream of site DA0205), and saline seepage into the mainstem (e.g., Embarras site DD0010). Elevated chloride levels present at site DA0203 (right bank) reflect the chlorine used in treatment of domestic sewage.

Since ion constituents vary inversely with flow, the highest concentrations are present during low winter flows. Magnesium and sulphate ions did vary inversely with discharge but did not vary among sites. Potassium did ot vary with discharge or among sites.

Total organic (TOC) consists of dissolved and particulate organic fractions. Most of the TOC in water samples is composed of humic substances resulting from the degradation of plant and animal matter. Decomposition of carbon reduces oxygen concentrations in surface waters. No surface water guidelines have been established for TOC.

Although median and maximum values of TOC were generally lower in winter than in the other seasons, no real differences in TOC could be discerned at different sampling times within the open water season. Differences in TOC, however, occurred among sites. Maximum winter TOC values were encountered in the Fort MacKay area (site 8, 35 mg/L; site 9, 63 mg/L). These differences among sites were not pronounced in other seasons.

Phenolic compounds at very high concentrations may be toxic to fish. At lower levels, phenols may cause fish tainting and taste problems. The Alberta Surface Water Objective (ASWO) for phenols is 0.005 mg/L and the Canadian Drinking Water Guideline (CDWG) is 0.002 mg/L.

With few exceptions, median values of phenolics were below the > surface water objectives. Median values of phenolic compounds exceeded

the ASWO at the Ells River (DA0208, left bank) in winter (0.012 mg/L) and at the Embarras Airport (DD0012) in spring (0.008 mg/L).

Maximum values of phenols exceeded the objectives on several occasions. In winter, non-compliance occurred at all sites except CC0012 (upstream of Fort McMurray). Maximum values were reduced to 0.006 mg/L at the Embarras Airport. In spring the maximum value of phenols was recorded at the upstream control site CC0012 (0.041 mg/L). Somewhat elevated levels also were noted in spring at site DA0207 near Fort MacKay (left bank, 0.016 mg/L; right bank, 0.012) and at the Embarras Airport (0.011 mg/L). In summer, maximum phenolic values exceeding the objectives were noted at site DA0203 below the sewage treatment plant on the left bank (0.009 mg/L) and at the barge tie-up on the right bank (0.015 mg/L). Levels were exceeded below Suncor (DA0205 left bank; 0.009 mg/L) and at other locations downstream, but not at the Embarras site. During the fall, non-compliant values occurred at several locations along the mainstem, including the site upstream of Fort McMurray.

No guidelines have been established for oil and grease. Because these products occur on the surface film, the concentrations do not vary with flow. No distinctive pattern was noted among sites.

3.2.2.2 <u>Nutrients</u>. Phosphorus and nitrogen are essential nutrients which may limit plant growth.

Data representing two forms of phosphorus (total and orthophosphate) are presented in Appendix 10.2 (Tables 39 to 44). Because total phosphorus includes both dissolved and particulate forms, concentrations vary directly with flow. The particulate or apatite phosphorus leached from rocks is generally not biologically available in rivers. Orthophosphate phosphorus (PO_4 -P) which is present in fertilizers, storm runoff, and sewage treatment wastes, is biologically available.

The ASWO for total phosphorus is 50 ug/L. Median values of total phosphorus were below this level in water and fall (low flow

periods), but exceeded the objectives during spring and summer. Orthophosphates did not vary appreciably with season. In the spring, maximum values were higher at both banks of sites DA0203, DA0205, DA0206, and DA0207 than at other locations (Appendix 10.2, Tables 39 to 44).

Results representing three forms of nitrogen (nitrate/nitrite, ammonia, and total kjeldahl nitrogen) are presented in Appendix 10.2 (Tables 39 to 44). Inorganic forms of nitrogen include ammonia, nitrite, and nitrate. Total kjeldahl nitrogen (TKN) measures both ammonia and organic forms. Total nitrogen is calculated by the addition of TKN and nitrate/nitrite nitrogen. The ASWO for total nitrogen is 1.0 mg/L (1000 ug/L).

Nitrite nitrogen is readily converted to nitrate nitrogen in the presence of oxygen. Of the inorganic forms, ammonia is the major form discharged from sewage treatment plants and industrial effluents. Sources of organic nitrogen include watershed runoff and sewage effluents.

Nitrate/nitrites vary seasonally, with the highest levels occurring in winter particularly below the Fort McMurray sewage treatment plant (max. 560 ug/L) and in the Fort MacKay area (max. 500 ug/L).

Although ammonia levels are reduced in the fall (median values, 6 to 43 ug/L; maximum values, 9 to 130 ug/L), there are no substantial differences in concentrations during other seasons (Appendix 10.2, Tables 39 to 44). Differences in ammonia levels do occur among sites. In winter, elevated levels occur below Fort McMurray (max. level 440 ug/L). In spring, concentrations are lower at the Ells River (DA0208) and Embarras Airport (DD0010) sites than at other locales. A similar pattern occurs in summer along with reduced ammonia concentrations downstream of Suncor (DA0205). There was insufficient information on TKN to determine if differences occurred among seasons or sites.

Bacteriological indicators (total and fecal coliforms) reflect biological activity. Bacteria are ubiquitous and may always be observed at low levels. Sources of bacterial activity include sewage and industrial effluents as well as agricultural runoff contaminated with animal wastes. Coliform bacteria is an indicator of the possible presence of disease-producing organisms. Fecal coliforms are less likely to grow outside the intestinal tract of warm-blooded animals. Objectives for outdoor recreation that excludes direct contact with water are 90% of the samples with a total coliform density less than 5 000 per 100 mL and fecal coliform density less than 1 000 per 100 mL. More stringent objectives are set for direct contact with a limited number of samples allowed to exceed 1 000 per 100 mL total coliforms and 200 per 100 mL for fecal coliforms.

Data for total coliforms and fecal coliforms are presented in Appendix 10.2 (Tables 45 and 46). Lower levels of fecal coliforms were recorded in the fall than in other seasons. Relatively higher levels of fecal coliforms occur near settlements (Fort McMurray and Fort MacKay) in winter, spring, and summer. Maximum recorded levels of total coliforms were elevated at all sites during the winter (540 t.c./100 mL), summer (540 to 2400 t.c./100 mL) and fall (690 t.c./100 mL). In spring elevated values (2400 t.c./100 mL) were noted at several sites including the site upstream of Fort McMurray.

3.2.2.3 <u>Metals</u>. Of the suite of metals which are typically analysed, nine exhibited values above the detection limit (aluminum, arsenic, boron, copper, iron, manganese, nickel, vanadium, and zinc) Appendix 10.2 (Tables 47 to 58).

Aluminum concentrations varied directly with discharge, with elevated levels being present in spring and summer. Differences in concentrations occurred among sites, with the highest values being recorded at sites CC0012, DA0206, and DA0207. Aluminum is not considered to be a public hazard and guidelines have not been established for the metal.

Median values of arsenic concentrations did not differ among sites or seasons. Maximum values were higher (exceeding the surface water objective of 10 mg/L) at sites CC0012, DA0206, and DA0207 in the spring than elsewhere.

Boron did not change seasonally and, although concentrations were elevated at sites DA0206 and DA0207, all values were below the surface water objectives of 500 ug/L.

Copper varied directly with discharge, with maximum concentrations exceeding the surface water objectives of 20 ug/L in spring and summer. Median values of copper were below the objective in all cases.

Iron levels increased with increasing flows. With the exception of a few median values in winter, both maximum and median values of iron exceeded the surface water objectives of 300 ug/L. The guidelines, however, were established for aesthetic rather than health reasons as iron discolors clothing and stains plumbing fixtures.

Manganese levels varied directly with discharge, exhibiting median and maximum values which exceeded the surface water objective (50 ug/L) in the spring and summer. Maximum values were non-compliant in fall and winter. Guidelines for manganese were established because of unfavourable taste and staining properties at high concentrations.

Nickel values were higher during spring and summer than in fall or winter. Although there was no consistent longitudinal trend in nickel concentrations, maximum values were consistently high at site CC0012, upstream of Fort McMurray. Nickel occurs in substantial amounts in oil sands and its presence in surface waters may be attributed to the weathering and leaching of oil sands. In spring and summer, bitumen frequently can be observed oozing out of the valley walls along the mainstem, particularly in the high cliffs upstream of Fort McMurray.

Maximum levels of vanadium recorded at each site were higher in spring and summer than in fall or winter. Median values were consistently low (1 to 2 ug/L) in all seasons. Although vanadium occurs in oil sands, concentrations in surface waters below the Suncor plant were within the range of values recorded at other sites.

Median levels of zinc exhibited higher values during spring and summer than in other seasons. Although median values were below the surface water objective of 50 ug/L, maximum values at some sites exceeded the objective in all four seasons.

In summary, the metals (with the exception of arsenic and boron) varied directly with discharge, indicating that concentrations are associated with weathering and transport of bedrock and surficial material rather than with point source inputs. No consistent longitudinal trend was noted in metal concentrations. High values, however, typically occurred upstream of Fort McMurray (DD0012) as well as upstream of the Muskeg (DA0206) and MacKay (DA0207) rivers.

3.3 DELINEATION OF IMPACTS

The numbers and locations of all samples collected from the Athabasca River are presented in Table 3. Principal component analysis (PCA), however, was used for the simultaneous examination of water quality parameters at those 12 specified sites having sufficient data (Table 4). The analysis was performed on median and maximum values of selected water quality parameters for the winter, spring, summer, and fall data sets (1976 to 1983). Median values were selected to represent typical conditions; maximum values were selected to represent the worst situation.

The following parameters were selected for use in the PCA because of their association with diffuse and point source effluents:

- 1. Specific conductivity;
- 2. Bicarbonate ion;
- 3. Chloride ion;
- 4. Total organic carbon (TOC);
- 5. Phenolic compounds;
- 6. Oils and grease;
- 7. Orthophosphate phosphorus $(PO_A P)$;
- 8. Ammonia;
- 9. Fecal coliforms;
- 10. Nickel; and
- 11. Vanadium.

Code	Location ^a					
(OOATO7-)	Left	Centre	Right	Not Specified	Total	
CC0012	3	34	15	22	74	
DA0203	30	1	31	7	69	
DA0205	23	0	21	7	51	
DA0206	46	13	41	7	107	
DA0207	.50	8	35	18	111	
DA0208	20	0	21	8	49	
DD0010	4	20	6	17	47	

Table 3. Number and location of samples collected at sites along the Athabasca River.

^aLooking downstream.

Site	Code (00AT07-)	Location ^a
1	CC0012	Centre
2	DA0203	Left
3	DA0203	Right
4	DA0205	Left
5	DA0205	Right
6	DA0206	Left
7	DA0206	Right
8	DA0207	Left
9	DA0207	Right
10	DA0208	Left
11	DA0208	Right
12	DD0010	Centre

Table	4	Sample	sites	used	in	data	anal	vsis.
IUDIC	- T e		51665	asca		aucu	unui	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

a Looking downstream.

The ionic parameters (numbers 1, 2, and 3) which vary inversely with discharge reflect changes in ion concentration between tributaries and the mainstem as well as industrial saline discharge from Poplar Creek during the open water season. Parameter 4 (TOC) is a measure of biological degradation. Parameters 5 (phenols) and 6 (oils and grease) can occur naturally within the system, but elevated levels are often associated with domestic and industrial wastes. Parameters 7 to 9, the nutrients and fecal coliforms, are associated with sewage effluents. Although total kjeldahl nitrogen would typically be used as a measure of sewage effluents, there was not sufficient information available to use this parameter in the analysis. Instead, ammonia, the major inorganic form of nitrogen discharged from sewage plants, was selected. The metals (no. 10, nickel and no. 11, vanadium) are associated with oil sands.

The factor scores for all sites are presented on bivariate plots of the first and second principal components. Designated site clusters (i.e., those sites exhibiting similar water quality parameters) are delineated on schematic maps of the river.

3.3.1 <u>Winter (Median Values)</u>

The first two principal components (PC) of median values of selected water quality parameters in the winter accounted for 51.5% of the total variance. The first component alone accounted for 30.6% of the variance. To interpret the results, the coefficients (loadings) of the 11 parameters were examined. The first PC is interpreted as a comparison of bicarbonate ions and fecal coliforms (with high positive coefficients) to PO_4 -P (lowest coefficient). For PC2, chlorides and ammonia represent the highest positive loadings, whereas TOC represents the lowest negative loadings.

The cluster of sites are represented as five groups on the bivariate plot and corresponding river map (Figures 8 and 9). Sites 2 (DA0203 left) and 9 (DA0207 right), which are grouped together,

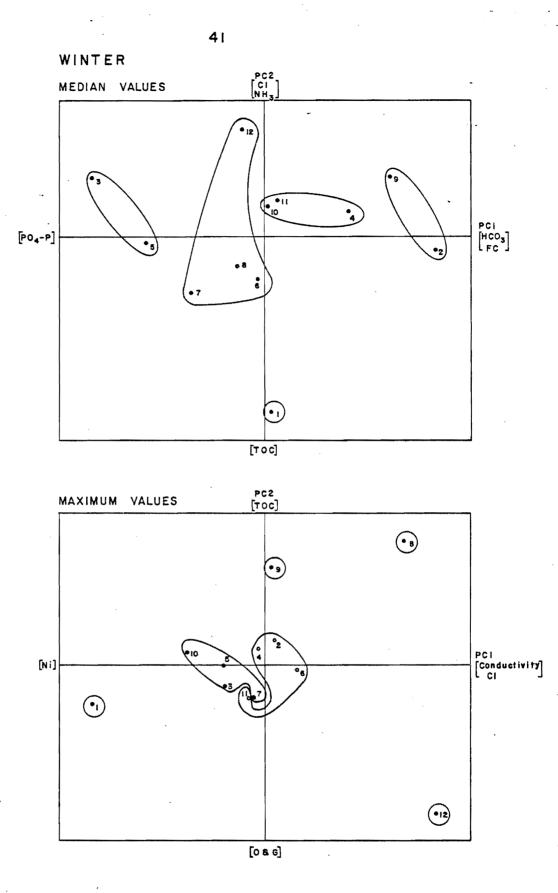
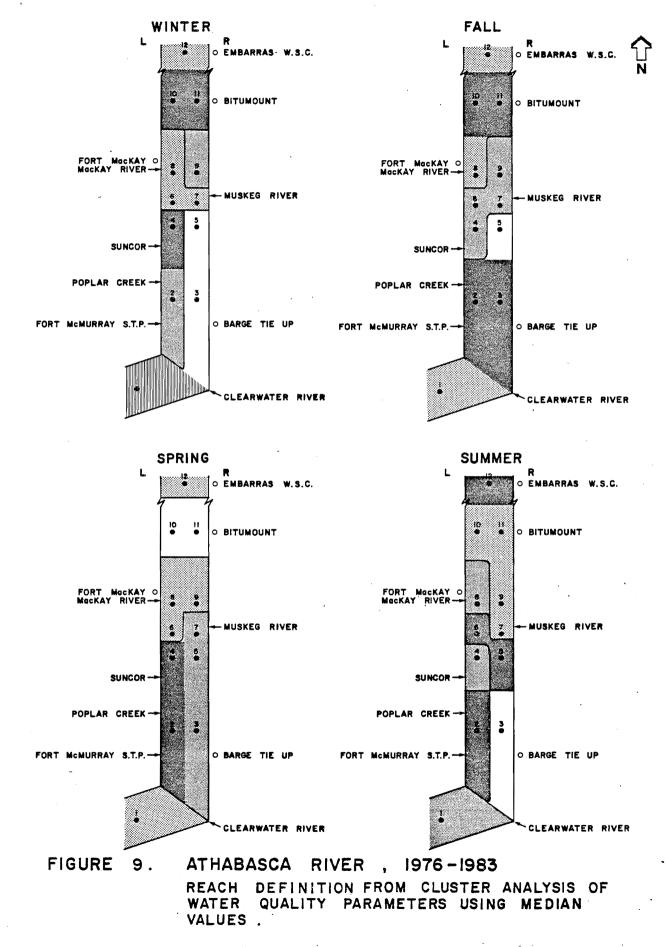



Figure 8.

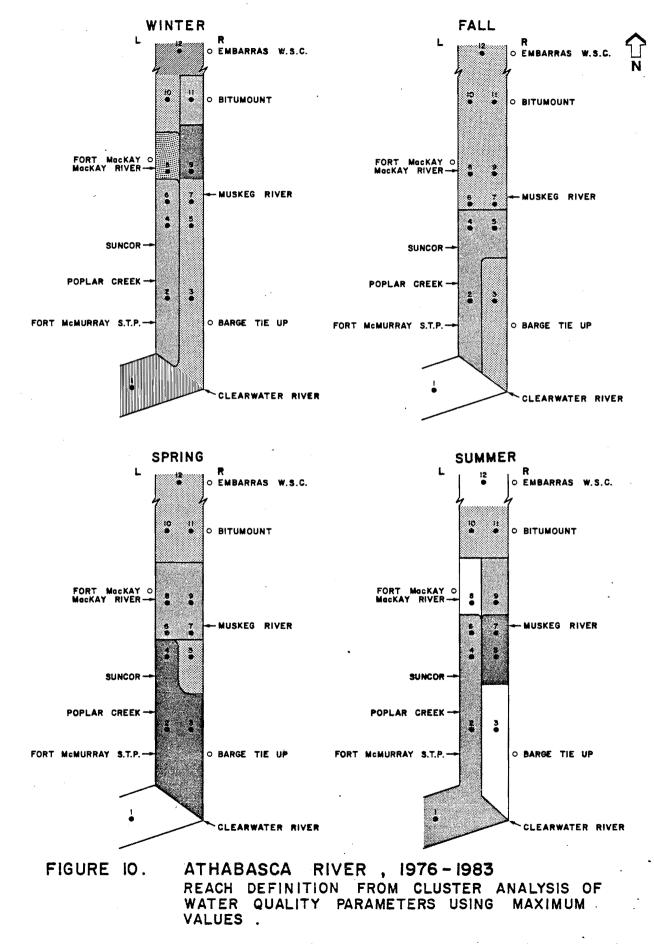
Principal component analysis of sample sites on the Athabasca River.

exhibited highest values of bicarbonate ions and fecal coliforms. The sites are associated with the Fort McMurray sewage effluent and the Fort MacKay settlement.

Cluster 2 (sites 4, 10, and 11) represents an intermediate recovery zone downstream from the areas of enrichment. Cluster 3 (sites 6, 7, 8, and 12) is interpreted to represent recovered, well-mixed areas of the river.

Sites 3 and 5, along the true right bank of the Athabasca River downstream from the Clearwater River, form a distinct group characterized by elevated levels of PO_4 -P and low levels of bicarbonate ions and fecal coliforms.

Site 1 (upstream of Fort McMurray) with elevated levels of TOC is distinct from the other 11 sites.


3.3.2 Winter (Maximum Values)

The first two principal components resulting from the analysis of maximum values in winter accounted for 58.7% of the total variance. PC1 contributed 35.9% of the total variability. For PC1, conductivity (along with chloride) and nickel exhibited the highest and lowest coefficients, respectively. For PC2, TOC and oil/grease displayed the highest and lowest coefficients, respectively.

The two major clusters, numbers 1 (sites 2, 4, 6, and 11) and 2 (sites 3, 5, 7, and 10), were grouped at the intersection of PC1 and PC2 (Figure 10). The other four sites exhibited distinct features. Interestingly, nickel concentrations were highest at site 1 (upstream of Fort McMurray) (Figure 10).

3.3.3 Spring (Median Values)

Together, PC1 (35.7%) and PC2 (21.7%) explained 57.4% of the total variability of the PCA using median water quality parameters. Nickel and chloride exhibited the highest and lowest coefficients for PC1. Conductivity (along with PO_4 -P) and chloride had the highest and lowest loading coefficients for PC2.

The sampling sites differentiated into three major clusters (Figure 11). Cluster 1 sites (1, 6, 8, 9, and 12) were characterized by elevated concentrations of nickel and low levels of chloride.

Cluster 2 consisted of two subgroups. One subgroup (sites 3, 5, and 7), located along the true right bank downstream of the Clearwater River, exhibited high chloride values. The other subgroup (sites 10 and 11) had lower levels of chloride.

Cluster 3 included site 2 (below the Fort McMurray sewage treatment plant) and site 4 (downstream from Suncor). Water samples from these locales were high in conductivity and PO_4 -P.

3.3.4 Spring (Maximum Values)

PC1 (43.7%) and PC2 (24.82%) accounted for 68.5% of the total variability in the data set, representing maximum parameter values in spring.

Three major clusters of sample sites were evident (Figure 11). Cluster 1 (sites 2, 3, and 4) exhibited maximum levels of conductivity and PO_4 -P, reflecting the inputs from the Clearwater River and Fort McMurray sewage plant. The highest PO_4 -P levels throughout the year were recorded in the spring. Cluster 2 represents sites with high concentrations of chloride and phenolic material (sites 5, 10, 11, and 12). Cluster 3 sites (6, 7, 8 and 9) exhibited high levels of TOC and nickel. Nickel concentrations were higher in the spring than in any other season. Site 1 was characterized by the high concentrations of phenols, TOC, and nickel.

3.3.5 Summer (Median Values)

PC1 (32.8%) and PC2 (16.4%) accounted for about one half of the total variability in the data set.

Site 3 was distinct from other site groupings because of the high concentrations of chloride ions (Figure 12). The remaining 11

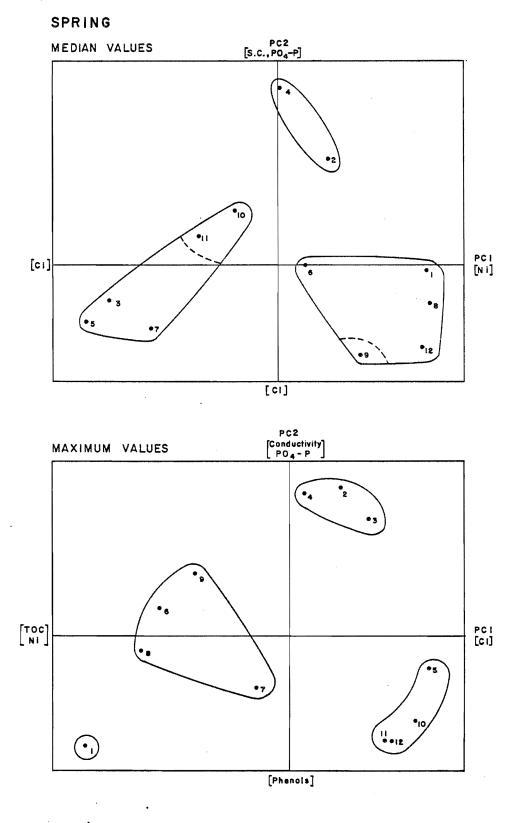
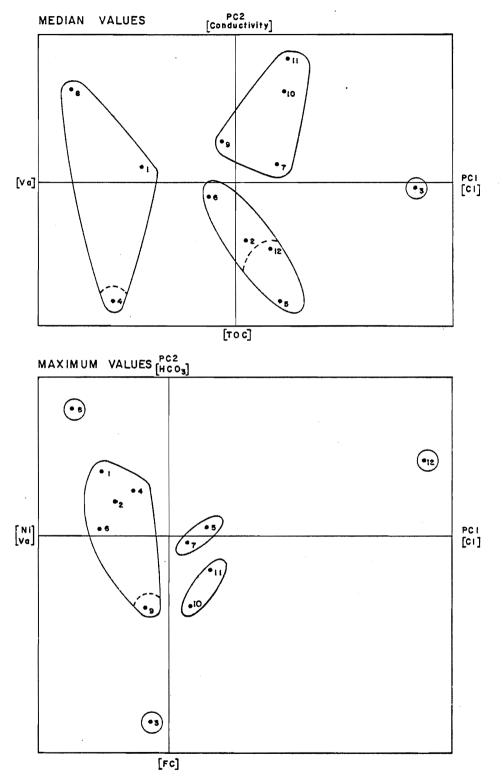



Figure 11. Principal component analysis of sample sites on the Athabasca River.

sites formed three clusters. Cluster 1 (sites 1, 4, and 8) exhibited elevated concentrations of vanadium. Within the cluster, site 8 had characteristically high conductivity levels and site 4 had high TOC concentrations. Cluster 2 (sites 2, 5, 6, and 12) was characterized by elevated levels of TOC. Cluster 3 sites (7, 9, 10, and 11) had relatively high levels of conductivity.

3.3.6 Summer (Maximum Values)

PC1 (27.6%) and PC2 (23.1%) accounted for about 51% of the total variability in the data set. Chloride and metals (nickel and vanadium) values differentiated site groupings along PC1 in a similar manner to the spring (median value) data set. In contrast, site 12 (the Embarras Airport locale) rather than site 3 exhibited the highest chloride values. Site 3 (elevated fecal coliforms) and site 8 (high bicarbonate and metal concentrations) also were distinct from other groups (Figure 12).

The largest cluster of five sites (1, 2, 4, 6, and 9) had characteristically high concentrations of nickel and vanadium. Metal concentrations, however, were lower in the summer than spring as discharge levels begin to decline.

3.3.7 Fall (Median Values)

Because all sites exhibited the same low value of vanadium (1 ug/L), the parameter was deleted from the data set for the analysis.

The first two PCs accounted for 62.6% of the variability in the data. Bicarbonate ions and PO_4 -P differentiated site clusters along the first principal component (accounting for 32.4% of the variability). Conductivity and nickel concentrations distinguished sites along the second component.

Site 5 was distinguished from all other sites because of relatively high levels of PO_4 -P (Figure 13). The three clusters of the remaining sites formed a patchwork of interlocking sites along the

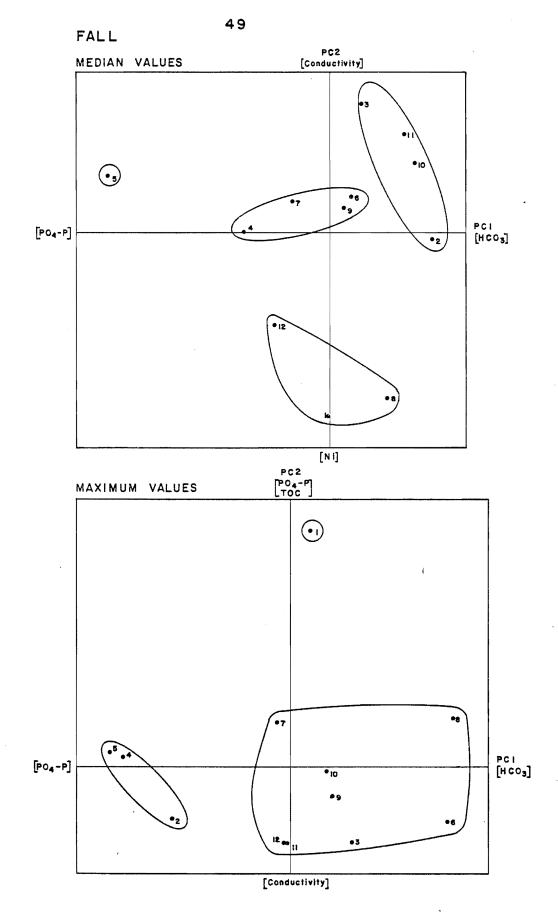


Figure 13. Principal component analysis of sample sites on the Athabasca River.

length of the mainstem (Figure 9). For example, sites 1, 8, and 12 were grouped together because concentrations of nickel at these sites were greater than 1 mg/L. Left and right bank pairs (sites 2/3 and 10/11) were grouped because of similarities in conductivity levels.

3.3.8 Fall (Maximum Values)

All 11 parameters were used in the PCA of the fall (maximum values) data set. PC1 (33.2%) and PC2 (27.6%) accounted for about 61% of the variability in the data set.

Conductivity, bicarbonate ions, and PO_4 -P were useful to a limited extent in isolating clusters of sample sets (Figure 13). Eight sites were incorporated into one loose cluster on the basis of conductivity. Sites 2, 4, and 5 (located downstream from the Fort McMurray sewage treatment plant) formed one group characterized by elevated levels of PO_4 -P. Site 1, exhibiting high concentrations of TOC and PO_4 -P, was isolated from other river sites.

3.3.9 Summary

The following items summarize the results of the principal component analyses of impact related water quality parameters at 12 sites along the Athabasca River.

- There was a consistent seasonal pattern in the parameters which distinguished sites along the first component. During low flow periods (winter and fall) bicarbonate ions and PO₄-P were the parameters that differentiated sample sites. In addition, concentrations of nickel were useful in distinguishing sites in winter (maximum values). During high flow periods (spring and summer), TOC, chloride ions, nickel, and vanadium differentiated groups of sample sites.
- 2. Change in ion concentration was attributed to inputs from either the Clearwater River or natural saline seepage rather than the industrial saline discharge via Poplar Creek.

- 3. Parameters which serve as markers for sewage effluents are PO₄-P, TOC and fecal coliforms. Municipal wastes at Fort McMurray were continuously discharged. The downstream effects of treated sewage were limited to the mainstem upstream of the confluence with the Muskeg River.
- 4. The metals nickel and vanadium are associated with oil sands in the AOSERP region. The concentrations of nickel and vanadium were higher at periods of increased flow (spring and summer), indicating the significant effect of weathering of rocks. Sites exhibiting elevated concentrations of nickel and vanadium in surface waters were associated with the natural occurrence of bitumen in the river bank and valley wall (e.g., CC0012) rather than with industrial effluents (site DA0205 left bank). Some metals, however, which exhibit very low concentrations in water may be associated with sediments.

4. <u>THE NORTH</u>

The northern region includes the drainage basins within the Athabasca Delta. The delta includes the following three subregions: (1) the distributaries (Embarras River, Fletcher Channel, Goose Island Channel, and Big Point Channel) which enter Lake Athabasca from the Athabasca River; (2) outflow from Lakes Claire and Mamawi which originate from the Birch River system; and (3) Lake Athabasca outflows of Chenal des Quatre Fourches and Riviere des Rochers which join the Peace River to form the Slave River.

4.1 BASIN FEATURES

4.1.1 Land Formations

Land formations of the Athabasca Delta region have been discussed by Bayrock (1971) and Turchenek and Lindsay (1982).

The delta was formed about 10 000 years ago during the recession of the Pleistocene ice age. Although the delta now separates Lakes Claire and Athabasca, the two lakes were formerly one basin.

All Athabasca River sediments are deposited in the delta. Sedimentation from streams entering Lake Claire constitutes less than 15% of the delta sediments. Coarse sands representing the bottom load are deposited first. The sands are subsequently covered by fine sediments which settle out of the water column.

Most of the region, with the exception of the Athabasca distributaries, occurs within the Northern Boreal Forest. The distributaries lie within the Boreal Mixedwood Forest. Riparian forests, deciduous shrubs, and fen communities are prevalent throughout the delta.

The bedrock geology of the north is characterized by granite rocks of the Archean in the east and Devonian rocks (limestone and shale) in the west (Figure 14). The Archean constitutes the earlier or older rocks of the Precambrian era. The line separating the two geological types passes through Mamawi Lake.

Figure 14. Bedrock geology of the delta area (Based on Bayrock, 1971)

4.1.2 Watershed

The Athabasca River enters Lake Athabasca through a system of channels including the Embarras River, Fletcher Channel, Goose Island Channel, and Big Point Channel (Figure 15). Flow and sediment deposition increase in channels from west to east, resulting in a migration of river outflow to the east.

Bayrock (1971) forecasted the breakthrough of the Athabasca River into the Embarras River with flow ultimately being redirected into Lakes Mamawi and Claire. To prevent this flow transfer, a cutoff was constructed near Embarras Portage in 1972.

Flow from the Birch River system through Lakes Claire (area, 1160 km²; volume, 1.2 km³) and Mamawi (area, 160 km²; volume, 0.16 km³) enters the Peace River (via Chenal des Quatre Fourches) and Lake Athabasca (area, 7850 km²; estimated volume, 200 km³). Reverse flows can occur in the Chenal des Quatre Fourches bringing Peace River water into Lake Mamawi.

Most of the Lake Athabasca outflow occurs through Riviere des Rochers and Chenal des Quatre Fourches (Neill et al. 1981). Revillon Coupe is a sub-distributary of the Riviere des Rochers.

4.1.3 <u>Physical Description of Water Bodies</u>

Neill et al. (1981) summarized hydraulic conditions of the channels and lakes of the delta using satellite imagery and colour aerial photography.

Operation of the Bennett Dam, located on the Peace River in British Columbia, has altered the physical features of the Peace Athabasca Delta by controlling water levels and flow regimes. The Bennett Dam was constructed in 1967 and the filling of the reservoir, Williston Lake, was completed in 1972, witholding a volume of 60 km³ from the Peace River in Alberta. Prior to dam closure, water levels in the Peace River at the confluence of the Athabasca outflow were high enough to restrict or reverse flow, thereby flooding low lying areas, and thus enhancing nutrients and organic levels. The control structure

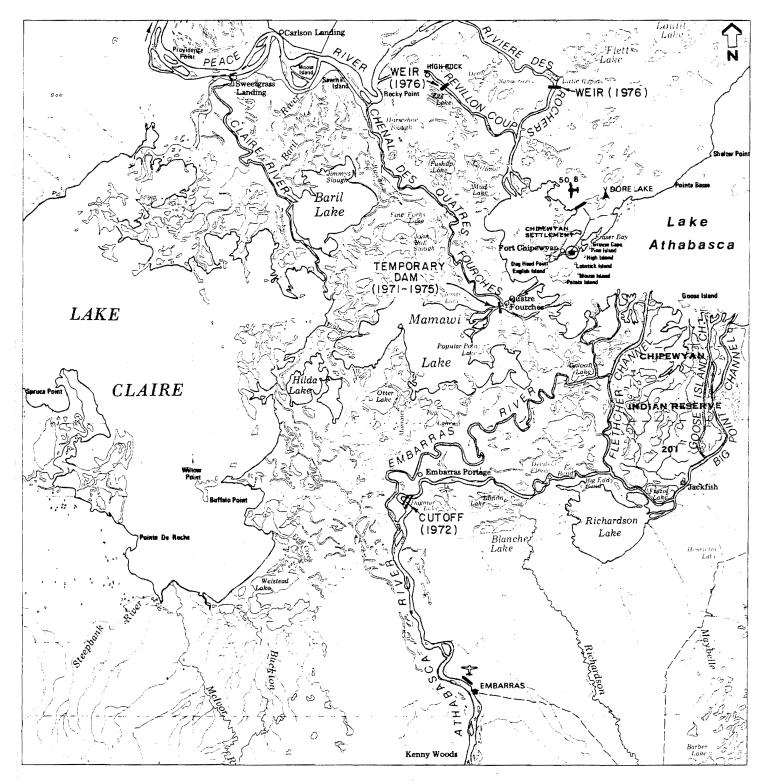
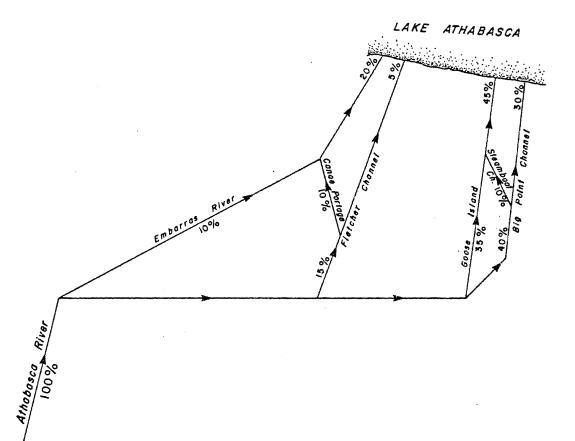


Figure 15. Delta area surface water drainage . (Adopted from Neill et al., 1981) reduced water levels about 3 metres at the confluence of the Peace River and Riviere des Rochers. Annual maximum water levels in Lake Athabasca were reduced about 1.2 metres.

Mitigation measures to maintain water levels included construction of weirs on delta channels. A temporary dam was constructed in 1971 on the soutwest arm of Chenal des Quatre Fourches, the control outlet of Lake Mamawi. The weir, which was designed to maintain water levels in Lakes Claire and Mamawi, was frequently washed out and rebuilt until the project was abandoned in December 1975. Water levels, however, have remained the same in Lakes Claire, Mamawi, and Athabasca because slopes of the connecting channels are flat. In June 1975 and March 1976, permanent weirs were established on Riviere des Rochers and Revillon Coupe to control the outflow from Lake Athabasca when water levels on the Peace River are low.

4.2 BASELINE DATA


4.2.1 Discharge

There are no continuous gauging stations on the Athabasca River distributaries, although infrequent flow measurements have been taken by the Water Survey of Canada. Most (75%) of the flow from the Athabasca mainstem enters the delta via the Goose Island and Big Point channels (Figure 16) (Neill et al. 1981).

The average annual outflow from Lake Athabasca is about 45 km³. The river systems contributing to this outflow are the Athabasca (52%), Fond du Lac (21%), and small tributaries (21%) (Figure 5) (Neill and Evans 1979). Outflows from Lakes Claire and Mamawi, which for the most part bypass Lake Athabasca, contribute less than 3% of the average annual Lake Athabasca outflow (Neill et al. 1981).

4.2.2 Water Quality

Water quality of lakes and channels in the northern region is likely influenced by the control structure on the Peace River and by

Figure 16.

Approximate average distribution of Athabasca River flow among four main delta distributaries . ("Adapted from Nell1 et al., 1981.)

differing geology. Water quality values also may differ between lakedraining and river-draining channels. A description of the water quality sampling sites is presented in Table 5.

4.2.2.1 <u>Routine parameters</u>. A summary of routine parameters for the region is presented in Appendix 10.3 (Table 59).

Surface waters of the northern region are neutral or alkaline. Lowest pH values were recorded in waters overlying granite rocks, including Lake Athabasca (6.7), Riviere des Rochers (6.8), and Jackfish Creek (7.0). These water bodies also exhibited the lowest buffering capacity in the region with median values ranging from 33 to 70 mg/L. Median values of total alkalinity for other waterbodies ranged from 99 to 118 mg/L. Water samples from the devonian (limestone) area exhibited higher median values of hardness (147 to 162 mg/L) than waters overlying granite (35 to 113 mg/L). Similar trends in the relationship between water quality constituents and geology (i.e., lower values in waters overlying granite than limestone) were noted for turbidity, colour, filterable residue, and conductivity (Appendix 10.3, Table 59).

The relative contribution of major ions is presented in Figure 17. The total ion concentration exhibited by sites located on granite is lower than sites located in limestone areas. The relative contribution of ions also differs between geological types. In granite areas, calcium bicarbonate is the dominant dissolved salt in drainage systems. In limestone areas, both sodium chloride and calcium bicarbonate salts are prevalent. Lake Claire also exhibits elevated levels of sulphate ions.

Because soil layers overlying limestone are thicker than layers overlying granite, values of total organic content are correspondingly higher at sample sites on the devonian than the Archean geological type (Appendix 10.3, Table 59).

Median values of phenolic materials were below the Alberta Surface Water Objective (ASWO) of 0.005 mg/L. Maximum values exceeded the objectives at Big Point Channel (0.032), Chenal des Quatre Fourches (0.019 mg/L), and Riviere des Rochers (0.022 mg/L).

Input/Output Drainage for Lake Athabasca	Code Rivers: OOATO7- Lakes: O1ATO7-	Long	itude gituc M		Description	Period of Record of	Number samples ^a
Southern Inputs	DA0211	58 111	38 02	24 35	Embarras River	1976-77	2
	DD0080	58 111	24 04	00 00	Richardson Lake	1976-78	10
	DD0090	58 110	24 55	47 12	Jackfish Creek	1977-79	12
	DD0212	58 110	38 46	25 26	Big Point Channel	1976-83	48
	DD0213	58 110	39 58	06 33	Fletcher Channel	1976, 1980	2
	DD0214	58 110	38 50	16 03	Goose Island Channel	1979	1
Western Inputs	KF0100	58 111	39 18	00 24	Mamawi Lake Channel	1977-79	13
	KF0140	58 111	37 40	25 50	Prairie River	1977-79	12
	KF0200	58 112	34 04	33 31	Lake Claire west of Birch River	1977-79	12
	KF0201	58 112	26 04	00 12	Lake Claire at Willow Point	1977-79	11

Table 5. Description, period of record, and number of samples obtained for water quality sampling stations within the northern region. See Figure 4 for location of sites.

continued . . .

Table 5. Conclu	ded.
-----------------	------

Input/Output Drainage for Lake Athabasca	Code Rivers: 00AT07- Lakes: 01AT07-	Latitude N Longitude W			Deconintion	Period of	Number
	Lakes: UIATU/-	(D	M	S)	Description	Record	of Samples
Northern Outputs	KF0101	58 111	39 21	55 24	Chenal des Quatre Fourches	1977-83	33
	NA0030	58 111	50 15	42 32	Riviere des Rochers	1976-83	50
	NA0031	58 111	49 16	13 30	Riviere des Rochers, km 350	1977	1
Lake Athabasca	MD2000	58 110	56 42	11 44	Lake Athabasca at Sandy Point	1977-79	8

^aSites with 8 or more samples were used in subsequent analysis.

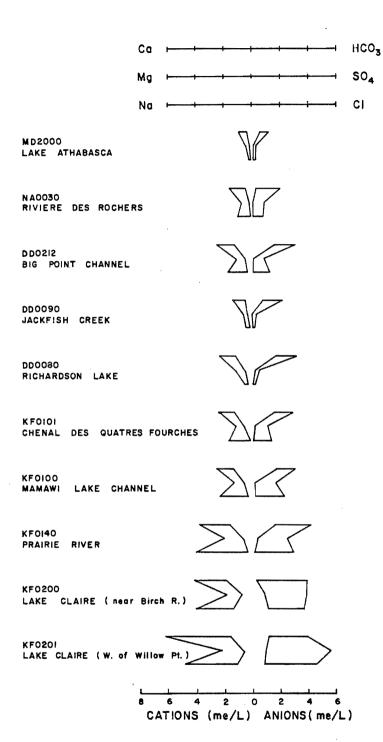


Figure 17. Maximum and minimum values (me/L) of major ions in the northern region.

No guidelines have been established for oil and grease. Median values ranged from 0.5 to 1.2 mg/L; maximum values ranged from 1.3 to 3.8 mg/L.

4.2.2.2 <u>Nutrients</u>. Phosphorus and nitrogen are the major nutrients controlling plant growth.

Total phosphorus (particulate and dissolved fractions) and orthophosphate phosphorus (PO_4 -P) are the two forms which are presented in Appendix 10.3 (Table 60). Since total phosphorus varies directly with discharge, values are elevated in spring and summer during high runoff periods. Median values of total phosphorus were below the ASWO of 50 ug/L in Lake Athabasca, Jackfish Creek, and Riviere des Rochers. Median values at the other sites ranged from 51 to 80 ug/L. Maximum values ranged from 40 to 930 ug/L.

Orthophosphates are a measure of natural or cultural enrichment. Median values ranged from 4 to 14 ug/L. Maximum levels of PO_4 -P in Lake Athabasca (9 ug/L) and Richardson Lake (19 ug/L) in granite areas were substantially lower than in Mamawi Lake Channel (280 ug/L) and Lake Claire (180 ug/L) in limestone areas. Maximum PO_4 -P levels in Big Point Channel (235 ug/L) and Chenal des Quatre Fourches (360 ug/L) were higher than maximum levels in other channels (18 to 70 ug/L).

The ASWO for total nitrogen (total kjeldahl nitrogen and nitrate/nitrite) is 1.0 mg/L (1000 ug/L). Values for total kjeldahl nitrogen (TKN is a measure of organic nitrogen and ammonia), ammonia, and nitrate/nitrite nitrogen are presented in Appendix 10.3 (Table 60).

Maximum values of TKN for all water bodies in the region ranged from 1.20 to 9.15 mg/L, exceeding the ASWO for total nitrogen. Elevated median values were recorded in water bodies of the limestone region (1.06 to 1.62 mg/L) as well as in Richardson Lake (1.40 mg/L).

Ammonia and nitrate/nitrite nitrogen are the two inorganic forms of nitrogen. Median values of ammonia ranged from 0.03 to 0.06 mg/L. The highest ammonia value was recorded in Big Point Channel (1.10 mg/L). Median values of nitrate/nitrite nitrogen ranged from less than 0.01 to 0.07 mg/L. Maximum values ranged from 0.08 to 0.80 mg/L, with the highest value recorded in Riviere des Rochers.

4.2.2.3 <u>Metals</u>. Summary data for 16 metals obtained from the monitoring program in the northern region are presented in Appendix 10.3 (Table 61). Surface water objectives have been established for 12 of the 16 metals. Objectives have not been established for aluminum, cobalt, nickel, or vanadium because they are usually of no public health significance (McNeely et al. 1979).

