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Abstract 

The analysis of deformations in rock masses includes two main steps: a) choosing a 

proper mechanical model that best describes the rock mass behaviour, and b) determining 

the rock mass mechanical parameters corresponding to the selected model.  Deformability 

of a rock mass with persistent joint sets is potentially anisotropic and is mainly governed 

by the mechanical and geometrical characteristics of the joints.  

The available models for the deformation analysis of rock masses can be divided into two 

general categories: continuum models and discontinuum models.  In discontinuum 

models, the joints are simulated explicitly.  However, when the number of joints in a 

model increases, the explicit definition of all joints becomes difficult and, in some cases, 

impractical.   Besides, due to the dependency of numerical discretization on joint spacing 

and orientation, the size of a discontinuum model increases considerably as the number of 

joints increases within the model.   Equivalent continuum models can be used as an 

alternative to discontinuum models for the deformation analysis of jointed rocks.  In these 

models, the behaviour of a jointed rock mass is approximated by the analysis of its 

equivalent continuum.  The discontinuities are taken into account implicitly, either by 

implementing proper constitutive relations or by adopting appropriate mechanical 

parameters.   

In this thesis, the principal deformation mechanisms for a jointed rock mass are defined 

and characterized through the analysis of the results of 26 plate loading tests conducted 

on a jointed rock mass at the Bakhtiary dam and hydro electric power plant project in 

Iran.  A new three dimensional equivalent continuum model, the JointedRock model, is 

developed for jointed rock masses that contain up to three persistent joint sets.  The 

geometrical and mechanical parameters of the joint sets are directly incorporated in the 



 

constitutive equations of the model.  The constitutive equations are represented in a 

tensor form so the model can be used for any arbitrary joint set configurations.  Non-

linearity of the rock mass deformation, caused by the stress-dependency of joint stiffness, 

can also be modeled by choosing a stress-dependent stiffness model for the rock joints.  

A Mohr-Coulomb failure criterion is used to check failure of intact rock blocks and slip 

along the rock joints.  The model is implemented in FLAC3D and is verified against the 

distinct element method (3DEC) and, where available, analytical solutions. 

Plate loading tests are often conducted to determine the large scale deformability 

parameters of a rock mass.  The ISRM suggested equation is routinely used to calculate 

the rock mass deformation modulus.  The method uses the Boussinesq relationships for 

loading a semi-infinite isotropic linear elastic medium.  Inconsistency of the real test 

gallery geometry with the semi-infinite model assumption leads to overestimation of the 

rock mass deformation modulus.  In jointed rock masses, dependency of the test results 

on the orientation and spacing of discontinuities also causes a considerable scatter in the 

test results and consequently in the moduli calculated using the ISRM suggested method. 

A method is proposed for interpreting the plate loading test results conducted on jointed 

rock masses.  The JointedRock model is used to back calculate the average stiffness of 

rock joints, from the test results.  The rock mass deformability is related to the 

orientation, spacing and stiffness of the joints and the deformation modulus of intact rock. 

The equivalent deformation modulus of the rock mass is then determined numerically for 

any desired direction, relative to the orientation of discontinuities.   
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Chapter 1  

Introduction 

1.1. Overview 

Discontinuities of various scales, ranging from few millimeters to a few kilometers, are 

common components of a rock mass.  Large-scale discontinuities are formed during 

geological or tectonic activities and are frequently observed in clusters, such as bedding 

planes and tectonic or release joints.  Small-scale discontinuities form following stress 

changes and disturbances caused by either tectonic or engineering activities, and are 

usually seen as randomly distributed and isolated fractures that follow the locally-induced 

major principal stresses.  The fractures developed around a tunnel are examples of such 

discontinuities.  

The large-scale discontinuities have a remarkable influence on the mechanical properties 

of rock masses such as deformability, permeability and strength.  Jointed rock masses 

generally exhibit lower stiffness, higher permeability and lower strength compared to an 

intact rock. 

The rock joints and their influence on the behaviour of rock masses have been an active 

research area in geomechanics for many years.  With advancements in computing 

capacity, more sophisticated numerical modeling techniques have emerged over recent 

years.  This has made it possible to incorporate more aspects of rock mass behaviour 

using advanced mechanical models.  Researchers have suggested various analytical, 

numerical and empirical methods, all aimed at taking into account the influence of 

discontinuities on the mechanical behaviour of rock masses.  Considerable attention has 

been given to the study of the mechanical behaviour of rock joints and to the techniques 

by which the joint models can be incorporated into the fundamental relationship 

governing the rock mass behaviour.  These techniques can be divided into two general 

categories: discontinuum-based methods and continuum-based methods.  In 

discontinuum-based methods, the discontinuities are explicitly incorporated into analysis 

using the principles of discontinuum mechanics, so the discrete nature of jointed rock 
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masses is directly acknowledged.  In continuum-based methods, the jointed rock mass is 

replaced by an idealized equivalent continuum whose mechanical characteristics are 

established based on the properties of its constituents, i.e., rock matrix and 

discontinuities.  The techniques used for this purpose can be divided in two general 

groups: direct methods and reverse methods. In direct methods, the equivalent 

properties/constitutive model are derived directly from that of the rock matrix and the 

discontinuities. In reverse methods, equivalent properties are estimated based on the back 

calculation of the rock mass behaviour observed in experiments or numerical simulations. 

Given the discontinuous nature of jointed rock masses, the discontinuum-based methods 

more accurately represent the physical behaviour of the jointed rock masses.  Rotation, 

dislocation and separation of rock blocks that are common deformation mechanisms for 

jointed rock masses can be modeled by these methods.  However, when the number of 

discontinuities increases, the explicit definition of discontinuities becomes impractical 

and, in some cases, even unnecessary.  Discontinuum-based models are also very 

sensitive to the applied boundary conditions, especially when the size of the structure to 

be modeled is rather small relative to the spacing of discontinuities.  For these cases, 

continuum-based models provide a practical and more computationally efficient tool for 

analysis of jointed rocks.   

The deformational properties of rocks are routinely determined by conducting laboratory 

and in-situ tests.  The most common in-situ tests used for this purpose are plate loading 

test, dilatometer test, Goodman jack test and large flat-jack test.  All of these tests 

basically involve loading a rock mass and measuring the resultant displacements.  The 

measured displacements are then used to calculate the rock mass deformation modulus 

using the stress-strain relations developed based on the principles of continuum 

mechanics.     

The plate-loading test has several advantages over the other tests.  The test induces 

deformations in a relatively large volume of rock mass, which makes it better able to 

address the scale effect on the rock mass deformability.  In addition, unlike other tests, no 

tensile stress component develops during the plate-loading test.  The resulting 

compressive stress regime beneath the loading plate is similar to the stresses at the 

foundation of large structures such as gravity or arch dams.  Hence the plate-loading test 
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is frequently used to assess the rock mass deformability at the foundation of structures 

founded on rocks. 

The plate-loading test is normally performed in small test galleries.  The test simply 

involves loading two opposite rock surfaces, by means of hydraulic jacks or flat jacks, 

and measuring the resultant deformations at the surface or within the rock mass.  The 

Boussinesq’s equation for a semi-infinite elastic body subjected to a distributed load, as 

suggested by the International Society for Rock Mechanics (ISRM), is regularly used to 

interpret the test results and calculate the deformation modulus.  The test appears simple 

in principle but the interpretation of the results is associated with some practical and 

theoretical complications and uncertainties.  The semi-infinite boundary condition 

assumption embedded in the ISRM suggested equation is not compatible with the real 

geometry of the test gallery (semi-square cross section).  The confinement imposed by the 

surrounding rocks causes the ISRM suggested equation to overestimate the deformation 

modulus. The ISRM suggested method assumes the rock mass is a continuous, 

homogeneous, isotropic, linear elastic material.  But in nature, rock masses rarely meet 

these assumptions, mainly because of  discontinuities.  In a jointed rock mass, the 

mechanical and geometrical characteristics of discontinuities have a dominant influence 

on the test results.  Depending on the direction of loading relative to the orientation of 

discontinuities, different deformation mechanisms can get mobilized during the test.  

Ignoring the influence of discontinuities on the test results is the main factor that leads to 

scattered deformation moduli when the ISRM suggested equation is used.  The main 

drawbacks of the ISRM suggested method are: 

 Inconsistency of the theoretical assumptions with the real test site geometry, which 

results in a systematic error in the calculated moduli. 

 The Poisson's ratio of the rock mass should be known beforehand. 

 No meaningful relation can be established between the calculated deformation 

moduli and the discontinuities parameters, 

 Too many tests are required to determine the deformability of a rock mass with 

varying discontinuity configurations 

Alternatively, the numerical modelling techniques can be used to interpret the plate 

loading test results.  Using this approach, the influence of discontinuities can be taken 
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into account and the rock mass deformability can be determined as a function of intact 

rock properties and joint properties.  The discontinuities can be incorporated explicitly 

using discontinuum methods or implicitly using equivalent continuum models.  For the 

discontinuum analysis, the exact geometrical configuration of all discontinuities affecting 

the test results should be known.  These data can be collected by a thorough joint survey 

of the test site.  When such detailed data are not available or when the spacing of joints is 

small compared to the size of loading plate, equivalent continuum models can be used.  

The advantages of numerical modeling techniques for interpretation of plate loading test 

results are: 

 The real boundary condition and the test site geometry can be taken into account. 

 It is possible to investigate the influence of the mechanical and geometrical 

properties of the discontinuities on the rock mass deformability. 

 Fewer tests are required to determine the rock mass deformability for a jointed rock 

mass with various joint spacing and orientation. 

1.2. Research Scope and Focus 

The main focus of this research is to develop a practical continuum equivalent model for 

the deformation analysis of jointed rock masses.  The results of a series of plate loading 

tests conducted at the Bakhtiary dam site in southwest Iran form the experimental basis of 

this research.  By analyzing the test results, the rock mass deformation mechanisms 

mobilized during the tests are first investigated and characterized.  A new equivalent 

continuum constitutive model is formulated and implemented in FLAC3D for the stress-

strain analysis of jointed rock masses.  A methodology is proposed for interpretation of 

plate loading test results using the developed model.  The thesis is structured as follows: 

In Chapter 2, a brief introduction is provided on the principles of the stress-deformation 

analysis of continuua, the deformation mechanisms of jointed rocks, the available 

methods for analyzing jointed rocks and, finally, the plate-loading test. 

In Chapter 3 the results of 26 large-scale plate-loading tests conducted at the Bakhtiary 

dam site are studied to investigate the influence of pre-existing small spacing 

discontinuities on rock mass deformability and the test results.  The tests are classified 

into several groups based on the rock structure and the loading direction relative to the 
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orientation of major discontinuities.  For each group, the dominant deformation 

mechanism is identified and characterized by detailed analysis of the stress-deformation 

behaviour of the rock mass during the tests.    

Chapter 4 deals with the formulation and implementation of a three-dimensional 

equivalent continuum constitutive model, namely JointedRock.  The model is formulated 

for a Representative Elementary Volume (REV) containing one to three persistent 

discontinuity planes.  The constitutive equations are established in tensor form, using the 

principles of the conservation of energy for the work done on the REV.  A Mohr-

Coulomb plasticity model is adopted for both the rock matrix and discontinuities.  A C++ 

code is written for the JointedRock model and the model is implemented in FLAC3D as a 

constitutive model.  The model is verified against the discontinuum methods, and also 

closed form solutions, where available.    

In Chapter 5, the rock mass deformation modulus is calculated using the ISRM-suggested 

equation, numerical modelling, and empirical relationships for the Bakhtiary dam 

foundation.  The limitations of all methods are discussed. A new approach is then 

proposed for interpretation of the PLT results using the JointedRock model.  

Appendix 1 provides the guidelines for loading the JointedRock model by FLAC3D and 

presents the keywords associated with the model.  

Appendix 2 includes the results of a detailed study on the boundary condition effect on 

the simulations done using the JointedRock model.  The model is compared with distinct 

element code 3DEC and its limitations are discussed.  

In Appendix 3 analytical relationships are derived for loading of a semi-infinite elastic 

body.  Two cases of circular and square loads are considered.  These relationships can be 

used for comparison with numerical simulation of a semi-infinite body. 

Appendix 4 provides detailed data on the plate loading tests studied in Chapter 5. 

1.3. Practical Implication and Outcome 

The JointedRock model provides an efficient and practical tool for stress-deformation 

analysis of systematically jointed rock masses.  The model is specifically advantageous in 

the following situations: 
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 problems with small spacing joint sets, where discontinuum methods cannot be 

applied,  

 in combination with discontinuum models (hybrid model) for simulating the far-

field jointed rock mass, 

 bearing capacity analysis of jointed rock foundations in which the rock strength is 

directional due to the existence of joint sets. 

The proposed method for interpretation of PLT results addresses the problems associated 

with the ISRM suggested method and the empirical relationships.  The method potentially 

reduces the number of tests required to determine the deformability of a jointed rock 

mass.  
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Chapter 2  

Background and Literature Review 

Similar to other materials, rocks deform upon loading until an elastic or plastic 

equilibrium is reached.  Under a given load, the amount by which a rock deforms depends 

on its elastic deformability and strength characteristics.  The deformability of rocks is 

usually represented by two elastic constants: Deformation modulus (E) and Poisson's 

ratio (ν), or their reciprocal Lama's constants.  These parameters correspond to Hook's 

law for an isotropic linear elastic material. 

At the rock mass scale, when the intact rock is intersected by persistent discontinuities, 

the rock mass deformability becomes anisotropic and in many instances stress-dependent.  

For a general anisotropic rock mass, 21 elastic constants are required to describe the rock 

mass deformability by Hooke's law (Jaeger et al. 2007).  The natural symmetries existing 

in some rock masses reduce this number.  A review of the common symmetries observed 

in jointed rocks are provided in this chapter. 

The deformation of jointed rocks might also be accompanied by displacement along the 

joints or the rigid body motion of rock blocks or layers.  For such cases deformation of 

the rock mass cannot be calculated using Hooke's law but require more sophisticated 

models such as equivalent continuum or discontinuum models.  The next sections include 

a brief review of the models available for deformation analysis of jointed rock masses. 

2.1. Hooke’s Law and Material Symmetry 

Hooke’s law establishes a linear relationship between the stress and strain in an elastic 

material.  The material is assumed to be linear and homogeneous.  In a general three-

dimensional coordinate system, Hooke’s law can be written in tensorial form as follows 

(Jaeger et al. 2007; Timoshenko and Goodier 1970): 

𝝉 = 𝑫𝝐   (2.1) 

Where 𝝉 is the stress tensor, 𝝐 is the strain tensor and D is a forth order tensor whose 81 

components are known as the elastic stiffness constants (Jaeger et al. 2007).   The stress 
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and strain tensors are second-order tensors with six independent components.  This limits 

the number of independent elastic stiffness constants to 36.   

It is a common practice to write the equation (2.1) in a matrix form to take advantage of 

the matrix algebra.  Since there is no straightforward way to represent a forth-order tensor 

in the matrix form, Voight’s method is usually invoked for this purpose.  In this method, 

the stress and strain tensors are represented by 6×1 matrices and the elastic stiffness 

tensor is represented by a 6×6 matrix, as follows (Mase and Mase 1999): 

⎣
⎢
⎢
⎢
⎢
⎡
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝐷11 𝐷12 𝐷13 𝐷14 𝐷15 𝐷16
𝐷21 𝐷22 𝐷23 𝐷24 𝐷25 𝐷26
𝐷31 𝐷32 𝐷33 𝐷34 𝐷35 𝐷36
𝐷41 𝐷42 𝐷43 𝐷44 𝐷45 𝐷46
𝐷51 𝐷52 𝐷53 𝐷54 𝐷55 𝐷56
𝐷61 𝐷62 𝐷63 𝐷64 𝐷65 𝐷66⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝜖1
𝜖2
𝜖3
𝜖4
𝜖5
𝜖6⎦
⎥
⎥
⎥
⎥
⎤

     (2.2)  

where the constants Dij are the components of the elasticity matrix.  The components of 

the stress matrix are 𝜎1 = 𝜎11, 𝜎2 = 𝜎22, 𝜎3 = 𝜎33, 𝜎4 = 𝜎23, 𝜎5 = 𝜎13 and 𝜎6 = 𝜎12.  

The components of the strain matrix are 𝜖1 = 𝜖11, 𝜖2 = 𝜖22, 𝜖3 = 𝜖33, 𝜖4 = 2𝜖23, 

𝜖5 = 2𝜖13 and 𝜖6 = 2𝜖12.  The factor “2” appears in the strain components in accordance 

with the original Voight’s work on engineering shear strains (Jaeger et al. 2007).  

Equation (2.1) can be written briefly as:  

𝝉 = 𝑫𝝐  (2.3) 

where 𝜏, 𝜖 and D are matrix quantities.  The inverse of Equation (2.3), which relates the 

stresses to the strains, can be written as 

𝝐 = 𝑪𝝉  (2.4) 

where C is the elastic compliance matrix (Mase and Mase 1999).   

For a general case of an anisotropic material with no physical symmetry, 36 elastic 

constants are required to establish the compliance matrix.  Due to the symmetry of the 

strain and stress tensors in equation (2.1), only 21 constants are independent.  For 

materials having some sort of physical symmetry, such as isotropic, transversely 

isotropic, orthotropic and monoclinic materials, the number of independent elastic 

constants decreases, depending on the number of symmetry directions. 
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2.1.1.    Isotropic Material  

An isotropic material refers to a material for which any arbitrary plane is a plane of 

symmetry.  The compliance matrix of an isotropic material can be established provided 

two elastic constants, i.e. Young’s modulus, E, and Poison’s ratio, 𝜈, or their reciprocal 

Lame constants, λ and G, are known (Goodman 1989).  Equation (2.4) can be written in 

the matrix form as follows: 

 

⎣
⎢
⎢
⎢
⎢
⎡
𝜖1
𝜖2
𝜖3
𝜖4
𝜖5
𝜖6⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡

1 𝐸⁄ −𝜈 𝐸⁄ −𝜈 𝐸⁄ 0 0 0
−𝜈 𝐸⁄ 1 𝐸⁄ −𝜈 𝐸⁄ 0 0 0
−𝜈 𝐸⁄ −𝜈 𝐸⁄ 1 𝐸⁄ 0 0 0

0 0 0 1 𝐺⁄ 0 0
0 0 0 0 1 𝐺⁄ 0
0 0 0 0 0 1 𝐺⁄ ⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6⎦
⎥
⎥
⎥
⎥
⎤

     (2.5) 

where G is the shear modulus.  Intact rocks, and massive and densely jointed rock masses 

usually exhibit isotropic behaviour. 

2.1.2. Transversely Isotropic Material 

A transversely isotropic material has similar properties in all directions perpendicular to a 

rotational symmetry axis, 𝜿, which is normal to a plane of isotropy (Jaeger et al. 2007).  

In other words, in a transversely isotropic material, there is a plane with the normal vector 

𝜿 such that every plane perpendicular to it is a plane of symmetry.  A transversely 

isotropic material has five independent elastic constants.  For a case in which the 

rotational symmetry axis, 𝜿, is aligned with the coordinate axis, 𝒆3 (Figure 2.1), the 

stress-strain relationship can be written as follows (Lai et al. 2010): 

⎣
⎢
⎢
⎢
⎢
⎡
𝜖1
𝜖2
𝜖3
𝜖4
𝜖5
𝜖6⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1 𝐸1⁄ −𝜈12 𝐸1⁄ −𝜈13 𝐸3⁄ 0 0 0
−𝜈12 𝐸1⁄ 1 𝐸1⁄ −𝜈13 𝐸3⁄ 0 0 0
−𝜈13 𝐸1⁄ −𝜈13 𝐸1⁄ 1 𝐸3⁄ 0 0 0

0 0 0 1 𝐺13⁄ 0 0
0 0 0 0 1 𝐺13⁄ 0
0 0 0 0 0 1 𝐺12⁄ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6⎦
⎥
⎥
⎥
⎥
⎤

     (2.6) 

where indices 1, 2 and 3 refer to principal axes 𝒆1,𝒆2 and 𝒆3 respectively.  Sedimentary 

rocks with evenly spaced bedding planes and metamorphic rocks with foliations are 

examples of transversely isotropic rocks.   

2.1.3. Orthotropic Material 

A material with two or three mutually perpendicular planes of symmetry is called 

orthotropic.  An orthotropic material has nine independent elastic constants.  Provided the 
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coordinate axes are aligned with the normals to the three symmetry planes, the stress-

strain relationship can be written as follows (Lai et al. 2010): 

 

⎣
⎢
⎢
⎢
⎢
⎡
𝜖1
𝜖2
𝜖3
𝜖4
𝜖5
𝜖6⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1 𝐸1⁄ −𝜈12 𝐸2⁄ −𝜈13 𝐸3⁄ 0 0 0
−𝜈12 𝐸1⁄ 1 𝐸2⁄ −𝜈23 𝐸3⁄ 0 0 0
−𝜈13 𝐸1⁄ −𝜈23 𝐸1⁄ 1 𝐸3⁄ 0 0 0

0 0 0 1 𝐺23⁄ 0 0
0 0 0 0 1 𝐺13⁄ 0
0 0 0 0 0 1 𝐺12⁄ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6⎦
⎥
⎥
⎥
⎥
⎤

     (2.7) 

Layered sedimentary rocks intersected with orthogonal tension joints are examples of 

orthotropic rock masses. 

 
Figure 2.1: Common physical symmetries for rock masses. (a) Isotropic: every arbitrary plane is a 
plane of symmetry, (b) Transversely isotropic: κ is axis of symmetry, (c)(d) Orthotropic: two and 
three planes of symmetry as shown 

Other forms of material symmetry, such as monoclinic symmetry, are rarely observed in 

rocks.  One can refer to (Cowin and Mehrabadi 1987) for further discussion on the 

physical symmetry in anisotropic materials. 

2.2. Deformation of Jointed Rock Masses 

In nature, rocks are frequently intersected by discontinuities of random orientations. The 

intersection of these discontinuities results in a layered or blocky structure whose 
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mechanical characteristics are a function of the properties of the intact rock blocks and 

the discontinuities.   

Deformation of a jointed rock mass consists of two components:  deformation of intact 

rocks, and displacement along the joints.  Depending on the boundary conditions and 

orientation of discontinuities, the translation and rotation of rock blocks might also occur.  

Therefore, the deformability of a jointed rock mass depends not only on the mechanical 

properties of the intact rock and the joints, but also on the geometrical factors.  Figure 2.2 

shows the effect of the boundary condition on the deformation of a jointed rock cylinder.  

When the lateral movement is prevented by the applied roller boundary condition, the 

axial deformation of the cylinder will be composed of the joint closure and the intact rock 

compression.  If the roller boundary is removed, the dominant deformation mechanism 

switches to sliding and rigid translation of the upper rock block.  The resultant axial 

deformation (δ1 or δ2) will depend on the mobilized deformation mechanism. 

 
Figure 2.2:  Effect of boundary condition on deformation mechanism of a jointed rock cylinder. (a) 
Lateral movement is prevented, deformation is a result of intact rock compression and normal 
closure of joint, (b) dominant deformation mechanism is shear sliding through the joint. 

In a jointed rock mass, discontinuities can be divided into primary and secondary 

discontinuities.  The primary discontinuities are those with high persistency that appear 

either in sets, such as bedding planes, or as a single plane, such as faults.  The primary 

discontinuities have a dominant influence on the mechanical behaviour of the rock mass.  

The secondary joints include small-scale, randomly oriented single joints that are usually 

limited in size and have minimal influence on the large scale behaviour of the rock mass.  

