
Variable-length Non-Binary Constrained Sequence
Codes

by

Xin Tu

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Communications

Department of Electrical and Computer Engineering

University of Alberta

c© Xin Tu, 2015

Abstract

Block-oriented constrained sequence codes have historically been used in the

digital communications and data storage industry. However, we contend that in

certain applications, variable-length constrained sequence codes can be better

than block codes in terms of efficiency and implementation complexity.

A technique to construct capacity-approaching constrained sequence codes

with variable-length codewords was recently developed. This construction pro-

cess can be divided into four parts. First, it is necessary to define a minimal set

of prefix-free words whose concatenation satisfies the constraint. Then, sets of

instantaneously decodable codewords are constructed by concatenating words

from this minimal set through partial extensions of this minimal set. Third,

the optimal mapping between variable-length source words and each set of

variable-length codewords is determined using normalized geometric Huffman

coding. Lastly, the average code rate of each code constructed is evaluated,

and the code with highest code rate is selected as the best code.

Based on the four steps above, in this thesis we construct new non-binary

codes for multilevel magnetic recording, and new balanced codes for transmis-

sion systems using quaternary phase shift keying modulation. Our codes have

higher code rates (within 98% of capacity) than codes designed through any

ii

other construction technique published to date.

iii

Acknowledgements

The first thing I would like to thank my supervisor, Dr. Ivan Fair, for his

support and guidance throughout my research.

I would also appreciate the stipend provided by the Natural Sciences and

Engineering Research Council of Canada (NSERC). This work would not have

been possible without this support.

Lastly, I also need to thank my family and friends, for their consistent love

and support, without whom I may lose my passion and motivation.

iv

Contents

1 Introduction 1

1.1 Thesis Objective . 4

1.2 Thesis Organization . 4

2 Background 6

2.1 Information and Entropy . 6

2.1.1 Concept of Information 7

2.1.2 Entropy of Memoryless Sources 7

2.1.3 Markov Chains . 8

2.1.4 Entropy of Markov Information Sources 10

2.1.5 Capacity of Memoryless Discrete Noiseless Channel . . . 11

2.1.6 Capacity of Markov Information Sources 12

2.2 Constrained Sequence Codes . 13

2.2.1 Runlength-limited Codes and (d, k) Sequences 13

2.2.2 DC-free Codes . 14

2.3 Variable-length Codes . 16

2.3.1 Methods of Proposed Research 17

3 Non-binary Communication Systems 27

3.1 Overview of Multi-level Magnetic Recording Systems 27

3.2 RLL Codes Applied in Multi-level Magnetic Recording Systems 28

3.2.1 Properties of M -ary (d, k) Constrained Codes 29

v

3.2.2 Previously Published Fixed-length M -ary (d, k) Constrained

Codes . 31

3.3 Overview of QPSK Transmission 37

3.4 DC-free Codes for QPSK Transmission 38

3.4.1 Introduction of DC-free QPSK Codes 38

3.4.2 Previously Published Fixed-length DC-free QPSK Codes 39

4 Variable-length RLL Codes for Multi-level Magnetic Record-

ing Systems 45

4.1 Example of Code Construction : (4, 1,∞) Code 45

4.1.1 Minimal Set . 46

4.1.2 Partial Extensions . 48

4.1.3 Capacity and Maxentropic Probability 50

4.1.4 Normalized Geometric Huffman Coding 50

4.1.5 Final Code Selection . 53

4.2 (4, 1, 11) Code . 54

4.3 (8, 1, 11) Code . 56

4.4 Variable-length ML-RLL Codes with d=1 60

4.5 Variable-length ML-RLL Codes with d=2 61

5 Variable-length balanced codes for QPSK systems 63

5.1 Constraint for Balanced QPSK Codes 63

5.2 Code Construction . 64

5.2.1 Minimal Set . 65

5.2.2 Capacity . 71

5.2.3 Final Code Selection . 74

5.3 Spectral Analysis . 76

6 Conclusion 79

6.1 Thesis Summary . 79

vi

6.2 Thesis Contribution . 81

6.3 Future Work . 81

6.3.1 Reducing the Error Propagation 82

6.3.2 Simplifying the Construction of Partial Extensions . . . 82

6.3.3 Extending the Complex RDS Constraints in QPSK Trans-

mission Systems . 82

6.3.4 Considering the Non-ideal Source 83

vii

List of Tables

2.1 Comparison of results for different partial extension methods . . 21

3.1 Capacities for (M,d, k) codes with d =1 generated by Kumar [16] 30

3.2 Integers m and n for (M=4,d=1,k=∞) codes 32

3.3 Values of r1 and r that satisfy the (4, 1,∞) constraint with R = 6
5

35

3.4 Distribution of codeword subsets to encoder states for a (4, 1, 11)

R = 6
5

code . 36

3.5 Integers m and n for the (8, 1, 11) constraint 37

3.6 Values of r1 and r that satisfy the constraint (8, 1, 11) when R = 10
6

37

3.7 Distribution of codeword subsets to encoder states for an (8, 1, 11)

R = 10
6

constrained code . 37

3.8 State/codeword assignments in rate 4/3-balanced QPSK code . 41

3.9 Codewords in rate 4/3-balanced QPSK code 41

3.10 GF(4) arithmetic . 43

3.11 LSFW of GS QPSK codes [20] 43

4.1 Partial extensions within Numcw = 10 53

4.2 Partial extension with highest code rate 53

4.3 Mapping of source words to codewords 54

4.4 Minimal set and corresponding word lengths for (4, 1, 11) con-

straint . 56

4.5 Word lengths of partial extension and corresponding source words

lengths for high rate (4, 1, 11) code Ravg = 1.2006, η = 99.77% . 57

viii

4.6 Minimal set and corresponding lengths for (8, 1, 11) Code 58

4.7 Word lengths of partial extension and corresponding source words

lengths for (8, 1, 11) code Ravg = 1.6671, η = 99.54% 59

4.8 Highest code rates achieved for d = 1 variable-length ML-RLL

codes . 60

4.9 Efficiency of our d = 1 variable-length ML-RLL codes 61

4.10 Number of codewords in our d = 1 variable-length ML-RLL codes 61

4.11 Maximum codeword length in our d = 1 variable-length ML-

RLL codes . 61

4.12 Capacities of d = 2 variable-length ML-RLL codes 62

4.13 Highest code rate achieved for d = 2 variable-length ML-RLL

codes . 62

4.14 Efficiency of our d = 2 variable-length ML-RLL codes 62

4.15 Number of codewords in our d = 2 variable-length ML-RLL codes 62

4.16 Maximum codeword length in our d = 2 variable-length ML-

RLL codes . 62

5.1 Incomplete minimal set . 72

5.2 Capacity of incomplete minimal set 74

5.3 Optimal metrics of variable-length codes 75

5.4 The optimal word length mappings for lmax =4 75

5.5 The optimal variable-length codes lmax = 6 76

ix

List of Figures

1.1 Structure of a digital communication system 2

2.1 A directed graph of a Markov chain 9

2.2 (1,2) constrained sequence code 18

2.3 Partial Extension with Numcw = 2 20

2.4 Partial Extension with Numcw = 3 20

2.5 Partial Extension with Numcw = 4 21

2.6 Partial Extension in terms of lengths 23

3.1 Permitted sequences in the (4, 1, 3) constrained code 28

3.2 Finite state encoder of M -ary (1,∞) constrained codes 33

3.3 Kumar and Immink’s fundamental concept concerning encoder

states . 34

3.4 RDS values and encoding states in a rate 4/3-balanced QPSK

code . 39

3.5 Power spectral density of rate 4/3 QPSK codes published in [19] 42

3.6 Spectra of GS QPSK codes, A = 1 and various codeword lengths

N [20] . 44

3.7 Spectra of GS QPSK codes with an average of one redundant

symbol in 64 coded symbols [20] 44

4.1 Transition graph used to derive the minimal set of binary (1,∞)

codes . 46

x

4.2 Transition graph for (4, 1,∞) constraint 47

4.3 Unique word lengths of the partial extensions shown in Figure 4.3 49

4.4 Maxentropic probabilities of two sets of codewords in M -ary

(4, 1,∞) codes . 51

4.5 Codewords with required lengths for (4, 1,∞) codes 54

4.6 Codewords with required lengths for (4, 1,∞) codes 55

4.7 Transition graph of M -ary (4, 1, 11) Code 55

4.8 Transition graph of M -ary (8, 1, 11) Code 58

5.1 Signalling points and permitted RDS values in our balanced

QPSK codes . 65

5.2 Two subsets of permitted RDS values 66

5.3 Replacement process of the last symbol in the word {02} 68

5.4 Replacement process of last symbol in words of length 2 to con-

struct words of length 4 . 69

5.5 Replacement process of last symbol in words of length 4 to con-

struct words of length 6 . 70

5.6 PSD of different incomplete minimal set 77

xi

List of Abbreviations
List of commonly used abbreviations (in alphabetical order)

BD Blu-Ray disc

BPSK Binary phase-shift keying

CD Compact disc

CS Constrained sequence

CSCs Constrained sequence codes

DVD Digital versatile disc

ECC Error control coding

EFM Eight-to-fourteen modulation

GHC Geometric Huffman Coding

GS Guided scrambling

i.i.d. Independent and identically distributed

LFSW Low frequency spectral weight

ML-RLL Multi-level runlength limited

nGHC Normalized Geometric Huffman Coding

OFDM Orthogonal frequency division multiplexing

PAPR Peak-to-average power ratio

PMF Probability mass function

PSD Power spectral density

PSK Phase-shift keying

QPSK Quadrature phase shift keyed

RLL Runlength-limited

RDS Running digital sum

xii

Chapter 1

Introduction

With the rapid growth of electronic information technology, the requirement

for high data density in transmission and data storage systems also contin-

ues to grow. This requirement has led to significant developments in coding

technology in recent decades that have enabled high data rate transmission

through a variety of mediums including optical fiber, terrestrial wireless, and

satellites systems, in addition to high-density recording systems. In all circum-

stances, the application of coding techniques and information theory, motivated

by Shannon’s work [1], has led to significant improvement in these communi-

cation systems. The goal of coding is to improve the performance of a com-

munication system, making it more robust to errors that occur as the result of

noise on the channel or imperfect detection circuitry. In this thesis, we focus

on a particular type of coding that we refer to as constrained sequence (CS)

coding. This kind of coding is often called line coding in transmission systems

and recording coding in storage systems.

A simple block diagram of a typical digital communication system is de-

picted in Figure 1.1. This system consists of three major sections, of which the

first is source coding. Source coding attempts to represent the input data with

as few symbols as possible to communicate it more efficiently. For example,

shorter code words are usually assigned to symbols with high probability of

1

Figure 1.1: Structure of a digital communication system.

occurrence, and longer codewords are assigned to other symbols which rarely

occur. In this way, we can reduce the redundancy in the same data sequence

and conserve the number of bits to be sent to the channel.

The last block in Figure 1.1 encompasses the functionalities of the modula-

tor, the channel, and the demodulator. This combination of functions is known

as the Discrete Data Channel because both its input and output are discrete

time signals with one value per symbol period.

The intermediate section is channel coding. Channel coding involves the

addition of structured redundancy to the symbol sequence such that the over-

all performance of the system will be improved when real-world modulation

and demodulation circuits with practical limitations are used. One form of

channel coding is error control coding (ECC). ECC is a method of detecting

and correcting errors that occur due to distortion of the signal on the channel.

Specifically, the encoder introduces redundancy to the messages to be trans-

mitted. At the output of the channel, the channel decoder uses this controlled

redundancy to detect and correct the errors. By using this coding method, we

can reduce the effect of error propagation to a certain extent.

The second form of channel coding used in digital communication systems is

CS coding. Coding of this kind is used to translate the sequence of data symbols

into a sequence of coded symbols that comply with the given channel constraint.

Satisfying the constraint requires the introduction of some redundancy which

2

will reduce the amount of information that can be represented per symbol

compared to that of an unconstrained symbol sequence. With block CS codes,

blocks of m data symbols are represented by blocks of n coded symbols, where

n > m. One performance metric for a code is the code rate R, defined as

R = m
n

. The quantity 1−R is referred to as the redundancy of the code.

There are several different classes of CS codes (CSCs). The two that we

consider in this thesis are runlength-limited (RLL) codes and balanced codes.

RLL coding is a line coding technique used with bandwidth limited communi-

cation channels. These codes ensure limits to the minimum and the maximum

number of like-valued consecutive symbols. Balanced codes are widely used

in binary communication systems to ensure the presence of many transitions

and an equal number of logic 1’s and logic 0’s in the encoded bit stream.

These characteristics enable practical demodulators to accurately recover bit-

level synchronization and establish the constant decision thresholds necessary

for accurate symbol recovery [2]. Since balanced codes result in a null at DC

in the continuous component of the spectrum of the encoded binary sequence,

the terms balanced code and DC-free code are often used interchangeably [3].

To date, constrained sequence codes have been widely used in mass storage

systems including magnetic hard disks and optical recording systems such as

the compact disc (CD), digital versatile disc (DVD), and the Blu-Ray disc

(BD). One of the best-known examples of a CS code for storage applications

is the eight-to-fourteen modulation (EFM) [4] code that is used in CD players.

Binary zeros and ones are represented by pits and lands written on the disc.

The decoding circuitry exhibits better performance if the durations of pits and

lands are not too short or too long. Therefore, EFM ensures that runlengths

are no shorter than 2 bits and no longer than 10 bits. EFM also attempts to

ensure that the encoded sequence is balanced.

Although constrained coding has been extensively deployed in the record-

ing industry, there are also applications in other digital communication sys-

3

tems. Examples include, for instance, limiting the peak-to-average power ratio

(PAPR) of signals in orthogonal frequency division multiplexing (OFDM) sys-

tems and scrambling techniques used in many transmission systems.

In the past, almost all CS codes (CSCs) used in practice have been fixed-

length block codes, which fix the word length of the input user data and out-

put symbols to predetermined fixed values often denoted m and n respectively.

A primary reason for the use of fixed-length codes is that this simplifies the

implementation of the encoder and decoder. However, recently a straightfor-

ward approach for constructing variable-length CSCs was proposed by Andrew

Steadman [5]. His approach combines the use of normalized geometric Huffman

coding (nGHC) with partial extensions of a minimal set of words that satisfies

the constraint. This method can be used to construct simple variable-length

CSCs that have a code rate approaching capacity.

1.1 Thesis Objective

The purpose of this thesis is to extend Steadman’s recently developed con-

struction method for variable-length constrained codes [5] to the case where

the signalling alphabet is larger than binary. Using this approach we design

non-binary multilevel RLL codes for magnetic recording systems and balanced

codes for quadrature phase shift keyed (QPSK) transmission systems. Prior

to the work in this thesis, non-binary constrained sequence codes with such a

high code rate have not been constructed.

1.2 Thesis Organization

The thesis is organized as follows.

Chapter 2 presents an overview of constrained sequence codes. This chap-

ter begins with a discussion of fundamental concepts of information theory,

4

including entropy and capacity. Markov chain modelling of encoding processes

is then reviewed. With this model, we can evaluate the capacity of several

families of constrained sequence codes. In addition to these concepts, we also

highlight two common kinds of constrained sequence codes, RLL codes and

balanced codes.

In Chapter 3 we focus on non-binary communication systems. We first

present an overview of multilevel magnetic recording systems and outline fixed-

length coding techniques that have been published for these recording systems.

We then provide a brief introduction to QPSK transmission systems and discuss

fixed-length balanced codes that have been proposed for these systems.

Chapters 4 and 5 present our novel work regarding variable-length RLL

codes for multilevel magnetic recording systems and variable-length balanced

codes for QPSK systems respectively. The codes we construct are simple and

have a higher average code rate than any other codes that have been reported

for these systems to date.

Lastly, we draw conclusions for this thesis in Chapter 6 and provide recom-

mendations for future work.

5

Chapter 2

Background

An overview of constrained sequence codes is given in this chapter. This sum-

mary includes a discussion of several issues related to constructing and an-

alyzing constrained sequence codes and their properties. Firstly, theoretical

foundations of information, entropy and capacity are discussed in Section 2.1.

In that section, we consider the fundamental question: how do we measure

the amount of information emitted from a source? Two widely used classes of

constrained codes, runlength-limited (RLL) codes and DC-free codes, are intro-

duced in Section 2.2. Lastly, an overview of variable-length codes is presented

in Section 2.3. With this overview, it becomes apparent that it is possible to

construct variable-length codes in a straightforward manner, and that variable-

length codes can have advantages when compared to fixed-length codes.