Median and maximum values were below the ASWO in all waterbodies for arsenic (10 ug/L), boron (500 ug/L), cadmium (10 ug/L), chromium (50 ug/L), lead (50 ug/L), selenium (10 ug/L), and silver (50 ug/L).

Median values of aluminum at all sites ranged from 120 to 645 ug/L and so were within the typical surface water levels of less than 1.0 mg/L (1000 ug/L) (McNeely et al. 1979). The highest value of aluminum (30.4 mg/L) was recorded at Prairie Creek. Other maximum values ranged from 440 to 6900 ug/L).

The presence of cobalt in surface waters results from weathering of surficial material. Median values of cobalt for all sample sites were less than the detection limit of 2 ug/L. Maximum values ranged from less than 2 to 4 ug/L.

Although copper is an essential element for plants and animals, elevated levels of copper in water are distasteful. The threshold levels for taste perception range from 1 to 5 mg/L (McNeely et al. 1979). The highest value of copper was recorded in samples from Big Point Channel (150 ug/L) and Rivere des Rochers (260 ug/L).

The ASWOs for iron (300 ug/L) and manganese (50 ug/L) were established for aesthetic reasons since elevated levels of these constituents can alter the taste of water as well as stain clothes and plumbing fixtures. Median and maximum values of iron exceeded the objective at all sample sites. Although median values of manganese for all sites were within the ASWO, maximum values exceeded the objective at all sites.

Non-compliance with surface water objectives was also noted for mercury. All sites (except Richardson Lake) exceeded the objective of 0.1 ug/L.

Nickel and vanadium may occur in surface waters as a result of weathering of surficial material or as wastes from industrial processing such as fossil fuels. Median values of nickel ranged from less than 2 to 4 ug/L. A sample from Big Point Channel exhibited the highest nickel levels (30 ug/L). Median values of vanadium were less than or equal to 1 ug/L at all sites. The highest value of vanadium was recorded at Big Point Channel (20 ug/L) and Chenal des Quatres Fourches (32 ug/L).

The median values of zinc at all sites were below the ASWO of 50 ug/L. With the exception of Prairie River, maximum values of sample sites exceeded the objectives. Although zinc is not toxic to man, elevated levels (5 mg/L) will alter the taste of water (McNeely et al. 1979).

4.2.3 Benthic Invertebrates

Gallup et al. (1971) conducted a survey of planktonic and benthic invertebrates of the Peace Athabasca Delta during the summer of 1971. Earlier, Rawson (1947) studied the invertebrates of Lake Athabasca.

Gallup et al. (1971) collected benthic invertebrates with an Ekman grab, the contents of which were washed through a 600 micron sieve. Highest standing crops (more than 500 mg wet weight/sample) of invertebrates were recorded in the lower reaches of rivers entering lakes (Birch River and Mamawi Creek) and channels between Lakes Claire and Mamawi. A mean standing crop of 100 mg wet weight/sample was recorded for the other sites. Production was greater near shorelines than in open water areas of lakes.

<u>Pontoporeia hoyi</u>, an amphipod, dominated the bottom fauna of the western end of Lake Athabasca in numbers (61%) and wet weight (70%) (Gallup et al. 1971). Clams (Sphaeridae), snails (Lymnaeidae) and midges dominated the fauna in other water bodies.

4.3 RELATIONSHIPS AMONG PARAMETERS

Because only stage (water level) data are available at sites in the delta, relationships among parameters focussed on water quality constituents alone. A correlation analysis was performed between conductivity (a known correlate of discharge) and other water quality constituents using median values from each sampling site (Appendix 10.3, Tables 59 to 61). Results showed that six constituents (total organic carbon, total phosphorus, total kjeldahl nitrogen, aluminum, copper, and iron) were significantly correlated with conductivity at the 0.01 level.

Relationships between each of the six constituents and conductivity were estimated using all available data from sample sites representing water bodies entering Lake Athabasca from southern distributaries (Jackfish Creek, Big Point Channel), channel inputs from lentic areas in the west (Prairie Creek, Mamawi Lake Channel), and channels leaving the northwest end of Lake Athabasca (Chenal des Quatre Fourches, Riviere des Rochers). Of the six sample sites, one (Big Point Channel) receives river water and the other five receive drainage from lakes.

Regression analyses were performed using linear, log/linear, and log/log transformations of the data. Equations from those transformations yielding the best fit (i.e., least variability and highest R^2) were selected and presented in Table 6.

There were significant relationships between TOC and conductivity for Jackfish Creek, Prairie Creek, and Big Point Channel (Table 6). The TOC varies inversely with conductivity in channels which drain lakes (Jackfish and Prairie creeks), but directly with Big Point Channel, a distributary of the Athabasca River. These relationships suggest that there are seasonal differences in biological activity (indicated by TOC) between rivers and lakes.

There was a significant log/log positive relationship between total phosphorus and conductivity in Big Point Channel. No significant Table 6. Summary of regression equations of total organic carbon (TOC), total phosphorus (TP), total kjeldahl nitrogen (TKN), aluminum (Al), copper (Cu), and iron (Fe) with conductivity for water bodies of the northern region. Equations with the best fit of the data were of the following format:

linear	Y = A + Bx	(1)
log/linear	$Y = Ae^{BX}$	(2)
log/log	$Y = Ax^B$	(3)

where: A = intercept, B = slope, Y = dependent water quality
 variable; and
 X = independent variable (conductivity).

	quation Format , 2, 3)	df (n-2)	Y	A	В	R²	р (Но:В ₁ =0)
Jackfish Creek	1	10	тос	-0.43	0.046	.69	L0.001
(DD0090)	3 1 3 1 3	10 10 10 8 10 10	TP TKN A1 Cu Fe	2.16 362.60 1.00x10 4.15 450.79	0.583 2.861 2.480 -0.009 0.168	.17 .11 .54 .06 .01	ns ns LO.025 ns ns
Big Point Channel (DDO212)	3 3 1 2 1 3	41 44 30 41 44 44	TOC TP TKN A1 Cu Fe	527.95 1.12x10 589.48 1.97x10 ³ -2.442 6.50x10	-0.709 -1.742 0.163 -0.008 0.034 -1.999	.23 .35 .00 .25 .02 .23	L0.01 L0.001 ns L0.001 ns L0.001
Input from W: Mamawi Lake Channel (KF0100)	1 3 1 1 3 2	10 11 11 8 11 11	TOC TP TKN A1 Cu Fe	7.60 11.88 838.22 2433.72 2.73 383.37	0.012 0.268 0.644 -3.363 0.197 0.002	.03 .01 .01 .10 .00 .08	ns ns ns ns ns ns
Input from W: Prairie Creek (KF0140)		10 10 10 8 10 10	TOC TP TKN A1 Cu Fe	8.66×10^{-3} 181.08_{4} $1.45 \times 10_{12}$ $2.75 \times 10_{12}$ $5.49_{1.03 \times 10}$	1.268 -0.164 -0.368 -3.485 0.007 -0.003	.56 .15 .02 .29 .09 .27	L0.01 ns ns ns ns ns

continued . . .

Water Body	Equation Format (1, 2, 3)	df (n-2)	Y	А	В	R²	р (Но:В ₁ =О)
Output:							
Riv des	3	43	TOC	1.20	0.339	.06	ns
Rochers	1	46	TP	-3.01	0.395	.08	ns
(NA0030)	3	45	TKN	136.05	0.280	.01	ns
	2	45	A1	524.79	-0.005	.02	ns
	2 2 2	48	Cu	2.28	0.004	.04	ns
	2	48	Fe	511.83	0.002	.00	ns
Output:							
Chenel des	2	25	TOC	8.25	0.0006	.01	ns
Quatres	2 1	31	TP	207.05	-0.294	.04	ns
Fourches	1	29	TKN	-1118.26	6.650	.14	L0.05
(KFU101)	1 3	29	A1	1357.63	-2.034	.03	ns
	3	31	Cu	250.14	-0.681	.06	ns
	1	31	Fe	3841.05	-6.761	.06	ns

Table 6. Concluded.

L = less than

relationships, however, were established for the other five channels which drain lakes. The association between total phosphorus and conductivity in rivers reflects the direct relationship between apatite phosphorus and discharge.

There was a significant positive relationship between TKN and conductivity in Chenal des Quatres Fourches, the output channel draining the northwest end of Lake Athabasca. There were no significant relationships between the two parameters in the other five channels.

Significant relationships between aluminum and conductivity were noted in the channels which enter Lake Athabasca from the southern Athabasca River drainage, but not from the lentic inputs from the west or the two outlet channels. There was an inverse relationship between aluminum and conductivity in Big Point Channel, but a direct relationship between parameters in Jackfish Creek, the channel which drains Richardson Lake.

No significant relationships were established between copper and conductivity in any of the drainages.

There was a significant negative relationship between iron concentrations and conductivity in Big Point Channel but not for any of the lake-draining channels. The negative relationship between iron and conductivity implies a direct association between iron and discharge. Thus, the increased iron concentrations in surface waters during high flows resulted from weathering of surficial materials.

5. THE EAST

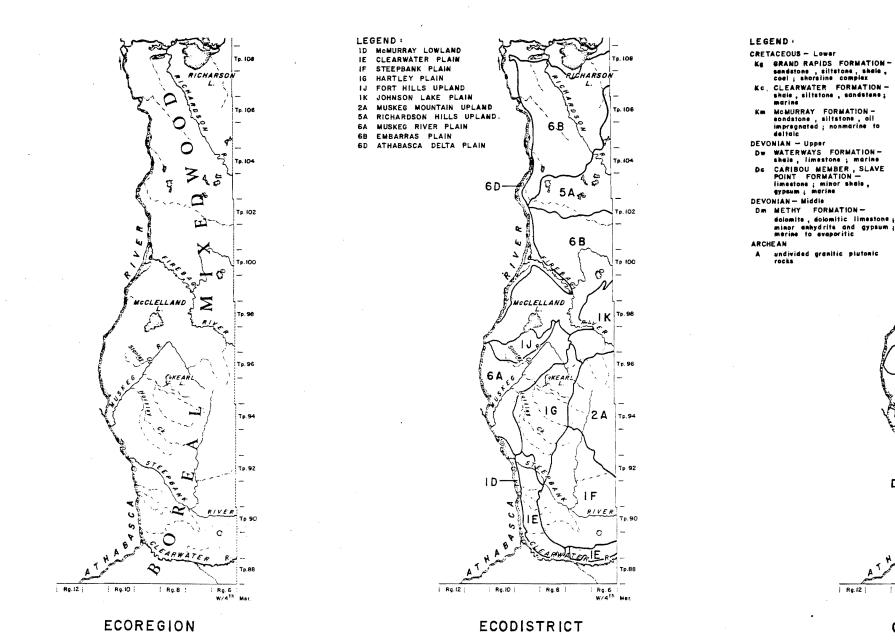
This region includes watersheds east of the Athabasca mainstem between the Clearwater River in the south and the delta in the north, a range in latitude of about 1°45'. The four major watersheds of the eastern region are the Firebag, Muskeg, Steepbank, and Richardson. The Richardson drains north into the delta; the others drain west into the Athabasca River.

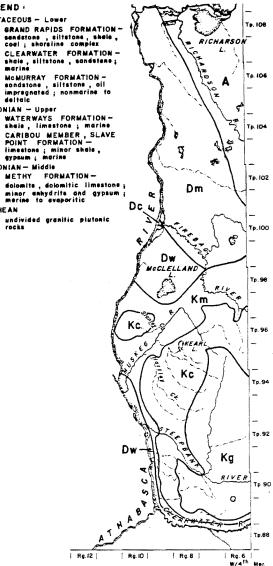
5.1 BASIN FEATURES

5.1.1 Land Formations

Land formations of the eastern region, which have been delineated by Turchenek and Lindsay (1982), are presented in Figure 18.

The eastern region lies entirely within the Boreal Mixedwood Forest. This forest type is characterized by aspen and white spruce, with jack pine present on well-drained sandy soils and black spruce on wetland communities.

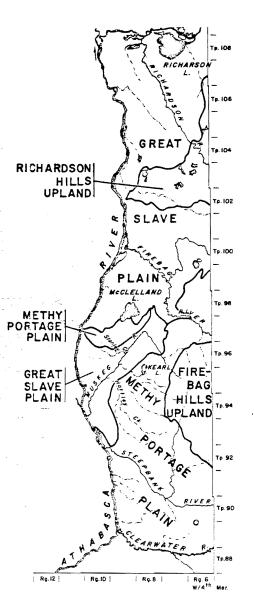

The bedrock geology of the northern portion of the region is characterized by Devonian rocks (limestone and shale) of the Paleozoic era and in the extreme northeast by granite rocks of the Archean. Younger Cretaceous rocks of sandstone and shale occur in the southern half of the region.


The Steepbank River originates in the Muskeg River uplands and flows through level and undulating plains before entering the Athabasca River in the McMurray lowland. Although the Muskeg and Richardson rivers originate in upland areas, the major portion of each watershed flows through undulating plains. The Firebag watershed lies within the Great Slave Plain.

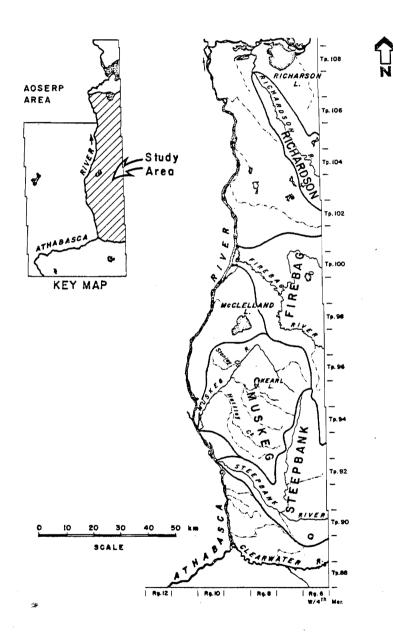
5.1.2 Watershed

The following is a brief description of the four major drainages within the eastern region (Figure 19).

<u>The Steepbank River</u> watershed (1425 km²) encompasses the land drained by the mainstem and the North Steepbank River. The Steepbank



Scale- I = 1500000


Figure 18. Land formations of the eastern region. (Adopted from Turchenek and Lindsay, 1982) GEOLOGY

70

ប្តិ

PHYSIOLOGY

Figure 19. East surface water drainage. (Adapted from Nelli and Evans, 1979)

River flows 120 km northwest to its confluence with the Athabasca River. The North Steepbank River drains an area of 525 km² before joining the Steepbank River about 32 km upstream from the Athabasca mainstem.

The upper reaches of the watershed are meandering, with extensive beaver activity impounding 90 to 95% of the channel (Griffiths 1973). River gradient increases downstream from the junction of the North Steepbank river and mainstem, forming alternating sections of riffles and pools. Outcroppings of the bitumen-impregnated McMurray Formation and the Devonian Waterways Formation occur in the downstream 15-km stretch of the Steepbank River.

<u>The Muskeg River</u> watershed (1480 km²) drains an area of forest and muskeg. The Muskeg River originates in the Muskeg Mountains uplands and flows 110 km to its confluence with the Athabasca River. Hartley Creek (drainage area, 325 km²) joins the Muskeg River 33 km upstream of its confluence. Stanley Creek (66 km²), a minor tributary, flows southeasterly to the Muskeg River. Kearl Lake (surface area, 5.4 km²; maximum depth, 2 m) occurs within the watershed. The Kearl Lake tributary enters the Muskeg River from the southeast between Stanley and Hartley Creeks.

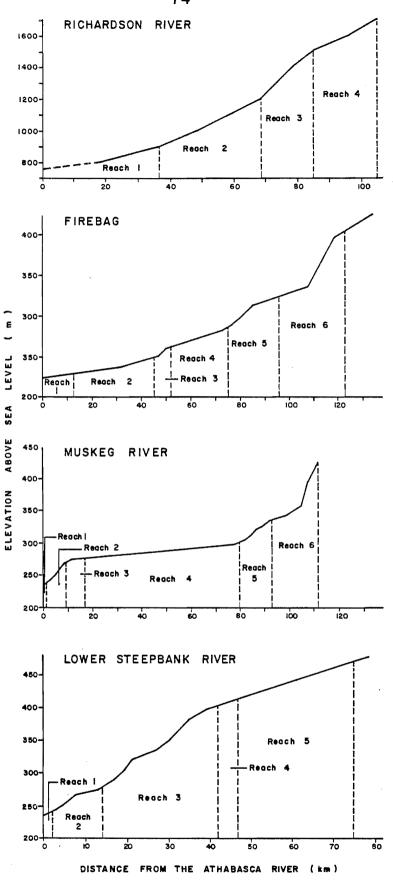
The upper reaches of the Muskeg River are well drained as the river flows over steep channel slopes. As the river flows to the southwest, gradient is reduced and muskeg is a characteristic feature of the watershed. The river gradient increases in the downstream 16 km section where oil sands of the McMurray Formation and limestone of the Devonian Waterways Formation are exposed (Northwest Hydraulics Consulting Ltd. 1975). Bitumen-impregnated sands also are exposed in the lower reaches of Hartley Creek.

<u>The Firebag River</u> watershed (6138 km²) drains into the Athabasca River, 113 km north of Fort McMurray. The Marguerite River (1746 km²) and the Firebag River above the confluence of the Marguerite are the two major sub-basins of the watershed. The confluence of the sub-basins is about 45 km upstream from the mouth of the Firebag.

Headwater regions for the sub-basins occur outside of the AOSERP study area. Upstream, watercourses meander through the Firebag

Plain; beaver dams are frequent. Stream gradient is moderate and bitumen deposits are exposed along the Firebag and Marguerite Rivers. Downstream of the confluence of the Marguerite, river gradient is low as the meandering river enters the Athabasca Plain.

Groundwater contribution to the Firebag watershed is substantial, maintaining base flows and moderating water temperatures in summer (Northwest Hydraulics Consulting Ltd. 1975).


The Richardson River watershed is located on granite rocks of the Precambrian Shield. The river drains a watershed area of 2925 km² of which 56% is located in the province of Saskatchewan (Northwest Hydraulics Consulting Ltd. 1975). The Richardson River forms a sand/silt delta where it enters the Athabasca River, about 35 km upstream of Lake Athabasca. Sand riverbed and bank material in the downstream Richardson River reach enhances percolation of precipitation to groundwater sources. Numerous lakes within the watershed also reduce surface runoff and maintain high base flows.

5.1.3 Physical Description of Study Streams

Erosional and depositional habitats can be discerned from elevation profiles of rivers (Figure 20). Sekerak and Walder (1980) present elevation profiles and associated channel characteristics for the Firebag, Muskeg, and Steepbank rivers. Although no information is available on channel characteristics for the Richardson River, general features may be inferred from the elevation profile of the river (NTS maps 74E, F, and L).

The Richardson River was arbitrarily subdivided into reaches based on the elevation profile presented in Figure 20. The major portion of the river has characteristically steep gradients (Reach 4, 5 m/km; Reach 3, 9.1 m/km; Reach 2, 4.6 m/km). Steep gradients are typical of erosional habitats which are characterized by fast flowing waters and coarse substrates. The downstream reach with a gradient of 0.5 m/km is likely characterized by placid flows and fine substrates.

The Firebag River is subdivided into four upstream, steep gradient reaches and two downstream, low gradient reaches. Riffle areas

Figure 20. Elevation profiles of rivers in the eastern region. (Adapted Sekerok and Walder, 1980)

and coarse substrates predominate in the upstream reaches; pools and fine substrates predominate in the downstream reaches. High banks are prevalent along the entire length of the river, particularly in Reaches 1 and 6.

The Muskeg River channel is characterized by steep gradients in the upstream and downstream reaches. The river, however, is low in gradient for most of its length (Reach 4). Beaver dams and associated pools are prevalent within Reach 4. Mud and silt characterize the greater portion of the Muskeg River, shifting to coarse gravel and boulders in the downstream 15 km.

Sekerak and Walder (1980) restricted their investigation of the Steepbank River to the downstream reaches. Here, erosional habitats prevail. Although Reach 5 is depositional in nature, there is a shift from fine to coarse substrates and from pools to riffles in the downstream 45 km of the river. Reach 2 is characterized by canyon walls 60 km high.

5.2 BASELINE DATA

5.2.1 Discharge

Five Water Survey of Canada gauging stations within the eastern region were selected for study (Table 7; Figure 4). The stations were located near the mouth of the major rivers (Steepbank, Muskeg, Hartley, Firebag, and Richardson) and the recorded flow represented surface water drainage from each of the watersheds.

Mean daily discharge (1 in 5 days) is presented for the Steepbank (1976 to 1980), Muskeg (1976 to 1981), Hartley Creek (1976 to 1981), Firebag (1976 to 1979) and Richardson (1977 to 1979) rivers in Figures 21 to 25. The discharge years were selected for illustration because they corresponded to the water quality sampling regime.

Of the five rivers, the Firebag, with the largest drainage area (6138 km²), contributed the greatest flow to the Athabasca mainstem. The mean annual discharge for the Firebag River was $22.0 \text{ m}^3/\text{s}$, $30.0 \text{ m}^3/\text{s}$, and $27.4 \text{ m}^3/\text{s}$ in 1977, 1978, and 1979,

Station Description		Drainage Area (km)	rea Gauge Location (Lat N/Long W)		Period of Record	Gauge Type ^a	
07DA006	Steepbank R.	1379	57 111	00 24	17 63	1972-73 1974-pres.	RS RC
07DA008	Muskeg R.	1460	57 111	11 34	30 05	1974-pres.	RC
07DA008	Hartley Ck.	357	57 111	15 27	34 53	1975 1976-pres.	RS RC
07DC001	Firebag R.	6030	57 111	38 10	30 30	1971 1972-pres.	RS RC
07DD002	Richardson R.	2950	58 111	21 14	48 14	1970-pres.	RC

Table 7. Water Survey of Canada gauging stations in the east.

 ^{a}R = recording gauge; S = seasonal operation; C = continuous operation.

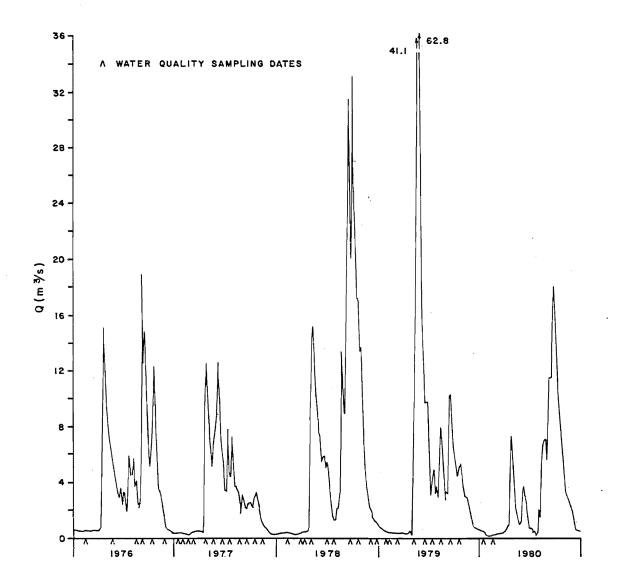
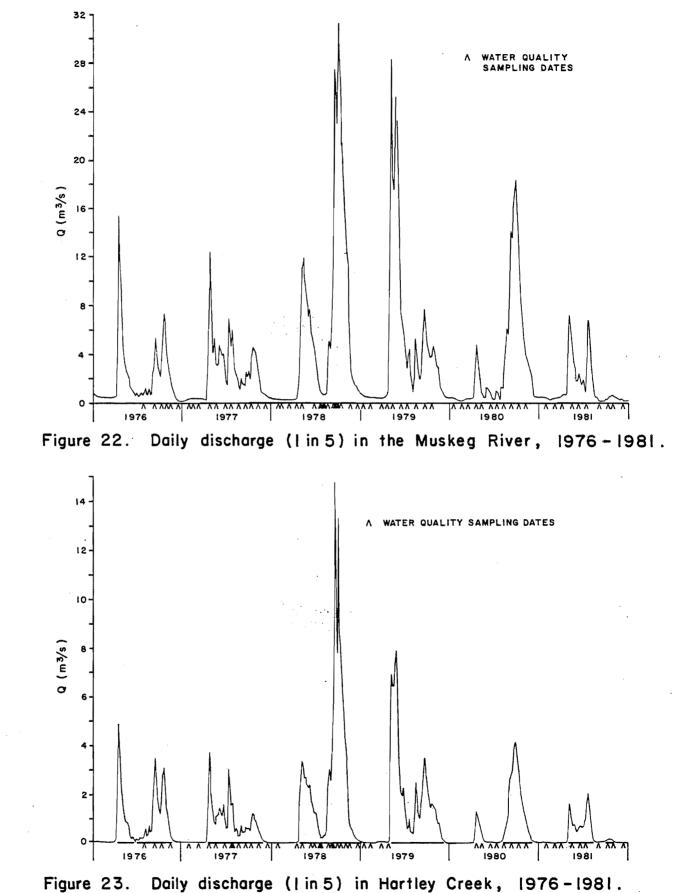
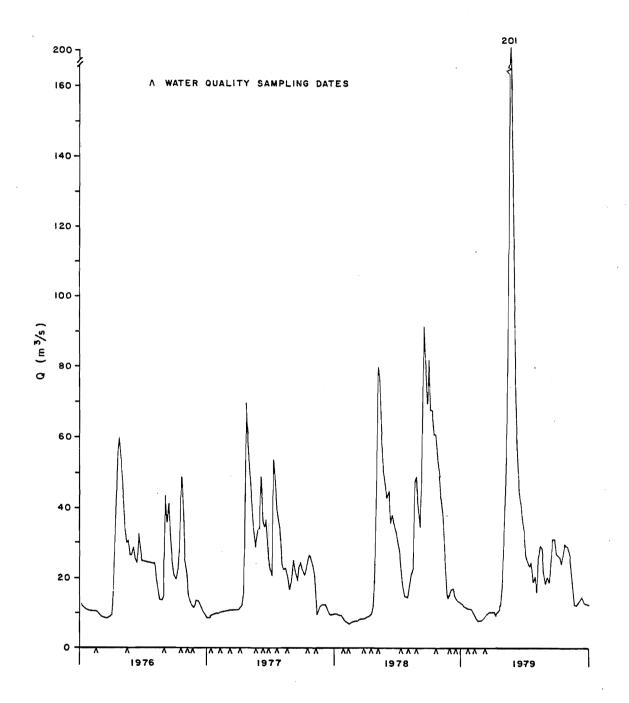
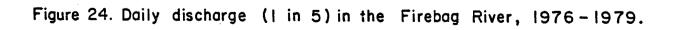





Figure 21. Daily discharge (1 in 5) in the Steepbank River, 1976-1980.

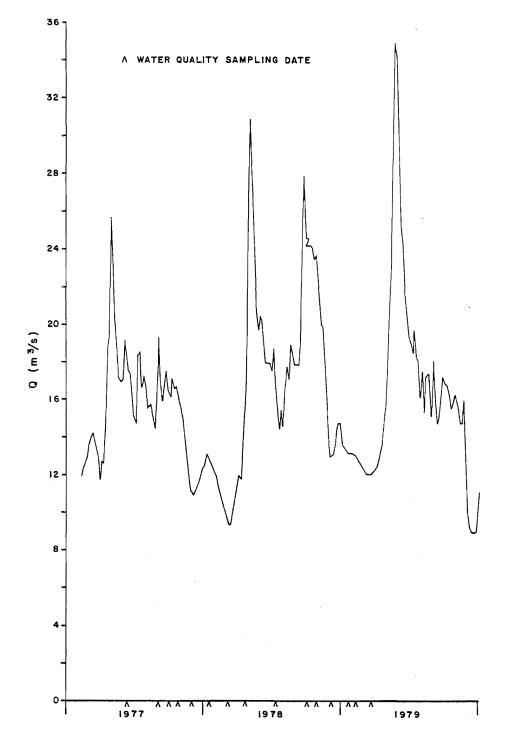


Figure 25. Daily discharge (1 in 5) in the Richardson River, 1977-1979.

respectively. Mean flow data were unavailable in 1976 because of interrupted records. Maximum flows occurred in April and May, with maximum mean monthly flows ranging from 37.7 to 113.5 m³/s between 1976 and 1979. Elevated flows occurred occasionally in summer or fall as a result of storms. Winter base flows ranged from 7.5 to 11.0 m³/s

The mean annual discharge for the Richardson River was $15.2 \text{ m}^3/\text{s}$, $17.0 \text{ m}^3/\text{s}$, and $16.1 \text{ m}^3/\text{s}$ in 1977, 1978, and 1979, respectively. Maximum mean monthly discharge occurred in May, with flows ranging from 18.4 to 28.9 m³/s during the three years. Elevated flows may occur in the fall as a result of flood conditions (e.g., 1976, 1978). Winter base flows ranged from 9 to $15 \text{ m}^3/\text{s}$.

The mean annual discharge for the Muskeg River varied considerably, ranging from 1.3 to 5.9 m³/s during a six-year period (1976 to 1981). Maximum mean monthly flows occurred during September in 1978 (21.9 m³/s) and 1980 (15.5 m³/s). Maximum mean monthly flows during spring runoff (April/May) ranged from 2.7 to 21.4 m³/s during the six years. Winter base flows ranged from 0.2 to 0.5 m³/s (Figure 22).

The discharge pattern for Hartley Creek, a major tributary of the Muskeg River, followed that of the larger river. Discharge differences occurred only in amplitude (Figure 23).

Mean annual flow in the Steepbank River ranged from 3.0 to 6.4 m³/s during the five-year period (1976 to 1980). Maximum mean monthly flow occurred in September (1978 and 1980) as a result of rainstorms. Maximum mean monthly flows during spring runoff ranged from 3.6 to 30.1 m^3 /s during the five years. Winter base flows ranged from 0.2 to 0.5 m³/s.

5.2.2 Water Quality

Water quality sampling sites within the eastern region are presented in Table 8. Only sites with sufficient data (more than 10 samples) were selected for analysis. Data used in the analysis are summarized in Appendix 10.4 (Tables 62 to 64). Water quality data were available for each of the major rivers within the region including Steepbank, Muskeg, Hartley, Firebag, and Richardson rivers. Table 8. Description, period of record and number of samples obtained for water quality sampling stations within the eastern region. See Figure 4 for location of sites.

Watershed	Code (00AT07-)	Lon	itud gitu M	de W	Description	Period of Record	Number of Samples
Muskeg	DA0079	57 111	08 36	05 08	Muskeg River near mouth	1976-78	10
	DA0080	57 111	11 34	30 05	Muskeg River at at WSC gauge	1976-81	77 ^a
	DA0081	57 111	08 35	03 53	Muskeg River above Shell pumping above Hartley Creek	1976-81	17 ^a
	DA0082	57 111	14 24	18 55	Hartley Creek 3.2 kmupstream from	1976-81 mouth	10
	DA0083	57 111	21 22	08 44	Stanley Creek	1976-77	11 ^a
	DA0084	57 111	18 22	14 30	Kearl Lake tributary 1.6 km upstream from Muskeg River		16 ^a
	DA0085	57 111	25 13	00 16	Muskeg River 11.2 km upstream from Stanle Creek		26 ^a
	DA0086	57 111	22 16	48 44	Muskeg tributary 5.6 km upstream from Stanley Creek and 0.8 km upstream from Muskeg River.		10
	DA0087	57 111	11 23	21 44	Hartley Creek SW for O.4 km from junction with SE fork		9
	DA0088	57 111	09 23	23 27	Hartley Creek, SE fork 0.4 km from junction with SW for	1976-77 [.] k	9
	DA0089	57 111	15 21	08 54	Tributary to Muskeg River, 4.8 km upstre from Hartley Creek	1977 am	7

continued . . .

Watershed	Code (00AT07-)			e N. de W. S)	Description	Period of Record	Number of Samples
	DA0090	57 111	15 27	34 53	Hartley Creek, O.4 km above confluence with Muskeg River, WSC gauge	1976-81	53 ^a
	DA0091	57 111	15 19	42 18	Tributary leading to Kearl Lake	1976-77	10
	DA0092	57 111	16 15	15 01	Kearl Lake outlet	1976-78	10
	DA0093	57 111	16 13	28 30	Kearl Lake inlet	1976-77	7
	DA0094	57 111	20 07	41 50	Muskeg River, 22.5 km upstream from Stanley Creek	1976-77	6
	DA0095	57 111	06 23	06 07	Hartley Creek, SW fork 16 km from junction with SE fork	1976-77	10
	DA0096	57 111	04 11	22 18	Hartley Creek, SE fork 21 km from junction with SW fork	1976-77	8
Steepbank	DA0060	57 111	00 24	17 53	Steepbank River, 7.2 km upstream fro mouth, WSC gauge	1976-80 om	39 ^a
Firebag	DC0010	57 111	38 10	30 30	Firebag River, WSC gauge	1976-79	31 ^a
	DC0011	57 111	44 21		Firebag River near mouth	1977	3
	DC0020	57 110	17 27	20 50	Lost Creek, 0.8 km above mouth, WSC gauge	1976-78	9
Richardson	DD0020	58 111	21 14	48 14	Richardson River WSC gauge	1977-79	15 ^a

Table 8. Concluded.

a Sites with sufficient numbers to be analysed.

5.2.2.1 <u>Routine parameters</u>. A summary of routine parameters for the region is presented in Appendix 10.4 (Table 62).

Surface waters of the Richardson River are relatively low in pH levels (6.7 to 7.8), poor in buffering capacity (alkalinity, maximum 47 mg/L) and low in conductivity (maximum 100 uS/cm). These water quality values, which are characteristic of surface waters flowing over granite rock of the Precambrian Shield, clearly differed from waters of other drainages (Steepbank, Firebag, and Muskeg) which lie within sedimentary rock of the Interior Plain. Surface waters of the Steepbank, Muskeg, and Firebag watersheds were relatively high in pH values (max. range 8.1 to 8.7), well buffered (alkalinity maximum 184 to 362 mg/L) with elevated conductivity levels (max. range 320 to 704 uS/cm). Values of filterable residue (total dissolved solids) varied directly with conductivity.

The relative contribution of major ions is presented in Figure 26. The extent of the ion concentration reflected in the Stiff diagrams illustrates the low conductivity and restricted range of ion values in the Richardson River compared to levels in the Steepbank, Muskeg, and Firebag watersheds. Calcium bicarbonate was the dominant dissolved salt in all watersheds.

Other differences between granite and sedimentary rock include the thickness of overlying top soil and weathering of rock material. Soil layers in the Precambrian Shield are thin and the rock material erodes slowly. Soil layers overlying sedimentary rock are thick and high in organic content; slumping of river banks contributes to the sediment load. Thus, median values of total organic carbon (3 mg/L) and total inorganic carbon (10 mg/L) observed in the Richardson River were noticeably lower than corresponding values for the other watersheds. The muskeg drainage of the Firebag, Muskeg, and Steepbank contributes to the organic carbon in the three watersheds.

Non-filterable residue (suspended solids) tends to vary directly with discharge levels. Thus, maximum residue values are recorded during spring runoff or other storm events. Again, values for the Richardson River were consistently lower than the other watersheds

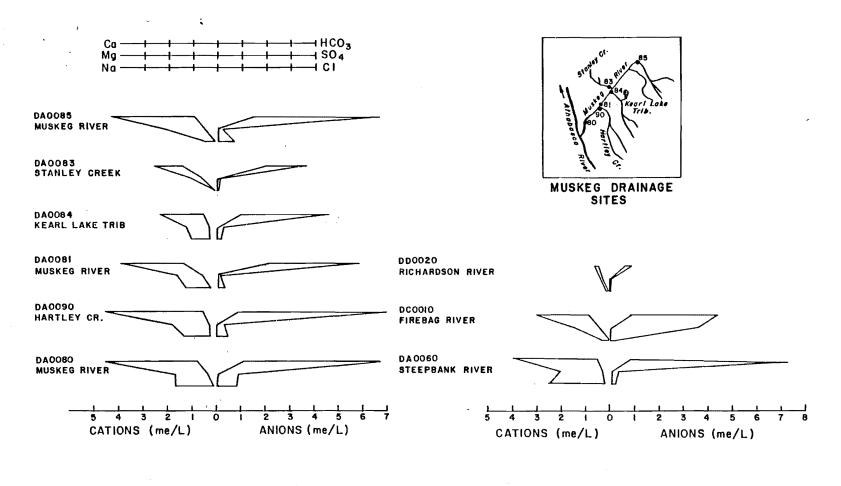


Figure 26. Maximum and minimum values (me/L) of major ions in rivers of the east.

а С

(Appendix 10.4, Table 62). The maximum value of non-filterable residue was recorded in Hartley Creek (459 mg/L).

Colour is a measure of water clarity. Maximum values were lower in the Richardson (50 units) and Firebag (90 units) than in the Steepbank (180 units), Muskeg (140 units), or Hartley Creek (140 units).

Sources of phenolic material include industrial and municipal wastes as well as decaying plant material. Values for the Richardson River were below the detection limit. Maximum recorded values for the other sampling sites exceeded the Alberta surface water objectives (0.0005 mg/L). Similarly, oil and grease values for the Richardson River (max. 0.7 mg/L) were substantially lower than for the other rivers (max. range 2.1 to 12.9 mg/L). Highest oil and grease levels were recorded for the Muskeg River.

5.2.2.2 <u>Nutrients</u>. Phosphorus and nitrogen are the major nutrients controlling plant growth. Accordingly, the constituents in surface water vary seasonally.

Total phosphorus and orthophosphate phosphorus (PO_4-P) are the two forms of phosphorus recorded in Appendix 10.4 (Table 63). Although total phosphorus increases with increasing discharge, it is the particulate not the dissolved portion which increases substantially as a result of runoff. PO_4-P increases as a result of enrichment (natural or domestic sewage). Total phosphorus values of the Richardson River (max. 67 ug/L) were less than the other rivers within the eastern region (max. range 138 to 330 ug/L), reflecting the low levels of erosion from granite material. The PO_4-P values for the Richardson River (max. 42 ug/L) were within the range recorded for the other sampling sites (max. range 28 to 150 ug/L). Highest values were recorded in the Steepbank Rivers.

Nitrate/nitrite, ammonia, and total kjeldahl nitrogen are the three forms of nitrogen regularly recorded in surface waters. Total kjeldahl nitrogen is a measure of total organic nitrogen plus ammonia. Inorganic nitrogen includes ammonia and nitrate/nitrite nitrogen. Nitrogen forms vary seasonally as a function of dilution at high discharge levels, temperature, uptake by plants, and loss to the atmosphere.

Richardson River ammonia values (max. 0.1 mg/L) were lower than the other sampling sites (0.2 to 3.9 mg/L). Values for other nitrogen forms in the Richardson River were within the range recorded at other sampling sites (Appendix 10.4, Table 63).

5.2.2.3 <u>Metals</u>. Concentrations of metals in surface waters are attributed to weathering of surficial material and groundwater discharge, as well as municipal and industrial wastes. The metals, which were predominant in surface waters of the eastern region, were iron, manganese, aluminum, and arsenic (Appendix 10.4, Table 64). Concentrations of boron, cadmium, chromium, lead, selenium, and silver in the rivers were all less than the Alberta Surface Water Objectives.

Median values of iron concentrations exceeded the Alberta objectives (300 ug/L or 0.3 mg/L) for all five eastern tributaries. The range of iron concentrations for the rivers are as follows:

Code	River	Range Fe (mg/L)
DA0060	Steepbank	0.42 to 3.70
DA0080	Muskeg	0.35 to 10.50
DA0090	Hartley	0.40 to 10.70
DC0010	Firebag	0.07 to 2.06
DD0020	Richardson	0.36 to 0.82

Iron concentrations typically vary directly with discharge, and suspended material is a result of weathering processes. The maximum iron concentration of the Richardson River was lower than the other tributaries and was related presumably to the lower erosion levels characteristic of granite rock.

Manganese is similar to iron in its chemical behaviour and is often found in association with iron (McNeely et al. 1979). Maximum manganese concentrations in surface waters of the Steepbank (500 ug/L), Muskeg (2300 ug/L), Hartley (2150 ug/L), and the Firebag (790 ug/L) rivers exceeded the Alberta Surface Water Objectives of 50 ug/L. Manganese concentrations in the Richardson River were within the provincial guidelines.

Aluminum concentrations in surface waters are limited to soluble salts. The maximum values of the eastern tributaries (except the Steepbank River) were less than 1000 ug/L (Appendix 10.4, Table 64) which is within the range of aluminum concentrations in most surface waters (McNeely et al. 1979). The maximum aluminum value (5600 ug/L) was recorded in the Steepbank River during runoff (1978 May 03).

Non-compliance with surface water objectives was noted for arsenic, copper, and mercury. Arsenic concentrations exceeded the ASWO (0.01 mg/L) in the Steepbank, Muskeg, Hartley, and Firebag Rivers. Most elevated values were recorded in winter months. Mercury concentrations exceeded the objectives (0.1 ug/L) in all five major tributaries.

5.2.3 Benthic Invertebrates

A summary of benthic invertebrate studies conducted in streams throughout the eastern region is presented in Table 9. Because several projects were initiated by proponents of oil sands development including Alsands (Mayhood et al. 1981; Corkum and McCart 1981), Petro Canada (Corkum and McCart 1981) and Sandalta (O'Neill et al. 1982), sampling sites were frequently restricted to lease areas. Other invertebrate studies were conducted to provide baseline data prior to oil sands development or as part of larger projects on aquatic resources (Barton and Wallace 1980; Walder et al. 1980).

Clearly, there was no consistant approach to the study of invertebrates with regard to type of sampler, sampling effort, mesh size through which samples were washed, or sample frequency. Also, no one sampler can be used with equal efficiency in erosional and depositional habitats. For example, kick nets, cylinder and surber samplers were used in erosional habitats; Ekman grab and airlift pumps were used in depositional habitats. Sampler selection is discussed in detail by Merritt et al. (1978) and Mayhood et al. (1981).

Water Body	Reference	Sample Year	Sampler Mesh Size	Sites	Month/Season	Habitat ^a	Dominant Taxa
Steepbank River	Barton & Wallace (1980)	1976-77	Kick - 15 min. 500 um	7 2	05, 07, 10, 01	E D	Chironomidae, Ephemeroptera Lower Phyla ^D , Oligochaeta
			Surber 202 um	2	06 to 10	E	Ephemeroptera, Simuliidae, Oligochaeta
			Airlift 202 um	1	06 to 10	D	Chironomidae
	Walder et al. (1980)	1978	Kick ? um	3 1	spring, fall	E D	Not indicated ^C
Muskeg River	Barton & Wallace (1980)	1976-77	Kick - 15 min. 500 um	6 3	05,07,10 01	E	Ephemeroptera, Chironomidae
	Corkum & McCart (1981)	1980	Airlift - 60s 500 um	8	09	D	Chironomidae, Mollusca, Oligochaeta
	Corkum & McCart (1982)	1981	Airlift - 30s 500 um	3	03, 05, 07, 10	D	Mollusca, Oligochaeta
			Kick - 30s 500 um	1	03, 05, 07, 10	. E	Ephemeroptera, Trichoptera
	Crowther & Lade (1981)	1979	Cylinder 250 um	2	07, 08, 09	Ε	Trichoptera, Ephemeroptera, Chironomidae
	(1301)		250 um	1	07,08	D	Diptera, Amphipoda
	Mayhood et al. (1981)	1980	Multiplate ^d	8	07, 08, 10 ^e	E/D	Ephemeroptera, Hydra

Table 9. Summary of benthic invertebrate studies in streams of the east.

continued . . .

Tab	le	9.	Continued.

Water Body	Reference	Sample Year	Sampler Mesh Size	Sites	Month H	labitat	Dominant Taxa
			Ekman 470 um	5	04, 06, 07, 08,10	D	Oligochaeta, Ceratopogonidae
			Cylinder 770 um	2	04, 06, 07, 08, 10) E	Elmidae, Plecoptera, Trichoptera
			Kick - 30s 770 um	5	04	E/D	Simuliidae, Elmidae
	Walder et al. (1980)	1979	Kick ? um	3 2	09 09	E D	Not indicated ^C "
Stanley Creek	Corkum & McCart (1981)	1980	Airlift - 60s 500 um	1	09	D	Chironomidae, Oligochaeta
Hartley Creek	Crowther (1979)	1976-77	Surber 250 um	3	05 to 10	E	Not indicated ^C
			Cylinder 250 um	3	05 to 10	E	Not indicated ^C
			Airlift 250 um	1	05 to 10	D	Not indicated ^C
			Ekman 250 um	1	05, 07 to 10	D	Not indicated ^C
	Hartland-Rowe et al. (1979)	1977	Cylinder 250 um	1	05, 07, 08	E	Chironomidae, Trichoptera, Ephemeroptera
			Surber 250 um	1	05, 07, 08,	E	n

continued . . .