A jointed rock mass, containing primary and secondary joints, can be considered as an 

assemblage of intact rock blocks, with downgraded mechanical properties, that are 

attached at the primary discontinuities, as shown in Figure 2.3.  
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P

δ2

P
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Figure 2.3: idealized model of a discontinuous rock mass with primary and secondary joints 

Deformability of such idealized rock mass is a function of the following parameters: 

- Deformability of rock blocks 

- Normal and shear stiffness of primary discontinuities. 

- Spatial configuration of primary discontinuities. 

- Boundary conditions.    

Due to the stochastic distribution of secondary joints, deformability of the rock blocks 

can be assumed to be isotropic and be represented by Hooke’s law for the isotropic 

materials (Jaeger et al. 2007).  The elastic constants for the rock blocks can be determined 

directly through laboratory testing, or indirectly through empirical relationships such as 

the one suggested by Hoek and Diederichs (2006).  Alternatively, more advanced 

techniques such as the Synthetic Rock Mass (SRM) approach can be used (Ivars et al. 

2007).   

 
Figure 2.4: Normal stress (σn) versus closure (∆Vj) for a fresh Limestone bedding plane subjected 
to repeated loading - unloading cycles (after Bandis et al. 1983) 

Deformability of the discontinuities is usually represented by normal and shear stiffness.  

The experiments by Goodman (1976) and Bandis et al. (1983) showed that the normal 
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displacement of joints follows a non-linear relationship with the applied normal stress 

and can be represented by a hyperbolic function (Figure 2.4).  Bandis et al. (1983) also 

observed a considerable hysteresis in the normal stress-normal displacement curves 

obtained from their experiments on mated and unmated joints of various rock types.  

They proposed a semi-logarithmic function for normal displacement of unmated joints 

(Bandis et al. 1983).   

Misra (1999) and Misra and Marangos (2011) developed a joint deformation model using 

the principles of contact theory.  In this method the intact rock is assumed to be linear 

elastic.  The stiffness of joint asperities is defined using the Hertz or Mindlin contact 

model.  The non-linearity of joint deformation is related to variations in total contact area 

during the loading and unloading process (Cook 1992).   

Goodman (1976) proposed two models for the shear displacement of rock joints under 

various normal stresses, as shown in Figure 2.5.  The first model represents a constant 

shear stiffness behaviour, whose peak elastic shear displacement is a function of the 

applied normal stress (constant stiffness model).  In the second model the peak shear 

displacement is constant, and the shear stiffness various as a function of the applied 

normal stress level (constant displacement model).  The experimental studies by Bandis 

et al. (1983) demonstrate that the constant displacement model matches better the 

behaviour of the studied rock joints.  Barton (2007; 1986) and Bandis et al. (1983) 

suggested that rock joints’ shear stiffness is generally lower than their normal stiffness, 

which results in an anisotropic deformability for the rock joints.   

 
Figure 2.5: Shear stress versus shear displacement models: (a) constant stiffness model, (b) 
constant displacement model (after Goodman 1976) 

Saeb and Amadei (1992) developed an incremental joint model that accounts for the 

coupling effect of normal stress-shear displacement and shear stress-normal displacement 
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for dilatant joints.  They showed that for a dilatant joint, the normal stiffness decreases as 

the joint undergoes shear displacement.   

Barton (1986; 2007) analyzed the results of several flat jack and plate loading tests 

conducted on jointed rock masses.  He concluded that the rock mass deformability 

depends on the configuration of primary joints and is dominated by one of the following 

deformation modes: 

• Normal closure or opening of discontinuities (Type A), 

• Combination of normal and shear displacement along discontinuities (Type B), 

• Shear displacement along discontinuities (Type C) 

Figure 2.6 schematically shows the stress-deformation pattern and corresponding joint 

configuration for each deformation type as defined by Barton (1986).  The main features 

of the rock mass deformation for each type are provided in Table 2.1. 

 
Figure 2.6: Conceptual stress-deformation curves for jointed rocks (after Barton 1986). 

Table 2.1: Characteristics of stress-deformation patterns corresponding to three modes of 
deformation in jointed rocks (after Barton 2007). 

 

Type Dominant mode Shape Hysteresis Lateral expansion Poisson’s ratio

A normal concave small small low

B normal+shear linear moderate moderate medium

C shear convex large large high
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2.3. Deformation Analysis of Jointed Rock Masses 

Available methods for the analysis of jointed rock masses can be divided into two general 

categories: discontinuum-based methods, and continuum-based methods.  Both methods 

depend extensively on numerical modelling techniques.  Discontinuum-based methods 

acknowledge the discrete nature of a jointed rock mass.  The rock mass is considered as 

an assemblage of rigid or deformable particles or blocks connecting along discontinuities.  

Equations of motion and contact models are used to calculate the dynamic equilibrium of 

the system and to update the position of the blocks in the model at each calculation step.   

In continuum-based methods, on the other hand, the discontinuities are taken into account 

implicitly either by adopting proper equivalent continuum parameters or by using 

equivalent continuum models that incorporate the parameters of discontinuities into the 

constitutive equations of the model.  Either methods are based on the principles of 

continuum mechanics.  Figure 2.7 shows a classification of the most common methods 

available for the stress-strain analysis of jointed rock masses. 

 
Figure 2.7: Available methods for stress-strain analysis of jointed rock masses 

2.3.1.  Discontinuum-Based Methods 

The most common discontinuum-based methods for analysis of jointed rock masses are 

Distinct Element Method (DEM), Discontinuous Deformation Analysis (DDA) and Finite 

Element Method with interface model (FEM).   
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The Distinct Element Method (DEM), also called the explicit Discrete Element Method, 

was introduced by Cundall (1988, 1979). The method was originally created as a two-

dimensional representation of a jointed rock mass, but it has been extended to 

applications in particle flow research, studies on microscopic mechanisms in granular 

material, and crack development in rocks and concrete (Itasca 2007).  The model has 

developed over years and now can be used to analyze two- and three-dimensional 

problems with complex block geometries.  In this method, the equations of motion are 

solved for the blocky system by an explicit finite deference method.  The intact rock 

blocks can be rigid or deformable.  Finite difference zones or finite volume elements are 

used for internal discretization of deformable blocks.  The interaction between two 

contacting blocks is characterized by a stiffness (spring) in the normal direction and a 

stiffness and friction angle (spring-slip surface series) in the tangential directions with 

respect to the contact plane.  Further discussion on the theoretical basis of the method can 

be found in the publications by Cundall (1988), Jing and Stephansson (2007) and Itasca 

(2007). 

The DDA method, also referred to as the implicit Discrete Element Method, was 

originated by Goodman and Shi (1985) and and further developed by Shi (1988).  This 

method is formulated as a work-energy method and is based on the principle of minimum 

total potential energy for a mechanical system under loading.  Similar to the explicit 

DEM, the DDA method also treats the rock mass as an assemblage of independent blocks 

separated by joints.  Since the method accounts for the inertial forces of the blocks mass, 

it can be used to solve the full dynamic problem of block motion (Jing 2003).  The 

original DDA formulation had embedded a first-order polynomial displacement function 

so the stress and strain were constant within the intact rock blocks.  More recent versions 

of the DDA account for variations in stress (or strain) by adopting higher order elements 

(Grayeli and Hatami 2008).  Jing (2003) lists the advantages of DDA over the explicit 

DEM, mainly from a numerical efficiency perspective, as follows: 

• It is easy to convert an existing FEM code into a DDA code and benefit from 

many well-established techniques of the FEM without being restricted to the 

limitations of the ordinary FEM, such as deformation continuity and reduced 

efficiency for dynamic analysis. 

• The equilibrium condition is automatically satisfied for quasi-static problems 

without using excessive iteration cycles. 
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• The length of the time step can be larger, and without causing numerical 

instability. 

• Closed-form integrations for the element and block stiffness matrices can be 

performed without the need for Gaussian quadrature techniques. 

Discontinuities can also be added explicitly to a finite element model using specially 

formulated continuum solid elements known as joint or interface elements.  The four-

node one-dimensional joint element introduced by Goodman et al. (1968) (Pande et al. 

1990) has been used extensively in finite element modelling of problems in rock 

mechanics.  Examples of such elements include the joint elements developed by 

Zienkiewicz et al. (1970), Ghabousi et al. (1973), and Desai et al. (1984) (Jing, 2003) 

(Pande et al. 1990) , and the interface elements developed by Katona (1983) and Wang 

and Yuan (1997).   

A main disadvantage of the joint/interface models is their inability to address properly the 

large-scale opening or sliding of the joints, due to the continuum nature of FEM.  In this 

method, once the interconnectivity between solid and joint elements is established upon 

meshing, it remains unchanged throughout the solution process.  Therefore, large 

displacements of discrete rock blocks can be accommodated as long as the contact of 

node couples remains unchanged.  DEM and DDA methods have no such restrictions: old 

contacts can be broken and new ones can be established and contact modes can change 

(Riahi and Hammah 2010). 

The Discrete Fracture Network (DFN) model, in which a stochastic system of 

interconnected fractures is considered, has also received considerable attention for 

seepage analysis through fractured rocks.  Min and Jing (2003) provide an example 

application of DFN for numerical determination of the equivalent continuum compliance 

tensor for a fractured rock.   

2.3.2.    Equivalent Continuum Methods 

The continuum-based methods can be divided into two general categories: equivalent 

continuum parameters methods, and equivalent continuum constitutive methods.  A 

review of these methods follows. 
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Equivalent Continuum Parameters Method: 

In this method, the mechanical behaviour of a jointed rock mass is represented using a 

classical continuum constitutive model, and the influence of discontinuities is addressed 

by adopting proper equivalent continuum elastic constants.  The Hooke's law for the 

isotropic, transversely isotropic or orthotropic rocks, discussed earlier in this chapter, are 

frequently used for this purpose.  The main challenge of this method is determining the 

equivalent elastic parameters, i.e., the deformation modulus and Poisson's ratio, for the 

jointed rock mass.  

A rough estimate of the equivalent deformation modulus can be obtained by using 

empirical equations developed based on the engineering rock mass classification systems.  

The relationships suggested by Hoek and Diederichs (2006), based on GSI, by 

Bieniawski (1978) and Serafim and Pereira (1983) based on the rock mass rating system 

(RMR); and by Barton (2002),  based on the Q-system are the most common empirical 

equations used for this purpose.  However, a fundamental assumption embedded in all 

empirical equations is that the rock mass deformability is isotropic (Hoek and Diederichs 

2006), which is not usually the case in jointed rock masses.  Such assumption limits the 

application of these equations to massive rocks or intensely jointed rocks whose 

deformability is mainly isotropic. Also, because the empirical equations have been 

established based on limited experimental data from in-situ tests, they are mainly valid 

for rock masses with comparable structure and stress field.  

More reliable estimates of the modulus of deformation for a jointed rock mass can be 

obtained from in-situ tests conducted on a representative volume of the rock mass.  Plate 

loading, flat jack, dilatometer and Goodman jack tests are the most common in-situ tests 

used for this purpose.  The reliability of the deformation modulus determined by in-situ 

tests depends on factors such as test scale, frequency of test results, and the method used 

to interpret the test results.  The number of tests required to determine the deformation 

modulus of a jointed rock mass depends on factors such as orientation and spacing of 

major discontinuities and variation of these parameters within a given rock mass.  For 

transversely isotropic and orthotropic rocks, more tests, oriented properly with respect to 

major discontinuities, are required to determine the equivalent continuum elastic 

constants.  Given the practical limitations associated with the size of the test apparatus, 

testing a representative volume of the rock mass might not be feasible when spacing of 

discontinuities are relatively large.  The plate loading test is considered to provide the 
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most reliable results, in that a relatively large volume of rock mass is loaded by 

compressive stresses during the test (Bieniawski 1978).  A detailed discussion on the 

plate loading test will follow in the next section and in the subsequent chapters.  

Analytical solutions have also been suggested to derive the equivalent mechanical 

properties for a jointed rock mass.   Gerard (1982) developed analytical relations to 

calculate the nine equivalent elastic constants for an orthotropic rock mass, based on the 

mechanical properties of intact rock and spacing of discontinuities.  His method takes no 

account of joint mechanical parameters.  Sitharam et al. (2007), Yoshinaka and Yamabe 

(1986) and Haung et al. (1995) also established closed-form solutions to determine the 

equivalent elastic constants for jointed rock masses. 

The equivalent properties of a fractured rock can also be determined numerically, using 

the Synthetic Rock Mass (SRM) concept introduced by Ivars et al. (2007, 2011).  In this 

method, a Discrete Fracture Network (DFN) is used to represent the discontinuities in a 

discrete model of the rock mass.  The equivalent continuum mechanical properties of the 

rock mass is determined through running virtual tests on the numerical model.  The 

examples of this method have been provided by Min and Jing (2003) and Pierce et al. 

(2007). 

The main advantage of the equivalent continuum parameters method is its simplicity.  

There is no need to develop new sophisticated constitutive models or codes.  The well-

established models and codes available for analysis of continua can be readily used, 

provided that the elastic constants are known.  The main drawbacks of this approach, 

excluding the SRM method, can be listed as follows:  

• Its application is limited to some specific cases where rock mass is either 

isotropic, such as intensely fractured rocks; or features one of the elastic 

symmetries, such as transversely isotropic rocks. 

• It is not compatible with real deformation mechanisms mobilized during 

deformation of jointed rock masses, 

• It cannot be easily used to study the influence of the variation of discontinuities 

parameters on rock mass behaviour. 

• It is mainly limited to elastic analysis.    
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Equivalent Continuum Constitutive Method 

In this method, discontinuities parameters are directly incorporated into the constitutive 

equations of the equivalent continuum.  Principles of continuum mechanics are used to 

establish an equivalent continuum constitutive model for the jointed rock mass.  

Depending on the assumed stress condition for the representative elementary volume 

(REV), two groups of these models can be distinguished, i.e., equivalent continuum 

compliance models and damage mechanics models.   

Equivalent continuum compliance models assume a uniform stress within the REV.  The 

total strain of the REV is related to the intact rock strains and the displacement along 

discontinuities.  Governing equations for the equivalent continuum are established 

between the total strain and the assumed uniform stress for the REV.  In damage 

mechanics models, the fundamental assumption is that the joints transmit no stress, and 

rock matrix is the solely load carrying element.  The effective stresses on rock matrix are 

calculated using a so-called damage tensor.  The constitutive relations are established 

between the effective stresses and the REV strain. 

In damage mechanics models, joints are considered as the defect (damage) of intact rock 

(matrix) that transmit no stress.  All stresses is carried by the intact rock.  A so-called 

damage tensor is established, using the geometrical parameters of the joints, to determine 

the net or effective stresses on the intact rock.  The constitutive laws are established 

between the net stresses and the total strain of the REV.  A fundamental assumption 

embedded in this method is the non-persistency of rock joints.  An evolution law is 

adopted to model the propagation of joints within the rock.  Kawamoto et al. (1988) and 

Swoboda et al. (1998) provide more details on the method.  While the method can be 

used for deformation analysis of jointed rock masses, it seems more suitable for failure 

analysis of rocks with non-persistent joints.    

Singh (1973) used the concept of average strain energy density for an inhomogeneous 

elastic body, and established the constitutive equations for a rock mass containing three 

orthogonal joint sets.  Using the same concept, Cai and Horii (1992) developed an 

equivalent continuum model by defining an REV and adopting a non-linear elasto-plastic 

model for joints.  In both models, a so-called stress concentration tensor is used to 

calculate the stresses on joints.  The joints can be non-persistent in both models.  

Interaction of the joints is taken into account by reducing the stiffness of surrounding 
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material using homogenization techniques.  The main drawback to this method is that by 

assuming non-persistent joints of various dimensions, it becomes very difficult to find a 

proper REV for the rock mass.  

Huang et al. (1995) suggested that the equivalent compliance tensor of a rock mass can be 

defined using the principle of conservation of energy for the work done by an external 

force on an elastic body.  In this thesis this idea is used to establish a three-dimensional 

equivalent continuum constitutive model for rock masses containing up to three randomly 

oriented joint sets.  In this model, joint sets are assumed to be planar and persistent 

throughout the REV.  The model adopts an elasto-plastic model for both intact rock and 

rock joints.  In Chapter 4, the theoretical details of this model and its formulation are 

presented, along with some example applications on the analysis of jointed rock masses. 

Amadei and Goodman (1981) established closed-form relations to calculate compliance 

coefficients for a jointed rock mass containing three orthogonal persistent joint sets.  Oda 

et al. (1993) introduced a crack tensor representing the geometry of discontinuities, and 

developed an elastic stress-strain relationship for rocks with random joints.   

None of the abovementioned models account for the bending stiffness of rock layers in 

the equivalent continua.  Rihai (2008) used the Cosserat theory for mechanics of 

micropolar continua and formulated a three-dimensional equivalent continuum model for 

finite element analysis of jointed rocks.  The model takes into account the influence of 

micromoments on behaviour of the equivalent continuum.  So, the model can account for 

the bending stiffness of intact rock layers, such as in stratified rock masses.  The model 

potentially extends the application of the equivalent continuum modelling concept to 

analysis of problems in which the toppling or buckling of rock layers are likely 

instability/deformation mechanisms.   

In the models developed based on the damage mechanics theory, joints are represented by 

a second-order symmetric tensor, known as the damage tensor.  The concept is that if a 

rock mass involves a number of joints (or cracks) which are sufficiently small compared 

to the overall dimensions of the problem, the joints can be regarded as defects (or 

damages) of the rock mass.  Joints are considered to transmit no stresses. The damage 

tensor is actually a measure used to calculate the effective load-bearing surface of intact 

(or undamaged) rock.  So, effective stresses are calculated accordingly from the average 

stresses in an REV.  The constitutive laws are established between the effective stresses 
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and actual strains in the REV.  Joints are considered non-persistent within the REV.  An 

evolution law is adopted to address the propagation of joints within the rock.  Kawamoto 

et al. (1988), Swoboda et al. (1998) and Homan-Etienne et al. (1998) provide more details 

on the method.  While the method can be used for deformation analysis of jointed rock 

masses, it seems more suitable for failure analysis of rocks with non-persistent joints.    

2.3.3. Equivalent Continuum Methods versus Discontinuum Methods 

Given the discontinuous nature of jointed rock masses, discontinuum-based models 

provide a more accurate description of the rock mass behaviour.   However, these 

techniques are associated with some disadvantages, as follows: 

• From a numerical modelling perspective, having the mesh size depend on the 

spacing and orientation of discontinuities significantly reduces the technique’s 

efficiency  for models with small spacing discontinuities relative to the model’s 

overall size. 

• Detailed geometry of all major joints needs to be known for a discontinuum 

model to be constructed.  Such data is not usually available and not easy to 

collect.  Besides, in many cases such detailed analysis of discontinuities is not 

required. 

• Discontinuum models are more sensitive to applied boundary conditions, 

compared to equivalent continuum models.  Figure 2.8 shows schematically two 

possible scenarios for a discontinuum model involving stiff loading of a jointed 

rock (displacement boundary condition).  A slight shift in the applied load can 

potentially result in a different displacement beneath the rigid loading plate. 

 

 
Figure 2.8: Sensitivity of discontinuous models to applied boundary conditions.  A slight shift in 
the applied load would potentially result in different displacements 
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Equivalent continuum models, on the other hand, provide an average solution to the 

problem of jointed rock masses.  The main advantages of this method are: 

• The numerical discretization is independent of the spacing and orientation of 

discontinuities.  This significantly reduces the model size and increases 

modelling efficiency,  

• The method can be used even if the available data on the geometry and properties 

of discontinuities is limited.  

• It can be readily used in combination with well-established continuum-based 

analysis methods, such as the finite element method and boundary element 

method.   

The choice of continuum or discontinuum methods depends on many problem-specific 

factors, but mainly on the problem scale and the geometry of discontinuities.  Figure 2.9 

illustrates the alternative model choices for five common rock structures encountered in 

rock mechanics problems.  Generally, continuum models can be applied to problems with 

no major joints (Figure 2.9a), with an intensely jointed structure (Figure 2.9b) and with 

joint sets of medium spacing (Figure 2.9c).  The continuum methods should not be used 

when the spacing of joint sets is large with respect to the overall size of the problem 

(Figure 2.9d) or when discontinuities pattern and boundary conditions provoke rigid body 

motion of rock blocks (Figure 2.9d, 2.9e), and also when the behaviour of rock mass is 

potentially governed by few individual discontinuities (Figure 2.9e).   

Continuum equivalent models can also be used in combination with discontinuum models 

(hybrid models), to model far-field discontinuities, while near-field discontinuities are 

represented explicitly using discontinuum models (Jing 2003). 
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No major joints: 

Rock mass deformability is isotropic and is 
mainly governed by intact rock mechanical 
properties 

Rock mass behaviour can be described by 
classical continuum models 

Small spacing joint sets: 

Rock mass deformability is mainly isotropic.  
Compaction of rock fragments is the 
governing deformation mode  

Rock mass behaviour can be described by 
equivalent parameters models 

Medium spacing joint sets: 

Rock mass deformability is anisotropic.  
Normal closure/opening and sliding along 
joints are the governing deformation modes  

Rock mass behaviour can be described by 
equivalent constitutive models 

 

Large spacing joint sets: 

Rock mass deformability is anisotropic.  

Intact rock deformation and rock block 
rotation/dislocation are the governing 
deformation modes. 

Rock mass behaviour can be described by 
discrete element models   

Random persistent discontinuities: 

Rock mass behaviour depends on boundary 
conditions and geometry of discontinuities 
relative to the location of structures 

Rock mass behaviour can be described by 
either joint/interface models or the discrete 
element method  

Figure 2.9: Discontinuity patterns and applicability of analysis techniques 

(a)

(c)

(b)

(d)

(e)
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2.4. Determination of Rock Mass Deformability by Plate Loading Test 

The plate loading test is a common in-situ test for determination of the large scale 

deformability characteristics of rock masses.  The test involves loading two opposite 

surfaces in a test gallery and measuring the induced deformations beneath loading plates 

and through the rock mass (Figure 2.10).  Compared to borehole tests, i.e., dilatometer 

and Goodman jack tests, the plate loading test engages a considerably larger volume of 

rock mass, making it possible to obtain more accurate estimates of the deformability 

parameters.   

 
Figure 2.10: schematic view of a plate loading test in a test gallery 

The accuracy and reliability of test results depend on factors such as the quality of testing 

operations, size of the loading plates relative to the spacing of discontinuities (scale 

effect), and consistency of the interpretation method with real rock mass conditions.  

Agharazi et al. (2008) divided the factors affecting the test results into two categories: 

operational factors and theoretical factors.  Rock disturbance caused by blasting or stress 

release around the test gallery is an operational factor affecting the displacements 

measured during the test.  The study of some plate loading test results by Palmstrom and 

Singh (2001) indicated that a correction factor as high as f = 3 is required to compensate 

for the effect of blasting damages on plate loading test results.  

The ISRM (1979) suggested relationship is commonly used for interpretation plate 

loading test results.  The relationship follows the Boussinesq’s solution (Timoshenko & 

Goodier 1970) for loading a semi-infinite elastic homogeneous isotropic medium.  Rock 

Rock mass

test gallery

loading plates

displacement 
measurement 

points
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masses rarely meet these assumptions.  ISRM (1979) and Boyle (1992) recommend that a 

minimum ratio of w/d = 2 should be kept between the width (or height) of the test gallery 

(w) and the loading plate diameter (d) in order to avoid the influence of test gallery 

geometry on the test results.  However, the numerical analysis of the test by Agharazi et 

al. (2008) showed that when displacement measurements are taken through depth, even 

for ratios as high as w/d = 10, the influence of test gallery geometry is not negligible on 

the deformation moduli calculated using the ISRM suggested relationship (Figure 2.11).   