2.1 Information and Entropy

In this section, we give a brief introduction to fundamental concepts of infor-

mation and entropy. In general, these concepts can be used as a guide in the

preliminary stage of code design as well as an assessment tool for the overall

performance of the system. This introduction is subdivided into several parts.

In Subsections 2.1.1 and 2.1.2, we clarify some basic ideas of information the-

6

ory, including the definition of information and entropy along with some of

their corresponding evaluation methods. In Subsections 2.1.3 through 2.1.6 we

focus on Markov chains and the Markov information source which is a model

of particular interest in our work. With this background, we can calculate the

capacity of practical constrained systems.

2.1.1 Concept of Information

In information theory, the amount of uncertainty is related to the quantity of

the information. The premise is that the less likely an event, the more infor-

mation its occurrence contains. This relationship is satisfied when information

is defined as the negative of the logarithm of the probability of an event [1], as

shown in Equation (2.1).

I (xi) = −log p (xi) (2.1)

In this expression, xi denotes an event and p (xi) denotes the probability of

its occurrence. The reason for the use of the logarithm is that the informa-

tion associated with independent events can be summed using this logarithm

expression. The most common units for the amount of information is bits; in

this case the logarithm has base 2. Information can also be measured in nats

or Hartleys if a logarithm of base e or base 10, respectively, is used during its

evaluation.

2.1.2 Entropy of Memoryless Sources

Entropy is defined as the average amount of information in a symbol sequence,

and therefore it has the same units as information. A memoryless information

source is a source that generates symbols that are statistically independent.

Consider a finite set of symbols X = {x1, x2,, xn}, with corresponding

probabilities P = {p1, p2,, pn}. Note that the sum of these probabilities

7

equalsunity,thatis n
i=1pi=1. Byassumingstatisticalindependenceof

symbols,theentropyofamemorylesssourceisstraightforwardtoevaluate.It

isdirectlyrelatedtotheuncertaintyorprobabilityofthesymbolsgenerated

bythesource,whichisshownasfollows:

H(p(x1),p(x2),......,p(xn))=−
n

i=1

p(xi)log2p(xi) (2.2)

Intheaboveequation,thebaseofthelogarithmissetto2,whichimplies

thatentropyismeasuredinaveragebitsofinformationpersymbol.Asnoted

above,otherbasesalsocanbeused.However,weonlyconsiderbase2inthis

thesisinordertobeconsistentwithmostoftheliterature.Itcanbeshown

thattheentropyfunctionachievesamaximumoflog2nbitsofinformationper

symbolwhenthesourcesymbolsareequiprobable[3].

2.1.3 MarkovChains

AMarkovchainisarandomprocessthatundergoestransitionsfromonestate

toanotherstateinastatespace.Itpossessesthepropertythattheprob-

abilitydistributionofthenextstatedependsonlyonthecurrentstateand

notonanypreviousstate.ThisparticularpropertyiscalledtheMarkovprop-

erty. Markovchainshavemanyapplicationsasstatisticalmodelsforreal-world

processes.Ininformationtheory,aMarkovchainisusuallyrepresentedasa

discreterandomprocesswithdependentdiscreterandomvariablesZntaken

fromtheset{......,Z0,Z1,Z2,......}. Thesediscreterandomvariablessatisfy

theMarkovproperty:

PrZt=σit|Zt 1=σit 1
,Zt 2=σit 2

,...=PrZt=σit|Zt 1=σit 1
(2.3)

wheretdenotestimeandtheσidenotestatevalues. Also,thenotation

Pr(A|B)denotestheconditionalprobabilityofeventAgiventhateventB

hasoccurred.

8

A Markov chain can be represented by a transition probability matrix Q.

Each element of Q denotes the probability of transitioning from one state to

another state:

[Q]ij = Pr (Zt = σj | Zt−1 = σi) (2.4)

It is important to note that a Markov chain is not driven by an input. The

only two features that characterize a Markov chain are the discrete random

variables Zn and the state transition probabilities.

A Markov process can also be described as a directed graph. The states

form the vertices of the graph while the edges indicate valid transitions. An

example of a directed graph is shown in Fig. 2.1.

Figure 2.1: A directed graph of a Markov chain

With this directed graph, it is straightforward to obtain the transition proba-

bility matrix [Q]ij, shown below:

9

Q =

0 1/2 1/2

1/4 1/4 1/2

1/2 0 1/2

 (2.5)

This thesis considers Markov chains that are irreducible and regular, also

referred to as ergodic. The irreducible property indicates that a state in the

Markov chain can be reached from any other state in some number of tran-

sitions. Regularity refers to the fact that transitions between states are non-

periodic.

2.1.4 Entropy of Markov Information Sources

In this subsection, we provide a brief introduction to the evaluation of entropy

of Markov information sources. In this thesis, an information source is modeled

as a Markov information source. Its output sequence {Xi} will be described by a

generating function ζ whose domain is the set of states. This relationship can be

expressed as Xi = ζ(σi). Since there is, in general, dependence among symbols

emitted from a Markov information source, there is usually some redundancy

because each successive symbol has some predictability.

Only unifilar Markov information sources are considered in this thesis. A

unifilar source is one which has, for each possible current state, different output

symbols associated with each different successor state. A successor state is a

state that can be reached in a single step from the present state with a transition

probability greater than zero. For the Markov information source to be unifilar,

each of these successors states σi has a different ζ(σi). The unifilar property

ensures that there exists a one-to-one relationship between the output sequence

and the sequence of states.

For an unifilar Markov information source, the evaluation of the entropy of

state σi can be described asHi = H([Q]i,j1 , [Q]i,j2 , ..., [Q]i,jni
), where σj1 , ..., σjni

are the ni successor states of σi. The overall entropy of the unifilar Markov

10

information source can then be calculated as:

H {X} =
L∑
i=1

πiHi (2.6)

where πi is the steady-state probability of being in state σi. The calculation of

these asymptotically steady-state probabilities is considered in [3].

2.1.5 Capacity of Memoryless Discrete Noiseless Chan-

nel

The maximization of entropy for a particular channel constraint is called the

capacity of the constrained channel. At the beginning of Shannon’s well-known

paper [1], he provides a definition for the capacity of a memoryless discrete

noiseless channel, which is the basis of our thesis. All the concepts of capacity

mentioned in this thesis are the capacity of the memoryless discrete noiseless

channel. First he chooses the symbols randomly from a specified alphabet.

These symbols can be denoted as:

{a1, a2,, an} (2.7)

Each symbol is transmitted through a noiseless channel without alteration but

has a duration or cost factor assigned to it. The costs of different symbols are

specified as:

{t1, t2,, tn} (2.8)

Sequences of symbols are selected from the source according to particular

constraint, where, for instance, some sequences of symbols are not to be trans-

mitted. The question posed and answered by Shannon is how to measure the

capacity of such a memoryless discrete noiseless channel. Shannon defines the

11

capacity of this noiseless channel as:

C = lim
T→∞

logN (T)

T
(2.9)

where N(T) is the number of distinct permissible messages of total duration

or cost T . When all distinct messages are independent and have the same

duration or cost, it can be shown that the maximum rate of transmission of

information may only be obtained when all these messages are equiprobable.

2.1.6 Capacity of Markov Information Sources

As discussed above, the capacity of a noiseless sequence can be evaluated with

Equation (2.9). However, it is often impractical for us to calculate the capacity

in that manner, and another approach can be derived based on the represen-

tation of a Markov information source [3]. The key to this approach is to

enumerate the number of different sequences generated by a Markov source.

When the Markov source is unifilar, the enumeration of different sequences

equals the enumeration of different paths that lead from one state to another

state in the Markov source. Furthermore, matrix operations can help us count

the number of paths.

In [3], the author demonstrates that the number of paths of length m is

given by the (i, j) th entry of Dm, where D is the N ×N one-step connection

matrix of a given directed graph. If we use [D]mij to represent the (i, j) th entry

of Dm, then an iterative approach to calculate [D]mij is as follows:

[D]mij =
N∑

h=1

[D]m−1ih [D]hj (2.10)

For large sequence lengths m, we may conveniently approximate the number

of sequences [D]mij by:

12

[D]mij
∼= aijλ

m
max (2.11)

where aij is a constant and λmax is the largest real eigenvalue of the matrix D

[6]. In other words, λmax is the largest real root of the determinant equation

det [D− zI] = 0 (2.12)

where I is the identity matrix with the same dimensions as D. From Equation

(2.11), we can draw the important conclusion that the number of different

sequences grows exponentially with the sequence length m when m is large

enough. Equation (2.11) can be rewritten as:

1

m
log [D]mij '

1

m
(logaij +mlogλmax) (2.13)

Using this result, the maximum entropy of the noiseless channel may then be

evaluated by invoking (2.9) to yield:

C = lim
m→∞

1

m
log
[
Dm

ij

]
= logλmax (2.14)

2.2 Constrained Sequence Codes

Constrained sequence encoders accept an arbitrary bit stream as their input and

convert this stream into a sequence of symbols, called a constrained sequence,

that complies with a given constraint. There are a variety of constraints to make

full use of a particular channel. We consider two widely enforced constraints

here.

2.2.1 Runlength-limited Codes and (d, k) Sequences

A typical class of constrained sequence codes is runlength-limited (RLL) codes.

RLL coding can be used to send arbitrary data over a communication channel

13

with bandwidth limits. The number of symbols between transitions is known as

the runlengths. For instance, the runlengths in the sequence ‘0111100111000000’

are 1, 4, 2, 3 and 6.

RLL codes are widely used in hard disk drives and with digital optical disc

systems such as the CD, DVD, and Blu-ray systems. The purpose is to bound

the length of stretches (runs) of repeated bits during which the signal does

not change. If the runs are too long, clock recovery is difficult; if they are

too short, the attenuation of high frequencies by the channel makes symbol

detection less reliable. RLL codes help ensure that the boundaries between

bits can be accurately found while efficiently using the media to store a large

amount of data in a given space. Early disk drives used very simple encoding

schemes, such as the RLL (0,1) FM code. Higher density RLL (2,7) and RLL

(1,7) codes became the industry standard for hard disks by the early 1990s.

The numbers associated with those codes are the values of d and k, where

(d+ 1) and (k + 1) are the minimum and maximum runlengths in the encoded

sequence. RLL sequences can be generated from (d, k) sequences in which

there are at least d and at most k zeros between consecutive logic 1’s. A (d, k)

sequence is translated into an RLL sequence through change-of-state encoding

in which a logic 1 is encoded as a change in value from the previous encoded

symbol, and a logic 0 is encoded as the absence of a change.

2.2.2 DC-free Codes

In addition to RLL codes, DC-free codes have achieved widespread use in com-

munication systems. As their name implies, DC-free codes are designed to

ensure the presence of a spectral null at zero frequency in the continuous com-

ponent of the spectrum of the coded signal. These codes are also called bal-

anced codes because they ensure an equal number of logic 1’s and logic 0’s in

the encoded sequence.

In digital communication systems, it is sometimes desirable for the signal

14

to contain low power at and near zero frequency. When digital communica-

tion signals are transmitted through metallic cables, DC-free codes have been

applied to reduce the power lost due to coupling circuits and isolation trans-

formers. Furthermore, balanced codes are widely used to ensure the presence of

many transitions in the encoded sequence. These characteristics enable practi-

cal demodulators to accurately recover bit-level synchronization and establish

the constant decision thresholds necessary for accurate symbol recovery.

Any code with balanced codewords, each of which has an equal number

of zeros and ones, will have a spectral null at DC. However, there is another

way to construct DC-free codes. As discussed in [3], a sequence is DC-free

if and only if its running digital sum (RDS) is bounded. The RDS zi is the

accumulation of signalling values from the beginning of the sequence to any

point following the ith symbol in the sequence {x1, x2,, xi}, where a logic

1 has symbol value +1 and a logic 0 has symbol value -1. RDS can therefore

be expressed as:

zi =
i∑

j=−∞

xj = zi−1 + xi (2.15)

If the RDS of the sequence is bounded, the RDS only takes on values from

a finite set. It is possible to identify the total number of different RDS values,

denoted by N , as:

N = Max (zi)−Min (zi) + 1 (2.16)

In general, the initial value of the RDS can be any value. The definition of N

and properties of DC-free codes are equally applicable for all initial values, but

for the sake of convenience, the initial value is usually set to 0.

The evaluation of the capacity of DC-free codes can be described as a func-

tion of N when there is a correspondence between the states and allowed values

of zi. It has been shown that [3]:

15

C (N) = log2

(
2cos

π

N + 1

)
,N ≥ 3 (2.17)

The formula clearly demonstrates that capacity approaches one as N increases.

For example, for N = 10, C (N) = 0.94, representing only a 6% reduction in

capacity from that of an unconstrained sequence. It occurs because, as the

RDS bounds increase, there are more sequences that satisfy the constraint so

the capacity increases correspondingly.

2.3 Variable-length Codes

Almost all CSC codes developed to date have been fixed-length codes, also

known as block codes since the messages are transmitted by fixed-length code-

words that represent fixed-length source words. However, the focus of this

thesis is the construction of variable-length codes. There has been limited

effort in this regard to date. Some relevant examples include Franaszek’s syn-

chronous variable-length codes [7] [8], the variable-length bit stuffing algorithm

proposed by Bender and Wolf [9] and the extended bit-flip techniques [10]. The

advantage of variable-length codes is increased efficiency in the sense that, on

average, fewer digits can be used to represent the same amount information

for similar implementation complexity. We now consider a recently developed

approach to constrained sequence coding that results in variable-length codes

[11]. To achieve this goal, however, we need to know or make assumptions

regarding the statistics of the message being sent. We can take advantage

of these statistics to make more frequent source words correspond to shorter

constrained sequences and less probable source words correspond to longer se-

quences. This is the basis of Huffman coding, which is a widely used approach

for variable-length source coding.

In contrast to block codes, variable-length codes do not have a fixed code

rate, therefore in our research we focus on the average code rate. The average

16

code rate depends on the statistics of the input and output sequences:

Ravg =
E[Lin]

E[Lout]
, (2.18)

where Lin and Lout represent the length of the input and output sequences

respectively while E[L] represents the expected value of the random variable

L. The value of this average code rate is within the scope of the code rates of

individual codewords:

Rmin = Min[
Lin,i

Lout,i

], (2.19)

Rmax = Max[
Lin,i

Lout,i

], (2.20)

where the subscript i denotes the ith source word-to-codeword relationship. It

is important to note that while it is possible for Rmax (which corresponds to

a single codeword) to exceed the capacity of the constraint, the average code

rate will be at most equal to capacity for any source and any code that satisfies

the constraint.

2.3.1 Methods of Proposed Research

Our research is based on several fundamental features of constrained sequence

coding and a recently developed variable-length code construction technique

called normalized geometric Huffman coding (nGHC) [12]. We introduce some

related concepts here.

Minimal Set

As the length of a sequence grows, the number of constraint-satisfying se-

quences also increases. We start by asking whether we can find a minimal set

of words such that we can construct all the constraint-satisfying sequences by

17

concatenating words from this set. The answer is yes, and for some constraints

this minimal set has a finite number of words, and for other constraints this

set might be infinitely large. But there is a minimal set for each constrained

sequence code, and we can construct all the constraint-satisfying sequences by

concatenating sequences from the minimal set in any order.

As an example of the formation of a minimal set, consider (d, k) constrained

sequence codes. First, we draw the state transition graph that describes the

constraint. Based on this diagram, we choose one of these states as the initial

state. We find all the paths that begin with this initial state and return to this

state, and enumerate all the output sequences that arise in response to these

paths. These output sequences, taken together, constitute a minimal set. An

example will clarify the formation of this minimal set.

Figure 2.2: (1,2) constrained sequence code

Figure 2.2 is a state transition graph that depicts a (1, 2) CSC. We choose

σ1 to be the initial state. σ2 and σ3 represent the states that arise in response to

the output ‘0’ and ‘00’ from σ1, respectively. From this graph, we can quickly

find that there are two paths that begin with the initial state σ1 and return

back to it. One is “σ1 → σ2 → σ1”, the other one is “σ1 → σ2 → σ3 → σ1”,

with outputs ‘01’ and ‘001’ respectively. Therefore, the minimal set for this

constraint is {01, 001}. It is straightforward to verify that all valid sequences

that satisfy the (1, 2) constraint can be constructed through the concatenation

18

of the sequences in this minimal set.

Partial Extensions

To use nGHC, we require knowledge of the lengths of the codewords that we

intend to use in our constrained sequence. With knowledge of these lengths,

we can apply the the nGHC construction technique to determine appropriate

source word lengths. In this thesis, we use the approach of partial extensions

to find valid sets of codeword lengths and the corresponding codewords, and

we realize this partial extension algorithm in Java development environment.