Water Body	Reference	Sample Year	Sampler Mesh Size	Sites	Month	Habitat	'Dominant Taxa
	Mayhood et al. (1981)	1980	Ekman 470 um	1	04, 06, 07, 08, 1	0 D	Oligochaeta, Ceratopogonidae
			Kick - 30s 770 um	1	04	D	Simuliidae, Elmidae
	O'Neil et al. (1982)	1981	Cylinder 250 um	1	05, 07, 09	E	Chironomidae, Trichoptera
			Ekman 250 um	2	05, 07, 09	D	Chironomidae, Oligochaeta Nemata, Mollusca
	Walder et al. (1980)	1979	Kick ?um	4	09	D	Not indicated ^C
irebag River	Walder et al.	1978	Kick	4	Spring, fall	Ε	Not indicated ^C
	(1980)		? um	1	Spring, fall	D	Not indicated ^C
larguerite River	Walder et al.	1978	Kick	3	Spring, fall	Ε	Not indicated ^C
	(1980)		?um	2	Spring, fall	D	Not indicated ^C

Table 9. Concluded.

а b

- Habitat: E, erosional; D, depositional. Lower Phyla includes Porifera, Cnidaria, Turbellario, Nematoda, Nematomorpha, Hirudinea, Mollusca, Tardigrada, Crustacea.
- С d

Relative abundance not indicated, but list of taxa provided in original report. Multiplate (Hester-Dendy) artificial sampler. Multiplate samplers positioned in river during May/June and retrieved in July, August, and October; е many samples in August and October were lost.

? = Mesh size not reported.

Differences in faunal composition recorded in eastern tributaries reflect differences between erosional and depositional habitats (Table 9). Erosional habitats are characterized by shallow, swift flowing, well oxygenated water with a streambed of coarse substrates. Depositional habitats are characterized by deep, slow flowing water often low in oxygen and with a streambed of fine (organic, sand, silt) substrates. Clean water organisms such as Ephemeroptera, Plecoptera, Trichoptera, and Orthocladiinae occur in erosional habitats. Oligochaeta, Chironominae, and Mollusca are typically found in depositional habitats.

Because of differences in sampling techniques and level of taxonomic identification, and lack of access to the raw data, a summary of analyses of invertebrates or factors influencing their distribution will not be presented.

5.3 RELATIONSHIPS AMONG PARAMETERS

The objective was to develop relationships between water quality constituents and discharge. Since specific conductance is a function of discharge, a correlation analysis was performed between conductivity and other water quality parameters to select those few significant parameters from the suite available for subsequent analysis with reference to discharge.

Results from the correlation analysis performed using median values of water quality parameters (listed in Appendix 10.4, Tables 62 to 64) indicated that ammonia, iron, and manganese were significantly correlated with conductivity (P<0.01). These four parameters were used to develop regression relationships with discharge, using data from each sampling date. Relationships were developed for the Richardson (DD0020), Firebag (DC0010), Muskeg (DA0080), and Steepbank (DA0060) rivers using linear, log/linear, and log/log transformations of the data.

Equations with the best fit (i.e., least variability and highest R²) were selected and are presented in Table 10. The

Table 10. Summary of regression equations of conductivity (SC), ammonia (NH₃), iron (Fe), and manganese (Mn) with discharge for the major eastern rivers. Equations with the best fit of the data were of the following format:

linear	Y = A + Bx	(1)
log/linear	$Y = Ae^{BX}$	(2)
log/log	$Y = Ax^B$	(3)

X	Ξ	independent	variable	(discharge),	dt	=	degrees
		of freedom.					

Water Body	Equation Format (1, 2, 3)	df (n-2)	Y	A	В	R²	р (Но:В ₁ =О)
Richardson (DD0020)	3 1 2 1	13 11 12 12	SC NH ₃ Fe Mn	216.80 88.38 481.06 53.85	-0.334 -4.067 0.011 -1.293	.47 .33 .05 .27	L0.01 L0.05 ns ns
Firebag (DCOO10)	3 1 1 1	31 24 26 26	SC NH ₃ Fe ³ Mn	531.13 73.70 420.44 29.77	-0.332 -0.855 10.560 0.398	.69 .11 .35 .16	L0.001 ns L0.001 L0.05
Muskeg (DA0080)	3 3 3 3	66 66 66 66	SC NH ₃ Fe Mn	498.70 205.00 1822.56 260.86	-0.397 -0.835 -0.445 -1.012	.69 .29 .36 .44	L0.001 L0.001 L0.001 L0.001
Steepbank (DA0060)	3 2 1 2	37 33 37 37	SC NH ₃ Fe Mn	637.78 61.81 835.07 28.25	-0.649 -0.101 54.381 0.091	.89 .21 .21 .40	L0.001 L0.01 L0.01 L0.001

L = less than.

significance of each regression equation was tested by determining if the slope differed significantly from zero.

There was a significant inverse relationship between conductivity and discharge for four rivers. Thus, conductivity levels were high during low flow periods and vice versa. The four regression analyses were compared using analysis of covariance. However, since residual variances among rivers were heterogeneous (Bartlett's test for more than two groups), further comparisons of slope and intercept were inappropriate.

Ammonia concentrations were also inversely correlated with discharge, with highest concentrations of ammonia being present in winter months. The regression equation between variables was not significant for the Firebag River, but significant associations were established for the Richardson, Muskeg, and Steepbank rivers. Because the residual variances among the Richardson, Muskeg, and Steepbank rivers were heterogeneous, a statistical comparison among the regression lines was not conducted. There was, however, a trend for ammonia levels to decrease more rapidly with discharge in the Richardson River than in the Muskeg or Steepbank rivers.

There were no significant predictable relationships between either iron and discharge or manganese and discharge for the Richardson River. Iron and manganese typically increase in surface waters as a result of weathering of the surficial material. Because soil layers overlying granite rocks are usually thinner than soils overlying sedimentary rocks, no significant association between parameters was anticipated in the Richardson watershed.

There was a significant direct relationship between iron and manganese with discharge in the Firebag and Steepbank rivers. Surprisingly, there was an inverse relationship between these parameters in the Muskeg River, indicating that groundwater inputs may have elevated levels of iron and manganese.

5.4 IMPACT OF DEVELOPMENT

Several short-term monitoring programs were established throughout the Muskeg basin in response to anticipated oil sands development. Although development has ceased because of unfavourable economic conditions, one company (Alsands Energy Limited) had cleared and drained land from both mine and plant sites in 1980. A study conducted by Mayhood et al. (1981) was designed to determine the effect of mine and plant drainage on the Muskeg River.

Two events related to the development occurred during the environmental study:

- <u>Flood</u>. Overflow of plant and mine site drainage ditches (April 1980) resulted in the inundation of surrounding lands and subsequent elevated levels of suspended sediments and turbidity in the Muskeg River.
- 2. <u>Eutrophication</u>. Fertilizer application to the mine site drainage area resulted in temporary nutrient enrichment in the Muskeg River.

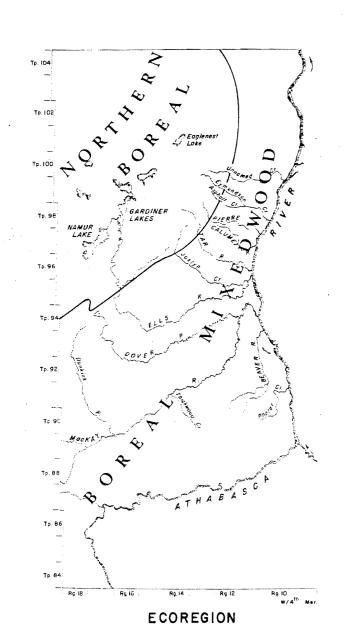
After these events, changes were noted in the benthic algae and invertebrates in the Muskeg River. Changes in the benthic invertebrate community which occurred during the June sampling period may have resulted from the April flood. In June, total benthic invertebrate biomass and the abundance of detritivores and predators were reduced in the Muskeg River about 100 m downstream from the drainage site. Although algal biomass (cell volume) was enhanced as a result of enrichment, no change in algal community composition was noted. These biological responses were short term, with levels returning to pre-flood conditions on subsequent sampling trips. A settling pond and stepped drainage ditch were constructed by the industry, improving the quality of the drainage water during flood events.

6. THE WEST

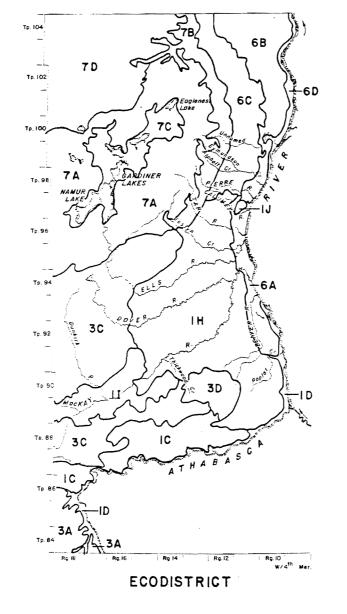
Watersheds which are west of the Athabasca mainstem include the Beaver-Poplar, MacKay, Ells, and several tributaries draining the east slopes of the Birch Mountains. Sampling programs were not established in the McIvor or Buckton watersheds, both of which are located in the northern portion of the region.

6.1 BASIN FEATURES

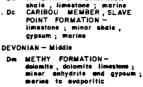
6.1.1 Land Formations

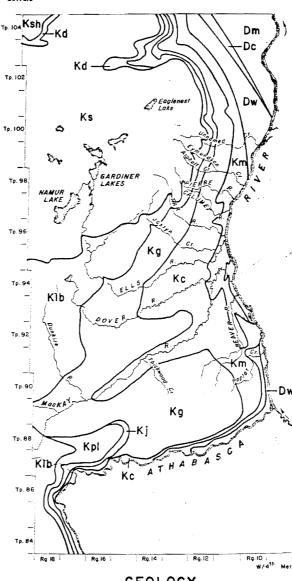

Land formations of the western region delineated by Turchenek and Lindsay (1982) are presented in Figure 27.

The Boreal Mixedwood and Northern Boreal ecoregions occur within the western region. The Northern Boreal Ecoregion occupies the northwest portion of the study area which includes the McIvor basin and Namur, Gardinar, and Eaglenest lakes, as well as the headwater reaches of several streams. The Boreal Mixedwood Forest occupies the remaining area of the region.

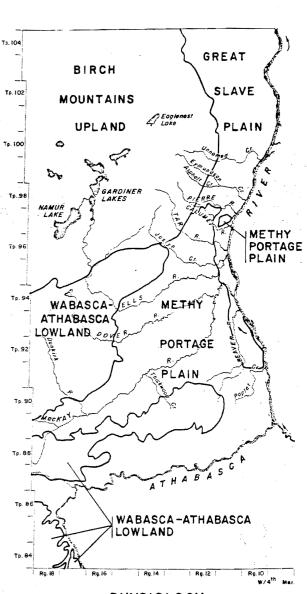

The east slope streams originate in the Birch Mountain Uplands of the Northern Boreal Forest where there are extensive areas of organic soils. The downstream portions of the rivers lie within the Boreal Mixedwood Forest, flowing through poorly drained soils of the Buckton Plain. The Pierre, Eymundson, and Asphalt rivers flow through the Embarras Plain to the Athabasca River. The downstream portion of the Calumet lies within the Muskeg River Plain.

Peat deposits occupy 60 to 80% of the Muskeg River Plain. Here, the surficial deposits overlie the oil sands of the McMurray Formation or limestone of the Devonian Waterways Formation. In contrast, the northern Embarras Plain is characterized by sandy outwash deposits with a few (ca. 10%) peatland areas and, in some places, large migrating dunes. Underlying Devonian rock results in the formation of sinkholes.


The Ells and the MacKay rivers flow through the same physiographic regions from headwater (Wabasca-Athabasca Lowland) and


- LEGEND : IC BRULE PLAIN ID MCMURRAY LOWLAND IN DOVER PLAIN 11 MacKAY PLAIN IJ FORT HILLS UPLAND 3A WABASCA PLAIN
- 3C DUNKIRK PLAIN
- 30 THICKWOOD HILLS UPLAND
- 6A MUSKEG RIVER PLAIN
- 6B EMBARRAS PLAIN
- SC BUCKTON PLAIN 6D ATHABASCA DELTA PLAIN
- 7A BIRCH MOUNTAINS UPLAND
- 78 BIRCH MOUNTAINS ESCARPMENT
- 7C GARDINER UPLAND
- 7D MOIVOR PLAIN

LEGEND CRETACEOUS - Upper DEVONIAN - Upper K: SMOKY GROUP-shaie; morine Kd DUNVEGAN FORMATION-sandstons, silistone, sility shale deitaic to morine Keh SHAFTESBURY FORMATION-DW WATERWAYS FORMATION -Dc shale ; marins CRETACEOUS - Lower Kp1 PELICAN FORMATION -sondstone; marine Kj JOLI FOU FORMATION -shole; marine Kg GRAND RAPIDS FORMATION -Kg GRAND RAPIDS FORMATION -sondstone, elitatone, shole, ceel; shoreline complex Kc CLEARWATER FORMATION -shole, siltstone, sandstone; morine Km McMURRAY FORMATION -sandstone, siltstone, oll impregnated; nonmarine te deltalc To IO4 Ksh/ -Kd


- CRETACEOUS Upper and Lower Kib LABICHE FORMATION -shale, sity shale; marine

GEOLOGY

Scale - 1 : 150000

Figure 27. Land formations of the western region. (Adapted from Turchenek and Lindsay, 1982)

℃ N

PHYSIOLOGY

middle (Methy Portage Plain) to downstream (Great Slave Plain) reaches. The Poplar-Beaver Creek drainage lies within the Methy Portage Plain (upstream and downstream reaches) and the Great Slave Plain (middle reaches).

Peat deposits and associated wetland vegetation occur in 80 to 90% of the headwater drainage area of the Ells and MacKay rivers. Peatlands occupy only 20 to 40% of the Methy Portage Plain (specifically the Dover Plain). Soils of the Dover Plain are characteristically saline. The Muskeg River Plain of the Great Slave Plain is characterized by glaciofluvial sands overlying oil sands and limestone.

6.1.2 Watersheds

Four major watersheds occur along the west bank of the Athabasca River, north of Fort McMurray, including (Figure 28):

- 1. Beaver-Poplar Creek;
- 2. MacKay River (including Dunkirk and Dover rivers);
- 3. Ells River;
- Several rivers draining the east slope of the Birch Mountains (Tar River, Pierre River, Asphalt Creek, and Eymundson Creek).

<u>The Beaver-Poplar Creek Diversion</u> was constructed in 1977 to divert water from the mining operations of Syncrude Canada Ltd. A dam constructed on the slow flowing Beaver River formed the Beaver Reservoir. Diversion canals drain water from the reservoir to Ruth Lake and from the lake into Poplar Creek Reservoir. Water draining the reservoir enters (via a spillway) Poplar Creek which subsequently flows into the Athabasca River. Four streams which originally entered Beaver Creek now enter a channel which is called the West Interceptor Ditch. Three of the streams flow north of the plant site to the original Beaver Creek. The fourth stream flows southward to the Beaver Creek Reservoir.

<u>The MacKay River</u> watershed (5517 km²) is the largest basin in the west bank region (Sekerak and Walder 1980). The MacKay River flows northeasterly for 200 km with an average gradient of 0.2% and drains an area of 2350 km². The Dunkirk (2183 km²) and Dover (984 km²) sub-basins

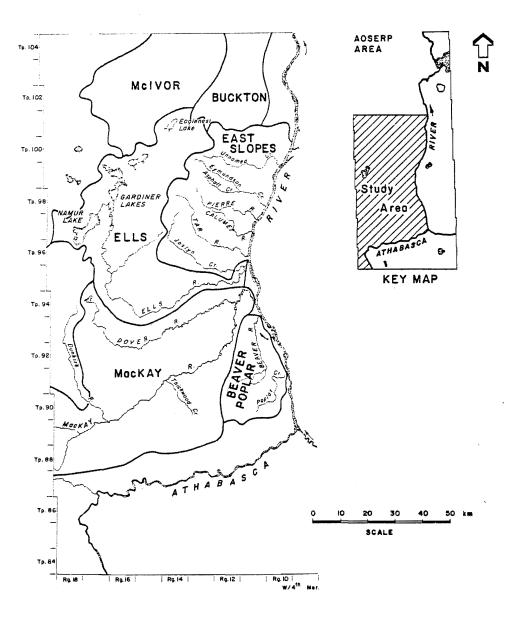


Figure 28.

West surface water drainage . (Adapted from Neill and Evans, 1979)

drain muskeg areas. The Dunkirk flows 150 km southeasterly and enters the MacKay River 89 km upstream from its confluence with the Athabasca River. The Dover flows northeasterly and enters the MacKay River 16 km upstream from its mouth.

<u>The Ells River</u> watershed (2707 km²) has a mean gradient of 0.2% (Northwest Hydraulics Consulting Ltd. 1975; Hickman et al. 1980). Joslyn (264 km²) and Chelsea (202 km²) creeks are the two major sub-basins within the watershed. Lakes in the Birch Mountain headwaters also drain (1191 km²) into the Ells River. The high storage capacity of the basin, owing to large lake and muskeg areas, moderates surface runoff and maintains high base flows in winter.

East draining streams of the Birch Mountain uplands include:

- 1. Tar River (324 km²);
- 2. Calumet River (179 km²);
- 3. Pierre River (137 km²);
- 4. Unnamed River (337 km²); and
- 5. Eymundson Creek (303 km²).

Permafrost conditions probably contribute to valley wall instability in the Birch Mountain region. Characteristic stream bank slumping results in high sediment loads for the rivers.

6.1.3 Physical Description of the Study Streams

Beaver Creek Reservoir (max. depth 8 m) and Poplar Reservoir (max. depth 16 m) are the two lentic areas formed by the diversion scheme of Syncrude Canada Ltd. Groundwater discharge from the mine enters the Beaver Creek Reservoir and ultimately enters the Athabasca River via diversion canals through Ruth Lake, Poplar Creek Reservoir, and Poplar Creek.

Prior to diversion, the lower section of Poplar Creek was characterized as a slow moving meandering stream with sand/silt substrates. This section of Poplar Creek was subsequently channelized to receive increased flows (Noton and Chymko 1978).

The MacKay River is characterized by depositional and erosional habitats. Sekerak and Walder (1980) subdivided the MacKay

River into seven reaches including five relatively long (26 to 46 km) upstream and two short (1.4 to 3 km) downstream reaches (Figure 29). The two depositional upstream reaches of the MacKay River are characterized by a gradual slope (0.5 to 0.7 m/km), pools, fine substrates, and stable banks. The middle three reaches are steeper (1.3 to 2.4 m/km) with a series of riffles and pools, variable substrates depending on current regime, and unstable banks. The two downstream reaches of the river flow through a canyon with high (40 to 50 m) valley walls. The current regime is swirling and the streambed is composed of coarse substrates. Bitumen is present in valley walls and stream substrates.

The Ells River is variable in slope throughout its length (Sekerak and Walder 1980). The gradient of the headwater reaches (ca. 20 km) which drain the Birch Mountains are very steep (5.0 to 7.2 m/km) with a series of riffles and pools as well as coarse substrates. In the mid portion of the Ells River (ca. 130 km) the gradient is reduced (1.9 to 4.1 m/km), but erosional conditions (riffles, coarse substrates) prevail. There is a shift to depositional habitats in the downstream section of the river.

Corkum et al. (1982) outlined the reach characteristics of streams draining the east slope of the Birch Mountains. The headwaters and mid regions of the Pierre and Asphalt rivers are characterized by erosional habitats (steep gradient, coarse substrates, riffles). In contrast, upper Eymundson Creek and the Calumet River are depositional for most of their lengths. The channel of the Calumet is ill-defined and beaver activity has impounded large areas of surrounding forests. All streams are depositional at their confluence with the Athabasca River.

6.2 BASELINE DATA

6.2.1 Discharge

Of the several gauging stations established within the western region, three were selected for study (Table 11; Figure 4). The

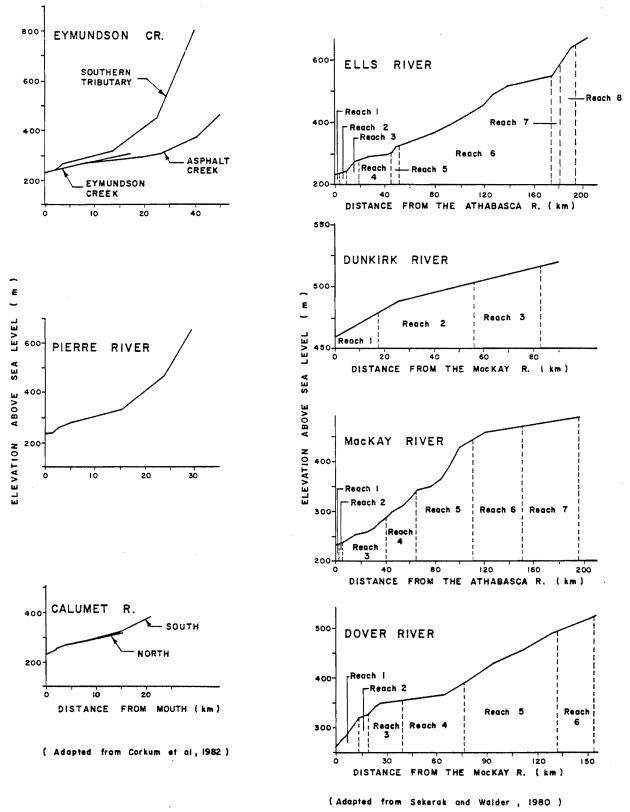


Figure 29. Elevation profiles of rivers in the western region

Station		Drainage Area (km²)	Gauge (Lat I			Period of Record	Gauge Type ^a
07DA005	Beaver River near Fort MacKay	454	57 111	06 38	00 00	1961-66 1972-74 1975	RS Reg 75 MC M
07DA007	Poplar Creek	151	56 111	54 27	50 35	1972 1973-83	M Reg 76 RC
07DA010	Ells River below Gardiner Lakes	1380	57 112	22 33	30 40	1975-78	RC
07DA011	Unnamed Creek near Fort McMurray	274	57 111	39 31	31 11	1975-79 1980-83	RC RS
07DA012	Asphalt Creek	148	57 111	32 40	20 36	1975-77	RC
07DA013	Pierre River	123	57 111	27 39	55 14	1975-77	RC
07DA014	Calumet River	183	57 111	24 40	12 57	1975-77	RC
07DA015	Tar River	301	57 111	21 45	14 29	1975-77	RC
07DA016	Joslyn Creek	257	57 111	16 44	27 30	1975-79 1980-83	RC RS
07DA017	Ells River near mouth	2410	57 111	16 42	04 51	1973-83	RC
07DA018	Beaver River above Syncrude	165	56 111	56 33	29 54	1975-77 1979-83	RC RC
07DA019	Tar River (upper station)	103	57 112	29 01	05 10	1976-77	RC
07DB001	MacKay River near Fort MacKay	5550	57 111	12 41	38 36	1972-83	RC
07DB002	Dover River near- mouth	963	57 111	10 47	12 38	1975-77	RC

Table 11. Water Survey of Canada river gauging stations in the west.

 a R = recording gauge; S = seasonal operation; C = continuous operation.

selected stations were downstream locations on the Poplar, MacKay, and Ells rivers where flow was measured using a continuous recording gauge.

Mean daily discharge (1 in 5 days) is presented for Poplar Creek (1976 to 1982), the MacKay River (1976 to 1980) and the Ells River (1976 to 1978) (Figures 30, 31, and 32). The period of discharge record was selected to correspond to the water quality sampling regime.

Mean annual discharge for Poplar Creek ranged from 0.35 to 1.79 m³/s during a seven-year period (1976 to 1982). Maximum mean monthly flows occurred during late summer in 1976 (September, 5.94 m³/s), 1978 (September, 9.20 m³/s) and 1980 (August, 5.54 m³/s). Maximum mean monthly flows during spring runoff ranged from 0.72 to 9.93 m³/s during the seven years. There is no flow during winter.

Since the Poplar/Beaver Creek diversion, the discharge regime at Poplar Creek is typically bimodal. During the open water season, saline groundwater that enters the Beaver Creek Reservoir is diluted and eventually flows into the Athabasca River via Poplar Creek. In the fall, water levels in the Beaver Creek Reservoir are lowered, increasing flow in Poplar Creek. Subsequently, no reservoir (saline) release occurs over the winter months despite the continous groundwater discharge to the reservoir.

The MacKay River watershed has the largest drainage area (5550 km^2) within the western region. The mean annual discharge ranged from 5.89 to 18.17 m³/s during the five-year period (1976 to 1980). Maximum mean monthly flows ranged from 14.57 to 65.94 m³/s over the five years. Peak flows occurred as a result of spring runoff (1976, 1979) or summer rainstorms (1977, 1978, 1980). Minimum winter flows ranged from 0.2 to 0.4 m³/s.

Maximum mean monthly flow in the Ells River occurred in April $(21.5 \text{ m}^3/\text{s})$, July $(7.81 \text{ m}^3/\text{s})$, and May $(16.22 \text{ m}^3/\text{s})$ in 1976, 1977, and 1978, respectively. Minimum daily discharge ranged from 0.40 to 0.91 m³/s during the three years.

Flow from most of the streams originating in the Birch Mountains (Tar, Calumet, Pierre, Asphalt/Eymundson) enters the Athabasca mainstem directly. Joslyn Creek enters the Ells River before draining

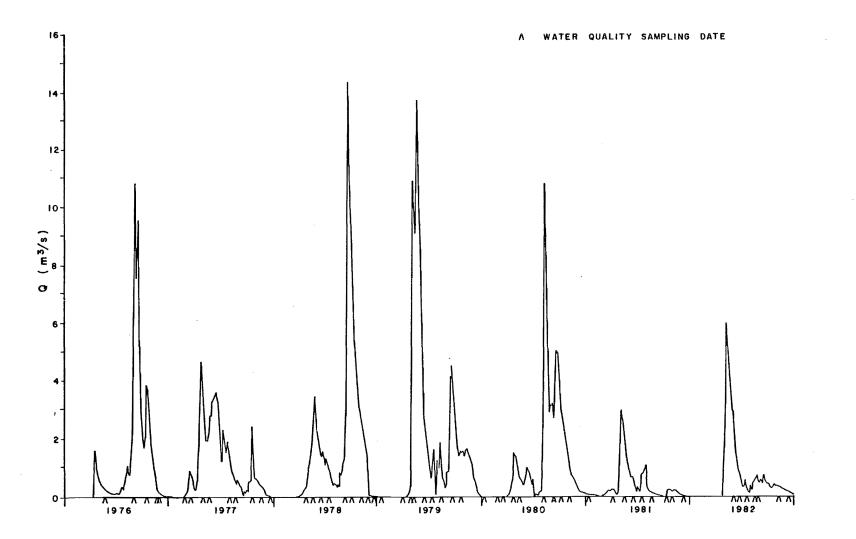


Figure 30. Daily discharge (1 in 5 days) in Poplar Creek (WSC Station No. 07DA007), 1976-1982 .

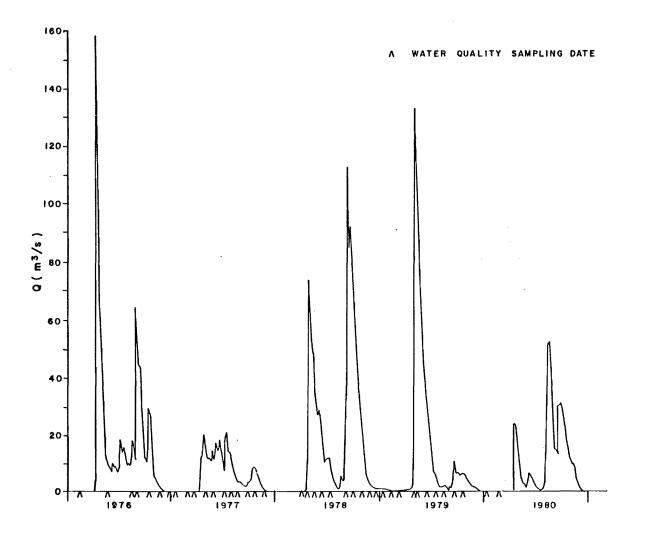


Figure 31. Daily discharge (1 in 5 days) in the MacKay River (WSC Station No. 07DB001), 1976-1980

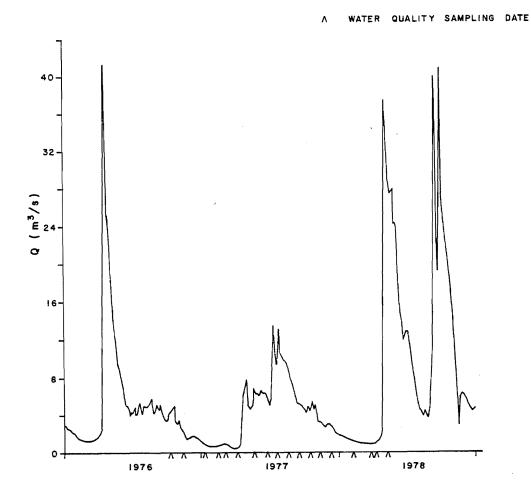


Figure 32. Daily discharge (1 in 5 days) in the Ells River (WSC Station No. 07DA017), 1976-1978.

into the mainstem. Patterns of discharge regime for the Pierre River and Asphalt Creek show that flow contribution of these streams is minor compared to other rivers of the western region (Figures 33 and 34).

6.2.2 Water Quality

The description of all water quality sampling sites and period of record are presented in Table 12. A tabular summary of water quality constituents is presented for 20 sites for which there were sufficient data (more than 10 samples) (Appendix 10.5, Tables 63 to 65).

6.2.2.1 <u>Routine parameters</u>. The surface waters of the western region are neutral to alkaline (Appendix 10.5, Table 65). Most surface waters in the region are classified as hard (121 to 180 ug/L) to very hard (>180 mg/L) (McNeely et al. 1979). Softer waters were characteristic of sites along the Ells River and Thickwood Creek as indicated by median hardness values ranging from 59 to 90 mg/L.

Total salt concentration as a measure of specific conductivity was exceptionally high in Poplar Creek, Beaver River, Calumet River, and Eymundson Creek compared to other rivers in the region (Figures 35, 36, and 37). The elevated saline concentrations in these rivers are a function of groundwater inputs.

Dissolved sodium chloride salts were dominant in the Beaver River, Calumet River, and Poplar Creek. Sodium and calcium bicarbonates were prevalent in the Dover and MacKay rivers; magnesium and bicarbonate were dominant in Eymundson Creek. In other streams of the region, calcium bicarbonate was the major dissolved salt.

Suspended particulate material in the water was measured by turbidity and non-filterable residue (NFR) tests. Streams draining the Birch Mountains had elevated median values of these constituents (Appendix 10.5, Table 65). Bank slumping along these streams contributes to the suspended particulates. Elevated maximum levels of turbidity and NFR were noted at sites on the Beaver River, Bridge Creek, and the MacKay River (Hwy. 63), but likely were related to soil erosion as a result of industrial activity or road construction.

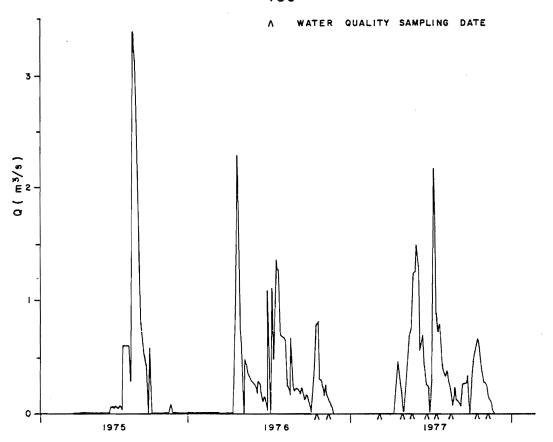


Figure 33. Daily discharge (| in 5 days) in the Asphalt Creek (WSC Station No. DA0120), 1975-1977.

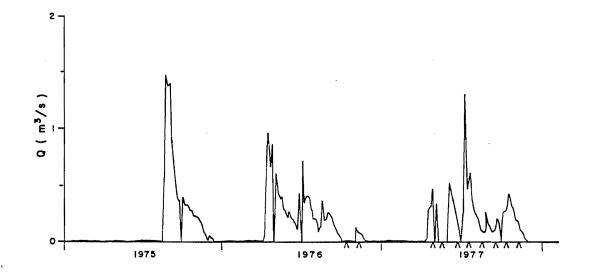


Figure 34. Daily discharge (| in 5 days) in the Pierre River (WSC Station No. DA0130), 1975-1977.

Watershed	Code (00AT07-)		ituc ngitu M	le N 1de W S)	Description	Period of Record	Number of Samples
Poplar Creek	DA0070	56 111	54 27	50 16	Poplar Creek at Hwy. 63	1976-83	39 ^a
Beaver River Bridge Creek	DA0179	57 111	0 37	58 28	Beaver River inside Syncrude	1976	2
	DA0180	56 111	56 33	29 54	Beaver River above Syncrud	1977-78 e	18 ^a
	DA0181	57 111	6 37	54 22	Beaver River at Hwy. 63	1976-78	21 ^a
	DA0182	57 111	7 37	17 30	Bridge Creek Diversion at Hwy. 63	1976-80	32 ^a
	DA0183	57 111	7 36	9 20	Bridge Creek before confl. Athabasca	1980-81	17 ^a
MacKay	DB0011	57 111	12 41	38 36	MacKay River at Hwy. 63	1976-80	40 ^a
	DB0020	57 111	10 47	12 38	Dover River 3.2 km above confl. MacKay	1976-78	17 ^a
	DB0030	56 112	51 42	20 40	Dunkirk River near Ft. MacKay	1976-79	29 ^a
	DB0040	56 112	53 10	55 15	Thickwood Creek above confl. MacKay	1976-78	15 ^a
Ells	DA0098	57 111	18 40	23 20	Ells River near the mouth	1976-79 1	13 ^a
	DA0100	57 112	22 33	30 40	Upper Ells River below Gardiner L.	1976-79	27 ^a

Table 12. Description, period of record, and number of samples obtained for water quality sampling stations within the western region. See Figure 4 for location of sites.

continued . . .

Table 12. Continued.

	Code (00AT07-1)		itud	le B Ide W		Period o	f Number
Watershed		(D	M	S)	Description	Record	of Samples
	DA0160	57 111	16 44	27 30	Joslyn Creek 3.2 km above Ells River	1976-79	22*
	DA0170	57 111	16 42	4 51	Lower Ells River 3.2 km above confl. Joslyn	1976-78	18*
Rivers draining east slopes of Birch Mountains	DA0110	57 111	39 31	31 11	Unnamed Creek north of Fort McMurray	1976-79	17*
	DA0111	57 111	39 21	31 12	Small trib. to Unnamed Creek	1976	1
	DA0115	57 111	39 31	30 14	Unnamed Creek near the mouth	1976	2
	DA0150	57 111	21 45	14 29	Lower Tar River	1976-78	15*
	DA0151	57 111	19 40	20 55	Tar River near mouth	1976	3
	DA0190	57 112	29 1	5 10	Upper Tar River	1976-78	12*
	DA0130	57 111	27 39	55 14	Pierre River	1976-78	12*
	DA0131	57 111	27 37	1 29	Pierre River near mouth	1976	4
	DA0120	57 111	32 40	20 36	Asphalt Creek near Fort MacK	1976-77 ay	10*
	DA0121	57 111	33 39	10 20	Eymundson Ck upstream of Asphalt	1976-77	11*
	DA0122	57 111	29 34	27 7	Eymundson at the mouth	1976	1
	DA0140	57 111	24 40	12 57	Calumet River near Fort MacKay	1976-78	13*

continued

Table 12. Concluded.

Watershed	Code (00AT07-1)	Lon			Description	of Number of Samples
	DA0141	57 111	24 39	38 57	Calumet River near the mouth	6
8						

a Sites with sufficient samples to be used in analysis.

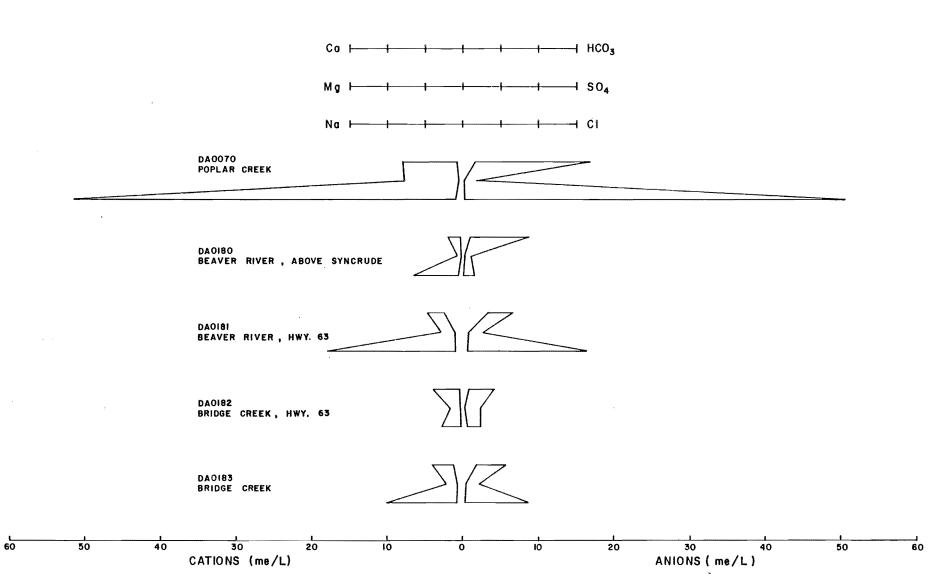


Figure 35. Maximum and minimum values (me/L) of major ions in the Beaver – Poplar drainage .

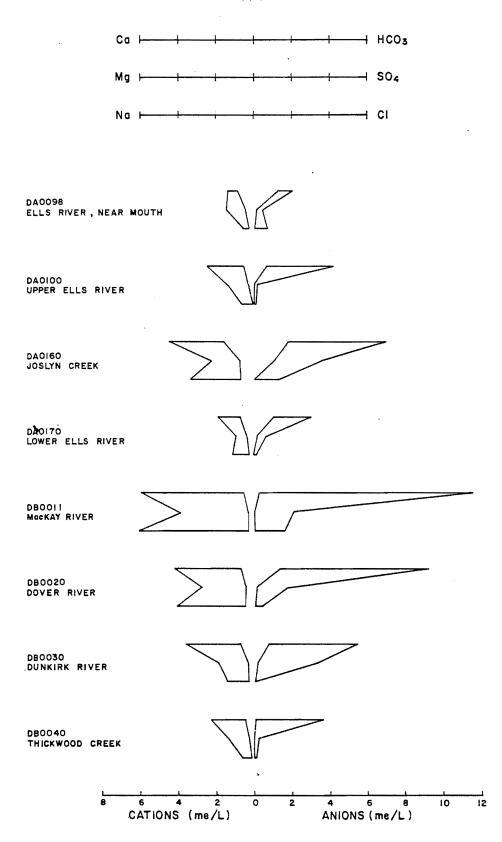
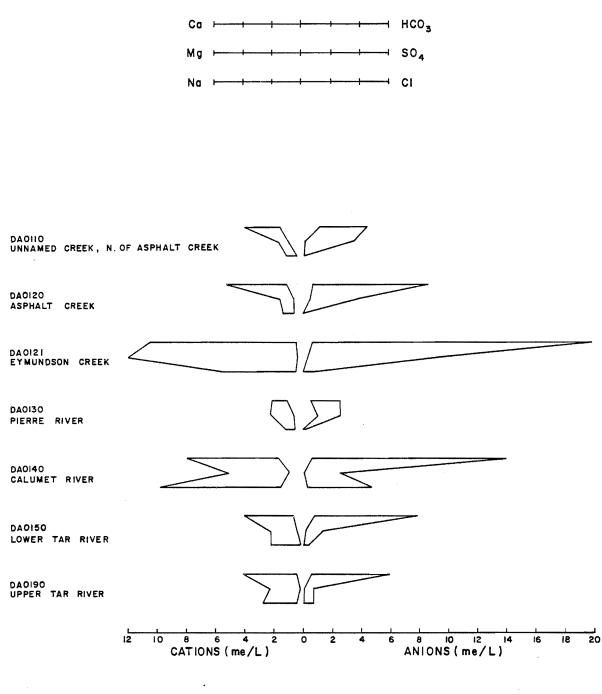



Figure 36. Maximum and minimum values (me/L) of major ions in the Ells and MacKay drainages .

Figure 37. Maximum and minimum values (me/L) of major ions in streams draining the east slopes of the Birch Mountains.

,

Total organic carbon is a measure of biological activity. Elevated levels were prevalent in surface waters throughout the region, but particularly in the Calumet and Beaver/Bridge Rivers (Appendix 10.5, Table 65).

The presence of phenols as well as oil and grease in surface waters is the result of industrial and municipal activity. Elevated levels of these parameters occurred at river sites associated with oil sands development. Median values of phenolic material for Poplar Creek (DA0070) and Bridge Creek (DA0183) were 0.003 mg/L and 0.006 mg/L, respectively. Median values for all other river sites were less than or equal to 0.001 mg/L. The median value of oil and grease for Bridge Creek (DA0183) was 1.4 mg/L. Median values for all other river sites were less than 1.0 mg/L.

6.2.2.2 <u>Nutrients</u>. Major forms of phosphorus and nitrogen are presented in Appendix 10.5 (Table 66).

Elevated concentrations of total phosphorus were exhibited in the Asphalt, Eymundson, Calumet, lower Tar, and Josyln Rivers. The median (113 to 150 ug/L) and maximum (360 to 720 ug/L) values of total phosphorus for these streams draining the Birch Mountains may reflect erosional processes within the watershed. Similarly high concentrations of total phosphorus were recorded for the Beaver and Dunkirk rivers (Appendix 10.5, Table 66).

Orthophosphate phosphorus (PO_4-P) , an indicator of enrichment, exhibited the highest median values in the Calumet (37 ug/L) and MacKay (24 ug/L) rivers. Median values at all other sites ranged from less than 10 to 20 ug/L. The highest maximum values were recorded at sites on the Beaver River above Syncrude Canada Ltd. (235 ug/L) as well as on the Dunkirk (180 ug/L), MacKay (100 ug/L), and Joslyn (110 ug/L) rivers.

Total kjeldahl nitrogen (TKN) is a measure of inorganic (ammonia) and organic nitrogen. Median TKN values for rivers in the western region ranged from 0.78 to 2.45 mg/L. Sites with the highest median TKN concentrations were located on the Calumet (2.45 mg/L) and

Eymundson (1.86 mg/L) rivers. Maximum TKN concentrations ranged from 1.68 to 7.85 mg/L. High concentrations were recorded for the upper Ells (7.85 mg/L), Asphalt (5.60 mg/L), Eymundson (5.10 mg/L), lower Tar (4.40 mg/L), and Calumet (4.23 mg/L) rivers.

Median ammonia concentrations ranged from 0.03 to 0.35 mg/L. Sites on the Calumet River (0.35 mg/L) and Beaver River at Hwy. 63 (0.19 mg/L) exhibited the highest median concentrations of ammonia. Maximum concentrations of ammonia ranged from 0.05 to 1.14 mg/L, with sites on Poplar Creek (1.14 mg/L) and the Calumet River (0.88 mg/L) exhibiting the highest values.

Nitrate/nitrite nitrogen is another form of inorganic nitrogen. Median concentrations of nitrate/nitrite nitrogen ranged from less than 0.01 to 0.09 mg/L. Sites on the lower (0.09 mg/L) and upper (0.06 mg/L) Ells River exhibited highest median values. The maximum concentrations of nitrate/nitrite nitrogen ranged from 0.06 to 1.0 mg/L. Highest values were recorded in Thickwood Creek (1.0 mg/L), a tributary of the Mackay River, and the MacKay mainstem (0.69 mg/L).

The east-draining rivers of the Birch Mountains were more productive in terms of total phosphorus and organic nitrogen than other rivers of the western region. In contrast, the Beaver/Poplar and MacKay drainages exhibited higher concentrations of PO_4 -P and inorganic nitrogen than the other rivers.