 
Figure 2.11: Increasing trend of deformation modulus calculated using ISRM suggested 
relationship based on numerical modelling of plate loading test (after Agharazi et al. (2008)) 

The inconsistency of the gallery geometry with the semi-infinite geometry assumption, 

leads to the overestimation of moduli by the ISRM suggested relationship.  This error 

increases with depth as shown in Figure 2.12.  To address this problem, Boyle (1992) 

proposed a statistical approach that finds a pair of deformation modulus and Poisson's 

ratio that fits best the results of a given test.  However, this approach does not address the 

main problem associated with the ISRM suggested method.  The influence of test gallery 

geometry on deformation moduli calculated from the plate loading test results will be 

discussed in more details in Chapter 5. 

The plate loading test usually results in higher deformation moduli than do borehole tests, 

such as the Dilatometer test and Goodman jack test.  Various researchers have reported a 

ratio of Dp / Db = 2-3 for the moduli calculated from plate loading test results (Dp) and 

those from borehole tests (Db) (Bieniawski 1978; Palmstrom and Singh 2001; Singh 

2011; Agharazi and Moradi 2004).  This difference can be attributed, to some extent, to 

the difference between the stress regime of the tests.  In the Plate loading test, a 

completely compressive stress regime develops within the rock mass, while the borehole 

tests generate a tangential tensile stress at the borehole periphery. Another reason for this 
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issue is that the plate loading test overestimates the rock mass stiffness because of the test 

gallery’s confining effect.   

When the plate loading test is conducted on jointed rock masses, the size of the loading 

plate relative to the spacing of discontinuities is an important factor affecting the test 

results.  Plate size should be large enough to load a representative volume of rock mass, 

or the results will not be valid.  The size of the loading plate, on the other hand, is limited 

by some practical factors, such as mobility, minimum required plate stiffness and the 

dimension of test gallery.  Plates with diameters of up to d ≈ 1 m are common for tests on 

fair to competent rocks.  

The deformation mechanisms mobilized during a plate loading test depend on the 

discontinuities pattern and the size of the loading plate.  The test results interpretation 

method should be consistent with the mobilized deformation mechanism.  Figure 2.12 

illustrates schematically possible joint patterns for a plate loading test.  When the spacing 

of discontinuities is several times that of the plate diameter (Figure 2.12a), test results are 

mainly representative of intact rock deformation, provided individual discontinuities do 

not intersect the test influence zone.  For this case, the ISRM suggested method or, 

alternatively, the back calculation techniques using an elastic isotropic model, can be 

applied.  If the ISRM suggested relationship is used, corrections for the test gallery 

geometry effect should be made.  The discontinuities intersecting the test influence zone 

and affecting the test results should be explicitly taken into account by adopting a proper 

model, such as joint or interface models.  

When the spacing of discontinuities is about the size of the loading plate (Figure 2.12b), 

the test influence zone will not be representative of the rock mass.  The test results will 

depend on the position of the loading plate relative to the discontinuities and on the 

loading direction relative to the orientation of the discontinuities.  The ISRM suggested 

relationship or any continuum model will potentially produce scattered and non-

representative moduli.  In such cases, a discontinuum-based model should be used for 

interpretation of the test results.  

When the spacing of discontinuities is less than half a plate size (diameter) (Figure 

2.12c), test results depend highly on the direction of loading relative to the orientation of 

discontinuities.  For such cases, the influence of the discontinuities should be taken into 

account by a proper interpretation method.  In these cases, the ISRM suggested 
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relationship will potentially produce scattered and non-representative moduli.  An 

equivalent continuum constitutive model, which incorporates the mechanical and 

geometrical parameters of discontinuities, can be efficiently applied for this case.   

For intensely jointed rock masses, where the spacing of joint sets is a fraction of the 

loading plate diameter (Figure 2.12d), the test influence zone can be assumed to be a 

representative volume of rock mass.  The ISRM suggested relationship, or an equivalent 

continuum parameters model, can be used to determine the equivalent deformability 

parameters of the rock mass.  Extra care should be used in selecting the Poisson’s ratio in 

this case.     

 
Figure 2.12: Loading plate size relative to spacing of discontinuities. (a) Joint spacing several 
times of plate diameter. Test results are representative of intact rock deformation (b) Joint spacing 
is about the loading plate diameter.  Test results depend highly on the relative position of the 
loading plate and the discontinuities.  Deformability is highly anisotropic (c) Joint spacing is less 
than half plate diameter. Test results depend on the direction of loading relative to the direction of 
discontinuities. (d) Intensely jointed rock mass. Test results are representative of jointed rock mass 
deformation. 

(a) (b)

(d)(c)
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In Chapter 5, the JointedRock model is used to interpret the results of the plate loading 

tests conducted at the Bakhtiary dam and hydro-electric power plant site.  The tests were 

conducted on a rock mass with two sets of regular persistent discontinuities.  The spacing 

of discontinuities ranges from 150 mm to 600 mm, while the diameter of the loading 

plates used for the tests ranges from 650 mm to 975 mm. This resembles the 

configuration illustrated in Figure 2.12c.  This study indicates that deformation of the 

rock mass is highly anisotropic and highly dependent on the geometry and mechanical 

properties of the discontinuities. 
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Chapter 3  

Characterizing Rock Mass Deformation Mechanisms During 

Plate Loading Tests at the Bakhtiary Dam Site1 

3.1 Introduction 

The deformation modulus of a rock mass is an important parameter in the design of large 

concrete dams.  Due to scale dependency and influence of discontinuities, results from 

laboratory tests on samples of intact rock cannot be relied on for the determination of the 

rock mass deformability characteristics.  The empirical relationships, such those 

established by Bieniawski (1978) that relates the rock mass modulus Erm to the Rock 

Mass Rating RMR and Hoek and Diederichs (2006) and Hoek et al. (2002) that relates 

Erm to the Geological Strength Index GSI, unconfined compressive strength UCS, and 

disturbance factor, can be used to estimate rock mass modulus in the preliminary stages 

of design.  However for final design purposes, in situ testing remains the most reliable 

means for establishing the rock mass deformation modulus.  The plate loading test (PLT), 

dilatometer and large flat jack test are common tests for this purpose (Bieniawski 1978; 

Palmstrom and Singh 2001; Boyle 1992). 

In the plate loading test, a distributed load is applied on rock mass surface and the 

induced displacement below the loaded plate and through the rock is measured.  A 

mathematical model is then used to relate the applied stress to measured deformations in 

order to calculate the deformation modulus.  Therefore, compatibility of the assumptions 

in the model with the actual rock mass response is an important factor in the 

interpretation of the test results and for obtaining an accurate assessment of the rock mass 

deformability characteristics. 

The ISRM suggested method (ISRM 1979) is commonly used for the interpretation of 

plate loading test results.  In this method, the rock mass is assumed to deform as a 

                                                      
1 A version of this chapter has been published as a paper by International Journal of Rock Mechanics & 
Mining Sciences: 
Agharazi, A., Tannant, D. D. and Martin, C. D. (2012). "Characterizing rock mass deformation mechanisms 
during plate load tests at the Bakhtiary dam project". International Journal of Rock Mechanics & Mining 
Sciences, 49,1-11 
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Continuous Homogeneous Isotropic Linear Elastic (CHILE) material with a semi-infinite 

geometry.   

These conditions are typically not met when the test is carried out in small test galleries 

on a jointed rock mass.  Deformation of a jointed rock mass involves two components: 1) 

deformation of intact rock, which usually exhibits a linear elastic behaviour, and 2) 

deformation of the joints, which may behave in an anisotropic, nonlinear and plastic 

manner.  Depending on which component prevails, different deformation mechanisms 

may be mobilized and govern the total response of the rock mass. In this paper, the 

analysis of 26 plate loading tests from the Bakhtiary dam site in Iran is presented to 

demonstrate the influence of different deformation mechanisms on the interpretation of 

the plate loading tests. 

3.2   Plate Loading Test - Theory and Interpretation 

“Plate loading” covers a range of similar tests that are performed on rock and soil, in 

small exploratory galleries or at surface, to measure the deformational characteristics of 

the in situ rock or soil.  The plate loading test, which has wide application in rock 

engineering practice, involves loading two opposite sides of a test gallery, by stiff or 

flexible plates, and measuring the corresponding deflections at the surface and at depth 

below the plate (Figure 3.1). 

Depending on the method of transferring the test load to the rock mass, two types of plate 

loading tests are distinguished: “rigid loading” and “flexible loading”.  In the first type, a 

rigid plate transfers the load generated by the hydraulic jack(s) to the rock and 

theoretically produces a uniform displacement boundary condition on the rock surface.  

In the second type, a flat jack transfers the load to the rock mass and produces a uniform 

stress boundary condition.  In the former case, the minimum required stiffness of the 

loading plate limits the application of this test to soils and soft rocks, where the stiffness 

of the loading plate is at least twice that of the stiffness of the rock mass, as proposed by 

Lama and Vutukuri (1978).  In hard rocks, loading plates of one metre in diameter and 

larger rarely have enough stiffness and rigidity to resist distortion under the high test 

loads and therefore they cannot maintain a uniform displacement boundary condition  

(Van Heerden and Maschek 1979). 
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Figure 3.1: Plate loading test set-up (Bakhtiary dam site). 

The main objective of a plate loading test is to determine the deformation modulus of the 

rock mass. This is usually done by interpretation of the measured displacements using the 

ISRM suggested method for “determination of the deformation modulus of the rock 

mass” (ISRM 1979).  The theoretical basis of this method is the theory of linear elasticity 

and the relations presented by Boussinesq for a semi-infinite medium loaded on the 

boundary. 

The equation for the calculation of the modulus is obtained by the integration of the 

deformations caused by individual elements of the load, distributed over a given area on 

the boundary of the semi-infinite medium.  Depending on the boundary condition at the 

loading surface, i.e. rigid or flexible loading, the following equations are used, 

respectively (Timoshenko and Goodier 1970): 

𝑤 = 𝑎 𝑞(1+𝜈)
2𝐸

�2(1 − 𝜈)𝐶𝑜𝑡−1  �𝑧
𝑎
� + 𝑎 𝑧

𝑧2+𝑎2
�     (3.1) 

𝑤 = 𝑧𝑞(1+𝜈)
𝐸

�1 − 𝑧(𝑎2 + 𝑧2)−1/2� + 2𝑞(1−𝜈2)
𝐸

�(𝑎2 + 𝑧2)1/2 − 𝑧�   (3.2) 

where: 

w = vertical displacement 
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a = radius of loading plate 

q = applied stress 

E = modulus of elasticity 

ν = Poisson’s ratio 

z = depth of deformation measurement along loading plate axis. 

The component of stress perpendicular to the loaded surface ‘σz’ developed in the semi-

infinite body because of the circular distributed load q on the boundary is: 

𝜎𝑧 = 𝑞 �−1 + 𝑧3

(𝑎2+𝑧2)3/2� (3.3) 

3.3 Parameters Influencing Test Results and Data Interpretation 

The main factors influencing the PLT results can be classified into two categories.  First 

are "operational factors" directly related to the quality of the test such as the resolution of 

measurement instruments, quality of the site preparation and its effect on the in situ 

condition of the rock mass, and proper installation of the test apparatus.  Blast damage 

and rock disturbance around the test gallery are the important examples of this category.  

In the field experiment described by Palmstrom and Singh (2001), a blast damage factor 

of three was applied to the calculated moduli to compensate for the damages to the rock 

caused by blasting. 

The second category includes "theoretical factors" that give rise to inconsistency between 

the theoretical basis and test assumptions and the actual condition and behaviour of the 

rock mass during the test.  These factors cause misinterpretation of the test results and 

generation of invalid moduli.  The main factors in this category are: 

• geometry of the test gallery, 

• influence of discontinuities on stress distribution and deformations, 

• different deformation mechanisms that might be mobilized during the test, 

depending on the relative direction of loading to the orientation of major 

discontinuities, and  

• stress dependency and non-linearity of deformational parameters of 

discontinuities (or intact rock) and influence of the in situ stress field. 
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A common problem in the interpretation of PLT results, using the ISRM suggested 

method, is the apparent trend of increasing moduli with depth of deformation 

measurement for a given test (Figure 3.2).  In some cases, this trend results in calculated 

rock mass moduli that are greater than that of the intact rock.  This problem mainly 

occurs due to the special configuration of the test in small test galleries, which differs 

from the semi-infinite geometry assumption taken in the ISRM suggested method  (Boyle 

1992; Agharazi et al. 2008).   

 

Figure 3.2: Increasing trend of modulus with depth in a PLT at the Bakhtiary dam site 

ISRM (1979) and Boyle (1992) recommend a ratio of two between test gallery width (or 

height) and loading plate diameter to avoid the influence of test gallery geometry on the 

test results.  However, the study by (Van Heerden and Maschek 1979) and Agharazi et al. 

(2008), show that this influence is considerable for commonly used test gallery 

dimensions of 2 to 3 m.   

In situ stresses are not routinely taken into account in the interpretation of the plate 

loading test results, which may be acceptable for the rocks with stress-independent 

deformation parameters.  However, in many cases, especially for jointed rock masses at 

shallow depths, deformation is non-linear and deformational characteristics of the rock 

mass depend on the existing confining stress level.  Some authors (Bieniawski 1978; 

Afrouz 1990; Asefand & Reddish 2002; Sitharam et al. 2007) have reported that plate 

loading test results and calculated modulus are dependent on the stress field (or depth).  

Others (Brown et al. 1989; Nawrocki and Dusseault 1995) have applied an increasing 

modulus with distance from tunnel wall, where a high stress gradient occurs due to the 

geometry of the excavation.   
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In jointed and fractured rock masses, the confining stress influences the deformations in 

two ways: first it affects the magnitude of non-linear deformational parameters (such as 

joint stiffness) and second it mobilizes different deformation modes.  An example is 

shearing along persistent joints at low normal stress versus compacting the rock blocks 

under high confining stress.  The mobilized deformation mechanisms are also very 

dependent on the geometry and deformational characteristics of the rock discontinuities 

and may include plastic deformation along joints at stress levels much lower than the 

overall strength of the rock mass.  Existence of discontinuities may also cause stress 

distributions different from what is predicted by equation 3.3. 

3.4 Deformation of Rock Discontinuities and Rock Mass 

In a jointed rock mass, usually two types of joints can be distinguished: primary joints 

and secondary joints (Ku et al. 2004).  Primary joints are those with high persistency that 

control the general response of the rock mass.  These joints can be mapped in the form of 

systematic joint sets with similar properties.  Secondary joints are randomly oriented non-

persistent joints that do not follow any systematic pattern (Figure 3.3). 

 

Figure 3.3: Primary and secondary discontinuities in (a) jointed rock mass and (b) idealized model. 

For practical purposes, a jointed rock mass can be represented by an idealized model 

including just the primary joints and the blocks of rock.  In this model, the blocks of rock 

surrounded by primary joints have equivalent characteristics determined by degrading the 

mechanical properties of intact rock to take into account the influence of the secondary 

joints.  The deformation behaviour of this model depends on 1) the deformational 

properties of the rock block and the primary joints and 2) the deformation mechanism 

mobilized upon applied stress.  Three deformation components of a jointed rock mass can 

be listed as follow: 

primary
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• deformation of the rock block; in many cases this can be assumed linear elastic, 

• normal closure of primary discontinuities, and 

• shear displacement along primary discontinuities; this can be divided into pre-

peak and post-peak displacements. 

Depending on the imposed stresses, joint deformation can be in the form of 1) closure 

under increasing normal stress or "loading", 2) opening or dilation under decreasing 

normal stress or "unloading" or dilation due to shear displacement, 3) shearing or 4) a 

combination of the previous types of deformations.   

Studies on the normal deformation of joints by Goodman et al. (1968) and Bandis et al. 

(1983) showed that the closure, v, of a mated joint follow a nonlinear relation with 

applied normal stress σn and finally becomes asymptotic to a line corresponding to the 

maximum joint closure vm.  This response can be best represented by a hyperbolic 

function as seen in Figure 3.4. 

 

Figure 3.4: Non-linear joint closure curve under normal stress, and hyperbolic function that 
represent this behavior mathematically (kni: initial normal stiffness of joint). 

Given the initial normal stiffness, kni, and maximum closure for a given joint, the normal 

stiffness, kn, can be calculated at any stress level using the derivative of the joint closure 

function in Figure 3.4 as follow (Bandis et al. 1983): 

𝑘𝑛 = ∂𝜎𝑛
𝜕𝑣

= 𝑘𝑛𝑖 �
𝑘𝑛𝑖.𝑣𝑚+𝜎𝑛
𝑘𝑛𝑖.𝑣𝑚

�
2
 (3.4) 

The variation of kn with normal stress depends on some joint characteristics such as 

roughness, wall stiffness and infilling material thickness and the stress history of the 

joint.  Experiments done by Chappell (1987) on rock joints in limestone, sandstone, shale 
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and coal showed that joint stiffness increases significantly as the normal stress is raised 

on joints in limestone and sandstone, while coal and shale samples showed effectively 

constant stiffness.  Other laboratory tests on joint samples also showed stiffening and 

reduction of maximum closure under consecutive loading-unloading cycles (Bandis et al. 

1983). 

Souley et al. (1995) proposed a model that takes into account the hysteresis and 

permanent deformation of the joint upon unloading and incorporates the hardening 

behaviour of joints under consecutive loading-unloading cycles.  Saeb and Amadei 

(1992) established a model that takes account of normal stiffness reduction with shear 

displacement. 

For a given joint, laboratory tests usually show much higher normal stiffness than the 

shear stiffness.  The difference between normal stiffness and shear stiffness causes joint 

deformation anisotropy.  For a given joint, the ratio between normal and shear stiffness is 

not constant but depends on normal stress level.  The highest anisotropy occurs at low 

stress levels, and with increase of stress, this ratio decreases (Bandis et al. 1983).  This 

anisotropy in the joint deformation directly influences the rock mass deformational 

characteristics, by decreasing the shear modulus, G, of the rock mass. 

Deformation of systematically jointed rock masses located near the ground surface at low 

stress levels is governed by the deformational characteristics of the main joints, 

quantitatively and qualitatively.  In this case, deformation of the intact rock blocks has 

little contribution to the total deformation. 

Barton (2007) classifies the deformation of jointed rock masses into three general modes: 

1) joint compaction mode, 2) joint shearing mode, and 3) combination of both.  Table 3.1 

includes the main characteristics of rock mass deformation under these modes.  The 

mobilization of each of these three modes depends on the direction of loading relative to 

the orientation of the discontinuities. 

Table 3.1: Stress–strain response of a jointed rock mass for three modes of behavior (Barton, 
2007). 

 

Dominant joint deformation mode Compaction Shearing Compaction+Shearing
stress-strain curve shape concave convex linear
deformation hysteresis small large moderate
lateral expansion of rock mass small large moderate
Poisson’s ratio low high medium
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In the next section the rock mass encountered at a dam site is examined in the context of 

the behaviour described in this section. 

3.5 Bakhtiary Dam Site  

The Bakhtiary dam and hydroelectric power plant project includes the design and 

construction of a 315 m high, double curvature, concrete dam and an underground 

powerhouse, with nominal capacity of 1500 MW, in the Zagros mountains in south west 

Iran (IWPCO).  

3.5.1 Geological Description of the Dam Site 

Limestone layers of Sarvak formation, which are Mid-Cretaceous marine sediments, form 

the foundation of the dam, powerhouse and other appurtenant structures.  These layers are 

generally tightly folded.  An anticline (Siah Kuh anticline) with a sharp axial plane exists 

at the location of the planned dam axis (SPEC, 2009).  The Sarvak formation is divided 

into seven geological units, namely Sv1 to Sv7, with Sv1 being the oldest with no outcrop 

at the dam axis, and Sv7 the youngest.  Figure 3.5 shows the geological section of the 

dam axis with the rock units in direct contact with the dam body.   

 

Figure 3.5: Geological section of dam axis and geological units of the Sarvak formation 
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Rock unit Sv2 is formed by thinly to medium bedded dark grey limestone to marly 

limestone with thin black laminated marlstone to shale interbeds.  This unit forms the 

central outcrop of the anticline at the valley bottom.  Rock unit Sv3 is formed by thinly to 

medium bedded dark grey marlstone and siliceous limestone and will form the lower 

abutments of the dam body.  At the crest level, the dam will be in contact with the Sv4 

rock unit, which is formed by medium to thickly bedded dark grey limestone with small 

siliceous nodules (SPEC, 2009). 

The Siah Kuh anticline has influenced the structural and geomechanical characteristics of 

the rock mass near the dam axis and has created disturbed zones (zones A and B) in the 

anticline core.  This disturbed zone consists of intensely folded rocks, with weaker 

geomechanical properties. 

 

Figure 3.6: Axial plane of Siah Kuh anticline on abutments, (a) left abutment and (b) right 
abutment. Red lines show the axial plane outcrop, yellow lines show typical bedding and the green 
line shows extension joints observed on the left bank. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 

3.5.2 Rock Mass Properties 

Based on geophysical surveys of the dam site using the petite seismic method, the rock 

mass is categorized into three general classes.  Slightly deformed limestones of Sv2 unit 

form the most competent class with E ≈ 14 GPa and intensely folded rocks of Sv3 form 

the weakest rock with E ≈ 2.7 GPa.  The middle class are slightly deformed thin layers of 

Sv3 with estimated E ≈ 7.3 GPa  (SPEC 2009).  Table 3.2 shows the rock classes and 

their ratings based on rock engineering classifications, for the rock units.  
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Table 3.2: Rock mass classes and engineering ratings (SPEC 2009). 

 

Laboratory tests on cored samples showed no distinct difference between the mechanical 

characteristics of the intact rocks taken from different geological units.  Uniaxial 

compressive tests on 162 samples of intact rock gave an average unconfined compressive 

strength of 125 ± 40 MPa for dry samples and 110 ± 30 MPa for saturated samples, 

excluding the tests on samples with pre-existing weakness planes.  The Young’s modulus 

for intact rock Ei was determined from the linear part of the axial stress-axial strain curves 

with the average value of Ei = 69 ± 10 GPa for all tests.  Axial deformation in these tests 

exhibits mainly linear response after the micro crack closure phase of the test (up to stress 

levels of ≈5% of the unconfined compressive strength). 

3.5.3 Discontinuities 

Systematic discontinuities at the dam site consist of bedding surfaces and two joint sets 

that intersect at almost right angles and form a conjugate perpendicular system.  A further 

joint set is observed at a few locations but its occurrence is not common throughout the 

site. 

Bedding surfaces are characterized as planar and persistent with average spacing of 60 to 

600 mm.  The bedding has a dip direction/dip of 215°/75° on the downstream limb of the 

anticline and 030°/50° on the upstream limb.  The main joint set running through the dam 

site is J1 (310°/ 40° to 70°).  Joints in this set have a persistency of several to tens of 

metres.  A second joint set J2 (125°/35° to 75°) exists with persistency from a few 

centimetres to a few metres.  The joint set characteristics are summarized in Table 3.3.  

The deformational and strength characteristics of the discontinuities were assessed from 

the results of in situ and laboratory shear tests done on natural joints and bedding.  

Nineteen tests, out of a total of 86 shear box tests were done on bedding samples.  The 

samples were less than 100 mm in diameter.  Tests on joint samples were divided into 

two groups in terms of their joint roughness coefficient (JRC) value with JRC = 6 being 

the cut-off number.  In each test, the sample was sheared under three normal stresses, 

Lithology RMR89
* Q GSI

Sv2 & Sv3 (dist. A) 30 - 51 0.46 35 - 50

Sv2 & Sv3 (dist. B) 44 - 55 1.00 45 - 50

Sv2 & Sv3 & Sv4 48 - 66 1.25 45 - 60
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ranging from 0.5 to 5.5 MPa.  By linear regression of shear box test results, the strength 

characteristics of the discontinuities were determined (Table 3.4). 