First, we set a blank node to be the root node of the tree, and we set this root

node to be the current node. We then concatenate all sequences of the minimal

set to the codeword sequence represented by the current node to generate the

leaves for the current node. This process creates another partial extension

and another valid set of codewords. Note that this process can be repeated

indefinitely since the sequences of the minimal set satisfy the constraint and

can be concatenated arbitrarily without violating the constraint. To limit the

complexity of the partial extension process, we set some restrictions on it,

which involve limiting the number of codewords Numcw and the maximum

length Lmax of codewords in the partial extensions. Furthermore, Numcw can

be used to separate different categories of partial extensions because Numcw is

directly reflected to the number of partial extensions for a given minimal set.

This relationship can be described as:

Numcw = Numms + n× (Numms − 1) (2.21)

where Numms represents the number of words in the minimal set and n rep-

resents the number of consecutive partial extensions of this minimal set. For

example, the minimal set is {01, 001} for the (1, 2) constraint, and the number

of words in this minimal set Numms is 2. In this case, Equation 2.21 can be

19

simplified into,

Numcw = 2 + n× (2− 1) = 2 + n = 2, 3, 4, 5, for n = 0, 1, 2, 3,

(2.22)

Figures 2.3, 2.4 and 2.5 use a tree structure to depict the process of con-

structing partial extensions. Starting from the blank node, the partial extension

with Numcw = 2 is {01, 001}, which is the minimal set of (1, 2) constrained

codes. Partial extensions with Numcw = 3 include the sets {0101, 01001, 001},

{01, 00101, 001001}, and partial extensions with Numcw = 4 include the sets

{010101, 0101001, 01001, 001}, {0101, 0100101, 01001001, 001}, {0101, 01001, 001

01, 001001}, {0101, 01001, 00101, 001001}, {01, 0010101, 00101001, 001001}, {01,

00101, 00100101, 001001001}.

Figure 2.3: Partial Extension with Numcw = 2

Figure 2.4: Partial Extension with Numcw = 3

This approach to constructing partial extensions allows for an exhaustive search

of possible codeword sets, up to limits set on Numcw and Lmax. This follows

since we construct a partial extension for each branch node until the limits are

reached. Therefore, we will never miss any opportunity for the next category of

partial extension. For example, from the codeword set {0101, 01001, 001} with

Numcw = 3, we make extension for each branch node {0101}, {01001} and

{001} respectively. This generates the possible codeword sets {010101, 0101001,

20

Figure 2.5: Partial Extension with Numcw = 4

01001, 001}, {0101, 0100101, 01001001, 001} and {0101, 01001, 00101, 001001}

with Numcw = 4, as shown in Fig. 2.5. To verify that our approach is an

exhaustive search, we also compare the results of our method and Steadman’s

method described in [5]. The result listed in Table 2.1 indicates that both ap-

proaches achieve the same outcome when setting the same restrictions on the

partial extensions.

Constraint
Restrictions of partial extension Number of

partial extensions
If the comparison

results are the same?longest codeword
length

maximum number
of codewords

(2, 1,∞) 12 10 684 same
(3, 1,∞) 12 19 2254 same
(4, 1,∞) 12 28 2991 same
(5, 1,∞) 12 37 3231 same
(6, 1,∞) 12 46 3302 same
(7, 1,∞) 12 55 3322 same
(8, 1,∞) 12 64 3327 same

Table 2.1: Comparison of results for different partial extension methods

21

Capacity of Constrained Sequence Code

As discussed above, constrained sequence codes are a special case of Markov

information sources. Therefore, it is possible to derive the capacity of con-

strained sequence codes from Equation (2.14). To evaluate the capacity, we

first construct a state transition graph that describes the constraint. Here, the

constraint may be the (d,k) constraint or any other kind of constraint. We

can then derive the connection matrix D from the state transition graph, and

calculate the capacity of the constrained system as the logarithm of the largest

real root of the characteristic equation.

Maxentropic Probability of Constrained Sequence Code

After determining partial extensions and the capacity of the constraint, we

apply the nGHC method to generate the source word lengths and a set of

source words. nGHC ensures that these source word lengths result in the

highest average code rate for that set of codewords [5] [13]; a discussion of this

technique follows.

An essential starting point of this method is to determine the desired oc-

currence probability of codewords, also called the maxentropic probability of

the codewords. These probabilities result in the maximum amount of infor-

mation being conveyed with variable-length codewords. These maxentropic

probabilities are [3]:

pi = 2−oiC = λ−oimax (2.23)

where pi represents the probability of occurrence of the ith codeword and oi

represents its length. For the nGHC procedure, therefore, we require knowledge

of the codeword lengths in the partial extension as the values of oi. The tree

structures of Figures 2.3, 2.4 and 2.5, depicted in terms of codeword lengths,

are shown in Fig. 2.6. Also, it is necessary for us to verify the unique properties

22

of different partial extensions when we re-express them in terms of codeword

lengths. For example, there are two identical sets of codeword length {4, 5, 5, 6}

in partial extension with Numcw = 4. As discussed above, both of them will

generate the same maxentropic probabilities as well as the same result when

applying nGHC approach. Thus, we should remove one of them to eliminate

this duplication.

Figure 2.6: Partial Extension in terms of lengths

Geometric Huffman Coding

Channel capacity dictates the highest code rate that can be used while ensuring

reliable data transmission. In this thesis, we consider only the noiseless chan-

nel. To this point, we have constructed sets of valid codewords and have knowl-

edge of their varying lengths. Our task is then to assign these variable-length

codewords to source words such that the codewords will occur in the encoded

sequence with probabilities close to the maxentropic probabilities. Through-

out this thesis, we assume that binary digits in the source bit sequence are

independent and equiprobable. Therefore, source words occur with probability

23

2−li where li is the length of the word. With one-to-one mapping of source

words to codewords, these are also the probabilities of the corresponding code-

words. Our task is then to determine source word lengths and the mapping of

source words to codewords such that codeword probabilities are well-matched

to Equation (2.21) and that the average code rate given by Equation (2.18) is

maximized.

Let the length of the codewords be denoted oi. Then, Equation (2.18) can

be rewritten as follows:

Ravg =

∑
i 2−lili∑
i 2−lioi

(2.24)

The maximum code rate is achieved when the input word probabilities are

distributed according to the probability mass function (PMF) that maximizes

Equation (2.24). To find this PMF, the author of [12] recently introduced an

algorithm called geometric Huffman coding (GHC).

The GHC approach is based on a modification of the Huffman coding pro-

cedure. As with standard Huffman coding, the least two probabilities are re-

peatedly merged, forming a tree from leaves to root. The standard Huffman

process uses the merging rule p
′

= pm + pm−1, while GHC uses the merging

rule :

p
′
=

 pm−1, if pm−1 ≥ 4pm

2
√
pmpm−1, if pm−1 < 4pm

(2.25)

where p1,p2,p3,...,pm denote the probabilities of the codewords ordered from

greatest to least such that p1 ≥ p2 ≥ ... ≥ pm, and p
′

denotes the merged prob-

ability. Since merging involves evaluation of a geometric mean, this modified

approach is called geometric Huffman coding. An implication of this approach

is that a valid output sequence will be discarded if its probability is less than or

equal to one quarter the probability of the next likely output sequence. Since

merged sequences are assigned source sequences of the same probability, this

24

prevents the use of unlikely sequences from reducing the overall code rate. It

is shown in [12] and [13] that GHC will result in the highest average code rate

for a given set of codeword lengths.

Normalized Geometric Huffman Coding

As discussed above, we propose using GHC in our code construction technique.

However, the optimal codeword probability pi = λ−oimax cannot be achieved in

practice. Instead, as shown in [12] and [13], the best achievable codeword

probabilities have values p̂i = 2−oiRavg , where Ravg is the average codeword

rate given in Equation (2.24). It is these codeword probabilities, rather than

the probabilities given by (2.21), which are to be used as the starting point for

the GHC algorithm. Therefore, using this merging rule requires that we know

the code rate in advance, which is not defined until we complete the encoding

process.

An iterative method of constructing constrained sequence codes is proposed

in [13] to overcome this problem. This iterative approach is known as normal-

ized geometric Huffman coding (nGHC). First, we assume an initial value of

code rate equal to capacity, Ravg = C. Based on this assumption, we calculate

the maxentropic probabilities with the equation pi = 2−oiRavg = λ−oimax. We then

use GHC to construct source words with lengths that approach these maxen-

tropic probabilities. Given the source word lengths, we calculate the resulting

average code rate Ravg. With this new Ravg we evaluate the actual codeword

probabilities according to p̂i = 2−oiRavg and we repeat the GHC process. We

continue to repeat the process until the code rate does not change, at which

point the procedure has converged to the final result.

By comparing the results of nGHC and standard Huffman Coding, Stead-

man [11] found that they generate the same codes in almost all cases. But in a

very few situations, the effectiveness of nGHC is slightly higher than standard

Huffman Coding. This is in agreement with [12] where it is shown that nGHC

25

is the optimal approach for determining appropriate source word lengths.

Final Code Selection

To this point we have described how to construct source words to correspond

to each potential set of codewords by applying the nGHC procedure. From

the sets constructed, it remains to simply select the code that has the highest

average code rate.

Summary

A summary of the four-step procedure to construct variable-length codes is as

follows:

1. Define a minimal set for the constraint;

2. Construct different partial extensions of this minimal set. The number of

extensions can be bounded by limiting the depth in the tree structure, or

by restricting the maximum length or a maximum number of codewords

in the extension;

3. Find the optimal set of source word lengths for each of the partial exten-

sions by using the nGHC approach;

4. Choose the mapping of source words to codewords that results in the

highest average code rate.

26

Chapter 3

Non-binary Communication

Systems

Communication systems with more than two symbol values are used in a variety

of applications. In this chapter, we consider the application of CS coding to

two such systems: multi-level RLL codes for magnetic recording systems and

balanced codes for QPSK transmission systems.

3.1 Overview of Multi-level Magnetic Record-

ing Systems

In most magnetic recording systems, data is stored in binary form. Although

the applications of binary codes in magnetic recording systems have been suc-

cessful in the past, considerable effort is now being dedicated towards research

on multi-level magnetic recording systems, specifically, the hard disks that are

still one of the primary storage mechanism of choice for cloud storage. The

reason for this initiative is that the density and transfer rate of information is

increased significantly with multi-level magnetic recording. For example, as-

suming eight recording levels are allowed in a multi-level magnetic recording

27

Figure 3.1: Permitted sequences in the (4, 1, 3) constrained code

system, and then 3 bits/stored-symbol are conveyed rather than 1 bit/symbol

as in a binary magnetic recording system. In such a system, a multi-level

recording code would be employed to help the system approach the capabilities

of the media.

3.2 RLL Codes Applied in Multi-level Mag-

netic Recording Systems

Multi-level runlength limited (ML-RLL) codes are obtained through change-

of-state encoding of M -ary (d, k) constrained codes, which are extensions of

binary (d, k) constrained codes and denoted as (M,d, k) codes. As mentioned

in Chapter 2, binary (d, k) constrained codes comply with the requirement that

the number of zeros is at least d and at most k between consecutive ones. M -ary

(d, k) constrained codes follow a similar requirement, the only difference being

that in M -ary codes we consider the number of consecutive zeros between any

two non-zero symbols rather than just those between logic ones. For example,

for the 4-ary symbol alphabet A = {0, 1,, 3}, a sequence that satisfies the

(4, 1, 3) constraint is shown in Fig. 3.1, where we have underlined the suitable

sub-sequences.

For M -ary (d, k) constrained codes, M (M > 2) represents the number of

different symbol values used in the recording system. Note that M = 2 denotes

the special case of binary (d, k) constrained codes. We also use the equation

η = Ravg
C

to evaluate the efficiency of M -ary (d, k) constrained codes, where

Ravg is the average code rate and C is the channel capacity.

Several fixed-length block coded M -ary (d, k) constrained codes have been

28

developed. For instance, McLaughlin proposed five different M -ary (d, k) con-

strained codes constructed using the state-splitting algorithm [14] and [15].

Kumar and Immink proposed a new method to construct close-to-capacity M -

ary (d, k) constrained codes [16]. Their method yields efficiencies over 95%,

with simple encoder and decoder structures for selected constraints. We pro-

vide a brief introduction of their codes in next subsection.

3.2.1 Properties of M -ary (d, k) Constrained Codes

Before we introduce Kumar and Immink’s M -ary (d, k) constrained codes, we

state two fundamental properties of M -ary (d, k) constrained codes: their ca-

pacity, and the counting of M -ary (d, k) constrained sequences. In [16], Kumar

presented techniques to determine both of these properties.

Capacity of M -ary (d, k) Constrained Codes

Like binary (d, k) constrained codes, M -ary (d, k) constrained codes can be

modeled as Markov information sources. As a result, we can use their charac-

teritic equations to calculate their capacity. French and Wolf first outlined this

idea in [17]. Kumar improved and developed a closed form for the characteris-

tic equations for two specific cases [16]: (M,d,∞) codes and M -ary codes with

d < k <∞. The characteristic equation for (M,d,∞) codes is:

zd+1 − zd − (M − 1) = 0 (3.1)

The characteristic equation for (M,d, k) codes with d < k <∞ is:

zk+2 − zk+1 − (M − 1) zk−d+1 +M − 1 = 0 (3.2)

The capacity C for either case is obtained as:

C = log2λmax (3.3)

29

where λmax, as defined in Chapter 2, is the largest real root of the characteristic

equation.

Table 3.1 reports Kumar’s results [16] for capacity when d is fixed to 1,

M ranges from 3 to 7, and k ranges from d + 1 to ∞. From this table, it is

clear that capacity increases as M and k increase. The reason for increasing

capacity as M increases is that larger values of M result in more possible

sequences and, therefore, a greater information carrying ability with the same

number of symbols.

M/k k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k= ∞
M=2 0.40569 0.55146 0.61745 0.65090 0.66903 0.67929 0.68525 0.68879 0.69091 0.69424
M=3 0.82317 0.92548 0.96606 0.98390 0.99219 0.99616 0.99810 0.99905 0.99953 1.00000
M=4 1.07300 1.15423 1.18347 1.19503 1.19982 1.20184 1.20271 1.20309 1.20325 1.20337
M=5 1.25276 1.32099 1.34371 1.35196 1.35507 1.35626 1.35672 1.35690 1.35697 1.35702
M=6 1.39362 1.45284 1.47132 1.47755 1.47973 1.48050 1.48078 1.48088 1.48091 1.48093
M=7 1.50961 1.56216 1.57765 1.58256 1.58417 1.58470 1.58487 1.58493 1.58495 1.58496
M=8 1.60830 1.65567 1.66895 1.67294 1.67417 1.67455 1.67467 1.67471 1.67472 1.67472

Table 3.1: Capacities for (M,d, k) codes with d =1 generated by Kumar [16]

Counting of M -ary (d, k) Constrained Sequences

Immink proposed an iterative method to count binary constrained sequences

[3]. Kumar extended Immink’s recursive relations to M -ary (d,∞) constrained

codes. His recursive relations are:

Nd (n;M) = 0, for n < 0

Nd (0;M) = 1,

Nd (n;M) = n (M − 1) + 1, 1 ≤ n ≤ d+ 1

Nd (n;M) = Nd (n− 1;M) + (M − 1)Nd (n− d− 1;M) , for n > d+ 1

(3.4)

where Nd and n represent, respectively, the number and length of fixed-length

sequences that satisfy the constraints.

With the above relations, Kumar presented a method to construct fixed-

length M -ary (d, k) constrained codes. Firstly, it is necessary to determine

30

a rational code rate R = m
n

as close to capacity as possible. Then, with the

knowledge of the desired code rate, he proposed a technique to design an M -ary

(d, k) constrained code with high efficiency. The process will be demonstrated

in detail in the next subsection.

3.2.2 Previously Published Fixed-length M -ary (d, k) Con-

strained Codes

The code construction method proposed by Kumar and Immink begins with

the evaluation of integers m and n. According to Kumar, the evaluation process

can be divided into several steps:

1. With the knowledge of the values of d and M , we can find the corre-

sponding relationship between n and Nd for k =∞ constrained codes by

applying Equation (3.4).

2. Then, we can determine the value of m, which must meet the following

condition [3]:

Nd ≥ 2m (3.5)

3. Under this condition, there are multiple values of m that can be chosen.

We select the one that results in a code rate R = m
n

as close to capacity

as possible.