6.2.2.3 <u>Metals</u>. Summary data of metals in surface waters of the western region are presented in Appendix 10.5 (Table 67). Of these, seven are considered to be potentially toxic when present in excessive amounts including arsenic, cadmium, lead, mercury, selenium, and silver.

The median range of arsenic concentrations in the western rivers was from less than 0.05 to 1.2 ug/L, well below the surface water objective of 10 ug/L. Maximum values ranged from 1.5 to 17.3 ug/L. Lower Tar River (17.3 ug/L), Poplar Creek (16 ug/L) and the MacKay River at Hwy. 63 (13 ug/L) exhibited maximum values which exceeded the objective. The ASWO for cadmium is 10 ug/L. The median values are less than or equal to 1 ug/L for all rivers. Maximum values for most sites ranged from 1 to 6 ug/L. One site, Poplar Creek (16 ug/L), exceeded the ASWO.

The median values of chromium ranged from less than 3 to 4 ug/L, well below the objective of 50 ug/L. However, the range of maximum values of chromium was 5 to 205 ug/L. The three sites which exceeded the objectives were located within the Beaver/Poplar drainage (Appendix 10.5, Table 67).

Median values for lead concentrations were less than or equal to 2 ug/L for all sites. Maximum values for 19 of 20 sites ranged from 3 to 48 ug/L. The maximum lead concentration at Poplar Creek (175 ug/L) exceeded the ASWO of 50 ug/L.

Median values of mercury concentration at all sites were less than 0.1 ug/L, below the ASWO of 1 ug/L. Maximum values of mercury concentration which exceeded the objective were recorded at five sites including the Bridge (6.4 ug/L), Calumet (4.6 ug/L), Eymundson (2.7 ug/L), MacKay (2.1 ug/L), and Poplar (1.6 ug/L) rivers.

Dissolved selenium concentrations for median and maximum values at all 20 river sites were below the ASWO of 10 ug/L.

Median values of silver for river sites within the region were less than 1 to 2 ug/L. The range of maximum concentrations for 18 of 20 sites was 1 to 9 ug/L. Poplar Creek (28 ug/L) and the lower Tar (70 ug/L) exhibited high silver concentrations compared to the other 18 sites. Only the lower Tar River exceeded the ASWO of 50 ug/L.

In summary, the median concentrations of potentially toxic substrates were below the ASWO for all rivers examined within the western region. Of the seven metals, dissolved selenium was the only constituent with maximum values below the ASWO. In several instances the objectives were exceeded. Poplar Creek is of interest because maximum concentrations exceeded the ASWO for five potentially toxic metals including arsenic, cadmium, chromium, lead, and mercury. Other non-toxic metals detected in surface waters are frequently related to weathering of rock material. This group consists of aluminum, boron, cobalt, copper, iron, manganese, nickel, vanadium, and zinc.

Median values of aluminum concentrations in western rivers ranged from 40 to 328 ug/L with the exception of Asphalt Creek (1095 ug/L). Maximum concentrations ranged from 210 to 14 700 ug/L. Since aluminum is not considered to be a health problem in surface waters, objectives have not been established.

The median values of boron concentrations ranged from 60 to 340 ug/L, below the ASWO of 500 ug/L. The maximum values ranged from 100 to 1080 ug/L. Sites with boron concentrations exceeding the ASWO were located within the Beaver/Poplar, MacKay, and Birch Mountain east slope drainages (Appendix 10.5, Table 67).

No surface water objectives exist for cobalt. Median values ranged from less than 1 to 2 ug/L. Maximum values at most sites within the region ranged from 1 to 14 ug/L. Asphalt (28 ug/L) and Poplar (31 ug/L) creeks exhibited higher values.

Copper concentrations (median values) ranged from 1 to 8 ug/L, below the ASWO of 20 ug/L. Maximum values at most sites ranged from 4 to 33 ug/L with two sites, lower Tar River (114 ug/L) and the MacKay River (180 ug/L), exhibiting notably higher concentrations.

The ASWO for iron (300 ug/L) and manganese (50 ug/L) were established for aesthetic reasons because of taste and staining properties of the metals at high concentrations. Median (range 300 to 4325 ug/L) and maximum (range 1650 to 52 500 ug/L) values of iron exceeded the objectives at all river sites. Median manganese values ranged from 19 to 370 ug/L. Here, 14 of 20 sites representing streams draining the Birch Mountains and the Beaver/Poplar watershed exceeded the objectives. Maximum values (range 69 to 6550 ug/L) exceeded the objectives at all sites.

Nickel, vanadium, and zinc are frequently associated with oil sands. No ASWO exist for nickel or vanadium. Median values of nickel concentrations ranged from <2 to 12 ug/L. Maximum nickel

concentrations ranged from <2 to 46 ug/L, with Asphalt and Eymundson Creeks exhibiting the highest values. Median values of vanadium were low (range<1 to 1 ug/L). Maximum concentrations ranged from 1 to 24 ug/L, with the Beaver River at Hwy. 63 exhibiting the highest value.

The ASWO for zinc is 50 ug/L. Median values for all sites (range 3 to 30 ug/L) were within the objectives. Maximum values (24 to 155 ug/L) exceeded the objectives at sites within all watersheds throughout the region.

6.2.3 Benthic Invertebrates

A summary of benthic invertebrate studies, which were conducted in the Beaver/Poplar and MacKay rivers and streams of the Birch Mountain drainages, is presented in Table 13. Sampler type, mesh size, and sample frequency differed among studies conducted in the three drainages.

Surveys conducted on the MacKay River (McCart et al. 1978) and streams of the Birch Mountains (Corkum et al. 1982) were baseline studies. These studies provide a base against which future changes can be compared. The benthic surveys conducted on the Beaver/Poplar drainage to determine the effects of stream discharge on the biota (Noton and Chymko 1978; Boerger 1983, 1984) were impact studies.

Taxonomic differences of invertebrates among sample sites in the baseline studies reflected differences in habitat type (erosional versus depositional). Corkum et al. (1982) categorized organisms into taxonomic and functional feeding groups and related the groups to habitat types. The relative abundance of invertebrates was more similar among sites within the same habitat than among sites within the same drainage.

Noton and Chymko (1978) summarized changes in aquatic resources of water bodies associated with the Beaver/Poplar Creek diversion scheme. The initial effect of the spillway discharge was an increase in the relative abundance of benthic invertebrates in Poplar Creek downstream from the confluence with the spillway.

Water Body	Reference	Sample Year N	Sampler Mesh Size	Sites	Month	Habitat ^a	Dominant Taxa
Beaver Creek	Noton & Chymko (1978)	1977	Ekman 600 um	1	05,07,10	E	Chironomidae, Ephemeroptera (<u>Caenis</u>) Oligochaeta.
Poplar Creek	Noton & Chymko (1978)	1977	Cylinder 250 um	3	03 to 11	E	Above diversion: Chironomidae, Plecoptera, Trichoptera, Ephemeroptera Below diversion: Chironomidae, Trichoptera, Simuliidae.
	Boerger (1983)	1974-1982	Artificial ^b sampler 250 um	4	06,07	E	Above spillway: Simuliidae, Chironomidae, Ephemercptera (Baetidae). Below diversion: Chironomidae, Ephemeroptera (Baetidae).
	Boerger (1984)	1983	u	4	06	E	Above spillway: Chironomidae, Ephemeroptera (Baetidae) Below diversion: Simuliidae, Chironomidae, Ephemeroptera (Baetidae).
MacKay River	McCart et al. (1978)	1977	Surber 600 um	6 3	05 to 09	Ε	Oligochaeta, Chironomidae, Ephemeroptera, Plecoptera, Trichoptera
			Artificial sampler 600 um	3	05 to 09	Ε	Ephemeroptera, Chironomidae
East draining streams of	Corkum et al. (1982)	1981	Airlift - 30s 500 um	12	06	D	Sphaeriidae, (<u>Pisidium</u>), Oligochaeta, Chironomída (<u>Procladius</u>)
Birch Mts: Calumet, Pierre,			It	7	08, 09/10	D	и п
Asphalt, Eymunds	on		Kick – 30s 500 um	6	06	E .	Ephemeroptera (<u>Baetis</u>), Diptera (Simuliidae, <u>Metacnephia</u> , Plecoptera (<u>Nemoura</u>), Trichoptera (<u>Brachycentrus</u>)
			11	10	08, 09/10	Ε	 II II II

Table 13. Summary of benthic invertebrate studies in streams of the west.

^a Habitat; E, Erosional; D, depositional.
 ^b Artificial sampler: cylindrical wire barbecue baskets (length: 27 cm, diameter: 18 cm), each filled with 20 to 30 rocks.
 ^c Artificial sampler: rock-filled wire baskets (McCart et al. 1977).

Boerger (1983, 1984) showed that following the initial enhanced response by the biota to the spillway discharge, the rate of increase invertebrate density and taxa declined. Boerger (1983) suggested that increases in biota were a function of increased flow, temperature, and detritus from the epilimnetic discharge over the spillway as well as substrate changes resulting from channelization. Saline mine depressurization water released into Beaver Creek Reservoir had no significant effect on the benthos in Poplar Creek.

6.3 RELATIONSHIPS AMONG PARAMETERS

To select possible water quality parameters which may have significant associations with discharge, a correlation analysis was performed between conductivity (a known correlate of discharge) and other water quality constituents. Variables that would be autocorrelated with conductivity (ions) were not included in the analysis.

Results from the correlation analysis using median values of water quality constituents showed that only total inorganic carbon (TIC) was significantly correlated with conductivity at the 0.01 level.

Relationships among conductivity, TIC, and discharge were estimated using data from all sampling dates for the Poplar, Ells, and MacKay rivers. Regression analyses were performed using linear, log/linear, and log/log transformations of the data. Equations from those transformations yielding the best fit (i.e., least variable and highest R^2) were selected and are presented in Table 14.

There was an inverse significant relationship between both TIC and conductivity with discharge for all three drainages. Thus, levels of conductivity and TIC were high when discharge levels were low.

Because the residual variances among the rivers were heterogeneous (Bartlett's test, p < 0.05), comparisons among intercepts and slopes of the three regressions were considered inappropriate.

There was, however, a trend for conductivity levels to decrease more rapidly with discharge in Poplar Creek and the MacKay

Table 14. Summary of regression equations of conductivity (SC) and total inorganic carbon (TIC) with discharge for Poplar Creek, and Ells and MacKay rivers. Equations with the best fit of the data were of the following log/log format:

$$Y = AX^B$$

where: A = intercept, B = slope, Y = dependent variable (water quality), X = independent variable (discharge).

River	df (n-2)	Y	А	В	R²	p (Ho: B ₁ = 0)
Poplar	57	SC	723.4	-0.588	.31	L0.001
(DA0070)	27	TIC	38.6	-0.227	.32	L0.001
Ells	16	SC	311.1	-0.302	.73	L0.001
(DA0170)	16	TIC	27.5	-0.289	.59	L0.001
MacKaý	38	SC	801.9	-0.465	.83	L0.001
(DAO140)	32	TIC	76.4	-0.465	.86	L0.001

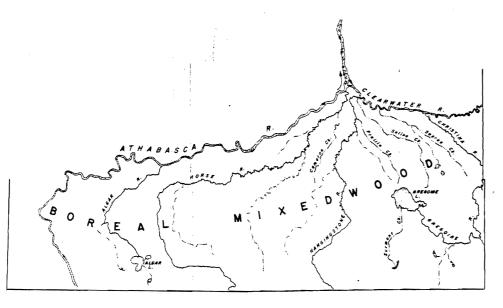
L = less than.

River than in the Ells River. The TIC appeared to decrease more rapidly with discharge in the MacKay River than in the other two rivers.

7. THE SOUTH

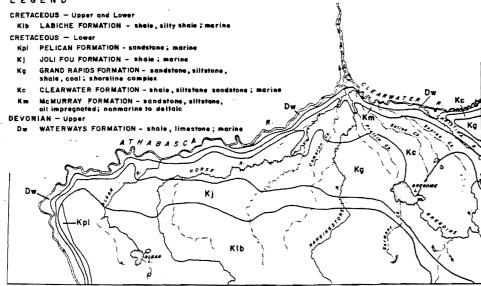
The southern region encompasses an area of 4700 km² extending south of Fort McMurray from the Athabasca and Clearwater rivers to the AOSERP boundary. There are ten rivers, several tributaries, and lakes within the region. A detailed report on Gregoire Lake is in progress (Akena in prep.) and will not be considered in this report. This study focuses on six major rivers (Horse, Hangingstone, Saline, Surmount, Christina, and Clearwater) for which there is an adequate water quality data set. References will be made to other streams in the region depending on available data.

7.1 BASIN FEATURES


7.1.1 Land Formations

Land formations of the southern region, adapted from Turchenek and Lindsay (1982), are presented in Figure 38. The region occurs within the Boreal Mixedwood Forest, much of which is poorly drained low lying muskeg.

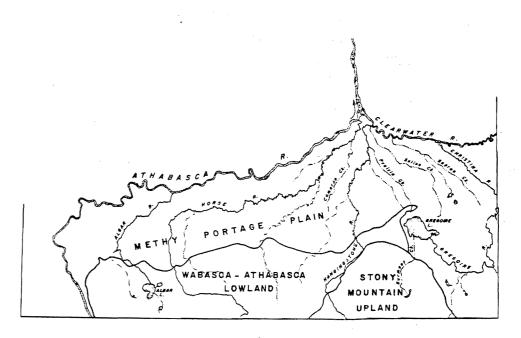
The bedrock geology of the Athabasca and Clearwater river valleys is characterized by limestone and shale. This narrow band at the northern boundary of the region constitutes the Waterways Formation of the Devonian period (Paleozoic era). Most of the southern region, however, is characterized by younger Cretaceous rocks (sandstone and shale) of the Mesozoic era.


Most of the tributaries in the south are low gradient rivers that meander through flood plains. The smaller tributaries, which drain muskeg areas, consist of a series of beaver ponds (Tripp and Tsui 1980). The downstream reaches of the six study rivers lie within the Methy Portage Plain, an undulating plain with low to moderate relief. White spruce and aspen forests are most common in the upland regions of the plain. Wetlands of low lying areas are characterized by black spruce and organic soils.

Where the Horse River enters the Athabasca mainstem and the Hangingstone and Christina join the Clearwater, the channels cut through

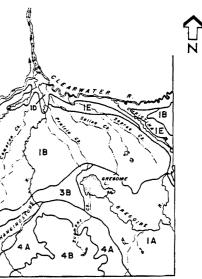
ECOREGION

LEGEND


GEOLOGY

-

Figure 38. Land formations of the southern region .


(adapted fram Turchenek and Lindsay 1982)

LEGEND IA GARSON PLAIN LB HANGINGSTONE PLAIN IC BRULE PLAIN ID MCMURRAY LOWLAND IE CLEARWATER PLAIN 3A WABASCA PLAIN 3B ALGAR PLAIN 44 CHEECHAM HILLS ESCARPMENT 48 HOUSE PLAIN 1C 38 ECODISTRICT

PHYSIOLOGY

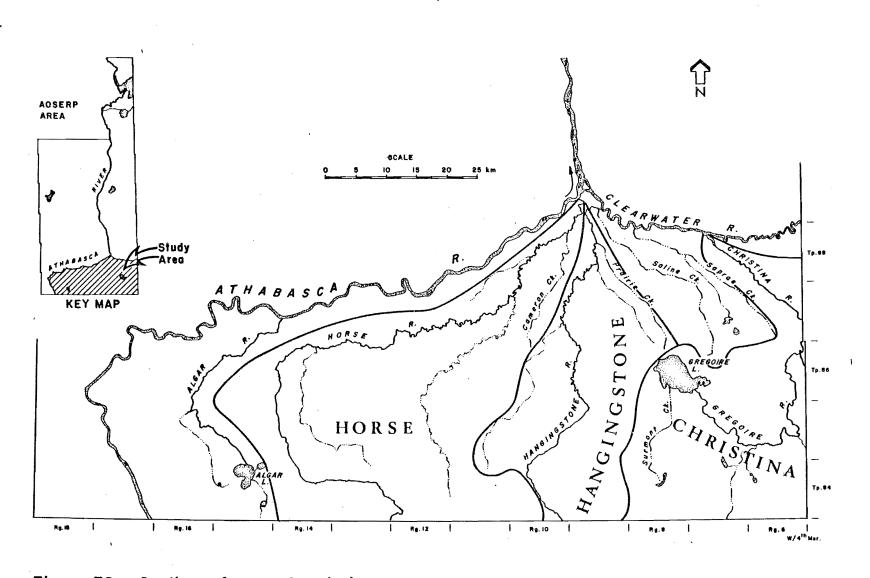
126

Scale - 1+1000000

steep valleys. Shrubs occupy the bottom lands; spruce and aspen, the valley walls. No vegetation occurs on the steep valley walls.

7.1.2 Watershed

Major drainage systems in the region include the Clearwater, Christina, Hangingstone, and Horse rivers (Figure 39). The following description of these rivers is summarized from Griffiths 1973; Northwest Hydraulics Consulting Ltd. 1975; Tripp and McCart 1979; and Tripp and Tsui 1980.


The Clearwater River drainage basin is 31 598 km² of which 16 572 km² occurs within Alberta (Northwest Hydraulics Consulting Ltd. 1975). The Clearwater flows a distance of about 65 km within the AOSERP study area before its confluence with the Athabasca River at Fort McMurray.

The large number of lakes within the Clearwater basin reduces runoff and moderates flood peaks (Northwest Hydraulics Consulting Ltd. 1975). However, during spring breakup, ice jams may develop on the Athabasca and Clearwater rivers, causing flood conditions in Fort McMurray.

The Christina River, a major tributary of the Clearwater River, drains an area of 13 380 km² and flows a distance of 326 km (Griffiths 1973; Northwest Hydraulics Consulting Ltd. 1975). Only the downstream 27 km of the Christina River occurs within the AOSERP study area.

The Gregoire River is the major tributary of the Christina River within the AOSERP study area. The Gregoire flows 83 km from Gregoire Lake to the confluence of the Christina River, draining 978 km² of the Christina basin. The Gregoire River meanders over fine substrate until near its mouth, where it cuts through a steep valley to the Christina River.

The Hangingstone River basin drains an area of 1074 km² (Northwest Hydraulics Consulting Ltd. 1975). The river originates near the southern boundary of the AOSERP study area and flows 98 km before

joining the Clearwater River near Fort McMurray. In the upper reach, stream gradient is reduced and the river meanders over fine sandy substrates. Stream gradient increases again near the mouth as the river cuts through a steep valley to the floodplain of the Clearwater River.

The Horse River basin drains an area of 2154 km², most of which occurs outside of the AOSERP study area. The Horse River originates in muskeg, flowing 200 km before joining the Athabasca River at Fort McMurray. About 1 km upstream of the confluence, outcrops of the McMurray Formation occur along the valley, forming steep bituminous banks.

7.1.3 Physical Description of Study Streams

One important aspect of the study streams is the shift from depositional to erosional habitats near their confluence with the Athabasca and Clearwater mainstems. The increase in slope near the mouths of these streams is observed in the elevation profiles presented in Figure 40.

The tributary streams (the Surmount River being the exception) originate in the plains and meander over mud substrates and through beaver ponds, with occasional stretches of fast flowing waters occurring over coarse substrates. The Hangingstone has a steeper gradient along its length than the other tributaries. Running water over coarse substrates in confined channels near the mouth of the tributary streams is more typical of headwater reaches in eastern deciduous forests or the foothills of the Rocky Mountains. The difference, however, is in the increased stream width, higher flows, less overhanging vegetation, and occasional slumping of valley walls in the downstream areas of the southern AOSERP tributaries.

7.2 BASELINE DATA

7.2.1 Discharge

The Water Survey of Canada has operated gauging or stage recorders at six locations within the south region, including four sites

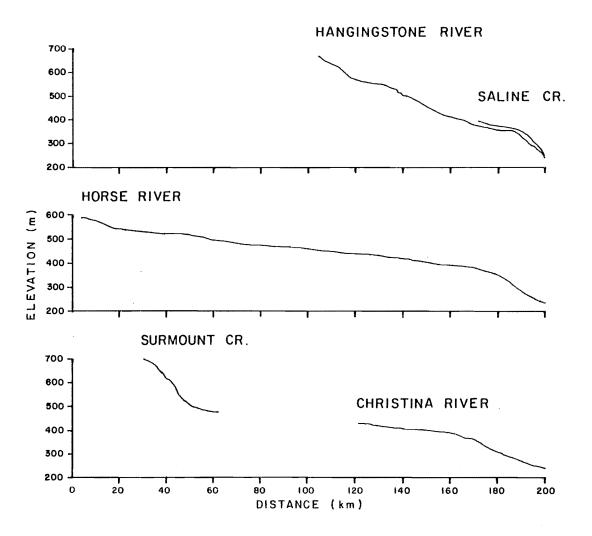


Figure 40. Elevation profiles of southern tributaries. (Adapted from Tripp and Tsul, 1980)

on the Clearwater River and one on each of the Horse and Hangingstone rivers (Table 15). The Hangingstone near Fort McMurray (07CD004) and the Clearwater River near Draper (07DC001) were selected for the study because continuous recording gauges were operated over the longest period, including the dates when water samples were collected. The location of the Hangingstone and Clearwater stations are indicated on Figure 4.

Mean daily discharge (1 in 5 days) is presented for the Hangingstone (1976 to 1982) and Clearwater (1976 to 1981) rivers in Figures 41 and 42, respectively.

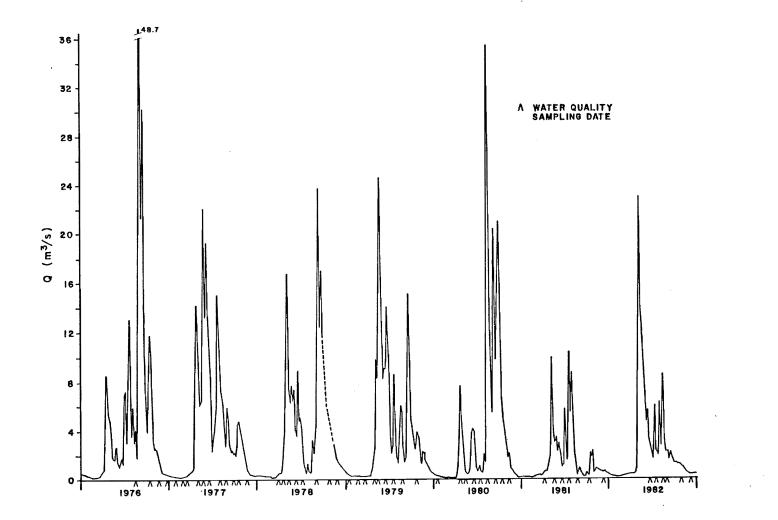
Discharge levels in the Hangingstone River typically peaked at spring breakup, decreased over the summer months, and increased during autumn freshets before declining to winter base flows. Peak discharge levels were typically 22 to 24 m³/s; higher levels were recorded in 1976 and 1980. Winter base flows ranged from 0.1 to 0.4 m³/s.

The same discharge pattern of fluctuations was evident in the Clearwater River. Here, maximum discharge levels were about 300 m³/s with levels of up to 600 m³/s. In 1976 and 1977 summer flows also were elevated. Winter base flows ranged from 40 to 100 m³/s.

7.2.2 Water Quality

The description and period of record for the water quality sampling stations are presented in Table 16. The station locations also are indicated in Figure 4.

Water quality data are summarized for the seven sampling stations in the region, 1976 to 1983 (Appendix 10.6, Tables 68 to 70). The data are presented and discussed by parameter group (routine, nutrients, and metals).


7.2.2.1 <u>Routine parameters</u>. This parameter grouping includes inorganic ions, suspended paticulates, organic constituents, phenols, and oil and grease. Summary data are presented in Appendix 10.6 (Table 66).

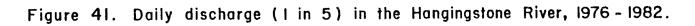

Station	Description	Gauge Location Drainage Lat. N/Long. W				Period of		
		Area (km²)	(D	M	S)	Record	Gauge Type ^a	
07CC001	Horse R Abasands	2181	56 111	42 23	29 40	1930-31 1975-78	MS RC	
07CD005	Clearwater R. above Christina R.	17172	56 110	42 55	40 40	1966-75 1976-78	RS RC	
07CD001	Clearwater R. at Draper	30562	56 111	40 15	50 00	1930-31 1958-pres	MS RC	
07CD003	Clearwater R. at Upper Wingdam	-	56 111	42 20	00 00	1960-61,62 1963-74	MC*	
07CD002	Clearwater R. below Waterways	-	56 111	43 20	10 50	1950-64,65 1966-75	MS*	
07CD004	Hangingstone R. at Ft. McMurray	914	56 111	42 21	18 20	1965-69 1970-pres.	MS MC	

Table 15. Water survey of Canada gauging stations in the southern region.

a M = Manual gauge R = Recording gauge C = Continuous

S = Seasonal * = Only stage (water level) information

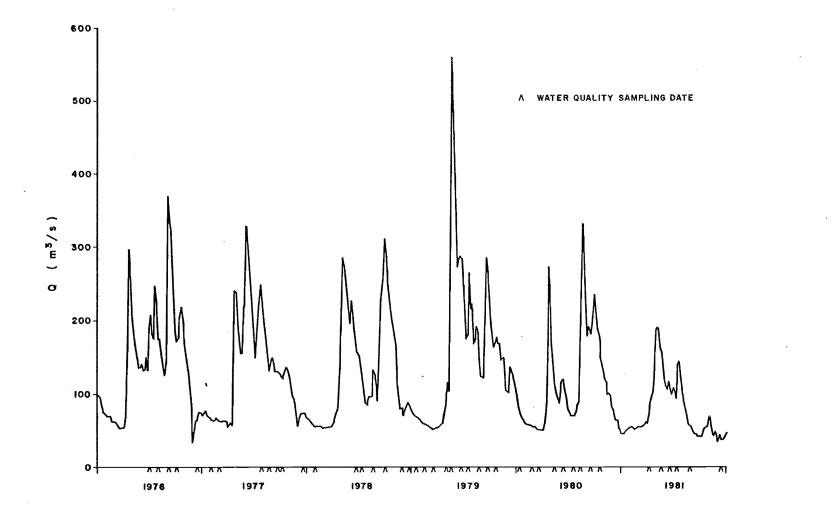


Figure 42. Daily discharge (1 in 5 days) in the Clearwater River at Draper, 1976 – 1981.

Code (00AT07-	Long	itude gitude M		Description	Period of Record	Number of Samples
CC0030	56 111	42 23	20 40	Horse R. at Abasands Park 3.2 km above confluence with Athabasca River	1976-77	5
CC0300	56 111	43 23	06 40	Horse R. near Fort McMurray 100 m above confluence with Athabasca River	1977-79	15
CD0040	56 111	42 21	18 20	Hangingstone R. at Hwy. 63	1976-83	67
CD0100	56 111	42 20	10 38	Saline Creek	1976-77	8
CD0100	56 111	41 19	53 02	Clearwater R. 2 km above Waterways	1976-81	50
CE2000	56 111	27 03	01 45	Surmount Creek about 3.2 km above Gregoire Lake	1978-83	47
CE2191	56 111	39 02	30 30	Christine R. above confluence with Clearwater R.	1978-79	10

....

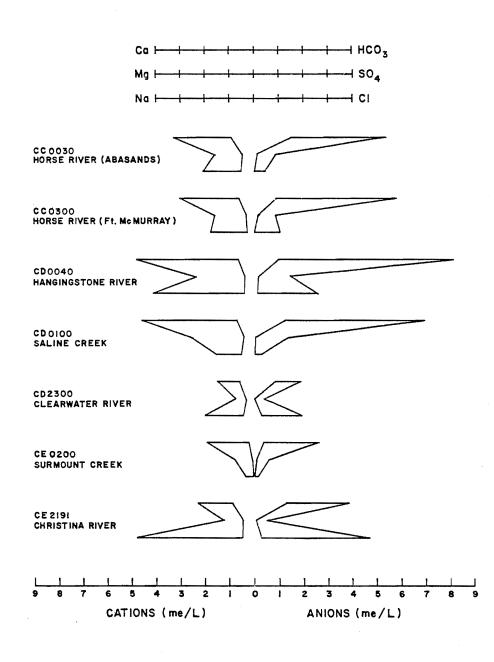
Table 16.	Description and	period of record f	for water	quality sampling
	stations within	the southern regio	on.	

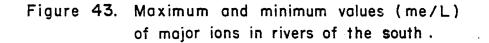
//

Alkalinity (max. range 19] to 407 mg/L) and hardness (max. range 177 to 355 mg/L) concentrations were elevated in the Horse, Hangingstone, Saline, and Christina rivers. Lower levels of these parameters occurred in the Clearwater (alkalinity max. 95 mg/L; hardness max. 109 mg/L), and Surmount rivers (alkalinity max. 132 mg/L; hardness max. 132 mg/L). Maximum levels of pH ranged from 8.0 to 9.6 for all rivers.

The relative dominance of major ions for each water quality site is presented in Figure 43. The figure represents the relative contribution of each major ion and an approximation of the total ion content.

The ranking of ion dominance (measured in me/L) in five of seven rivers of the south region is as follows:


cations: calcium > magnesium > sodium


anions: bicarbonate > sulphate > chloride

Exceptions include the Clearwater and Christina rivers where sodium and chloride ions predominated. Sodium ions also were prevalent in the Hangingstone River. Total ion concentration appears to be related to bedrock geology (i.e., specific conductance is highest in the Hangingstone River and Saline Creek). The three water quality sites with elevated sodium and chloride ions are located within Devonian rock formations.

Ion concentration is inversely related to discharge. The maximum and minimum ion values presented in Figure 43 represent two discharge regimes. Maximum ion concentrations are evident during winter base flows. Minimum concentrations occur at spring runoff or during flood conditions.

Colour is a measure of water clarity and has no direct chemical significance (Hem 1970). The brown colour of rivers in the AOSERP region is due to the inflow of humic and fulvic acids from surrounding muskeg. The maximum colour values in the Hangingstone (160 mg/L), Clearwater (120 mg/L), Surmont (200 mg/L), and Christina (130 mg/L) rivers reflect muskeg characteristics of the watershed.

Phenolic compounds at very high levels may be toxic to fish and at lower levels may cause fish tainting and taste problems. Sources of phenols include industrial and municipal wastes as well as decaying plant material. Maximum values of recorded phenol levels in the Hangingstone, Saline, Clearwater, and Christina rivers exceeded the Alberta surface water objective of 0.005 mg/L.

Sources of oil and grease include industrial and municipal wastes. Maximum values (6.5 mg/L) were detected in the Hangingstone River. Surface water objectives have not been established for oil and grease.

7.2.2.2 <u>Nutrients</u>. Phosphorus is frequently considered to be the nutrient that controls plant life. Total phosphorus and orthophosphate phosphorus (PO_4-P) are the two forms of phosphorus presented in Appendix 10.6 (Table 69).

Total phosphorus values were high, with median values exceeding the objective of 50 ug/L at all sites. A maximum value of 1300 ug/L was recorded at the Hangingstone River, 1980 August 04. Most values at this site ranged from 30 to 230 ug/L, with higher values occurring in spring during runoff.

Orthophosphates are the potentially available form of phosphorus. Typically, concentrations are lowest in summer when uptake by plants occurs. Maximum concentrations occur in fall and winter when plants die. Highest maximum values were recorded in the Horse (100 mg/L), Hangingstone (123 ug/L), and Saline (220 ug/L) rivers.

Ammonia, nitrate/nitrite nitrogen, and total kjeldahl nitrogen (TKN) are the three forms of nitrogen presented in Appendix 10.6 (Table 69). Forms of inorganic nitrogen are ammonia and nitrate/nitrite nitrogen. Total kjeldahl nitrogen is total organic nitrogen plus ammonia. In the presence of oxygen, ammonia may be converted to nitrate by a process of nitrification. Also, nitrite is rapidly converted to nitrate in the presence of oxygen.

Only the Hangingstone, Clearwater, and Surmount sites had sufficient numbers of samples to denote seasonal trends. No detectable seasonal trends in TKN were noted among the sites. Maximum ammonia and nitrate/nitrite concentrations, however, occurred in winter and spring. The highest maximum value of ammonia was recorded in the Clearwater River (0.73 mg/L). The highest maximum value of TKN (9.15 mg/L) and nitrate/nitrite nitrogen (0.66 mg/L) was recorded in the Hangingstone River. The maximum concentration of ammonia recorded in the Hangingstone River was 0.45 mg/L.

7.2.2.3 <u>Metals</u>. The data for 16 metal parameters are summarized in Appendix 10.6 (Table 70). Median values of nine metals (cadmium, chromium, cobalt, lead, mercury, nickel, selenium, silver, vanadium) were below the detection limit.

Copper concentrations exceeded surface water objectives in four rivers (Horse River at Abasands, Hangingstone River, Clearwater River and Surmont Creek). Maximum concentrations in the Hangingstone (43 ug/L) and Clearwater (32 ug/L) rivers occurred in summer. Maximum values of copper in Surmount Creek (48 ug/L) occurred in spring. Maximum values of copper in the Horse River at Abasands (21 ug/L) occurred in winter.

Median values for manganese and iron equalled or surpassed the surface water objectives. Guidelines for these two parameters were established for aesthetic reasons. Both substances, which are naturally derived from river sediments and weathered bedrock, may impart a taste to water, and stain fabrics and porcelain. Manganese may be taken up by plants and therefore concentrations vary seasonally.

7.2.3 Benthic Invertebrates

Tripp and Tsui (1980) reported that 80% of benthic invertebrates in the southern tributary streams was dominated by aquatic insects. Both species diversity (Shannon 1948) and average number of taxa were greater in erosional habitats. Cleanwater taxa were abundant in these habitats. Representative taxa included Ephemeroptera (<u>Baetis</u>, <u>Heptagenia</u>, <u>Rhithrogena</u>), Trichoptera (<u>Brachycentrus</u>, <u>Glossosoma</u>, <u>Hydropsyche</u>) and Chironomidae (<u>Cricotopus</u>, <u>Cryptochironomus</u>, <u>Eukiefferiella</u>, <u>Microtendipes</u>, <u>Rheotanytarsus</u>, <u>Thienemanniella</u>).

Tripp and Tsui (1980) suggested that the mean density of invertebrates was related more to longitudinal river changes than to changes in substrate. However, diversity and average number of taxa were typically higher in coarse substrates and lower in muskeg or sand substrates. Diversity and standing crop were highest in summer (August 1978).

Data presented by Tripp and Tsui (1980) were analysed to determine differences in aquatic invertebrates collected in August 1978 from river sites characterized by erosional habitats:

Stream	Number of sites
Algar	1
Cameron	1
Christina	1
Gregoire	1
Hangingstone	8
Horse	4
Saline	2
Saprae	3
Surmount	2

Emphasis was placed on Ephemeroptera (mayflies) because they were the most common cleanwater forms. Because the mayfly genus, <u>Baetis</u>, occurs in both erosional and depositional habitats, a correction factor (mayfly ratio) was included.

A one-way analysis of variance (ANOVA) was used to determine differences among sites for various biological components including:

- mayfly ratio (mayfly density <u>Baetis</u> density/total density);
- 3. total density;
- 4. diversity (Shannon and Weaver 1949); and
- 5. total number of taxa.

To satisfy the assumptions of the ANOVA, the data were transformed according to Sokal and Rohlf (1969) as follows: ratios (#1 and 2), $\operatorname{arcsin}(p)^{\frac{1}{2}}$ and total density, $\operatorname{ln}(x+1)$. No transformations were performed on diversity or total number of taxa.

Results indicated that there were no differences in any of the components among the nine rivers (Algar, Cameron, Christina, Gregoire, Hangingstone, Horse, Saline, Saprae, and Surmount). However, if one outlier (Hangingstone River, site 5) is excluded from the analysis, there is a significant difference (p < 0.05) in the number of taxa among rivers. Significantly more taxa were present in the Hangingstone, Horse, and Christina rivers; fewer taxa were present in Saline Creek.

7.3 RELATIONSHIPS AMONG PARAMETERS

7.3.1 Water Quality and Discharge

Relationships were established between water quality parameters and discharge levels for the Hangingstone (CD0040) and Clearwater (CD2300) rivers. Results of the correlation analysis indicated that, of all water quality parameters (median values), none was significantly correlated with conductivity at the 0.01 level. Therefore, only relationships between conductivity and discharge were analysed for the two rivers.

The relationships were analysed using linear, log/linear, and log/log transformations of the data. The significance of each regression was tested by determining if the slope differed significantly from zero. The log/log transformation yielded the highest R² and best fit to the data for both Hangingstone and Clearwater rivers (Table 17).

Relationships were examined to determine if the regressions of conductivity on discharge were the same in the Hangingstone and

Table 17. Summary of regression equations of conductivity with discharge for the Clearwater and Hangingstone rivers. Equations with the best fit of the data were of the following log/log format:

$$Y = Ax^B$$

```
where: A = intercept, B = slope, Y = dependent
variable (conductivity), X = independent
variable (discharge).
```

River	df (n-2)	A	В	R ²	(Ho: B ₁ = 0)
Clearwater (DC2300)	43	182]	-0.445	0.71	L0.001
Hangingstone (CD0040)	41	602	-0.574	0.71	L0.001

L = less than.

Clearwater rivers. The residual variances between rivers were heterogenous (F-test for two samples) (i.e., the variances of the two samples were not equal and so comparisons could not be made).

7.3.2 <u>Relationships between Map Parameters and Biological Components</u>

A multiple regression analysis was used to determine the influence of land formations (physiology) and channel features (distance from river mouth, slope, width, elevation) on the benthic invertebrate community of nine rivers (n=27 sites). Five dependent variables were examined including percent mayflies, mayfly ratio (mayflies - <u>Baetis/</u> total density), total density, diversity, and number or taxa. Separate tests were performed for land formations and channel features. Data used in both analyses are presented in Table 18.

The percent mayflies, mayfly ratio, and total density were unrelated to any channel features. Invertebrate diversity increased with elevation ($R^2=0.20$, P < 0.05) but was unrelated to other factors. The number of taxa increased with distance from river mouth ($R^2=0.15$, P < 0.05), but also was unrelated to other features.

There were no relationships between land formations and the percent mayflies, mayfly ratio, density, or the number of taxa. Diversity, however, was significantly lower (P < 0.05) in sites located within the Methy Portage Plain than in other regions.

In summary, there were no particularly strong relationships between the map parameters and the biological community.

River	Percent Mayflies	Mayfly Ratio	Density (no/m²)	Diversity Index	Taxa	Slope	Dist. ^a (km)	Width (m)	Elev. ^b (m)	P.R. ^C
Algar	16.52	.144	817	2.42	20	.36	5	4	455	01
Cameron	10.17	.096	1848	1.59	20	4.62	1	2	200	01
Christina	34.52	.312	1373	2.50	34	.20	1	65	235	01
	9.59	.080	1168	2.43	30	.20	11	60	270	01
	7.38	.028	2111	2.35	32	.29	21	60	300	01
	30.02	.162	643	3.06	31	.48	27	35	335	01
Gregoire	40.06	.202	312	2.59	20	.56	2	31	390	01
Hangingstone	$ \begin{array}{r} 1.16\\15.93\\25.52\\42.65\\45.10\\10.18\\6.74\\3.50\\25.54\end{array} $.007 .058 .083 .203 .117 .024 .000 .000 .364	2675 772 192 748 51 285 712 200 3359	1.22 2.00 2.70 3.00 1.70 3.20 3.10 2.60 3.00	25 30 21 37 5 27 30 15 50	.80 .46 .15 .32 .27 .55 .20 .22 .35	1 7 15 33 42 59 69 81 98	28 31 32 19 15 13 13 7 6	250 300 355 385 420 505 550 575 670	01 01 01 01 10 10 10 10 00
Horse	48.84	.147	1331	2.54	29	.38	1	35	250	01
	3.09	.015	3079	2.60	36	.12	28	30	380	01
	3.55	.036	338	1.84	12	.10	88	20	450	01
	13.83	.114	1424	2.82	32	.10	140	14	505	10
Saline	52.10	.000	119	1.14	5	.10	1	11	275	01
	27.93	.123	179	2.38	12	.17	18	5	375 .	01
Saprae	39.02	.333	387	2.30	16	1.25	1	8	250	01
	28.87	.288	194	2.41	15	1.25	5	• 6	318	00
Surmount	2.16	.022	4128	1.70	16	.18	1	7	480	01
	13.62	.084	213	2.37	18	.70	13	8	520	00
	5.91	.040	592	2.66	26	.80	23	4	650	00

Table 18. Data set used in multiple regression analysis relating map parameters and biological components. Data obtained from Tripp and Tsui (1980) and Turchenek and Lindsay (1982).

a b

С

Distance from mouth. Elevation. Physiographic Regions: Methy Portage Plain, Ol; Wabasca-Athabasca Lowland, 10; and Stony Mountain Upland, OO.

8.

OVERALL ANALYSIS OF WATER QUALITY PARAMETERS

The purpose of providing an overall analysis of the four subregions (north, east, west and south) is to use information on water quality parameters to determine patterns of variability in river sites throughout the AOSERP study area. The analysis of such a large data set is facilitated by the use of mulivariate statistics. Principal component and cluster analyses were used to delineate those sites with similar water quality characteristics.

Three types of water quality parameters were analysed:

- Routine parameters (including major inorganic ions and suspended particulates);
- 2. Nutrients, and
- 3. Metals.

The analysis was based on the median values of water quality parameters for each of 43 to 44 sampling sites in the study area (Table 19).

8.1 ROUTINE PARAMETERS

Median values of 18 routine parameters representing 44 sites were analysed using principal component and cluster analysis. The first two principal components (PC1 and PC2) accounted for 68.2% of the variance in the data, of which the first component accounted for 48.4% (Table 20). Specific conductivity and silica had the highest and lowest coefficients, respectively, for the first principal component. Thus, river sites with high values of conductivity and low values of silica have high scores on PC1. In contrast, river sites with low values of conductivity and high levels of silica have lower scores on PC1.

Another source of variability was the second principal component (19.8% of the variation). Here, non-filterable residue (NFR) had the highest positive coefficient and total alkalinity had the most highly significant negative contribution (Table 20).

The relationships among sites are displayed as a dendrogram (Figure 44) and as a bivariate plot of factor scores for each site (Figure 45). Three major groupings designated as A, B, and C emerge

Site R+N	Number M	NAQADAT Code	Sub-region (N,E,W,S,)	<u>Site</u> R+N	Number M	NAQUADAT Code	Sub-regior
1	1	DD0090	N	23	22	DA0110	W
2	2	DD0212	N N	24	23	DA0120	W
3	3	KF0100	Ν	25	24	DA0121	W
4	4	KF0101	N	26	25	DA0130	W
5	5	KF0140	Ν	27	26	DA0140	W
6	6	NA0030	N	28	27	DA0150	W
7	7	KF0200	Ν	29	28	DA0160	W
8	8	KF0201	Ν	30	29	DA0170	W
9	9	DD0080	N	31	30	DA0180	W
10	10	MD2000	Ν	32	31	DA0181	W
11	11	DA0060	E	33	32	DA0182	W
12	12	DA0080	E	34	33	DA0183	W
13	13	DA0081	E	35	34	DA0190	W
14	14	DA0083	E	36	35	DB0011	W
15	15	DA0084	E	37	36	DB0020	W
16	16	DA0085	E	38	37	DB0030	W
17	17	DA0090	E	39	38	DB0040	W
18	18	DC0010	E	40	39	CC0300	S
19	19	DD0020	E	41	40	CD0040	S
20	20	DA0070	W	42	41	CD2300	S
21	-	DA0098	W	43	42	CE2000	S
22	21	DA0100	W	44	43	CE2121	S

.

Table 19. Site numbers with corresponding NAQUADAT codes which were used in the cluster and principal component analysis of water quality parameters (R, routine; N, nutrient; M, metal).

Parameter	PC1	PC2	
pH .	.183	.034	
Total alkalinity	.252	332	
Hardness	.315	071	
Conductivity	.329	.073	
Turbidity	.052	.368	
Silica	.039	166	
Calcium	.305	066	
Magnesium	.320	.095	
Sodium	.266	.110	
Potassium	.266	.172	
Fluoride	.224	.199	
Bicarbonate	.253	331	A.
Chloride	.151	.233	
Sulphate	.196	.365	
Total organic carbon	.165	188	
Total inorganic carbon	.192	325	
Filterable residue	.327	.075	
Non-filterable residue	.093	.421	
Eigenvalues	8.71	3.56	
% total variance	48.42	19.79	
Cumulative % t.v.	48.42	68.21	

Table 20. Principal component coefficient (loadings) for the first two components (PC1 and PC2): routine parameters.

