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sngnl.lcance in most cases Experlmental results reportec

in ref., [51)] conflrm thlS trend C | e

Lo

(c) Fatlgue threshold and comparlson with experlmental

data L . / |
-Table 3.1 shows the}materdal‘properties of the three

metals used for comparison. Onezfeature cf'the model is

that it allows the estlmatlon of the threshold stress
1nten51t} factor range The number of fatlgue elements in
the damage zpne depends on the applied stress intensity

¢

fa Jto range. This is because the reversed plaStlc zone
increases.with the latter.f&f the applled stress 1ntens:ty
“factor range is decreased, afstage is reached when the
damage zone consists of onLy'one;fatigue element. At lower
values of stress intensity’factor range. than this, .the
crowth rate is'insignificant since the damage accurulation
ocutside the RPZ is negl{giblet Th{s‘valoe of AK thus
defihes the thresholdgievel of the streSs intensity factor
range, AKth.‘Table 3.2 shows‘theivalaes of/AKTH determined
this way compared to experimental data. |
p1gures 3. 16 and 3.17, are the plots of the median
growth rate from the 51mulat10n compared w1th publlshed
Vdata, for 2219—T851-Aluminium alloy [21] ang
A516-Gr 70—S§eel_[45]. Theselresuits show good agreement
with experrmentai data. In Eig.'3.18, the growth rate
curve sas/blotted against AJ for both linear elastic tests
and elasfﬁc—plastic tests for A533 B steel'[SJ.oThe

lineazr’elaszic tests were in gooc agreement with the
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Table 3.1 Material

roperties

\\
\\

A516 Gr 70 S

\\\ |

~

84

A533 B Steel

Material Properties 2219, T851 Al teel
* N ‘
b -0.075 . -0.108 - -0.085
¢ -0.55 ~0.506 ~ -0.516
n' 0.121 0.19 0.165
¢\ (Wpa) a0 _310.0 3450
o, : : |
Ce 0.35 . 0.26 0.32
o} (MPe) 613.0 1900.0 869.0
E (GPa) 71.0- 200.0 200.0
kg (1Pa /) ©30.0 200.0 40,0
~ Table«3.2 Thresholg'stréss_intensity factor range
MATERIAL  BKpy (MPa /)
PREDICTED EXPERIMENT
1. 2219 T851 Al T30 3.0
2. A516 Gr 70" Stee 10.0 \\\' v °
'3, AS533 B Steel 7.0 8.0\

2
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model. However, the elastic-plastic tests deviated from
the model by ;“factor of nearly two. This Qdisparity is
partly attributed Eo the definition of AJ used in plotting
the ex?erimental results, which were conducted at a
different stress ratio from the linear elastic tests., (R =
-1 for'elastic-plastic; R>0,1 for linearlelastic). The
definition of AJ in the elastic—plaétic test is sensitive
to the assumptions made om the streés&ratio uped.

For monotonic loading, See'Déﬁling [5],

J = Je + Jp
3.28
= (oWg + Bwp)a

. where Je is the elastic J integral,

Jp is the plastic J integral,

@ = half crack length,

%8 = constants derived in [3,4]

We = elastic work

wp = plastic work ’

Dowling modified Eg. 3.28 in the following form:

Ad =
(aAWe +.BAwp)a

The data in Fig. ?.18 are based on taking.ANeandAwp
as'the full range of work done (Fig. 3.19). For fully
~ reversed loading (R ='-1); Mowbray [38] suggested a
\\3§EHEEtion.qf.the appliedi’gwg amiANp'as shown to account

for crack closure. Since crack closure was assumed to gome
- ‘ .
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at' a lower value of applied loading than the zero leVei,_
it was suggested in [38] that some (but not all) of the
co%pressive portion should be included in the calculations
of AW. The fraction suggested is t = 1/3. The works of |
Hudson [52] and Newman [53] suggest that only the positive
part of the respective work done (t=0) should be applied.
In the latter case, the value of the calculated AJ would
be reduced by about half. This leads to the shifting &f
the elastic-plastic data (Fig. 3.18) to the left by a
factof of 2.
(d)Concluding Remarks

Apart from the ability to predict the mean or median
crack growth rate, this probabilistic simulation of
fatigue crack growth leads to seve}al fresh insights on
the crack propagation phenomenon. Within the limits of the
assumptions of the model, the simulation leads to a,r
prediction of the threshold stress intensity range, below
which the crack is not'expected to grow, The simulation
process also facilitates the consideration of the total
damage history of the crack-iip elements. This way, the
the historical damage is guantified. It is demonstrated
that this gquantity, often neglected by previous
ipvestigators, is of considerable signifidénce. A
Markovian treatment of pfobabilistic crack growth is thus
inadequate unless a relationship can be found between the
historical damage and the position of each fatigue

element. Figures 3.7 to 3.12 show that such a relationship
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in general depends on several factors. These include the
applied loading, crack length and intringic material
propertigs. This will be further complicated in the case
of the elastic-plastic crack growth (large scale yielding)
by the ;}fects of plastic unloading discussed in the last
section. The probabilistic distribution resulting from
this model has been compared to three of the commonly used

.
probability densities in the literature. No conclusive
results can be drawn from probability plotsjalone. However
the tendency toward the 105hormal function in the Figs

3.13 to 3.15 cannot be ignored.



Cﬁaptcr 4
DISLOCATION MODEL OF NON-LINEAR HARDE&ING

4
4.1 Introduction

-
In the preceding analysis, it has been necessary to
know the distribution of stress and displac?ment (or
s;!;in) in the vicinity of the crack-tip, when the body in
qﬁestion is loaded cyclically. So far, in the %iterature,
there has been no rigorous determination of these field
guantities. As a result of this, the plastic superposition
rulé, extensively outlined by Rice [19]) is widely used.
This method was used to determine the cyclic fields in
chapters 2 and 3. If the size of the crack in rélation
to the applied loading justifies the assumption of small

scale yielding, for cyclic loading between ¢, andc? , the

cyclic loading can .be characterized by, AK, defined as:

@/ LK = ~v-a 4.1
vhere 4 = ‘g " ap> so that,
LK = KB - KA’ 4.2

That is, the change in the stress intensity factor within
the range.
However, the assumption of small scale yielding 1is

very restrictive. Even with the far field stresses within

[y
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. the elastic range, it is well known that the ratio of the
plastic zone sizé to the crack length could be large
enough to invalidate the results. Usually, in such a case,
the J-integral would be a preferred quantity to
characterize the crack-tip plasticity. The simple
relationship between Jrintegéal and K (or any other
loéding quantity), holés only in small scale yielding,.
Ever. for monoton;c loédﬂng, analytical expressions for
J-integral are difficult to obtain, except for small scale
yi;lding.'Goldman and Hutchinson t37] obtained closed form
expreésions for fully plastic materials and this has been
used in conjunction with the small scale yielding réﬁults
to provide some interpolated estimate for J-integral in
the midrange [3,4). The relevant weighting functions in

)
this interpolation procedure were obtained using finite

element mﬁ?iods.

Two problems arise when.tﬁis interpolation method ig
applied to cyclic loading. Firstly, there is no eguivalent
of equation 4.2 for the j-integral. The cyclic J-integral
cannot be obtained by siﬁply subtracting the monotonic
J-integral of the two levels of loading. Secondly, the
weighting functions for the interpolétion are available
only for monotonic loading. Previous.investigators (5, 38]
have simply added the small scale yielding and.fully
plastic components of the J-integral in the midrange. Such

a method.ia of doubtful validity unless the loading

conditions are close to either small scale yielding or

-5



full plasticity.
) sting an th;nsion of the BCS dislocation model, a

v \(bgethod is described in this chapter that tacilitates the
direct evaluation of the J-integral. The extension
involves the incorporation of work-hardening into ghe
classical dislocation modé) in a more féglistic way than
previously attempted. We begin with a brief description of
the Bilby and Swinden Linear Hardening Model. Then the
conditions for the existence of a solulion for the
nonlinear work—hardeni;g model presented are elucidated.
The displacement integral equations are derived. The
method of numerical solution is briefly described. Some of
the significant results of the analysis arq\then

presented, N

(a) The Bilby and Swinden [18] model ,

This model is based on the dislocation model of BCS
[17]) already described in chapter 2. The main difference
is in the assumption that the "friction stress”, 7,(x)
resisting the motion of the dislocation into the material

in gquestion is now a function of position and of the

plastic displacement at a given point;

x)
T(x):‘t +wY(X)=1+w®(" 4.3
1 . .
where 7o = minimum friction stress
. Yp(x) is the plastic strain at distance x from the

crack-tip,



]

‘#(x) is the plastic displacement at the same

" point,

n 4
w is a constant with the dimension of stress,
and L
a' - is a constant with the dimension o% length.

Ident1fy1ng 7o (equatign 4.3) w1th the mater1al yield
stress 1mp11es the modell1ng of a materlal exhibiting a
llnear Hookean response for the states of stress ‘within
the yield point, and a linear hardenlng plastic behaviour
for those out51de. Theyplastlc zone is, ‘as in the BCS
model, the extent of dislocation motion 1nto the mater1el

The'displacement field in this case was found by
.evaluating a llnear lntegral equatlon where the unknown
function also occurred 1n51de the lntegral The llnearlty
of this problems allows a soluthn using linear algebra
and matrlx methods.

Even though the results show ‘guite con51derable

J'”cnangebin the crack-tip diSplacement as_a’result»of the

incerporation of Qork-hardeningh the_plastic zone was not

<slgn1f1cantly affected. The only major problem observed

was the occurrence of negative dlsplacement
1

crack—tip when thetplastic.zone ‘becomes 'too large.

ahead of the

4.2 A Non-Linear Work-Hardening Model
A bilinear stress-strain law in which the post yield
behav1our of & materlal is cons1dered 11near can be

.con51dered as a first approx1mat1on. Such a choice is
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attractive (as inzthe Bilby and Swinde; model discussed.
ea;ﬁie;) becaﬁse of the 1ineari£y of the resultant
lntegral equations. ‘However, in spite of thls simplicity,
there was no obvious closed form solution for the relevant
Plastic displacement Eield. The need to seek a fully
Numerical solution removes v1rtua11y all the advantages it
may have over the more realistic (even though slightly
COmpllcated) modelllng of the stress- strain law,

In the non-linear. work hardenlng model con51dered

here all the assumptions: of the BCS model are retained

. el

" i €Xcept that the friction stress is con51dered to be of the
form:
\
oo {x)yn! 4.4
' T(x) To(Y )T
\ B .0

where, 4, is the yield strain, 7y(x) is the total strain at,
. . , /

_ ‘ L

@ distance x from crack centre, and n' is the hardening /
/

€Xponent in the modified Ramberg-Osgood stress-strain ;éw.