For example, possible values of m and n for the (4, 1,∞) case are listed in

Table 3.2. Note that all of these values of m and n will result in a code rate R

within 7% of capacity.

Construction of d=1 M -ary (d, k) Constrained Codes

After determining appropriate values of m and n, Kumar then demonstrated

a necessary condition for the design of a finite state encoder. This encoder

31

m n Code Rate R (1-η)%
6 5 1.20000 0.28
7 6 1.16667 2.7775
8 7 1.14286 5.028
9 8 1.12500 6.5125
13 11 1.18182 1.79
19 16 1.18750 1.318
25 21 1.19048 1.071

Table 3.2: Integers m and n for (M=4,d=1,k=∞) codes

can be used to generate M -ary (1,∞) constrained codes. His design of a

finite state encoder is depicted in Fig. 3.2. This figure implies separation

of all possible codewords into four subsets E00, E0i, Ei0 and Eij, where i, j ∈

{1, 2, ...,M − 1}. E00 is defined as the subset of possible codewords that begin

and end with a zero, while E0i is defined as the subset of possible codewords

that begin with a zero and end with a non-zero symbol i. Subsets Ei0 and Eij

are defined in a similar manner. The arrows between different subsets indicate

permitted concatenation of corresponding codewords. For example, the arrows

from subset Eij to subset E00 and subset E0i indicate that a codeword from

subset Eij must be followed by a codeword from either subset E00 or E0i so

that the d = 1 constraint is maintained. The subsets E00 and Ei0 are shown

without arrows; this should be taken as an indication that their codewords can

be concatenated with any codewords from any other subset.

With knowledge of the concatenation rules of different codeword subsets,

Kumar designed a practical encoder through appropriate definition and analysis

of the encoder states. He assumes that the encoder includes r states and divides

all of these states into two subsets B1 and B2. There are r1 states in subset B1

in which all codewords must start with a zero. Subset B2 involves r2 = r − r1
encoder states in which all codewords are free to start with a zero or a non-zero

symbol.

With these definitions, the state-transition rules of the encoder can be easily

summarized. Codewords ending with zero may cause the encoder to enter any

32

Figure 3.2: Finite state encoder of M -ary (1,∞) constrained codes

of r = r1+r2 states; these are codewords belonging to E00 and Ei0. Conversely,

the codewords ending with a non-zero symbol may cause the encoder to only

enter the r1 states; these states result in the generation of codewords belonging

to E0i and Eij. The reason that codewords ending with a non-zero may not

result in the encoder moving into any of the r2 states is that the codewords

generated from the r2 states may start with a non-zero symbol, and when a

codeword ending with a non-zero symbol causes the encoder to enter that kind

of state, the concatenation rule is violated. Fig. 3.3 clarifies this concept.

In [18], Immink outlines an essential condition for the above approach: the

codewords within each encoder state should be unique. He then demonstrates

that it is possible for a codeword to correspond to multiple source words since

a sliding-block decoder can identify the particular codeword to source word

mapping by observing both the current and next state. For example, if the

current codeword belongs to the subsets E00 and Ei0, then it can be followed

by the codeword generated from any of r = r1 + r2 states. This means the

codeword itself can be assigned r = r1 + r2 times to distinct source words.

33

Figure 3.3: Kumar and Immink’s fundamental concept concerning encoder
states

Similarly, the codewords in subsets E0i and Eij can only be followed by the

codewords generated from r1 states. Thus, this codeword can only be assigned

r1 times to distinct source words.

After developing this model for the encoding and decoding processes, Kumar

derived the following inequalities for the values of r1 and r2:

r |E00|+ r1

M−1∑
i=1

|E0i| ≥ r12
m (3.6)

r

(
|E00|+

M−1∑
i=1

|Ei0|

)
+ r1

(
M−1∑
i=1

|E0i|+
M−1∑
i=1

M−1∑
j=1

|Eij|

)
≥ r2m (3.7)

where |E00|, |E0i|, |Ei0| and |Eij| denote the cardinality of the subsets E00, E0i,

Ei0 and Eij accordingly. Equation 3.6 indicates that the maximum number[
r |E00|+ r1

∑M−1
i=1 |E0i|

]
of codewords leaving from r1 states of the first type

should be at least equal to r12
m, the number of source words entering that

34

r1 r2 r
3 4 7
6 8 14
7 9 16
8 11 19
9 12 21
10 13 23
11 14 25

Table 3.3: Values of r1 and r that satisfy the (4, 1,∞) constraint with R = 6
5

kind of state. Equation 3.7 follows from the similar fact that there should be

sufficient codewords leaving from r states to match the corresponding source

words entering those states.

Kumar demonstrates that it is possible to evaluate values for r1 and r by

applying Equations 3.6 and 3.7 for selected values of m and n. Thus, the

size and the structure of an encoder that follows the (d = 1) constraint can

be determined. Constructions of two specific (d = 1) constrained codes are

introduced below as examples to demonstrate the process in detail.

Rate 6/5 (4,1,11) Code

As shown in Table 3.1, the capacity of the (4, 1,∞) constraint is 1.20037. With

knowledge of this capacity, Kumar searched for appropriate values of m and n,

and found the values listed in Table 3.2. In order to limit the complexity of the

encoder, Kumar restricted his search by limiting the maximum value of m to

25. As shown in Table 3.2, the highest code rate R = m
n

= 1.2 is achieved when

m = 6 and n = 5. For the (4, 1,∞) constrained code, Equation 3.4 can then

be used to calculate the cardinalities |E00| = |E0i| = |Ei0| = 19 and |Eij| = 36.

By substituting these values into Equation 3.6 and 3.7, Kumar obtained the

possible values of r, r1 and r2 listed in Table 3.3.

For the sake of simplicity, Kumar selected the least number of states (r1 = 3,

r2 = 4, r = 7) to demonstrate how to design an encoder. Detailed analysis is

not discussed here, however, his final result is given in Table 3.4. By eliminat-

35

Number of codewords for each state
States of R1 States of R2

Codeword subsets 1 2 3 4 5 6 7
E00 5 7 7 0 0 0 0
E01 3 2 2 0 0 0 0
E02 3 2 2 0 0 0 0
E03 4 1 1 1 0 0 0
E10 0 0 0 3 1 2 1
E20 0 0 0 3 2 1 1
E30 0 0 0 3 1 1 2
E11 0 0 0 0 1 1 2
E12 0 0 0 0 1 1 2
E13 0 0 0 0 1 1 2
E21 0 0 0 0 2 1 1
E22 0 0 0 0 1 1 2
E23 0 0 0 0 2 1 1
E31 0 0 0 0 1 1 2
E32 0 0 0 0 1 3 0
E33 0 0 0 0 2 2 0

Table 3.4: Distribution of codeword subsets to encoder states for a (4, 1, 11)
R = 6

5
code

ing the all-zero sequence, Kumar restricted the longest runlength to k = 11.

Table 3.4 therefore describes the encoder structure for a (4, 1, 11) code,

Rate 10/6 (8,1,11) code

As a second example, consider the design of a fixed-length (8, 1, 11) code. The

capacity of the (8, 1, 11) constraint is 1.67472, as shown Table 3.1. Kumar found

appropriate values of m and n which allow a code rate close to this capacity;

these values are listed in Table 3.5. Kumar choose m = 10 and n = 6 instead

of m = 5 and n = 3 as a basis to design the encoder since the longer words

provide additional sequences and therefore additional flexibility in the code

design. In this case, with assistance from Equation 3.4, the cardinalities can

be evaluated as |E00| = 176, |E0i| = |Ei0| = 71, and |Eij| = 15. Kumar then

substituted these values into Equations 3.6 and 3.7 and computed the values

36

m n Code rate r (1− η%)
5 3 1.66667 0.481
10 6 1.66667 0.481
8 5 1.6 4.461
11 7 1.57143 6.1675
14 9 1.55556 7.115

Table 3.5: Integers m and n for the (8, 1, 11) constraint

r1 r2 r
1 2 3
2 4 6
2 5 7
3 7 10
4 8 12

Table 3.6: Values of r1 and r that satisfy the constraint (8, 1, 11) when R = 10
6

of r1 and r shown in Table 3.6. From these options, the values for the least

number of states is selected. The assignment of codewords from each subset

to the encoder states is then performed. By eliminating the all-zero sequence,

Kumar restricted the parameter k to 11 and generated the rate R = 10
6

(8, 1, 11)

constrained code whose parameters are shown in Table 3.7.

3.3 Overview of QPSK Transmission

Phase-shift keying (PSK) is a modulation technology used in bandpass digital

communication systems which represents user data with distinct phases of the

carrier. Equal phase shifts are usually chosen to result in a signalling con-

Number of codewords for each state
States in r1 States in r2

Codeword subsets 1 2 3
E00 176 0 0
E0i 497 0 0
Ei0 0 371 126
Eij 0 0 735

Table 3.7: Distribution of codeword subsets to encoder states for an (8, 1, 11)
R = 10

6
constrained code

37

stellation with uniformly distributed points on a circle centered at the origin

of the complex plane. The reason for this uniform spacing is that it results

in the maximum phase separation between points which ensures the greatest

immunity to channel interference. Since all signalling points have the same

amplitude, all symbols are transmitted with the same energy.

Two common PSK systems are binary phase-shift keying (BPSK) which

uses two phases, and quadrature phase-shift keying (QPSK) which uses four

phases. When compared to BPSK, QPSK can double the data rate while

maintaining the same bandwidth. A drawback of QPSK is that the design of

transmitter and receiver circuitry is somewhat more complicated than that for

BPSK.

3.4 DC-free Codes for QPSK Transmission

3.4.1 Introduction of DC-free QPSK Codes

Recall that in a binary system, when the encoded sequence is balanced, the

spectrum of the encoded signal contains a null at DC. For this reason, balanced

binary codes are also called DC-free codes. An analogous situation holds in

QPSK systems. When the encoded system sequence is balanced, the spectrum

of the equivalent complex baseband signal contains a null at DC. This translates

to a null at the carrier frequency of the transmitted bandpass signal. For

this reason, balanced codes have been recently proposed for bandpass QPSK

systems [19]. With this null in the spectrum, it is possible to filter out unwanted

interference and to insert and remove a pilot tone without reducing the power

of the information-carrying portion of the signal.

In this section, we review two approaches that have been published for con-

structing DC-free QPSK codes. The first one is a tabular construction approach

proposed by Jamieson [19]. The second approach involves the application of

guided scrambling to construct DC-free QPSK codes, as outlined by Fair and

38

Figure 3.4: RDS values and encoding states in a rate 4/3-balanced QPSK code

Martin [20].

3.4.2 Previously Published Fixed-length DC-free QPSK

Codes

Tabular Construction of Balanced Codes

A technique for constructing state-independent decodable codes [21] [22] has

been reported recently. This algorithm describes the construction of coding ta-

bles for the general case of constrained sequence codes. Jamieson extended this

general technique by considering symmetry within QPSK codes and proposed

a tabular approach to construct DC-free QPSK codes [19].

In order to maintain the DC-free property, the running digital sum (RDS) of

the encoded QPSK symbol sequence must be bounded. Since QPSK signalling

points take on complex values, so does the RDS of the QPSK symbol sequence.

The technique outlined in [19] restricts the RDS of the encoded QPSK sequence

to the nine values depicted in Fig. 3.4. Each of these values is equivalent

39

to an independent state. These states are then separated into three subsets:

{A1, A2, A3, A4}, {B2, B3, B4, B5} and {B1}. For the subsets {A1, A2, A3, A4}

and {B2, B3, B4, B5}, there is a 90 degree symmetry between each member

state. This implies that if a codeword can be emitted from a state, then sym-

metrical codewords can be emitted from other states within that subset. For

example, since the codeword a1 = {−j,−j,−1} can be emitted from state A1

without violating the RDS constraints, then codewords a2 = {+1,+1,−j},

a3 = {+j,+j,+1} and a4 = {−1,−1,+j} can be emitted from states A2, A3

and A4 respectively. However, subset {B1} is self-symmetrical, which means

that if a codeword can be emitted from that state, then all three of its sym-

metrical codewords can also be emitted from that state.

By taking advantage of this symmetry, Jamieson simplified the process of

codeword enumeration and table construction. He also reported the simple

R = 4
3

balanced QPSK code that is listed in Table 3.8 and Table 3.9. Also, note

that Table 3.8 can be expanded to 16 rows by assigning symmetrical codewords

to symmetrical states, and that Table 3.9 lists only one codeword from each

subset of four symmetrical codewords. In the design of these coding tables,

Jamieson noted that there are extra codewords for some states, which indicates

that codeword priorities are necessary to select the appropriate codewords.

When considering the construction of his code, he chose codewords that resulted

in the greatest suppression of low-frequency components.

As outlined in [3] and [23], the power spectral density (PSD) of a block

coded signal can be expressed in the form shown in Equation 3.8:

Hx (w) = Hp (ω)

(
Hxc (ω) +Hxd (ω)

∞∑
k=−∞

2πδ (ω − 2πk/n)

)
(3.8)

where Hp (ω) = |S (ω)|2 and S (ω) is the Fourier transform of the pulse shape,

and where Hxc (ω) and Hxd (ω) represent the effect of coding on the continuous

40

and discrete components of the spectrum respectively. Our interest is the influ-

ence of the coding procedures on the continuous component of the spectrum,

therefore power spectral density curves shown in this thesis represent only the

component PSD = Hxc (ω).

It was also shown in [24] that the PSD close to DC of balanced codes can

be accurately approximated as:

PSD ≈ Lω2, ω � 1

PSD [dB] ≈ 10log L+ 20log ω, ω � 1
(3.9)

where L is the low frequency spectral weight (LSFW) of the code. As reported

in [19], this rate R = 4
3

DC-free QPSK code has LFSW L = 1.9245.

Row
State

A1 A2 A3 A4 B2 B3 B4 B5 B1

D1 a1 b1 b1 c1 a1 b1 c1 c1 b1
E1 d1 e1 f1 d1 e1 f1 f1 d1 f1
F1 g1 h1 i1 j1 h1 h1 j1 g1 h1
G1 k1 l1 m1 n1 k1 l1 n1 n1 o1

Table 3.8: State/codeword assignments in rate 4/3-balanced QPSK code

Codewords
a1 −j,−j,−1 f1 +1,−1,+j k1 −j,−1,−j
b1 +1,−1,+1 g1 −1,−j,+j l1 +1,−j,+j
c1 −1,+j,+1 h1 +1,−1,−j m1 +j,+1,+1
d1 −1,−1,+1 i1 +1,+j,+j n1 +j,−1,−j
a1 −j,+1,−j j1 +j,+j,−1 o1 +1,−1,−1

Table 3.9: Codewords in rate 4/3-balanced QPSK code

Guided Scrambling Construction of Balanced Codes

In [20], Martin proposed another method to construct balanced QPSK codes.

His method is based on guided scrambling (GS) which was originally developed

41

Figure 3.5: Power spectral density of rate 4/3 QPSK codes published in [19]

for binary systems [25] [26] [27]. Because of its simple encoding and decoding

procedures, Martin applied this technique to the construction of DC-free QPSK

codes [20].

As described in [20], guided scrambling encoding of balanced QPSK codes

can be summarized in several steps. First, each length-m source word is aug-

mented with all patterns of A augmenting symbols to create 4A different aug-

mented words of length n = m + A. Then, 4A different length-n quotients

are formed by multiplying each of the augmented words by xD and dividing it

by d (x), where d (x) is a preselected scrambling polynomial of degree D. All

arithmetic is within the ring of polynomials defined over the finite field of four

elements, GF(4). The element-wise GF(4) operations of addition and multi-

plication are given in Table 3.10. Lastly, the quotient with the best properties

is selected as the length-n codeword. At the receiver, the source words are

recovered by multiplying the received symbol sequence by the same scrambling

polynomial d (x) and eliminating the A augmenting symbols.

42

+ 0 1 2 3 x 0 1 2 3
0 0 1 2 3 0 0 0 0 0
1 1 0 3 2 1 0 1 2 3
2 2 3 0 1 2 0 2 3 1
3 3 2 1 0 3 0 3 1 2

Table 3.10: GF(4) arithmetic

A
Redundancy

1 in 4 1 in 8 1 in 16 1 in 32 1 in 64 1 in 128

n L n L n L n L n L n L
1 4 10.4 8 72.7 16 361 32 1559 64 6202 128 21703
2 8 7.13 16 45.6 32 227 64 995 128 3962 256 14336
3 12 5.55 24 30.8 48 148 96 652 192 2635 384 9845
4 16 4.79 32 22.3 64 105 128 459 356 1873 512 7733
5 20 4.20 40 18.0 80 80.0 160 345 320 1435 640 5631
6 24 3.96 48 15.6 96 65.6 192 281 384 1179 768 4660

Table 3.11: LSFW of GS QPSK codes [20]

Using the above method, Martin constructed guided scrambling balanced

QPSK codes with different word lengths and code rates. Using the scrambling

polynomial d (x) = xA + 1, he obtained the values of LFSW given in Table

3.10 and evaluated the spectral results that are depicted in Fig. 3.6 and 3.7.