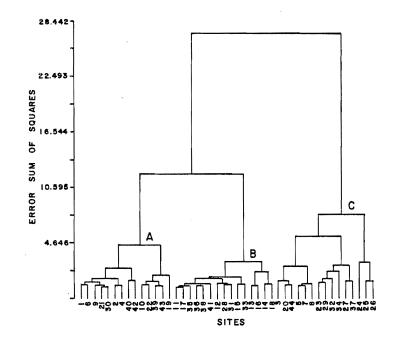


Figure 44. Cluster analysis of routine parameters at sample sites within the four subregions. Similarity is measured by error sum of squares.

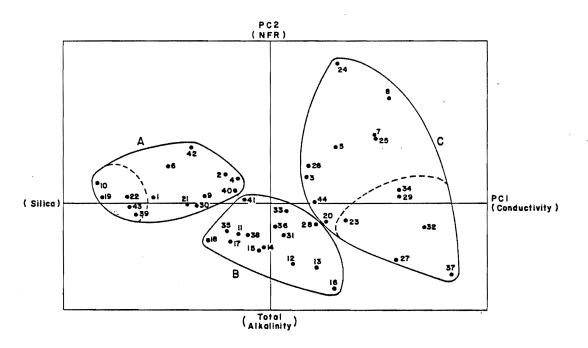
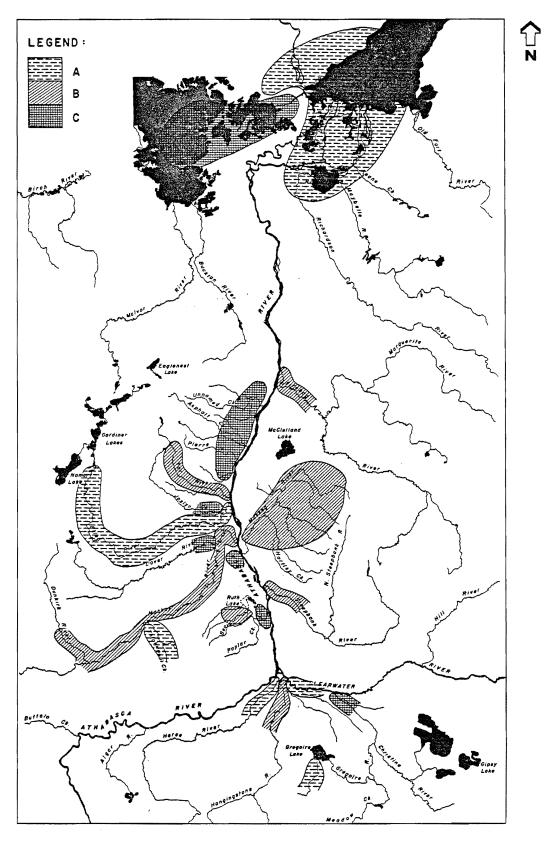


Figure 45. Principal component ordination of sampling sites using routine parameters from the four subregions. Dashed lines enclose subgroups of river sites. Chemical labels on axes are from Table 20.


from the cluster analysis of the routine parameters. Sites that have similar values of water quality parameters will form a cluster on the bivariate plot. Sites within clusters have been delineated on a map of the study area (Figure 46).

The mean \pm standard error of the routine parameters with the highest and lowest coefficients (i.e., conductivity, silica, NFR, and alkalinity) for PC1 and PC2 are presented in Table 21. The range of values for these parameters encountered within the AOSERP study area are typical of lotic conditions throughout Alberta.

Sites within group A have characteristically low values of conductivity, silica, and alkalinity, with moderate levels of suspended solids and turbidity (Table 21). Suspended sediments and turbidity reduce light levels available for algal productivity. Representative group A sites included those in the northeast (Lake Athabasca Delta), west (Ells River, Thickwood Creek), and south (Horse, Clearwater, and Surmount rivers) regions. Many of these sites occurred on archean (granite) or devonian bedrock and are less productive than rivers which flow over cretaceous rock.

Group B sites had the lowest NFR and highest silica values; conductivity levels were moderate (Table 21). Substrates at these sites receive maximum available light for algal growth and abundant levels of silica for diatom production. These sites, therefore, should represent areas of maximum productivity within the region. Representative waterways of the eastern region include Muskeg, Steepbank, Firebag, and Tar rivers. The Hangingstone and MacKay mainstem also are included within this group.

Group C sites are categorized as having maximum values of conductivity, NFR, and alkalinity; silica concentrations are moderate (Table 21). These river sites are often highly turbid and maintain a high sediment load, factors which reduce light available for photosynthesis. Furthermore, substrate interstices are filled with sediment which reduce the effective habitat available to benthic

Figure 46. Site ana

Site groupings based on principal component analysis using median values of routine parameters .

Parameters						
Group (No. of Sites)	Conductivity (uS/cm)	Silica (mg/L)	NFR (mg/L)	Total Alkalinity (mg/L)		
A (n = 15)	169.2 ± 15.76	5.6 ± 0.83 (4.9 ± 0.49) ^a	14.5 ± 3.16	73.0 ± 6.41		
B (n = 15)	276.7 ± 14.43	8.6 ± 0.71	8.9 ± 1.50	143.9 ± 7.70		
C (n = 15)	449.9 ± 15.94	6.9 ± 0.74	20.9 ± 3.91	142.6 ± 14.69		

Table 21. Mean (± standard error) of routine parameters indicated by the highest and lowest loading coefficients for the first two principal components. Groups are indicated in Figures 46 and 47.

^aSite 19 (Richardson River) detailed from calculation.

invertebrates. Representative sites are lakes and channels of the northwest region and river sites draining the east slopes of the Birch Mountains.

8.2 NUTRIENTS

Clustering techniques were applied to 44 sites using median values of nutrient parameters, including total phosphorus (TP), orthophosphate, nitrate/nitrite nitrogen, total kjeldahl nitrogen (TKN), and ammonia. The cumulative per cent variability removed by the first two principal components was 64.0%, representing PC1 (34.4%) and PC2 (29.6%) (Table 22).

Total phosphorus and nitrate/nitrite nitrogen had the highest and lowest coefficients, respectively, for the first principal component. Thus, sites with characteristically high concentrations of TP and low concentrations of nitrate/nitrite nitrogen have high factor scores on PC1. For the second principal component, nitrate/nitrite nitrogen had the highest positive coefficient and TKN had the most negative coefficient. Sites with high nitrate/nitrite nitrogen values have high factor scores on PC2.

The relationships among sites, each of which is represented by a factor score, are presented as a bivariate plot of PC1 and PC2 (Figure 48). Sites with similar values of TP, TKN, and nitrate/nitrites form clusters on the bivariate plot. Most sites were clustered at the intersection of the two components. High median values of nitrate/nitrite nitrogen were noted for the Horse River (site 40, 0.2 mg/L) and Surmount Creek (site 43, 0.32 mg/L). Thus, these two sites are distinct from other sites on the bivariate plot.

Results from a cluster analysis of the data are displayed as a dendrogram in Figure 47. Again, sites 40 and 43 are distinct. Site 30 (lower Ells River) also is isolated from the other sites. The median value of ammonia at site 30 was 0.35 mg/L; the range of ammonia concentrations for the other 43 sites was 0.03 to 0.19 mg/L. Median values of other nutrients recorded for site 30 were within the range of the concentrations of the other sampling sites.

Table 22.	Principal component	t coefficients	(loadings) for	r the first two
	components (PC1 an	d PC2): nutri	ent parameters.	,

Parameter	PC1	PC2
Total phosphorus	.610	083
Orthophosphate	.501	.514
Nitrate/nitrite	.100	.691
Total kjeldahl nitrogen	.579	375
Ammonia	.178	333
Eigenvalues	1.72	1.48
% of total variance	34.44	29.60
Cumulative % t.v.	34.44	64.04

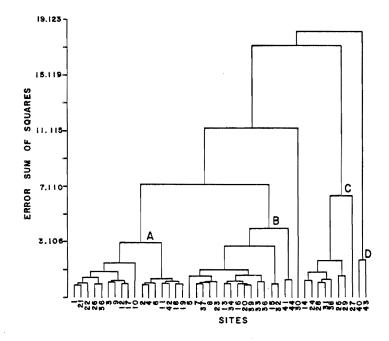


Figure 47.

 Cluster analysis of nutrients at sample sites within the four subregions .
 Similarity is measured by error sum of squares .

Figure 48. Principal component ordination of sampling sites using nutrient parameters from the four subregions. Chemical labels on axes are from Table 22.

The mean \pm standard error of the nutrients with highest and lowest coefficients (i.e., TP, nitrate/nitrite, and TKN) for PC1 and PC2 are presented for each of the three major groups (A, B, and C) (Table 23). These groups are also delineated on a map of the study area (Figure 49).

TKN is a measure of organic nitrogen and ammonia, both of which are important in biological activity. Inorganic forms of nitrogen include ammonia, nitrates, and nitrites. With adequate oxygen, ammonia is converted to nitrate by a nitrification process. Nitrite is rapidly converted to nitrate in the presence of oxygen.

Total phosphorus (inorganic and organic phophorus) is a measure of both dissolved and particulate forms. The dissolved form which is biologically available can be a limiting factor for plant growth (McNeely et al. 1979). Orthophosphates represent the dissolved form of phosphorus. Although median values of TP increased substantially from group B (62.2 ug/L \pm 3.23) to group C (117.7 ug/L \pm 9.69), relatively minor increases occurred in orthophosphate (group B, 15.7 \pm 1.80; group C, 19.1 \pm 2.45).

Group A sites were characterized by relatively low concentrations of TP and TKN compared to other AOSERP sites. Representative sites include the Athabasca Delta in the northeast, the Ells, Upper Tar, and Thickwood Creeks in the west and Firebag, Steepbank and Clearwater rivers in the east.

Group B sites had moderate concentrations of TP and high levels of nitrate/nitrite nitrogen and TKN (Table 23) which suggests that representative streams are productive. Sites in this category include lakes and channels of the northwest, the Muskeg watershed (excluding Stanley Creek), Hangingstone River, Poplar Creek, lower MacKay River, and Joslyn Creek.

Group C sites reflected conditions with the highest TP and TKN values; nitrate/nitrite nitrogen values are lowest (Table 23). Stanley Creek in the eastern region and several tributaries in the west (Asphalt, Calumet, lower Tar, Dunkirk, and Beaver rivers) are representative sites.

.

	Parameters				
Group (No. of Sites)	TP (ug/L)	NO ₃ NO ₂ (ug/L)	TKN (ug/L)		
A (n = 17)	46.2 ± 3.61	34.9 ± 5.35	804.7 ± 62.59		
B (n = 15)	62.2 ± 3.23	36.8 ± 5.61	1179.3 ± 48.26		
C (n = 9)	117.8 ± 9.69	25.6 ± 6.04	1173.3 ± 168.90		

Table 23. Mean (± standard error) of nutrients indicated by the highest and lowest loading coefficients for the first two principal components. Groups are indicated in Figures 48, 49, and 50.

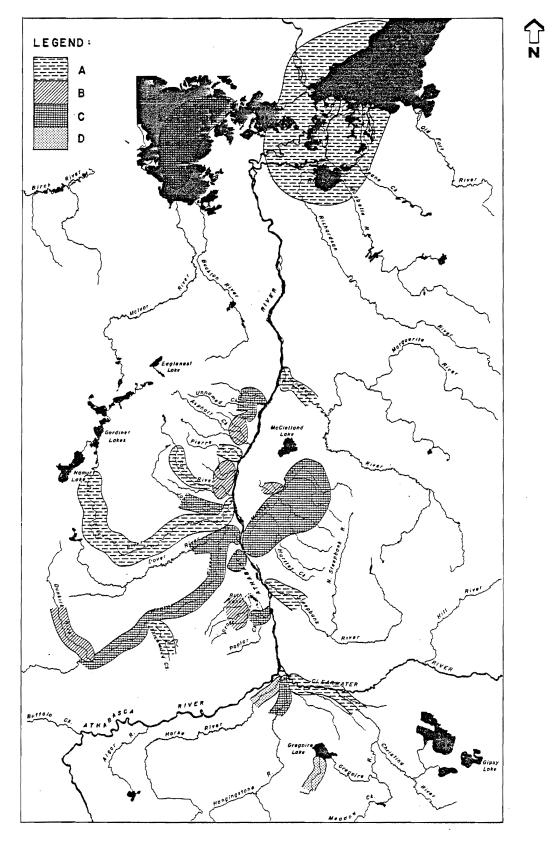


Figure 49.

Site groupings based on principal component analysis using median values of nutrients.

Alberta Surface Water Objectives for total phosphorus and nitrogen are 50 ug/L and 1.0 mg/L, respectively. No surface water objectives are available for nitrogen components. The mean of all median values of TP within clusters B and C exceeded the surface water objectives. The elevated values of TP, however, are not necessarily related to increased eutrophication. Rather, the apatite (biologically unavailable) form of phosphorus increases with runoff. Thus, rivers draining the east slope of the Birch Mountains which have high TP values will have correspondingly high levels of suspended sediment.

8.3 METALS

Cluster and principal component techniques were applied to 43 sites using median values of seven metals including aluminum, arsenic, boron, copper, iron, manganese, and zinc. One site (DA0098, mouth of the Ells River) was deleted because of insufficient data. The seven metals, which were selected from the full suite typically analysed, exhibited values larger than the laboratory detection limit.

The first (46.6%) and second (20.9%) principal components accounted for a cumulative per cent variability of 67.5% (Table 24). Zinc (along with iron) and boron had the highest and lowest coefficients, respectively, for PC1. Boron and aluminum had the highest positive and negative coefficients, respectively, for PC2.

The relationships among sites were displayed as a bivariate plot of factor scores of each site (Figure 51). The dendrogram illustrates relationships among sites indicated by the cluster analysis (Figure 50). Sites within clusters have been delineated on a map of the study area (Figure 52).

The bivariate plot and dendrogram reveals that there are three major groups (A, B, and C). Group A consists of 21 similar sites. Group C consists of 16 sites, 14 of which occur together and two (site 27, the lower Tar; site 28, Joslyn Creek) which are distinct. Group B consists of two subgroups, both quite distinct from either groups A or C.

Parameter	PC1	PC2
Aluminum	.426	381
Arsenic	.257	.328
Boron	.183	.576
Copper	.399	363
Iron	.463	.335
Manganese	.344	.294
Zinc	.476	292
Eigenvalue	3.26	1.47
% total variance	46.57	20.95
Cumulative % t.v.	46.57	67.53

Table 24. Principal component coefficients (loadings) for the first two components (PC1 and PC2): metal parameters.

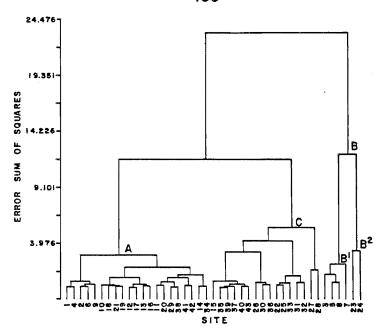


Figure 50. Cluster analysis of metals at sample sites within the four subregions . Similarity is measured by error sum of squares .

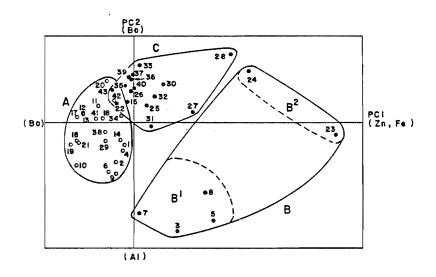


Figure 51. Principal component ordination of sampling sites using metal parameters from the four subregions. Chemical labels on axes are from Table 24.

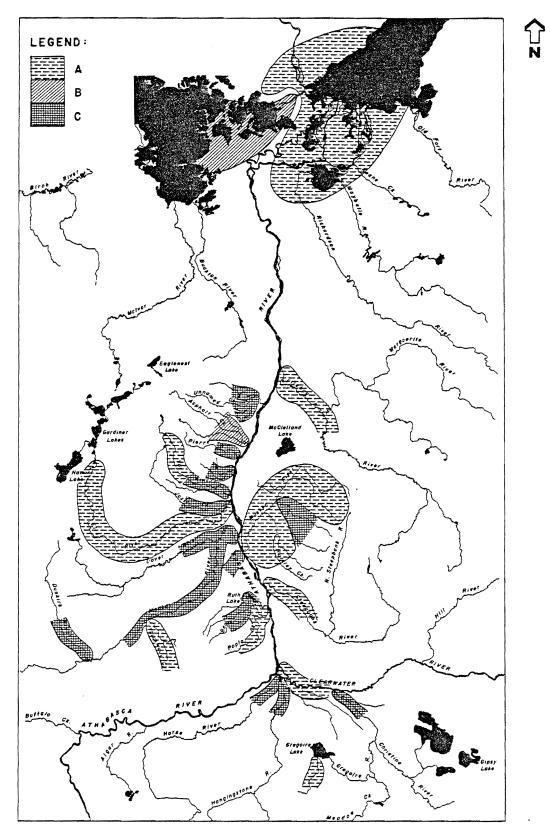


Figure 52. Site groupings based on principal component analysis using median values of metals.

The mean ± standard error of the metals (zinc, iron, boron, and aluminum) with the highest and lowest coefficients for the first two principal components are presented in Table 25. Values for zinc and boron are within the Alberta Surface Water Guidelines of 50 ug/L and 500 ug/L, respectively. No guidelines are available for aluminum. The iron values exceed the surface water objectives of 300 ug/L for all groups (A, B, and C). There are, however, few adverse effects of iron to man (McNeely et al. 1979). Elevated levels of iron in surface waters typically result from the weathering of rocks.

Group A sites exhibited low levels of zinc, iron, and boron with moderate levels of aluminum (Table 25). Representative sites include the Athabasca Delta of the northeast, as well as the Firebag, Muskeg (excluding Kearl Lake tributary), Steepbank, and Clearwater rivers. Other sites include the Ells River, upper Tar, Thickwood, and Poplar creeks in the west, and Surmount Creek in the south.

Group B sites exhibited the highest levels of zinc and iron compared to group A and C (Table 25). Levels of boron were moderate, whereas concentrations of aluminum were relatively low. Sites 23 (Asphalt Creek) and 24 (Eymundson Creek) within group B had the two highest values for iron (site 23, 4230 ug/L; site 24, 4200 ug/L) and zinc (site 23, 30 ug/L; site 24, 22 ug/L) in the study area. These two sites, which represent the Asphalt watershed, form a distinct subgroup within group B. Other sites within this group include the lakes and channels of the northwest.

Group C sites had the highest levels of boron, but moderate levels of zinc, iron, and aluminum compared to the other groups (Table 25). Representative sites occur predominately in the west (Beaver, MacKay, Dunkirk, and Dover rivers and streams draining the east slopes of the Birch Mountains) and south (the Horse, Hangingstone, and Christina rivers). The Kearl Lake tributary is the only stream from the eastern region within group C. Elevated concentrations of boron were noted frequently in winter when they are associated with groundwater inputs. Many of the sites in group C correspond to groupings B and C of Table 25. Mean (± standard error) values of metals for sites within groups determined by principal component analysis. The metals listed represented the highest and lowest loading coefficients for the first two principal components. Groups are indicated in Figures 50, 51, and 52.

Group	Zn (ug/L)	Fe (ug/L)	Bo (ug/L)	Al (ug/L)
A (n = 21)	6.8 ± 0.49	827.9 ± 68.29	88.1 ± 10.52	129.2 ± 20.74
B (n = 6)	21.7 ± 2.88	2192.5 ± 653.51	116.7 ± 22.46	600.8 ± 118.56
B'(n = 4)	19.5 ± 3.66	1181.2 ± 212.25	82.5 ± 7.50	575.0 ± 42.87
C (n = 16)	9.5 ± 0.93	1619.7 ± 210.12	192.5 ± 17.69	157.5 ± 21.48

the routine parameters (i.e., sites which exhibited elevated saline inputs from groundwater sources).

9. REFERENCES CITED

- Akena, A.M. 1979. An extensive water quality study of the Muskeg River watershed. Volume I: Water chemistry. Prep for the Alberta Oil Sands Environmental Research Program by Alberta Environment, Water Quality Control Branch. AOSERP Report 85. 187 pp.
- Akena, A.M. 1980. The water quality of the Athabasca Oil Sands Area. Volume I: Data collection and quality. Prep. for the Alberta Oil Sands Environmental Research Program by Alberta Environment. RMD Report L-66. 100 pp.
- Akena, A.M. (In prep.) Water quality of the Athabasca Oil Sands area. Volume V: Athabasca River (1976-1982). Prep. for the Alberta Oil Sands Environmental Research Program by Alberta Environment. AOSERP Project WS 1.2.1.
- Akena, A.M. and L.L. Christian. 1981. Water quality of the Athabasca Oil Sands area. Volume IV: An interim compilation of non-AOSERP water quality data. Prep. for the Alberta Oil Sands Environmental Research Program by Alberta Environment RMD Report L-74. 242 pp.
- Alberta Environment. Planning Division. 1983a. Water quality of the Athabasca River Basin - a compilation of non-NAQUADAT water quality data. Prep. for Alberta Environment. 32 pp.
- Alberta Environment. Planning Division. 1983b. Athabasca River Basin surface water quality, hydrometric and sediment station index (historical to 1982). Prep. for Alberta Environment. 49 pp.
- Alberta Environment. 1984. Athabasca River Basin low flow analysis. Prep. for Planning Division by Technical Services Division. 86 pp.
- Atlas of Alberta. 1969. Prep. by the Government of Alberta and the University of Alberta. Publ. by University of Alberta Press in association with University of Toronto Press. 162 pp.
- Barton, D.R. and R.R. Wallace. 1980. Ecological studies of the aqautic invertebrates of the AOSERP study area of northeast Alberta. Prep. for Alberta Oil Sands Environmental Research Program by Fisheries and Environment Canada, Freshwater Institute. AOSERP Report 88. 177 pp.
- Bayrock, L.A. 1971. Surficial geology, Bitumount, NTS 74E. Map 34. Research Council of Alberta, Edmonton.

Bayrock, L.A. 1972a. Surficial geology, Fort Chipewyan, NTS 74L. Map 36. Research Council of Alberta, Edmonton.

- Bayrock, L.A. 1972b. Surficial geology, Lake Claire, NTS 841. Map 39. Research Council of Alberta, Edmonton.
- Bayrock, L.A. and T.H.F. Reimchen. 1974. Surficial geology, Waterways, NTS 74D. Map. Research Council of Alberta, Edmonton.
- Boerger, H. 1983. Survey of benthic fauna in Poplar Creek, 1982. Syncrude Canada Ltd., Dept. of Environmental Affairs. Internal Report. 49 pp.
- Boerger, H. 1984. Survey of benthic fauna in Poplar Creek, 1983. Syncrude Canada Ltd., Dept. of Environmental Affairs. Internal Report. 15 pp.
- Bond, W.A. and D.K. Berry. 1980. Fishery resources of the Athabasca River downstream of Fort McMurray, Alberta. Volume II. Prep. for the Alberta Oil Sands Environmental Research Program by the Dept. of Fisheries and Oceans and Alberta Environment. AOSERP Report L-53. 154 pp.
- Carrigy, M.A. 1959. Geology of the McMurray formation. Memoir 1, Part III. Research Council of Alberta, Edmonton. 130 pp.
- Corkum, L.D. and P.J. McCart. 1981. Preliminary lease reconnaissance studies of aquatic fauna within Project 80 study area. Prep. for Project 80 by Aquatic Environment Ltd. 74 pp.
- Corkum, L.D., P.J. McCart, R. Saunders, D. Ferrari, G. Walder, and K. Strong-Duffin. 1982. Baseline studies of the aquatic resources of the Canstar study area, 1981. Reports prepared for Canstar Oil Sands Ltd. by Aquatic Environments Ltd. Vol. I, 180 pp; Vol. II, 140 pp; Vol III, 163 pp; Vol. IV, 170 pp.
- Costerton, J. and G.G. Geesy. 1979. Microbial populations in the Athabasca River. Prep for the Alberta Oil Sands Environmental Research Program by Dept. of Biology, University of Calgary. AOSERP Report 55. 66 pp.
- Crowther, R.A. 1979. Ecological investigations of Hartley Creek, Alberta. Calgary, Alberta: University of Calgary. 288 pp. Ph.D. thesis.
- Crowther, R.A. and B.J. Lade. 1980. An assessment of benthic secondary production in the Muskeg River of northeastern Alberta. Prep. for Alberta Oil Sands Environmental Research Program by IEC. AOSERP Report 116. 106 pp.

Davis, J.C. 1973. Statistics and data analysis in geology. New York: Wiley.

- Dillon, P.J. and W.B. Kirchner. 1975. The effects of geology and land use on the export of phosphorus from watersheds. Water Research 9:135-148.
- Dixon, W.J. and M.B. Brown, eds. 1979. Biomedical computer programs P-series. Berkeley: Univ. of California Press. 880 pp.
- Doyle, P.F. 1977. Hydrological and hydraulic characteristics of the Athabasca River from Fort McMurray to Embarras. Alberta Research Council. Report SWE - 77/02. 47 pp.
- Draper, N. and H. Smith. 1966. Applied regression analysis. New York: Wiley. 407 pp.
- Environment Canada. 1974. Dictionary of the National Water Quality Data Bank (NAQUADAT). Inland Waters Directorate, Water Quality Branch. Ottawa: Information Canada. 144 pp.
- Gallup, D.N., P. Van der Giessen, and H. Boerger. 1971. A survey of plankton and bottom invertebrates of the Peace-Athabasca Delta Region. Canadian Wildlife Service. 36 pp.
- Giles, M.A., J.F. Klaverkamp, and S. Lawerence. 1979. The acute toxicity of saline groundwater and of vanadium to fish and aquatic invertebrates. Environment Canada, Freshwater Institute, Winnipeg. AOSERP Report No. 56. 216 pp.
- Green, R.H. 1979. Sampling design and statistical methods for environmental biologists. New York: Wiley. 257 pp.
- Griffiths, W.G. 1973. Preliminary fisheries survey of the Fort McMurray tar sands area. Alberta Dept. of Lands and Forests, Fish and Wildlife Division. 618 pp.
- Griffiths, W.H. and B.D. Walton. 1978. The effects of sedimentation on the aquatic biota. Prep. for the Alberta Oil Sands Environmental Research Program by Renewable Resources Consulting Services Ltd. AOSERP Report 35. 86 pp.
- Hackbarth, D.A. and N. Nastasa, 1979. The hydrology of the Athabasca oil sands area Alberta. Edmonton: Alberta Research Council. Bulletin 38. 39 pp.
- Hartland-Rowe, R., R.W. Davies, M. McElhone, and R.A. Crowther. 1979. On the ecology of macrobenthic invertebrate communities in Hartley Creek, Alberta. Prep. for the Alberta Oil Sands Environmental Research Program by the University of Calgary. AOSERP Report 49. 163 pp.

- Hem, J.D. 1970. Study and interpretation of the chemical characteristics of natural water. 2nd edition. Geological Survey Water Supply Paper 1473.
- Hickman, M., S.E.D. Charlton, and C.G. Jenkerson. 1980. A comparative study of benthic algal primary production in the AOSERP study area. Prep. for the Alberta Oil Sands Environmental Research Program by the University of Alberta, Dept. of Botany. AOSERP Report 128. 139 pp.
- Hills, G.A. 1976. An integrated interactive holistic approach to ecosystem classification. <u>In</u> Ecological (biophysical) land classification in Canada, ed. J. Thie and G. Ironside. 1st meeting Canadian committee on ecological (biophysical) land classification. 1976 May 25 to 28; Pettawawa, Ontario. Ecological land classification series. No. 1, pp. 73-97.
- Hydrological Atlas of Canada. 1978. Prep. by Fisheries and Environment Canada. Printed by Surveys and Mapping Branch, Dept. of Energy, Mines and Resources.
- Kellerhals, R., C.R. Neill, and D.I. Bray. 1972. Hydraulic and geomorphic characteristics of rivers in Alberta. Edmonton: Research Council of Alberta. River Engineering and Surface Hydrology Report 72-1. 52 pp.
- Kirchner, W.B. 1975. An examination of the relationship between drainage basin morphology and the export of phosphorus. Limnol. Oceanogr. 20:267-279.
- Lake, W. and W. Rogers. 1979. Acute lethality of mine depressurization water on trout-perch and rainbow trout. Prep. for the Alberta Oil Sands Environmental Research Program by Alberta Environment. AOSERP Report 23. 44 pp.
- Loeppky, K.D. and M.O. Spitzer. 1977. Interim compilation of stream gauging data to December 1976 for the Alberta Oil Sands Environmental Research Program. Prep. for the Alberta Oil Sands Environmental Research Program by Fisheries and Environment Canada, Water Survey of Canada. AOSERP Report 18. 257 pp.
- Longley, R.W. and B. Janz. 1978. The climatology of the Alberta Oil Sands Environmental Research Program study area. Prep. for the Alberta Oil Sands Environmental Research Program by Fisheries and Environment Canada, Atmospheric Environment Service. AOSERP Report 39. 102 pp.

- Mayhood, D.W., G.L. Walder, T. Dickson, R.B. Green, D.E. Reid and R. Stushroff. 1981. Chemical and biological monitoring of muskeg drainage at the Alsands project site. Prep. for Alberta Environment and Alsands Energy Ltd. by Aquatic Environments Limited and Hardy Associates (1978) Ltd., Calgary. 247 pp.
- McCart, P.J. and D.W. Mayhood. 1980. A review of aquatic biomonitoring with particular reference to its possible use in the AOSERP study area. Prep. for the Alberta Oil Sands Environmental Research Program by Aquatic Environments Limited. AOSERP Report L-59. 117 pp.
- McCart, P.J., P.T.P. Tsui, R. Green, and W. Grant. 1977. Baseline studies of aquatic environments in the Athabasca River near Lease 17. Syncrude Canada Ltd. Environmental Research Monograph 1977-2. 205 pp.
- McCart, P.J., P. Tsui, W. Grant, R. Green, and D. Tripp. 1978. Baseline study of the water quality and aquatic resources of the MacKay River, Alberta. Syncrude Canada Ltd. Environmental Research Monograph 1978-4. 203 pp.
- McMahon, B., P. McCart, A. Peltzner, and G. Walder. 1977. Toxicity of saline groundwater from Syncrude's Lease 17 to fish and benthic macroinvertebrates. Syncrude Environ. Res. Monogr. 1977-3. 97 pp.
- McNeely, R.N., V.P. Neimanis, and L. Dwyer. 1979. Water quality source book - a guide to water quality parameters. Environment Canada, Inland Waters Directorate, Water Quality Control Branch. Ottawa. Report EN 37-54/1979. 89 pp.
- McPherson, R.A. and C.P. Kathol. 1977. Surficial geology of potential mining areas in the Athabasca Oil Sands region. Alberta Research Council, Edmonton. Open File Report 1977-4. 177 pp.
- Mellon, G.B. and J.H. Wall. 1956. Geology of the McMurray formation. Alberta Research Council. Report 72. 43 pp.
- Merritt, R.W., K.W. Cummins, and V.H. Resh. 1978. Collecting, sampling and rearing methods for aquatic insects. <u>In</u> An Introduction to the aquatic insects of North America, ed. R.W. Merritt and K.W. Cummin. Dubugue: Kendall/Hunt Publ. Co. pp. 13-28.
- Morrison, D.F. 1967. Multivariate statistical methods. New York: McGraw-Hill.
- Naumann, E. 1929. The scope and chief problems of regional limnology. Int. Revue. ges. Hydrobiol. 22:423-444.

- Neill, C.R. and B.J. Evans. 1979. Synthesis of surface water hydrology. Prep. for the Alberta Oil Sands Environmental Research Program by Northwest Hydraulic Consultants Ltd. AOSERP Report 60. 84 pp.
- Neill, C.R., B.J. Evans, and A.W. Lipsett. 1981. Circulation of water and sediment in the Athabasca delta area. Prep. for the Alberta Oil Sands Environmental Research Program by Northwest Hydraulic Consultants Ltd. and the Alberta Research Council. AOSERP Report 123. 182 pp.
- Nix, P.G., J.S. Costerton, R. Ventullo, and R.T. Coutts. 1979. A preliminary study of chemical and microbial characteristics in the Athabasca River in the Athabasca Oil Sands area of northeastern Alberta. Prep. for the Alberta Oil Sands Environmental Research Program by Chemical and Geological Laboratories Ltd., Microbios Ltd., and Zenotox Services Ltd. AOSERP Report 54. 135 pp.
- Northwest Hydraulics Consulting Ltd. 1975. Working paper on probable hydrological impact of oil sands development.
- Noton, L.R. and N.R. Chymko. 1978. Water quality and aquatic resources of the Beaver Creek diversion system, 1977. Syncrude Canada Ltd. Environmental Research Monograph 1978-3. 340 pp.
- O'Neil, J., L. Noton, and T. Clayton. 1982. Aquatic investigations in the Hartley Creek area, 1981 (Sandalta Project). Prep. for Gulf Canada Resources Inc. Calgary by R.L. & L. Environmental Services Ltd. and Chemical and Geological Laboratories Ltd. 160 pp.
- Orloci, L. 1975. Multivariate analysis in vegetation research. The Hague: W. Junk.
- Pettapiece, W.W. 1981. Physiographic map of Alberta. Alberta Institute of Pedalogy, Edmonton.
- Rawson, D.S. 1947. (No title). Fish Res. Bd. Canada Bulletin 72:69-85.
- Rowe, J.S. 1972. Forest regions of Canada. Dept. of Environment, Can. Forest Service, Ottawa. Publ. No. 1300. 172 pp.
- Schwartz, F.G. 1979. Interim report on hydrogeological investigations of the Muskeg River Basin, Alberta. Prep. for the Alberta Oil Sands Environmental Research Program by the University of Alberta, Dept. of Geology. AOSERP Report 48. 101 pp.

- Seidner, R.T. 1980. Regional water quality of the AOSERP study area. Volume II: Discussion of 1976 and 1977 data. Prep. for the Alberta Oil Sands Environmental Research Program by Alberta Environment. AOSERP Report L-62. 245 pp.
- Sekerak, A.D. and G.L. Walder. 1980. Aquatic biophysical inventory of the major tributaries in the AOSERP study area. Volume 1: Summary report. Prep. for the Alberta Oil Sands Environmental Research Program by LGL Limited, Environmental Research Associates. AOSERP Report 114. 100 pp.
- Shannon, C.E. 1948. A mathematical theory of communication. Bell Systems Tech 27:379-423, 623-656.
- Shannon, C.E. and W. Weaver. 1949. The mathematical theory of communication. Urbana: University of Illinois.
- Sokal, R.R. and R.J. Rohlf. 1969. Biometry. San Franciso: Freeman. 776 pp.
- Stringer, P.W. 1976. A preliminary vegetation survey of the Alberta Oil Sands Environment Research Program study area. Prep. for the Alberta Oil Sands Environment Research Program by Intraverda Plant Systems Ltd. AOSERP Report 4. 108 pp.
- Strong, W.L. and K.R. Leggat. 1981. Ecoregions of Alberta. Alberta Energy and Natural Resources, Resource Evaluation and Planning Divison. ENR Technical Report Number T/4. 64 pp.
- Subcommittee on Biophysical Land Classification. 1969. Guidelines for biophysical land classification. Canada Department of Fisheries and Forestry. Forest Service Publication 1264. 55 pp.
- Thompson, M.D., M.C. Wride, and M.E. Kirby. 1978. Ecological habitat mapping of the AOSERP study area: Phase 1. Prep. for the Alberta Oil Sands Environmental Research Program by Environmental Consultants Ltd. AOSERP Report 31. 176 pp.
- Thurber, Crippen and Northwest Hydraulics Consulting Ltd. 1975. Athabasca River power development: Crooked Rapids dam feasibility study. Prep. for Alberta Environment.
- Tripp, D.B. and P.J. McCart. 1979. Investigations of the spring spawning fish populations in the Athabasca and Clearwater rivers upstream of Fort McMurray: Volume I. Prep. for the Alberta Oil Sands Environmental Research Program by Aquatic Environments Limited. AOSERP Report 84. 128 pp.

- Tripp, D.B. and P.T.P. Tsui. 1980. Fisheries and habitat investigations of tributary streams in the southern portion of the AOSERP study area. Volume I: Summary and conclusions. Prep. for Alberta Oil Sands Environmental Research Program by Aquatic Environments Limited. AOSERP Report 92. 224 pp.
- Tsui, P.T.P., B.R. McMahon, P.J. McCart, and J.V. McCart. 1980. A laboratory study of long-term effects of mine depressurization groundwater on fish and invertebrates. Prep. for the Alberta Oil Sands Environmental Research Program by Aquatic Environments Ltd. AOSERP Report 113. 211 pp.
- Turchenek, L.W. and J.D. Lindsay. 1982. Soils inventory of Alberta Oil Sands Environmental Research Program study area. Prep. for the Alberta Oil Sands Environmental Research Program by Alberta Research Council. AOSERP Report 122. 240 pp.
- Walder, G.L., P.L. Strankman, E.B. Walton, and K.A. Bruce. 1980. Aquatic biophysical inventory of major tributaries in the AOSERP study area. Volume II: Atlas. Prep. for the Alberta Oil Sands Environmental Research Program by LGL Ltd. AOSERP Project WS 3.4. 166 pp.
- Warner, L.A. 1979. Interim compilation of stream gauging data. 1978. Prep. for the Alberta Oil Sands Environmental Research Program by Water Survey of Canada, Environment Canada. AOSERP Project WS 1.1 68 pp.
- Warner, L.A. and M.O. Spitzer. 1979. Interim compilation of stream gauging data, 1977. Prep. for the Alberta Oil Sands Environmental Research Program by Environment Canada. AOSERP Report L-22. 99 pp.
- Wishart, D. 1978. Clustan user manual. Third Edition Inter-University/Research Council Series Report No. 47. 175 pp.

10.1 LIST OF CHEMICAL PARAMETERS ANALYSED AND THE ASSOCIATED CODE FOR WHICH STANDARD METHODS ARE DESCRIBED (ENVIRONMENT CANADA 1974) (TABLE 26)

Table 26. List of chemical parameters analysed and the associated code for which standard methods are described (Environment Canada 1974). Unless otherwise specified, all units are in mg/L.

Parameter	Code
рН	10301L
Total alkalinity as CaCO ₃	10101L
Phenolphthalein alkalinity as CaCO ₃	10151L
Total hardness as CaCO ₃	10602L
Specific conductivity (uS/cm)	02041L
Turbidity (JTU)	02073L
True colour (relative units)	02021L
Silica	14101L
Calcium	20103L
Magnesium	12102L
Sodium	11102L
Potassium	19102L
Bicarbonate	06201L
Carbonate	06301L
Chloride	17203L
Sulphate	16306L
Dissolved oxygen	08101L
Total organic carbon	06001L
Filterable residue	10451L
Nonfilterable residue	10401L
Total inorganic carbon	06051L
Phenolic material	06532L
Oil and grease (petroleum ether extraction)	06521L
Oil and grease (freon extraction)	06524L
Total phosphorus	15406L
Orthophosphate phosphorus	15256L
Total kjeldahl nitrogen	07013L

continued . . .

Table 26. Concluded.

Parameter	Code
Ammonia	07555L
Nitrate and nitrite nitrogen	07110L
Aluminum, extractable	13302L
Arsenic, dissolved	33104L
Boron, dissolved	05105L
Cadmium, extractable	48302L
Chromium hexavalent	24101L
Cobalt, extractable	27302L
Copper, extractable	29305L
Iron, extractable	26304L
_ead, extractable	82302L
Manganese, extractable	25304L
Mercury, total	80015L
lickel, extractable	28302L
Selenium, dissolved	34102L
Silver, extractable	47302L
/anadium, total	23002L
Zinc, extractable	30305L

10.2 SEASONAL SUMMARY OF ROUTINE WATER QUALITY PARAMETERS (TABLES 27 TO 38), NUTRIENTS (TABLES 39 TO 44), COLIFORMS (TABLES 45 TO 46), AND METALS (TABLES 47 TO 58), FOR 12 SITES ALONG THE ATHABASCA RIVER. Table 27. Seasonal summary of routine water quality parameters for site CCOOl2 (centre) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31).

		рH	1		Tot	al Alkal [.] (mg/L)	inity		Hardness (mg/L)			Conductiv (uS/cm	
	n	med	min	max	n	med	max	<u></u> n	med	max	<u>n</u>		max
√inter Spring Summer Fall	2 9 12 7	7.9 8.0 8.0	7.4 7.5 7.5 7.3	8.4 8.3 8.4 8.2	2 ^a 10 14 8	158 101 98 98	164 116 106 114	2 10 14 8	168 106 106 109	183 118 126 121	2 10 14 8	365 226 219 240	369 308 278 269
ISWO DWG	6.5 to 6.5 to	0 8.5 0 8.5											
		(Calcium (mg/L)		 . pt - 1	Magnesiu (mg/L)	n		Sodium (mg/L)	1		Potassiu (mg/L)	IM
		<u>n</u>	med	max	_n	med	max	<u>n</u>	med	max	_ <u>n</u>		max
Winter Spring Summer Fall		2 10 14 8	47 30 30 30	51 34 36 33	2 10 14 8	13 7 8 8	14 9 9 9	2 10 14 8	12 6 5 7	16 9 11 9	2 10 14 8	1.7 0.9 0.8 0.7	2.0 3.6 1.5 1.1
ASWO CDWG													
		E	Bicarbona (mg/L)	te		Chloride (mg/L)			Sulphate (mg/L)	3	Tot	al Organic (mg/L)	: Carbo
		<u>n</u>	med	max	n	med	max	<u></u>	med	max	<u>n</u>		max
Winter Spring Summer Fall		2 10 14 8	192 119 118 119	200 139 129 139	2 10 14 8	4 2 2 2	5 3 3 3	2 9 12 8	36 19 17 20	36 26 37 28	2 10 14 8	10 11	30 18 26
ASWO CDWG						250			500				
		Filt	erable Re (mg/L)	sidue	Non-f	ilterable (mg/L)	e Residue	Phe	enolic Ma (mg/L)		0.	il and Gre (mg/L)	
		n	med	max	n	med	max	_ <u>n</u>	med	max	<u>n</u>	med	max
inter pring ummer all		2 10 14 8	243 150 139 150	251 165 171 161	2 10 14 8	5 326 202 16	31 1490 1022 139	2 10 13 8	0.002 0.004 0.003 0.002	0.003 0.041 0.005 0.011	2 8 10 5	0.3 1.0 1.0 0.4	1.5 3.3 2.2 0.9
NSWO CDWG									0.005				

^a If n = 2, median value = minimum value.

Table 28.	Seasonal summary of routine water quality parameters for site DA0203 (left bank) on the Athabasca
	River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1
	to August 31), fall (September 1 to October 31).

		рН			Tota	l Alkalin (mg/L)	ity		Hardness (mg/L)	5	(conductivi (uS/cm	ty
	n	med	min	max	<u>n</u>	med	max	_ <u>n</u>	med	max	<u> </u>	med	max
Winter Spring Summer Fall	4 8 8 6	7.7 7.8 7.9 7.9	7.6 7.5 7.5 7.5	8.1 8.0 8.2 8.0	4 9 10 7	163 100 98 106	179 121 110 113	4 9 10 7	177 104 105 116	197 121 121 131	4 9 10 7	439 235 221 266	477 370 284 294
ASWO CDWG		6.5 t 6.5 t											
		<u>n</u>	Calcium (mg/L) med	max	 n	Magnesium (mg/L) med	max	n	Sodium (mg/L med) max	n	Potassiu (mg/L) med	
Winter Spring Summer Fall		4 9 10 7	48 29 30 32	54 34 34 35	4 9 10 7	14 8 8 9	15 10 9 11	4 9 10 7	18 6 5 8	51 13 12 10	4 9 10 7	0.1 0.8 0.1 0.1	1.5 1.5 1.4 1.3
ASWO CDWG													
		_ <u>n</u>	Bicarbona (mg/L) med	ate max	 n	Chloride (mg/L) med	ma x		Sulpha (mg/L) med	te max	Tota	al Organic (mg/L) med	: Carboi max
Winter Spring Summer Fall	×	4 8 7 6	198 122 118 130	218 147 134 138	4 9 10 7	12 2 2 4	49 11 2 5	4 8 8 6	42 18 16 25	50 37 23 28	4 9 10 7	6 9 10 5	7 13 18 9
ASWO CDWG						250			500				

continued . . .