/
s

Since the plastic 1ine represents states of plastig //

/

Strain, the total strain at each point can be expressed

as: : - //

IE

y(x) =y (x) +y g, | s

where '%(i)'is the plastic strain.

From equations 4.3 and 4.4, we have:
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so that the.post yield behaviour is non-linear of the-
Ramberg Osgood type. Setting . n '=0 in equation 4. 6 the
orlglnal BCS model is recovered while n'=1, with a
su1table ch01ce of parameters, become identical wlth the
11near hardenlng model of Bllby and Sw1nden

For an external loading, resultlng in a far fleld
stress of magnltude Tm, equilibrium condltlons recu1resw
that the sum of all forces (dislocation and. external)
acting at each location must vanish. Con51der1ng ai}i;e<

ContanOUS ‘distribution of dlslocatlons wlth*densaty ;

kand Burger's vector b, thlS condltlon leads to .

. J fxf;!dXI ¥ J?‘Ax -0, T L e

where, & signifies that only the Cauchy Pr1nc1pa1 value of

the singular integral is con51dered ‘ : I

. ’ “‘"’«j;
[T“’ Ix] < ¢ ‘ k-

P(x) =
T-F(6(x)) c< x|l <a,
and A = wb/2n(1-v),
u‘='rigidity modulus?
v =~poissen ratio,,
c = crack -length.
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" The plastlc zone szze, a, is an unknown in the |
equation 4.7 above. Its value can be evaluated by 1mp051ng
a boundedness condltlon on the dislocation distribution
density f(x), as will be discussed later.

"In the next Sectioh, the conditions for the inversion
of equation 4.7 will be desc;ibed,‘and the iniegral
equations for the displacement field will be -formulated.

| _

4.3 Conditions fo; Inversion of Eq&ilibrium Equation,

The inversion 'of the eqdilibrium equationx4{7 depends ,
on the satisfactien of certain conditions related to the
{Holdél 1nequa11ty We begin this sectlon by presenting
Jsome definitions and lemmas to be invoked later in the
1nver51on procedure.

(a) Holder Condltlon on a line. segment [54,55]
Deflnltlons and Lemmas -

(1) Con51der a function 6(t) defined on a line

.eegment L, 6(t) is ‘said to'satiefy'Ehe Holder condition,

or; equ1valently, to belong to the class H, if for two

arbltrary points of this line,

. ‘ : x “ ‘
| e(ty) -8ty | <) I U | “al8

where A (>0), is called the Holder constant,
and, 0 < A < 1, is the Holder index.
(ii) If 8 (t) defined on L, satisfies the Holder

condition on every closed part of L. not conta1n1ﬂg the

W



ends, and if, near any end, t=c,

(t - ¢)

it is of the form,

99

4.9

Given that 6 belongs to the classvH; then, 61(t)‘beiongs

to the class H* on L.

\ It is convenleﬂt at this po1nt to state two lemmas

which will be“found useful later on:

| Lemma.4-T

&

f(x) is a positive monotonic decreasing function of t,

,thén, the_fuhction,-

hConsjdef f(tj.defined on the line segment [c,al.

belongs to‘classAH,_pro§ided f(t) .is bounded.

PROOF:
Consiger €< t, < t2 < a,
Ve lty) meplty) = - b{ f(x)dx = b [ f(x)dx
' " -2 Y
coriey) [ gt |
‘Hence, \ 0, (t ) - ¢ ‘ <M ‘ t, -t ‘k
. 1'=2 1

So that M is the Holder constant, and

A

A corollary 1lemma follows 1mmedlately for f£(t)

monotonlcally 1ncrea51ng.

M =,bf(t1)

the 1ndex k-1.

1f

A
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Lemma 4.2
Given that ¢,(t) is of class H on the line segment
[c,a). And given that ¢,(t) and ¢.(t) are both of the same
sign (i.e.; either both 6;sitive or both negative), if,
| ¢ () | < | 617 () |, then’ '

¢.(t) is also of class H in the same range.

PROOF :

O ‘ 2 o
| ep(ty) - oplty) | = | [ ep(tyet|
t
1
¢ ’ ' t2 t2
L eat) [ <l [ ef() | a.
1 t1
t2 t2. ' .
B h ' ! ‘ = 1 -
ut { | of(t) ] dt = | [ ep(t)dt | = | oq(ty) -0ty | |
1 - Y | 4.12
Now, M and X\ can be found such that,
) . A .
I _ . _ . .
[ o (ty) - e, (t)) ‘ <M ! t, -t M0, 0 ¢h <l 4.13
so that, from the above relationship,
. T . o
| 0p(ty) - op(ty) | et -g | | 412

L
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(b) Inversion of the Ehuilibrium Equation

In order to obtain the dislocation distribution, the

.eéuilibrium eqguation 4.7 has to be inverted. The general

solution of this problem has been given by Muskhelishvili

I154,55]. The conditions to be satisfied are that, the

"dislocatiodn f(x) is of class H*, and that P(x) is of class

H. With these conditions satiSfied, if the Cauchy

Principal value of the integrals exist at each point,

then,_'
p 3
a
2(1-
f(x) = S5 J‘-R(x,y) P(y) dy
-d
2 2
L a~-x 4,158
R(x,y) =y 7 27

Guided by the soiution of the BCS model (Chapter 2),
it is reasonable to make the following aésumptions about

f(x): Fitstly,‘fcx) is of class H*,.and'secondly, f(x) is

~a monotonic function of posiE;ph in the two line segments

[0,c], and [c,aj. These assumptions are based on the fact

" that for mild hardening, (mpderate values of'n')3thé

function f(x), should behave like f4(x) of chapter 2. Now,

A f,(x) is monotonic in the interval [c,a] and it is easily
_shown to be of class H+ in the vicinity of the crack-tip-

thus: .
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For any X in the range, 0 < XA < 1,
. o | 2 2
{1m+(x-c)Kf1(x) =2 Lim (x-c)x{cosh‘l' 8L 4 E_‘
¥»c oo g a(c- a
+4.16
-1 az- c2 é
- cosh | + _.‘}
ac+x) a

' \
Using L'Hospital's rule, it follow that

'y

. K~ oL co‘ . 2¢ a2 - c2 -\ -
L1m+(x-c) fo(x) = — Lim ( v > )/ - x(x-c) 1 =0 4.17

. + 2
X ‘ A xr¢c x - .az—x

-

where c* indicates an approach from the poSitive
directgon, so that (x-t))f,(x) is bounded and continuous
in the neighborhood of the crack-tip. Therefore, f,(x)
belongs to the class H* in this neighborhood.

(c) Holder Condition for P(x)

Now,'define,' -

/X o 9y

o(x)= - 1% p €lt)dt, ¢ < x < a o - 4.18

By Lemma 4.1, ¢(x) belongs to the cléés H in the ‘open
interval} (c,al. It follows easily that anyylinear
function of ¢(x) also belongs to class H. In‘particuiar,
the functian

V4

-
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where # and « are constants..

We now proceed to show that non-linear funct1on

¢>2(§) =1 {(4’(") + 1)”'- 1) ‘ _ . 4,20
0 ’ ’ f |

t

satisfies all the conditions of Lemma 4.2. Differentiating

Eg. 4.20, we obtain,

dcz(x) ) n't

0 (6(x) , -1 delx)

' ( a dx
dx ay, Y% .

From the relationship 4.19 and noting that u = 1o/yo, the

: . g Tt
above equation can be used to obtain, .

de, (x)/dx '
_2 = (0(x) n'-1 S
&) (x)/dx " (av + 17 ,A | 4.22

0

By definition,-o <n' < 1, and ¢(x)~ie'positive.

Therefore, the right hand side of egquation 4.22 is always
*x

positive. This immediately shows that ¢1'(x) and ¢,"'(x)

are of the same sign.

( Rewriting equation 4,22,

/t‘
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() " X T 4.23

The numerator on the right hand side of equation 4.23
) -

is less than unity but the denominator is alway#géreater

than unity as long 4s ¢(x)/ay, is positive. Thisiis ai&ays

%

the case. It therefore follows that,

[ 4200 | < | o0 |

In which case, we have shown that ¢,

x| the interval (c,a].
In the open interval [x| < ¢, P(x) in eqguation 4.7

meets the Holder condition. In the open interval,

P(x) =17 s () =T w el ey, 4.25
using the notationnin tﬁis secﬁion.'ltlis cleaf'that the
Holder condition is alsé satisfied in the open intefval
(c,al. In order to include the discont;nﬁity at x=c, it is
convenient to modify the function P(x) siightly by |
approximating the step at x=c by a linear function in the

interval [c-6&, c+6+¢] as shown in Fig. 4.1. In the limit
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N P(X)A
7 6 6 |
/
a . ' “1" a9)
. i ol x
: W/" \\5
81 // ’ oo \\ B
\\/L; T =191 “4#/ [rw—r1uy
/‘ | \
I 1 1 L,
—-a —C 0 C a X
A = (c-4 %), Ay = (—c+6, 7).
B = (c+t6, T ~19), By = (-c—, %°°—ro)
s

Figure 4.1 Holder condition for a step function
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as & » 0, the function P,(x) becomes identical with the
f
function P(x). Moreover, the inversion problem in
N guestion, using P,(x) converges to a solution equivalent
| to what would be obtained if P(x) had been used in Epe
/ first plate. A justification for this is discussed in the
rest of this section.

Consider the straight line AB (or A'B') in Fig. 4.1.

It is convenient to divide the region |x| S a into the

following sub-intervals , ’
15 ‘ X \ c-56
: 3 c*étel ‘x ‘( a
1y c-blxgcHbte 4.2
]4; (‘::-é-e_<_x_(_-€-'6

where the parameters & and ¢ are as deflned in the Figure.

As a modlflcatlon of the functlon P(xTng define P, (x), as
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" | o
Now, for any finite values of &, and«e (6,n'), P,(x)
satisfies Holder condition in the entire range, |x| < a.

Using P,(x) instead of P(x) in 4.7, which can pe inverted

as in 4.23 to give:

nub
Ul [3U1,
where
1 a2- X
R(X,)’) = — ,/——~—————.
X~y a2 ) y2 v 4,29
*

v

For any point X#c, however close to the crack-tip c,

8o can be found satisfying: |

| xec | > 2eg ve (o ') 26+ el8,nt) 4.30

near the crack-tip Closer to the point x in guestion.
Given that y € I, U I, then y satisfies,

L4

| y-¢ \ <8 +e(d,n').

Using 4.30 and 4.31, therefore, it follows that,

\
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l X-y ‘ = ‘ x - ¢ - (y-c) \ > ‘ x-C l - ‘ y-c ‘ >b +e(b,n'). 4.32

.