Note that these spectra contain a null at DC in the spectrum of the equiva-

lent complex baseband signal. This null corresponds to a notch at the center

frequency of the bandpass system and confirms the balanced nature of the GS

QPSK coded signals.

43

Figure 3.6: Spectra of GS QPSK codes, A = 1 and various codeword lengths
N [20]

Figure 3.7: Spectra of GS QPSK codes with an average of one redundant
symbol in 64 coded symbols [20]

44

Chapter 4

Variable-length RLL Codes for

Multi-level Magnetic Recording

Systems

In this chapter, we use Steadman’s technique [5] [7] to construct variable-length

multi-level runlength limited (ML-RLL) codes for multi-level magnetic record-

ing systems. To demonstrate this approach clearly, we construct two codes for

direct comparison with those developed by Kumar [12]. We then present our

results for a large number of codes for various values of M and k, for d=1 and

d=2. To the best of our knowledge, these new variable-length codes have a

higher average code rate and efficiency than any other codes developed to date

for these constraints.

4.1 Example of Code Construction : (4, 1,∞)

Code

As described in Chapter 2, the construction of variable-length codes involves

the following four steps:

45

1. Define a minimal set for the constraint.

2. Construct different partial extensions of this minimal set. The number of

extensions can be bounded by limiting the depth in the tree structure, or

by restricting the maximum length or a maximum number of codewords

in the extension.

3. Find the optimal set of source word lengths for each of the partial exten-

sions by using the nGHC approach.

4. Choose the mapping of source words to codewords that result in the

highest average code rate.

We now describe these steps in detail for a (4, 1,∞) code.

4.1.1 Minimal Set

To apply Steadman’s technique for construction of variable-length CS codes, we

need first to find the minimal set that represents the constraint. As discussed

in Chapter 2, a minimal set can be established through observation of the

transition graph. For example, consider the binary (1,∞) constrained codes

which can be represented by the transition diagram depicted Fig 4.1.

Figure 4.1: Transition graph used to derive the minimal set of binary (1,∞)
codes

46

Figure 4.2: Transition graph for (4, 1,∞) constraint

In this figure, state σ1 represents the fact that the most recent bit in the

encoded sequence is a 1, and state σ2 denotes the fact that the most recent bit

in the encoded sequence is a 0. The oriented edges between these two states

indicate the encoded output that arises as a result of transitions between the

states. Note that at least one zero must occur between logic ones, and that the

number of zeros between ones is unlimited.

To define a minimal set, we select one state as the initial state and list all

sequences that can arise as this state is exited and re-entered. When σ2 is

chosen as the initial state, it is straightforward to confirm that the minimal set

is {0, 10}.

We now extend the binary case to the M -ary case for the (M, 1,∞) con-

straint. The only difference is that since the number of different signalling

levels is now M , there are M − 1 oriented edges from state σ2 to state σ1. For

example, the directed graph for the (4, 1,∞) constraint is depicted in Figure

4.2. Following the procedure outlined above, it is straightforward to verify that

the minimal set for the (4, 1,∞) constraint is {0, 10, 20, 30}.

47

4.1.2 Partial Extensions

With knowledge of the minimal set, we can construct its partial extensions

to determine possible sets of codewords. Details of partial extensions were

discussed in Section 2.3.1. In this section, we focus on how to construct par-

tial extensions and establish possible limits for construction of these partial

extensions for the (4, 1,∞) constraint.

Because the lengths of codewords are what is required to apply the nGHC

method, we consider the lengths of words in the minimal set when establishing

the first sublayer in the tree of partial extensions. As indicated in Fig 4.2,

these lengths are {1, 2, 2, 2}. Then for each unique node extending from this

sublayer, we sum the lengths of words in the minimal set to a word length in

the set of lengths that represent the node to form a set of new lengths. This set

of new lengths along with other lengths in the sublayer together constitute the

set of lengths representing a new node in the corresponding partial extension.

Taking the first extension in Figure 4.3 for example, we consider the word

length {1} within the set of word lengths {1, 2, 2, 2} as the current node. By

adding the length {1} with lengths of minimal set {1, 2, 2, 2}, we generate a

set of new lengths {2, 3, 3, 3}. These new lengths, along with the lengths of the

other remaining words, {2, 2, 2}, together constitute the lengths of correspond-

ing partial extension, which is {2, 3, 3, 3, 2, 2, 2}.

During the process of partial extension, there are two essential observa-

tions. The first one is that each unique value in the same sublayer will only

be extended once. For example, for the sublayer {1, 2, 2, 2}, only one length

{2} will be extended. The second one is that duplicate sets of lengths must be

removed in the extension process. For example, there are two identical sets of

lengths {2, 2, 2, 3, 3, 3, 3, 4, 4, 4} in Figure 4.3; one of them should be removed.

The reason to do so is because extensions from both of these sets of lengths

will generate the same result.

Because unrestricted concatenation of words from the minimal set always

48

Figure 4.3: Unique word lengths of the partial extensions shown in Figure 4.3

satisfies the constraint, the construction of partial extensions can proceed in-

definitely and the number of codewords can increase without bound. However,

it is also noted that we cannot continue the recursive concatenation without

bound because of limited computing capabilities. It is therefore necessary for

this process to be limited by setting one or more thresholds.

There are two standard thresholds available: the number and length of

codewords involved in the partial extensions. Once the threshold is set, partial

extensions that do not satisfy the thresholds will not be constructed, and the

number of partial extensions is thus bounded. In Figure 4.3, we set the upper

limit to the number of codewords of partial extension as the threshold, to

Numcw = 10. The process of constructing partial extensions is repeated until

this predetermined threshold is reached. After eliminating duplicate sets of

lengths, we obtain the seven simplified and unique partial extensions shown in

Figure 4.3.

An algorithm to construct partial extensions can be expressed as follows:

49

Partial Extension Algorithm

1: while number of codewords < predetermined number do
2: implement partial extension for each unique length of word in current

partial extension
3: if any length of words in partial extension > maximum length then
4: exclude the partial extension
5: end

4.1.3 Capacity and Maxentropic Probability

To apply the nGHC approach, as outlined in Chapter 2, we need to know the

capacity of the constraint. With knowledge of the capacity, we can evaluate the

maxentropic probabilities of the variable-length codewords. Continuing with

the (4, 1,∞) constraint as an example, its capacity can be evaluated using

Equation 3.1. as follows:

zd+1 − zd − (M − 1) = 0

z1+1 − z1 − (4− 1) = 0

z2 − z1 − (3) = 0

z1 = 2.30277,

z2 = −1.30277,

λmax = 2.30277,

C4,1,∞ = log2(2.30277) = 1.20337

(4.1)

After determining the capacity, we can then calculate the maxentropic proba-

bilities for the variable-length codewords. Using Equation 2.23, values of these

probabilities for two partial extensions shown in Figure 4.3 are given in Figure

4.4.

4.1.4 Normalized Geometric Huffman Coding

Given the maxentropic codeword probabilities, it remains to find source words

whose probabilities of occurrence best match the desired codeword probabili-

50

Figure 4.4: Maxentropic probabilities of two sets of codewords in M -ary
(4, 1,∞) codes

ties. As discussed in Chapter 2, this is accomplished with normalized geometric

Huffman coding. Details of this method were given in Section 2.3.1; here we

summarize the NGHC and GHC algorithms with the following pseudocode:

nGHC Algorithm

1: Rini = C
2: R1 = Rini

3: R2 = 0
4: while R2 6= R1 do
5: R2 = R1

6: Probcw = 2−oiR1

7: Probsourcewords = sort (ghc (Probcw))
8: li = −log2 (Probsourcewords)
9: m = sum (li ∗ Probsourcewords)
10: n = sum (oi ∗ Probsourcewords)
11: R1 = m

n

12: end

51

GHC Algorithm

1: n = length (Probcodeowords)
2: for i=1:n-1 do
3: [∼, index] = sort(Probcodeowords, ‘ascend

′)
4: m = index(1 : 2)
5: if 2× sqrt(Probcw(m(1))× Probcw(m(2))) 6 Probcw(m(2)) then
6: Probcw = Remove (Probcw, P robcw (m (1)))
7: cut tree (i) = true
8: else if then
9: m = sort(m, ‘ascend′)
10: allocate a new node z
11: z left = Probcw (m (1))
12: z right = Probcw (m (2))
13: z prob = 2× sqrt (z left× z right)
14: Probcw = Insert (Probcw, z prob)
15: Probcw = sort(Probcodeowords, ‘ascend

′)
16: indices (i) = index (Probcw, z prob)
17: end
18: end
19: L = [0]
20: for k=1:n-1 do
21: if !cut tree(n− k) then
22: L = Remove (L,L (indices (n− k)))
23: L = Insert (L,L (indices (n− k)) + 1)
24: L = Insert (L,L (indices (n− k)) + 1)
25: L = sort(L, ‘ascend′)
26: end
27: end
28: return p = 2−L

We can apply this algorithm to the codeword lengths generated through

partial extensions as described in the previous subsection. As discussed above,

the nGHC algorithm requires as input the lengths of the codewords rather than

a set of actual codewords. Table 4.1 lists the lengths of both the codewords

and the optimal source word lengths, along with the resulting average code

rates and efficiencies under the condition that the number of codewords is less

than or equal to 10. Following determination of the appropriate source word

lengths, the corresponding source words can be constructed as noted below.

52

Ravg η Corresponding length

Numcw = 4 1.1667 96.95%
Lc 1 2 2 2
Ls 1 2 3 3

Numcw = 7
1.1667 96.95%

Lc 1 2 2 3 4 4 4
Ls 1 2 3 4 5 6 6

1.1667 96.95%
Lc 2 2 2 2 3 3 3
Ls 2 2 3 3 3 4 4

Numcw = 10

1.1667 96.95%
Lc 1 2 2 3 4 4 5 6 6 6
Ls 1 2 3 4 6 6 6 7 8 8

1.1667 96.95%
Lc 1 2 2 4 4 4 4 5 5 5
Ls 1 2 3 5 5 6 6 6 7 7

1.1818 98.21%
Lc 1 2 3 3 4 4 4 4 4 4
Ls 1 3 3 4 5 5 5 5 5 5

1.1667 96.95%
Lc 2 2 2 2 3 3 4 5 5 5
Ls 2 2 3 3 3 4 5 6 7 7

1.1750 97.64%
Lc 2 2 2 3 3 3 3 4 4 4
Ls 2 2 3 4 4 4 4 4 5 5

Table 4.1: Partial extensions within Numcw = 10

4.1.5 Final Code Selection

From the partial extensions considered, we select the one with the highest

average code rate as the final code. The codes selected for partial extensions

up to Numcw = 10 in the tree are listed in Table 4.2. Note that in this instance

the code corresponding to Numcw = 10 is the most efficient.

Ravg η Corresponding length

Numcw = 4 1.1667 96.95%
Lc 1 2 2 2
Ls 1 2 3 3

Numcw = 7
1.1667 96.95%

Lc 1 2 2 3 4 4 4
Ls 1 2 3 4 5 6 6

1.1667 96.95%
Lc 2 2 2 2 3 3 3
Ls 2 2 3 3 3 4 4

Numcw = 10 1.1818 98.21%
Lc 1 2 3 3 4 4 4 4 4 4
Ls 1 3 3 4 5 5 5 5 5 5

Table 4.2: Partial extension with highest code rate

Having found the partial extension that results in the highest code rate, we

can redraw the code tree to find codewords with the required lengths. This

tree is depicted in Figure 4.5.

A similar tree can also be drawn to find prefix-free source words of the

required lengths. This is accomplished using the source word lengths deter-

mined from the nGHC algorithm and a tree generated from the minimal set

53

{0, 1}. Figure 4.6 depicts the generation of source words corresponding to the

codewords in Fig 4.5. Table 4.3 lists the resulting code table outlining possible

mapping of source words to code words that satisfies the (4, 1,∞) constraint

with an efficiency of 98.21%.

Figure 4.5: Codewords with required lengths for (4, 1,∞) codes

Lc 1 2 3 3 4 4 4 4 4 4
codewords 0 30 200 100 1010 1020 1030 2010 2020 2030
Ls 1 3 3 4 5 5 5 5 5 5
source words 0 100 101 1100 11011 11010 11100 11101 11110 11111

Table 4.3: Mapping of source words to codewords

4.2 (4, 1, 11) Code

In [12], Kumar constructs a (4, 1, 11) constrained code. He begins his construc-

tion by selecting the code rate R = 6
5

because it is very close to the capacity

C = 1.20331 for the (4, 1,∞) constraint. He then constructs a 7-state encoder

with code rate R = 6
5

by limiting the k constraint to a maximum value of

11. His (4, 1, 11) constrained code involves 451 codewords and seven encoder

states; its efficiency is 99.72% which is very close to capacity. However, we can

construct a more efficient (4, 1, 11) constrained code with fewer codewords by

applying our variable-length construction method.

The transition graph for the (4, 1, 11) constraint is depicted in Figure 4.7.

54

Figure 4.6: Codewords with required lengths for (4, 1,∞) codes

From this figure, it is straightforward to identify the minimal set and its cor-

responding word lengths that are listed in Table 4.4.

Figure 4.7: Transition graph of M -ary (4, 1, 11) Code

We now consider Equation 3.2 and evaluate the maximum real root λmax

in order to find capacity C4,1,11:

55

Minimal Set
01,02,03,

001,002,003,
0001,0002,0003,

00001,00002,00003,
000001,000002,000003,

0000001,0000002,0000003,
00000001,00000002,00000003,

000000001,000000002,000000003,
0000000001,0000000002,0000000003,

00000000001,00000000002,00000000003,
000000000001,000000000002,000000000003,

Minimal Set Length
2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9,10,10,10,11,11,11,12,12,12

Table 4.4: Minimal set and corresponding word lengths for (4, 1, 11) constraint

zk+2 − zk+1 − (M − 1) zk−d+1 +M − 1 = 0

z13 − z12 − 3z11 + 3 = 0

λmax = 2.30268,

C4,1,∞ = log2(2.30268) = 1.20331,

(4.2)

With knowledge of the capacity C4,1,11, we can apply the nGHC method

to find partial extensions and corresponding source words for a code with high

rate. In our search we limited the lengths of codewords to at most 16. Under

this condition, the word lengths for the code with the highest rate is listed in

Table 4.5. This code has an average code rate and efficiency of 1.2006 and

99.77% respectively, which are slightly higher than the values for the code con-

structed by Kumar. Importantly, we achieved this high code rate with only 257

codewords, which is fewer codewords than the code that Kumar constructed.

4.3 (8, 1, 11) Code

In addition to the (4, 1, 11) constrained code, Kumar also constructed a 3-state

(8, 1, 11) constrained code with code rate R = 10
6

. His code has an efficiency of

99.52% and contains 3251 codewords.