	Filt	erable Re (mg/L)	esidue	Nonfi	lterable (mg/L)	Residue	Pher	nolic Mate (mg/L)	erial	011	and Grea (mg/L)	se
	<u>_n</u>	med	max	<u>n</u>	med	max	<u></u> n	med	max	n	med	max
Winter	4	260	300	4	3	5	4	0.002	0.014	4	0.4	0.8
Spring	9	147	205	9	181	304	9	0.002	0.004	8	0.5	1.1
Summer	10	136	159	10	205	1042	10	0.002	0.009	8	0.4	1.2
Fall	7	153	163	7	10	43	7	0.002	0.003	6	0.6	1.1
ASWO CDWG								0.005				

Table 28. Concluded.

, **3**

Table 29. Seasonal summary of routine water quality parameters for site DAO2O3 (right bank) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31).

F

			рН		Tot	al Alkali (mg/L)	nity		Hardnes: (mg/L)	5	C	Conductivi (uS/cm)	
	n	med	min	max	<u></u> n	med	max	<u>n</u>	med	max	<u>n</u>	med	, max
Winter Spring Summer Fall	4 8 8 7	7.5 7.8 7.8 7.9	7.3 7.4 7.5 7.5	8.3 7.9 8.1 8.0	4 9 10 8	104 83 80 98	150 118 100 135	4 9 10 8	102 86 85 106	166 114 103 152	4 9 10 8	394 236 229 290	457 383 273 364
ASWO CDWG		6.5 t 6.5 t	0 8.5 0 8.5										
		n	Calcium (mg/L) med	max	n	Magnesiu (mg/L) med	im ma x	n	Sodium (mg/L) med	max	'n	Potassiu (mg/L) med	um max
Winter Spring Summer Fall		4 9 10 8	26 24 24 28	45 29 30 42	4 9 10 8	8 6 6 8	13 10 7 12	4 9 10 8	32 13 14 16	38 16 17 23	4 9 10 8	0.6 0.8 0.9 0.4	1.2 1.4 1.2 1.2
ASWO CDWG													
•		n	Bicarbona (mg/L) med	ate max	_ <u>n</u>	Chloride (mg/L) med	max	_ <u>n</u>	Sulphat (mg/L) med	e max	Tota _n	l Organic (mg/L) med	Carbor max
Winter Spring Summer Fall		4 8 9 7	123 98 95 119	183 144 115 164	4 9 10 8	44 12 12 16	52 17 18 26	4 8 8 7	18 14 14 21	41 32 17 31	4 9 10 8	6 9 9 6	7 13 19 11
ASWO CDWG						250			500				

continued . . .

· · ·													
•	 Filterable Residue (mg/L)			Non-filterable Residue (mg/L)			Phe	Phenolic Material (mg/L)			011 and Grease (mg/L)		
	<u>n</u>	med	max	<u>n</u>	med	max	<u>n</u>	med	max	n	med	max	
Winter Spring Summer Fall	4 9 10 8	240 134 138 174	279 190 162 221	4 9 10 8	4 67 56 10	5 349 1044 98	4 9 10 7	0.003 0.002 0.002 0.002	0.005 0.004 0.015 0.004	4 8 8 7	0.8 0.6 0.7 0.5	1.4 1.9 3.2 1.8	
ASWO CDWG								0.005					

Table 29. Concluded.

Table 30. Seasonal summary of routine water quality parameters for site DA0205 (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31).

	<u>_n_</u>		oH nin max	Total Alkalinity (mg/L) <u>med max</u>	Hardness (mg/L) med max	Conductivity (uS/cm) <u>med max</u>
Winter Spring Summer Fall	7 ⁷ 7 6 3	7.7 7 7.9 7	7.5 8.2 7.5 8.1 7.4 8.2 7.6 7.9	164 172 98 124 98 106 97 103	176 187 107 125 103 115 105 110	432 486 257 387 213 281 257 269
ASWO CDWG		6.5 tọ 8 6.5 to 8	.5 .5			
	<u>n_</u>		lcium g/L) max	Magnesium (mg/L) med max	Sodium (mg/L) med max	Potassium (mg/L) med max
Winter Spring Summer Fall	7 7 6 3	48 31 29 30	50 34 33 30	14 15 8 11 7 8 8 9	20 27 7 14 5 6 11 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ASWO CDWG						
	<u>n</u>		bonate g/L) max	Chloride (mg/L) med max	Sulphate (mg/L) med max	Total Organic Carbon (mg/L) med max
Winter Spring Summer Fall	7 7 6 3	200 119 114 118	209 151 129 125	17 24 4 8 2 3 8 8	42 47 21 38 15 18 19 25	6 7 10 13 12 19 10 11
ASWO CDWG				250	500	

continued . . .

182

 \mathbf{k}_{0}

: .

Table 30. Concluded.

ş

		Filterabl (mg/	e Residue L)		able Residue g/L)	Phenolic M (mg,		Oil and (mg/	l Grease /L)	
	<u>n</u>	med	max	med	max	med	max	med	max	
Winter	7	255	290	4	7	0.006	0.013	2.2	0.4	
Spring	7	150	200	169	324	0.002	0.005	0.1	1.1	
Summer	6	122	140	240	1056	0.002	0.009	1.1	2.5	
Fall	3	140	150	12	20	0.002	0.003	0.1	0.5	
ASWO CDWG						0.00	05			

ŧ

Table 31.	Seasonal summary of routine water quality parameters for site DA0205 (right bank) on the
	Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30),
	summer (July 1 to August 31), fall (September 1 to October 31).

	n	pH med min	max	Total Alkali (mg/L) med m	inity) nax	Hardn (mg/ med		Conduct (uS/ med		
Winter Spring Summer Fall	6 6 6 3	7.6 7.2 7.8 7.4 8.0 7.4 7.6 7.4	8.0 8.0 8.1 7.9	82 86	91 97 97	134 84 91 97	158 98 103 104	384 216 218 261	464 262 276 275	
ASWO CDWG		6.5 to 8.5 6.5 to 8.5								
	<u>n</u>	Calciu (mg/L med		Magnesiun (mg/L) med n	n nax	Sodi (mg/ med	um (L) <u>max</u>	Potas (mg med	sium /L) max	
Winter Spring Summer Fall	6 6 3	36 23 26 27	44 30 29 28	11 6 6 8	13 8 8 8	30 10 8 12	36 14 9 14	1.2 0.4 0.1 0.1	1.4 1.4 1.0 0.1	
ASWO CDWG										
	<u>n</u>	Bicarbo (mg/l med		Chloride (mg/L) med m	e nax	Sulph (mg/ med	nate (L) max	Total Orga (mg <u>med</u>	nic Carbon //L) max	
dinter Spring Summer Fall	6 6 6 3	157 100 104 109	195 111 118 118	32 8 6 11	40 14 8 13	27 15 12 17	37 21 16 21	6 8 12 10	6 13 19 11	
ASWO CDWG				250		50	00			

continued . . .

Tab1	e 3	1	Cond	:1	uded.

. .

		Filteral (mg/	ole Residue /L)		able Residue g/じ)	Phenolic (mg,		0il and (mg,		
-	<u>n</u>	med	max	med	max	med	max	med	max	
nter	6	231	273	3	30	0.002	0.023	0.8	2.0	
oring	6	125	143	74	274	0.002	0.007	0.2	1.0	
mmer	6	124	140	194	298	0.002	0.003	0.7	1.4	
11	3	140	150	10	16	0.006	0.007	0.1	0.3	
SWO						0.0	005			
11	6 3					0.006	0.007			

Table 32.	Seasonal summary of routine water quality parameters for site DA0206 (left bank) on the
	Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to
	June 30), summer (July 1 to August 31), fall (September 1 to October 31).

		р	н		To	tal Alkali (mg/L)	nity		Hardnes: (mg/L		C	onductiv (uS/cm	ity)
	<u>n</u>	med	min	max	_n	med	max	_ <u>n</u>	med	max	n	med	max
Winter Spring Summer Fall	11 11 10 9	7.7 7.7 7.8 7.8	7.5 7.5 7.2 7.4	8.4 7.9 8.1 8.0	11 12 13 10	148 96 96 102	168 114 104 120	11 12 13 10	161 104 104 109	179 116 117 161	11 12 13 10	411 226 222 269	489 321 278 363
ASWO CDWG		6.5 6.5	to 8.5 to 8.5										
		n	Calcium med	max	n	Magnesium med	n max	n	Sodium med	max	 n	Potassi med	um max
Winter Spring Summer Fall		11 12 13 10	44 30 29 30	49 32 33 45	11 12 13 10	13 8 7 8	14 10 9 12	11 12 13 10	26 8 6 11	37 14 10 17	11 12 13 10	1.4 1.1 0.1 0.6	2.3 1.9 1.1 1.1
ASWO CDWG													
		n	Bicarbona (mg/L) med	ate max	n	Chloride (mg/L) med	e max	n	Sulphat (mg/L) med	e max	 Total n	Organic (mg/L) med	Carbon max
Winter Spring Summer Fall		11 11 12 9	180 116 122 124	205 139 128 167	11 12 13 10	27 4 2 8	47 9 6 16	11 11 10 9	36 20 16 23	39 36 34 32	11 12 13 10	7 10 10 7	9 24 19 13
ASWO CDWG						250			500				

continued . . .

Table	32.	Concluded.

	Filterable Residue (mg/L) n med max		esidue	Non-filterable Residue (mg/L)		Phe	nolic Mat (mg/L)	terial	Oil and Grease (mg/L)			
	n	med	max	n	med	max	n	med	max	<u>n</u>	med	max
Winter Spring Summer Fall	11 12 - 13 10	249 148 139 152	285 280 166 216	11 12 13 10	6 95 225 14	62 1760 1012 51	10 12 12 10	0.002 0.002 0.002 0.002	0.013 0.006 0.018 0.009	11 11 10 9	0.8 0.8 0.8 0.4	3.2 3.0 3.5 2.1
ASWO CDWG								0.005			-	

Table 33. Seasonal summary of routine water quality parameters for site DAO2O6 (right bank) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31).

		p	н		Tota	l Alkali (mg/L)	nity		Hardness (mg/L)	5		Conductiv (uS/cm)	ity
	n	med	min	max	<u>n</u>	med	max	_ <u>n</u>	med	max	_ <u>n</u>	med	ma x
Winter Spring Summer Fall	10 9 10 8	7.7 7.7 7.8 7.8	7.3 7.5 7.2 7.4	8.3 8.1 8.1 8.0	10 10 12 9	138 88 92 98	165 128 104 118	10 10 12 9	143 92 100 105	172 101 106 128	10 10 12 9	404 223 231 257	479 273 276 292
ASWO CDWG		6.5 t 6.5 t	o 8.5 o 8.5										
		n	Calcium (mg/L) med	max	_n	tagnesium (mg/L) med	max	n	Sodium (mg/L) med	max	n	Potassiu (mg/L) med	m max
Winter Spring Summer Fall		10 10 12 9	39 26 28 29	46 30 31 35	10 10 12 9	11 7 7 8	14 8 8 9	10 10 12 9	28 10 9 11	36 14 13 16	10 10 12 9	1.6 1.0 0.1 0.6	2.0 1.6 1.0 0.8
ASWO CDWG													
		ß	icarbona (mg/L) med	te max	n	Chloride (mg/L) med	max	n	Sulphate (mg/L) med	max	Tota	1 Organic (mg/L) med	: Carbon max
Winter Spring Summer Fall		10 9 11 8	168 107 111 122	201 129 120 144	10 10 12 9	22 9 7 11	50 12 9 16	10 10 10 8	28 16 14 20	41 21 21 24	10 10 12 9	8 8 11 9	9 23 19 15
ASWÓ CDWG						250			500				

continued . . .

	Filt	erable Ro (mg/L)	esidue	Non-filt	erable: (mg/L)	Residue	Phei	nolic Mate (mg/L)	erial	0	il and G (mg/L)	rease
	n	med	max	<u>n</u>	med	max	<u>n</u>	med	max	<u>_n</u>	med	max
Winter	10	240	280 148	10 10	4 77	10 1686	10 10	0.001	0.020 0.004	10	0.9 0.6	3.4
Spring Summer	10 12	140 142	164	10	177	932	10	0.002	0.005	10	1.0	2.7 1.5
Fall	9	150	179	9	15	38	9	0.003	0.026	8	0.6	1.1
ASWO CDWG								0.005				

Table 33. Concluded.

Table 34. Seasonal summary of routine water quality parameters for site DAO207 (left bank) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31).

		р	Н		Tota	l Alkali (mg/L)	inity		Hardnes: (mg/L)	S	C	onductiv (uS/ci	
	<u>n</u>	med	min	max	<u></u> n	med	max	<u>n</u>	med	max	<u>n</u>	med	max
Winter Spring Summer Fall	16 10 11 9	7.8 7.8 7.9 7.6	7.5 7.6 7.3 7.4	8.3 8.1 8.2 8.0	16 11 13 10	146 98 101 100	180 130 107 135	16 11 13 10	159 105 104 108	191 151 118 154	16 11 13 10	404 221 221 253	543 300 277 361
ASWO CDWG		6.5 t 6.5 t											
		n	Calcium (mg/L) med	max	NN	lagnesiun (mg/L) med	n max	<u>_n</u>	Sodium (mg/L) med	max	n	Potassiu (mg/L) med	
Winter Spring Summer Fall		16 11 13 10	43 30 30 30	49 41 33 42	16 11 13 10	13 7 7 8	20 12 10 12	16 11 13 10	24 7 6 10	42 15 15 18	16 11 13 10	1.5 1.6 0.6 0.6	3.2 3.4 1.2 1.1
ASWO CDWG													
		n	Bicarbona (mg/L) med	ate max	(_ n	Chloride (mg/L) med	max_	n	Sulphat (mg/L) med	e max	Total _n	Organic (mg/L) med	
Winter Spring Summer Fall		16 10 12 9	178 118 120 121	219 158 129 164	16 11 13 10	20 - 4 - 3 - 6	47 8 5 16	16 10 11 9	34 20 16 18	49 46 33 32	16 11 13 10	8 11 10 10	35 24 14 25
ASWO CDWG						250			500				

190

continued . . .

	Tab	le	34.	Concluded	
--	-----	----	-----	-----------	--

,

	Filterable Residue (mg/L) n med max		Non-filterable Residue (mg/L)		Phenolic Material (mg/L)			Oil and Grease (mg/L)				
	<u>n</u>	med	max	<u>n</u>	med	max	<u>n</u>	med	max	_ <u>n</u>	med	max
Winter	16	244	357	. 16	4	128	16	0.004	0.017	16	1.1	1.8
Spring	11	146	203	11	108	1554	11	0.003	0.016	10	0.8	2.4
Summer	13	137	167	13	195	876	13	0.003	0.008	11	1.2	8.2
Fall	10	151	216	10	26	95	9	0.001	0.008	9	0.7	1.4
ASWO								0.005				
CDWG												

Table 35. Seasonal summary of routine water quality parameters for site DA0207 (right bank) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31).

рН			4		Total Alkalinity (mg/L)	Hardness (mg/L)	Conductivity (uS/cm)		
	<u>n</u>	med	min	max	<u>n med max</u>	n med max	n med max		
Winter Spring Summer Fall	6 8 10 7	7.8 7.8 7.9 7.9	7.6 7.4 7.4 7.5	8.3 8.0 8.2 8.2	614016499211012931058100134	6152180999109121001088106149	63814789220353122242758264364		
ASWO CDWG		6.5 t 6.5 t	o 8.5 o 8.5						
		_ <u>n</u>	Calcium (mg/L) med	max	Magnesium (mg/L) n med max	Sodium (mg/L) n med max	Potassium (mg/L) n med max		
Winter Spring Summer Fall		6 9 12 8	40 27 28 29	49 31 30 40	6 12 14 9 7 10 12 7 8 8 8 12	6 23 31 9 9 14 12 8 14 8 14 20	$\begin{array}{ccccccc} 6 & 1.3 & 1.6 \\ 9 & 0.1 & 1.6 \\ 12 & 0.4 & 1.1 \\ 8 & 0.8 & 1.1 \end{array}$		
ASWO CDWG									
		n	Bicarbona (mg/L) med	ate max	Chloride (mg/L) n med max	Sulphate (mg/L) n med max	Total Organic Carbon (mg/L) _n med max		
Winter Spring Summer Fall		6 8 11 7	171 110 115 124	200 134 123 163	6 24 32 9 8 10 12 7 9 8 10 18	6 31 45 8 16 32 10 16 26 7 22 31	6 6 63 9 10 22 12 11 20 8 8 15		
ASWO CDWG					250	500			

	Filterable Residue (mg/L)		<pre>Non-filterable Residue (mg/L)</pre>			Phenolic Material (mg/L)			Oil and Grease (mg/L)			
	n	med	max	<u></u>	med	max	<u>n</u>	med	max	<u></u>	med	max
Winter	б	236	277	6	3	6	6	0.004	0.018	6	0.8	1.1
Spring	9	145	190	9	73	1702	9	0.003	0.012	8	1.1	3.1
Summer	12	134	165	12	146	874	12	0.002	0.011	10	1.0	2.2
Fall	8	157	220	8	21	43	8	0.002	0.013	7	0.6	1.0
ASWO								0.005				
CDWG												

Table 35. Concluded.

Table 36. Seasonal summary of routine water quality for site DA0208 (left bank) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31).

		р	Н		Tota	Total Alkalinity (mg/L)			Hardnes (mg/L)			Conducti (uS/cm)	vity	
	<u>n</u>	med	min	max	_n	med	max	_ <u>n</u>	med	max		n	med	max
Winter Spring Summer Fall	4 4 3 4	7.6 7.6 8.0 7.8	7.5 7.4 7.8 7.4	7.8 8.0 8.0 8.0	4 5 6 5	141 96 98 104	149 102 107 134	4 5 6 5	149 108 102 109	156 113 116 157		4 5 6 5	404 242 222 274	428 252 260 363
ASWO CDWG		6.5 t 6.5 t									r			
		n	Calcium (mg/L) med	max	א <u>n</u>	lagnesiuπ (mg/L) med	max	n	Sodium (mg/L) med	max		n	Potassiu (mg/L) med	
Winter Spring Summer Fall		4 5 6 5	40 30 28 31	42 34 33 43	4 5 6 5	12 7 8 9	12 9 8 12	4 5 6 5	25 9 6 14	26 12 9 20		4 5 6 5	1.2 1.1 0.4 0.6	1.5 1.5 1.2 1.1
ASWO CDWG														
		n	Bicarbona (mg/L) med	ate max	n	Chloride (mg/L) med	e max	_ <u>n</u>	Sulphat (mg/L) med	e max		Total n	l Organic (mg/L) med	Carbon max
Winter Spring Summer Fall		4 4 5 4	172 113 112 127	181 120 128 163	4 5 6 5	26 6 5 9	29 9 7 17	4 4 4	30 20 16 24	34 26 22 32		4 5 6 5	6 9 10 6	7 12 19 11
ASWO CDWG						250			500					

194

continued . . .

Table	36.	Concluded.

	Filterable Residue (mg/L)			Non-filterable Residue (mg/L)			Phenolic Material (mg/L)			Oil and Grease (mg/L)			
	<u>n</u>	med	max	<u>n</u>	med	max	<u>_n</u>	med	max	<u> </u>	med	max	
Winter	4	238	255	4	4	4	4	0.012	0.027	4	0.8	2.1	
Spring	5	148	154	5	63	276	5	0.002	0.004	4	0.9	1.8	
Summer	6	147	164	6	89	382	6	0.002	0.007	4	0.7	0.9	
Fall	5	155	224	5	12	40	5	0.002	0.024	4	0.3	0.5	
ASWO								0.005					
CDWG													

,

Table 37. Seasonal summary of routine water quality parameters for site DA0208 (right bank) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31).

pH				ſ	Total Alkalinity (mg/L)			Hardness (mg/L)				Conductivity (uS/cm)			
	n	med	min	max				max	_ <u>n</u>	med	max	<u>_ n</u>	med	max	
Winter Spring Summer Fall	5 4 4 4	7.5 7.7 7.8 7.8	7.4 7.6 7.7 7.4	7.7 7.9 8.0 8.0		5 92 5 96	2	172 99 105 133	5 5 6 5	157 99 102 108	186 102 105 158	5 5 6 5	426 245 228 283	510 280 260 360	
ASWO CDWG			6.5 to 6.5 to												
		n	Calcium (mg/L) med	max		Magnes (mg/ n mec	/L)	max	n	Sodium (mg/L) med	max	_n	Potassiu (mg/L) med	m max	
Winter Spring Summer Fall		5 5 6 5	42 28 28 30	49 29 29 44			7 3	15 8 9 12	5 5 6 5	27 10 8 14	35 13 10 19	5 5 6 5	1.0 1.1 0.4 0.7	2.4 1.7 1.0 1.1	
ASWO CDWG															
		n	Bicarbona (mg/L) med	ate max		Chlon (mg, n med	/L)	max	_ <u>n</u>	Sulphato (mg/L) med	e max	Tota _n	l Organic (mg/L) med	Carbon max	
Winter Spring Summer Fall		5 4 5 4	175 112 115 125	209 113 123 162		5 3 5 5 5 6 5 1	7 6	33 10 8 18	5 4 3 4	33 19 14 24	42 23 17 31	5 5 6 5	6 9 10 6	7 16 18 10	
ASWO CDWG						250	0			500				,	

continued . . .

Table 37	7	Concl	luded.
Table S	• •	COLC	luueu.

	Filterable Residue (mg/L)			Non-filterable Residue (mg/L)			Pher	Oil and Grease (mg/L)				
	<u>n</u>	med	max	<u>_n</u>	med	max	<u>_n</u>	(mg/L) med	max	<u>n</u>	med	max
Winter	5	260	290	5	5	66	, 5	0.006	0.011	5	0.3	2.8
Spring	5	144	164	5	49	223	5	0.003	0.005	4	0.8	1.4
Summer	6	154	165	6	71	340	6	0.002	0,005	4	0.8	1.6
Fall	5	163	219	5	11	39	5	0.002	0.007	4	0.3	1.0
ASWO								0.005				
CDWG												

.

Table 38. Seasonal summary of routine water quality parameters for site DD0010 (centre) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31).

		р	H		Tot	al Alkali (mg/L)	inity			Hardness (mg/L)	5	(Conductiv (uS/cm)	ity
	_n	med	min	max	n	med	max		<u>n</u>	med	max	n	med	max
Winter Spring Summer Fall	8 4 5	7.6 7.7 7.7 7.7	7.3 7.5 7.6 7.6	8.2 7.9 7.9 7.8	8 4 4 5	148 94 88 95	242 100 108 110	·	8 4 5	160 102 94 106	262 113 115 125	8 4 5	486 234 218 247	726 259 346 340
ASWO CDWG			co 8.5 co 8.5											
		<u>n</u>	Calcium (mg/L) med	max	 _ <u>n</u>	Magnesiur (mg/L) med	n max		_ <u>n</u>	Sodium (mg/L) med	max	 n	Potassium (mg/L) med	n max
Winter Spring Summer Fall		8 4 4 5	44 29 26 30	60 31 33 35	8 4 5	13 7 7 7	27 9 8 9		8 4 5	31 10 8 10	55 12 22 23	8 4 4 5	1.2 1.0 0.6 0.7	3.1 1.9 1.4 0.9
ASWO CDWG														
	44.48	n	Bicarbona (mg/L) med	ate max	n	Chlorid (mg/L) med	e max		n	Sulphate (mg/L) med	e max	 Total n	Organic (mg/L) med	Carbor max
Winter Spring Summer Fall		8 4 4 5	180 115 107 116	295 122 131 134	8 4 4 5	34 7 6 9	65 10 23 27		8 4 4 5	36 18 16 16	62 24 33 26	8 4 4 5	7 10 12 13	11 13 19 16
ASWO CDWG						250				500				

continued . . .

Tab	le	38.	Concl	uded.

	Filter	rable Res (mg/L)	sidue	Non-fi	<pre>lterable (mg/L)</pre>	e Residue	Phen	olic Mate (mg/L)	erial	0i1	and Gre (mg/L)	ase	
	<u>n</u>	med	max	<u>n</u>	med	max	<u>n</u>	med	max	<u></u> n	med	max	
/inter Spring Summer Fall	8 4 5	290 154 130 153	450 159 219 195	8 4 5	5 101 163 33	49 143 406 50	8 4 5	0.003 0.008 0.002 0.002	0.006 0.001 0.002 0.002	8 4 5	1.0 0.7 0.4 1.0	5.9 1.3 2.4 1.4	661
ASWO CDWG								0.005					

Table 39.	Seasonal summary of nutrients for sites CCO12 (centre) and DDOO10 (centre) on the Athabasca
	River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30),
	summer (July 1 to August 31), fall (September 1 to October 31).

00012	Total 	Phosph (ug/L) med		Ortho <u>n</u>	ophosph (ug/L) med		<u> </u>	TKN (mg/L) med	max	n	Ammonia (mg/L) med	max	Nit _n	rate/Ni (mg/L med	
Vinter Spring Summer Tall	2 ^a 9 14 8	21 193 132 32	27 2500 620 151	2 10 14 8	19 25 13 10	21 44 37 35	2 5 8 4	0.42 0.89 0.80 0.58	1.46 2.60 1.34 0.74	2 10 14 7	0.03 0.03 0.04 0.01	0.06 0.18 0.29 0.02	2 9 13 8	0.11 0.06 0.02 L0.01 ^b	
D0010							<u>, , , , , , , , , , , , , , , , , , , </u>								
linter pring unmer all	8 4 5	34 150 69 49	38 310 345 50	8 4 4 5	16 18 10 15	24 24 53 15	3 2 2 4	0.54 1.06 0.48 0.54	0.80 1.10 0.60 0.74	8 4 5	0.09 0.03 0.03 0.04	0.25 0.04 0.05 0.05	8 4 5	0.24 0.36 0.05 0.01	0.35 0.68 0.08 0.03
SWO DWG		50													

a If n = 2, median value = minimum value. b L = less than.

.

Table 40. Seasonal summary of nutrients for sites DA0203 (left and right banks) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31).

	Tota	(ug/Ĺ)		Ortho	ophospt (ug/L	.)		TKN (mg/L)		Ammonia (mg/L)		Nit	trate/Ni (mg/L	
DA0203 (left bank	<) <u>n</u>	med	max	<u>n</u>	med	max	<u>n</u>	med	max	<u>n</u>	med	max	<u>n</u>	med	max_
Winter	4	23	150	4	14	20	. 1	ND ^a		4	0.07	0.44	4	0,23	0.56
Spring	9	113	340	9	24	75	žb	0.72	0.75	. 9	0.05	0.10	9	0.01	0.27
Summer	10	178	630	10	12	21	2	0.27	0.42	10	0.03	0.12	10	0.01	0.02
Fall	7	26	47	7	10	14	1	0.18		7	0.02	0.04	7	0.01	0.03
(right ban	ık)														
Winter	4	34	42	4	20	28		ND		4	0.06	0.08	4	0.23	0.29
Spring	9	85	380	9	20	75	2	0.72	0.82	9	0.04	0.08	9	L0.01	0.18
Summer	10	137	530	10	12	24	2	0.29	0.56	10	0.04	0.38	10	0.01	0.02
Fall	8	34	87	8	-9	22	1	0.26		8	0.01	0.02	8	L0.01	0.01
ASWO CDWG		50													

a No data. b If n = 2, median value = minimum value. c L = less than.

Table 41. Seasonal summary of nutrients for sites DA0205 (left and right banks) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31).

	Tota	1 Phosph (ug/L)		Orth	ophosph (ug/l		TKN (mg/L)		Ammonia (mg/L)		Nit	rate/Ni: (mg/L	
DA0205	<u>n</u>	med	max	<u></u>	med	max	n med max	<u>n</u>	med	max	n	med	max
(left bank).												
Winter	7	29	30	7	15	19	ND ^a	7	0.07	0.17	7	0.18	0.27
Spring	7	150	590	7	23	80	ND	7	0.07	0.22	7	0.01	0.26
Summer	6	220	560	6	11	28	ND	6	0.03.	0.08	6	0.04	0.08
Fall	3	38	52	3	16	18	ND	3	0.03 L0.01 ^b	0.02	3	L0.01	0.01
(right ban	k)												
Winter	6	30	61	6	20	21	ND	6	0.04	0.09	6	0.21	0.28
Spring	6	81	180	6	17	69	ND	6	0.03	0.08	6	L0.01	0.06
Summer	6	172	470	6	12	36	ND	6	0.03	0.05	6	0.03	0.09
Fall	3	41	52	3	19	23	ND	3	L0.01	0.01	3	L0.01	0.01
ASWO		50											
CDWG													

a b L = less than.

Table 42.	Seasonal summary of nutrients for sites DA0206 (left and right banks) on the Athabasca River
	(1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1
	to August 31), fall (September 1 to October 31).

DA0206	Total n	Phosph (ug/L) med		0rtho	phosphosph (ug/L med		n	TKN (mg/L) med	max	n	Ammonia (mg/L) med	max	Ni	trate/Ni (mg/L med	
(left bank)															
Winter	11	28	47	11	18	22	4	0.49	0.56	11	0.05	0.34	11	0.19	0.44
Spring	12	100	1400	12	15	80	5	0.71	3.25	12	0.04	0.20	12	0.03	0.32
Summer	13	118	650	13	11	28	4	0.60	0.81	13	0.03	0.15	12	0.01	0.08
Fall	10	35	58	10	12	22	3	0.46	0.56	10	0.02	0.13	10	L0.01 ^a	0.01
right bank)														
Winter	10	30	46	10	19	28	5	0.60	0.74	10	0.07	0.13	10	0.18	0.36
Spring	10	102	1250	10	13	29	4	0.68	2.10	10	0.04	0.19	10	0.02	0.08
Summer	12	156	510	12	12	26	5	0.49	0.92	12	0.04	0.09	12	0.03	0.05
Fall	9	37	56	9	12	22	3	0.64	0.68	9	0.01	0.03	9	L0.01	0.01
ASWO		50													
CDWG															

^a L = less than.

Table 43.	Seasonal summary of nutrients for sites DA0207 (left and right banks) on the Athabasca River	
	(1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July	/ 1
	to August 31), fall (September 1 to October 31).	

	Total	(ug/L)		Ortho	ophosph (ug/L			TKN (mg/L)			Ammonia (mg/L)		Nit	rate/Ni: (mg/L	
DAO2O7 (left bank)	<u>n</u>	med	max	_ <u>n</u>	med	max	<u>n</u>	med	max	<u>n</u>	med	max	n	med	max
Winter	16	30	85	16	18	44	9	0.68	1.40	16	0.08	0.70	16	0.19	0.50
Spring	11	132	1300	11	18	52	6	0.79	3.00	11	0.04	0.20	11	0.03	0.30
Summer	13	115	610	13	9	25	6	0.70	1.58	13	0.03	0.12	13	0.02	0.11
Fall	10	34	63	10	8	19	5	0.56	2.00	8	0.01	0.10	10	0.01	0.02
(right bank)														
Winter	6	28	46	6	13	23	2	0.64 ^a	0.68	6	0.07	0.13	6	0.17	0.37
Spring	9	130	1300	9	15	90	4	0.92	2.50	9	0.06	0.19	9	L0.01	0.32
Summer	12	162	580	12	10	33	5	0.96	1.12	12	0.03	0.50	12	0.02	0.09
Fall	8	37	66		13	21	3	0.50	0.62		0.02	0.05	8	0.01	0.02
	8	_ 37 50	00	8	13	21	3	0.50	0.62	8	0.02	0.05	8	0.01	υ.
ASWO CDWG		50													

· .

a Minimum value. b L = less than.

Table 44. Seasonal summary of nutrients for sites DA0208 (left and right banks) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31).

47

	Tota1	Phosph (ug/L)	orus	Ort	hophosı ug/l)			TKN (mg/L)		Ammonia (mg/L)		Nit	rate/Ni (mg/L	
)AO2O8 (left bank)	med	max	<u>_n</u>	med	max	_ <u>n</u>	med	max	<u>n</u>	med	max	<u>n</u>	med	max
linter	4	24	26	4	16	18	Ь	ND ^a		4	0.06	0.22	4	0.19	0.30
Spring	5	136	290	5	28	33	2 ^b	0.66	1.00	5	0.02	0.04	5	0.01	0.06
Summer	6	92	300	6	11	16 23	2	0.41	0.55	6	0.07	0.36	6	0.01	0.07
Fall	5	37	58	5	8	23		ND		5	0.03	0.08	5	0.02	0.03
(right ban	k)														
linter	5	28	80	5	17	20		ND		5	0.09	0.22	5	0.20	0.24
Spring	5'	112	193	5	24	34	2	0.80	0.86	5	0.01	0.03	5	0.01	0.04
Summer	6	116	305	6	9	15	2	0.38	0.46	6	0.04	0.05	6	0.01	0.06
Fall	5	34	59	5	8	21		ND		5	0.03	0.05	5	0.01	0.02
ASWO CDWG		50													

a No data.

If n = 2, median value = minimum value.

Table 45.	Summary of total coliforms (NAQUADAT parameter code: 36001L) for 12 sites
	along the Athabasca mainstem. Units are recorded as most probable number
	(MPN) per 100 mL. Winter (November 1 to April 15), spring (April 16 to
	June 30), summer (July 1 to August 31), fall (September 1 to October 31).

Code (00AT07-)	n	Winter med	max	n	Spring med	max	n	Summe med	r max	n	Fall med	max
CC0012 (centre)	1		. 34	9	33	2400 ^a	12	168	920	7	119	320 ^a
DAO2O3 (left)	4	54	320	9	58	2400	7	100	1600	7	42	320
DAO2O3 (right)	4	15	85	9	33	350	8	205	2400	8	52	320
DA0205 (left)	7	122	320	7	79	2400	5	160	920	3	320	320
DAO2O5 (right)	6	90	320	6	57	350	6	90	540	3	241	320
DA0206 (left)	11	115	320	12	39	2400	13	46	920	10	138	420
DAO2O6 (right)	9	104	320	10	47	2400	12	90	920	9	49	690
DA0207 (left)	16	126	320	10	33	920	12	57	920	10	54	146
DA0207 (right)	6	256	540	9	130	2400	11	49	2400	8	34	490
DA0209 (left)	4	256	320	5	41	55	6	23	1600	5	41	550
DAO2O8 (right)	5	212	320	5	27	64	6	48	920	5	29	540
DD0010 (centre)		ND ^Đ			ND			ND			ND	

^a If value = 320 or MPN/mL is greater than 320 or 2400, respectively. No data, but for purpose of analysis DA0208 (right bank) values were assigned to DD0010 (centre).

Table 46.	Summary of fecal coliforms (NAQUADAT parameter code: 36011L) for 12 sites
	along the Athabasca mainstem. Units are recorded as most probable number
	(MPN) per 100 mL. Winter (November 1 to April 15), spring (April 16 to
	June 30), summer (July 1 to August 31), fall (September 1 to October 31).

ć

Code (00AT07-)	n	Winter med	max	n	Spring med) max	n	Summer med	max	n	Fall med	max
CCOO12 (centre)	1		. 18	9	5	110	12	14	140	7	5	33
DA0203 (left)	4	46	160	. 9	15	540	7	33	350	7	. 5	8
DAO2O3 (right)	4	2	30	9	11	23	8	38	920	8	4	12
DA0205 (left)	7	35	160	7	17	33	5	17	102	3	4	4
DAO2O5 (right)	6	6	60	6	6	33	6	22	78	3	4	7
DA0206 (left)	11	50	81	12	10	79	13	23	80	10	4	8
DAO2O6 (right)	9	11	49	10	13	170	12	13	79	9	3	11
DA0207 (left)	16	32	240	8	16	130	12	14	130	10	8	49
DAO2O7 (right)	6	76	135	9	26	70	11	13	170	8	4	9
DA0208 (left)	4	19	32	5	13	22	6	5	17	5	4	8
DA0208 (right)	5	16	90	5	9	26	6	6	27	5	4	6
DD0010 (centre)		ND ^a			ND			ND			ND	-

^a No data, but for purpose of analysis DA0208 (right bank) values were assigned to DD0010 (centre).

Table 47. Seasonal summary of metals for site CCOO12 (centre) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31). All values in ug/L.

Season	n Alu	<u>minum (E</u> med	<u>kt)^a</u> max	n Ar	<u>senic (E</u> med)is) ^b max	n <u>-</u>	Boron (Di med	<u>is)</u> max
Winter Spring Summer Fall	2 ^d 9 12 7	110 1080 740 210	160 11400 3300 1240	2 9 12 6	0.2 1.3 0.9 0.7	0.6 21.0 7.8 10.0	 2 3 5 3	40 3 40 130	50 90 60 150
ASWO ^C CDWG					10 50			500 5000	
Season	n	Copper (med	Ext) max	 n	Iron (Ex med	<u>(t)</u> max	 <u>Man</u>	ganese (I med	Ext) max
Winter Spring Summer Fall	2 10 14 8	1 5 6 1	3 40 24 3	2 9 12 7	270 3400 2550 440	460 28000 15000 4350	 2 10 14 8	10 145 119 31	28 740 520 93
ASWO CDWG		20 1000			300 300			50 50	
'Season	n	<u>Nickel (</u> med	<u>Ext)</u> max	 n <u>Va</u>	anadium med	(<u>Tot)</u> max	 n	Zinc (E med	<u>xt)</u> max
Winter Spring Summer Fall	2 9 10 5	1 4 4 6	35 35 33 8	 2 10 10 6	1 2 2 1	1 10 15 3	 2 10 13 8	3 12 9 2	71 120 82 21
ASWO CDWG								50 5000	

a b Extractable. Dissolved.

ASWO = Alberta Surface Water Objectives, CDWG = Canadian Drinking Water Guidelines. If n = 2, median value = minimum value. С d

Table 48. Seasonal summary of metals for site DAO2O3 (left bank) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31). All values in ug/L.

Season	n <u>A1</u>	<u>uminum (E</u> med	Ext) max	n Ar	<u>senic (Di</u> med	max	n B	oron (Di med	<u>s)</u> max
Winter	4	15	120	4	0.8	1.3	ND ^a 2 ^b 2 1		
Spring	8	845	1500	8	0.9	4.0	2 ⁰	40	60
Summer	8	915	1510	7	0.9	2.6	2	20	20
Fall	6	100	180	6	0.6	0.7	1		20
ASWO CDWG					10 50			500 5000	
		Copper (I	 Ext)	<u></u>	Iron (Ext	t)	Mang	anese (E	(xt)
Season	n	med	max	n	med	max	n	med	max
Winter	4	1	1	4	230	310	4	14	20
Spring	9	3	12	8	1430	4900	9	92	170
Summer	10	4	29	8	2400	12000	10	85	450
Fall	7	1	4	6	310	650	7	25	49
ASWO		20			300			50	
CDWG		1000			300			50	
		Nickel (I	Ext)	Va	anadium (Tot <u>)</u>		Zinc (Ex	(t)
Season	n	med	max	n	med	max	n	med	max
Winter	4	2	5	4	1	2	4	4	8
Spring	8	4	11	8	1	7	9	11	39
Summer	8	3	24	10 7	2	10	10	10	39 56
Fall	6	1	1	7	1	1	7	2	18
ASWO								50	
CDWG								5000	

^a No data. ^b If n = 2, median value = minimum value.

. **•**.

Table 49. Seasonal summary of metals for site DAO2O3 (right bank) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31). All values in ug/L.

Season	n <u>A1</u>	uminum (E med	<u>axt)</u> max		n Ars	senic (Di med	s) max	n	Boron (D med	<u>is)</u> max
Winter	4	20	70		4	0.5	3.4	ND ^a 25 2 1	50	60
Spring Summer	8 8	580 690	1200 950		8 8	1.2 0.9	3.5 2.5	2	50 10	60 50
Fall	7	150	330		7	0.6	1.4	ī	10	20
ASWO CDWG						10 50			500 5000	
·····		Copper (E	Ext)			Iron (Ext	<u>)</u>	Mang	anese (E	xt)
Season	n	med	max		n	med	max	n	med	max
Winter	4	1	1	<u> </u>	4	370	600	. 4	15	30
Spring	9	2 4	8 27		8	1270	4300	9	80	450
Summer Fall	10 8	4	3		8 7	2375 610	9500 1470	10 8	98 28	370 80
ASWO		20				300			50	
CDWG		1000				300			50	
		Nickel (E	Ext)		Va	nadium (Tot)		Zinc (Ex	t)
Season	n	ined	max		n	med	max	n	med	max
Winter	4	1	1		4	2	3	4	2	2
Spring	8 8	1	13		9	1	6	9	7	25
Summer	8	4	18 3		10	1	5	10	8	2 25 56 8
Fall	7	1	3		8	1	2	8	2	8
ASWO									50	
CDWG									5000	

^a No data. ^b If n = 2, median value = minimum value.

Table 50. Seasonal summary of metals for site DA0205 (left bank) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31). All values in ug/L.

Season		num (Ext) ned max	n	Arsenic (med	<u>Dis)</u> max	n	Boron (D med	<u>is)</u> max
Winter Spring Summer Fall	1 1 ND ND	60 690	7 7 6 3	0.4 2.2 0.8 0.5	8.0 5.9 2.4 0.7	ND ^a ND ND ND		
ASWO CDWG				10 50		500 5000		
Season	n n	per (Ext) med max	n	Iron (Ext med) max	<u>Mang</u> n	anese (E med	<u>xt)</u> max
Winter Spring Summer Fall	7 7 6 3	1 2 5 11 6 29 1 1	7 7 6 3	220 1260 2500 580	280 4700 11500 710	7 7 6 3	18 110 214 27	27 240 430 60
ASWO CDWG	:	20 1000		300 300	·		50 50	
Season	n <u>Nicl</u>	kel <u>(Ext)</u> med max	n Va	nadium <u>(</u> To med	<u>ot)</u> max	n	Zinc (Ex med	<u>t)</u> max
Winter Spring Summer Fall	7 7 6 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 7 6 3	2 1 2 1	8 7 13 1	7 7 6 3	2 10 11 2	4 56 52 5
ASWO CDWG							50 5000	

^a No data.

Table 51. Seasonal summary of metals for site DA0205 (right bank) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31). All values in ug/L.

. •

Season	n <u>Al</u>	uminum (med	<u>Ext)</u> max		n <u>Ar</u>	rsenic (D med	<u>is)</u> max	n <u>B</u>	oron (Di med	<u>s)</u> max
Winter Spring Summer Fall	ND ^a ND ND ND			2	6 6 6 3	0.4 0.8 0.7 0.6	2.8 1.8 2.3 0.7	ND ND ND ND		
ASWO CDWG	,					10 50			500 5000	
Season	n <u>(</u>	Copper (E med	Ext) max		n	Iron (Ext med	ma x	Mang n	anese (E med	<u>xt)</u> max
Winter Spring Summer Fall	6 6 6 3	1 3 5 1	1 4 27 1		6 6 6 3	365 1185 545 630	630 3700 10500 680	6 6 6 3	39 78 164 26	70 130 390 60
ASWO CDWG		20 1000				300 300			50 50	
Season	n <u>1</u>	Nickel (I med	Ext) max		n <u>Va</u>	nadium (T med	ot) max	n	Zinc (Ex med	<u>t)</u> max
Winter Spring Summer Fall	6 6 6 3	1 1 4 1	1 7 18 1		6 6 6 3	2 1 1 1	4 6 11 1	6 6 6 3	2 5 8 1	3 10 46 3
ASWO CDWG									50 5000	

^a No data.

Table 52. Seasonal summary of metals for site DA0206 (left bank) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31). All values in ug/L.

Season	n	Aluminum med	<u>(Ext)</u> max	n <u>A</u>	rsenic (D med	<u>is)</u> max	n <u>B</u>	oron (Di med	<u>is)</u> max
Winter	11	40	180	11	0.6	2.4	4	55	70
Spring	10	885	12800	11	1.1	26.0	3 2a 2	50	200
Summer	10	870	2000	10	1.8	3.8	2°	40	50
Fall	9	250	670	9	0.6	1.2	2	115	180
ASWO					10			500	
CDWG					50			5000	
		Copper (Ext)		Iron (Ext	.)	Mang	anese (E	Ext)
Season	n	med	max	n	med	max	n	med	max
Winter	11	· 1	3	11	360	1000	11	19	49
Spring	12	4	40	11	1430	34500	12	70	1060
Summer	13	6	30	10	2950	12000	13	120	460
Fall	10	1	2	9	520	1110	10	37	54
ASWO		20			300			50	
CDWG		1000			300			50	
		Nickel (Ext)	Va	nadium (T	ot)		Zinc (Ex	xt)
Season	n	med	max	n	med	max	n	med	max
Winter	11	1	4	11	1	9	11	6	39
Spring	11	3	50	12	1	10	12	12	160
Summer	10	6	25	13	1	11	13	12	54
Fall	9	1	3	10	1	3	10	3	67
ASWO								50	
CDWG								5000	

^a If n = 2, median value = minimum value.