In which case, the second term on the right hand side of
_equation 4.28 is free of sinqularity, for all values of &
Satisfying 4.30. Moreover, from the construction in Fig.
- 4.1, it is clear that if 6 approaches zero, e(d,n') will

also approaéh zero. But the integral of any finite
function vanishes as the domain of integration tends to

zevo, 1t follows therefore, that,

>
Lim ’P?(x) = P(x) 4,33
&+0 ¢
and,
Lin z(t'”)J © R{xwy) Pply)dy '
> 1903
'11u12m3uxd

4,34

= Zﬁllﬂl_ ° R(x,y) P(y)dy
nub

So that, even though P(x) does not satisfy the Holder
conditions, a supplementary function P,(x) can be féund

, belonging to the class H, which converges to the function
P(?) in the liﬁit as just described.

J B
I
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¥

A similar ergument was used by Suiﬁden [55] for the
~simpler caee when the value of %{xl,[g constant in the
_whofe renge with@the exceEtionvof a step at the poiht X=cC.

. | g L :
2

4.4 Dvﬁﬁaacement Xntegral Equat1ons
| Having established the conditions of velidity of the
inversion of Egq. 2133; we eroceed inrthis Sectioh to |
‘generate the integral eqtations for the plastic
dispiaeement function ana the retbvant'boundary condition;

‘The requirement that the dislocation density function f(x)

oW

‘be bounde at the end points ta, similar to the condition

'1n Eq 2.19, is:

™

a

[ j F(x')dx'
[(x*-2)(x*+a)} /2

-4

‘In.the case of thlS non- ¥inear harden1ng model, “the

relevant fUﬂCthﬂ F(x) is the functlon P(x) defined in

»~

©4,7. In which case, 4. 35 becomes,

-1 - 1,(x") J’, c w .
j 1 ]\.%2 dxl + f’ T dX 1/2
-4a (aZ_ X'Z)" 6 o (82 -X'Z) -
} . 4.36
AT -t (x ) .
+ V ! 72 dx' =0
1Y C (az -x| )
X
‘which after rearranging, and substituting from 4.6, .

~ becomes, - ‘ ‘ E
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‘o

- Tm-’t'¢(x)+1} ‘

. = 4! - -Cc 3 0 ay . - '
[T s o+ _ _ dx' =0 . .4.37
-c (.2 L2112 -a ¢ i gB 2 e

(af - %) RO

'Unfortunatély, 4.37 does notM;eéd:to”alclosed form
”relationship'betweén the éppligd{loédi@éﬁ 1~ and the |
extent of plaSticity,_a} like‘in é.20._Ih.tﬁe'pteSent'
"case, thg_plaétic di$plécement'¢(x)@af each pésitioh must
be founa, By ﬁntégrating‘4,15; befoné sfiving 4;37. The

plgstfc‘displacement at any point x,

o(x) = b | e e

where a is the plastic zone extent closer to the point x.

' ) T K %
Substituting for:-f(x) from 4.15{_We_obtain,r
. 2(1-U) a e Vo ' 4 '
o(x) = [ ] bR(x',y) P(y) dy dx'. 4,39
o , A , .
-a X -
From equation 4.7, P(x) can be rewritten, ;
i 0
, X| <¢C
® , n' S . : ’
T, TO{(%Y%QH) anc<hkica 4.40



. = P'(x) - P''(x) . 2
so that, 4.39 becomes, “
' a a. . - | - {
o) = 21 [j j bR(x',¥) P'(y) dydx’
' St ea X
o a a 0 v

o - j J bR(x",y) 1, (S 41y o1)dydx' | 4.4
Ny . : U

-a X

Clearly, P' in the above equation is the same
function as P(k) in equation 2.18. We can write,

therefore,

" a oo
b0 = oy(x) - 8] = (L)
: 1o
a ‘ 4.42
- 1bdy [ [R{x',y) + R(x', - y)]dx'
X
where B = 2(1 - v)vo/ﬂ
Writing,
a |
o K(x,y) = j [ROX3y) + R(x}3-y)ldx', .43
' ' ’ X U o ' _

-

equation 4.42 becomes,



. 7 - a 'n] ) . E v>~‘
8(x) = 64(x) - B J .j[(g%l #1) -1] Kooy) dy o 4iag

c

It can be shown (see appendix ) ghatf

K( =cosh™! ' a’-x? i X -1 a2_x2 X
- aTieyy b5 | + cosh fm*s
4.45
2 .
;"2/ _"'T

and, ¢0(X) i§>given bY;

% ¢, (x) = (x¥c) cosh™] laZ_XZ L A | W %52
0 e ‘ a(x+c) g'f f {x-c) cos IETE_;_ + 3’

» o _
. Equations 4.44 and 4.37'can be treatéd thgrefore asy
simulﬁaﬁeous integral equations in £hé two unknowns ,¢(x),
and a. \1n 4,37 the unknown quantlty, a, appears as a 11m1t
in one of the 1ntegrals, as well as under the 1ntegral
signs. There is no obvious analyt1ca1 solutlon to these"‘
equations. The next section of this chapter deals with the

Procedure used in arriving at an opt1mal numerlcal

solution,
L g@'}
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4.5 Numerical Solution of the Work-Hardening Equations

(a) General Procedure

The displacement fuhction has been expressed in the
laSt'subsection in the form of a Fredholm Inregral
Equation,of.the second kind (Eq 4.44) and a boundary
condition (also expressed as ‘an 1ntegral) Eq. 4.37. The
met hod chogen . to solve this problem belongs to the general
class called “expans:on methods". As already dlscussed‘ln
chapter 2 (sectlon 2 6), a more familiar procedure is .the
quadrature method, where the integral in»the equation in
guestion is chahged u51ng standard quadrature formulae,
to an algebralc expre551on in terms of spec1f1c values of
the kernelvfunotlon and‘the unknown function in questlop.
This is basically an expansion method. hut'with the basis
'functlons 11m1ted to the kernel of the 1ntegra1 equatlon
Slnce the kernel-functlon ;u Eqg. 4 44 1s slngular, it is
| found deslrable-tharvthere:be freedom_to choose basis
functlons'other than the kernel function itself.

“

In general, we can choose to represent the unknown

function ¢(x) in 4.44 as |a linear‘combiuation,of-certain

" prescribed functions, thus:

n :
o(x)= L wgeixl R
. _l=0 '

4

the a,;'s arée the parameters to be estimated‘and n is the .
number of basis functions. It is usual to choose for the

a,'s, functions that are independent of any unknown
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parameters. Polynomials in x are common examples. If the
friction stress is, for instance‘, as given in Eg. 438?“
then 4. 44'wi11 be linear. In this case, the ch01ce of
'polynomlals, or other functlons 1ndependent of the a,'s in
vK. 4.46 w171 lead to a set of llnear equations, wh1ch can
be solved by standard matrlx methods.\However when the
‘bfrnctnon stress is non—llnear (Eq. 4.6), choice Of,dq's
‘independent of unknonn,parameters wili‘stiii not give
linearity‘-ln this case, the ch01ce of non- llnear

comblnatlons of functlons of the form
. Nn ‘ : : ' k
¢(x) = I e, (a,x), o ey

where;g is the vector {a,}, ané the ¢,'s are arbitrary
funci::~s, does not necessarlly lead to greater
COWHLIFE,AOWS because the resultlng equatlons w1ll alvays
be non—linear‘anyway. In the next subsection, methods of
. singularity removal including”tne userof thefbasis
.ﬁunotions to eliminate the kernei singnlarity, will be
treated.‘ “ » | | o |
(b) Singularity Removal Method

In the case of linear hardening,tn}=1 the friction
stress has the form.of Eq. 4.3t The simplest:set7of basis
Afunctions are polynomials If the . functlons ¢,'s in Ed.
4.5¢ £re pc.ynomials or any, element ary functlons, we can
choose a vector x;, j = 1, . v o.,om, where,x} is any point

'in the domain [c,al. A substitution in the equation 4.44 .
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\ M ' : .
results in the m equations:

¥

- = . ko (y) d
n
where @(xj) =€£1 a ¢i(x3)
L ]
. ] |
¢(y)K(x.y) = 121 a5 (y)Kixgoy) jel, veey m 4.49
{

and,\hf“is the residﬁal}at'the point x.

As long asjthe‘function.¢i's do‘nOt involvé the
parameters o, , Eq.w4.48 is linear. The solution method |
- uséd‘depends on the choice of the” number of points, m. For

a unique solution to exist
mon ~ 7 a.s0

When’m=n; there is the same numbér of solutions and
unknowns. An attempt can be made to sblve thgﬂlinear
algebraic eguations,
@

hJ =0, j=1, ..., n ' 4.51

The condition for existence of a solution to EQ.. 4.51

. e R L
is that the matrix whose i,j " term, A,; is defined by,



a o _ ‘
) + B ffm(y)K(xj,y)dy | . 4.52
o

has a unique inverse.

Within the range [c, al] of the 1ntegral on the RHS of
EqQ. 4.52, there are 51ngularltles at p01nts X= y, and y=a.
One method aVallable for rem0v1né(the latter szngular1ty

is to choose the fynctions # ' s that satisfy:

(x), ¢t > 372 - 4.53

provided that?gi(x)'isubounded, and has bounded
.deriyativesdih the domain [c.al. It can be shown then

‘that,

Lim ¢, (y)K(X1LYY

y*a ‘

" exists. The dther kernel singularity, x=y, is.ah

integrable dne. The following procedure was used in

integrating around it. .
Consider the function F(y), and let K(x,y) have a 

singularity at x=y in the integral,



a a .
J~F(y) K(x,y) dy = J [F(y) - F(x))x('x,y)dy
C ' ' . C
. ] 4.85
*F(x).J KExay)dy |
) C

as x-»y, K(x,y)=»=., But the guantity F(y)-F(x) approaches
zero. The first term in the expression in 4.55 vanishes in
the limit, otherwise, the integral does not exist [56]. At

the same»time,vif K(x,y) has a closed form integral, as it

indeed does in this case, then the expression 4.55 can be

evaluated by standard procedures. This way, the second

kernel singularity can be avoided,

In the general case, n'#0,1, in place of Eq. 4.48, we

have;

a
n, =¢(x.) - ¢ (y '
j ( J) oo(xj) + Bt {(aY ) . "o l}K(xj,y)dy 4,56
c 0 '
that 1s,
n . <%
My Ry et Eg) ooty ﬂ
4,57
n
. a -Z a ¢1(£s.Y) , H
+ Bt j {(1=1 : + l)n - 1} K(XJ)y)d-y *
. 0% A

so that the functions n,;'s are non-linear in the unknown

-parameters. There is, therefore, no obvious advantage in

choosing ¢(x) as a linear combination of functions. We



retufn to this point later, but now, we can discuss the
problem of singularity removai dué to the nonlinearity.