Table 3.3: Bedding and joint set characteristics (SPEC 2009). 

 

Table 3.4: Average discontinuity strength parameters based on shear box tests (SPEC 2008). 

 

In six of the laboratory tests on bedding planes, the test specimen was subjected to three 

normal loading-unloading cycles and the corresponding normal displacements were 

recorded.  The normal stiffness kn was determined for each loading cycle by fitting a 

straight line to test results (Table 3.5).   

In addition to laboratory shear box tests, three in situ direct shear tests were performed on 

the Sv3 bedding planes in gallery GR2.  These tests were performed on three adjacent 

70×70×35 cm blocks in general accordance with the ISRM suggested test method (ISRM 

1974).  All blocks were subjected to several normal loads and tested to the residual shear 

strength stage.   

Value or 
description

Frequency (%)
Bedding J1 J2

Aperture
(mm)

0.1 - 1 90 90 95
1 - 5 10 10 5

Spacing
(cm)

2 - 6 1.5 2.5 3
6 - 20 47 48.5 52
20 - 60 44.5 45 43.5
60 - 200 3.5 4 1.5
200 - 600 3.5 0 0

Infilling

Clay 42.5 10 2
Calcite 46 67.5 55
Bitumen 4.5 1 0
FeO 2 0 0
Tight 5 21.5 43

Roughness

undulating-Ss 19 2 0
planar - Ss 41 2 1
undulating-Sm 5 1 1
planar - Sm 18 47 54.5
undulating-Ro 1 0 0
planar - Ro 16 48 43.5
Ss: Slickensided, Sm: Smooth, Ro: Rough

Peak Residual
JRC JCSc (MPa) φ c (MPa) φ

Bedding 0.28 44° 0 33° 7 27
Joints (JRC≤6) 0.25 35° 0 32° 4 27
Joints (JRC>6) 0.45 38° 0 36° 9 24
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Table 3.5: Bedding kn (MPa/mm) from normal loading–unloading tests. 

 

From the results of the in situ tests, the average cohesion value of c = 0.3 MPa, 

peak/residual friction angle of φ = 33° and JRC = 2 to 3 were estimated for the bedding 

surfaces. 

Based on the results of unconfined compressive strength tests, deformation of the intact 

rock can be assumed linear.  In comparison, joint normal displacements exhibit slight 

nonlinearity in the applied normal stress range for the shear tests (1 to 5 MPa) and 

stiffens under successive loading-unloading cycles. 

3.6 Interpretation of Plate Load Test Results 

The plate loading tests were run using a rigid loading type apparatus with three plate 

diameters of 971 mm, 915 mm and 650 mm.  The smallest plate was used for three tests 

with a maximum pressure of 40 MPa and the two larger plates were used for rest of the 

tests with a maximum pressure of 20 MPa.  Induced deformations were measured at the 

rock surface and four depths beneath the loading plates, distributed up to a depth of about 

3m.  Measurements were taken at one minute time intervals, using a data logger 

connected to the measurement devices and a computer.   

The plate loading tests were done in eight galleries with a nominal cross-section size of 

about 2 m × 2 m.  These galleries were excavated in the abutments of the planned dam 

and the underground powerhouse area.  Figure 3.7 shows a projection of the galleries 

onto the dam axis section and plan.  Based on the results from hydraulic fracturing tests, 

the principal horizontal field stresses at the elevation of the test galleries and valley 

bottom are also presented.  The vertical stress is assumed as the weight of the overburden 

rock at each elevation (vertical stress gradient = 0.026 MPa/m). 

Cycle 1 Cycle 2 Cycle 3
Sample 1 2.6 11.7 17.6
Sample 2 3.2 7.9 10.3
Sample 3 3.1 6.0 6.9
Sample 4 6.9 14.6 15.4
Sample 5 7.4 14.6 16.2
Sample 6 4.5 11.3 17.0
Average 4.6 11.0 13.9
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Figure 3.7: Projection of test galleries on dam axis cross section and plan. Number of PLTs in each 
gallery, maximum vertical stress, and estimated horizontal stresses at the location of each gallery 
is also presented. 

Forty two large scale plate loading tests (including the tests carried out at powerhouse 

site) were carried out as part of the site investigation program for the dam design.  Figure 

3.8 shows the common loading pattern applied to all the plate loading tests.  At the peak 

of each loading cycle, stress was kept constant to measure the deformability 

characteristics of the rock mass under constant load.  Each test includes two opposing 

loading plates, with a five-point borehole extensometer underneath each plate.  Each test 

included five loading-unloading cycles under various loads, with 10 displacement 

measurements recorded per loading cycle.  

 

Figure 3.8: Loading–unloading cycles used for the Bakhtiary dam site PLTs. 
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After filtering out the tests with missing geological or joint data, and the tests with 

unreliable results according to the site reports, 26 well documented tests were selected for 

this study.   

Based on the test quality and availability of data regarding the geology of the test site, 26 

plate loading tests were selected for this study. These tests are analyzed to study the 

influence of the three main systematic discontinuities on the deformation of the rock mass 

and to determine the mechanisms controlling the deformations during the tests.  

Calculation of the deformation modulus was not the focus of this study. 

For the interpretation of the test results, PLTs were classified into three configuration 

groups based on the relative direction of the test loading to the orientation of the three 

major discontinuity sets (Figure 3.9).  The first group include those tests in which the 

direction of loading is normal to one of the three primary discontinuities, i.e. bedding, J1 

or J2 and accordingly are named NB, NJ1 and NJ2, respectively.  The second group 

includes the tests in which direction of loading makes an angle greater than 15° with the 

normal to the discontinuity planes.  The tests fall in this group are named SB12.  In 

addition to these tests, there were some PLTs done on intensively folded and fractured 

rocks.  These tests form the third group and are named Fractured Rock (FR) group.  The 

remaining tests that do not fall within these groups are excluded from these analyses. 

 

Figure 3.9: Test groups based on the relative direction of loading to orientation of discontinuities. 
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To assess the influence of primary discontinuities on rock mass deformation and to 

determine deformation mechanisms mobilized in each configuration, five characteristics 

of the deformations were studied and compared for the tests in each group, as follows: 

• shape of the stress-deformation curve (concave, linear or convex), 

• deformation under constant load at the peak of each loading cycle, 

• total and permanent deformation of the test (after five loading cycles), 

• ratio of permanent to total deformation in each loading-unloading cycle and its 

variation over successive loading cycles of the test, 

• deformation hysteresis. 

In all tests, a set-up similar to Figure 3.1 was used with the first measuring point (surface 

deformation) installed in the first 0.1 m of the borehole and the reference anchor fixed at 

a depth of about 5 to 6 m in the central borehole.  Figure 3.10 shows typical stress-

displacement curves for tests from each group.  These plots are associated with the 

surface displacements at one side of the test.  The RQD values measured along each 

extensometer borehole and GSI numbers for the test location are also presented on each 

plot for comparison. 
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Figure 3.10: Stress-deformation curves of PLTs representing each group.  Schematic figures on the 
right show the relative direction of loading to the orientation of discontinuities for each test.  The 
orientation of the discontinuities and test load along with RQD distribution and GSI value are also 
presented.  Data have been extracted from gallery and test surface mapping, borehole logs, and 
core photos. 

The first three graphs of Figure 3.10 come from tests conducted normal to the dominant 

discontinuity orientation (bedding or joint).  As observed, tests in which loading is 

normal to bedding (NB) produce two typical curves; one with considerable energy 

dissipation over a full cycle of loading-unloading, which is usually typical of disturbed 

open joints, and one with slightly nonlinear response with concave upward shape over the 

loading and unloading stage.  The PLTs conducted normal to the discontinuities result in 

total deformations that are lower than the tests conducted with other loading 

configurations.  In addition, the permanent deformation is low and deformation hysteresis 

is not observed. 

For tests in which the direction of loading is inclined relative to the orientation of 

discontinuities (SB12 and SB12P), much higher total and permanent deformation is 

observed (Table 3.6) compared to NB and NJ2 tests.  In these tests, the loading and 
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unloading secant moduli for a given cycle are very close, i.e. the immediate deformation 

that occurs during loading is mostly recovered upon unloading.  The results show that the 

permanent deformations are mainly caused by the constant stress that is applied for a 

period of time at the peak of the loading-unloading cycles.  These deformations can be 

attributed to creep-like behaviour of the rock mass. 

In SB12 tests, the absolute displacement of a given loading cycle is much larger 

compared to NB and NJ2 tests (Table 3.6).  Given that the deformation in SB12 tests is 

accompanied by shear displacement along the discontinuities, and assuming a similar 

behaviour for the intact rock blocks in all test configurations, this difference indicates the 

anisotropy of discontinuity stiffness in shear and normal displacement.  This result is 

consistent with laboratory tests that show lower shear stiffness for the rock joints. 

Table 3.6: Total surface deformation at each loading–unloading cycle. 

 

Depending on shear strength of the discontinuities in a SB12 loading configuration, 

loading of the rock mass can result in non-recoverable slip along discontinuities (Figure 

3.10: SB12P).  The displacement plot for the SB12P test shows high total deformations 

with negligible recovery upon unloading.  Hysteresis is large and the deformational 

response keeps a ‘memory’ of the previous loading cycle stress.  The stress-deformation 

curves are mainly concave downward in shape, which is similar to shear stress versus 

shear displacement curves for joints in laboratory and in situ tests. 

Deformation of the rock mass with closely spaced randomly orientated fractures (FR) is 

mainly caused by the compaction of small rock pieces formed by intersection of joints 

and fractures.  Deformation plots for these tests show mainly nonlinear behaviour with 

high total and permanent deformation.  Their characteristics are a combination of the 

deformation responses seen in all other tests. 

The deformation of the rock mass under the constant applied load at the peak of each 

loading cycle is different for each loading configuration.  Figure 3.11 illustrates the 

cycle Stress 
(MPa)

Total deformation (mm)
NB NJ2 SB12 SB12P FR

1 5 0.40 0.20 0.39 2.65 1.48

2 10 0.52 0.29 0.98 7.07 2.04

3 15 0.76 0.42 1.24 10.40 2.34

4 20 1.09 0.53 1.52 14.92 2.88

5 15 0.72 0.53 1.09 3.86 1.82
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deformation versus time plots (the same tests used for Figure 3.10) under the maximum 

stress applied at the fourth loading cycle of each test.  The rate of deformation is also 

depicted in Figure 3.11 for each test.  Other tests of the same group had a similar 

behaviour.  As can be seen, tests with loading oriented normal to the discontinuities (NB 

and NJ2) show negligible deformation with the deformation rate approaching zero over a 

short time span of about 15 minutes, which is equal to the time steps followed during 

loading and unloading cycles.  In other words, practically no deformation occurs under 

constant load in these tests (≈ 0.1 mm for NB test and 0.05 mm for NJ2 test).  On the 

other hand, the SB12P test undergoes substantial deformation under constant load (≈ 4.5 

mm) with the rate of deformation gradually approaching zero after 3 hours.  The FR tests 

and SB12 tests show moderate deformation under constant load (≈ 0.63 mm and ≈ 0.45 

mm, respectively) but the rate of deformation drops fast and becomes zero after about 2 

hours of loading. 

Deformation of the rock mass under constant load can occur by the following 

mechanisms or a combination of them: 

 consolidation of the joint infilling materials, 

 normal and shear displacement along joints, and 

 compaction of rock blocks. 

 

Figure 3.11: Deformation–time and rate of deformation–time (logarithmic scale) graphs. Time axis 
shows the elapsed time under constant load of 20 MPa at the peak of 4th loading cycle. 

By assessment of the deformation-time and rate of deformation-time graphs, it can be 

concluded that the shear displacement along discontinuities (in SB12 and SB12P tests) 

and relative dislocation of the rock blocks (in FR tests) are the main mechanisms 
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contributing to the deformation of the rock mass under constant load.  As observed in the 

case of NB and NJ2 tests, consolidation has little influence on the deformations because 

the joints and bedding have no infillings or are filled with a very thin layer of calcite or 

clayey materials. 

Figure 3.12 illustrates the distribution of absolute total and permanent deformations of the 

tests, after five loading-unloading cycles.  The minimum total and permanent deformation 

belong to NB, NJ1 and NJ2 tests.  In contrast, SB12P tests have the highest total and 

permanent deformations. 

 

Figure 3.12: Distribution of total and permanent deformation for each group after five loading–
unloading cycles. 

Analysis of stress-displacement plots shows that for a given test, the secant moduli over 

successive unloading cycles remain almost unchanged, i.e. the value of the recovered 

deformation (elastic deformation, de) is a linear function of the total stress drop over 

unloading (Figure 3.13 (a)): 

dei = Ee . ∆σi (3.5) 

where: 

de = recovered part of deformation upon unloading 

Ee = secant modulus over unloading  

∆σ = maximum stress change in each loading cycle 

i = loading-unloading cycle number 

Given a constant Ee for a specific test, the increase of the loading to unloading secant 

modulus ratio (ki = Eti/Eei) indicates that the rock mass stiffens under successive loading-

unloading cycles and with increase of the applied stress level.  Assuming a constant Ee 
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for a given test, this ratio is inversely proportional to the irrecoverable deformation ratio 

of each cycle defined as Pi = (dti - dei)/dti.  Figure 3.13(b) shows the variation of Pi with 

number of loading cycles. 

The SB12P and FR tests show the highest average irrecoverable deformation ratio during 

the first cycle (Pi1 ≈ 80%).  In the former case, the low rate of the reduction of Pi over 

successive loading-unloading cycles indicates the development of shear displacements 

along the failed discontinuities.  In comparison, FR tests have the highest stiffening rate 

which is an indication of the interlocking of the rock pieces under increasing load.  The 

stiffening of rock mass in NB and NJ2 tests follows the type of behaviour observed in 

tests on bedding samples and the experiment by Bandis et al. (1983) on limestone 

bedding planes, in which the maximum closure νm became progressively smaller under 

repeated normal loading-unloading cycles. 

 

Figure 3.13: Variation of the average ratio of permanent to total deformations for each group 

Table 3.7 shows the calculated moduli for the tests, based on the deformations taken at 

rock surface.  As observed, a significant scatter occurs in the calculated moduli for a 

given rock mass when the real mechanism governing the deformation of the rock mass is 

ignored and the ISRM suggested method is used to interpret the test data.  From this 

table, when the direction of loading is perpendicular to a joint set (J2), the deformation 

modulus of the rock mass is twice as high as the case in which loading is perpendicular to 

beddings, and is up to 25 times higher compared to the case in which plastic deformation 

occurs along discontinuities.   
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Table 3.7: Deformation moduli calculated using the ISRM method for the tests shown in Figure 
3.10. 

 

Based on the comparison of the aforementioned five key parameters, four deformation 

mechanisms can be distinguished as the governing modes of deformation of the rock 

mass during plate loading tests at the Bakhtiary dam site, as follow: 

• joint normal displacement governed mechanism (JND) 

• joint shearing displacement governed mechanism (JSD) 

• joint shearing displacement governed mechanism with plastic deformation (JSDP) 

• complex deformation mechanism, which is a combination of all above modes (CD). 

Figure 3.14 shows simplified models for each deformation mechanism and its associated 

idealized load-deformation curve.  The characteristics of each mechanism and the plate 

loading test category associated with each mechanism are presented in Table 3.8. 

 

Figure 3.14: Idealized load–displacement curves for the deformation of a jointed rock mass. These 
curves characterize the type of behavior observed during one loading– unloading cycle of PLTs at 
the Bakhtiary dam site, where deformations are governed by shear and normal displacements 
along discontinuities 

Cycle Stress 
(MPa)

Deformation modulus (GPa)
NB NJ2 SB12 SB12P FR

1 5 6.7 14.3 7.6 1.0 1.2
2 10 12.6 22.3 6.0 0.8 2.0
3 15 12.9 23.5 7.3 0.9 2.7
4 20 12.3 25.3 8.1 0.8 3.0
5 15 12.4 25.3 8.2 2.4 3.5
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displacement
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Table 3.8: Deformation mechanisms and characteristics for PLTs at Bakhtiary dam site 

 

3.7 Conclusion 

Analysis of the Bakhtiary dam plate loading test results showed the dominant influence of 

the major discontinuities on deformation of the rock mass.  Discontinuities influence the 

deformation of the rock mass in two ways: 1) by their spatial configuration, which causes 

mobilization of a specific deformation mechanism and 2) by their contribution to total 

deformation of the rock mass including anisotropy and stress-dependency. 

By analysis of deformations measured with plate loading tests, four deformation 

mechanisms were identified and their characteristics were presented.  Generic load-

deformation curves for each deformation mechanism are introduced.  These models are in 

general agreement with the deformation modes suggested by Barton (2007) (Table 3.1), 

except the model in which plastic deformations develop because of the shear 

displacements along discontinuities.  Mobilization of these mechanisms depends mainly 

on the relative direction of loading to the orientation of the discontinuities.  The main 

characteristics of the rock mass deformation under these mechanisms are: 

 Deformation anisotropy is related to the orientation of the primary 

discontinuities.  This anisotropy should be taken as an important factor in 

geomechanical zoning of the dam foundation. 

 The rock mass exhibits stiffer response during unloading compared to the loading 

stage.  For joint normal or shear displacement governed mechanisms (JND and 

JSD) this difference becomes smaller as the rock mass undergoes successive 

loading-unloading cycles.  This type of behaviour is important as the same 

response should be anticipated for the dam foundation during the dam 

construction, first impounding and successive drawdown-impounding cycles.  

Assuming a CHILE model for the rock blocks, the minor non-linearity observed 

Dominant 
deformation 
mechanism

Test 
configuration

Stress-deformation 
curve shape

Deformation 
hysteresis

Total deformation
Permanent 

deformation

Stiffening under 
successive 

loading cycles

JND NB & NJ2 concave to linear small small small high

JSD SB12 linear small moderate small moderate

JSDP SB12P convex high high high small

CD FR linear to convex moderate moderate to high moderate to high high
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in deformation graphs is caused directly by the non-linear nature of rock 

discontinuity deformation.   

 Test results show the potential for plastic deformations along joints for the JSDP 

loading configuration.  As these local failures might occur at stress levels lower 

than the overall strength of the rock mass, the potential loading configuration and 

stress level that cause this type of deformation mechanism should be identified 

based on the test results. 

The study shows that test results should be interpreted taking into account the structural 

features of the rock mass.  Ignoring this factor causes a considerable scatter in results.  

Given the other sources of error/scatter in test results, a simple closed-form solution may 

not provide an efficient tool for the interpretation of plate loading test results. For plate 

loading tests conducted on systematically jointed rock masses, more sophisticated 

methods, such as numerical modeling along with a proper constitutive model, should 

provide more consistent results. 

3.8 References 

Afrouz, A. (1990). Determination of rock mass modulus nonlinear variation with loading 

and depth. Mining Science and Technology (11), 179-83. 

Agharazi, A. (2003). Effects of rock mass natural features on the in-situ determination of 

rock mass modulus of deformation. MSc Thesis. Tehran: University of Tehran. 

Agharazi, A., Tannant, D., Jafari, A. (2008). Stress and tunnel geometry effects on 

deformation modulus derived from plate load tests. Proceedings of 61st Canadian 

Geotechnical Conference & 9th Joint CGS/IAH-CNC Groundwater, Edmonton, 

volume 1, pages 601-608. Bi-Tech Publishers Ltd., Richmond. 

Asef, M. R., & Reddish, D. J. (2002). The impact of confining stress on the rock mass 

deformation modulus. Geotechnique, 4(52), 235-41. 

Bandis, S., Lumsden, A., Barton, N. (1983). Fundamentals of rock joint deformation. 

International Journal of Rock Mechanics and Mining Sciences & Geomechanics 

Abstracts, 20(6), 249-268. 

Barton, N. (2007). Rock Quality, Seismic Velocity, Attenuation and Anisotropy. Leiden: 

Taylor & Francis. 

Bieniawski, Z. T. (1978). Determining rock mass deformability - experience from case 



60 

histories. International Journal of Rock Mechanics and Mining Sciences & 

Geomechanics Abstracts, 15(5), 237-247. 

Boyle, W. (1992). Interpretation of plate load test data. International Journal of  

Rock Mechanics and Mining Sciences, 29, 133-141. 

Brown, E. T., Bray, J. W., & Santarelli, F. J. (1989). Influence of stress-dependent elastic 

moduli on stresses and strains around axi-symmetric boreholes. Rock Mechanics 

and Rock Engineering (22), 189-203. 

Chappel, B. A. (1987). Predicted and measured rock mass moduli. Mining Science and  

Technology (6), 89-104. 

Goodman, R. E., Taylor, R. L., & Brekke, T. (1968). A model for the mechanics of 

jointed rock. Journal of the Soil Mechanics and Foundations Division ASCE, 637-

59. 

Hoek, E., & Diederichs, M. (2006). Empirical estimation of rock mass modulus. 

International Journal of Rock Mechanics and Mining Sciences , 43, 203-215. 

Hoek, E., Carranza-Torres, C., Corkum, B. (2002). Hoek - Brown failure criterion: 2002 

edition. Proceedings of the 5th North American Rock Mechanics Symposium and 

17th Tunnelling Association of Canada Conference: NARMS-TAC, Toronto, 

volume 1, pages. 267-273.. 

ISRM. (1974). Suggested method for in situ determination of direct shear strength. 

International Journal of Rock Mechanics and Mining Sciences & Geomechanics 

Abstracts (32), 101-9. 

ISRM. (1979). Suggested method for determination of insitu deformability of rock. 

International Journal of Rock Mechanics and Mining Sciences (16), 143-146. 

IWPCO. (n.d.). Iran Water and Power Resources Development Co. Retrieved 11 01, 

2009, from http://en.iwpco.ir/Bakhtiari 

Ku, C. Y., Lin, J. S., Chern, J. C. (2004). Modeling of jointed rock masses using a 

combined equivalent continuum and discrete approach. International Journal of 

Rock Mechanics and Mining Sciences, 3(41), 434. 

Lama, P., & Vutukuri, V. (1978). Handbook on mechanical properties of rocks (Vol. III). 

Bay Village: Trans Tec Publications. 

MeSy GmbH. (2008). Bakhtyari Dam & H.E.P.P. Project; Hydraulic fracturing tests at 

the dam site: results of laboratory tests.  

Nawrocki, P. A., Dusseault, M. B. (1995). Modelling of damaged zones around openings 

using radius-dependent Young's modulus. Rock Mechanics and Rock Engineering 



61 

(28), 227-39. 

Palmstrom, A., Singh, R. (2001). The deformation modulus of rock masses - comparisons 

between in situ tests and indirect estimates. Tunnelling and Underground Space 

Technology, 16, 115-131. 

Saeb, S., Amadei, B. (1992). Modelling rock joints under shear and normal loading. 

International Journal of Rock Mechanics and Mining Sciences & Geomechanics 

Abstracts, 29(3), 267-278. 

Sitharam, T. G., Maji, V. B., Verma, A. K. (2007). Practical equivalent continuum model 

for simulation of jointed rock mass using FLAC3D. International Journal of 

Geomechanics, 7, 389-395. 

Souley, M., Homand, F., Amadei, B. (1995). An extension to the Saeb and Amadei 

constitutive model for rock joints to include cyclic loading paths. International 

Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (32), 

101-9. 

SPEC. (2008). Engineering geology and rock mechanics report - site investigation phase I 

& II: Rev 0. Tehran: Stucky Pars Engineering Co. 

SPEC. (2009). Engineering geology and rock mechanics report on completion of site 

investigations; Phase I & II: Revision 1. Tehran: Stucky Pars Engineering Co. 

Timoshenko, S., Goodier, J. (1970). Theory of Elasticity (3rd ed.). McGraw-Hill. 