Table 53. Seasonal summary of metals for site DAO2O6 (right bank) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31). All values in ug/L.

Season	n <u>A</u>	luminum med	<u>(Ext)</u> max	n <u>A</u>	A <mark>rsenic (</mark> med	nax	n B	oron (Di med	<u>s)</u> max
Winter	10	55	220	 10	0.4	1.6	5 2ª 2 2	50	70
Spring Summer	8 10	170 915	11700 2300	9 10	$1.0 \\ 1.8$	24.0 4.9	2	60 40	90 80
Fall	8	220	540	8	0.7	6.0	2	90	100
ASWO CDWG					10 50			500 5000	
		Copper (Iron (Ext			anese (E	
Season	n	med	max	 n	med	max	n	med	max
Winter	10	1	3	10	415	670	10	13	56
Spring	10	2	60	9	1150	31500	10	60	920
Summer	12 9	5 1	28	10	2420	11000	12	140	420
Fall	9	1	2	8	595	1230	9	. 31	74
ASWO		20			300			50	
CDWG		1000			300			50	
		Nickel (Ext)	 Vi	anadium (T	ot)	······	Zinc (Ex	(t)
Season	n	med	max	n	med	max	n	med	max
Winter	9	1	4	 9	1	1	10	4	26
Spring	9	2	30	10	1	8	10	8	140
Summer	10	6	14	12	1	13	12	9	47
Fall	7	1	5	8	1	2	9	2	58
ASWO								50	
CDWG								5000	

^a If n = 2, median value = minimum value.

Table 54. Seasonal summary of metals for site DAO2O7 (left bank) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31). All values in ug/L.

		luminum			rsenic (D	Boron (Dis)			
Season	n	med	max	n	med	max	n	med	max
Winter	10	100	230	16	0.5	4.2	9	60	210
Spring Summer	6 6	1125 1215	2900 14700	10	1.3	27.0	4 4	55 45	120
Fall	5	530	940	11 8	0.9 1.0	9.7 5.0	4	45 70	60 140
ASWO CDWG					10 50			500 5000	
-		Copper (Iron (Ext			ianese (E	
Season	n	med	max	n	med	max	n	med	max
Winter	16	1	5	16	370	1450	16	27	34
Spring	11	5	40	10	1056	34000	11	100	1060
Summer Fall	13 10	6 1	28 3	11 9	2900 780	12000 25000	13 10	129 36	490 69
ASWO		20			300			50	
CDWG		1000			300			50	
		Nickel (Ext)	Va	nadium (⁻	Tot)		Zinc (Ex	(t)
Season .	n	med	max	n	med	max	n	med	ma>
Winter	15	1	4	15	1	6	16	6	260
Spring	10	4	40	11	2	13	11	27	18:
Summer Fall	10 8	6 3	20 6	13 9	3 1	12 2	13 10	12 6	54 31
ASWO								50	
ASWO CDWG								50 5000	

215

· 1

<u>ئ</u> ر	
Table 55.	Seasonal summary of metals for site DAO2O7 (right bank) on the Athabasca
	River (1976 to 1983). Winter (November 1 to April 15), spring (April 16
	to June 30), summer (July 1 to August 31), fall (September 1 to October 31).
	All values in ug/L.

.

Season	n <u>A1</u>	<u>uminum (</u> med	<u>Ext)</u> max	n Ars	senic (Di med	<u>is)</u> max	n	Boron (D med	<u>)is)</u> max
Winter Spring Summer Fall	2 ^a 4 7 3	40 700 1250 350	70 12200 2900 500	 6 8 10 7	0.7 1.6 1.7 0.6	11.0 22.0 5.5 1.1	2 3 3 2	50 50 60 70	50 110 70 100
ASWO CDWG					10 50			500 5000	
Season	n	Copper (med	<u>Ext)</u> max	 n	Iron (Ext med	t) max	Ma n	nganese (E med	<u>Ext)</u> max
Winter Spring Summer Fall	6 7 12 8	1 5 4 1	4 60 27 7	 6 8 10 7	285 1955 3150 580	400 33500 11600 1230	6 9 12 8	12 120 114 26	30 990 380 60
ASWO CDWG		20 1000			300 300			50 50	
Season	n -	<u>Nickel (</u> med	<u>Ext)</u> max	n <u>Va</u>	nadium (1 med	<u>fot)</u> max	n	Zinc (E: med	<u>kt)</u> max
Winter Spring Summer Fall	6 7 10 7	2 3 4 1	2 40 20 3	 6 8 12 8	2 2 2 1	8 7 11 2	6 9 12 8	2 15 14 4	13 150 49 40
ASWO CDWG								50 5000	

^a If n = 2, median value = minimum value.

.

Table 56. Seasonal summary of metals for site DA0208 (left bank) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31). All values in ug/L.

-

Season	n <u>A</u>	luminum (E med	<u>xt)</u> max	<u>A</u> 1	rsenic (D med	<u>is)</u> max	n	Boron (D med	<u>is)</u> max
Winter Spring Summer	3 4 4	40 1100 475	70 1400 1050	4 4 4	0.4 1.1 1.0	0.5 3.0 2.2	ND ^a 1 2b	10	100 20
Fall ASWO CDWG	4	110	240	4	0.6 10 50	0.7	ND	500 5000	
Season	n	Copper (I med	Ext) max	'n	Iron (Ext med) max	Mang n	anese (E med	<u>xt)</u> max
Winter Spring Summer Fall	4 5 6 5	1 3 4 1	1 11 8 1	4 4 4 4	260 1635 1745 655	360 4270 5900 730	4 5 6 5	10 78 100 40	21 200 225 53
ASWO CDWG		20 1000			300 300			50 50	
Season	n	Nickel (I med	Ext) max	n <u>Va</u>	nadium (T med	<u>ot)</u> max	n	Zinc (Ex med	<u>t)</u> max
Winter Spring Summer Fall	3 4 4 4	1 2 4 1	1 9 7 10	4 5 6 5	1 1 1 1	2 4 2 1	4 5 6 5	1 5 8 3	3 16 19 6
ASWO CDWG								50 5000	

.

^a No data. ^b If n = 2, median value = minimum value.

Table 57. Seasonal summary of metals for site DA0208 (right bank) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31). All values in ug/L.

Season	n <u>A1</u>	um <u>inum (</u> E med	<u>xt)</u> max	n <u>A</u>	rsenic (D med	is) max	n <u>B</u>	oron (Di med	<u>s)</u> max
Winter	5	50	720	5	0.4	1.0	ND ^a 2 ^b 2		
Spring	4	640	2500	4	0.8	1.9	20	70	90
Summer	4 4	445	1030	4	1.2	2.2	2	10	20
Fall	4	100	340	4	0.6	4.0	ND		
ASWO					10			500	
CDWG					50			5000	
		Copper (E	(xt)		Iron (Ext)	Mang	anese (E	(xt)
Season	n	med	max	n	med	max	n	med	max
Winter	5	1	2	5	340	460	5	13	53
Spring	5 5	3 3	12	4 4	1530	3530	5 5	68	170
Summer	6	3	9 1	4	1875	6100	6	72	240
Fall	5	1	1	4	495	770	· 5	30	70
ASWO		20			300			50	
CDWG		1000			300			50	
		Nickel (E	Ext)	Va	nadium (T	ot)		Zinc (Ex	(t)
Season	n	med	max	n	med	max	n	med	max
Winter	5	1	5	5	1	3	5	4	6
Spring	4		7	5 5 6	1	10	5	9 8	13
Summer	4	1 2 1	7	6	1	1 1	6 5	8	13 22 4
Fall	4	1	3	5	1	1	5	2	4
ASWO								50	
CDWG								5000	

^a No data. ^b If n = 2, median value = minimum value.

Table 58. Seasonal summary of metals for site DD0010 (Centre) on the Athabasca River (1976 to 1983). Winter (November 1 to April 15), spring (April 16 to June 30), summer (July 1 to August 31), fall (September 1 to October 31). All values in ug/L.

	A	<u>luminum (</u>		A	rsenic (D	is)	B	oron (Di	<u>s)</u>
Season	n	med	max	n	med	max	n	med	тах
Winter	8	50	250	5	0.5	10.0	2 ^a	40	60
Spring	4	550	1400	2	1.8	2.0	1		40
Summer	4	635	1250	2	1.6	2.8	1	70	30
Fall	5	140	380	1		0.4	3	70	100
ASWO					10			500	
CDWG					50			5000	
		Copper (E	(xt)		Iron (Ext)	Mang	anese (E	(xt)
Season	n	med	max	· n	med	max	n	med	max
Winter	8	2	3	8	405	520	8	23	240
Spring	4	2 6 4	13	4	2650	5230	4	83	160
Summer	4	4	9 6	4	1285	6600	4	94	262
Fall	5	1	6	5	720	1300	5	38	5 5
ASWO		20			300			50	
CDWG		1000			300			50	
		Nickel (E	Ext)	Vá	anadium (⁻	ſot)		Zinc (Ex	(t)
Season	n	med	max	n —	med	max	n	med	max
Winter	8	1	2	8	2	5	8	6	9
Spring	4	5 4	14	4	2	7	4	13	17
Summer	4	4	7	4 5	1	2	4	34	75 42
Fall	5	2	7	5	1	1	4	6	42
ASWO								50	
CDWG								5000	

^a If n = 2, median value = minimum value.

10.3 WATER QUALITY DATA SUMMARY OF ROUTINE PARAMETERS (TABLE 59), NUTRIENTS (TABLE 60), AND METALS (TABLE 61) FOR WATER BODIES IN THE NORTHERN REGION.

۰.

-	Site			рН		Total A	kalinit	y (mg/L)	Phenolic A	lkalini	ity (mg/L)	Tota	1 Hardne	ess (mg/L)
Code ^a	Description	n	med	min	max	n	med	max	n	med	max	n	med	max
DD0090	Jackfish Creek	12	7.7	7.0	8.0	12	71	105	12	0.0	L0.1	12	69	100
DD0212	Big Point Channel	48	7.8	7.4	8.3	48	100	156	48	L0.1 ^b	L0.1	48	106	180
KF0100	Mamawi Lake Channel	13	7.9	7.5	8.3	13	118	153	13	0.0	L0.1	13	147	189
KF0101	Chenal des Quatre Fourches	33	7.7	7.3	8.3	33	100	152	33	L0.1	L0.1	33	113	174
KF0140	Prairie River	12	7.8	7.6	8.3	12	110	210	12	0.0	L0.1	12	149	294
NA0030	Riviere des Rochers	50	7.7	6.8	8.1	50	68	98	50	L0.1	L0.1	50	75	114
KF0200	Lake Claire (near Birch River)	12	7.9	7.1	8.1	12	106	194	12	L0.1	L0.1	12	154	307
KF0201	Lake Claire (west of Willow Point)	11	7.8	7.3	8.3	11	99	193	11	0.0	L0.1	11	162	425
0800DD	Richardson Lake (center)	10	7.7	7.3	8.0	10	92	158	10	0.0	L0.1	10	98	171
MD2000	Lake Athabasca - Sandy Point	8	7.5	6.7	7.8	8	33	58	8	0.0	L0.1	8	35	. 63
ASWO CDWG				to 8.5 to 8.5										

Table 59.	Northern region water quality data summary (routine parameters), 1976 to 1980.
	See Figure 4 for site location.

Ì

Table	59.	Continue	ed.		
			and the second sec		

	Condu	ctivity	/ (uS/cm)	Turb	idity	(JTU)	<u>True</u> Co	lour (Rel Units)	Si	lica (m	ig/L)	Cald	cium (r	mg/L)
Ćode	n	med	ma x	n	med	max	n	med	max	n	med	max	n	med	max
DD0090	12	150	238	12	9	86	6	20	60	12	6.9	14.8	12	19	28
DD0212	48	245	520	26	28	130	22	25	70	34	5.6	10.8	46	30	50
KF0100	13	400	575	13	34	350	6	28	150	13	4.1	17.5	13	40	50
KF0101	33	273	500	19	17	380	19	35	300	31	4.3	10.5	33	33	48
KF0140	12	443	945	12	48	425	6	93	280	12	3.9	14.2	12	40	78
NA0030	50	176	323	26	29	160	43	20	200	33	4.5	10.2	50	21	33
KF0200	12	500	950	12	40	262	7	60	270	12	3.1	13.5	 12	43	85
KF0201	11	548	1200	11	61	475	5	80	280	11	2.9	11.5	11	46	126
0800DD	10	215	300	9	18	120	4	23	45	10	5.4	14.0	10	28	45
MD2000	8	82	152	9	4	33	4	L5	10	8	3.0	15.3	8	10	17
ASMO															

ASWO CDWG

.

continued . . .

,

	Magn	Magnesium (mg/L)			ium (n	ng/L)	Pota	ssium ((mg/1)	Flu	uoride (m	ig/L)
Code	n	med	max	n	med	max	n	med	max	n	med	max
DD0090	12	6	8	12	5	8	12	0.8	1.7	10	0.05	0.1
DD0212	48	8	14	46	12	40	46	1.1	2.0	11	0.09	6.00
KF0100	13	11	16	13	29	53	13	1.8	3.2	10	0.13	0.19
KF0101	33	8	15	. 33	16	36	33	1.3	2.7	12	0.13	0.20
KF0140	12	11	25	12	38	92	12	2.5	4.5	10	0.16	0.3
NA0030	50	5	8	50	8	23	50	1.0	1.8	11	0.07	0.1
KF0200	12	11	23	12	46	91	12	3.1	4.4	10	0.18	0.3
KF 0 201	11	12	27	11	53	110	11	3.4	5.8	9	0.20	0.4
DD0090	10	7	14	10	8	12	10	1.5	2.0	7	0.10	0.1
MD2000	8	3	5	8	3	5	8	1.0	1.2	6	0.06	0.0
ASWO CDWG											1.5 1.5	

Table 59. Continued.

,

St. Ster

. I

- I	-	F O	· · · ·	
Tar	110	59.	Continued	
1 4 4		.		•

	Bicar	Bicarbonate (mg/L)			onate (mg/L)	Chlo	ride (r	ng/L)	Sul	phate (mg/L)
Code	n	med	ma x	n	med	max	n	med	max	n	med	max
DD0090	12	87	129	12	0	0	12	4	6	12	6	14
DD0212	48	121	190	48	0	0	48	9	47	48	18	41
KF0100	13	144	186	13	0	0	13	28	80	13	36	76
KF0101	33	122	185	33	0	0	33	17	50	33	24	54
KF0140	12	133	103	12	0	0	12	47	106	12	50	120
NA0030	50	83	119	50	0	0	50	8	26	50	12	44
KF0200	12	129	237	12	0	0	12	55	130	12.	81	180
KF0201	11	121	235	11	0	0	11	72	160	11	87	268
DD0080	10	112	192	10	0	0	10	6	9	10	13	22
MD2000	8	40	70	8	0	0	8	4	6	8	4	8
ASWO CDWG								250			500	

	Diss	solved (mg/L		<u>Total (</u>	rganic (mg/L	Carbon	Filter	able R		Non-fil	terable (mg/L)	Residu
Code	n	med	max	n	med	max	n	med	max	n	med	max
DD0090	10	6.3	10.5	12	6	11	12	99	156	12	12	69
DD0212	30	8.8	17.2	44	9	36	46	152	300	46	41	1374
KF0100	10	7.2	15.6	12	9	31	13	264	379	13	19	97
KF0101	13	8.1	12.2	27	10	28	33	167	330	33	29	514
KF0140	12	10.1	15.2	12	17	61	12	269	625	12	33	410
NA0030	21	9.3	16.0	45	7	17	49	108	184	48	32	413
KF0200	12	9.9	15.0	12	22	61	12	330	627	12	31	219
KF0201	10	10.1	14.6	11	17	51	11	329	792	11	43	432
DD0080	8	9.4	14.2	10	12	15	9	138	198	9	14	126
MD2000	9	9.6	10.3	9	4	6	8	50	100	9	3	35
ASWO CDWG												

Table 59. Continued.

.

	<u>Total Inc</u>	rganic C	arbon (mg/L)	Pheno	lic Mater	ial (mg/L)	<u>0il ar</u>)il and Grease(
Code	n	med	max	n	med	max	n	med	max	
00090	12	. 14	22	_	-	**	-	-	-	
D0212	21	21	31	41	0.002	0.032	41	0.8	2.5	
(F0100	12	23	36	6	0.001	0.002	6	1.1	2,2	
(F0101	24	21	35	27	0.001	0.019	26	0.5	1.3	
F0140	12	24	45	-	-	-	-	-	-	
A0030	24	14	22	41	0.002	0.022	42	0.9	3.8	
F0200	12	26	38	-	-	-	-	-	-	
F0201	11	18	42	3	L0.001	L0.001	5	1.2	2.2	
08000	10	18	33	-	-	-	-	· •	-	
ID2000	9	9	15	4	L0.001	L0.001	5	1.2	1.9	
SWO DWG					0.00					

~*

Table 59. Concluded.

a Rivers, OOATO7-; Lakes, O1ATO7-. b L = less than. c Petroleum ether method.

ें ६

	Site <u>I</u>	otal	Phos	sphorus	s (ug/L)	Orth	ophospha	te (ug/L)	
Code ^a	Description		n	med	max	n	med	max	
DD0090	Jackfish Creek		12	40	93	12	2 9	18	
DD0212	Big Point Channel		47	55	930	43	7 14	235	
KF0100	Mamawi Lake Channel		13	51	390	12	26	280	
KF0101	Chenal des Quatre Fourches		33	65	470	32	2 14	360	
KF0140	Prairie River		12	70	310	12	29	31	
NA0030	Riviere des Rochers		48	48	370	48	B 12	70	
KF0200	Lake Claire (near Birch R.)		12	71	370	12	2 13	30	
KF0201	Lake Claire (west of Willow P	t.)	11	80	230	12	1 10	180	
DD0080	Richardson Lake (center)		9	42	138	9	96	19	
MD2000	Lake Athabasca - Sandy Pt.		9	12	40	9	9 4	9	
ASWO CDWG				50					
	Total Kjeldahl N (mg/L)	Ammo	nia	(mg/L)		Nitrat	e & Niti	<u>itrite</u>	
Code	n med max	n	med	m	ax	n	med	max	
D0090	12 0.86 1.90	11	0.0	2 0	.17	12	0.03	0.27	

Table 60. Northern region water quality data summary (nitrogen and phosphorus).

Code	n	med	max	n	med	max	n	med	max
DD0090	12	0.86	1.90	11	0.03	0.17	12	0.03	0.27
DD0212	33	0.60	1.40	47	0.04	1.10	47	0.04	0.66
KF0100	13	1.06	3.26	12	0.03	0.10	12	0.02	0.34
KF0101	31	0.59	9.15	32	0.05	0.16	32	0.06	0.36
KF0140	12	1.62	6.04	11	0.06	0.34	12	0.03	0.27
NA0030	47	0.50	6.00	47	0.02	0.11	49	0.04	0.80
KF0200	12	1.12	3.33	11	0.04	0.15	12	0.03	0.24
KF0201	11	1.16	3.35	11	0.05	0.08	11	0.07	0.20
DD0080	9	1.40	1.78	8	0.05	0.31	9	L0.01	0.17
MD2000	9	0.37	1.20	8	0.03	0.14	9	0.01	0.08
ASWO CDWG	-								

^a Rivers, 00AT07-; Lakes, 01AT07-.

2	Site	Alur	ninum (E	Ext) ^b	Ars	<u>Arsenic (Dis)^C</u>			Boron (Dis)				<u>Cadmium (Ext)</u>		
Code ^a	Description	n	med	max	n .	med	max	n	med	max	n	med	max		
DD0090	Jackfish Creek	10	256	1400	11	0.8	2.1	6	50	50	6	L1 ^e	L1		
DD0212	Big Point Channel	44	250	3400	48	0.6	10.0	21	.40	140	26	L1	6		
KF0100	Mamawi Lake Channel	10	480	3900	12	0.4	2.8	7	60	70	7	L1	L1		
KF0101	Chenal des Quatre Fourches	31	290	3850	28	0.8	8.0	7	50	90	19	L1	3		
KD0140	Prairie River	10	645	30400	12	0.6	5.1	12	90	280	6	L1	9		
NA0030	Riviere des Rochers	46	280	3850	49	0.6	6.0	7	10	80	25	L1	2		
KF0200	Lake Claire (near Birch River)	10	525	2850	12	0.1	2.7	6	90	210	6	L1	L1		
KF0201	Lake Claire (west of Willow Point)	9	650	6900	11	0.9	3.6	7	90	220	6	L1	L1		
DD0080	Richardson Lake (center)	8	320	7200	10	0.4	1.2	5	60	120	6	1	2		
MD2000	Lake Athabasca - Sandy Point	7	120	440	9	0.4	1.5	4	40	L50	4	L1	L1		
ASWO ^d CDWG						10 50			500 5000			10 5			

Table 61. Northern region water quality data summary (metals). All values in ug/L.

I

,

continued . . .

Table 61. Continued.

,

,

	Chro	mium (Ext)	Cob	<u>Cobalt (Ext)</u>				Ext)		Iron (I	Ext)
Code	n	med	max	n	med	max	n	med	max	n	med	max
000090	10	L3	8	4	L2	L2	12	3	7	12	1025	4500
DD0212	29	L3	13	8	L2	3	47	3	150	47	700	17000
KF0100	10	L3	10	4	L2	L2	13	6	94	13	770	12500
KF0101	25	L3	14	5	L2	2	33	3	33	33	730	9600
KF0140	10	3	25	4	L2	2	12	8	13	12	1545	15100
NA0030	28	L3	10	4	L2	4	50	3	260	50	660	9650
KF0200	9	L3	11	4	L2	2	12	6	26	12 .	860	8000
KF0201	9	L3	26	4	L2	4	11	8	63	11	1550	14700
DD0080	8	3	9	5	L2	3	10	3	21	10	825	4750
MD2000	8	L3	3	3	L2	L2	8	2	13	8	155	3500
ASWO CDWG		50 50						20 1000			300 300	

Table 61. Continued.

1

,

,

	Le	Lead (Ext)			Manganese (Ext)			<u>Mercury (Total)</u>				<u>Nickel (Ext)</u>		
Code	n	med	max	n	med	max	n	med	max	n	med	max		
DD0090	12	L2	6	12	35	97	12	L0.1	0.3	10	L2	9		
DD0212	47	3	15	47	48	870	47	L0.1	0.9	44	2	30		
KF0100	13	L2	4	13	27	260	13	0.1	1.3	10	3	20		
KF0101	33	L2	13	33	39	260	32	L0.1	0.6	31	2	21		
KF0140	12	2	9	12	33	440	12	L0.1	0.9	10	4	13		
NA0030	50	L2	17	50	30	195	49	L0.1	1.2	47	1	13		
KF0200	12	L2	5	12	33	245	11	0.2	9.0	10	4	7		
KF0201	11	L2	7	11	28	295	11	L0.1	0.8	9	5	15		
DD0080	10	L2	6	10	29	135	9	L0.1	L0.1	9	L2	5		
MD2000	8	L2	3	8	6	540	9	L0.1	0.2	7	L2	4		
ASWO CDWG		50 50			50 50			0.1 1.0						

Table 61. Concluded.

	Sel	enium (Dis)	Sil	ver (E:	kt)	Vana	idium (Zinc (E	xt)	
Code	n	med	max	n	med	max	n	med	max	n	med	max
DD0090	11	L0.2	L0.5	5	L1	L1	12	L1	1	10	9	310
DD0212	33	L0.2	0.8	7	L1	L1	47	L1	20	47	10	430
KF0100	13	L0.2	L0.5	4	L1	L1	13	ί1	2	10	27	81
KF0101	26	L0.2	0.8	4	L1	L1	33	L1	32	31	9	130
KF0140	12	0.4	1.1	4	L1	L1	11	1	7	10	24	44
NA0030	32	L0.2	0.5	3	L1	L1	48	L1	9	47	8	440
KF0200	12	0.2	L2.0	4	L1	L1	12	L1	4	10	11	33
KF0201	11	0.2	0.9	4	L1	L1	11	L1	3	9	16	464
DD0080	10	L0.2	L.O.5	5	L1	L1	9	٤1	3	9	11	53
MD2000	9	L0.2	0.4	3	L1	L1	8	L1	L1	7	7	195
ASWO CDWG		10 10			50 50					. 5	50 000	

1

a Rivers, 00AT07-; Lakes, 01AT07-. b Extractable. c Dissolved. d ASWO = Alberta Surface Water Objectives. cDWG = Canadian Drinking Water Guidelines. L = less than.

10.4 WATER QUALITY DATA SUMMARY OF ROUTINE PARAMETERS (TABLE 62), NUTRIENTS (TABLE 63), AND METALS (TABLE 64) FOR WATER BODIES IN THE EASTERN REGION

Code				рН		Tota	Alka] mg/L	linity	Phei	nol All mg/L	kalinity
(00AT07-)	Site Description	n	med	min	max	n	med	max	n	med	max
DA0060	Steepbank River	39	7.8	7.0	8.7	39	125	362	39	0.0	27.2
DA0080	Muskeg River at WSC gauge	77	7.8	7.2	8.6	75	173	333	75	0.1	10.4
DA0081	Muskeg R. upst. Hartley Ck.	17	7.5	7.1	8.5	17	197	304	17	0.1	6.0
DA0083	Stanley Creek	11	7.6	7.2	8.4	11	152	184	11	0.0	0.0
DA0084	Kearl Lake tributary	16	7.3	7.1	8.1	16	144	230	16	0.0	0.0
DA0085	Muskeg R. 11.2 km above Stanley Ck.	26	7.5	7.1	8.2	26	200	327	26	0.0	0.1
DA0090	Hartley Creek at WSC gauge	53	7.7	7.2	8.6	53	129	348	53	0.1	23.2
DC0010	Firebag River at WSC gauge	31	7.6	5.6	8.4	31	112	219	31	0.0	1.0
DD0020	Richardson River at WSC gauge	15	7.3	6.7	7.8	15	40	47	15	0.0	0.1
	ASWO		6.5	to 8.5							
	CDWG		6.5	to 8.5							

Table 62. Eastern region water quality data summary (routine parameters), 1976 to 1982. See Figure 4 for site locations.

.

,

Table 62. Continued.

1

	Tota	al Haro	dness	Co	onducti	vity	Tu	rbidi	ty
Code		(mg/L)		(uS/cm	ı)		(JTU)	
(00AT07-)	n	med	max	n	med	max	n	med	max
DA0060	39	114	289	39	240	704	38	6	114
DA0080	75	162	308	75	325	596	62	5	66
DA0081	17	178	274	17	372	563	13	8	18
DA0083	11	161	185	11	300	320	8	2	11
DA0084	16	123	181	16	273	400	14	2	26
DA0085	26	202	328	26	362	610	23	6	47
DA0090	53	111	317	53	227	660	44	4	320
DC0010	31	112	227	31	202	433	29	3	46
DD0020	14	40	47	15	85	100	15	3	19

ASWO

CDWG

continued . . .

.

Table 62. Continued.	Tab	le 62.	Continued	•
----------------------	-----	--------	-----------	---

Code	(Rel.	e Colo Units	5)		Silica ng/L)		C	Calciu (mg/L	
(00AT07-)	n m	ed n	na x	n r	ned n	nax	n	med	max
DA0060	10	90	180	39	6.2	15.8	39	30	76
0800A0	44	80	140	75	8.6	25.0	75	44	90
DA0081	15	70	100	17	9.8	18.7	17	52	78
DA0083	-	-	-	11	12.9	19.0	11	45	52
DA0084	-	-	-	16	7.2	14.4	16	32	47
DA0085	8	65	100	26	11.8	17.3	26	56	88
DA0090	29	80	140	53	7.1	17.3	53	30	93
00010	9	35	90	31	15.0	29.6	30	29	60
DD0020	7	20	50	15	14.7	18.0	14	10	12

ASWO

CDWG

1 .

continued . . .

	P	Magnes			Sodiu			otass [•]	
Code (00AT07-)	n	(mg/L med) max	n	(mg/L med) max	n	(mg/L) med) max
A0060	39	10	25	39	14	58	39	1.0	2.4
A0080	75	11	90	75	12	38	74	0.8	2.6
A0081	17	13	20	17	12	30	16	1.2	2.3
A0083	11	10	13	11	2	2	11	0.9	1.5
A0084	16	11	15	16	19	24	. 16	1.8	3.3
A0085	26	15	27	26	6	13	26	1.2	2.6
A0090	53	9	22	53	14	30	52	0.7	2.5
C0010	31	10	19	30	4	9	30	0.8	2.0
D0020	15	4	4	15	62	2	15	0.8	1.0

Table 62. Continued.

i.

ASWO

,

CDWG

continued . . .

Code	I	luoride (mg/L)	E	icarbo (mg/L		1	Carbon (mg/L	
(00AT07-)	n	med max	n	m e	d max	n	med	max
DA0060	32	0.10 0.32	39	153	441	39	0	33
DA0080	49	0.12 0.23	75	211	406	75	0	12
DA0081	2	0.13 0.16	17	240	356	17	0	7
DA0083	8	0.14 0.19	11	185	224	11	0	0
DA0084	13	0.10 0.15	16	176	280	16	0	0
DA0085	15	0.12 0.61	26	243	399	26	0	0
DA0090	34	0.10 0.24	53	157	424	53	0	28
DC0010	30	0.10 0.17	31	137	267	31	0	1
DD0020	15	0.07 0.09	15	49	57	15	0	0
ASWO		1.5						
CDWG		1.5						

Table 62. Continued.

continued . . .

Ta	ble	62.	Continued.

1

+

Code	С	hlori (mg/L			Sulph (mg/		Diss	solved (mg/l	Oxygen
(00AT07-)	n	med	max	n	med	max	 n	med	max
DA0060	36	2	8	39	7	16	14	9.2	17.5
DA0080	75	4	30	75	4	42	54	8.4	13.6
DA0081	17	3	13	17	4	7	14	6.5	9.8
DA0083	11	0	1	11	3	5	6	5.7	9.3
DA0084	16	2	6	16	6	14	7	8.6	13.4
DA0085	26	2	6	26	4	9	13	4.6	8.4
DA0090	53	3	17	53	5	14	38	8.7	14.4
DC0010	31	2	7	31	4	18	11	8.3	16.4
DD0020	15	1	2	15	4	5	-	-	-
ASWO									
CDWG									

continued.

Table 62. Continued.

Code	Total O)rgani (mg/L	c Carbon)	Filte	erable (mg/L)	Residue)	Nonfil	terable (mg/l	e Residuo L)
(00AT07-)	n	med	max	n	med	max	n	nied	max
DA0060 '	39	20	33	38	141	436	39	8	171
DA0080	68	23	53	72	200	365	72	4	72
DA0081	17	22	34	17	243	358	17	5	25
DA0083	11	10	17	11	181	228	11	13	73
DA0084	16	34	41	16	172	240	16	5	51
DA0085	26	24	45	26	234	385	26	5	78
DA0090	53	24	96	53	141	420	53	5	459
DC0010	31	10	24	30	132	166	31	Ą	70
DD0020	14	3	12	15	57	67	15	10	38

ASWO

CDWG

0.005

239

continued . . .

Table 62. Concluded.

Code	Total I	inorgar (mg/L)	nic Carbon	Phen	olic Ma (mg/		0i1	and (mg	Grease /L)
(00AT07-)	n	med	max	n	med m	ax	n	med	max
DA0060	33	28	78	34	0.001	0.010	33	0.3	2.4
0800A0	45	33	69	60	0.002	0.025	66	0.7	3.5
DA0081	2	29	37	17	0.004	0.017	17	1.0	2.4
DA0083	11	28	38	8	0.003	0.020	8	0.1	6.6
DA0084	16	28	47	10	0.001	0.018	10	1.0	5.5
DA0085	18	43	77	20	0.005	0.015	19	0.4	12.9
DA0090	35	26	74	34	0.004	0.022	33	0.8	2.8
00010	31	22	53	24	0.001	0.014	22	0.5	2.1
DD0020	14	10	12	1	-	0.001	2	0.4	0.7
1SW0					0.005				
CDWG					0.002				

Code		Tota	l Kjeld (mg/L)	ahl N		Ammoni (mg/L)	ð.	Nitra	ate & N (mg/L)	litrite	
(00AT07-)	Site Description	n	med	max	'n	med	max	'n	med	max	<u></u>
DA0060	Steepbank River	36	0.89	2.28	35	0.04	0.20	39	0.04	0,41	
DA0080	Muskeg River at WSC gauge	69	1.13	3.00	70	0.07	0.60	69	0.01	0.31	
DA0081	Muskeg R. upst. Hartley Ck.	15	0.96	1.50	17	0.08	0.80	17	0.01	0.09	
DA0083	Stanley Creek	11	0.75	2.45	11	0.08	0.29	11	0.01	0.10	
DA0084	Kearl Lake tributary	16	1.50	2.57	16	0.16	0.50	16	0.04	0.27	
DA0085	Muskeg R. 11.2 km above Stanley Ck.	26	1.12	5.50	26	0.10	3.90	26	0.02	0.14	
DA0090	Hartley Creek at WSC gauge	50	0.98	4.05	51	0.04	0.29	53	0.01	0.42	
DC0010	Firebag River at WSC gauge	27	0.60	5.40	26	0.05	0.18	30	0.05	0.40	
DD0020	Richardson River at WSC gauge	15	0.55	1.58	13	0.03	0.10	14	0.07	0.29	

Table 63. Eastern region water quality data summary (nitrogen and phosphorus), 1976 to 1982.

ASWO

CDWG

continued . . .

Table	63.	Concl	uded.

ode	Total	Phosp (ug/L)	phorus	01	rthophos	sphate
00AT07-)	n	med	max	 n	(ug/l med	max
10060	36	48	220	30	5 19	150
10080	71	30	190	6		41
40081	17	54	138	1		28
10083	11	140	320	 1	1 16	90
10084	16	49	200	1	5 13	90
10085	26	64	250	20	5 12	68
10090	53	33	330	5	3 10	60
0010	28	44	180	28	3 18	60
00020	14	47	67	14	4 18	42
SWO		0				
DWG						

Code		_		(uminum Ext)			Arsenia (Dis)			Boron (Dis)			Cadmi (Ext)
(00^107-)	Site Descriptio		_1	<u>n</u>	med	max	<u>n</u>	med	max	<u>n</u>	med	max	<u>n</u>	med	max
DA0060	Steepbank River	•		39	80	5600	28	0.5	700	22	180	480	2	3 L1	a 1
DA0080	Muskeg River at	WSC g	auge	66	40	58	72	0.4	20	37	120	260	2	8 L1	L1
DA0081	Muskeg River up	st. Ha	rtley Cr.	15	50	69	16	0.3	7	15	90	140	1	5 L1	L1
DA0083	Stanley Creek			9	70	200	8	0.5	3	11	90	220	1	1 3	L1
DA0084	Kearl Lake trib	outary		13	77	390	14	1.0	4	16	150	320	1	6 L1	3
DA0085	Muskeg R. 11.2	km abo	ve Stanley Ck	22	40	220	23	0.4	5	21	100	230	2	2 L1	L1
DA0090	Hartley Creek a	t WSC	gauge	48	55	700	49	0.4	3	49	120	480	2	0 L1	11
DC0010	Firebag River a	t WSC	gauge	29	50	480	28	0.4	3	25	60	180	2	0 L1	3
00020	Richardson Rive	er at W	SC gauge	14	55	390	15	0.4	1	9	30	80		8 1	1
ISWO					÷			10			500			10	
CDWG								50			5000			5	
	······		· · · · · · · · · · · · · · · · · · ·								· · · · · · · · · · · · · · · · · · ·				
Code		Chromiu (Ext)	lm .		Cobal (Ext)				Copper (Ext)	•			Iroi (Ext		
00AT07-)	<u>n</u>	med	max	<u>n</u>	med	max		<u>n</u>	med	max			n mer		-
A0060	30	L3	10	23	L2	6		39	2	30			39 860) 370	0
A0080	68	L3	16	38	12	6		69	ι1	26			69 980		
A0081	15	L3	7	15	L2	L2		17	11	3			17 1300		
A0083	10	L3	7	9	L2	5		11	5	47			11 860		
A0084	13	L3	7	15	L2	6		15	4	95			16 850		
A0085	22	L3	8	22	L2	2		26	2	15			26 126		
A0090	48	L3	8	33	L2	3		54	1	28			53 770		
C0019	27	L3	6	21	L2	30		29	2	26			29 630		
D0020	13	L3	4	8	L2	2		14	1	17			14 600		
00020															

Table 64. Eastern region water quality data summary (metals), 1976 to 1982. All values in ug/L.

 \leq

-

.

continued . . .

Code		Lead (Ext)		Ma	inganes (Ext)	e	ł	fercury (Tot)			Nickel (Ext)		
(00AT07~)	<u>n</u>	med	max	<u>n</u>	med	max	<u>n</u>	med	max	<u>n</u>	med	max	
A0060	39	L2	28	39	35	500	35	L0.1	0.6	39	L2	5	
0800A0	69	L2	30	69	49	2300	69	L0.1	0.4	69	ι1	10	
A0081	17	L2	8	17	90	1170	17	L0.1	2.1	17	L1	6	
DA0083	11	L2	8	11	120	705	10	L0.1	3.6	11	L2	4	
A0084	16	L2	15	16	40	280	16	L0.1	0.3	16	L2	7	
A0085	26	٤2	9	26	100	598	26	L0.1	4.3	26	L2	9	
0000A0	53	L2	7	54	35	2150	51	L0.1	0.7	53	L1	13	
00010	29	L2	9	29	36	790	27	L0.1	1.3	29	L2	3	
000020	14	L2	5	14	32	54	15	L0.1	0.2	14	L1	L2	
ISWO		50			50			0.1					
CDWG		50			50			1.0					

.

Table 64. Continued.

continued . . .

Table	64.	Concluded.

Code (00AT07-)	Si n	elenium (Dis) med	max	<u>n</u>	Silver (Ext) med	max		anadiu (Tot) med	m <u>max</u>	<u>n</u>	Zinc (Ext) med	max	
DA0060	29	0.2	1.4	21	1	5	34	1	3	39	6	58	
DA0080	69	0.2	0.9	55	1	9	66	1	5	69	5	91	
DA0081	14	0.2	2.1	11	1	8	16	1	3	17	3	50	
DA0083	9	0.5	1.3	8	5	5	8	1	1	9	7	17	
DA0084	14	0.3	0.6	14	3	5	14	1	1	13	7	62	
A0085	23	0.2	0.9	18	1	5	23	1	4	22	7	43	
0 009 0	46	0.2	0.9	25	1	5	51	1	3	53	4	48	
00010	28	0.2	0.5	19	1	5	26	1	3	30	4	43	
000020	15	0.2	0.5	8	1	1	14	1	1	14	5	34	
ISWO		10			50						50		
CDWG		50			50						5000		

10.5 WATER QUALITY DATA SUMMARY OF ROUTINE PARAMETERS (TABLE 65), NUTRIENTS (TABLE 66), AND METALS (TABLE 67) FOR WATER BODIES IN THE WESTERN REGION

Table 65. W	Jestern region	water data	summarv	(routine	parameters).	1976 to	1980.	See Figure 4 for site location	s.

(00AT07-)	Site Description		pl			IOLAI A		ity (mg/L)	Phenor		ity (mg/L)	IULAI	Hardness	(mg/L)
	Site beschiption	n	med	min	inax	n	med	max	n	med	max	n	med	max
DA0070	Poplar Ck. at Hwy. 63	65	7.8	7.2	8.4	65	163	834	65	L0.1	5.6	65	124	785
DA0098	Ells R. near the mouth	13	7.7	7.3	8.1	13	83	105	13	L0.1	L0.1	13	88	137
DA0100	Upper Ells R.	27	7.3	6.9	8.1	27	57	212	27	0.0	L0.1	27	59	191
DA0110	Unnamed Ck., N of Ft. MacKay	17	7.9	7.3	8.4	17	160	222	17	0.0	1.6	17	170	280
DA0120	Asphalt Ck. near Ft. MacKay	10	7.5	7.2	8.0	10	59	435	10	0.0	0.0	10	158	398
DA0121	Eymundson Ck. upstr. Asphalt	11	7.5	6.6	8.1	11	82	1000	11	0.0	0.0	11	178	1126
DA0130	Pierre R., N of Ft. MacKay	11	7.7	7.1	7.9	11	78	130	11	0.0	0.0	11	139	165
DA0140	Calumet R. near Ft. MacKay	13	7.9	7.6	8.3	13	204	702	13	0.0	0.0	13	156	651
DA0150	Lower Tar R., NW of Ft. MacKay	15	7.8	7.0	8.3	15	156	392	15	0.0	0.0	15	149	313
DA0160	Joslyn Ck. above Ells R.	22	7.9	7.2	8.6	22	172	356	22	0.0	24.8	22	197	336
DA0170	Lower Ells R., above Joslyn	18	7.7	7.2	8.3	18	92	150	18	0.0	0.0	18	90	140
DA0180	Beaver R. above Syncrude	18	7.8	7.0	8.3	18	167	434	17	0.0	0.0	18	111	163
DA0181	Beaver R. at Hwy. 63	21	7.9	7.4	8.5	21	190	328	20	0.0	5.0	21	228	392
DA0182	Bridge Ck. diversion at Hwy. 63	32	7.6	7.1	8.6	32	129	242	32	L0.1	28.0	32	123	276
DA0183	Bridge Ck. at Beaver R.	17	7.8	7.3	8.5	17	185	284	17	L0.1	7.8	17	210	311
DA0190	Upper Tar R., NW of Ft. MacKay	12	7.7	7.1	8.2	12	115	298	12	0.0	0.0	12	119	317
DB0011	MacKay R. at Hwy. 63	40	7.8	6.9	8.5	40	128	577	40	0.0	L0.1	40	121	493
DB0020	Dover R. above MacKay R.	17	7.9	7.5	8.4	17	268	462	17	0.0	4.8	17	191	339
DB0030	Dunkirk R. near Ft. MacKay	29	7.6	6.7	8.5	29	125	273	29	0.0	10.8	29	124	267
DB0040	Thickwood Ck. above MacKay R.	15	7.3	6.8	7.8	15	56	182	15	0.0	0.0	15	64	182

ASWO

6.5 to 8.5 6.5 to 8.5

CDWG

continued . . .

Table 65. Continue	su.	
--------------------	-----	--

	Condu	ctivity	(uS/cm)	Turb	idity	(JTU)		True Co	lour (R	el Units)	St	ilica (r	ng/L)	Calc	ium (n	ng/L)
Code	n	med	max	n	med	max		n	med	max	n	med	max	n	med	max
DA0070	65	400	6640	45	8	78		31	100	150	62	5.5	17.9	62	32	161
DA0098	13	190	250	13	7	23		11	30	90	13	3.0	9.	13	23	28
DA0100	27	120	400	24	2	40		9	35	80	27	2.3	12.5	. 27	16	50
DA0110	17	362	600	15	5	. 42		5	35	50	17	11.9	15.8	17	46	79
DA0120	10	431	810	8	151	890					10	9.7	21.0	10	39	105
DA0121	11	426	2800	11	24	440					11	11.2	104.0	11	48	210
DA0130	11	350	442	9	4	147					11	9.0	14.3	11	35	43
DA0140	13	460	1920	12	3	60					13	9.2	23.2	13	40	160
DA0150	15	370	710	13	24	570					15	8.7	18.8	15	38	80
DA0160	22	444	800	20	46	216		11	70	180	22	7.7	14.5	22	55	90
DA0170	18	194	370	16	3	279					18	3.1	9.9	18	24	38
DA0180	18	317	810	16	7	1800					18	7.7	13.6	18	28	40
DA0181	21	510	2100	18	8	41		5	15	160	21	6.3	8.9	21	63	98
DA0182	24	309	700	30	22	185		12	145	340	32	5.1	12.5	32	32	79
DA0183	17	553	1630	11	10	62		13	50	200	15	5.2	8.8	17	59	82
DA0190	12	221	595	10	3	12	· •				12	6.7	16.2	12	32	82
DB0011	40	286	1370	39	9	370		19	130	280	40	6.0	20.0	38	32	120
DB0020	17	499	920	15	8	64					17	6.9	15.7	17	46	84
DB0030	29	233	595	26	8	86		9	140	280	29	8.7	14.5	28	33	7
DB0040	15	110	360	12	6	69					15	5.4	17.1	15	17	4

ASWO CDWG

continued . . .

.