The singularity at x,=y can still be Yemoved as
demonstrated ib Eq. 4.55. How;ver, functions sétisfying ’
the condition ;BMEq. 4.53 are no longer guaranteed to ‘
ameliorate the singulafity_at y=a. Since the latter is at
a fixed point, at the end of the domain of integration, it
"is found convenient'fo avoid the point y=a by selecting
the points x; in the open interval [c,a).‘That is, Qe gd=
as near to a as we may desire, but avoid using the poin£ 
x;=a itself. |
(c) Numerical Solufion

The_following perturbatidn of the elastic-pérfectly

plastic solution (Eg. 2.22),

|

‘ , 2.2 -
¢(x) = oy (x+c) ;Qsh [ 1+| o)) 1_TE:§7'+ l)

- -c). -1 a -X2 X
- ogbree) cosn! (vl )| iy + :U
’ , : 4.58

~ag(x/a) '“S(XZ/az)
+ age . + gt

with én exponential énd.GéUséian background (the last two
terms respeqtively) is hsed'as the approximaﬁion.function.
Since thereAére.eight.unknown pérameters; in principle,

_ohly éigﬁt>equations are needed to evalpate them. However’

it was found more accurate to choose.more points x; than
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eight, so that the resulting set of equations (of the type
of Eg. 4.57) becomes a set of overdetermined non-linear .
equations. This approach is chosen because, in this way,
accuracy of the procedure can be improved by choosing more
points prbvided'the point x;=a and the other singularity
(x,=y) in Eq. 4.57 are avoided- as already}described. In
the calculations presented in thi# chapter, twenty equally
spaceé_points wére chosen, and the resulting equations
weré solved via a non-linear ieast squares method. The sum

of sguare residuals,

was minimized Using‘the IMSL [57] spbroutine based on a
derivative-free optimization method for non-linear least
squares. The.method used there is based on the
LeVenbefg—Marquardt algo%ifhm.‘The optimization routine
does not requi%e the computation of gradient vector or the
Hessian matrix; One:only needs to supply an initial
estimate of the vector {ui}; The initiai'esfimate used was
(1,0,1,0,0,1,0,1). ﬁsing this vector in Eq. 4.58, the
init&él'esﬁiméte corresponds to the elastic-perfectly
plastic solution (Eg. 2.22). The boundary conditions 4.37
was included in this way: starting from a reasonable
initial«estimate a, of the parameter a, for any value ax,

. th
the residual at the k iteration,
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@ -C

T dx +( j + fak) o aYO v

2 Mt 2,2, 1/2 4.60
(ak - X ) 'k (ak - x' )

is found, using the value of the vector {a,},
corresponding to this optimization. It turns out that the
choice of ao, ;lose to the elastic-perfectly plastic value
(Eq. 2.20), gives r, close to zero. By using different
values of a, in an iterative scheme, the magnitude of r,
can ‘be made as small as possible,‘giving a good estimate
of a. Another way to solve this problem is to solve the
integral equation 4.37 directly for each optimal value of
the vector {e,},. However, the computational requirement
for this solution %ake it unattractive.

Apart from converging to an optimal (miniﬁal) value
of the suﬁ in 4.59,-the final solution is tested at each
optimization point. When thé residuals, N;'s are of a

. n
lower order of magnitude than the function, I aioi(g,xj)
i=1
the vector {«;}, is taken as a sufficiently close estimate
of the unknowm parameter vector., Various values of the

¥

hardening exponent were considered in the range

0 < n' < 0.2. The {terative method described here
.cngerged in all cases for applied stress values up to
0.7y, Frr values of the hardening exbonent higher than
this range, and/or higher values of the applied loading,

the convergence rate is slow, and both the sum of squares

errors as well as the individual errors become large. In

&5
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some cases, the lat;er has , magnitude Comparable tO the
estimated dispiaccﬁénéyfunCtiO“t

The optimal vector {a,} obtainedfby the Mmethod
described can.thén be subStiCUCed i”;EQ. 4.58 to optain
the plastic displacement ¢(y) as a fUﬂCtion of distance
from the crack centre. The gtf€5S disﬁribution, r, (%) Can
be obtained from ¢(x) using £9° 4.6. ANother important

qguantity to be evaluated ig g he J—integr81. By defiﬂitiOn,

aum

J 2 [ wWdy -~ T oy

T .

where I' is a suiltable integfﬁtion path around the

crack-tip plastic zone, u, ;% the displacement vectol

\ .

ou'dcu. the Strain energy densitY:

and, Tm is the traction vecy0f®

In the dislocation mogel' 'P€ SimPlegy path of
integration is the upper ang 1°¥®F SUrfaceg of the P13Stic
zone. Along the plastic liper dy=0, so that the £ir8% term
in‘the integral (Eq. 4.61) vanisheS. Also’ ds=dx.

Equations 4.6 and 4.6 1e2d to:

a d ¢ (x
R RN _'ﬁ;\)dx 4,62

Since ¢(x) is thf relative plaStiC displgcement at POINt x
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between the two surfaces constituting the integration path

'y so that,

and, now, ¢(x) can be obtained from Eg. 4.58.
~

4.6 Results and Discussion

In the range of applied loading 0 s T g 0.67o, the
plastic displacement ¢(c) at the crack-tip varied widely.
In Table 4.1, the spread of values can be seen to span
over! two orders of magnitude. A linear plot of these
'values will give the impression that there is no change in
displacement over the range of values between
0.0 < t° < 0.47o. These values are therefore plotteqmon‘a
logarithmic scale as shown in Fig. 4.2. Here, the
displacement is made dimensionless by dividing it by the
guantity avy,. AS expeéted, the displacement ihcreases
rapidly with the épplied far field loading. There is a
reduction in the crack-tip displacement when the hardening
exponent n' is increased. Even though this has been
attenuated by the logarithmic plot, the trend is
consistent with expectations.

Figure 4.3 depicts the variation in the dimensionless
crack-tip stress, 7i1(x)/7, with the applied loading, for

Y
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Table 4.1 Variation in crack-tip displacement due to

external loading and hardening-

n

-

l | 0.05 0.10 0.125 ~ 0.1667  0.200
‘ (i g . S -

- |-.0500 | 0.13759 0.13751 0.13747 0.13742  0.13738  0.13731
S+11..000. 055205 0.55097 0.55041 0.54976  0.54911 - 0.54794
L1500 | 1.24862 1.24416 1.24157 1.23889 1.23524  1.22936
| .2000 |7 2.23626  2.22460 2.21712  2.20681  2.19688  2.18022
1 .2500 y 3.52823 3.50389  3.48509  3.46564  3.44544  3.40970
\t/v. .3000 514275  5.09540  5.06532 5.02979 4.99235  4.92473
°) L3500 7.10815 7.02626 6.97635 6.916I1 6.85170  6.73366
| .4000 - 9.44450 9.32203  0.24248  9.14461 ~ 8.98563 .- 8,71281
| 4500 12.20600 .12,01720 11.85480 11.66790  11.40470 11.03870
©.5000 | 15,44440 15.11890 14.89110 14.59560 - 14.19540 - 13.36660
5500 | 19.23480 18.72250 18.35800 17.88660 17.33220 16.22549
| | 21 37900

| L6000 ' 23,68040

22.87650

22.30840

149730 -

20.47749 29,
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«

the various values of the hardening exponent. Theltrendv
here, as’expected,visithat thelcrack-tip stress ihcreases
with the applled loadlng For a fixed amount of the |
far-field oadlng, it 1s also evident that the crack t1p
stress increases w;th the amount of work—ha;dehing.-»

Using the crack-tip displacement as a criterion for’
plastic damage at the crack-tip, the result would-indicate
that work—hardening reduces the olastic damage. The |
ekactly‘opposite cohc1usioh might be reached using the“
cractk-tip sttess. In Fig. 4.4, another quantlty, the
strain energy density at the crack tip, based on both
displacement and‘stresses; is plotted From thls Figure,
it is clear that'thelstrain energy.den51ty increases’ with
both'applied stress and the exteht of workfhatdening in
the material depicted hy nl | | |

In all the quantities considered so far, the value at

a given point, (in this case, the‘crack-tip)" |
considered. In order to demonstyate the'varia on in the»
plastic damage with either'applied$stress or

¢

work—hardening) it is necessary to choose a'parameter that
is defined for the whole plastlc zone. Such a parameter is
the J—integral. Earlier 1nvestlgators have related this to
the straln energy density. This can be done here, us1ng

EqQ. 4.63. In general, there 1s no closed form solutlon to
the dlsplacement functlon ¢(x). A numerical integration of

Eg. 4.63 enables us to calculate the J- 1ntegral for.

various values of n' . This can ‘also be made dimensionless
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by dibidihg by the éuéntity, ayoro' The dimensionless

J- integral is plotted agalnst ‘the applled far fleld i
dlmen51onless straln energy dens1ty as shown in Flg. 4 5.
The_llnearzty of the qurves‘shows that there is a poweg

- ! L . - 4)
law relationship of the type,

3= - o 4.
where C and m are dependent on both the applied loading;
.and the hardening exponent . |

A special case exists in Eq. 4.64. When n'=0, Eq.

" 4.63 can be integratéd'analytically. In this case,

“51nce ¢(a)=7
Using the vector (1,0,1,0,0, 1 ,0,1) for {a } in Eq

- 4.58,

'®(C)QF 2Bc fn(a/c) '."‘. .
= ZBc'in{sec ff;J
2t
0
| 4.66
2 =2 2 w2
2B [— () {1-1_(Z
S -

In the last expression, the first two tefms of the
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Taylor's series expansion have been taken.

}

Substituting Eqg. 4.66 in 4.65,

J= UA-Y)HTZI1-E_(fi)zj‘W” ". 467

N

16 "<
0

where writing W = (r®)%/2u, is substituted for the far
field strain energy density.
Note that, in Eg. 4.67, if ¥ «< }o, i;e., for small

~scale yieldihg,
.J=(1-V)7KC.wQ o ) . 4.68

In thgh ci?e;'J is linearly related to W=,
&
4.f<Cqmparison With Continuum Models _
The'originél'eléstinperfectly plastic ﬁddél éf BCS
. has been shown to compare‘favérably with the cbntinuum 
based model of Hult and McClinﬁock [17,29]. This
comparison vas made on the basis of the extent of;the
plastic zoné 6nly. Analytical rgsuits [i9] and, mofe
reCehtly,.eXperimental reéults [59,GQJ are évailable_in
.the literatﬁre for comparison with the elastic—nonlinear
hafdening modél presentéd here. Figﬁres.4.6”to'4.15 are
tﬁe compérisons of the predicted crackfline'étrain, stress
and Sﬁrain_Energy Density'comgared with thé_cdntinuuum
model of.Rice:[19]. As these Figures shov, there is

considerablejdisparity between the two predictions in the
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first 15% of the plastic zone size. This results mainly
from the singularity preaicted bQ»the letter at'the
crack-tip. This d1slocatlon model predlcts f1n1te values
‘of stress/strain at this p01nt for the varlons values of
‘the hardening exponent. I1f this ilrst part of the plastlc.
zone is ignored, the predlct1on'the two models are close.
Figures 4.6 too4:8 are for n'=0.001, wh1chvls,pract1cally
%ﬁastic4perfectly‘plEStic. The otheritwo sets of‘?igures,
‘4;9 to 4.1l ana 4.12 to 4.14, represent n‘=O.T'and 0.2
respectively. These\correspono to mild and high hardening
cases. It oan'beeseen that the predicted strains in the
two models become closer és the hardening exponent. |
1ncreases. The resolts for the stresses are even better in
general, The Straxn Energy Density predlfied from these
‘two are also close to. each,other. These two models thus
;esult in similar predlctlons for the stress/straln field
if the f1rst 15% of the plastlc zone 51qe is ignored. We
shall discuss this dlsparlty region shortly |

| It 1s 51gn1f1cant that the pred1ct10ns at the ends o‘
the plastlc zone are- very 51m11ar in both models desplte‘2
the fact that there is a significant diference in the
plastic zone sizes in the,two models.The values.of the
straiq,‘stress and the strain energy.dehsity predicted by
the‘two models ate very close to each other.