62 

Chapter 4  

A three-dimensional equivalent continuum constitutive model for 

jointed rock masses containing up to three random joint sets2 

4.1 Introduction 

The deformational response of jointed rock masses is potentially anisotropic, non-linear 

and stress dependent because of the inherent anisotropy and non-linearity of rock joint 

displacements.  The influence of the discontinuities on the mechanical properties of rock 

masses has been an active subject of study in geomechanics.  Different techniques have 

been developed, all seeking an approach to take into account, analytically or empirically, 

the influence of discontinuities on the rock mass mechanical behavior.  These techniques 

can be classified into two general categories: discontinuum-based methods and 

continuum-based methods.  In the discontinuum methods, the rock discontinuities are 

incorporated into analysis in an explicit fashion, e.g., the distinct element method by Hart 

et al. (1988).  Alternatively, in continuum methods, the effect of discontinuities are taken 

into account in an implicit way, either by using downgraded mechanical parameters for 

the equivalent continua or by establishing constitutive relationships based on the 

principles of continuum mechanics that incorporate effect of discontinuities into analysis.  

The later models are known as “equivalent continuum models”.   

Analytical relationships proposed by Amadei and Goodman (1981), Yoshinaka and 

Yamabe (1986), and Huang et al. (1995) are examples of such models that can be used 

for deformation analysis of rocks with simple joint configuration and elastic behavior.   

For more general cases of non-orthogonal joint sets, non-linear joint deformation and 

plastic deformation, more advanced equivalent continuum models were proposed by 

different authors, such as those by Wang and Huang (2009) and Samadhiya et al. (2008) 

that can be used for numerical analysis of jointed rocks.  Non-persistency of the joints can 

also be considered in the models developed by Singh (1973) and Cai and Horii (1993) 
                                                      
2 A version of this chapter has been published as a paper by Geomechanics and Geoengineering: An 
international journal: 
Alireza Agharazi , C. Derek Martin & Dwayne D. Tannant (2012). "A three-dimensional equivalent 
continuum constitutive model for jointed rock masses containing up to three random joint sets". 
Geomechanics and Geoengineering: An international journal, 7:4, 227-238 
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based on the principles of composite mechanics and introduction of the so-called stress 

concentration tensor.  All of the above models share the basic concept of superposition of 

deformations that occur in the components of the system, i.e. intact rock and rock joints.  

There are also other models that were developed based on other theoretical concepts such 

as damage mechanics by Kawamoto et al. (1988), crack tensor theory by Oda et al. 

(1993) and homogenization techniques by Min and Jing (2003). 

Anisotropy in deformability and stress-dependency of stiffness are two important 

characteristics of the rock mass deformation.  These characteristics are frequently 

observed in results of in-situ deformation tests on layered rocks such as plate loading 

tests.  Figure 4.1 shows load-deformation graphs of three plate loading tests conducted on 

a jointed limestone rock mass.  As observed, for a given stress level and rock, induced 

deformations can vary to an order of magnitude depending on the relative direction of 

loading to the joints  Anisotropy is also observed in rock mass strength due to shear 

failure through an existing discontinuity plane at stress levels well below the overall 

strength of the rock mass.  

In a larger scale, a similar response is anticipated where a jointed rock mass forms the 

foundation of a dam or where it encompasses an underground space such as a cavern or 

tunnel.  While the available discontinuum based models, such as Distinct Element Code 

(UDEC or 3DEC) (Itasca 2007) generally provide robust tools that can be used for 

deformation and stress analysis of such problems, there are some conditions that make 

the application of these models inefficient or non-beneficiary.  One example is where the 

spacing of discontinuities is very small compared to the size of model or structure to be 

analyzed.  In such cases, the size of numerical elements is controlled by the spacing of the 

joints.  This can considerably increase the computation time of a densely jointed rock 

model.  In addition, in practice the detailed joint data that is required for a discontinuum 

model is not always available or even a detailed analysis of joint behavior is not 

necessary but the overall effect of joints on the rock mass response is of interest. In these 

situations, an equivalent continuum model that takes into account the influence of the 

joints implicitly provides a desirable alternative to discontinuum based models.        

In this paper, a three dimensional equivalent continuum constitutive model, named 

JointedRock, is introduced for a rock mass containing up to three persistent joint sets with 

arbitrary orientation and spacing.  By using the concept of the conservation of energy, 
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associated with the work done by an external force on an elastic body, the equivalent 

compliance matrix of the rock mass is established and the constitutive model is 

implemented in FLAC3D. The JointedRock model is well suited to deformation analysis of 

systematically jointed rocks that show anisotropic and nonlinear response to loading.  The 

model also checks the violation of the Mohr-Coulomb failure criterion in the intact rock 

and along one of the joint sets, as defined by the user.  The validity of the approach is 

checked by comparing the JointedRock model results with those obtained from three 

dimensional discontinuum models and available closed form solutions.  

 
Figure 4.1: Stress – deformation graphs of plate loading tests on a jointed limestone at the 
Bakhtiary dam site (loading plate diameter: 971 mm).  The graphs show the surface deflection for 
three different test configurations that differ in the relative direction of loading to orientation of 
discontinuities: normal to bedding (NB), normal to joint set 2 (NJ2) and inclined to all three joint 
sets, SB12. 

4.2 JointedRock Model: Theory and Assumptions 

A rock mass with persistent joint sets can be mechanically represented by spring-slider-

dashpot models interacting in series as depicted inFigure 4.2.  Similarly, the equivalent 

continuum model of this rock can be shown by another spring-slider-dashpot model 
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where the spring represents the equivalent elastic stiffness and sliders represent elements 

with potential of failure in the model, i.e. intact rock and the critical joint set. 

 
Figure 4.2: Conceptual rock block with three persistent joint sets and its simplified physical model 

Given the above physical model under the action of an external force, the total elastic 

strain increment in the equivalent model are the sum of the elastic strains in each 

component of the system, i.e. intact rock and three joint sets.  In a global coordinate 

system this can be written as follow: 

∆𝝐𝒊𝒋 = ∆𝝐𝒊𝒋𝑹 + ∆𝝐𝒊𝒋
𝑱𝟏 + ∆𝝐𝒊𝒋

𝑱𝟐 + ∆𝝐𝒊𝒋
𝑱𝟑    (4.1) 

where ∆𝜖𝑖𝑗 is total strain increment of the equivalent continua and ∆𝜖𝑖𝑗𝑅  is the intact rock 

strain increment and ∆𝜖𝑖𝑗
𝐽1, ∆𝜖𝑖𝑗

𝐽2and ∆𝜖𝑖𝑗
𝐽3 are the strain increments in the joint sets. 

Assuming the intact rock is isotropic, the incremental strain in the rock can be related to 

the increment of stress in the global coordinate system as follow (Jaeger et al. 2007) 

∆𝜖𝑖𝑗𝑅 = 𝐶𝑖𝑗𝑚𝑛𝑅 ∆𝜎𝑚𝑛   (4.2) 

where 𝐶𝑖𝑗𝑚𝑛𝑅 is the elastic compliance tensor of the intact rock. 

For this model, a representative elementary volume (REV) can be defined as a block of 

rock that encompasses one plane of each joint set with the dimensions being equivalent to 

the average spacing of the joint sets (Figure 4.3). This REV defines the minimum volume 

of rock that represents the average characteristics of the domain determined by the model. 

Intact rockjoint set 3joint set 2joint set 1

Equivalent model
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Figure 4.3: Representative Elementary Volume (REV) for the JointedRock model 

For a representative volume of V subjected to a stress increment of ∆σij with 

corresponding strain increment of ∆εij, the increment of strain energy due to deformation 

along joint set k, ∆EJk, can be mathematically written as: 

∆𝐸𝐽𝑘 =  𝜎𝑖𝑗∆𝜖𝑖𝑗
𝐽𝑘𝑉  (4.3) 

where σij is the average stress of the REV.  Assuming that joints are persistent and planar 

in the model, the tractions on joint, τij, can be calculated from average stress of REV as 

follow: 

𝜏𝑗 = 𝜎𝑖𝑗𝑛𝑖   (4.4) 

where ni is normal unit vector of joint. The work done by traction on the kth joint plane 

can be calculated as: 

∆𝑤𝐽𝑘 = 𝜏𝑗𝑘∆𝛿𝑗𝑘𝐴𝑘  (4.5) 

where ∆𝛿𝑗𝑘is elastic displacement along kth joint plane in REV. 

According to the principle of conservation of energy, the part of the elastic strain energy 

stored in the system due to elastic displacement along a given joint set (equation (4.3)), is 

equal to the work done by surface traction on the joint plane (Huang et al. 1995) as 

defined in equation (4.5).  By substituting equation (4.4) into (4.5), the strain increment 

caused by elastic displacement along kth joint plane in REV is given by: 

∆𝜖𝑖𝑗
𝐽𝑘 = 𝑛𝑖∆𝛿𝑗𝑘

1
𝑆𝑘

    (4.6) 

where sk is the dimension of the REV in the direction normal to the joint plane kth. 

X

Y

Z
REV

X

Y

Z
REV

X

Y
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In the global coordinate system, the joint displacements can be related to stresses acting 

on the joint plane by using joint elastic compliance matrix, Djm, as follow: 

𝛿𝑗 = 𝐷𝑗𝑚𝜏𝑚    (4.7)  

Substituting equation (4.4) in (4.7) and an incremental form of equation (4.7) into (4.6), 

yields: 

∆𝜖𝑖𝑗
𝐽𝑘 = 𝑛𝑖𝑘𝐷𝑗𝑚𝑘 𝑛𝑛𝑘

1
𝑆𝑘
∆𝜎𝑚𝑛  (4.8) 

From equation (4.8) the elastic compliance of joint set kth can be expressed in the form of 

a fourth-order tensor, 𝐶𝑖𝑗𝑚𝑛
𝐽𝑘 , as follow: 

𝐶𝑖𝑗𝑚𝑛
𝐽𝑘 = 𝑛𝑖𝑘𝐷𝑗𝑚𝑘 𝑛𝑛𝑘

1
𝑆𝑘

   (4.9) 

Following the same steps for all joint sets in the model, the equivalent compliance tensor 

of the model, 𝐶𝑖𝑗𝑚𝑛
𝐸𝑞  can be theoretically determined by summation of the compliance 

tensors of model elements in the global coordinate system: 

𝐶𝑖𝑗𝑚𝑛
𝐸𝑞 = 𝐶𝑖𝑗𝑚𝑛

𝑅 + 𝐶𝑖𝑗𝑚𝑛
𝐽1 + ⋯+ 𝐶𝑖𝑗𝑚𝑛

𝐽𝑘   (4.10) 

The Mohr-Coulomb failure criterion with a tension cut-off is used to check failure 

through intact rock and along the joint set.  A perfect plastic behavior is assumed for both 

after yielding.  Further details can be found in (Jaeger et al. 2007; Itasca 2006). 

To establish the equivalent compliance tensor of the rock mass in the matrix form, 

equation (4.2) is written in the Voigt notation (Jaeger et al. 2007) as follow: 

⎣
⎢
⎢
⎢
⎢
⎡
𝜖11
𝜖22
𝜖33

2𝜖23
2𝜖13
2𝜖12⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝜖1
𝜖2
𝜖3
𝜖4
𝜖5
𝜖6⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1
𝐸

− 𝜗
𝐸

− 𝜗
𝐸

0 0 0

−𝜗
𝐸

1
𝐸

− 𝜗
𝐸

0 0 0

−𝜗
𝐸

−𝜗
𝐸

1
𝐸

0 0 0

0 0 0 1
𝐺

0 0

0 0 0 0 1
𝐺

0

0 0 0 0 0 1
𝐺⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6⎦
⎥
⎥
⎥
⎥
⎤

  (4.11) 

where E is Young’s modulus, G is shear modulus and ν is the Poisson’s ratio of the intact 

rock.  Due to the isotropic assumption for the intact rock, the above relationship is valid 

in all coordinate systems. 
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The elastic compliance tensor of a single joint plane (Figure 4.4) can be written in the 

following general form: 

𝐷 = �
𝐷11 𝐷12 𝐷13
𝐷21 𝐷22 𝐷23
𝐷31 𝐷32 𝐷33

� = �
𝐷𝑠𝑠 𝐷𝑠𝑡 𝐷𝑠𝑛
𝐷𝑡𝑠 𝐷𝑡𝑡 𝐷𝑡𝑛
𝐷𝑛𝑠 𝐷𝑛𝑡 𝐷𝑛𝑛

�  (4.12) 

where the indices s, t and n denotes the components of the local coordinate system.  The 

local coordinate system of a joint set is oriented such that s-axis points to dip direction, t-

axis is aligned with the joint strike direction and n-axis defines the normal to the joint 

plane, that together form a right-handed coordinate system.  

 
Figure 4.4: Joint plane and local coordinate system 

In general, the compliance tensor for a joint is not symmetric due to the normal and shear 

displacements that develop under shear and normal stresses, respectively.  But for the 

sake of simplicity these components of joint deformation are ignored by setting the off-

diagonal terms of (4.12) to zero in the local coordinate system of the joint set.   

For the implementation purpose, the compliance tensor of each joint set is first built in 

the local coordinates of the joint set, according to equation (4.9).  Therefore equation 

(4.8) can be written in the matrix form as follow: 

⎣
⎢
⎢
⎢
⎢
⎡
𝜖11
𝜖22
𝜖33

2𝜖23
2𝜖13
2𝜖12⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝜖1
𝜖2
𝜖3
𝜖4
𝜖5
𝜖6⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16
𝐶21 𝐶22 𝐶23 𝐶24 𝐶25 𝐶26
𝐶31 𝐶32 𝐶33 𝐶34 𝐶35 𝐶36
𝐶41 𝐶42 𝐶43 𝐶44 𝐶45 𝐶46
𝐶51 𝐶52 𝐶53 𝐶54 𝐶55 𝐶56
𝐶61 𝐶62 𝐶63 𝐶64 𝐶65 𝐶66⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6⎦
⎥
⎥
⎥
⎥
⎤

 (4.13) 

With zero off-diagonal terms in the joint compliance tensor of equation (4.12), the only 

non-zero terms of the compliance matrix of the joint set, in local coordinates, are C33, C44 

and C55.  From equation (4.9) the values of these terms can be determined as: 

X

Y

Z
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𝐶33 = 𝐷𝑛𝑛
𝑆

= 1
𝑘𝑛𝑆

  (4.14) 

𝐶44 = 𝐷𝑡𝑡
𝑆

= 1
𝑘𝑡𝑆

  (4.15) 

𝐶55 = 𝐷𝑠𝑠
𝑆

= 1
𝑘𝑠𝑆

  (4.16) 

where kn, kt and ks are joint stiffness in directions of local coordinate axes n, t and s, 

respectively. 

The joint set compliance matrix as defined in (4.13) is no longer a tensor quantity and the 

common tensor transformation rule cannot be used for transformation of this matrix to the 

global coordinate system.  Instead this can be done using the method described by Riahi 

(Riahi 2008).  Once the compliance matrices of all components are formed in the global 

coordinate system, the equivalent compliance matrix of the rock mass is obtained using 

equation (4.10).  Finally, the equivalent elasticity matrix is determined by inverting the 

equivalent compliance matrix, in the global coordinate system. 

4.3 Implementation of the JointedRock Model in FLAC3D 

FLAC3D is a three-dimensional finite difference program for engineering mechanics 

computation (Itasca 2006).  In this program, materials are represented by polyhedral 

elements within a three-dimensional grid.  Each element behaves according to a 

prescribed constitutive model and failure criterion in response to applied forces or 

boundary restraints.  The constitutive models in FLAC3D follow an incremental numerical 

algorithm, i.e. given the stress state at time t, and the total strain increment at time step, 

dt, the purpose is to determine the corresponding stress increment and the new stress state 

at time t+dt. 

In the Jointed Rock model, when plastic deformations are allowed, upon each stress 

increment the failure of intact rock and the first joint set is checked using the Mohr-

Coulomb failure criterion with a tension cut-off.  No check is made by the code for 

failure along the second or third joint set, if there is any.  The code also does not check 

for multiple active yield surfaces. After each stress increment, general failure through the 

intact rock is first checked and if there is any violation of the failure criterion the 
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corresponding plastic stress correction is applied.  Using the most updated stress state, a 

further check is made for the failure along the joint set.   

The number of joint sets to be modeled is controlled by the user and varies from one to 

three joint sets.  It is also possible to ignore the failure check for either intact rock and/or 

joint set using a built-in option in the model. The mechanical parameters required for the 

model are the cohesion, friction angle, normal and shear stiffness, spacing, dip and dip 

direction of joints, and cohesion, friction angle, shear and bulk moduli of intact rock.  

Figure 4.5 shows the steps that are followed by the model during each time step of 

calculation in a FLAC3D model.   

 
Figure 4.5: Calculation steps followed for the implementation of the JointedRock model in 
FLAC3D 
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4.4 Verification Examples 

4.4.1 Elastic Deformation 

The deformation of a cube of rock in a uniaxial test is analyzed by three different 

methods: the JointedRock model, the built-in Elastic model in FLAC3D (Itasca 2006) and 

the three-dimensional Distinct Element Code 3DEC (Itasca 2007).  For the Elastic model, 

the relationships developed by Yoshinaka and Yamabe (1986) are used to calculate the 

equivalent Young’s and shear moduli.  For the discrete element analysis, the same rock 

geometry, as in FLAC3D, is used in 3DEC and the joint sets are explicitly added to the 

model.  

Two series of tests are modeled. The model consists of a 2×2×2 m rock block that is cut 

through by one joint set (two joint sets for the second series of tests) at different angles 

ranging β = 0 to 90° measured from z-plane (Figure 4.6).  Joints are spaced at S = 0.25m. 

Roller boundary conditions are applied to the x-planes (planes normal to x-axis).  A 

pressure of 10 MPa is applied to the top and bottom of the model by assigning z-

velocities to the boundary grid points on the z-planes.  The two other sides of the model 

are left unsupported to meet the plane stress assumption as taken in the applied closed 

form relationships (Yoshinaka and Yamabe 1986).  In all models plastic deformations are 

prevented. In the 3DEC model, high cohesion and tensile strength are assigned to the 

joints to prevent plastic deformation and block separation during the test. Table 4.1 shows 

the mechanical properties that are used for these models. 

Table 4.1: Mechanical and strength parameters for uniaxial test 

 

Mechannical Parameter intact rock joint set 1 joint set 2

bulk modulus (GPa) 4.28 -- --

shear modulus (GPa) 1.75 -- --

normal stiffness (GPa/m) -- 15 30

shear stiffness (GPa/m) -- 12 25

cohesion (kPa) 50 10 --

friction angle (degree) 40 30 --

tensile strength (kPa) 200 20 --

dilation angle (degree) 0 0 --
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Figure 4.6: Geometry and boundary conditions for the uniaxial test model.  The first series of tests 
are run with one joint set with joint spacing of S = 0.25m.  The second series of tests used two 
joint sets with spacings of S1 = 0.4m and S2 = 0.25m.  

Figure 4.7 shows the variation of the axial deformation versus joint inclination. In 

comparison with the 3DEC model, the JointedRock model tends to slightly overestimate 

the deformations for β values in the middle of the study range.  For the assumed 

mechanical parameters the difference reaches its maximum of 10% at β = 50°.  This issue 

can be attributed to bending stiffness of the rock layers in the 3DEC model.  As depicted 

in Figure 4.8, reducing the shear modulus of the intact rock reduces the bending stiffness 

of the layers, and the difference between the predicted deformations decreases for the two 

models.  The influence of bending stiffness is discussed in more detail in the next section.  

The analytical method tends to considerably underestimate the axial deformations over 

the applied range of joint inclination except for the two cases of β = 0° and β = 90°. 

Figure 4.9 shows the results of the same uniaxial test model for a block of rock with two 

perpendicular joint sets with the joint spacing being S1 = 0.4m and S2 = 0.25m.  Again the 

JointedRock model produces slightly higher deformations, compared to the 3DEC results, 

for the middle range β angles. 

β

z
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Figure 4.7: Rock deformation in uniaxial test model with one joint set 

 
Figure 4.8: Difference between calculated axial deformation by the JointedRock model (dJR) and 
3DEC model (d3DEC) for different joint set inclinations and three intact rock shear moduli (G) 

 
Figure 4.9: Rock deformation in uniaxial test model with two joint sets 
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4.4.2 Uniaxial Compressive Strength 

The uniaxial compressive strength of a cylindrical sample of rock containing a plane of 

weakness is evaluated using three different methods.  The closed form solution proposed 

by Jaeger et al. (2007) is used to determine the strength of the sample when the angle 

between the weakness plane and axis of the sample varies from β = 0° to 90°.  The same 

problem is solved numerically in FLAC3D using two different mechanical models.  In one 

model, the effect of the weakness plane is taken into consideration implicitly by the 

JointedRock model.  In the second model, the built-in Interface model in FLAC3D is used 

to define the weakness plane explicitly in the model.  For the weakness plane, the 

properties of joint set 1 are adopted from Table 4.1.  The intact rock properties are also 

those listed in Table 4.1.         

 
Figure 4.10: Uniaxial compressive strength of a rock sample with weakness plane  

For both models, a cylindrical rock specimen of 2m in diameter and 4m in length is 

loaded to failure.  The uniaxial compressive strengths of the rock obtained from the three 

methods are plotted versus weakness plane orientation inFigure 4.10.  All three methods 

produce essentially identical results with the same typical U-shape graph.  It should be 

noted that in the JointedRock model, the spacing of the joint set has no effect on the 

calculated strength as the model just checks the violation of the failure criterion along the 

joint orientation and does not take into account any length scale.   
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4.5 JointedRock Model Application 

The JointedRock model was originally developed as a practical tool for analysis of 

complex deformational behavior observed during plate load tests on jointed rocks, i.e. 

deformation anisotropy and stress dependency, as described in the introduction.  In this 

section, the JointedRock model is used for two different deformation analyses.  The first 

case is for a semi-infinite body of an intensely jointed rock mass that resembles a plate 

load test.  The second case is for non-linear deformation of a cylindrical rock specimen 

with a single joint with stress dependent normal stiffness.    

4.5.1 Deformation and Stress Distribution in a Semi-infinite Body of Jointed Rock 

A semi-infinite body of rock with one joint set is modeled to determine the surface 

deformation caused by a circular load applied on the top.  The model consists of a block 

of rock with dimensions of 26×26×15 m (W×L×D), intersected by a joint set with 

spacing of S = 0.1m.  A distributed normal stress of P = 10 MPa is applied on a circular 

area, of d = 1m in diameter, on the top centre of the model (Figure 4.11).   

 
Figure 4.11: Semi-infinite body of rock loaded on the top in FLAC3D 

The induced vertical displacement at centre of the loaded area is measured by the model 

for various joint inclinations ranging from  = 0° to  = 90° (measured from loading 

direction).  The rock and joint properties listed in Table 4.1 are assigned to the model.  

The analysis is repeated for a model of similar geometry and properties but in which the 

first joint set is intersected orthogonally by a second joint set with a spacing of S = 0.2m.  

The measured vertical displacements at the top centre of the model are plotted against 
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joint orientation for both models in Figure 4.12.  As observed, the induced deformation 

anisotropy due to the relative direction of loading to joint orientations is captured by the 

JointedRock model. 

 
Figure 4.12: Vertical displacements versus joint set orientation for a semi-infinite body of rock 
intersected by one and two joint sets.  A circular stress of 10 MPa is applied on the top centre of 
the model and displacements are measured at the centre of the loaded area. 

The discontinuities also change the stress distribution pattern beneath the loaded area.  