56

Lc Ls Lc Ls Lc Ls Lc Ls Lc Ls Lc Ls Lc Ls
4 5 6 7 8 9 9 11 11 13 13 15 14 17
4 5 6 7 8 10 9 11 11 13 13 16 14 17
4 5 6 7 8 10 9 11 11 13 13 16 15 18
4 5 6 7 8 10 9 11 11 13 13 16 15 18
4 5 6 7 8 10 9 11 11 13 13 16 15 18
4 5 6 7 8 10 9 11 11 13 13 16 15 18
4 5 6 7 8 10 9 11 11 13 13 16 15 18
4 5 6 7 8 10 9 11 11 13 13 16 15 18
4 5 6 7 8 10 10 12 11 13 13 16 15 18
4 5 6 7 8 10 10 12 11 13 13 16 15 18
4 5 6 7 8 10 10 12 11 13 13 16 15 18
5 6 6 7 8 10 10 12 11 13 13 16 15 18
5 6 6 7 8 10 10 12 11 13 13 16 15 18
5 6 6 7 8 10 10 12 11 13 13 16 15 18
5 6 6 7 8 10 10 12 11 13 13 16 16 18
5 6 6 7 8 10 10 12 11 13 13 16 16 19
5 6 7 8 8 10 10 12 12 14 13 16 16 19
5 6 7 8 8 10 10 12 12 14 13 16
5 6 7 8 8 10 10 12 12 14 13 16
5 6 7 8 8 10 10 12 12 14 13 16
5 6 7 8 8 10 10 12 12 14 13 16
5 6 7 8 8 10 10 12 12 14 14 17
5 6 7 8 8 10 10 12 12 14 14 17
5 6 7 8 8 10 10 12 12 14 14 17
5 6 7 8 9 11 10 12 12 14 14 17
5 6 7 8 9 11 10 12 12 14 14 17
5 6 7 8 9 11 10 12 12 14 14 17
5 6 7 8 9 11 10 12 12 14 14 17
5 6 7 8 9 11 10 12 12 14 14 17
5 6 7 8 9 11 10 12 12 14 14 17
5 6 7 8 9 11 10 12 12 14 14 17
5 6 7 8 9 11 10 12 12 14 14 17
6 7 7 8 9 11 11 13 12 14 14 17
6 7 7 8 9 11 11 13 12 14 14 17
6 7 7 8 9 11 11 13 12 14 14 17
6 7 7 8 9 11 11 13 12 14 14 17
6 7 7 8 9 11 11 13 12 14 14 17
6 7 7 8 9 11 11 13 12 14 14 17
6 7 7 8 9 11 11 13 12 15 14 17
6 7 7 8 9 11 11 13 12 15 14 17

Table 4.5: Word lengths of partial extension and corresponding source words
lengths for high rate (4, 1, 11) code Ravg = 1.2006, η = 99.77%

For purpose of comparison, we report a variable-length (8, 1, 11) constrained

code by our method. The transition graph for the (M = 8, d = 1, k = 11) con-

straint is depicted in Figure 4.8. The minimal set and its word lengths are

listed in Table 4.6.

By evaluating the maximum real root λmax of Equation 3.2, we determine

the capacity C8,1,11:

57

Figure 4.8: Transition graph of M -ary (8, 1, 11) Code

Minimal Sets
01,02,03,04,05,06,07

001,002,003,004,005,006,007
0001,0002,0003,0004,0005,0006,0007

00001,00002,00003,00004,00005,00006,00007
000001,000002,000003,000004,000005,000006,000007

0000001,0000002,0000003,0000004,0000005,0000006,0000007
00000001,00000002,00000003,00000004,00000005,00000006,00000007

000000001,000000002,000000003,000000004,000000005,000000006,000000007
0000000001,0000000002,0000000003,0000000004,0000000005,0000000006,0000000007

00000000001,00000000002,00000000003,00000000004,00000000005,00000000006,00000000007
000000000001,000000000002,000000000003,000000000004,000000000005,000000000006,000000000007

Minimal Sets Length
2,2,2,2,2,2,2
3,3,3,3,3,3,3
4,4,4,4,4,4,4
5,5,5,5,5,5,5
6,6,6,6,6,6,6
7,7,7,7,7,7,7
8,8,8,8,8,8,8
9,9,9,9,9,9,9

10,10,10,10,10,10,10
11,11,11,11,11,11,11
12,12,12,12,12,12,12

Table 4.6: Minimal set and corresponding lengths for (8, 1, 11) Code

zk+2 − zk+1 − (M − 1) zk−d+1 +M − 1 = 0

z13 − z12 − 7z11 + 7 = 0

λmax = 3.1926,

C8,1,∞ = log2(3.1926) = 1.6747,

(4.3)

With the knowledge of this capacity, we apply the nGHC method to partial

extensions of the minimal set to evaluate the source word lengths for a code

with high average rate. In our search we limited the number of codewords

58

of partial extensions to at most 609 and the lengths of codewords to at most

16. The word lengths of the resulting code with the highest rate are listed

in Table 4.7. The efficiency and number of codewords of our variable-length

code are 99.54% and 609 respectively. This code is therefore superior to the

(8, 1, 11) code constructed by Kumar in terms of both average code rate and

implementation complexity.

Lc Ls Lc Ls Lc Ls Lc Ls Lc Ls Lc Ls Lc Ls Lc Ls Lc Ls Lc Ls

2 3 5 8 6 10 7 12 8 13 9 15 10 17 11 18 12 20 14 23
3 5 5 8 6 10 7 12 8 13 9 15 10 17 11 18 12 20 14 23
3 5 5 8 6 10 7 12 8 13 9 15 10 17 11 18 12 20 14 23
3 5 5 8 6 10 7 12 8 13 9 15 10 17 11 18 12 20 14 23
3 5 5 8 6 10 7 12 8 13 9 15 10 17 11 18 12 20 14 23
3 5 5 8 6 10 7 12 8 13 9 15 10 17 11 18 12 20 14 23
3 5 5 8 6 10 7 12 8 13 9 15 10 17 11 18 12 20 14 23
3 5 5 8 6 10 7 12 8 13 9 15 10 17 11 18 12 20 14 23
4 6 5 8 6 10 7 12 8 13 9 15 10 17 11 18 12 20 14 23
4 7 5 8 6 10 7 12 8 13 9 15 10 17 11 18 13 21 14 23
4 7 5 8 6 10 7 12 8 13 9 15 10 17 11 18 13 21 14 23
4 7 5 8 6 10 7 12 8 13 9 15 10 17 11 18 13 21 14 23
4 7 5 8 6 10 7 12 8 13 9 15 10 17 11 18 13 21 14 23
4 7 5 8 6 10 7 12 8 13 9 15 10 17 11 18 13 21 14 23
4 7 5 8 6 10 7 12 8 13 9 15 10 17 12 20 13 21 14 23
4 7 5 8 6 10 7 12 8 13 9 15 10 17 12 20 13 21 14 23
4 7 5 8 6 10 7 12 8 13 9 15 10 17 12 20 13 21 14 23
4 7 5 8 6 10 7 12 8 13 9 15 10 17 12 20 13 21 14 23
4 7 5 8 6 10 7 12 8 13 9 15 10 17 12 20 13 21 14 23
4 7 5 8 6 10 7 12 8 13 9 15 11 18 12 20 13 21 14 23
4 7 5 8 6 10 7 12 8 13 9 15 11 18 12 20 13 21 14 23
4 7 5 8 6 10 7 12 8 13 9 15 11 18 12 20 13 21 14 23
4 7 5 8 6 10 7 12 8 13 9 15 11 18 12 20 13 21 14 23
4 7 5 8 6 10 7 12 8 13 9 15 11 18 12 20 13 21 14 23
4 7 5 8 6 10 7 12 8 13 10 16 11 18 12 20 13 21 14 23
4 7 5 8 6 10 7 12 8 13 10 16 11 18 12 20 13 21 14 23
4 7 5 8 6 10 7 12 8 13 10 17 11 18 12 20 13 21 14 23
4 7 5 8 6 10 7 12 8 13 10 17 11 18 12 20 13 21 14 23
4 7 5 8 6 10 7 12 8 13 10 17 11 18 12 20 13 21 14 23
4 7 5 8 6 10 7 12 9 15 10 17 11 18 12 20 13 21 14 23
4 7 5 8 6 10 7 12 9 15 10 17 11 18 12 20 13 22 14 23
4 7 5 8 6 10 7 12 9 15 10 17 11 18 12 20 13 22 14 23
4 7 5 8 6 10 7 12 9 15 10 17 11 18 12 20 13 22 14 23
4 7 5 8 6 10 7 12 9 15 10 17 11 18 12 20 13 22 14 23
4 7 5 8 6 10 8 13 9 15 10 17 11 18 12 20 13 22 14 23
4 7 5 8 6 10 8 13 9 15 10 17 11 18 12 20 13 22 14 23
4 7 5 8 6 10 8 13 9 15 10 17 11 18 12 20 13 22 14 23
4 7 5 8 6 10 8 13 9 15 10 17 11 18 12 20 13 22 14 23
4 7 5 8 6 10 8 13 9 15 10 17 11 18 12 20 13 22 14 23
4 7 5 8 7 11 8 13 9 15 10 17 11 18 12 20 13 22 14 23
4 7 5 8 7 11 8 13 9 15 10 17 11 18 12 20 13 22 14 23
4 7 5 8 7 11 8 13 9 15 10 17 11 18 12 20 13 22 14 23
4 7 5 8 7 11 8 13 9 15 10 17 11 18 12 20 13 22 14 23
4 7 5 8 7 11 8 13 9 15 10 17 11 18 12 20 13 22 14 23
4 7 6 10 7 11 8 13 9 15 10 17 11 18 12 20 13 22 14 23
4 7 6 10 7 11 8 13 9 15 10 17 11 18 12 20 13 22 14 23
4 7 6 10 7 11 8 13 9 15 10 17 11 18 12 20 13 22 15 24
4 7 6 10 7 11 8 13 9 15 10 17 11 18 12 20 13 22 15 24
4 7 6 10 7 11 8 13 9 15 10 17 11 18 12 20 13 22 15 25
4 7 6 10 7 11 8 13 9 15 10 17 11 18 12 20 13 22 15 25
4 7 6 10 7 11 8 13 9 15 10 17 11 18 12 20 13 22 15 25
4 7 6 10 7 11 8 13 9 15 10 17 11 18 12 20 13 22 15 25
4 7 6 10 7 11 8 13 9 15 10 17 11 18 12 20 13 22 15 25
4 7 6 10 7 11 8 13 9 15 10 17 11 18 12 20 13 22 16 26
4 7 6 10 7 11 8 13 9 15 10 17 11 18 12 20 13 22 16 26
4 7 6 10 7 11 8 13 9 15 10 17 11 18 12 20 13 22 16 26
5 8 6 10 7 11 8 13 9 15 10 17 11 18 12 20 13 22 16 26
5 8 6 10 7 12 8 13 9 15 10 17 11 18 12 20 13 22 16 26
5 8 6 10 7 12 8 13 9 15 10 17 11 18 12 20 14 23 16 27
5 8 6 10 7 12 8 13 9 15 10 17 11 18 12 20 14 23 16 27
5 8 6 10 7 12 8 13 9 15 10 17 11 18 12 20 14 23

Table 4.7: Word lengths of partial extension and corresponding source words
lengths for (8, 1, 11) code Ravg = 1.6671, η = 99.54%

59

4.4 Variable-length ML-RLL Codes with d=1

While we have demonstrated that our approach can yield simpler and more

efficient M -ary RLL codes than the fixed-length codes constructed by Kumar,

we also stress that our construction method is more flexible and easier to apply

to any constraint since it is unnecessary for us, in advance, to find a ratio of

block lengths that is close to capacity. As a result, our method will work re-

gardless of the value of capacity and can be applied to a diversity of constraints,

while Kumar’s approach for constructing fixed-length ML-RLL codes can only

be used in particular cases where capacity is close to, but not lower than, a

rational number with a low-valued numerator and denominator.

To demonstrate the flexibility of our approach, we constructed variable-

length ML-RLL codes for all the constraints where whose capacities were listed

in Table 3.1. We present our results in Tables 4.8 - 4.11.

From these tables, it is evident that for all these constraints we constructed

codes with efficiencies greater than 99%. Also, our codes are relatively straight-

forward. The simplest code, for the (3, 1,∞) constraint, contains only three

codewords with maximum length two and has an average code rate equal to ca-

pacity. The most complex code, for the (8, 1, 10) constraint, has 415 codewords

with a maximum codeword length equal to 13.

M/k k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k= ∞
M=2 0.40385 0.54828 0.61436 0.64843 0.66626 0.67629 0.68223 0.68590 0.68821 0.69231
M=3 0.81818 0.91701 0.95911 0.97947 0.98968 0.99482 0.99740 0.99870 0.99935 1.00000
M=4 1.06175 1.14527 1.17834 1.18972 1.19425 1.19622 1.19705 1.19745 1.19759 1.19753
M=5 1.25000 1.31449 1.33636 1.34414 1.34710 1.34830 1.34877 1.34895 1.34902 1.34783
M=6 1.38542 1.44791 1.46702 1.47282 1.47485 1.47557 1.47582 1.47591 1.47594 1.47619
M=7 1.50364 1.55537 1.56952 1.57425 1.57563 1.57621 1.57638 1.57646 1.57648 1.57539
M=8 1.59805 1.64629 1.66073 1.66455 1.66575 1.66612 1.66624 1.66627 1.66628 1.66292

Table 4.8: Highest code rates achieved for d = 1 variable-length ML-RLL codes

60

M/k k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k= ∞
M=2 99.55% 99.42% 99.50% 99.62% 99.59% 99.56% 99.56% 99.58% 99.61% 99.72%
M=3 99.39% 99.08% 99.28% 99.55% 99.75% 99.87% 99.93% 99.96% 99.98% 100.00%
M=4 98.95% 99.22% 99.57% 99.56% 99.54% 99.53% 99.53% 99.53% 99.53% 99.51%
M=5 99.78% 99.51% 99.45% 99.42% 99.41% 99.41% 99.41% 99.41% 99.41% 99.32%
M=6 99.41% 99.66% 99.71% 99.68% 99.67% 99.67% 99.67% 99.66% 99.66% 99.68%
M=7 99.60% 99.57% 99.48% 99.47% 99.46% 99.46% 99.46% 99.47% 99.47% 99.40%
M=8 99.36% 99.43% 99.51% 99.50% 99.50% 99.50% 99.50% 99.50% 99.50% 99.30%

Table 4.9: Efficiency of our d = 1 variable-length ML-RLL codes

M/k k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k= ∞
M=2 7 13 19 25 31 37 43 49 55 5
M=3 13 26 43 55 67 79 91 103 115 3
M=4 31 41 67 85 103 121 139 157 175 19
M=5 36 67 91 115 139 163 187 211 235 17
M=6 55 85 115 145 175 205 235 265 295 31
M=7 67 103 139 175 211 247 283 319 355 37
M=8 79 121 163 205 247 289 331 373 415 43

Table 4.10: Number of codewords in our d = 1 variable-length ML-RLL codes

M/k k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k= ∞
M=2 9 12 11 13 12 13 14 15 16 4
M=3 6 9 12 14 16 16 16 16 16 2
M=4 8 7 8 9 10 11 12 13 14 5
M=5 5 8 9 10 11 12 13 14 15 4
M=6 7 8 8 9 10 11 12 13 14 5
M=7 6 8 9 10 11 12 13 14 15 6
M=8 7 8 7 8 9 10 11 12 13 4

Table 4.11: Maximum codeword length in our d = 1 variable-length ML-RLL
codes

4.5 Variable-length ML-RLL Codes with d=2

We have also applied our method to the construction of variable-length ML-

RLL codes that satisfy the constraint d = 2 where M ranges from 2 to 8 and

when k =∞ and also ranges from 3 to 10. The capacities of these constraints

are listed in Table 4.12. Our code results are listed in Tables 4.13 - 4.16.

Similar to the d = 1 constrained codes above, it is evident that we con-

structed highly efficient codes for all these constraints with efficiencies greater

than 99%. However, the complexity of these codes is also acceptably low. The

simplest code, for the (5, 2,∞) constraint, contains only five codewords with

maximum length three and has an average code rate equal to capacity. Also,

the most complex code, for the (8, 2, 10) constraint, has only 311 codewords

with a maximum length equal to 14.