 We now return to the first 15% of the plastic zone

size where the two.models differ most. Figore 4.15‘shoﬁs

‘the plot of the strain distribution versus-the
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crack- tip dlstance on a log-log scale. As . expected the
' greatest difference is observed as x = 0. Avallable

/
experlmental results, however, support this model rather
than Rlce s in this part of the plastic zone. The crescent
shape of thlS dlSlOCBthﬂ model‘pred;ctloqcls exactly_the
'same as has been cbserved by‘Devidson and Lenkard [59]
var.vafious metals With‘diffe;ing hardening;expohents.
These investigatofs have_shown‘thaththe straih
‘diStribution/at the origin fIattens out in the same way as
this dlslocatlon model behaves. Thls also justxfles the
sindularity removal method used in chapter 3 where the

‘stress/strazn dlstrlbutlon at the crack- t1p neghbourhood

was assumed approx1mately constant.



Chapfer 5

{

UNLOADING FIELD AND CYCLIC J-INTEGRAL ' |

5.1 introdnction
Thé dislocation ﬁodel developed in the préviébs _

chapter can be applied to ihé ;mbblem of a éréck that is

first loaded,‘and then unloaded to a épecified-value. This

cén be furthér appliéd‘to the cése of the cyﬁlicélly

loaded crack. The application of dislogatioh to fatigue

loading is not entirely new. Weertman [36], and later
”Lardner‘[35], have extended the original-BCSv[17] v &i
these works, attention is restricted to the displacement

at the crack-tip. Crack growth either fesUlts from the i?~

monotonic-loading model to the case of‘cyclic loading. In

attainment of a critical value of the crack-tip .
displacemeﬁ;j or in the fatigue cycling caSe; when the sﬁm
of the displacements at the tip attains a ¢ritica1'vaer.' .
From the rééults in chaptef‘4,.it was seen'that,
.wdrk¥hardening does not change tﬁe crack4tip displacement
éonsiderably. Since worthardenihg usually léads to a
réduction'in the value of crackftip displacement;'applying
the fatigue dﬁctility failure.criterion kas in ref.-[7]
for instance) would lead to a conclusion then that
wdrk—hardeningvshould lead to a‘?owe} crack growth rate.
Stated differently, this means :néé the plastic damage
Tate at the créck—tip should be 'ﬂwer,'thé ﬁigher the

work-hardening rate in a given i t¢ .al;

143
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It shonld be nnted that these models presume'that the
graék~tip stress is always at the yield level. As a result
of fhis limitation, it is not possible te obtain a
criterion for cyclic crack growth baséd‘on crack-tip
Strees, or any other stress rélatequUantity; Using the
results of Chapter’4,fwe find that if the crack growth
~theory is based on the attainment of a critical stress
value, a higher work- hardenlng material would lead to
higher crack growth, and/hﬁgher plastic damage rate. This
is a diametrically opposite conclusion from the
displacement based criterion. It is therefore evident
‘that, neither the crack tip seress, nor the crack-tip
displacement is a consistent measure of the crack- t1p
plastic damage

It is de51rable to have a crack growth criterion that
'is not restricted to the- crack tip values. A con51derat10n
A'of the entire plastic zone w1ll be necessary to acccunt
E fof the plastic damage‘ghga@ of tneucrackvwhiehvresults in
'crack propagation. §u€kta‘criterion‘isithe_cyciic
J-inteéeal proposed by Tanaka [393..Un§ortunately, the
evaluation of this quantity has been presented using the .
classical dislodatien_theory ;ilimited to‘the-elastic.
perfectly'plastic situation where the entire plastic line .
is assumed to be maintained at the material yield stress.
This ie'therefore again a quantity baaed on the plastic
dispiacement considerations only, even»though in this case

attention is no longer restricted to the cy‘k-—tip values,



145

Applying the complete work hardening dislocation model to
the cycllc case will fac111tate the evaluatlon of a CYCIIC
J—integral dependeot both on the plastic displacement as
well‘as'the stress field ahead of the crack—-tip. Using
such a,quantity as a crack growth criterion, one would
expect to‘avoid the fnconsistency already notéd in the use
of e1ther a d1splacement or stress based crlterlon.

In ref. [39] the plastic superp051t1on method of Rice
[19] was used to obtain the, stress/straln field ahead of
an unloeded crack. The dislocation modelllng of the
unloaded crack here can be viewed as a generalization of-
‘ Rice's method. Moreover, ooe major inconsis;ency of- the
piastic superposition method is avoided. This
-inconsistency ariSes.in the fact that the stress—sprain
relationship in the piasﬁic zone_is nonlinear. This
implieS’that the superposed stress obtained.ffom Rice's
method is no longer related to a similarly obtained
superposed straln through the stress/straln relationship.
 While the dislocation modelllng of the unloading ylelds
identical results with'Rice's superposiﬁion'me;hod, its
premises are different, and they can'befextended naturally
to‘fhe case of work-hardening, as we shall do shortly;
5.2 Work Hardening Unloading Problem
v(a) Hardening Laws
In the post yield behaviour of any material, the

loading funtion, 4, defines the yield surfaces beyond the
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initial one in the form of:
KY = 0 . 5.1

Qhere, 0., are the stfess components,cp.j éfg the plastic
strain components,“aﬁﬁ, K represents the way -
work-hérdening entéré the loading functioﬁ.

Equation 5.1 is a genéral equation defining the
changes in‘thé yield surface as a resu}t of the strain
‘hardenrag. It is the manqer in which ﬁ,J”enters the -
equation that is“of concerﬁ here. For the purpose of
explaining the work—hardéning dislocat&on model of
unloading, it “is sufficient to consider the.one.
dimensional case here. This is depicted in Fig. 5.1,

After an initial loading to the yield po%gt; (or
surface), depicted as- 7,, continued‘loading leéds‘to
plastic strain yb(xy, .This leads to the creation
of a subséquent yield point'at stress equal to 7,(x). The
difference between £he initial yield point and the final
yield point is 'p . When the $€te;ial is unloaded as éhowh,
the incipience of the‘plastic strain dependssdn the
hardeﬁing law. It is generally accépted that, due to
Bauschiﬁger effects,.plastiéity would begin earlier than
the value of the negative initial yield stress, -r,. It is
convenient to represent this reduction in tHe negative
yield goint in terms of “p Clearly, from the Figure, the

value £ = 0 represents a situation where there is no
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_Figu{e 5.1 Reversed yield point for various hardening

rules - one dimensional case
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Bauschinger éffect,'in which case the yield surface is
"anchored" at the stress level of -7,. This is also called
"CORNER HARDENING". The two Qimplest cases considered in.
the literature are, B = +1, called kinematic and ithropic
hardening respectively. In the former case, the yield
surface is merely translafed without any distortion (at
least in the direction of loading), while the second casé

corresponds to a uniform expansion in the axis under ye

SNRA
9

consideration. In general, the hardening law is such thaéy
Ehg yiﬁ}d surface is both translated and distorted. In
this study, attention is restricted to the situation where

Bl £ 1. | , "
(b) The Unloading Problem

For a work?hardening material loaded to a specified

level of stress as described’in chapter 4, ccnsider a
reduction in the applied stfess of magnitude . The
non-equilibrium created by this reduction leads to reversed i
forces'ohfthe diglocations along the plastic line. The -
friction stress at each péint wiil then be adjusted»in
magnitudé and direction to oppose dislocation motion. In

some locations, ﬁear the crack-tip, the reversed forces

will be sufficient to move some of the dislocations back

in&b the crack-tip reduciﬁg'the dislocation density (just

as a{kincrease in the aéplied stress Qould have léd to a
dislocation density increase). For the positions closer to:
the end of the.plasﬁic line, x = ta, the reversed forces

may not be sufficient to cause reversed motion. For all
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such locations, the.dislocations élreaéy embedded during
the loading are "locked" into their positions until the
applied loading is sufficiently high to overcome the
initial friction stresses present. Therefore, there is a
reduction in the dislocation density fromAthe crack-tip to
a point "8" (Fig. 5.2), while the density fgﬁction between
6 and a remains unchanged. Since the change in the plastic
displacement is caused by the.amount of reduction in the
dislocaﬁionldensity,‘t?e funé%iohal form of the friction

stress is assumed unchanged from Eg. 4.6, i.e.
Ty (x) = Flae(x)) - B rp(x) 5.2

where A¢Cx) = the change in the plastic displacement due
tov§he unloading at point x, wp(x)= 11(X)' Ty and,
-1 < g <1, _ i

The last term on the RHS of Eg. S.Z’js necessary to

account for the dlsplacement and the translation Gﬁ the

initial ield surface at each point due” to the

loading, to account for the Bauschlnger éfggpt@

te .
s, 00
PRI < ’ T
" A o vy
o E
A . SR
S Y s o B 3
H g N L .
SRt <

be noted that B accounts for both translatjon

equilibrium state reached after the unloa&1§§§fpt6v1ded
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=

"
s

the. unloaded

s

6 < a, applicatfon,of equilibrium equation to

crack implies:

S e
T -1 x| <c
<o

~.