For a given joint configuration, the stress distribution in the semi-infinite body depends 

on the relative stiffness of the joints and rock, and the ratio between joint normal and 

shear stiffness.  But in general, joints give rise to deeper penetration of the stress and 

hence more deformation.  Figure 4.13 shows the stress distribution beneath the loaded 

area in the model with one joint set.  As observed, the JointedRock model captures the 

influence of the joints on the stress distribution despite no real discontinuities exist in the 

model.  This differs from all other equivalent continuum models where equivalent 

deformation parameters, such as shear and Young moduli are used to represent the 

influence of the discontinuities (Yoshinaka and Yamabe 1986). 
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Figure 4.13: Stress distribution beneath the loaded area in the semi-infinite model with one joint 
set 
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4.5.2 Stress-Dependent Joint Stiffness and Non-Linear Deformation 

A rock cylinder, cut by a single fictitious joint is loaded axially to P = 10 MPa.  The 

intact rock is assumed to follow a linear elastic behavior while the joint closure is non-

linear and stress-dependent.  The hyperbolic relationship introduced by Bandis et al. 

(1983) is assumed for the joint closure (𝛿) as follows: 

𝛿 = 𝛿𝑚.𝜎𝑛
𝑘𝑖𝑛.𝛿𝑚+𝜎𝑛 

   (17) 

The tangent normal stiffness (𝑘𝑛) of the joint can be calculated at each normal stress (𝜎𝑛) 

level from the derivative of equation (17) as follow: 

𝑘𝑛 =  𝑘𝑖𝑛. �1 − 𝜎𝑛
𝑘𝑖𝑛.𝛿𝑚+𝜎𝑛

�
−2

   (18) 

where 𝛿𝑚 and 𝑘𝑖𝑛 are the maximum joint closure and joint initial normal stiffness, 

respectively (Bandis et al. 1983).  Assuming 𝛿𝑚 = 3.7 mm and 𝑘𝑖𝑛 = 1 MPa mm⁄  the 

joint closure and normal stiffness curves of the model are plotted in Figure 4.14.      

 
Figure 4.14: Assumed joint closure and tangent normal stiffness curves for the model (𝛿𝑚 =

3.7 mm and 𝑘𝑖𝑛 = 1 MPa mm⁄ ) 

The model is run for various orientations of the fictitious joint relative to specimen axis.  

The stress-deformation curve for the case when the applied load is perpendicular to the 

joint is shown in Figure 4.15.  As observed, the total displacement is sum of the linear 

deformation of the intact rock and the non-linear closure of fictitious joint that produces a 

general non-linear response of the rock specimen.  As the angle between the joint plane 

and the axis of the specimen reduces, the joint normal closure contribution to the total 

deformation decreases and response of the specimen converges to that of the intact rock.  
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At the limiting case of α = 0° the total deformation of the rock specimen coincides with 

the deformation of the intact rock, which is totally linear (Figure 4.15). 

 
Figure 4.15: Axial deformation of a cylindrical rock specimen having a fictitious joint with stress-
dependent normal stiffness.  a) The total non-linear deformation is the sum of the linear 
deformation of the intact rock and non-linear closure of the fictitious joint. b) As the angle 
between fictitious joint and loading direction approaches zero, the deformation of the specimen 
converges to that of the intact rock   

4.6 Discussion on Model Applicability and Limitations  

An important factor that should be considered when comparing continua and discontinua 

modeling is the deformation kinematics.  In continua the total deformation of a body is 

produced by shear deformation and compression or extension of the body elements.  In 

contrast, in discontinua dislocation and detachment of the blocks are two potential 

mechanisms that can contribute to the total deformation of the body.  Hence, application 

of the JointedRock model should be avoided when such mechanisms are likely, e.g., 

toppling detachment of rock layers. 

As discussed before, in the uniaxial test model the JointedRock model tends to slightly 

overestimate the deformations, compared to the 3DEC model.  This issue arises from the 

different mechanisms that contribute to the deformation of the rock in the two models.  In 

the 3DEC model, when joints are inclined, the difference in the vertical displacement of 

two opposite ends of the layers results in bending of the intact rock layers.  As a result, 

the total stiffness of the model builds up due to bending stiffness of these layers.  But in 

the JointedRock model, no such mechanism develops, as the discontinuities are implicitly 

incorporated into the model, and total deformation of the body results from shear 

deformation and compaction of the body elements.      
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To evaluate the effect of bending stiffness on the JointedRock model, the bending of a 

simple cantilever plate under the action of a line load, Fz, (Figure 4.16) is modeled in 

FLAC3D.  The deflection of the plate tip is calculated for three different plate models.  In 

the first model, the plate is assumed to be intact and free of any discontinuity.  The 

properties of the intact rock are assigned to this model.  In the second model, a horizontal 

discontinuity cuts the plate thickness in half.  The Interface model is used for the 

discontinuity.  In the third model the influence of the discontinuity plane is taken into 

account in an implicit way using the JointedRock model.  The properties of the 

discontinuity and the intact rock are those listed in Table 4.1 for the joint set 1.  Figure 

4.17 shows the deflection of the plate tip plotted versus joint shear stiffness for two 

values of intact rock shear modulus. 

 
Figure 4.16: Cantilever plate loaded by a line load, Fz 

 
Figure 4.17: Deflection of cantilever plate tip versus discontinuity shear stiffness (ks) for two intact 
rock shear moduli (G) 

As observed, the deflection of the plate with the explicit joint is almost equal to that of 

the intact rock.  The deflection of the plate in this model is controlled by bending of the 

two intact rock plates interacting along the joint.  At higher values of joint shear stiffness 

the problem becomes similar to bending of an integrated plate. In the case of the 

JointedRock model, the deflection of the plate is calculated using the average mechanical 
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parameters for the equivalent continua.  As the results show, at lower plate bending 

stiffness (lower intact rock shear modulus) the absolute deflection of the plate edge 

increases but the relative difference between the predicted values by two models 

decreases. 

The JointedRock model, similar to other equivalent continuum models that have been 

developed based on the classical theory of elasticity, is inherently unable to take into 

account the bending moments of the material. The equivalent continuum model 

developed by Riahi (2008) based on the Cosserat theory is better suited for such problems 

in which bending of the layered rock is a potential deformation mechanism. 

The relative size of the model and spacing of the joints is another factor that should be 

considered when the JointedRock model is used. Figure 4.18 shows two cases of the same 

geometry and boundary conditions but with different joint spacing.  The Jointed Rock 

model can be applied efficiently to the first case with relatively high joint density.  In the 

case of large joint spacing, compared to size of structure or loaded area, displacement 

along a single joint might govern the response of rock mass.  Application of the 

JointedRock model for such cases might potentially produce poor results.  On the other 

hand, for intensely jointed rock masses, where the spacing of the joints are small 

compared to the general size of the model,  such as the semi-infinite model for plate test 

loading presented earlier, the JointedRock model is computationally efficient compared to 

discontinua numerical programs. 

 
Figure 4.18: Impact of relative spacing of joints on applicability of JointedRock model.  

Persistency of the joints is a basic assumption of the model.  Plastic displacement along a 

joint set might change this condition as illustrated in Figure 4.19. This would only occur 

when the displacements are large and beyond the purpose of the model.  
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Figure 4.19: A persistent joint set becomes non-persistent as a result of large plastic displacement 
along another joint set 

4.7 Conclusion 

A three dimensional equivalent continuum constitutive model (JointedRock) was 

formulated for jointed rock masses containing up to three persistent joint sets.  The model 

was developed to efficiently handle the deformation anisotropy and stress dependency in 

systematically jointed rocks.  The model was implemented in FLAC3D and the results 

compared for typical example problems to the results from the discrete element method 

(3DEC), the Interface model in FLAC3D and analytical solutions. The results show that 

the JointedRock model provides an efficient tool for deformation analysis of 

systematically jointed rocks in which the general anisotropy of a rock mass is of 

importance to the analysis.  Anisotropic behavior is frequently observed in plate load test 

results, and hence the JointedRock model may provide an efficient alternative for the 

interpretation of rock mass deformation test results. Because the model uses the stiffness 

of discontinuities as input parameters, deformation nonlinearity can also be incorporated 

into an analysis using appropriate stiffness models.   

The relative size of the model and spacing of the joints should be considered before using 

the JointedRock model.  The JointedRock model can be applied efficiently when the joint 

spacing is small relative to the loading structure such as a concrete gravity dam.  

However when the size of the loading structure is small compared to the joint spacing, 

displacement along a single joint may govern the response of rock mass.  For this case, 

the use of the JointedRock model may not be appropriate.  When modeling densely 

jointed rocks where the spacing of the joints is small compared to model dimensions the 
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JointedRock model also has considerable computing efficiency compared to the 

numerical demands for discrete element models. 
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Chapter 5  

Numerical analysis of plate loading test results using an equivalent 

continuum model “JointedRock” – Case study: Bakhtiary dam site3 

5.1. Introduction 

Plate loading tests (PLT) are commonly used to determine the rock mass deformability at 

the large scale.  The test is often conducted in small exploratory galleries and involves 

loading two opposing rock surfaces and measuring the induced displacements beneath the 

loading plates.  Depending on the loading method, two PLT types are distinguished: 

flexible loading by flat jacks and rigid loading by hydraulic jacks through a stiff plate.  

The closed form equation for loading of a semi-infinite medium is frequently used to 

interpret the PLT results, as suggested by ASTM (2008) and ISRM (1979).  In this 

method, the rock mass is assumed to behave as a continuous homogeneous isotropic 

linear elastic material.  But due to existence of discontinuities, jointed rock masses are 

often characterised as discontinuous media with anisotropic and non-linear behaviour.  

This inconsistency between the theoretical assumptions and the real rock mass behaviour 

is a main source of error in the interpretation of the PLT results (Agharazi et al. 2012a). 

Agharazi et al. (2012a) divided the factors influencing PLT results into “operational 

factors” and “theoretical factors”.  The operational factors are associated with the quality 

of the site preparation and test execution such as rock disturbance around the test gallery 

(Palmstrom and Singh 2001) and quality of the measurement instruments.  The 

theoretical factors result from inconsistency of the theoretical assumptions with the real 

rock mass conditions and depend on the selected method for the interpretation of test 

results.  The geometry of the test gallery is an important factor that affects the test result 

interpretation when using the analytical equation suggested by ISRM (1979) and ASTM 

(2008).  For the tests in which the deformations are measured through depth beneath the 

loading plates, the confining effect of the test gallery results in deviation of the calculated 

moduli through depth versus that for an ideal elastic half space (Agharazi et al 2012a; 

Boyle 1992). 

                                                      
3 A version of this chapter has been submitted as a paper to International Journal of Geomechanics; ASCE 
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Numerical methods can also be used to interpret PLT results.  In this method, the rock 

mass is usually assumed as a linear elastic material and an equivalent deformation 

modulus is sought through back calculation of the measured deformations during the test.  

By applying proper boundary conditions, the confining influence of the test gallery can be 

taken into account in this method. 

Given that both the analytical and numerical methods provide an equivalent deformation 

modulus based on the measured deformations, the anisotropic deformability of a 

transversely isotropic or orthotropic rock mass can be determined by these methods 

provided enough data are available from tests conducted at appropriate directions.  

However, for a general case of anisotropic rock, such as a rock mass with arbitrarily 

oriented joint sets, a large number of PLTs conducted at various directions are required to 

provide enough data to determine the general deformability of the rock mass by these 

methods. 

A detailed study by Agharazi et al. (2012a) on the results of a series of PLTs carried out 

at the Bakhtiary dam site in southwestern Iran showed that the deformation of the rock 

mass is highly anisotropic and depends not only on the mechanical properties of the intact 

rock and the discontinuities but also on the direction of loading relative to the 

discontinuities.  It was shown that in a given rock mass different deformation 

mechanisms can be mobilized depending on the test configuration. 

In this study, an equivalent continuum model for the jointed rocks, JointedRock 

(Agharazi et al. 2012b), was used to interpret the PLT results at the Bakhtiary dam site.  

The anisotropic deformability of the dam foundation rock mass was determined using the 

JointedRock model and the estimated stiffness of the discontinuities.  The rock mass 

deformation modulus was also estimated using different methods, i.e. empirical relations, 

analytical method, and numerical method.  By comparison of these moduli with the 

moduli predicted by the JointedRock model, it is shown that the observed scatter in the 

estimated moduli, to a large extent, relates to the anisotropy of the rock mass.    

The JointedRock model is briefly introduced in the next section.  The capability of the 

model in stress-deformation analysis of the jointed rocks is assessed by a test model of a 

jointed rock cylinder loaded axially and comparing the results with the results of a model 

in which the joints were defined explicitly.  
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5.2. JointedRock Model 

The JointedRock model is a three dimensional equivalent continuum model developed for 

stress-deformation analysis of jointed rock masses with anisotropic and non-linear 

deformational characteristics.  In this model, up to three joint sets can be implicitly added 

to an intact rock to construct an equivalent continuum model of a systematically jointed 

rock mass.  Joints can be of any arbitrary spatial orientation that is defined by their dip, 

dip direction, and spacing in the model.  The deformational characteristics of the joints 

are directly defined in the model by their normal and shear stiffness.   

The elastic compliance of the equivalent continua is established by the definition of a so-

called Representative Elementary Volume (REV) and superpositioning of strains of the 

REV elements, i.e. the joint sets and the intact rock based on the principles of the 

conservation of energy for the work done on elastic bodies.  The model adopts an elastic-

perfect plastic mechanical behavior for both the intact rock blocks and the joint sets, 

using the Mohr-Coulomb failure criterion.  The model was implemented in FLAC3D and 

can be used for numerical analysis of the jointed rock masses.  Agharazi et al. (2012b) 

provide further details on the JointedRock model. 

 
Figure 5.1: Jointed rock cylinder of the 3D uniaxial test model (left), cross section of the cylinder 
and boundary condition (right). 

The JointedRock model was used to carry out a three dimensional numerical analysis of a 

uniaxial test on a hypothetical jointed rock cylinder of 1 m in length and 0.5 m in 

diameter.  The lateral displacement of the cylinder was confined by applying roller 
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boundaries around the cylinder.  This boundary condition is necessary to prevent the 

dislocation and rotation of the rock blocks. The axial load was provided by applying a 

fixed velocity to the top of the model until the test load of P = 15 MPa was reached (rigid 

loading).  

Two cases were studied: a rock cylinder with one joint set, and a rock cylinder with two 

perpendicular joint sets.  A FLAC3D model was constructed and the joint sets were added 

to the model implicitly.  A 3DEC model of the same test was also made with the joint sets 

being added to the model explicitly.  The mechanical properties of the joints and the 

intact rock are listed in Table 5.1. 

Table 5.1: Mechanical properties of joints and intact rock for the uniaxial test model. 

 

 
Figure 5.2: Deformation versus joint angle plots for uniaxial test with one joint set (left) and two 
joint sets (right). 

The models were run for different joint angles ranging from  = 0 to 90°.  The axial 

deformation of the cylinder is plotted versus the joint angle in Figure 5.2 for models with 

one joint set and models with two joint sets.   The deformations from the JointedRock 

model show a good agreement with the results from the 3DEC model, for the simulations 

with one joint set.  The minor differences observed at the mid-range joint dip angles arise 

mainly from the bending stiffness of the rock layers in the 3DEC model (Agharazi et al. 

2012b).  The anomaly observed in the predicted deformation pattern by the 3DEC model 
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for the test with two joint sets at α ≈ 45° is a boundary condition effect caused by rotation 

and dislocation of the boundary blocks on top of the model under the applied fixed 

velocity boundary condition.     

Figure 5.3 shows the maximum stress and the axial displacement contours for the test 

with one joint set and joint angles of α = 30° and α = 60°.  Despite there being no explicit 

discontinuities in the JointedRock model, the influence of the discontinuities is properly 

reflected in the stress and displacement distributions defined by the model.  The results 

also show a close match with the results from the 3DEC model with explicit joints.   

 

 
Figure 5.3: Maximum principal stress and axial displacement contours for the uniaxial test with 
one joint set at α = 30° (upper) and α = 60° (lower). 

The numerical simulation of large uniaxial tests shows the capability of the JointedRock 

model for stress-deformation analysis of the jointed rocks in which the deformations 
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result from the deformation of rock blocks and the normal and shear displacements of 

joints.   

5.3. Case Study: Bakhtiary Dam and Hydroelectric Project 

5.3.1. Site Geology  

The Bakhtiary dam and hydroelectric project consists of a 315 m high arch dam and an 

underground powerhouse with a nominal power generation capacity of 1500 MW after 

construction.  The dam site is located in the Zagros Mountains in southwest Iran (IWPCO 

2009).  

 
Figure 5.4: Geological section at the dam axis with projection of the test galleries, GL1, Gl2 and 
GL3 on the left abutment and GR1, GR2 and GR2 on the right abutment.  

The limestone layers of the Sarvak formation form the main rock at the dam site.  The 

Sarvak formation is composed of seven geological units, namely SV1 to SV7, at the 

Bakhtiary site.  Three of these units, i.e., SV2, SV3 and SV4 outcrop at the dam axis.  

These units are described as thinly (SV2), medium (SV3) and thickly (SV4) bedded grey 

limestone.  Bedding surfaces and a major joint set J1 are the main discontinuities. The 

joints intersect the bedding at right angles at most locations.  Intense folding of the rock 
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layers within the core of the Siah Kuh anticline has formed kink band zones that have 

weaker geomechanical characteristics (Stucky Pars Engineering Co. (SPEC) 2008). 

Field assessment of the rock mass quality resulted RMR ratings of 48 to 66 and GSI of 45 

to 66 for the SV2, SV3 and SV4 units.  These values reduce to RMR = 30 to 55 and GSI = 

35 to 55 for the intensely folded zones.  Results from petite seismic tests yielded average 

deformation values of E = 14 GPa, E = 7.3 GPa and E = 2.7 GPa for slightly folded layers 

of SV2, slightly folded layers of SV3 and intensely folded thin layers of SV3, 

respectively (SPEC 2008).    

Figure 5.4 shows the geological section of the dam axis along with projections of the 

exploratory galleries where PLTs were performed. 

5.3.2. Plate Loading Test Results 

Thirty-five plate loading tests were performed in six exploratory galleries at the dam axis 

(Figure 5.4) as a part of a comprehensive site investigation program completed during the 

study phase of the project.  From these tests, 15 successful and well-documented tests 

were selected for a detailed study of the anisotropic deformability of the rock mass at the 

dam axis.  The details of these tests are included in Appendix 4.  Tests with unreliable 

results and missing discontinuity data and repeated tests were excluded from this study.  

The tests were performed using a rigid plate test apparatus, in test galleries of nominal 

dimensions of 2 m wide and high.  Three loading plates with diameters of 925 mm, 971 

mm and 650 mm were used for the tests.  In each test, the maximum load was reached 

after four consecutive loading-unloading cycles with the peak load being increased at 

each loading cycle.  A further loading-unloading cycle was also run after the fourth 

loading cycle to assess the stiffening of the rock mass under cyclic loading.  At each 

loading cycle, time-dependent deformability of the rock mass was investigated by 

maintaining the peak load for a given time interval and measuring the corresponding 

deformations.  The induced deformations in the rock mass were measured with multi-

point borehole extensometers, installed in a 76 mm diameter central borehole drilled 

beneath the plates (Agharazi et al. 2012a). 

Agharazi et al. (2012a) categorized the PLTs of the Bakhtiary dam site into five groups 

based on the direction of loading relative to the orientation of the bedding and a dominant 

joint set, J1, in each test.  The response of the rock mass to loading was investigated 

through analysis of the stress-deformation curves of the tests in each group.  By studying 
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characteristics of the deformations, i.e. total deformation, irrecoverable deformation, 

time-dependent deformation, and deformation hysteresis, four main deformation 

mechanisms namely JND, JSD, JSDP, and CD were identified and described.  These 

mechanisms are associated with the dominant deformation component in each test: joint 

normal displacement (JND), joint shear displacement (JSD), joint shear displacement 

with plastic deformation (JSDP), and compaction of discrete rock fragments (CD) 

(Agharazi et al. 2012a). 

The stress-deformation curves for measured surface displacements showed that the slope 

of the loading segment of the curves increases over the first three loading cycles and then 

reach a plateau over the next two loading cycles (Agharazi et al. 2012a).  The lower 

stiffness observed in the first two loading cycles are associated with the rock damages 

due to blasting and stress relaxation around the test gallery.  The deformation moduli 

calculated based on the first two loading cycles can be considered as the disturbed rock 

mass deformation modulus.  The deformation modulus of the undisturbed rock mass can 

be determined from the deformations of the 3rd or 4th loading cycles.  In this analysis, the 

surface displacements measured during the 3rd loading cycles (Figure 5.5) were used to 

determine the rock mass modulus and estimate the joint stiffness. 

 
Figure 5.5: Stress-deformation plot of a PLT at the Bakhtiary dam site.  The slope of the loading 
segment of the curves increases over the first three loading cycles. 

For each test the deformation modulus of the rock mass was calculated using three 

methods: the empirical equations, the analytical relation suggested by ISRM (1979) and 

ASTM (2008) test standards, and the numerical simulation of the tests by FLAC3D. 
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Determination of Deformation Modulus - Empirical Methods 

The empirical relationships have been established by the correlation of in-situ test results 

with the rock mass classification ratings and can be used for the preliminary estimation of 

the rock mass deformation modulus.  In these methods the rock mass is assumed as an 

isotropic material (Hoek and Diederichs 2006). 

The empirical relationships developed by Hoek and Diederichs (2006) and Bieniawski 

(1978) were used to estimate the rock mass deformation modulus for each test site as 

follows: 

E (GPa) = 2RMR – 100 (for RMR>50)    (Bieniawski 1978)  (5.1) 

E (GPa) =100 � 1−𝐷/2

1+𝑒(75+25𝐷−𝐺𝑆𝐼11 )
�    (Hoek and Diederich 2006) (5.2) 

where, RMR is the Rock Mass Rating, GSI is the Geological Strength Index and D is the 

disturbance factor as defined by Hoek et al. (2002).  

For each test, the RMR rating was determined using the joint survey data collected at the 

test site, the RQD values reported in the extensometer borehole logs, and the results of the 

uniaxial compressive strength tests on intact rock samples.  For the tests with no detailed 

joint mapping, the test gallery joint mapping was used as a reference.  The RQD values 

were determined from the extensometer borehole logs.  The RMR values were calculated 

using the 1989 version of the Bieniawski rock mass rating method (Hoek 2007) with no 

adjustment for the orientation of discontinuities.  The GSI values were calculated from 

RMR values as GSI = RMR89 – 5 (Hoek and Diederichs 2006).  The disturbance factor D 

was assumed zero for all tests.  This is consistent with the deformation moduli calculated 

based on the 3rd loading cycle of the PLTs.  The estimated GSI and RMR values along 

with the corresponding deformation modulus for each test are listed in Table 5.2. 

Determination of Deformation Modulus - Analytical Relation 

The Boussinesq’s equation for the loading of an isotropic, homogeneous, elastic half 

space medium (Timoshenko 1970) is frequently used for the calculation of the 

deformation modulus from PLT results, as suggested by the ISRM (1979) and ASTM 

(ASTM Standard D4394-08, 2008) test standards.  For surface displacements under a 
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theoretically rigid circular loading plate of radius a, this relationship can be written as 

follows (Agharazi et al. 2012; ASTM 2008): 

𝐸 = 𝜋𝑎(1−𝜗2)
2𝑤

𝑞 (5.3) 

where w is displacement beneath the loading plate, q is average stress beneath the plate, E 

is deformation modulus and ν is the Poisson’s ratio.  In this equation, the influence of the 

central borehole is ignored.  The Poisson’s ratio was taken as ν = 0.2 determined from the 

uniaxial test results on the core samples taken at the site (SPEC 2008).  The influence of 

Poisson's ratio on the moduli calculated by Equation (5.3) is very limited and for a 

possible range of ν = 0.1 to 0.3 the maximum variation of modulus is 8%.  The secant 

deformation moduli calculated based on the deformations of the 3rd loading cycle of the 

tests are listed in Table 5.2. 