61

M/k k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=∞
M=2 0.287761 0.405685 0.464958 0.497906 0.517370 0.529340 0.536911 0.541797 0.551463
M=3 0.579692 0.671857 0.714162 0.735555 0.746990 0.753316 0.756894 0.758947 0.761814
M=4 0.752420 0.831349 0.865384 0.881485 0.889498 0.893607 0.895751 0.896883 0.898175
M=5 0.875848 0.946210 0.975110 0.988083 0.994186 0.997133 0.998578 0.999292 1.000000
M=6 0.972085 1.036267 1.061590 1.072473 1.077358 1.079603 1.080648 1.081137 1.081574
M=7 1.051037 1.110467 1.133122 1.142501 1.146544 1.148325 1.149119 1.149474 1.149764
M=8 1.118014 1.173632 1.194203 1.202443 1.205873 1.207328 1.207952 1.208221 1.208425

Table 4.12: Capacities of d = 2 variable-length ML-RLL codes

M/k k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=∞
M=2 0.28571 0.40336 0.46218 0.49585 0.51544 0.52664 0.53401 0.53887 0.54839
M=3 0.57609 0.66870 0.71087 0.73171 0.74338 0.74951 0.75291 0.75490 0.75758
M=4 0.74701 0.82698 0.86074 0.87603 0.88377 0.88768 0.88975 0.89103 0.89000
M=5 0.86957 0.93811 0.96924 0.98454 0.99224 0.99611 0.99805 0.99902 1.00000
M=6 0.96539 1.02883 1.05199 1.06267 1.06763 1.07006 1.07127 1.07187 1.07122
M=7 1.04187 1.09967 1.12401 1.13457 1.13893 1.14093 1.14191 1.14238 1.13954
M=8 1.10739 1.16500 1.18710 1.19632 1.19985 1.20142 1.20212 1.20242 1.19817

Table 4.13: Highest code rate achieved for d = 2 variable-length ML-RLL codes

M/k k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=∞
M=2 99.29% 99.43% 99.40% 99.59% 99.63% 99.49% 99.46% 99.46% 99.44%
M=3 99.38% 99.53% 99.54% 99.48% 99.52% 99.50% 99.47% 99.47% 99.44%
M=4 99.28% 99.47% 99.46% 99.38% 99.36% 99.34% 99.33% 99.35% 99.09%
M=5 99.28% 99.14% 99.40% 99.64% 99.80% 99.90% 99.95% 99.97% 100.00%
M=6 99.31% 99.28% 99.10% 99.09% 99.10% 99.12% 99.13% 99.14% 99.04%
M=7 99.13% 99.03% 99.20% 99.31% 99.34% 99.36% 99.37% 99.38% 99.11%
M=8 99.05% 99.26% 99.41% 99.49% 99.50% 99.51% 99.52% 99.52% 99.15%

Table 4.14: Efficiency of our d = 2 variable-length ML-RLL codes

M/k k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=∞
M=2 3 9 16 21 26 31 36 41 6
M=3 16 21 36 46 56 66 76 86 11
M=4 26 41 56 71 86 101 116 131 16
M=5 36 56 76 96 116 136 156 176 5
M=6 46 71 96 121 146 171 196 221 31
M=7 56 86 116 146 176 206 236 266 31
M=8 79 101 136 171 206 241 276 311 29

Table 4.15: Number of codewords in our d = 2 variable-length ML-RLL codes

M/k k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=∞
M=2 8 11 14 14 16 17 20 19 7
M=3 10 10 15 13 14 15 17 17 6
M=4 11 9 10 11 12 14 14 15 7
M=5 7 10 12 14 16 18 20 20 3
M=6 10 10 10 11 12 13 14 15 7
M=7 8 8 9 10 11 12 13 14 6
M=8 8 8 9 10 11 12 13 14 6

Table 4.16: Maximum codeword length in our d = 2 variable-length ML-RLL
codes

62

Chapter 5

Variable-length balanced codes

for QPSK systems

In Chapter 4, we introduced variable-length RLL codes for multi-level magnetic

recording systems. By applying our code construction method to QPSK sys-

tems, we extend our approach to constructing balanced codes for these band-

pass systems. In this chapter, we demonstrate the construction of capacity-

approaching balanced QPSK codes and present parameters of codes we con-

struct including their spectral performance. As in the previous chapter, these

codes are comprised of variable-length codewords that can be decoded instan-

taneously. In this application, however, our balanced QPSK symbol sequences

contain, on average, an equal number of different symbol values in order to

assist demodulators to recover the original data accurately. The average code

rates of these codes are higher than code rates for any previously reported

fixed-length balanced QPSK codes.

5.1 Constraint for Balanced QPSK Codes

As noted in Chapter 2, a sequence is balanced if and only if its running digital

sum (RDS) is bounded. For this reason, before we introduce the construction

63

of balanced QPSK codes we give a brief introduction to the particular RDS

constraint we consider in this chapter.

Balanced QPSK codes can be considered as an extension of balanced BPSK

codes, where in the equivalent baseband representation the real signalling di-

mension for BPSK is extended into the complex plane for QPSK signals. That

is, the modulation signalling points and the RDS constraints for balanced BPSK

codes are defined only on the real axis, whereas the signalling points and RDS

constraints of balanced QPSK codes are defined in both the real and imaginary

dimensions.

Figure 5.1 depicts the QPSK signalling points {1, j,−1,−j} and RDS lim-

its we consider in this chapter. It should be noted that our results are in-

dependent of the particular one-to-one mapping of symbol values to signaling

points. In the following we arbitrarily map the symbol values {0, 1, 2, 3} to

signaling points {1, j,−1,−j} respectively without affecting the final result.

These symbol values are also shown in Figure 5.1. Although our method

can be used to construct balanced QPSK codes that satisfy various RDS

constraints, we consider only the constraint considered in [15]. This con-

straint limits the RDS of the encoded sequence to the following nine val-

ues: {0, 1, 1 + j, j,−1 + j,−1,−1− j,−j, 1− j}. These nine values are also

depicted in Fig. 5.1.

5.2 Code Construction

In accordance with the method described in Chapter 2, we can construct a

variable-length balanced QPSK code using the following steps:

1. Find a minimal set whose words can be freely concatenated to satisfy the

given RDS constraint;

2. Construct instantaneously decodable codewords by constructing partial

extensions of the minimal set based on a tree structure;

64

Figure 5.1: Signalling points and permitted RDS values in our balanced QPSK
codes

3. Use normalized geometric Huffman coding to generate the optimal map-

ping of source word lengths to codewords lengths for each set of code-

words;

4. Evaluate the average code rate of each constructed code, select the code

with the highest rate and construct the corresponding codewords and

source words.

We discuss these steps with reference to our balanced QPSK code in the sub-

section below.

5.2.1 Minimal Set

As with variable-length M -ary RLL constrained codes, the first step in con-

structing variable-length balanced QPSK codes is to determine the relevant

minimal set. In this case, we choose to form the minimal set with words that

start and end with RDS = 0. Furthermore, we prove that all the words in this

65

Figure 5.2: Two subsets of permitted RDS values

minimal set are unique and prefix free and therefore that this minimal set and

its partial extensions are guaranteed to be instantaneously decodable [15].

We separate the allowable RDS bounds depicted in Fig. 5.1 into two subsets,

both of which are shown in Fig. 5.2. The first set includes four positions

{A1, A2, A3, A4} from which the RDS can return to 0 only after an odd number

of symbols. The second set includes the other five positions {B1, B2, B3, B4, B5}

from which RDS = 0 can occur only after an even number of symbols. For

instance, if the RDS after some number of leading symbols of a word is in

position {A1}, then an appropriate number of odd symbols such as {123} will

return this word to the origin B1 where the RDS = 0. Also, since words in

the minimal set both start and end with RDS = 0, it follows that the words in

the minimal set must have even length. Based on these observations, we can

derive the rule upon which we can determine a minimal set for balanced QPSK

codes.

We now show that the number of unique words of length l that start with

RDS = 0 and end the first time their RDS returns to 0 is 2l. We take the

66

simplest case for example where the length of words is l = 2 to illustrate how

we arrive at this conclusion.

It is straightforward to verify that there are 22 words of length = 2 that end

with RDS = 0 when they start with RDS = 0: they are {02, 13, 20, 31}. Note

that the word {02} describes the only way in which the RDS can be in position

A1 (having RDS = 1) immediately prior to the last symbol and subsequently

returns to the origin B1 (RDS = 0) at the end of the word. Based on their

4-ary symmetry, similar arguments can be applied to the other three length-2

words.

We now derive four unique words of length l = 4 that start and end at the

origin by replacing the last symbol of the word {02}. As noted above, the RDS

prior to the last symbol in this word has value RDS = 1. Then, it is straight-

forward to confirm that there are exactly four unique ways in which the RDS

can return to the origin B1 from position A1 for the first time after three addi-

tional symbols. These four unique ways can be described as the replacement of

the last symbol 2 with each of the symbol sequences {132, 123, 312, 321}. This

replacement process is shown in Fig. 5.3.

Symmetrical arguments can be made for the other three words of length

l = 2. Since each of the 22 words of length l = 2 can be extended to 22 words

of length l = 4 that return to RDS = 0 only at the end of the word, the result

is the set of 2222 = 24 words of length l = 4 shown in Fig. 5.4. .

Note that each word in the set of 24 words of length l = 4 is unique and

returns to RDS = 0 for the first time at the end of the word. Based on this

observation, we conclude that the first three leading symbols of each of these

words are also unique and can be used to derive the words of length l = 6.

For instance in the length 4 words, there are four possible ways to reach the

position A1 immediately prior to the last symbol; these four possible ways are

described by the three leading symbols of words that end with symbol {2}.

Using the argument above, each of these words of length l = 4 can be extended

67

Figure 5.3: Replacement process of the last symbol in the word {02}

68

Figure 5.4: Replacement process of last symbol in words of length 2 to construct
words of length 4

to four words of length l = 6 by replacing the last symbol {2} with the four

symbol sequences {123, 321, 132, 312}. Owing to symmetry, this result can also

be applied to the other words of length l = 4. By replacing the final symbol

of the length l = 4 words with four appropriate symbols, 2422 = 26 balanced

words of length l = 6 are generated. All these words are shown in Fig. 5.5.

With knowledge of the above replacement process, it is straightforward to

enumerate all words of longer length. Since each set of words of length l − 2

includes 2l−2 unique symbol sequences of length l − 3 that describe 2l−2 ways

to reach each RDS value from the set {A1, A2, A3, A4}, we can form balanced

words of length l by replacing the last symbol of each word of length l− 2 with

four symbol sequences listed in Fig. 5.4. Therefore, it follows that the number

of balanced words of length l is 2l−222 = 2l.

Clearly, the length of the words in the minimal set is unbounded, which

implies that the complete minimal set contains an infinite number of words.

However, it is impractical for us to generate a complete minimal set to apply our

69

Figure 5.5: Replacement process of last symbol in words of length 4 to construct
words of length 6

70

new method. In this chapter, we consider an incomplete minimal set instead by

setting restrictions on the infinitely large complete set to bound the complexity

of the code. We propose limiting the length of words in the minimal set to some

finite value lmax. This implies that some constraint-satisfying sequences will

never be used, limiting the rate of the code to a value less than capacity. Table

5.1 lists incomplete minimal sets with lmax = 2,4,6,8.

5.2.2 Capacity

Based on the incomplete minimal set, we can apply our new method to con-

struct variable-length balanced QPSK codes. However, we must have knowl-

edge of the capacity of sequences that satisfy the RDS constraint to accomplish

this task. Evaluation of the capacity of systems with multi-dimensional signal-

ing alphabets was considered in [28]. As before, the capacity can be calculated

by evaluating the largest eigenvalue λmax of the connection matrix D that

describes the overall constraints. In addition, since our system includes inde-

pendent RDS constraints in the real and imaginary dimensions, it was shown

that its connection matrix D can be found as

D = D1 ⊗ In2 + In1 ⊗D2 (5.1)

where D1 is the connection matrix representing the RDS constraint in the real

dimension, D2 is the connection matrix representing the RDS constraint in the

imaginary dimension, and the identity matrices are of the appropriate size.

Although we can deduce λmax from the overall connection matrix D, another

straightforward relationship to calculate λmax was developed in [29]. Since D

is the Kronecker sum of D1 and D2, the maximum eigenvalue of D is the

summation of the maximum eigenvalues of each of D1 and D2. That is, because

the constraints in each dimension are independent of each other:

71

incomplete minimal set
l max = 2 l max = 4 l max = 6 l max = 8

02 0123 012023 01202023 01203123 21003123 01313123
20 0132 012032 01202032 01203132 21003132 01313132
13 0312 012203 01202203 01203312 21003312 01313312
31 0321 012230 01202230 01203321 21003321 01313321

1023 032012 01220023 01223103 21023103 01331123
1032 032021 01220032 01223130 21023130 01331132
1203 032201 01220203 01223301 21023301 01331312
1230 032210 01220230 01223310 21023310 01331321
2103 102023 03202012 01312023 21310023 03113123
2130 102032 03202021 01312032 21310032 03113132
2301 102203 03202201 01312203 21310203 03113312
2310 102230 03202210 01312230 21310230 03113321
3012 120023 03220012 01332012 21330012 03131123
3021 120032 03220021 01332021 21330021 03131132
3201 120203 03220201 01332201 21330201 03131312
3210 120230 03220210 01332210 21330210 03131321

210023 10202023 03112023 23001123 10313123
210032 10202032 03112032 23001132 10313132
210203 10202203 03112203 23001312 10313312
210230 10202230 03112230 23001321 10313321
230012 10220023 03132012 23021103 10331123
230021 10220032 03132021 23021130 10331132
230201 10220203 03132201 23021301 10331312
230210 10220230 03132210 23021310 10331321
302012 12002023 03201123 23110023 12313103
302021 12002032 03201132 23110032 12313130
302201 12002203 03201312 23110203 12313301
302210 12002230 03201321 23110230 12313310
320012 12020023 03221103 23130012 12331103
320021 12020032 03221130 23130021 12331130
320201 12020203 03221301 23130201 12331301
320210 12020230 03221310 23130210 12331310
013123 21002023 10203123 30112023 21313103
013132 21002032 10203132 30112032 21313130
013312 21002203 10203312 30112203 21313301
013321 21002230 10203321 30112230 21313310
031123 21020023 10223103 30132012 21331103
031132 21020032 10223130 30132021 21331130
031312 21020203 10223301 30132201 21331301
031321 21020230 10223310 30132210 21331310
103123 23002012 10312023 30201123 23113103
103132 23002021 10312032 30201132 23113130
103312 23002201 10312203 30201312 23113301
103321 23002210 10312230 30201321 23113310
123103 23020012 10332012 30221103 23131103
123130 23020021 10332021 30221130 23131130
123301 23020201 10332201 30221301 23131301
123310 23020210 10332210 30221310 23131310
213103 30202012 12003123 32001123 30113123
213130 30202021 12003132 32001132 30113132
213301 30202201 12003312 32001312 30113312
213310 30202210 12003321 32001321 30113321
231103 30220012 12023103 32021103 30131123
231130 30220021 12023130 32021130 30131132
231301 30220201 12023301 32021301 30131312
231310 30220210 12023310 32021310 30131321
301123 32002012 12310023 32110023 32113103
301132 32002021 12310032 32110032 32113130
301312 32002201 12310203 32110203 32113301
301321 32002210 12310230 32110230 32113310
321103 32020012 12330012 32130012 32131103
321130 32020021 12330021 32130021 32131130
321301 32020201 12330201 32130201 32131301
321310 32020210 12330210 32130210 32131310

Table 5.1: Incomplete minimal set

λmax = λmax1 + λmax2
(5.2)

It is therefore straightforward to evaluate λmax when we know the maximum

eigenvalues of D1 and D2. Our balanced QPSK code whose RDS limits are

72

shown in Fig 5.1 can be regarded as the combination of two one-dimensional

balanced codes that each restrict the RDS in their dimension to three different

values. It is well known that a one-dimensional signalling alphabet limited to

three different RDS values has a capacity of 1
2

and a λmax =
√

2. Therefore,

our two-dimensional RDS constraint has λmax = λmax1 + λmax2 = 2
√

2, and

C = log2

[
2
√

2
]

= log2

[
8

1
2

]
= 3

2
bits of information per quaternary symbol.

Note that 3
2

is the capacity of the constraint, which is also the capacity of

the complete minimal set rather than the incomplete minimal set. For an

incomplete minimal set, we cannot use Equation 5.2 to calculate the maximum

amount of information per coded symbol because not all constraint-satisfying

sequences are used. However, the enumeration approach proposed by Immink

[3] is an appropriate way to evaluate the upper limit since we already know the

number of words in each incomplete minimal set. His approach results in the

characteristic equation:

2lmaxz−lmax + 2lmax−2z−(lmax−2) + ...+ 4z−2 − 1 = 0 k = 1, 2, ..., K (5.3)

The logarithm of the largest real solution for z that satisfies this equation

provides us with the upper bound for code rate, Ĉ, that is possible to obtain

with an incomplete minimal set. In order to distinguish it from the capacity of

the complete minimal set, we use Ĉ to represent this quantity.

The capacities Ĉ of our system with incomplete minimal sets when lmax

= 4, 6, and 8 are listed in Table 5.2. This table also presents the maximum

possible efficiency ηmax = Ĉ
C

for a code constructed with an incomplete minimal

set, compared to the capacity C = 3
2

of the constraint.

73

lmax 4 6 8

Ĉ 1.3471 1.4396 1.4734

ηmax 0.8981 0.9597 0.9823

Table 5.2: Capacity of incomplete minimal set

5.2.3 Final Code Selection

With the knowledge of the upper bound, we can construct variable-length bal-

anced QPSK codes by applying normalized geometric Huffman coding. How-

ever, similar to the case of M -ary constrained codes, different partial extensions

will lead to different mapping between codewords and source words. It is there-

fore necessary for us to select the code with the highest average code rate. To

limit the complexity of our search, we limit the number of codewords and the

codeword length during extension of different incomplete minimal sets with

lmax = 4, 6, 8 respectively.