It has been assumed here that there is no.contacgibet&een
the ‘two crack surfaces, so that only the effect of the far
field loading contributes the non?dislocationuforces.at'

each poini in the range Jx|‘< c. The résistanée of‘thel
'f:ictionyétress in & < |x] <a wili vary from a‘valﬁg
Ty x), op@osing'motﬁbh,?to a value’of“f1(x), opposing thé
‘original hotion of the dislocation, hence supporting the
motion in the reversed airéctién; In this region
;tﬁetefére,’ o  '; .\.,,f§39

| ) e s < Q) e - 47 (x)

Subtracting equation 5.3 from 4.7, one-gets,

AN

[,

B 0 B e N O I
S o o 5.4
, ' - unknown 3 < |x| <a ' o,
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Slx] < ¢

CH(x) = Hy(x) - Ho(x) - Ha(x) -

Using H,(x) insteéd‘bf H(x), Eg. 5.6 becomes the
velastic—peffectiy plastic unloading equilibrium equation,
derived by Lardner [35]. |

The invéréioh of'5.6.féllow§ the same pattern as
aiready described iﬁ section'4.3._Substitutiﬁé f(x') -
o g(x') for f({{) aﬁg H(i) fo;‘D(x) in Eq;b4.45; aSsuming
that £(x') - g(x')‘beLgngs'to the class H*, and H(x)

belongs to the class H,‘then} ‘ 1 v S

1 c&a
Where ‘ R] (X“’,_y) - / <t X

8

The éhange'in'thé plastic'displacemenb;due to the
. %, ot S s _

S
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N unlpading can then be derivgd,
13‘ f"

T

=f b{f(x‘) - g(x")}dxl

= 8g(x) - 8(1-p) j {(M # ) -1'}K,(x,y)dy |
§ , : - |
- , . | 5.¢€
B l {(—ﬁﬂ% D) )y, L0 -
wvhere A¢0(X) - J _%f-J R](xiy)H](x')dx'dw
x Al |

is the elaétic?perfectly plastickunloading displacemen£

distributions [35],

5.9

5.

n : _ \ R
and - o

= (x+c) cosh®

gg B¢g(x)
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>
The second term on the RHSmof eéuation 5.8 contains
¢(x), the plastic displaceme%t'at'each position atvmaximum‘
loading, while the last term cbntains‘A¢(x),.the change in |
plastic displacement at each position1 Therefore, jt
follows that the change in plastic displacement is
dependent on'both the range of unloading,ﬂas well as the

‘amount of the maximum loadlng 1n the range. Other |

parameters affectlng the chanoe 'in piastlc dlsplacement

are, of course, the hardenzng exponent n', and the "cyclic
hardening~factor",,ﬂ. Setting n'=0, eguation 5.8 becomes
identical to the elastic{perfectly plastic‘soiution of

Lardner [35],virrespective of the value of the parameter

B. This is to be expected because the term containing g8

cannot take any other valueﬁthan zero when n'=0. fn order

to see this, COnsiaer the fact that this non., ‘

work hardenlng case corresponds to a retentlon of the

orlglnal y1€lG surface, 50 that there is no reductlon of

the yleld stress in the unloadlng 51tuatlon, therefore

:fﬁrh( x),-defined in Flg 5.1, is equal to zero.

\ ‘It is necessary that the change in the dlslocat1on
den51ty be bounded at the p01nts +6 The condltlons for'
thlS to be the case can be derlved in a 51m11ar way as.;n'
equatlon 4.35, 1f H( )'1n 5 6 i% subst1tuted for F(x) 1n

\/

4.35, one obtalns, éTter some rearrangements,’

-]
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-~ w

ﬁ{?‘:" N

o4

~ } ) ~
L . '
( : -dx + ( ("C . l‘f' ) T - 7-‘()() - 7]"(X) N 5.10
: ——7—"‘ . : T dx = D -
Lo (22 - K8y ' le (2 - x%)2

. This is the cyclic eguivalent of the boundedness condition

in Eq. 4.35.

5.3 Solut;on of the Unload1ng Dlsplacement Equat1ons
The two unknown quantltles in equatlons 5 8 and 5. 10

h ere the change in plast1c dlsplacement, A¢ (x), and the
1extent of the cycllc plastlc zone 6. The. 1ntegral equatlon
5 8, and ;h%}boundary COﬂdlthﬂ, 5.10 can be solved
s1multaneogely for these two ouantltles as outl:ned in
sectlon 4.4, The expan51on method, used 1n the latter was
also employed with two main modlflcatlons. Flrstly, it was
found that the change 1n the monotonic plastlc zone
(cfmpared to the perf fectly plastlc case) was
_1n51gn1f1cant. Hence, the elastic-perfectly -plastic zone -
slge was U§$§~in thls‘analy51s. This can be obtalned from6§

5LlQ‘by setting n'=0;

C . (¢ i -T2 :
WX s () ) i = 0 5.11
?C. (;? - xz)ﬁk' S A R

“Iwhlch means, c/6 = cos (ﬂT/4To)

Thls approx1mat10n leads to a great simpllflcatlon of

i

the‘computatlonal procedure, and, judglng from the results

o
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obtained in section 4. 4, the reduction in accuracy is

minimal. Secondly, analogous to the procedure 1n chapter
[

4, the unknown change in plastic displacement was f

"approx1mated by a perturbation of the elastic-perfectlg

plastic unloading fuction (Eg. (3. 1)) E

SRS e \
. ! ] E i
!

] _ -] §°-
75 2¢(x) = oy (x+c) cosh .[(1+|a2|) 3T3§YT + %,

S '.624c2 c -
-aylxecheosh” | (1+1oy ) 31255y + §/) o
o ' il

where the exponential Gaus51an background in Eq. 4.58, has
been removed. This was done because there was little
change to the initial parameter input for both the
3 exponential and the Gaussian,termsrin the.monotonic-
solution. |

Apart from these two modifications, the solution
method here is as. described earlier, so no further’ details )
are given. Various values of the hardening exponents as
vell as- values of the parameter B,ldepictlng the cycllc
»hardening rule, were con51dered in the ranges,
0 <n' <0.2, and -1 < B < +1 For an 1n1t1a1 maximum
loading of O 47,, the values of unloading in the range
0.07, <*A7r < 0. 67, were con51der d. This was used to study

the effect of hardening on the u loading displacement vgggg

distribution as well as other re evant crack-tip

N
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applied stress in the range, the value of unloading was

fixed (here at 0.35 75), and various mean applied stresses

e

parameters. In order to'study the effect of the mean

were chpsén. ' - R
"Thé convérgence“dhﬁracteiistics'of the,uﬁloading/.
1problem was foundvto'bé Siﬁilar to the'monoﬁohic loaaing
problem considered in chapter 4. The convergeﬁce was
faster for lowerrvalues of applied unloadipg, and lower
values of thé.wdrkfhardeﬁing exponént n'. The feverse was
‘the case when the épplﬁed unloading was hiéher. |

5.4 The Unloading J-Integral

i
4

Consider the loading seguence depicted in Fig. 5.3.
For -any twd.loadihg states 1 =~ j, following‘Tanaka [39].
the_J-integral can be defined as: '

- ‘ _ ohu_
Ad,,. = f (AWdy - &7 —T ds)
T

"3/ X

where T' is a suitable integration pathbfround the

‘crack-tip blastié zone. o
. (Ekﬂ)i‘ !i |
AW = o | :
J:(sz)i (okﬁ ) hkﬂ)iJ dekg'= change in the'sfrai;‘energy
-density, and, ' ‘
5
'Lﬂn;‘(ﬁdj - (%):{é th% ¢¥“g3 in the t{gctioﬁ vector, &hile;

5 . < ‘ﬂ ' ) ' . ‘
.ekiangfs'kL are the strgin and stress tensors = = ¢

o

R ,ﬁ p
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. Figure 5.3 Loading sequence’
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respectively; and»Aum = {um); - (un); is the change in the
displacement veétor. Equation 5.13 has been‘shown‘ﬂsee
appendix ) to be path independeni just -like Rice's
J—inteéral. ‘ ‘ |

' .iet.us consider for the meantime the unloading from
2 '+ 3. For the‘plasfic line of the dislocation model,,
taking I' as the uppér and lower surfaéesvbf thé plastit‘,
zone implies'thatvdy = Q. Hencé the first term in.Eq, 5.15
vanishes, and ds = ax. | |

On the plastic line,

- = ()( ! sy | 5 14
g Rl gl g, ,
0 I '
. ’
andg, .
L :‘/_“’ X = | - [BA ] [}
e * L0 = b I;‘f3(x ) - Falx )i 5.15
- _ o . W
where f,(x) and f;(x) are.the respective dislocatioh S s

densities at the states 2 and 3, so that,
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s : ] . )

} n' 1
AJ3/2 - j To{(éiill +1) o+ (1- B)(g%—l + l)n

C " 0

Ly B}é%gll-dx 5.16

Eduation 5.16 can be evaluated whep the'parameters(a1,az,
03,04) have been supplied from the least squares
optimization solution of equation 5.8 using the function
A¢ (x) defined in 5.12, and ¢.(x) from 4.58.
For a given level of the initial loading, itate 2,

(Fig. 5.3) Eq; §.16 can be used in evaluating the
unloading J-integrals for various amounts of unloading,
ar, values of'ﬁ', and of the parameter B. The effects of
the unloading and hardenlng on the J- 1ntegral to mean
mloadlng can also be . quantlfled by f1x1{§ the amount of

unload1ng stress, AT whlle evaluat1ng£d3/1for varlous

values of 1n1t1al loadlng (state 2)

5.5 Results and Discussion
(a) Relatienehip between unloeding and cyclic J-integrals
The procedure outllned in the the last section shows

.how the unloadlng J-integral 1s obtained. It is 1mportant
:to see how thlS is related to the cyclic J-integral.

Figure 5.4 dep;cts the changes in the dlslocatlon.denéity
for the loading seguence in Fig 5.3. The functiohs fq(x)
and f,(x) the dislocation densities for States | and 2 are
'bf the same shape, and can both be evaluated from the

" monhotonic dislqcation‘solution,‘Eq. 4.45, The density
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C a’' a

. » .
(b) Kinematic Hardening, g =1

fz(x) > 400 > fe(x) > ..

f500 <tgx) <...