Determination of Deformation Modulus –FLAC3D- Elastic Model 

Three FLAC3D models corresponding to the three loading plate diameters were 

constructed as shown in Figure 5.6.  The models include one side of a plate loading test in 

a test gallery of 2×2 m.  The extensometer borehole with a diameter of 76 mm was also 

included in the model.  The confining effect of the test gallery was taken into account by 

fixing the z-displacements at the top of the model.  In all models, the built-in Elastic 

constitutive model was assigned to the rock mass.  This provides an isotropic elastic 

behaviour for the rock mass which is consistent with the fundamental assumptions taken 

in the analytical relationship of Boussinesq.  
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Figure 5.6: Numerical model of PLT (FLAC3D).  The model was cut in half by a vertical plane 
crossing the centre of the loading plate.  Just upper part of the model is shown. Vertical 
displacements were fixed at the top of the model (excluding the inside of the gallery) to simulate 
the confining effect of the gallery. 

Table 5.2: RMR and GSI and modulus of deformation for PLTs.  

 

An average stiff circular stress of q = 14 MPa, corresponding to the applied pressure 

interval over the 3rd loading cycle of the tests (1-15 MPa), was applied to the models.  

The loading was provided by applying a fixed velocity boundary condition over a circular 

area corresponding to the loading plates in each model.  The fixed velocity boundary 

condition was kept for a given number of calculation steps until the average test load was 

extensometer borehole 
diameter=76 mm
length = 8 m

test gallery

loading area
d=650, 915, 971 mm

1m

Test Rock Unit RMR GSI

Modulus of Deformation (GPa)

Empirical Methods Analytical Solution FLAC3D - Elastic

B* H-D** Left/Up*** Right/Down Left/Up Right/Down

PLV1L1 SV3 68 63 36 25 17.6 26.4 13.9 20.9

PLH1L1 SV3 68 63 36 25 9.9 9.2 7.7 7.3

PLV2L1 SV3 55 50 10 9 21.5 -- 16.8 --

PLH2L1 SV3 55 50 10 9 12.6 10.7 9.9 8.4

PLV3L1 SV3 65 60 30 20 13.7 21.6 10.8 17.0

PLH3L1 SV3-Kink Band Zone 67 62 34 23 -- 7.2 -- 5.5

PLV1R1 SV2-Kink Band zone 69 64 38 27 10.6 18.1 8.4 14.4

PLH1R1 SV2-Kink Band Zone 62 57 24 16 18.7 -- 14.9 --

PLV2R1 SV2 Kink Band Zone 69 64 38 27 14.9 14.2 11.7 11.1

PLH2R1 SV2-Kink Band zone 65 60 30 20 28.1 25.9 21.9 20.4

PLV1R2 SV3 65 60 30 20 10.1 9.6 7.9 7.5

PLH1R2 SV3 66 61 32 22 8.6 -- 6.8 --

PLV3R2 SV3 Kink Band zone 66 61 20 14 6.7 7.4 5.3 5.8

PLH2L2 SV4 58 53 16 12 -- 9.3 -- 6.9

PLV2L2 SV4 58 53 16 12 16.2 17.5 12.9 13.7

*   Bieniawski Relationship E=2RMR-100
** Simplified Hoek and Diederichs Relationship E = 100[(1-D/2)/(1+e((75 + 25D - GSI)/11))] (D = 0)
*** Left/Right and Up/Down refer to loading plate direction for horizontal and vertical tests, respectively
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reached.  A Poisson’s ratio of ν = 0.2 was assigned to the rock mass.  By running the 

models for a range of deformation moduli, deformation versus modulus plots were 

constructed for the three loading plate diameters used for the tests (Figure 5.7).  A 

deformation modulus range of E = 2 to 25 GPa was selected so the calculated 

deformations by the models cover the full range of deformations measured during the 

plate loading tests.  Using these plots, a first estimation of the equivalent deformation 

moduli were obtained for each test, based on the measured deformations at the site.  The 

determined moduli were then refined by back calculation of the exact deformations for 

each test.  Similar to the analytical method, the surface deformations measured during the 

3rd loading cycles were used for the calculation of moduli.  The results are listed in Table 

5.2.   

 
Figure 5.7: Displacement versus deformation moduli plots calculated by the numerical models of 
the tests. 

Comparison of the Results 

The maximum, minimum and average deformation modulus values calculated using 

different methods are listed in Table 5.3.  As observed from Table 5.2 and Table 5.3, the 

range of variation of the calculated moduli is relatively high for all methods with the 

maximum modulus being almost as high as four times of the minimum modulus.    The 

moduli estimated by the empirical methods fall in a range of E = 9 to 38 GPa.  The range 

of variation for the moduli calculated using the analytical method is E = 6.8 to 28.6 GPa 

and for the moduli calculated from the FLAC3D model is E = 5.2 to 22 GPa.  A 

considerable scatter also exists in the calculated moduli.  Given the main variable in these 

tests is the direction of loading relative to the orientation of discontinuities, the high range 
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of variation and the scatter in the results can be attributed to the influence of 

discontinuities on the test results. 

Table 5.3: Maximum, minimum and average deformation moduli calculated using different 
methods. 

 

As shown in Figure 5.8, the moduli calculated using the analytical method and the 

FLAC3D models show a poor correlation with the empirical relations.  The anisotropy of 

the rock mass deformability is a major factor contributing to this inconsistency. 

 
Figure 5.8: Comparison of moduli calculated using the analytical and numerical methods with the 
empirical relationships. 

The calculated moduli using the analytical method show a linear correlation with the 

moduli determined from the FLAC3D- Elastic models as shown in Figure 5.9.  The 

confining effect of the test gallery on the test results causes a systematic error in the 

moduli calculated using the analytical relation (5.3) (Agharazi et al. 2008).  This problem 

is addressed in the FLAC3D- Elastic models by incorporating the real geometry of the test 

gallery and applying appropriate boundary conditions.  The comparison of the results 

show that a correction factor of 0.79 is required to compensate for the effect of the test 

gallery geometry on the moduli calculated using Equation (5.3).     

Deformation Modulus (GPa)
Empirical Methods Analytical Solution FLAC3D ModelB H-D

Minimum 10.0 9.0 6.7 5.1

Average 26.7 18.7 14.7 11.5

Maximum 38.0 27.0 28.1 21.9

Standard Deviation 9.9 6.3 6.3 5.0
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Figure 5.9: Correlation of the moduli calculated using the numerical method with those by the 
analytical relation.  

While the joint parameters, such as spacing, stiffness and orientation, have a dominant 

influence on the deformability of the rock mass, and thus on the calculated moduli, none 

of the applied methods can directly take them into account for the interpretation of the 

test results.  The equivalent moduli calculated using the FLAC3D- Elastic models are only 

valid for joint configurations that are similar to those tested rocks and cannot be 

extrapolated to rock masses with different joint spacing or joint orientation. 

In the next section, the JointedRock model is used as the constitutive model of the rock 

mass in FLAC3D simulations of the tests.   By using this model, the spacing, stiffness, and 

orientation of the discontinuities are directly incorporated into the test result 

interpretation.  

5.4. Numerical Interpretation of the Plate Loading Test Results Using the 

JointedRock Model 

5.4.1. Rock Mass Deformation Parameters 

The deformability of the rock mass is defined as a function of: 

• deformability of the rock blocks defined by Young modulus and Poisson’s ratio, 

• deformability of the bedding and J1, defined by their normal and shear stiffness, 

• spatial configuration of the bedding and J1, defined by their spacing, dip, and dip 

direction in the model. 
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Rock block deformability: The rock blocks are formed by intersection of the bedding 

surfaces and J1.  The blocks are assumed to contain some minor random joints.  The 

block deformability was assumed isotropic and was estimated using Hoek and Diederichs 

empirical equation (Hoek and Diederichs 2006).  After ignoring the influence of the 

bedding and J1, the rock block deformation modulus, Em, is taken as:   

𝐸𝑚 = 𝐸𝑖 �0.02 +  1−𝐷 2⁄
1+𝑒((60+15𝐷−𝐺𝑆𝐼) 11⁄ )�  (5.4) 

where Ei is intact rock deformation modulus.  Since the analyses were done using the 

deformations measured during the 3rd loading cycle of the tests, the disturbance factor, D, 

was taken as zero.  The average intact rock deformation modulus was estimated as Ei = 

65 GPa from the unconfined compressive tests on intact rock samples (Agharazi et al. 

2012a). By ignoring the bedding and J1 in the rock mass, a GSI value of 65 was selected 

that represents a massive rock with widely spaced non-persistent random joints (Hoek 

2007).  The deformation modulus of the rock blocks was calculated as Em = 43.5 GPa 

using Equation (5.4). 

Deformability of Discontinuities: Since no test results were available on the mechanical 

properties of the joints, the normal stiffness of J1, knj, was assumed to be proportional to 

the normal stiffness of the bedding, knb.  Based on a joint survey conducted in the 

exploratory galleries (SPEC 2008), the bedding and J1 have an aperture of 0.1 to 1 mm 

(90% of surveyed cases) with the infilling being clay (43% of cases) or calcite (46% 

cases) for the bedding, and calcite (68% of cases) or no infilling (22% of cases) for J1 

(Agharazi et al. 2012a).  On this basis, the normal stiffness of J1 was taken to be 1.25 

times stiffer than that of the bedding (knj = 1.25 knb). 

The bedding is described as mainly planar with rough (17% of cases), smooth (23% of 

cases) and slickenside (60% of cases) surfaces.  J1 is described as planar with smooth 

(48% of cases) and rough (48% of cases) surfaces (Agharazi et al. 2012a).  Given the 

small aperture of the bedding and J1, a shear stiffness of 75% the normal stiffness was 

assumed for both discontinuities.  This assumption results in a 25% higher shear stiffness 

for J1 which is consistent with the high proportion of rough and unfilled surfaces reported 

for J1 as opposed to the high population of slickenside and clay-filled surfaces for the 

bedding (ksj = 1.25 ksb). 
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Spatial configuration of discontinuities: The selected plate loading tests were divided into 

two groups based on the direction of loading relative to the orientation of the bedding and 

J1.  The first group includes eight tests with loading direction parallel to the bedding but 

with an angle of β with respect to J1.  The second group includes seven tests with the 

loading direction intersecting both the bedding and J1 at an angle of α and 90-α, 

respectively as depicted in Figure 5.10. 

 
Figure 5.10: Loading direction and the orientation of discontinuities in two test groups 

For each test, the detailed joint data, i.e. the orientation and spacing of the bedding and J1 

were extracted from the extensometer borehole logs and the joint mapping of the test 

surfaces.  These data were used for the construction of the numerical model of each test.  

For the tests in the first group, the average spacing of the bedding and J1 was determined 

as Sb1 = 0.27 m and Sj1 = 0.37 m, respectively.  For the tests in the second group, the 

average spacing of bedding and J1 was determined as Sb2 = 0.24 m and Sj2 = 0.4 m, 

respectively.  For both groups, the range of spacing for the bedding was 0.15 to 0.35 m 

and for the joints it was 0.3 to 0.45 m. 

5.4.2. Back Calculation of Joint Stiffness from the Test Results 

Similar FLAC3D models, as in the previous section, were used for this analysis with the 

Elastic model being replaced with the JointedRock model.  This allows the joint-

dependent anisotropy of the rock mass to be incorporated into the analysis.  The bedding 

and J1 were added implicitly to the model using dip, dip direction and spacing values 

determined for each test.  The deformation modulus of Em = 43.5 GPa, as calculated by 

Equation 4, was assigned to the rock blocks.  The Poisson’s ratio was taken to be ν = 0.2, 

similar to the previous analyses.   An average stiff load of q = 14 MPa, corresponding to 
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joint set

α

beddingjoint set
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the load interval of the 3rd loading cycle of the tests (1-15 MPa), was applied to the 

models as the test load.  Using this model the normal stiffness of the bedding was back 

calculated based on the surface displacements measured during the 3rd loading cycle, for 

each test.  Plastic deformations were prevented in the models by setting the built-in 

plasticity switch off for both the discontinuities and the intact rock (Agharazi et al. 

2012b).  Table 5.4 shows the estimated average shear and normal stiffness values from 

the PLT results. 

Table 5.4: Average normal and shear stiffness values back-calculated from PLT results using 
FLAC3D- JointedRock model 

 

5.4.3. Determination of the Anisotropic Deformation Modulus of the Rock Mass 

A hypothetical model of the plate loading test was constructed using FLAC3D with the 

JointedRock model being the constitutive model of the rock mass.  The same geometry, 

boundary conditions and test load (q = 14 MPa) were applied to the model as in the 

previous analyses (Figure 5.6).  The rock blocks were assigned a deformation modulus of 

Em = 43.5 GPa and a Poisson’s ratio of ν = 0.2. The bedding and J1 were implicitly added 

to the model using the measured average spacing values of Sb1 = 0.27 m and Sj1 = 0.37 m 

for the first group and Sb2 = 0.24 m and Sj2 = 0.4 m for the second group.  

The estimated normal and shear stiffness of the discontinuities were used as input in the 

hypothetical FLAC3D- JointedRock model to calculate the rock deformations for a full 

range of loading direction (α and β = 0 - 90°) for both groups.  Figure 5.11 shows the 

deformation versus joint angle plots calculated with the hypothetical FLAC3D- 

JointedRock model.  The deformations from the PLTs are also depicted on the figure.   

Stiffness (GPa/mm)
knb ksb knj ksj

Minimum 14 - - -

Average 37.5 28.1 46.9 35.2

Maximum 59 - - -
Standard
Deviation 16 - - -
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Figure 5.11: Deformation versus joint angle determined by the hypothetical PLT models, for plate 
diameters of d = 915 mm and d = 971 mm.  The JointedRock model was used as the constitutive 
model.  The estimated average normal and shear stiffness from PLT results were used in the 
model.  The measured PLT deformations are depicted by solid circles.  

The deformations calculated with the hypothetical FLAC3D- JointedRock models were 

then used to determine the equivalent anisotropic deformation modulus of the rock mass 

using the deformation versus modulus plots shown in Figure 5.7.  Plots of deformation 

modulus versus joint angle are shown in Figure 5.12.  The back-calculated moduli from 

the PLT results are also shown on the figure. 

 
Figure 5.12: Anisotropic equivalent deformation modulus for the rock mass based on the 
calculated deformations using the hypothetical FLAC3D- JointedRock models.  The back-calculated 
moduli from the PLT results are depicted by solid circles. 

The plot of calculated anisotropic deformation modulus matches well the back-calculated 

moduli from the plate loading tests.  It should be noted that the anisotropic deformation 

moduli were calculated for the average bedding and joint spacing.  Figure 5.12 shows that 

the observed trend in the calculated moduli from the PLT results can be related to the 

anisotropy of the rock deformation.  Based on this analysis, the maximum to minimum 

moduli ratios of Emax/Emin = 2.09 and Emax/Emin = 1.97 were calculated for the first and 

second test groups, respectively.  The overall ratio was estimated as Emax/Emin =2.92 for 

the rock mass. 
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5.5. Conclusion 

The results from fifteen plate loading tests carried out at the Bakhtiary dam site were 

analyzed.  The deformation moduli were calculated using three different methods: the 

empirical equations by Bieniawski (1978) and Hoek & Diederichs (2006), the analytical 

relation suggested by ASTM and ISRM, and the back calculation of the test results by 

numerical simulation of the tests (FLAC3D- Elastic).  The moduli estimated from the 

empirical methods did not show a good agreement with the moduli determined by the two 

other methods.  It was shown that the suggested analytical relationship by ISRM and 

ASTM test standards tend to overestimate the deformation moduli due to the confining 

effect of test gallery.  A correction factor of k = 0.79 was determined for the moduli 

calculated using the analytical relationship.   

The scatter in the calculated moduli was attributed to the influence of discontinuities on 

the test results.  An equivalent continuum model, JointedRock, was used to incorporate 

the influence of discontinuities in the interpretation of the test results.  By applying the 

JointedRock model as the constitutive model in the numerical simulations, the normal and 

shear stiffness of the bedding and the major joint set J1 were back calculated from the 

plate loading test results.  The estimated average joint stiffness values were then used in 

hypothetical numerical models of the plate loading tests in which the JointedRock model 

was applied as the constitutive model of rock mass.  The hypothetical test model was run 

for a full range of loading directions relative to the orientation of discontinuities and the 

corresponding deformations were calculated.  From these deformations, the anisotropic 

deformation modulus of the rock mass was back calculated.  The anisotropic deformation 

modulus showed a good agreement with the back calculated moduli from the plate 

loading test results.  It was shown that the scatter in the test results can be addressed by 

taking into account the anisotropy of rock mass deformability using an appropriate 

interpretation method.  A general anisotropy ratio of Emax/Emin =2.9 was calculated for the 

rock mass deformation modulus. 
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Chapter 6 

Conclusion 

This research was focused on the characterization of the mechanisms of deformation in 

systematically jointed rock masses and the development of an equivalent continuum 

model to simulate such deformations.  The results of a series of plate loading tests, 

conducted at the Bakhtiary dam site on a jointed rock mass, were thoroughly analyzed to 

determine the main deformation mechanisms mobilized during the tests.  An equivalent 

continuum model, the JointedRock model, was formulated for deformation analysis of a 

rock mass containing up to three randomly oriented persistent joint sets.  The 

JointedRock model was used for interpretation of the Bakhtiary dam plate loading test 

results and determination of the anisotropic deformation modulus of the rock mass. 

The research was structured into three main sections: a) study of the dominant 

deformation mechanisms in a jointed rock mass by analysis of the Bakhtiary dam site 

plate loading test results, b) development of the constitutive relations for the JointedRock 

model and implementation of the model in FLAC3D, and c) interpretation of the Bakhtiary 

plate loading test results using the JointedRock model.  

The detailed analysis of the stress-deformation behaviour of the rock mass during the 

plate loading tests showed that the rock mass deformability depends primarily on the rock 

structure.  In a fractured rock mass formed by the intersection of randomly oriented 

joints, the main deformation mechanism is compaction of rock blocks.   Deformability of 

the rock mass under this mechanism is potentially isotropic and can be linear or non-

linear depending on the properties of both the intact rock and fractures.  For a 

systematically jointed rock mass, however, rock mass deformation is mainly governed by 

the deformation of primary joints.  For such rock masses, deformability is highly 

anisotropic and depends on the direction of loading relative to the orientation of 

discontinuities.  Deformation can be linear or non-linear depending on mechanical 

properties of the primary joints.   Four main deformation mechanisms were identified, 

corresponding to two different joint structures and two loading configurations.  For a 

systematically jointed rock mass, depending on the loading configuration, the mobilized 

deformation mechanism is prevailed upon by either normal displacement on or shear 
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displacement along the primary joints.  Total deformation during a full loading-unloading 

cycle, deformations under constant load, and the shape of the stress-deformation curves 

depend on the mobilized deformation mechanism during a given test.  This forms the 

main source of scatter in plate loading test results for a given rock mass.  

The explicit definition of discontinuities using discontinuum models is associated with 

two major problems: the dependency of numerical discretization on the spacing and 

orientation of discontinuities, and the necessity of detailed data on the geometry of 

discontinuities to be modeled.  This restricts the applicability of the discontinuum models 

to problems with the limited number of widely spaced discontinuities with well-defined 

geometry parameters.  The JointedRock model was introduced as an alternative to the 

discontinuum models to analyze the deformation and strength of jointed rock masses with 

tightly spaced persistent joint sets.  The main advantages of the model are:  

‐ It relies on a solid theoretical basis, i.e., the principles of classical continuum 

mechanics.  No empirical factor was incorporated in the formulations of the 

model. 

‐ The numerical discretization is independent of the geometry of discontinuities.  

As a results, large problems with small spacing joint sets can be efficiently 

modeled. 

‐ No restriction applies to the orientation and spacing of joint sets to be modeled.  

Joint sets can take any arbitrary orientation and spacing. 

‐ The model addresses both deformability and strength anisotropy. 

The model was implemented in FLAC3D as a constitutive model.  Several example 

simulations were run using the JointedRock model and the discrete element method 

(3DEC).  The comparison of the results showed that the model performs well as long as 

the applied boundary conditions are consistent with theoretical assumptions embedded in 

the model.  A fundamental assumption in the model is the continuity of deformation.  

This limits the application of the model to problems in which the rigid body motion of 

rock blocks is not a component of total deformations.  The JointedRock model results 

were also compared with some closed form solutions where available.  Further 

verification of the model can be done by comparison of the model results with the results 

obtained from experimental studies on the deformation of jointed materials.   
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The model adopts an elastic-perfect plastic behaviour for both intact rock blocks and 

discontinuities.  Upon a stress increment, the model checks for the possibility of failure 

through intact rock and one discontinuity surface.  Compared to other equivalent 

continuum plasticity models, such as the Ubiquitous joint model, the JointedRock model 

is advantageous in that it considers both elastic and plastic anisotropy, so the true elastic 

stress distribution is calculated before the violation of failure criterion is checked.   

The model takes no account of the bending stiffness of rock layers.  This theoretically 

gives rise to the underestimation of the equivalent continuum stiffness for a layered rock 

mass.  However, it should be noted that geomaterials, such as sedimentary rock layers, 

rarely carry significant bending moment mainly due to the existence of micro or macro 

scale discontinuities.  The model also does not account for the rotation of anisotropy 

orientation during large deformations.  Extra care should be considered when applying 

the model to problems in which rock mass undergoes large deformations, particularly 

plastic deformations.   

The analysis of the results of the plate loading tests conducted at the Bakhtiary dam 

project showed that the ISRM suggested relationship overestimates the rock mass 

deformation modulus, because it disregards the constraining effect of the test gallery 

geometry on the test results.  The method is also unable to address directly the effect of 

joint parameters on the rock mass deformability.  Some of the observed scatter in the test 

results was attributed to anisotropy of the rock mass deformability and the variation of 

discontinuity geometrical parameters, i.e., spacing and orientation.  A new method, based 

on the numerical simulation of the tests, was introduced to address these issues in the 

interpretation of the plate loading test results.  The JointedRock model was used to back 

calculate the stiffness of the bedding planes from the test results.  The rock mass 

deformation moduli were then determined for all directions relative to the orientation of 

the bedding planes and the joint set J1.  There are several advantages to the proposed 

interpretation methodology: 

‐ The rock mass deformability is determined as a function of the discontinuities 

mechanical and geometrical parameters. 

‐ Rock mass deformability can be determined for any direction from the available 

test results for some given directions.  This significantly reduces the number of 

required tests for a jointed rock mass. 
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‐ The results of other tests, such as large scale in-situ direct shear test and 

dilatometer test, can be used in combination with plate loading test results to 

improve the accuracy of the deformation parameters determined for a jointed 

rock mass. 

‐ The constraining effect of the test gallery on the test results is taken into account.  

The empirical relationships used to estimate the deformation modulus of the rock mass at 

the Bakhtiary dam site were shown to result in non-representative values.  Further works 

can be done on this subject to establish a new empirical relationship that incorporates the 

spatial and mechanical parameters of discontinuities in the formulation.  Numerical 

simulations using the JointedRock model as the constitutive model can be used for this 

purpose. 

The JointedRock model is also of particular interest for the settlement and bearing 

capacity analysis of dam foundations on jointed sedimentary deposits.  In these cases, 

rock mass deformability and strength are potentially anisotropic and depend on the 

characteristics and orientation of discontinuities.  However, the spacing of joints is 

usually too small, compared to the size of a dam foundation, so the explicit definition of 

the joints is impractical.  Using the JointedRock model, the deformability and strength of 

the foundation rock mass can be directly related to the rock joint properties.     