Given these limitations, Table 5.3 lists parameters of the codes that we

found to have the highest code rate. In this table, Rbest and ηbest = Rbest
Ĉ

represent the best code rate and best efficiency of codes we constructed starting

with each different incomplete minimal set. Lc denotes the maximum length

of codewords in the code and Ls is the maximum length of the source words.

Finally, Numcw denotes the number of words in highest rate code, and W is a

parameter related to the spectral performance of the code, as noted below.

Tables 5.4 and 5.5 list the mapping of source word and codeword lengths

for the highest rate codes generated for incomplete minimal sets with lmax = 4

and lmax = 6. We don’t list the source word to codeword mappings for larger

codes because of their large number of words.

74

lmax 4 6 8
Rbest 1.3375 1.4296 1.4669
ηbest 0.9929 0.9931 0.9956
Lc 8 10 12
Ls 11 14 17

Numcw 153 665 2713
W 1.543 2.312 2.666

Table 5.3: Optimal metrics of variable-length codes

The optimal variable-length codes lmax=4
Rbest = 1.338
ηbest = 0.892

Lc Ls Lc Ls Lc Ls

2 3 8 11 8 11
2 3 8 11 8 11
2 3 8 11 8 11
4 5 8 11 8 11
4 5 8 11 8 11
4 5 8 11 8 11
4 5 8 11 8 11
4 5 8 11 8 11
4 5 8 11 8 11
4 5 8 11 8 11
4 5 8 11 8 11
4 5 8 11 8 11
4 5 8 11 8 11
4 5 8 11 8 11
4 5 8 11 8 11
4 5 8 11 8 11
4 6 8 11 8 11
6 8 8 11 8 11
6 8 8 11 8 11
6 8 8 11 8 11
6 8 8 11 8 11
6 8 8 11 8 11
6 8 8 11 8 11
6 8 8 11 8 11
6 8 8 11 8 11
6 8 8 11 8 11
6 8 8 11 8 11
6 8 8 11 8 11
6 8 8 11 8 11
6 8 8 11 8 11
6 8 8 11 8 11
6 8 8 11 8 11
6 8 8 11 8 11
6 8 8 11
6 8 8 11
6 8 8 11
6 8 8 11
6 8 8 11
6 8 8 11
6 8 8 11
6 8 8 11
6 8 8 11
6 8 8 11
6 8 8 11
6 8 8 11
6 8 8 11
6 8 8 11
6 8 8 11
6 8 8 11
6 8 8 11
6 8 8 11
6 8 8 11
6 8 8 11
6 8 8 11
6 8 8 11
6 8 8 11
6 8 8 11
8 11 8 11
8 11 8 11
8 11 8 11

Table 5.4: The optimal word length mappings for lmax =4

75

The optimal variable-length codes lmax = 6
Rbest = 1.430
ηbest = 0.954

Lc Ls Lc Ls Lc Ls Lc Ls Lc Ls Lc Ls Lc Ls Lc Ls Lc Ls Lc Ls Lc Ls

2 3 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
2 3 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
2 3 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
2 3 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
4 6 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
4 6 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
4 6 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
4 6 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
4 6 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
4 6 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
4 6 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
4 6 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
4 6 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 6 9 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 8 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14
6 9 8 11 8 11 10 14 10 14 10 14 10 14 10 14 10 14 10 14

Table 5.5: The optimal variable-length codes lmax = 6

5.3 Spectral Analysis

As shown in the previous section, it is possible to use our approach to construct

variable-length balanced QPSK codes with a code rate within two percent of

capacity. However, excellent spectral performance is also desired. The purpose

76

of this section is to present spectral results for our codes.

We calculated the power spectral density of our baseband equivalent coded

sequences through simulation, in each case considering three million codewords.

We also obtained values for low frequency spectral weight (LFSW) W through

simulation, where values of LFSW accurately describe the power spectral den-

sity [PSD] at low frequencies [19] according to the following relationship.

PSD = Wω2, ω � 1

PSD[dB] = 10 log W + 20 logω, ω � 1
(5.4)

The resulting spectra are given in Fig. 5.6, and values of LFSW W were

reported above in Table 5.3:

Figure 5.6: PSD of different incomplete minimal set

Comparing the curves in Fig. 5.6 and the values of W , it is clear that the

suppression of low frequency components degrades as lmax increases, which is

77

opposite to the increase of code rate. As discussed above, the parameter W

represents the performance of low-frequency spectrum where the lower values of

W indicate better performance. The visual reflection of this better performance

are lower straight-line LFSW approximations in Fig. 5.6.

Also, note that the best fixed-rate code developed to date that satisfies the

DC constraint in Fig. 5.1 has a lower code rate (R = 4
3

[3]) than any of the

variable-length codes reported in this Chapter. It also has worse spectral per-

formance (W = 1.925) than the variable-rate code with lmax = 4 and provides

only 1.6 dB additional suppression of low frequencies over our variable-length

code that has a code rate within two percent of capacity.

78

Chapter 6

Conclusion

In this chapter we summarize the content and contributions of this thesis and

suggest directions for future research.

6.1 Thesis Summary

The purpose of this thesis is to extend the recently developed technique for

the construction of variable-length constrained sequence codes to the design of

variable-length RLL codes for multi-level magnetic recording systems and the

design of variable-length balanced codes for QPSK transmission systems. As

shown in this thesis, it is possible in both cases to design codes with code rates

within 1% of capacity.

In Chapter 2, fundamental concepts of information theory and constrained

sequence codes were introduced. Constrained sequence coding is a channel

coding technique that is widely used in optical storage systems and digital

transmission systems. In contrast to error control codes, a CS code focuses

on error prevention rather than error detection and error correction. It takes

arbitrary sequences as its input and converts them into sequences of symbols

that satisfy the constraint of the channel. Examples of the most widely used

constrained sequence codes include RLL codes and DC-free codes. RLL codes

79

limit the length of like-valued symbols so that the probability of accurate de-

tection is increased. DC-free codes ensure the presence of many transitions and

an equal number of different symbols. These codes guarantee the presence of

sufficient timing information for symbol-level synchronization at the receiver

and allow transmission of the user data over an AC coupled channel.

Most constrained sequence codes have been constructed as block codes.

However, variable-length codes have the advantage that high code rates can be

achieved when the variable-length codewords occur with probability close to

their maxentropic probability.

The process of constructing variable-length codes can be described with

four steps: 1© building the model of the constraint of the channel and finding

the corresponding minimal set; 2© using partial extensions to generate sets of

possible codewords; 3© using nGHC to find the optimal one-to-one mapping

between source words and code words for each partial extension; 4© selecting

the mapping with the highest code rate as the final code selection.

In Chapter 3, several existing fixed-length non-binary codes were presented.

Because of their higher-order signalling alphabet, these non-binary codes can

result in a high data rate. However, they also have some deficiencies. As

noted above, their code rate can be considerably below capacity because of

their fixed-length characteristics. For example, a large number of capacities

for different constraints were listed in Table 3.1, but fixed-length codes with

high code rate exist for very few of these constraints. A tabular method to

construct DC-free QPSK codes has also been reported, but the fixed-length

codes that have been constructed to meet that constraint have a code rate 12%

below capacity. Therefore, we construct variable-length non-binary codes in

Chapters 4 and 5.

Variable-length coding enables the design of codes with an average code rate

very close to capacity. As shown in this thesis, we generate multi-level RLL

codes for magnetic recording systems that satisfy all the constraints from Table

80

3.1, and all of our codes have an average code rate within 1% of capacity. In

addition, we also generated DC-free codes for QPSK transmission systems with

spectral performance close to or exceeding the best fixed-rate codes published

to date, with code rates higher than those of the best publised fixed-rate codes.

The complexity of our codes is also lower than previously published fixed-length

codes.

6.2 Thesis Contribution

The primary contribution of this thesis has been to demonstrate the use of

variable-length coding for non-binary systems. This contribution can be di-

vided into several parts. 1© Through the use of directed graphs, we success-

fully modeled the system constraints and found the minimal sets of multi-level

RLL codes and DC-free QPSK codes. In particular, we found a simple re-

placement method to determine the incomplete minimal set for DC-free QPSK

codes. 2© We calculated the capacities of multi-level RLL codes and DC-free

QPSK codes, and on this basis we generated a large number of codes satisfying

a variety of non-binary constraints. We therefore demonstrated that variable-

length coding can be used to construct efficient non-binary constrained codes.

3© Through comparison with reported fixed-length codes, we found that our

variable-length codes have not only a higher code rate but also are less com-

plex than the best fixed-rate codes published to date. This indicates that our

variable-length codes enjoy considerable advantages over fixed-length coding

methods.

6.3 Future Work

In this section, we suggest areas that may be taken into account in future

research.

81

6.3.1 Reducing the Error Propagation

When errors arise on the discrete channel, decoders of constrained sequence

codes typically multiply these errors during decoding. Block codes limit the

extent of this error propagation to within one fixed-length word, however it is

not as straightforward for variable-length codes to achieve this goal. In this

thesis, we have not examined the impact of channel errors on the decoding of

our instantaneously-decodable variable-length codewords.

6.3.2 Simplifying the Construction of Partial Extensions

Constructing and examining partial extensions is a crucial step in the design

of our variable-length codes. However, it can prove difficult for us to find

the optimal partial extension by applying an exhaustive search because an

exhaustive search requires considerable computing and storage resources. This

is of particular importance for non-binary codes because their minimal sets can

be much larger than those of binary codes, which translates into the need for

considerable resources. It would prove helpful to develope a technique that

determines the optimal partial extension without an exhaustive search, as that

would significantly reduce the computational complexity of the code design.

6.3.3 Extending the Complex RDS Constraints in QPSK

Transmission Systems

In the construction of DC-free QPSK codes, we proposed a new replacement

method to find incomplete minimal sets. However, this method is only suitable

for the case that the RDS is limited to the nine values depicted in Fig. 5.1.

Once the RDS bounds exceed this range, this method is no longer directly

applicable. However, after further analysis, we found that the general principle

of this method can be applied to larger RDS bounds, which means that we can

extend our replacement method when the scope of the RDS bounds is increased.

82

To do so, we need to divide the new RDS bounds into different regions, and

from each region, determine unique ways to return to the origin. We can then

develop a new replacement method that represents each unique way to return

to the origin with a corresponding symbol sequence. However, further research

is still required in order to make it clear how this approach can be applied to

other complex-valued signaling transmission systems.

6.3.4 Considering the Non-ideal Source

For the variable-length coding technique used in this thesis, one of the under-

lying assumptions is that the source symbols are indepedent and identically

distributed. However, in many real-world systems, there exists some redun-

dancy in the source symbol stream which makes source symbols and source

words correlated. Although source symbols can be randomized through scram-

bling, it remains to be determined the effects of this randomization on non-ideal

sources. It is therefore worthwhile to consider how to apply our variable-length

coding technique in a system that contains a non-idea source.

83

Bibliography

[1] C. Shannon, “A mathematical theory of communication,” Bell System Technical

Journal, vol. 27, no. 4, pp. 623–656, July 1948.

[2] K. W. Cattermole, “Principles of digital line coding,” International Journal of

Electronics, vol. 55, no. 1, pp. 3–33, 1983.

[3] K. A. S. Immink, Codes for mass data storage systems, 2nd ed. Shannon Foun-

dation Publisher, 2004.

[4] K. Immink, “EFM coding: squeezing the last bits,” IEEE Transactions on Con-

sumer Electronics, vol. 43, no. 3, pp. 491–495, Aug 1997.

[5] A. Steadman and I. Fair, “Variable-length constrained sequence codes,” Com-

munications Letters, IEEE, vol. 17, no. 1, pp. 139–142, January 2013.

[6] K. A. Schouhamer Immink, “Constructions of almost block-decodable runlength-

limited codes,” IEEE Transactions on Information Theory, vol. 41, no. 1, pp.

284–287, Jan 1995.

[7] P. Funk, “Run-length-limited codes with multiple spacing,” IEEE Transactions

on Magnetics, vol. 18, no. 2, pp. 772–775, Mar 1982.

[8] P. Franaszek, “Sequence-state methods for run-length-limited coding,” IBM

Journal of Research and Development, vol. 14, no. 4, pp. 376–383, July 1970.

[9] P. Bender and J. Wolf, “A universal algorithm for generating optimal and nearly

optimal run-length-limited, charge-constrained binary sequences,” in 1993 IEEE

84

International Symposium on Information Theory, 1993. Proceedings., Jan 1993,

pp. 6–6.

[10] S. Aviran, P. Siegel, and J. Wolf, “An improvement to the bit stuffing algorithm,”

IEEE Transactions on Information Theory, vol. 51, no. 8, pp. 2885–2891, Aug

2005.

[11] A. Steadman, “Variable-length constrained sequence codes,” Master’s thesis,

University of Alberta, 2011.

[12] G. Bocherer and R. Mathar, “Matching dyadic distributions to channels,” in

Data Compression Conference (DCC), 2011, March 2011, pp. 23–32.

[13] G. Bocherer, “Geometric Huffman coding,” Available: http://www.georg-

boecherer.de/ghc.html, Aug 2011.

[14] A. Calderbank, R. Laroia, and S. McLaughlin, “Coded modulation and precod-

ing for electron-trapping optical memories,” IEEE Transactions on Communi-

cations, vol. 46, no. 8, pp. 1011–1019, Aug 1998.

[15] S. McLaughlin, “Improved distance m-ary (d, k) codes for high density record-

ing,” IEEE Transactions on Magnetics, vol. 31, no. 2, pp. 1155–1160, March

1995.

[16] A. Kumar and K. A. Schouhamer Immink, “Design of close-to-capacity con-

strained codes for multi-level optical recording,” IEEE Transactions on Commu-

nications, vol. 57, no. 4, pp. 954–959, April 2009.

[17] C. French, G. Dixon, and J. Wolf, “Results involving (d , k) constrained M -ary

codes,” IEEE Transactions on Magnetics, vol. 23, no. 5, pp. 3678–3680, Sept

1987.

[18] K. A. Schouhamer Immink, J.-Y. Kim, S.-W. Suh, and S. K. Ahn, “Extremely

efficient DC-free RLL codes for optical recording,” IEEE Transactions on Con-

sumer Electronics, vol. 47, no. 4, pp. 910–914, Nov 2001.

85

[19] I. Fair and C. Jamieson, “Tabular construction of balanced codes,” Electronics

Letters, vol. 49, no. 16, pp. 997–999, Aug 2013.

[20] I. Fair and D. Martin, “Generation of balanced quadrature phase shift keyed

sequences through guided scrambling,” IEEE Transactions on Communications,

vol. 9, no. 11, pp. 1404–1411, 2015.

[21] C. Jamieson and I. Fair, “Construction of constrained codes for state-

independent decoding,” IEEE Journal on Selected Areas in Communications,

vol. 28, no. 2, pp. 193–199, February 2010.

[22] C. Jamieson, I. Nikolaidis, and I. Fair, “Improved algorithm for constructing

constrained codes with state-independent decoding,” Communications Letters,

IEEE, vol. 15, no. 3, pp. 272–274, March 2011.

[23] G. Cariolaro and G. Tronca, “Spectra of block coded digital signals,” IEEE

Transactions on Communications, vol. 22, no. 10, pp. 1555–1564, Oct 1974.

[24] Y. Xin and I. Fair, “A performance metric for codes with a high-order spectral

at zero frequency,” IEEE Transactions on Information Theory, vol. 50, no. 2,

pp. 385–394, Feb 2004.

[25] I. Fair, W. Grover, W. Krzymien, and R. MacDonald, “Guided scrambling: a

new line coding technique for high bit rate fiber optic transmission systems,”

IEEE Transactions on Communications, vol. 39, no. 2, pp. 289–297, Feb 1991.

[26] B. G. Lee and S. C. Kim, Scrambling techniques for digital transmission.

Springer-Verlag, 1994.

[27] K. A. Schouhamer Immink, P. Siegel, and J. Wolf, “Codes for digital recorders,”

IEEE Transactions on Information Theory, vol. 44, no. 6, pp. 2260–2299, Oct

1998.

86

[28] C. Jamieson and I. Fair, “Evaluation of the capacity of constrained codes with

multiple constrained signalling dimensions,” IEEE Transactions on Communi-

cations, vol. 8, no. 13, pp. 2238–2245, September 2014.

[29] R. Bellman, Introduction to Matrix Analysis. Siam, 1997.

87

	1.UofA master thesis
	thes_uofa
	Introduction
	Moving Least Square method
	Basic idea

	Models and method
	Models illustration

	Results and discussions
	Indentation (small deformation)

	Conclusions