_

c § o a

(c) Non Kinematic Hardening, g < 1

Figure 5.4 Variation of dislocation: density with monotonic

‘and cyclic loading
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function after tne unloading to state'3, is as depicted in
F}g. 5.4b. If the 7 }n equation 5.4 is replaced by the
'unlbading stress range Ar, then, f;(i) = g(x) in Eg. 5.8.
In the reversed plasticity portion (i.e. where some of the
dlslocatlons return to the crack—tlp, causing a negatlve
change in plastlc displacement due to the unloadlng)

there 1s a reduction in the dislocation density. Outside
this region, the unloading is elastic And there is no
reversed plastieﬁgy. By reloading to state 4, the new ‘
dislocation densiry will depend. on ﬁhe magnitude‘ef the
friction stress opp051ng the return of the dlslocatlonsk
1f the friction stress is the,same in state 4 as in state
2 (as in the case of kinematic hardening, B = 1) the
dislocation density would returnkto-its former value ae
state 2, so that in the seguence we can have
fz(x) = f,(x) =_f5(x).;.etc. In this case,&§/2 obtained
from Eq. 5.13 is the unique value that quantifies the
U—inéegral in tne loading range T, and B . ;n other caseé
(non-kinematic hardening, |B8] < 1), the friction stress in
state 4 will be greater than that in state 2, Unloadlng to
state 5 would also lead to a reversed friction stress of
greater amount than be€fore. The resulting dis. ocat1on
~density will be depicted in Fig.. 5.4c._d3/2does not
uniquely quantify the J-integral for the range of loading
'in this case. Its value is the J-integral at tne maximum
plastéc‘diSplacement range. This is a reference cfclic

: : - . . - ' {
J-integral for the. loading range 1n this particular cyclic

S
i

ey
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*

b

hardening law.
(b) Non-Work Hardening Case ' " o V:LS‘i-?H{.-Yf;

in Ref.‘[SJ the cyclic J-integral wés~q;pre5£;d ;5 aJ”%* :;
linear éombination of the elastic and plastic strain  12§%4

.

energy density range. Similar results follpw in the . ‘ éJg
dislpéation model in the case of constant frictio; stregg;“
'providéd‘the applied stress range is small enough. This is
shown below.

The rflevant cyclic J-integral is obtained from Eqg.

.5.16 by setting n' =0, so that, .
6 [y
E BA X ’ -
By = - | 2ng MLl o >
c

A closed form solution exists for the displacement range
function A¢(x) in this case. It is the same as Eq. 5.12
with ay = 1, a2 = 0, a3 = 1 and a, = 0. Since A¢(x)

depends on x alone, from Eq. 5.17, we get

AJ3/2'= 215 {80(c) - 86(6))

n
o

= 214 89(c)

as 8¢ (6) = 0. But for the elastic-perfectly-plastic case,

from 5.11,



{/ 164

€ - cos (T)) 5.19
U 0 !
ﬁ;w” »
Using the values of the o,'s alréady specified in 5.17,
&
A¢(c) = 4Bc 109(2) ! s, 5.20
4 And, now, a substitution from 5.19 in 5.20vleads to,
’
t -2 2
so(c) = 4Bc Tog [1 + I (&9 ]
& : . To
S ‘ 5.21
, v, 2 2 2 2
S§ 2 T (At _ T (AT
‘;' "t 48c [32 (TO) f 64 (To) })

a

th}eqwe have ignored all terms expcept the first two in a

. Taylor's series expansion of the logarithmic and secant
woo g ; ' 5
D " [ ; - . . . .
funceions, The relevant J-integral in this range can be
" written as,

- 'm

LR S f e " ‘ ' . = (

. : N A ) : 2 .,
where Ay = (81/2u)" is the far field strain energy density,:

& is haif crack length, and

Y/
t 9y
\ B
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1t follows therefore;,that, provided A7 ‘<< 75, -7 is

‘practicaliy tonstant so- that, the tyclic*J¥integral is

proportnonal to the far fleld straln enery ﬂensnty range

u
L N

e) Effect of Hardenlng

In the calculatlons presented typlcal alloy steel

propertles used are i L 400GPa, ro7= ZOOMPa, and v = 0.3.

L2

AFJgure 5 5 1s a plot of the cycllc J- 1ntegral agalnst the

y 9.

. to 5“35 n ;varles from 0. Q to, 0 2 For ﬁff 1 (klnematlc
_hardening)vtheecurves ari

”powe{‘law relati_

'far fleld appllea straln energy den51ty on a log loq

y

ﬁﬂ'sqale For moderate leuels of the applled stréss. range,
ﬁAr‘, (keeplng the max1mum nom1na1 stress at 0 470) the'

'jcurves are apggoxxmately llnear for B in. the range

-g < B < Only the two extreme cases (B-+1) are shown

here (as in other places in th1s chapter) for clarlty The

obv1ousl§ shows that the relatlonshlp between AJ and the

Lfar‘rleld straln energy den51ty range 1s, in general of a

« ”\

power“Law,type For-each cyclic hardenlng law (that 1s,,tu

',the.balue ofUB) the effect of. work harden1ng 1s qulte

51gn1f1pant The magn1tude of*AJ var1es by a factor of up

W

4 ; ] T
proxlmately parallel. Fon a

of the typeh’ig'

A\

-

td

1"
QO
—

.'_,-’)b', i . N - 45_24 ‘

‘apprOY1mate llnearlty on a log log scale in thls case

C
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the perameter b is quite insensitine“to vork-hardening in
qthls case. Most of the work hardening 1nfluence is carried
. through the coeff1c1ent parameter a. This is not the case
- in the non—klnematlc work hardenzng cases, represented by
“Jsotrop;cyharden1ng B =-1. These curves change both in
slope and intercebt’as the hardening exponent varies,

} Flgume 5.6 is the plot of “the Cycllc crack-tip strain
energy density, SED versus the applied far field stress
:range. In all cases, the SED increases with applied stress

as well as the'hardenlng'exponent. The apparent
contradiction in the ﬁse of elther stress or strain to
'characterise the pﬁastic damage (see sectlon 4.5) can be_”
avoided by baglng the cyc11c damage on the SED v

“ 'In the next set of- Fzgures, Jhe applled stress range
ié kept.flxed at the value of AT = 0.357°,vwh11e the mean
,appjieo’stress was allgwed to vary,petween 0.6575 a¥ie

A

C.37c. In this case, a mean stress value of 0.175 : .

corresponds to the case of complete unloadlng,‘#mﬂyxmax— 0

“In Fig. 5.7,the crack-tlp dlsplacement was plotted against

"the mean appl1ed stress, (1 )/2~ . fn«general,’

ma X m1n

expected the crack-tlp isplacement range -decreases with

the hardening’ exponent This’variation isnmore pfonounced
in the isotopic harde ing case;‘The exact'opposite
behav%our is observed when the crack- t1p stress is plotted
galnst the mean a plled stress . (Flg 5. 8%?>When these{twop

' quantltles are co blned to form: the crack t1p SED ‘

.‘Flg. 5 9 it t,'~s out that ‘the latter 1ncneases w1th
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hardehing for both'casee (B ('11)v Note that for the

3

; elastlc perfectly plastic case (i.e. hardening exponent,

.4

n' f 0) the results for all cases 18] = s1 coincide as
fexéected In ‘the k1nemat1c hardenlng case, the . var1at10ns

in the dlsplacement J 1ntegral and other flélﬂ quant1t1es

c051der'i are practzcally 1ndependent bi.the applled mean

"stress, whlle thefe is a decrease with- the appl1ed mean

stress for the 1sotrop1c hardenlng case. Flg 5.10 shows

3
the var1at1on of the cygllc J-integral. w1th the app11ed

~‘mean stress sAs 1n the preV1ous Case,_the effect -of
- &g;$4he;ﬂen1ng 1s to 1ncrease the cycllcv’-lntegral This

3var1ab111ty is also not sen51t1ve to the mean stress for

w».

" the k1nemat1c hardenlﬁg ‘cdse. quever, for 1$ﬁtYopicmwaﬁ.w‘

hardenlng, ‘the cyc11c J- 1ntegra1 ‘increases w1th “the

b 2
]

applled mean stress..,

2

Lt
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Chapter 6

DISCUSSION AND CONCLUSIONS
.
6.1 Deterministic Model
| The main unresolved problem in the damage
accumulatlon modelllng of the fatlgue crack-tip has been
the treatment of the crack-tip fatigue element. Some
qb’authoprs (e g. [20]) have completely ignored the damage
contrlbutlon in thls region, while others (% g [21] have
| cons1dered it to be the only 1mportant aspect of. damage
accumulatlon. The seeming contrad1ct1on 1s resolved in the- ’
aporoach presented in this the51s. By 1nclud1ng the two
"'contrlbutlons a crack growth rate law has been‘obtained

-that fully accounts for the total damage contribution in
. ® X

fthe fatigue damage zone. The singularity at the origin was

‘removed by notlno the exper1mental ev1dence that the

‘/s rainJle"els sustalnable ~n the fatigue elements

ca:not‘se’hlghe han thevfatlgue strength*and'dUCtilityf

-

- coefficients r sctively. By assuming that this is °

attainable on. . the critical value of the stress
intensity factor it'was possible to determine the extent

C
to Wthh the plast1c superp051t1on method for der1v1ng the

cycllc stfess/straln levels, can be appl1ed In the region

o
- j’

immediately ahead of the crack- tip, due &o’
non- groportlonal pl:st1c1ty, the plastic SUperp051t1on

' method for obta1n1ng the cycllc stress and straln 1s not
used. Instead Qf removing this reglon from the analy51s as

e -
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~

in>[20], it was included on‘tée assumption that the
stress/strain- gradient is small, so that the cyclic stress
strain leveis.could be taken as approximately coniiant as
in [21). However, unlike [21], thes{aﬁlure criterion was
applied to this (regiQn 1) in a way cognizant of the
damage alreadylaccumulated in region 11 (see fig. 3.1).
The resulting crack growth law'contains the results from
the two works cited as special cases. The results. from
using this law‘(as earlier demonstrated elsewhere [44])
shows that the contribution frém both reglons to damage
hztcumuzat?oﬁ\rs\o\‘the same order of magnltude The error,
therefore in 1g§;r1ng elther part is about a factor ofv2.
Consrderlng the usual scatter in crack growth data, thie
may nct show much significant efrejt. This-explains why

s even

" the.models in [20] and [21] give simila
L ‘ ’ '
through they are- based upog%ﬁqemihgﬁy opposite premises. e

]

6.2 Pigbabilistic Simulation

“The main feature that distinguishes the probabilistic
simulation model presented is its capability of accounting
for\the damage accumulatlow in each fatlgue element
throughout its damage history. ThlS 1s‘a departure from
therearlier model by Oh [7] where the system %“resets":
itself after eac# cracktadvance‘so that the fatigue
elements sort of "forget some of the previously 4
‘accumulated damage. 1}15 1s not ghe*flrst attempt to

£

rectify this deficiency in the memoriless probabilistic
o

\ | | -
“ . .' { -
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model. Tsurui and Igarashi [33] had earlier suggested €ngfﬁ
the fatigue element could be treated as random variableské
whose location'factor can be taken as a function of
position - in order to account for hisrorical damage.
However, there is no obvious a-pPiori reasom that can lead
to a suitable functional form for this location factor. In. .
our approach, the historical damage is simulated once SOmeg'?%
statistical equilibrium is attained. In this way, it
becomes possible to quantify this parameter and to show. . rfm
that its contribution to the damage process is
significant. The median growth rate obtained from this
simulation has also been shown ro approiimate the growth
rate obtained from the experimental data in some |
"structural alloys. X

No attempt was made to obtair a closed form solution = .
for the probability dlStrlbutlon of the growth rate.
Previous attempts at closed form crack growch
distributions have led to COmplex.densltles that could nqt'
ce approximated by the sinple density fﬁnctioms used in
practice Con51der1ng the approx1mate nature of the
several factors involved in the derlvatlgn of these

distributlons, it was considered more important to seek

] .
the form of the distribution function. Moreover the

» 4

1nclu51on of the historical damage in the-model presented
significantly complicates the problem.'TheJresulting

growth rate distr 1butlons were compared to’ some of t%e
)




ey

to the Log-normal density than the other two: Extreme
‘yj'Value and Weibull densxtles. A further 1nd1cat10n of the

- A"’Log -normality of the data was obtained by u51ng a

Shaplro -Wilk normallty test on the 1ogar1thm of the

51mu1ated crack growth rate.