Code	Magn	esium	(mg/L)	So	dium (mg/L)		ssium	(mg/L)	Fluc	oride	(mg/L)
(00AT07-)	n	med	max	n	med	max	n	med	max	n	med	ma>
DA0070	65	11	93	62	50	1185	63	1.7	8.1	25	.11	.17
DA0098	13	7	18	13	10	13	13	1.0	1.3	13	.07	1.00
DA0100	27	5	16	27	3	15	27	0.9	i.3	27	.09	.14
DA0110	17	14	20	17	15	25	17	2.8	4.1	17	.27	.4(
DA0120	9	14	19	10	21	30	10	2.5	4.5	10	.35	.45
DA0121	11	14	146	11	24	- 128	11	4.1	26.5	11	.38	.60
DA0130	11	12	14	11	24	26	11	3.5	4.6	11	.34	.90
DA0140	13	14	61	13	46	225	13	2.9	10.5	13	.19	.4(
DA0150	15	13	28	15	22	50	15	1.9	4.5	15	.18	. 38
DA0160	22	15	27	22	32	78	22	2.7	3.8	22	.26	.34
DA0170	18	7	11	17	12	26	18	1.3	2.2	18	.12	.16
DA0180	18	10	15	18	37	150	18	1.9	12.5	18	.13	.2
DA0181	21	17	36	21	36	413	21	3.1	8.0	21	.13	.24
DA0182	32	11	21	32	27	64	32	1.8	3.7	27	.11	.20
DA0183	17	16	26	17	47	230	17	1.8	3.3	8	.16	.24
DA0190	12	10	28	12	4	63	12	1.0	3.9	11	.14	.22
DB0011	40	11	47	39	23	140	38	1.6	6.2	30	.12	.3
DB0020	17	19	33	17	47	93	17	3.3	5.0	17	.21	.3
DB0030	29	10	23	28	13	32	28	1.4	3.5	28	.11	.2
DB0040	15	6	16	15	3	14	15	0.5	2.9	15	.06	.1
ASWO CDWG											1.5 1.5	

continued . . .

ł

Code (00AT07-)	Bica n	rbonate med	(mg/L) max	<u>Carb</u> n	onate med	(mg/L) max	<u>Chlo</u> n	med (I	mg/L) max	<u>Sul</u> n	med	(mg/L) inax
DA0070	65	198	1016	65	0	7	63	33	1780	65	16	86
DA0098	13	101	128	13	0	0	11	2	26	13	17	24
DA0100	27	69	258	27	0	0	27	1	5	27	7	10
DA0110	17	193	270	17	0	2	17	1	2	17	56	170
DA0120	10	72	531	10	0	0	10	4	5	10	140	185
DA0121	11	100	1291	11	0	0	8	5	25	11	132	466
DA0130	11	95	158	11	0	0	11	4	6	11	80	124
DA0140	13	249	856	13	0	0	13	18	165	13	21	118
DA0150	15	190	478	15	0	0 1	15	3	9	15	28	63
DA0160	22	209	434	22	0	0	22	3	48	22	70	170
DA0170	18	112	183	18	0	0	18	2	5	18	16	30
DA0180	17	183	529	17	0	0	18	2	5	18	12	48
DA0181	20	231	400	20	0	6	21	27	575	21	55	120
DA0182	32	158	253	32	0	34	32	10	76	32	30	105
DA0183	17	225	346	17	0	9	17	38	310	17	59	103
DA0190	12	140	364	12	0	0	12	1	26	12	9	35
DB0011	40	156	703	40	0	0	40	6	57	40	21	100
DB0020	17	327	563	17	0	6	16	8	15	17	22	83
DB0 030	29	152	333	29	0	13	28	2	3	29	23	159
D80040	15	69	222	15	0	0	15	1	4	15	8	10

Table 65. Continued.

ť,

ASWO CDWG

250

500

continued . . .

250

*

Code	Dis	solved ((mg/L)		<u>Total C</u>)rganio (mg/l	c Carbon	Filte	erable ((mg/L	Residue	<u>Non-fi</u>	(mg/L)	le Residu
(00AT07-)	n	med	max	n	med	max	n	med	max	n	med	max
DA0070	34	9.5	14.4	59	26	45	65	290	3984	65	9	323
DA0098	6	9.2	13.4	13	16	41	12	123	165	13	9	48
DA0100	3	6.4	8.2	27	13	25	27	75	264	26	4	86
DA0110	9	10.6	15.4	17	14	52	17	229	452	16	10	74
DA0120	6	9.7	14.7	10	14	21	10	266	502	10	58	1058
DA0121	4	6.0	8.6	11	29	50	11	328	1750	11	25	696
DA0130	7	10.6	13.6	11	18	34	11	225	260	11	7	253
DA0140	8	8.1	13.6	13	40	295	13	297	1178	13	4	77
DA0150	7	9.7	12.4	15	20	44	15	198	508	15	16	986
DA0160	13	8.9	13.0	22	23	56	22	286	528	22	25	172
DA0170	10	10.9	14.4	18	13	42	18	126	235	18	5	370
DA0180	9	8.6	11.4	17	21	147	18	184	538	18	8	1364
DA0181	11	9.8	13.0	21	18	85	21	345	1452	20	9	55
DA0182	15	9.3	13.0	32	37	84	32	200	462	32	22	378
DA0183	16	8.0	13.5	17	21	.44	17	373	1005	17	12	126
DA0190	6	11.9	15.2	12	18	36	12	136	389	12	5	20
DB0011	20	8.8	14.0	40	30	59	39	198	862	40	8	547
DB0020	10	9.2	13.6	17	26	47	17	329	575	17	12	112
DB0030	2	3.3	3.7	29	28	44	28	152	400	29	6	124
D80040	1	-	2.0	15	28	66	15	68	232	15	4	92

Table 65. Continued.

ASWO CDWG

.

٠

continued . . .

Code	<u>Total In</u>		Carbon (mg/L)	Phen	olic Materi	al (mg/L)	0il ar	nd Grease	(mg/L)
(00AT07-)	n ·	med	max	n	med	max	n	med	max
DD0070	29	29	93	59	0.003	0.020	60	0.8	4.3
DA0098	13	19	22	13	0.001	0.015	12	0.9	1.6
DA0100	27	11	49	17	L0.001	0.020	18	0.4	1.6
DA0110	17	30	51	15	L0.001	0.022	14	0.5	2.2
DA0120	10	13	61	10	L0.001	0.020	10	0.4	1.7
DA0121	11	16	150	11	L0.001	0.007	9	0.5	2.0
DA0130	11	15	28	10	L0.001	0.029	10	0.4	1.0
DA0140	13	43	112	11	L0.001	0.026	11	0.5	1.4
DA0150	15	33	65	13	0.001	0.024	13	0.1	1.6
DA0160	22	33	81	20	L0.001	0.023	20	0.7	1.5
DA0170	18	19	25	14	L0.001	0.024	14	0.5	8.2
DA0180	17	30	105	- 14	L0.001	0.023	14	0.3	2.2
DA0181	21	36	95	18	L0.001	0.010	19	0.7	1.8
DA0182	27	27	57	29	0.001	0.031	30	0.7	4.9
DA0183	-	-	-	17	0.006	0.016	17	1.4	3.1
DA0190	12	24	70	11	L0.001	0.019	11	0.2	2.2
D80011	34	26	90	32	L0.001	0.010	34	0.8	2.5
DB0020	17	56	92	13	L0.001	0.023	13	0.4	1.7
DB0030	29	25	62	20	L0.001	0.014	20	0.2	1.2
DB0040	- 15	15	36	9	L0.001	0.028	10	L0.1	4.4
ASWO CDWG					0.005				

Table 65. Concluded.

^aPetroleum ether method.

Code (00AT07-)	Site Description	<u>Total</u> n	Phospho med	rus (u max	g/L)	<u>Orthoph</u> n	osphate med	(ug/L) max
DA0070	Poplar Ck. at Hwy. 63	62	47	240		62	13	66
DA0098	Ells R. near mouth	11	37	170		11	10	34
DA0100	Upper Ells R.	27	37	150		27	13	40
DA0110	Unnamed Ck., N of Ft. MacKay	17	17	130		17	15	26
DA0120	Asphalt Ck. near Ft. MacKay	10	113	630		10	10	40
A0121	Eymundson Ck. upstr. Asphalt	8	150	360		8	17	80
DA0130	Pierre R., N of Ft. MacKay	11	66	230		11	11	20
DA0140	Calumet near Ft. MacKay	13	124	720		13	37	72
DA0150	Lower Tar R., NW of Ft. MacKay	15	120	1400		15	19	50
A0160	Joslyn Ck. above Ells	22	145	720		22	15	110
DA0170	Lower Ells R. above Joslyn	18	32	340		18	8	60
AC180	Beaver R. above Syncrude	18	120	490		18	20	235
A0181	Beaver R. at Hwy. 63	21	50	600		21	L10 ^a	46
A0182	Bridge Ck. diversion at Hwy 63	32	57	220		32	18	80
A0183	Bridge Ck. Beaver R.	17	41	168		17	17	90
A0190	Upper Tar R., NW of Ft. MacKay	12	70	243		12	14	50
B0011	MacKay R. at Hwy. 63	37	65	260		37	24	100
B0020	Dover R. above MacKay R.	17	69	300		17	13	39
B0030	Dunkirk R. near Ft. MacKay	27	91	500		28	20	180
B0040	Thickwood Ck. above MacKay R.	15	50	240		15	13	40
SWO DWG			50	m				
Code (00AT07-)	<u>Total Inorganic Carbon (mg/L</u> n med max) <u>Phe</u> n	nolic M me		l (mg/L) max	<u>Oil a</u> n	nd Greas med	se (mg/L) max
00070	29 29 93	59	0.0	03	0.020	60	0.8	4.3
A0098	13 19 22	13	0.0	01	0.015	12	0.9	1.6
A0100	27 11 49	17	L0.0	01	0.020	18	0.4	1.6
A0110	17 30 51	15	L0.0	01	0.022	14	0.5	2.2
A0120	10 13 61	10	L0.0	01	0.020	· 10	0.4	1.7
A0121	11 16 150	11	L0.0	01	0.007	9	0.5	2.0
A0130	11 15 28	10	L0.0	01	0.029	10	0.4	1.0
A0140	13 43 112	11	L0.0	01	0.026	11	0.5	1.4
A0150	15 33 65	13	0.0	01	0.024	13	0.1	1.6
A0160	22 33 81	20	L0.0	01	0.023	20	0.7	1.5
A0170	18 19 25	14	L0.0		0.024	14	0.5	8.2
A0180	17 30 105	14	L0.0		0.023	14	0.3	2.2
A0181	21 36 95	18	L0.0	01	0.010	19	0.7	1.8
A0182	27 27 57	29	0.0		0.031	30	0.7	4.9
A0183		17	0.0		0.016	17	1.4	3.1
A0190	12 24 70	11	L0.0		0.019	. 11	0.2	2.2
B0011	34 26 90	32	L0.0		0.010	34	0.8	2.5
80020	17 56 92	13	L0.0		0.023	13	0.4	1.7
B0030	29 25 62	20	L0.0		0.014	20	0.2	1.2
B0040	15 15 36	9	L0.0		0.028	10	L0.1	4.4
SWO		-		-				

253 Table 66. Western region water quality data summary (nitrogen and phosphorus).

^a L = less than.

Code (00AT07-)	Site Description	<u>Alu</u> n	<u>minum (</u> ned	<u>Ext)</u> max	n <u>A</u> 1	r <mark>senic (</mark> med	<u>Dis)</u> max	n <u>B</u>	ioron (1 med	<u>Dis)</u> max	<u>Cad</u> n	<u>mium (</u> med	<u>Ext)</u> max
DA0070	Poplar Ck. at Hwy 63	48	100	 970	63	0.6	16.0	49	200	710	46	L1 ^a	16
DA0098	Ells R. near the mouth	13	70	310	11	0.5	3.2	1	-	100	2	1	1
DA0100	Upper Ells R.	27	40	450	25	L0.5	5.0	17	60	190	18	Ll	2
DA0110	Unnamed Ck., N of Ft. MacKay	17	60	370	17	0.5	6.9	12	100	900	12	L1	LÌ
DA0120	Asphalt Ck., near Ft. MacKay	10	1095	11200	9	0.9	2.3	10	170	270	10	L1	2
DA0121	Eymundson Ck. upstr. Asphalt	11	210	4250	11	L0.5	1.5	11	200	900	10	L1	2
DA0130	Pierre R., N of Ft. MacKay	12	110	470	10	0.5	4.3	11	150	280	12	L1	L1
DA0140	Calumet R. near Ft. MacKay	13	50	210	13	0.6	6.2	13	260	690	13	L1	L1
DA0150	Lower Tar R., NW of Ft. MacKay	15	120	10800	14	0.8	17.3	15	170	310	15	L1	1
DA0160	Joslyn Ck. above Ells R.	22	. 325	6200	21	1.2	8.3	22	230	350	11	L1	3
DA0170	Lower Ells R. above Joslyn Ck.	18	93	14700	17	0.5	9.0	18	130	300	18	L1	3
DA0180	Beaver R. above Syncrude	18	328	1700	16	0.6	3.0	18	330	1080	18	L1	6
DA0181	Beaver R. at Hwy. 63	21	140	7700	19	0.7	2.3	21	100	710	21	L1	1
DA0182	Bridge Ck. diversion at Hwy. 63	32	240	2700	32	0.9	5.0	32	160	350	32	L1	L1
DA0183	Bridge Ck. at Beaver R.	15	100	780	17	0.7	2.5	. 15	150	200	15	L1	L1
DA0190	Upper Tar R., NW of Ft. MacKay	12	50	380	11	0.6	3.0	12	110	280	12	L1	L1
DB0011	MacKay R. at Hwy. 63	39	120	2600	30	0.8	13.0	33	210	590	20	L1	1
DB0020	Dover R. above MacKay R.	17	160	960	16	0.4	7.0	17	340	610	17	L1	2
DB0030	Dunkirk R. near Ft. MacKay	28	110	810	26	0.8	2.4	19	200	390	19	L1	4
DB0040	Thickwood Ck. above MacKay	15	140	500	13	L0.5	3.0	15	130	330	15	L1	1
ASWO						10			500			10	
CDWG						50			5000			5	

Table 67. Western region water quality data summary (metals). All values in ug/L.

•

continued . . .

Code (00AT07-)	<u>Chro</u> n	mium (med	<u>Ext)</u> max	<u>Col</u> n	<u>med</u>	<u>xt)</u> max	n <u>Co</u>	pper (med	<u>Ext)</u> max	n I	ron (Ex med	<u>t)</u> max
DA0070	45	L3	75	45	L1	31	 62	1	18	62	850	5000
DA0098	11	4	7	2	2	3	13	L1	7	13	650	1650
DA0100	27	L3	5	18	L2	2	27	2	21	27	300	2550
DA0110	16	L3	10	12	L2	L2	17	2	6	17	1150	1950
DA0120	10	3	31	10	2	28	10	6	33	10	4230	27700
DA0121	8	L3	10	8	L2	14	11	5	20	11	4200	8550
DA0130	12	L3	6	12	L2	4	12	3	16	12	1225	7100
DA0140	13	L3	12	13	L2	2	13	4	17	13	910	21000
DA0150	15	L3	23	15	L2	8	15	8	114	15	2500	52500
DA0160	22	3	32	11	L2	8	22	5	19	22	4325	14000
DA0170	18	L4	17	18	L2	4	18	3	33	18	510	7500
DA0180	18	L3	10	18	L2	8	17	4	27	18	1725	16000
DA0181	21	L3	205	21	L2	11	21	3	14	- 21	930	14000
DA0182	32	3	177	32	1	4	32	2	16	33	1500	6900
DA0183	15	3	7	15	L1	1	17	1	4	17	2020	14600
DA0190	12	L3	10	12	L2	L2	12	4	15	12	1295	3950
DB0011	32	L3	15	19	L2	6	38	3	180	38	1275	4700
DB0020	17	1_3	13	17	L2	4	17	3	20	17	1370	2700
DB0030	27	L3	14	19	L2	L2	28	2	17	28	1860	5600
DB0040	15	L3	19	15	L2	L2	15	3	17	15	750	6500
ASWO		50						20)		300	
CDWG		50						1000)		300	

Table 67. Continued.

continued . . .

Code (00AT07-)		n <u>L</u> e	med (E)	<u>(t)</u> max	<u>Man</u> g n	ganese med	(Ext) max	Mei n	rcury (med	<u>Tot)</u> max	<u>Nic</u> n	<u>kel (</u> med	Ext) max
DA0070		62	L2	175	62	109	6550	56	L0.1	1.6	62	L2	24
DA0098		13	L2	5	13	19	69	10	L0.1	0.1	13	1	10
DA0100		27	L2	7	27	29	310	27	L0.1	0.6	27	1_2	3
DA0110		17	L2	8	17	193	480	17	L0.1	0.2	17	L2	8
DA0120		9	2	35	10	361	540	10	L0.1	L0.2	10	12	46
DA0121		9	L2	33	11	370	2000	8	L0.1	2.7	8	9	46
DA0130		12	L2	29	12	222	883	11	L0.1	0.2	12	4	21
DA0140		13	L2	14	13	75	4850	13	L0.1	4.6	13	L2	20
DA0150		15	L2	38	15	25	6400	15	L0.1	0.3	15	L2	26
DA0160		22	2	11	22	91	530	22	L0.1	L0.2	22	7	20
DA0170		18	L2	12	18	20	221	18	L0.1	0.3	. 18	L2	9
DA0180		18	L2	14	18	53	390	18	L0.1	0.9	18	L2	12
DA0181		20	L2	27	21	180	510	21	L0.1	0.2	21	L2	22
DA0182		32	L2	11	32	106	560	32	L0.1	6.4	32	L2	1
DA0183		17	L2	9	17	210	680	17	L0.1	0.3	17	2	12
DA0190		12	L2	3	12	105	500	12	L0.1	0.4	12	L2	L
DB0011		38	L2	48	38	40	290	37	L0.1	2.1	38	L2	30
DB0020	3	17	L2	24	17	46	135	17	L0.1	0.3	17	L2	12
DB0030		28	L2	9	28	65	520	28	L0.1	0.3	28	L2	
DB0040		15	L2	12	15	40	750	15	L0.1	0.7	15	L2	4
ASWO			50			50			0.1				
CDWG			50 [`]			50			1.0				

Table 67. Continued.

continued . . .

Table 67. Conclud	ded.
-------------------	------

Code	Sele	enium (Dis)	Si	lver (E	Ext)	Vana	adium (<u>Tot)</u>	<u>Z1</u>	nc (E	xt)
(00AT07-)	n	med	max	n	med	max	n	međ	max	n	med	max
DA0070	48	10.2	0.8	24	L1	28	59	L1	11	64	6	93
DA0098	10	L0.2	0.4	1	-	L4	11	L1	2	13	3	28
DA0100	26	L0.2	0.9	19	L1	L5	26	L1	L1	27	6	88
DA0110	16	L0.2	L0.5	12	L1	L5	17	L1	L1	17	7	24
DA0120	9	L0.2	L0.5	10	1	L5	9	L1	4	10	30	155
DA0121	11	L0.5	0.6	8	L1	L5	8	L1	L1	10	22	66
DA0130	11	L0.2	0.9	12	L1	L5	11	L1	2	12	13	34
DA0140	13	L0.2	0.5	13	L1	L5	13	L1	1	13	10	96
DA0150	14	L0.5	0.9	15	2	70	14	L1	7	15	12	41
DA0160	21	0.4	1.3	11	L1	L5	21	1	13	22	14	39
DA0170	17	L0.2	0.5	19	L1	5	17	L1	5	18	11	54
DA0180	16	L0.2	0.8	18	L1	9	16	L1	22	18	11	45
DA0181	19	L0.2	1.0	21	L1	L5	19	Ĺ1	24	21	17	109
DA0182	32	L0.2	L0.5	32	L1	L5	30	L1	7	32	14	86
DA0183	15	L0.2	0.6	5	L1	1	17	L1	4	17	8	32
DA0190	11	L0.2	L0.5	12	L1	5	11	L1	L1	12	6	47
DB0011	31	L0.2	1.3	19	2	5	35	L1	7	40	6	42
DB0020	16	0.3	0.7	17	L1	L5	16	L1	2	17	9	67
DB0030	27	L0.2	0.7	20	L1	L5	26	L1	2	29	8	45
DB0040	12	0.2	0.5	15	L1	L5	13	L1	3	15	7	68
ASWO CDWG		10 50			50 50					Ę	50 5000	

^a L = less than.

.

10.6

WATER QUALITY DATA SUMMARY OF ROUTINE PARAMETERS (TABLE 68), NUTRIENTS (TABLE 69), AND METALS (TABLE 70) FOR WATER BODIES IN THE SOUTHERN REGION

ć

Code			р	H		Tot	al Alkali (mg/L)	inity	Pher	nol Alkali (mg/L)	inity
(00AT07-)	Site Description	n	med	min	max	n	med	max	n	med	max
CC0030	Horse R. at Abasands Park	5	7.8	7.0	8.3	5	250	271	5	0.0	0.
CC0300	Horse R. near Ft. McMurray	15	7.8	7.1	8.6	15	112	291	15	L0.1 ^a	16.
CD0040	Hangingstone River	66	7.8	7.1	8.6	66	105	407	66	L0.1	11.
CD0100	Saline Creek	8	7.8	7.0	8.0	8	90	348	8	0.0	0.
CD2300	Clearwater River	50	8.0	6.2	9.6	50	63	95	50	L0.1	9.
CE2000	Surmount Creek	45	7.3	6.6	8.3	45	55	132	45	L0.1	L0.
CE2191	Christina River	10	7.8	7.5	8.5	10	138	191	10	L0.1	5.
ASWO CDWG				o 8.5 o 8.5							
Code		Total	Hardnes	s (mg/t	.)	Condu	ctivity	(uS/cm)	Turi	bidity (J	TU)
(00AT07-)	Site Description	n	med	max		n	med	max	n	med	max
CC0030	Horse R. at Abasands Park	5	226	244		5	550	590	5	8	41
CC0300	Horse R. near Ft. McMurray	15	105	232		15	214	550	15	10	82
CD0040	Hangingstone River	66	99	344		66	276	960	63	11	770
CD0100	Saline Creek	8	80	355		8	183	720	7	46	280
CD2300	Clearwater River	50	63	109		50	191	411	47	10	450
CE2000	Surmount Creek	45	59	139		45	124	300	31	5	104
CE2191	Christina River	10	127	177		10	422	850	10	11	61
ASWO CDWG								. •			

Table 68. Southern region water quality data summary (routine parameters), 1976 to 1983. See Figure 4 for site location.

continued . . .

Cada	True (Colour (Re	l Units)		Silica (r	ng/L)	Ca	ng/L)		
Code (00AT07-)	n	med	max	n	med	max	n	med	max	
CC0030	0	-	8;;;;	5	15.5	16.4	5	46	66	
DD0300	11	110	35	15	6.1	15.5	15	28	61	
CD0040	15	100	160	53	7.3	21.2	62	27	95	
CD0100	0	-		8	4.9	11.4	8	20	91	
CD2300	14	38	120	49	8.2	112.0	50	16	30	
CE2000	30	130	200	45	6.4	17.5	45	16	39	
CE2191	10	48	130	10	8.8	11.5	10	33	46	

Table 68. Continued.

٥

ASWO CDWG

Cada	Mag	gnesium (m	g/L)	So	dium (mg/	L)	Pota	ng∕L)		
Code (00AT07-)	n	med	max	n	med	max	n	med	max	`
CC0030	5	18	19	4	29	47	4	2.2	3.2	
CC0300	15	8	19	15	18	40	15	1.0	2.5	
CD0040	66	8	28	63	22	93	61	1.3	5.3	
CD0100	8	7	31	8	15	36	8	0.9	2.0	
CD2300	50	. 5	9	50	22	45	49	0.9	1.8	
CE2000	45	4	10	45	2	8	45	0.8	2.0	
CE2191	10	11	15	10	45	110	10	1.0	1.9	

ASWO CDWG

continued . . .

.

Code		Fluoride (m	g/L)	Bica	rbonate (r	ng/L)	Carbonate (mg/L			
(00AT07-)	n	med	max	п	med	max	n	med	max	
CC0030	4	0.16	0.23	5	.305	330	5	0	0	
CC0300	15	0.12	0.22	15	137	335	15	0	19	
CD0040	34	0.13	0.32	66	128	496	66	0	14	
CD0100	8	0.09	0.16	8	109	424	8	0	0	
CD2300	40	0.09	0.78	50	76	116	50	0	12	
CE2000	14	0.05	0.12	44	68	161	44	0	0	
CE2191	10	0.10	0.18	10	168	233	10	0	6	
ASWO CDWG		1.5 1.5								

Table 68. Continued.

C = 4 =		Chloride (mg/L)	Su	Iphate (ng/L)	Dissol	ved Oxyg	en (mg/L)
Code (00AT07-)	n —	med	max	n	med	max	n	med	max
CC0030	5	11	16	. 5	28	40	1	-	9.5
CC0300	15	4	38	16	14	42	7	11.0	13.4
CD0040	65	16	91	63	20	71	36	9.8	14.8
CD0100	8	7	10	8	10	66	3	10.2	12.4
CD2300	50	25	68	50	7	19	27	10.0	13.6
CE2000	45	1	6	45	12	30	23	9.3	12.4
CE2191	10	60	165	10	14	24	5	10.5	13.3
ASWO		250			500				

CDWG

continued . . .

Code (00AT07-)	Total Organic Carbon (mg/L)			Fil	terable R (mg/L)	esidue	Nonfilterable Residue (mg/L)			
	n	med	max	n	med	max	n	med	max	
CC0030	5	19	31	4	296	390	5	12	24	
CC0300	16	26	44	15	141	363	15	14	174	
CD0040	60	21	39	64	174	396	65	19	1904	
CD0100	8	32 .	42	8	126	522	8	132	454	
CD2300	50	10	83	50	147	231	50	20	1751	
CE2300	35	17	33	38	84	181	36	6	226	
CE2191	· 10	21	34	10	265	561	10	16	144	

.

Table 68. Concluded.

ASWO CDWG

Code	Tota	l Inorgani (mg/L)	c Carbon	Pho	enolic Mate (mg/L)	Oil and Grease ^b (mg/L)			
(00AT07-)	n	med	max	n	med	max	n	nied	max
CC0030	5	41	66	4	0.004	0.005	3	L0.1	L0.1
CC0300	15	22	70	14	L0.001	0.004	15	0.8	2.9
CD0040	34	23	72	57	0.003	0.021	53	0.8	6.5
CD0100	8	16	67	8	0.004	0.016	7	0.2	0.8
CD2300	31	14	22	46	0.002	0.012	44	0.6	3.0
CE2000	13	17	18	35	0.002	0.006	35	0.9	3.6
CE2191	10	28	46	10	L0.001	0.010	10	0.8	1.5
ASWO CDWG						0.005			

a L = less than. b Petroleum ether method.

Code	Site	Total P	hosphorus	(ug/L)		Orthop	hosphate	(ug/L)		
(00AT07-		n	med	max		n	med	max		
CC0030	Horse R. at Abasands Park	3	100	180		3	30	40		-
CCO300	Horse R. near Ft. McMurray	14	77	155		15	21	100		
CD0040	Hangingstone River	62	74	1300		62	32	123		
CD0100	Saline Creek	7	230	330		7	L10 ^a	220		
CD2300	Clearwater River	45	60	330		45	20	81		
CE2000	Surmount Creek	36	54	740		35	40	90		
CE2191	Christina River	10	72	170		10	29	64		
ASWO CDWG		50								
Code	Site	Total	Kjeldahl	N (mg/L)	Ammon	ia (mg/L)			litrate an trite (mg	
(00AT07-		n	med	max	n	med	max	n	med	max
CC0030	Horse R. at Abasands Park	3	0.80	0.81	3	0.06	0.12	5	0.23	0.3
CO300	Horse R. near Ft. McMurray	14	0.99	1.68	13	0.04	0.07	15	0.25	0.3
CD0040	Hangingstone River	48	0.90	9.15	60	0.05	0.46	60	0.02	0.6
CD0100	Saline Creek	7	0.98	1.50	7	0.10	0.25	8	L0.01	0.0
CD2300	Clearwater River	44	0.70	2.61	43	0.04	0.73	50	0.04	0.3
CE2000	Surmount Creek	35	0.66	2.40	35	0.04	0.33	36	0.32	0.5
CE2191	Christina River	10	1.14	2.17	9	0.06	0.18	10	0.09	0.5
ASW0										

Table 69. Southern region water quality data summary (nitrogen and phosphorus).

^a L = less than.

263

ŕ

Code	Site	Al	uminum	(Ext)	ļ	Arsenic	(Dis)	I	Boron (Di	s)	Ca	dmium (E	xt)
(00AT07-)	Description	'n	med	max	n	med	max	n	med	max	'n	med	max
CC0030	Horse R. at Abasands Park	3	70	300	3	1.2	6	.4	245	360	3	L1 ^a	L1
CC0300	Horse R. near Ft. McMurray	14	195	1090	14	0.8	2	15	220	300	4	L1	L1
CD0040	Hangingstone River	58	240	8500	31	0.9	9	46	170	400	19	L1	3
CD0100	Saline Creek	8	192	7600	5	L0.5	3	8	140	300	8	L1	L1
CD2300	Clearwater River	48	170	4300	24	0.6	2	19	90	380	28	L1	2
CE2000	Surmount Creek	34	165	1820	36	0.8	12	35	90	170	34	L1	1
CE2191	Christina River	10	145	12100	10	0.8	1.5	9	140	160	0		
ASWO CDWG						10 50			500 5000			10 5	
Code		Chromium (Ext)			Cobalt (Ext)			Copper (Ext)			Iron (Ext)		
(00AT07-)		n	med	max	n	med	max	n	med	max	n	med	max
CC0030	Horse R. at Abasands Park	3	L3	3	3	L2	L2	. 3	3	21	3	1450	1850
CC0300	Horse R. near Ft. McMurray	15	3	12	4	L2	L2	14	2	5	14	1525	3550
CD0040	Hangingstone River	42	L3	36	19	L2	7	59	2	43	43	1400	37000
CD0100	Saline Creek	7	4	12	8	L7	3	8	7	16	8	3800	7600
CD2300	Clearwater River	26	L3	8	14	L2	9	50	1	32	50	1010	24000
CE2000	Surmount Creek	35	L3	95	35	L1	3	35	L1	48	36	1320	23000
CE2191	Christina River	10	5	18	0			10	2	6	10	1350	10600
ASWO			50 50						20 1000			300 300	

,

Table 70. Southern region water quality data summary (metals). All values in ug/L.

.

25

continued . . .

Code		Lead (Ext)	Mai	nganese (E	Ext)	1	Mercury (T	ot)		Nickel (E	xt)		
(00AT07-)	n	med	max	n	med	max	n	med	max	n	med	max		
CC0030	3	L2	L2	3	40	45	3	L0.2	0.4	3	L2	2		
CC0300	14	L2	5	14	50	430	15	L0.1	0.3	14	2	4		
CD0040	59	L2	52	59	74	1900	57	L0.1	1.7	56	2	55		
CD0100	8	. 2	8	8	76	190	7	L0.1	0.2	8	L2	12		
CD2300	49	2	36	50	48	690	46	L0.1	1.4	47	L2	42		
CE2000	35	L2	99	35	88	921	35	L0.1	1.5	35	1	12		
CE2191	10	L2	16	10	65	315	10	0.1	0.3	10	L1	16		
ASWO CDWG	50 50		50 50			0.1 1.0								
· · · · · · · · · · · · · · · · · · ·	S	Selenium (Dis) Silver (Ext) Vanadium (Tot))	Zinc (Ext)									
Code (00AT07-)	n	med	max	n	med	max	n	med	max	n	med	max		
CC0030	3	L0.5	L0.5	4	L5	L5	2	-	1	5	4	37		
CC0300	14	L0.2	L0.5	4	L1	L1	14	1	3	14	6	73		
CD0040	32	0.2	0.5	20	L1	3	45	1	8	59	7	190		
CD0100	6	0.5	0.9	7	L5	L5	6	2	6	8	22	61		
CD2300	25	L0.2	35	14	L5	13	37	L1	10	49	5	87		
CE2000	35	L0.2	0.8	30	L1	6	35	L1	7	35	6	140		
CE2191	10	L0.2	100	10	L1	1	10	L1	10	10	3	33		
ASWO CDWG		10 10			50 50						50 5000			

.

Table 70. Concluded.

^a L = less than.

LIST OF AOSERP RESEARCH REPORTS

- 1. AOSERP first annual report, 1975.
- 2. Walleye and goldeye fisheries investigations in the Peace-Athabasca Delta --1975.
- 3. Structure of a traditional baseline data system. 1976.
- 4. A preliminary vegetation survey of the AOSERP study area. 1976.
- 5. The evaluation of wastewaters from an oil sand extraction plant. 1976.
- 6. Housing for the north--the stackwall system; construction report--Mildred Lake tank and pump house. 1976.
- 7. A synopsis of thephysical and biological limnology and fishery programs within the Alberta oil sands area. 1977.
- 8. The impact of saline waters upon freshwater biota (a literature review and bibliography). 1977.
- 9. A preliminary investigation into the magnitude of foc occurrence and associated problems oil sands area. 1977.
- 10. Development of a research design related to archaeological studies in the Athabasca oil sands area. 1977.
- 11. Life cycles of some common aquatic insects of the Athabasca River, Alberta. 1977.
- 12. Very high resolution meteorological satellite study of oil sands weather: "a feasibility study". 1977.
- 13. Plume dispersion measurements from an oil sands extraction plant, March 1976.
- 14.
- 15. A climatology of low-level air trajectories in the Alberta oil sands area. 1977.
- 16. The feasibility of a weather radar near Fort McMurray, Alberta. 1977.
- 17. A survey of baseline levels of contaminants in aquatic biota of the AOSERP study area. 1977.

- 18. Interim compilation of stream gauging data to December 1976 for AOSERP. 1977.
- 19. Calculations of annual averaged sulphur dioxide concentrations at ground level in the AOSERP study area. 1977.
- 20. Characterization of organic constituents in waters and wastewaters of the Athabasca oil sands mining area. 1978.
- 21. AOSERP second annual report, 1976-77.
- 22. AOSERP interim report covering the period April 1975 to November 1978.
- 23. Acute lethality of mine depressurization water to troutperch and rainbow trout: Volume I: 1979.
- 24. Air system winter field study in the AOSERP study area, February 1977.
- 25. Review of pollutant transformation processes relevant to the Alberta oil sands area. 1977.
- 26. Interim report on an intensive study of the fish fauna of the Muskeg River watershed of northeastern Alberta. 1977.
- 27. Meteorology and air quality winter field study in the AOSERP study area, March 1976.
- 28. Interim report on a soils inventory in the Athabasca oil sands area. 1978.
- 29. An inventory system for atmospheric emissions in the AOSERP study area. 1978.
- 30. Ambient air quality in the AOSERP study area, 1977.
- 31. Ecological habitat mapping of the AOSERP study area: Phase I. 1978.
- 32. AOSERP third annual report, 1977-78.
- 33. Relationships between habitats, forages, and carrying capacity of moose range in northern Alberta. Part I: moose preferences for habitat strata and forages. 1978.
- 34. Heavy metals in bottom sediments of the mainstem Athabasca River upstream of Fort McMurray: Volume 1. 1978.

- 35. The effects of sedimentation on the aquatic biota. 1978.
- 36. Fall fisheries investigations in the Athabasca and Clearwater rivers upstream of Fort McMurray: Volume I. 1978.
- Community studies: Fort McMurray, Anzac, Fort MacKay. 1978.
- 38. Techniques for the control of small mammal damage to plants: a review. 1979.
- 39. The climatology of the AOSERP study area. 1979.
- 40. Mixing characteristics of the Athabasca River below Fort McMurray-- winter conditions. 1979.
- 41. Acute and chronic toxicity of vanadium to fish. 1978.
- 42. Analysis of fur production records for registered traplines in the AOSERP study area, 1970-75.
- 43. A socio-economic evaluation of the recreational use of fish and wildlife resources in Alberta, with particular reference to the AOSERP study area. Vol. I: summary and conclusions. 1979.
- 44. Interim report on symptomology and threshold levels of air pollutant injury to vegetation, 1975 to 1978.
- 45. Interim report physiology and mechanisms of air-borne pollutant injury to vegetation, 1975 to 1978.
- 46. Interim report on ecological benchmarking and biomonitoring for detection of air-borne pollutant effects on vegetation and soils, 1975 to 1978.
- 47. A visibility bias model for aerial surveys of moose in the AOSERP study area. 1979.
- 48. Interim report on a hydrogeological investigation of the Muskeg River basin, Alberta. 1979.
- 49. The ecology of macrobenthic invertebrate communities in Harley Creek, northeastern Alberta.
- 50. Literature review on pollution deposition processes. 1979.
- 51. Interim compilation of 1976 suspended sediment data for the AOSERP study area. 1979.

- 52. Plume dispersion measurements from an oil sands extraction plant, June 1977.
- 53. Baseline states of organic constituents in the Athabasca River system upstream of Fort McMurray. 1979.
- 54. A preliminary study of chemical and microbial characteristics of the Athabasca River in the Athabasca oil sands area of northeastern Alberta. 1979.
- 55. Microbial populations in the Athabasca River. 1979.
- 56. The acute toxicity of saline groundwater and of vanadium to fish and aquatic invertebrates. 1979.
- 57. Ecological habitat mapping of the AOSERP study area (supplement): Phase I. 1979.
- 58. Interim report on ecological studies on the lower trophic levels of Muskeg rivers within the AOSERP study area. 1979.
- 59. Semi-aquatic mammals: annotated bibliography. 1979.
- 60. Synthesis of surface water hydrology. 1979.
- 61. An intensive study of the fish fauna of the Steepbank River watershed of northeastern Alberta. 1979.
- 62. Amphibians and reptiles in the AOSERP study area. 1979.
- 63. Analysis of AOSERP plume sigma data. 1979.
- 64. A review and assessment of the baseline data relevant to the impacts of oil sands developments on large mammals in the AOSERP study area. 1979.
- 65. A review and assessment of the baseline data relevant to the impacts of oil sands development on black bear in the AOSERP study area. 1979.
- 66. An assessment of the models LIRAQ and ADPIC for application to the Alberta oil sands area. 1979.
- 67. Aquatic biological investigations of the Muskeg River watershed. 1979.
- 68. Air system summer field study in the AOSERP study area, June 1977.

- 70. An interim report on the insectivorous animals in the AOSERP study area.
- 71. Lake acidification potential in the AOSERP study area. 1979.
- 72. The ecology of five major species of small mammals in the AOSERP study area: a review. 1979.
- 73. Distribution, abundance, and habitat associations of beavers, muskrats, mink, and river otters in the AOSERP study area, northeastern Alberta. 1979.
- 74. Air quality modelling and user needs. 1979.
- 75. Interim report on a comparative study of benthic algal primary productivity in the AOSERP study area. 1979.
- 76. An intensive study of the fish fauna of the Muskeg River watershed of northeastern Alberta. 1979.
- 77. Overview of local economic development in the Athabasca oil sands region since 1976. 1979.
- 78. Habitat relationships and management of terrestrial birds in northeastern Alberta. 1979.
- 79. The multiple toxicity of vanadium, nickel, and phenol to fish. 1979.
- 80. History of the Athabasca oil sands region, 1890 to 1960's. Volume I: socio-economic developments. Volume II: oral history. 1980.
- 81. Species distribution and habitat relationships of waterfowl in in northeastern Alberta. 1979.
- 82. Breeding distribution and behaviour of the White Pelican in the Athabasca oil sands area. 1979.
- 83. The distribution, foraging behaviour and allied activities of the White Pelican in the Athabasca oil sands area. 1979.
- 84. Investigations of the spring spawning fish populations in the Athabasca and Clearwater rivers upstream from Fort McMurray: Volume I. 1979.

85. An intensive surface water quality study of the Muskeg River watershed. Volume I: water chemistry. 1979. 86. An observational study of fog in the AOSERP study area. 1979. 87. Hydrogeological investigation of Muskeg River basin, Alberta. 1980. 88. Ecological studies of the aquatic invertebrates of the AOSERP study area of northeastern Alberta. 1980. 89. Fishery resources of the Athabasca River downstream of Fort McMurray, Alberta: Volume I. 1980. 90. A wintertime investigation of the deposition of pollutants around an isolated power plant in northern Alberta. 1980. 91. Characterization of stored peat in the Alberta oil sands area. 1980. 92. Fisheries and habitat investigations of tributary streams in the southern portion of the AOSERP study area. Volume I: summary and conclusions. 1980. 93. Fisheries and aquatic habitat investigations in the MacKay River watershed of northeastern Alberta. 1980. 94. A fisheries and water quality survey of ten lakes in the Richardson Tower area, northeastern Alberta. Volume I: methodology, summary, and discussion. 1980. 95. Evaluation of the effects of convection on plume behaviour in AOSERP study area. 1980. 96. Service delivery in the Athabasca oil sands region since 1961. 1980. 97. Differences in the composition of soils under open and canopy conditions at two sites close-in to the Great Canadian Oil Sands operation, Fort McMurray, Alberta. 1980. 98. Baseline condition of jack pine biomonitoring plots in the Athabasca oil sands area: 1976-1977. 99. Synecology and autecology of boreal forest vegetation in the AOSERP study area. 1980. 100. Baseline inventory of aquatic macrophyte species distributions in the AOSERP study area. 1980.

- 101. Woodland caribou population dynamics in northeastern Alberta. 1980.
- 102. Wolf population dynamics and prey relationships in northeastern Alberta.
- 103. Analysis of the leisure delivery system 1972-1979, with projections for future servicing requirements.
- 104. Review of requirements for air quality simulation models. 1980.
- 105. Approaches to the design of a biomonitoring program using arthropods as bioindicators for the AOSERP study area. 1980.
- 106. Meteorological factors affecting ambient SO₂ concentrations near an oil sands extraction plant. 1980.
- 107. Small mammal populations of northeastern Alberta. Volume I: populations in natural habitats. 1980.
- 108. Small mammal populations of northeastern Alberta. Volume II: populations in reclamation areas. 1980.
- 109. Symptomology and threshold levels of air pollutant injury to vegetation, 1979-1980.
- 110. Physiology and mechanisms of airborne pollutant injury to vegetation, 1979-1980.
- 111. Ecological benchmarking and biomonitoring for detection of airborne pollutant effects on vegetation and soils. 1980.
- 112. A study of human adjustment in Fort McMurray. Volume I: field study and results. 1980.
- 113. A laboratory study of long-term effects of mine depressurization groundwater on fish and invertebrates. 1980.
- 114. Aquatic biophysical inventory of major tributaries in the AOSERP study area. Volume I: summary report. 1980.
- 115. Report on an ecological survey of terrestrial insect communities in the AOSERP study area. 1980.
- 116. An assessment of benthic secondary production in the Muskeg River of northeastern Alberta. 1980.
- 117. Development of a chemically reactive plume model for application in the AOSERP study area. 1981.

- 118. Alberta Oil Sands Environmental Research Program, 1975-1980. A summary report. 1981.
- 119. Airshed management system for the Alberta oil sands. Volume I: A Gaussian frequency distribution model. 1981.
- 120. Airshed management system for the Alberta oil sands. Volume II: meteorological data.
- 121. The metabolism of selected organic compounds by microorganisms in the Athabasca River.
- 122. Soil inventory of the AOSERP study area. in prep.
- 123. Circulation of water and sediment in the Athabasca delta area. 1981.
- 124. Airshed management system for the Alberta oil sands. Volume III: validation and sensitivity studies.
- 125. The 1981 snowpack survey in the AOSERP study area. 1981.
- 126. Modelling the topographic effects on winds in the Alberta oil sands area. 1982.
- 127. Alberta Oil Sands Environmental Research Program annual report 1981/82. in prep.
- 128. A comparative study of benthic algal primary productivity in the AOSERP study area. 1982.
- 129. Athabasca Oil Sands precipitation chemistry studies: 1976-79 and 1981. 1982.
- 130. Climatological analysis of recent data from the Athabasca oil sands area. 1984.

This material is provided under educational reproduction permissions included in Alberta Environment and Sustainable Resource Development's Copyright and Disclosure Statement, see terms at http://www.environment.alberta.ca/copyright.html. This Statement requires the following identification:

"The source of the materials is Alberta Environment and Sustainable Resource Development <u>http://www.environment.gov.ab.ca/</u>. The use of these materials by the end user is done without any affiliation with or endorsement by the Government of Alberta. Reliance upon the end user's use of these materials is at the risk of the end user.