6.3 Dislocation Modelling of the Cyclic Field
The dislocation model was presented as an alternapiye
“‘to/tﬁe un blved preblem of the unloading field. Even

though th dlslocatron modelllng of crack-tip plasticity

is known to be an extreme simplification of reality, itl

use still glves some important results comparable to'that
A 2 deriéhf'from cbntiumum consi@erations. The BCS [17]

dielg;ation model was extended to the case of ‘

work-hardening by using a friastion stress (opposing the
dlslocatlon motion) in the plastlc line, as a nonlinear

|
functlon of strain. The functlonal form chosen is a
9

. ) modlfled form of the Ramberg Osgood stress-strain law. In

the unloadlng field, by asstming that the functyOnal form

of the grzctlon stress is retalned work- hardenlng was
| ‘treated in a way that allgws for the inelusion of the
‘1BaJsch1nger effect ‘ |

“

%
The 1nclu51on of hardenlng 1n thlS model shows some

,‘ g . nev . 1n51ghts 1ntq the,pse of fallure Crlteflon in crack

O " :
o w B AN
?w%gi ,‘ propagatlon mode Lg,r@‘,

% a

'While the crack t1p dlsglaqement

-

Wdecreases w1th the hardenlng exponent,;the crack tip

- . . . - L}

i .
Lok . R [

o

%ﬁ ' , 177 -

e probability plots. The resulting distributions are closer

.
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'tress féllows the opposite trend.uTo use either as the

%,
measure of fat:gue ‘damage would lead to oppos1te results

.

W'
with respect to hatden%ng - This justzfles the use (in the
crack-tip modelling used in jggs theslsJ'of the product of

«

the stress and strain ranges &6 a measure of cyclic
* plasttc damage in each gatlgue cycle.: This measure is
closely related to the cyclic strain energy dens1ty at
‘each point, |
The work-hardening dislocation model is also suitable

for the evaluation of the unloading and the cyclic

- J-integral. This quantity unlike\the stress intensity
factor used in linear elastic fracture mechanics, is -
dependent, not only on the range of app11ed far- fleld "
stresses, but also on the.applied mean stress. It.s"
dependence on the latter quantity has been found to be.
closely relatead t, the way Bauschlngef effect enters the
analys?s. For instance, in the case‘of the
elastic—oerfeCtly plastic}matérial where Bauschinger
effect can be“ighoted, as well as when the yield surface -
is' assumed to be translated without distortion (i.e. |
B =1, or kinamatic hardening), the mean stress effectse

are negfigible HoweVer ’ffs-ogher values of the parameter
B, the ‘méan stre55q55p§ve ‘quite significant effects on the

;|
‘unloadlng and cycl1c J- 1ntegrals, as well as other ‘stress

‘. *?

dependent quant1t1es llke the straln ‘epergy den51ty We

could thus conclude, on the ba51s of this model, that mﬁi

oéServed mean 'stress aependency well docum!hted in the-
-
v

i
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llterature, can be assoc1ated w1th the departure from

klnematlc behav1our. Even though the:stable cycllc

: behav1our ofa matermal 1s usually modelled by the
kxnematlc yleld surface, the results ‘here show that there
ate certaln other factors affectlng C;CIIC mater1a1
damage, that are better modelled from a. non- klnematlc
v1ewp01nt Thls 15’con51stent wlth eArller results by
.Ellyln ‘and Neale [61] who showed that the yield surface in

»

a cycllcally loaded material both expands andﬂtqanslates.

S

.)‘

6.4 Future Work ‘ o G
«In the failure analysis of the fatigue elements in .

B
4

the statistical crack'growth model in chapter 3, the uée"
-of a normal distrihut}on was justified by asymptoticl |
consideration55 Whtle the burden of experiﬁental evidencei
$upports the use of unit§ mean; there is no‘a‘prloni , |
considcf"ions for the distribution variance.:The‘uSe of‘
the stahdard-normal distribution in this circumstanee'ls
thus a first approximation only. Experimental and
) analjtical investigations%need to be.done on/the.variance
of theﬂdistrihution.used;

.. It;would'EISO‘be helpful if the results of the
-workjhardeningvunloading dislocation model.of‘chaptef 5
_could be;eXtended to the case of tensile loading; The

results of the analysis ﬁresented here can be formally

extended to tensile loading as pointed out by Lardner - |

\
v

[35]. The dlslocatlon motion into the crack- tip would then

o .

Vs v

«

L



be~inte;pret¢d as a "climb",insteaa of the,siid}ng
explanation in fhe éheér'case 'it i; difficulf to find
51m11ar phy51cal explanatlon for the former as ‘have been
done in the latter. Several alternative models have been
proposed for the ten51le case. Dugdale [34], Goodler and
Field [56], and Bllby and Sw1nden [18], models are'
avallable for Fhe elastic-perfectly plastlc loadlng case.
It would'Pe‘instrugtiVe to extend these works for the

»

unloaded crack and 'the nonlinear work—hardenihg case.'
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APPENDIX
Al. Distribution of sums of random variables
. .
Let ) and X, be jointly continuous random variates

with the joint distribution function

, flxyxp) : A1
, »

. 0 r +
The random variable VY = X1+ XZ is al%o continuously
distributed. The distribution function of the latter is,

-

Fly) = PLXp + X, <y) A1.2

< vil A1.3

- J ] f(xl’XZ)dxldXZ Al.4

© y_xl A ‘
= [ dx [ ey flxgux,) A1.S
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vy C oy
[ flxgxg - X)) Al.6

~

. .
1f in addition, it is known that xl and X? are independent,

then,
/ N Zw { \ ’
f\xlvxz) fl\xl)fz(xz) ‘ Al.7

wheref{(xl)and,QJxZ)are the individual density functions

respective.y. 1t follows from Al.6 and A1.7 that,

Differentiating eguation A1.8 leads to an expression for

the density of-%. f(y) given by

s N B r 4 - £ !
! \

) . / * . . ’ I
A . 1\'1/ 2 [ - (.Al , Gro ity

-0 -0 -0 1

flyh = Jn 0= e
The last expression is called a convolution ofithé
fﬂnc&ions £l and | fo This idea tan be extended ﬁo the
case of a random variable whiqh is the sum of more than
two random variates. Mutuai independence will 1éad to a

density function involving a convolution of the initial

random variate densities.
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, a ,
A2, The Integral [ R(x',y) + R(x' - y)dx'(Section 4.5)

X

Let p
| \ -1 ag- x? X )
Miawwd = cosh™ | 2 T« X ' A2,
‘ * S R .Y) a b
It has been shown by Swinden [58] that, /
\ .
. / .
Ha,x,v) - tha,y,x) : A2.2
: \
and that
. —_—
LH(E,X,)') = R{x,y) Az.3
ry

Tt will be shown here that the integral,

LR Ly) ROy = Ry A2.4
X '
where
2 2 2 2
Kix,v) = cos,h'l a - X 4+ X1 + cosh” @ - X 4+ X
alx-y) a a(x+y) a
2'f’62- x2
.- A2.5
2 2
. at -y

-

Nl

Frgﬁ A2.3 it follows that,
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© W(a,y,x) = R(ysX)
ox |

Usingl;he symmetryfp;bperty (Eg. A2.2) we have,

ax Hlasxsy) —\Rﬂy,X) S C A2
and, "
3 . o S |
— H(a,x;-y) = R{-y,x - S
Ay ( ) (,y ) ' B A2.8
v ‘ PO - 20 2 o
6K(x9.y) .0 a - X s - -
ORIXY) =9 [H(a,x,y) +-H(a,x,-y) - & : 22.9
= = {H(a,x,y) + H(a,x y)‘ g VZ‘} .
A\

which from the above can be writﬁen;

eyl o+ R(Ly,y) ¢ 2//{(3? ‘

2 A2

1 1 2.2
= -1 FRNEES A il A 5
B R S [Cr ) B

which after some rearrangements can be shown to be



= - R(x,y) - R{x,=y) A2.12.

b

Thif,and the fact that K(a;Y)=D completes the proof.
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A3. Path Independence of The Cyclic J-integral [39].

The‘cyclic J-integral is defined as

K\ du_
\&J = (AWdy - T —_) ds A3.1
where '
(E‘(l)J / LN W
oW =] Logg = (o) id e o

is the. straln energy den51ty range ’ezggen/stateszf'and'jffc

. s
LT =

e
. SR

'(Um)i is the change in the dlsplacement:"“

vector. Consider any two paths Ty and “éand suppose‘Tf,%

"~ encloses

Aum :(um)J

Let AJd; and AJ be the assoc1ated cyc'ic

fz. 1
h—lntegrals with these paths

On the assumptlon tha
; u

A3.2

(Tm);f (10" € change in the traction vector and

the i

- stress and strann feilds in the enclosed reglon are known»"

for an‘lnltlal state 1, R

dhe L

k2 ] ~
: .+ dxd ,
T 7k Tax y A3.3

- AJ j', |
A\ ')

where A<2’ ﬁ is the'region contained in these curves.

AGreen's theorem has been used to convert the line integral

. . . ) / -
in Eg. 27.1 to the surface intecral *2.3. Now,

A3.4
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(g ) (E N
3 mn’J _ mn’1 _ . .
- -;%_X—{ j'o ckldik)’t fo K j‘kldekx ' (omn)w(smn):] - A3.5
. - + (cmn)i(im,‘ ;
Differentiating under the integral sign leads to
. .
RN .
SV a(cmn)j'ﬁ (. (e e o(e, ) ;
- 3 TRy mit e mred T dx )
a(e_ ) a(e )
mn’ . . mn’ .
cmn)i e -] + z(omn)"i T‘ . A3.6
W
<[ ( /
(o) 5 - (o) dlalegy) /o - o(e ) /0
‘
/ = Ao, . de  Jax o o "
/ ks “€xn /M T A3.7
|
//(Using A3.7 in.'A3,3, we dbtain,
. a ’ ¢
. . ,
By - bdp =0 A3.8

an

Hence the cyclic J-integral is path independent.