The model can also be used in hybrid models for implicit modelling of far field joints, 

while the joints close to the study area are defined explicitly using discrete element 

methods.  This results in a significant reduction in model size when the influence of far-

field joints needs to be taken into account. 
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Appendix 1  

JointedRock model: FLAC3D keywords 

The “JointedRock” model can be loaded in FLAC3D using the following commands:  

config cppudm 

load model modeljointed005_64 (for FLAC3D version 5.0) 

model jointedrock 

Further instructions on loading of a user defined constitutive model in FLAC3D can be 

found in the code user's guide (Itasca 2012).  A list of model specific keywords follows: 

Model general keywords: 

Nj:  Defines the number of joint sets in a model - can vary from 0 to 3. By 

default Nj= 0. 

rPlas:  Disables/enables the failure check and plastic stress correction algorithm 

for intact rock (rPlas=0 disables failure check and rPlas=1 enables it).  

By default rPlas=0 or disabled   

jPlas:  Disables/enables the failure check and plastic stress correction algorithm 

for  joint set (jPlas=0 disables failure check and jPlas=1 enables it).  By 

default jPlas=0 or disabled. 

Intact Rock 

Bulk:   bulk modulus of deformation (Pa) 

Shear:   shear modulus of deformation (Pa) 

Cohesion:  cohesion (Pa) 

Friction:  friction angle (degree) 

Tension:  tensile strength (Pa) 

Dilation:  dilation angle (degree) 



111 

Joint Set 1: 

Dip1:   dip angle of joint set 1 measured from horizontal (degree) 

DD1:   dip direction of joint set 1 measured from north clockwise (degree) 

Spac1:   spacing of joint set 1 (m) 

Kss1:   shear stiffness of joint set 1 in dip direction (Pa/m) 

Ktt1:   shear stiffness of joint set 1 in strike direction (Pa/m) 

Knn1:  normal stiffness of joint set 1 (Pa/m) 

jCohesion:  cohesion of joint set 1 (Pa) 

jFriction:  friction angle of joint set 1 (degree) 

jTension:  tensile strength of joint set 1 (Pa) 

jDialation:  dilation angle of joint set 1 (degree) 

Join set 2: 

Dip2:   dip angle of joint set 2 measured from horizontal (degree) 

DD2:   dip direction of joint set 2 measured from north clockwise (degree) 

Spac2:   spacing of joint set 2 (m) 

Kss2:  shear stiffness of joint set 2 in dip direction (Pa/m) 

Ktt2:   shear stiffness of joint set 2 in strike direction (Pa/m) 

Knn2:   normal stiffness of joint set 2 (Pa/m) 

Join set 3: 

Dip3:   dip angle of joint set 3 measured from horizontal (degree) 

DD3:   dip direction of joint set 3 measured from north clockwise (degree) 

Spac3:   spacing of joint set 3 (m) 

Kss3:   shear stiffness of joint set 3 in dip direction (Pa/m) 

Ktt3:   shear stiffness of joint set 3 in strike direction (Pa/m) 

Knn3:   normal stiffness of joint set 3 (Pa/m) 
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Reference 

Itasca Consulting Group, Inc. (2012). FLAC3D; User's Guide. Minneapolis: Itasca 

Consulting Group, Inc. 
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Appendix 2 

Effect of boundary conditions and the bending stiffness of intact 

rock layers on simulations using the JointedRock model 

The influence of boundary conditions on the JointedRock model is investigated by 

simulating a uni-axial loading test on a jointed rock cylinder that is  l = 1 m in length and 

d = 0.5 m in diameter (Figure 1).  A stiff load of p = 15 MPa is applied to the top of the 

cylinder, while the bottom is fixed.  Each test is simulated by two methods: the 

continuum method using FLAC3D and the discontinuum model using 3DEC.  The 

simulations are repeated for various discontinuity orientations relative to the axis of the 

cylinder.  In the FLAC3D models, the JointedRock model is used to simulate the joints 

implicitly.  To investigate the influence of boundary conditions on the simulations, all 

tests are run for two boundary conditions: confined and unconfined. 

 
Figure 1: Geometry and boundary conditions for the uni-axial test on a jointed rock cylinder     

In this study, just the elastic stresses and deformations are considered.  The yielding of 

the rock is prevented in all simulations.  This is done by setting the plasticity switches off 

in the FLAC3D models and by applying an elastic model in the 3DEC models.  One can 

refer to Appendix 1 for a list of the JointedModel specific keywords in FLAC3D.  

α

joints 15 MPa

Fixed velocity in z-direction

Fixed velocity 
in XY-Plane 
(in case of 
confined test)
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Two series of simulations are run: one includes a single joint set and the other includes 

two perpendicular joint sets.  For the sake of simplicity, the spacing and mechanical 

properties of the joint sets are kept identical in all simulations. Table 1 shows the 

mechanical and physical properties of the intact rock and the rock joints.  The simulations 

are run for various joint angles ranging from α = 0° to α = 90°, with respect to the 

cylinder axis.  Figure 2 and Figure 3 show the axial deformation versus joint angle plots 

for the simulations.   

Table 1: Mechanical parameters of intact rock and rock joints in simulations 

 

 
Figure 2: Axial deformation versus joint angle plots for confined uni-axial loading of the rock 
cylinder. Left: one joint set; right: two perpendicular joint sets. 

 
Figure 3: Axial deformation versus joint angle plots for unconfined uni-axial loading of the rock 
cylinder. Left: one joint set; right: two perpendicular joint sets. 

 

parameter intact 
rock

joint 
set 1

joint 
set 2

bulk modulus (GPa) 44 -- --
shear modulus (GPa) 26.4 -- --
normal stiffness (GPa/m) -- 13.9 13.9
shear stiffness (GPa/m) -- 6.95 6.95
spacing (m) -- 0.1 0.1
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The factors contributing to the observed difference in the simulation results are: 

- The bending stiffness of the intact rock layers in the 3DEC models 

- The boundary condition effect 

Bending stiffness of intact rock layers 

In the discontinuum models, the deformation of the cylinder is accompanied by the 

rotation of rock layers/blocks.  In the case of the unconfined cylinder with one joint set, 

the free rotation of intact rock layers is restricted by the fixed z-velocity boundary 

condition applied to the top and bottom of the cylinder.  This configuration leads to the 

bending of intact rock layers, as depicted in Figure 4.  The bending of rock layers is 

resisted by their bending stiffness (kb), which is a function of the elastic modulus (E) of 

intact rock and the second moment of area of the layers' cross section (I): 

kb= EI 

The second moment of area is a function of the spacing of the rock layers (s) to the power 

of three, through the following relationship: 

𝐼 =
𝑏𝑠3

12
 

where b is the length of the layers' cross section.   

The decrease of the joint spacing reduces the bending stiffness of rock layers, so the 

results from both models merge together (Figure 5).  In the confined tests, the applied 

lateral fixity restricts the bending of the rock layers, thereby  significantly reducing the 

influence of bending stiffness on the model results.  Figure 6 and Figure 7 show the 

maximum principal stress distribution and the axial displacement contours for confined 

tests with one and two joint sets, respectively.  The results from the JointedRock models 

and 3DEC models show a good agreement. 
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Figure 4: Bending of intact rock layers during an unconfined uni-axial loading test with joint set 
angle a = 30°. (Grid deformation has been magnified by a factor of 20.)  Maximum principal stress 
distribution in the rock layers (right) follows the typical stress distribution for a bending beam. 

 

 
Figure 5: Variation of axial deformation versus joint spacing for a confined uni-axial test with one 
joint set (α = 30°). 
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Figure 6: Distribution of the vertical displacement and maximum principal stress in a confined test 
with one joint set (α = 30°). 

  
Figure 7: Distribution of the vertical displacement and maximum principal stress in a confined test 
with two joint sets (α = 30°). 

Boundary Condition Effect 

The deformation of the rock cylinder in the 3DEC models includes the dislocation and 

rotation of intact rock blocks formed by the intersection of the joint sets.  In the 

unconfined tests, these mechanisms form the principal components of deformations.  The 

interaction of the rock blocks with each other and with the fixed z-velocity boundary 

conditions applied to the top and bottom of the model lead to a non-uniform stress 

distribution within the model (Figure 8).  The fixed z-velocity boundary condition applied 

to the top of the model (stiff loading) prevents free rotation of the boundary rock blocks, 

producing high tensile stresses at the boundary.  This effect is more pronounced in the 

unconfined tests and causes the results from two models to diverge considerably.   
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Figure 8: Stress tensors for a confined test with two joint sets ( = 45°). (Stress indicator bars for 
the two models are not on the same scale.  Positive compressive stress convention applies.) 

Conclusion 

These analyses show that: 

 When free rotation/dislocation of intact rock blocks/layers is confined by proper 

boundary conditions, the JointedRock model provides an acceptable 

approximation of the deformation of jointed rock masses.   

 Discontinuum simulations are sensitive to the applied boundary conditions.  

 The bending stiffness of intact rock layers increases the overall stiffness of a 

discontinuum model, compared to its equivalent continuum model.  Decreasing 

the joint spacing reduces the bending stiffness of intact rock layers. 

Maximum principal stress
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Figure 9: Vertical stress and vertical displacement contours for the confined tests with a single 
joint set (s = 0.1 m); left: JointedRock model, right: discontinuum (3DEC) model 
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Figure 9: Vertical stress and vertical displacement contours for the confined tests with a single 
joint set (s = 0.1 m); left: JointedRock model, right: discontinuum (3DEC) model (continued) 
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Figure 9: Vertical stress and vertical displacement contours for the confined tests with a single 
joint set (s = 0.1 m); left: JointedRock model, right: discontinuum (3DEC) model (continued) 
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Figure 10: Vertical stress and vertical displacement contours for the confined tests with double 

joint sets (s = 0.1 m); left: JointedRock model, right: discontinuum (3DEC) model. 
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Figure 10: Vertical stress and vertical displacement contours for the confined tests with double 
joint sets (s = 0.1 m); left: JointedRock model, right: discontinuum (3DEC) model (continued). 
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Appendix 3  

Closed Form Relationships for Loading of a Semi-Infinite Body 

Circular Load 

When a point load, p, is applied at the origin of a semi-infinite body of an elastic material 

(Figure 1) the elastic vertical displacement of each point within the body can be 

calculated using Equation (1) (Timoshenko and Goodier 1970):  

𝑤 =  𝑃
2𝜋𝐸

�𝑧2(1 + 𝜗)(𝑟2 + 𝑧2)−3 2� + 2(1 − 𝜗2)(𝑟2 + 𝑧2)−1 2� � (1) 

where: 

w: vertical displacement, 

p: force, 

E: Modulus of Elasticity, 

ν: Poisson's ratio 

z: vertical distance from applied force 

r: horizontal distance from z-axis 

 
Figure 1:  Point load on a semi-infinite body (right). Circular and square distributed loads (left) 

For a uniformly distributed circular load q with radius of a the vertical displacement of 

each point within the body is the sum of the vertical displacements caused by each 

individual finite element of the load (dw), and can be calculated as follows: 

𝑑𝑤 =  𝑞 𝑟 𝑑𝑟 𝑑𝜃
2𝜋𝐸

�𝑧2(1 + 𝜗)(𝑟2 + 𝑧2)−3 2� + 2(1 − 𝜗2)(𝑟2 + 𝑧2)−1 2� �  (2) 
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For the points on z-axis (r = 0) equation (3) can be written as follows: 
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Equation (4) is the ISRM suggested relationship for the calculation of the rock mass 

deformation modulus from plate loading test results.  The influence of the extensometer 

borehole can be taken into account by modifying the lower limit of the integration in 

equation (3).  The vertical component of the induced stresses in the semi-infinite body 

can be calculated using equation (5): 
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Square Load 

For a uniformly distributed load of q with dimensions 2a, the horizontal distance from 

origin (r) can be calculated as: 

𝑟2 = 𝑥2 + 𝑦2  (6) 

where x and y are the coordinates of the points.  By substituting equation (6) in (3) we 

will have: 
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After integration for x and y we will have: 
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The maximum vertical displacement at the semi-infinite body surface occurs at the centre 

of the loaded area and can be calculated as: 

 )1(24.2
2

E
vqawo

−
=   (9) 

The vertical displacements at the corners of the loaded area are half the displacement at 

surface: 

 )1(12.1
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E
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=   (10) 

 

Reference 

Timoshenko, S., Goodier, J. (1970). Theory of Elasticity (3rd ed.). McGraw-Hill. 

 

 

 



 

Appendix 4 

Bakhtiary Dam Site Plate Loading Test Data 

Supplementary Data on Fifteen PLTs Analyzed in Chapter 5 
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Test Gallery: GL1 Pressure (3rd cycle): 14 MPa

T t O i t ti H i t l N150° Di l t (l ft/ ) 0 979

PLH1L1

Test Orientation: Horizontal - N150° Displacement (left/up): 0.979 mm
Test Gallery Azimut: N060° Displacement (right/down): 1.045 mm
Overburden: 124 m Beddings dip/dd: 215/85
Plate Diameter: 915 mm Beddings average spacing: 0.15 m

Rock Unit: SV3 * 23°

Poisson's ratio: 0.2 J1 dip/dd: 305/75
J1 average spacing: 0.4 m

RMR (89)** 68 * 60°

*GSI (RMR-5) 63 * beddings and J1 intersection angle with extensometer borehole
** (UCS 115MPa, RQD 50-75%, Spac 60-200mm, slightly rough<1mm, damp, no adjustment for orientation)

Deformation 
Modulus (GPa)

ISRM (1979) Numerical Simulation Bieniawski (1978)
Hoek and Diederich    

(2006)

left/up plate 9.9 7.7

right/down plate 9.2 7.3

iff (k ) f i i i d k (G / )

36 25

Normal stiffness (k n ) of beddings back calculated using the JointedRock model (GPa/mm)

left/up plate 58

right/down plate 56
Test Group: 2
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Test Gallery: GL1 Pressure (3rd cycle): 15.7 MPa

T t O i t ti V ti l Di l t (l f / ) 0 615

PLV1L1

Test Orientation: Vertical Displacement (left/up): 0.615 mm
Test Gallery Azimut: N060° Displacement (right/down): 0.41 mm
Overburden: 124 m Beddings dip/dd: 215/80
Plate Diameter: 915 mm Beddings average spacing: 0.15 m

Rock Unit: SV3 * 5°

Poisson's ratio: 0.2 J1 dip/dd: 305/75
J1 average spacing: 0.4 m

RMR (89)** 68 * 15°

*GSI (RMR-5) 63 * beddings and J1 intersection angle with extensometer borehole
** (UCS 115MPa, RQD 50-75%, Spac 60-200mm, slightly rough<1mm, damp, no adjustment for orientation)

Deformation 
Modulus (GPa)

ISRM (1979) Numerical Simulation Bieniawski (1978)
Hoek and Diederich    

(2006)

left/up plate 17.6 13.9

right/down plate 26.4 20.9

N l iff (k ) f b ddi b k l l d i h J i dR k d l (GP / )

36 25

Normal stiffness (k n ) of beddings back calculated using the JointedRock model (GPa/mm)

left/up plate 20

right/down plate 50
Test Group: 2
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Test Gallery: GL1 Pressure (3rd cycle): 14 MPa

T t O i t ti H i t l N030° Di l t (l ft/ ) 0 814

PLH2L1

Test Orientation: Horizontal - N030° Displacement (left/up): 0.814 mm
Test Gallery Azimut: N120° Displacement (right/down): 0.958 mm
Overburden: 84 m Beddings dip/dd: 210/85
Plate Diameter: 971 mm Beddings average spacing: 0.225 m

Rock Unit: SV3 * 90°

Poisson's ratio: 0.2 J1 dip/dd: 305/52
J1 average spacing: 0.35 m

RMR (89)** 55 * 0°

*GSI (RMR-5) 50 * beddings and J1 intersection angle with extensometer borehole
** (UCS 115MPa, RQD 50-75%, Spac 200-600mm, slickensided<5mm, damp, no adjustment for orientation)

Deformation 
Modulus (GPa)

ISRM (1979) Numerical Simulation Bieniawski (1978)
Hoek and Diederich    

(2006)

left/up plate 12.6 9.9

right/down plate 10.7 8.4

iff (k ) f i i i d k (G / )

10 9

Normal stiffness (k n ) of beddings back calculated using the JointedRock model (GPa/mm)

left/up plate 59

right/down plate 50
Test Group: 2
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Test Gallery: GL1 Pressure (3rd cycle): 14 MPa

T t O i t ti V ti l Di l t (l f / ) 0 476

PLV2L1

Test Orientation: Vertical Displacement (left/up): 0.476 mm
Test Gallery Azimut: N120° Displacement (right/down): --
Overburden: 84 m Beddings dip/dd: 210/85
Plate Diameter: 971 mm Beddings average spacing: 0.225 m

Rock Unit: SV3 * 0°

Poisson's ratio: 0.2 J1 dip/dd: 305/52
J1 average spacing: 0.35 m

RMR (89)** 55 * 35°

*GSI (RMR-5) 50 * beddings and J1 intersection angle with extensometer borehole
** (UCS 115MPa, RQD 50-75%, Spac 200-600mm, slickensided<5mm, damp, no adjustment for orientation)

Deformation 
Modulus (GPa)

ISRM (1979) Numerical Simulation Bieniawski (1978)
Hoek and Diederich    

(2006)

left/up plate 21.5 16.8

right/down plate -- --

N l iff (k ) f b ddi b k l l d i h J i dR k d l (GP / )

10 9

Normal stiffness (k n ) of beddings back calculated using the JointedRock model (GPa/mm)

left/up plate 51

right/down plate --
Test Group: 1
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Test Gallery: GL1 Pressure (3rd cycle): 14 MPa

T t O i t ti V ti l Di l t (l f / ) 0 749

PLV3L1

Test Orientation: Vertical Displacement (left/up): 0.749 mm
Test Gallery Azimut: N60° Displacement (right/down): 0.475 mm
Overburden: 84 m Beddings dip/dd: 210/85
Plate Diameter: 971 mm Beddings average spacing: 0.225 m

Rock Unit: SV3 * 0°

Poisson's ratio: 0.2 J1 dip/dd: 305/58
J1 average spacing: 0.45 m

RMR (89)** 65 * 30°

*GSI (RMR-5) 60 * beddings and J1 intersection angle with extensometer borehole
** (UCS 115MPa, RQD 50-75%, Spac 200-600mm, slightly rough weathered<1mm, dry, no adjustment for orientation)

Deformation 
Modulus (GPa)

ISRM (1979) Numerical Simulation Bieniawski (1978)
Hoek and Diederich    

(2006)

left/up plate 13.7 10.8

right/down plate 21.6 17

N l iff (k ) f b ddi b k l l d i h J i dR k d l (GP / )

30 20

Normal stiffness (k n ) of beddings back calculated using the JointedRock model (GPa/mm)

left/up plate 16

right/down plate 36
Test Group: 1
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Test Gallery: GL1 Pressure (3rd cycle): 13.9 MPa

T t O i t ti i l 09 ° Di l t (l ft/ )

PLH3L1

Test Orientation: Horizontal - N097 Displacement (left/up): --

Test Gallery Azimut: N187° Displacement (right/down): 0.941 mm
Overburden: 24 m Beddings dip/dd: 060 / 33
Plate Diameter: 65 mm Beddings average spacing: 0.27 m

Rock Unit: SV3 KINK band zone * 30°

Poisson's ratio: 0.2 J1 dip/dd: 315 / 75
J1 average spacing: 0.30 m

RMR (89) 67 * 40°

*GSI (RMR-5) 62 * beddings and J1 intersection angle with extensometer borehole

Deformation 
Modulus (GPa)

ISRM (1979) Numerical Simulation Bieniawski (1978)
Hoek and Diederich    

(2006)

left/up plate -- --

right/down plate 7.2 5.5
34 23

Normal stiffness (k n ) of beddings back calculated using the JointedRock model (GPa/mm)

left/up plate --

right/down plate 17
Test Group: 2
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Test Gallery: GR1 Pressure (3rd cycle): 14 MPa

T t O i t ti S b V ti l 055/70 Di l t (l f / ) 0 967

PLV1R1

Test Orientation: Sub-Vertical  055/70 Displacement (left/up): 0.967 mm
Test Gallery Azimut: N275° Displacement (right/down): --
Overburden: 101 m Beddings dip/dd: 235 / 20
Plate Diameter: 971 mm Beddings average spacing: 0.35 m

Rock Unit: SV2 - KINK band zone * 90°

Poisson's ratio: 0.2 J1 dip/dd: 304 / 73
J1 average spacing: 0.5 m

RMR (89) 69 * 15°

*GSI (RMR-5) 64 * beddings and J1 intersection angle with extensometer borehole

Deformation 
Modulus (GPa)

ISRM (1979) Numerical Simulation Bieniawski (1978)
Hoek and Diederich    

(2006)

left/up plate 10.6 8.4

right/down plate -- --

N l iff (k ) f b ddi b k l l d i h J i dR k d l (GP / )

38 27

Normal stiffness (k n ) of beddings back calculated using the JointedRock model (GPa/mm)

left/up plate 56

right/down plate --
Test Group: 2
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Test Gallery: GR1 Pressure (3rd cycle): 14 MPa

T t O i t ti i l 18 ° Di l t (l ft/ ) 0 549

PLH1R1

Test Orientation: Horizontal - N185 Displacement (left/up): 0.549 mm

Test Gallery Azimut: N275° Displacement (right/down): --
Overburden: 116 m Beddings dip/dd: 220 / 34
Plate Diameter: 971 mm Beddings average spacing: 0.4 m

Rock Unit: SV2 - KINK band zone * 5°

Poisson's ratio: 0.2 J1 dip/dd: 312 / 58
J1 average spacing: 0.35 m

RMR (89) 62 * 35°

*GSI (RMR-5) 57 * beddings and J1 intersection angle with extensometer borehole

Deformation 
Modulus (GPa)

ISRM (1979) Numerical Simulation Bieniawski (1978)
Hoek and Diederich    

(2006)

left/up plate 18.7 14.9

right/down plate -- --
24 16

Normal stiffness (k n ) of beddings back calculated using the JointedRock model (GPa/mm)

left/up plate 33

right/down plate --
Test Group: 1
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Test Gallery: GR1 Pressure (3rd cycle): 14 MPa

T t O i t ti i l 223° Di l t (l ft/ ) 0 344

PLH2R1

Test Orientation: Horizontal - N223 Displacement (left/up): 0.344 mm

Test Gallery Azimut: N313° Displacement (right/down): 0.373 mm
Overburden: 186 m Beddings dip/dd: 218 / 08
Plate Diameter: 915 mm Beddings average spacing: 0.3 m

Rock Unit: SV2 - KINK band zone * 0°

Poisson's ratio: 0.2 J1 dip/dd: 326 / 74
J1 average spacing: 0.45 m

RMR (89) 65 * 13°

*GSI (RMR-5) 60 * beddings and J1 intersection angle with extensometer borehole

Deformation 
Modulus (GPa)

ISRM (1979) Numerical Simulation Bieniawski (1978)
Hoek and Diederich    

(2006)

left/up plate 28.1 21.9

right/down plate 25.9 20.4
30 20

Normal stiffness (k n ) of beddings back calculated using the JointedRock model (GPa/mm)

left/up plate 40

right/down plate 35
Test Group: 1
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Test Gallery: GR1 Pressure (3rd cycle): 14 MPa

T t O i t ti V ti l Di l t (l f / ) 0 686

PLV2R1

Test Orientation: Vertical Displacement (left/up): 0.686 mm
Test Gallery Azimut: N313° Displacement (right/down): 0.72 mm
Overburden: 186 m Beddings dip/dd: 216 / 08
Plate Diameter: 971 mm Beddings average spacing: 0.3 m

Rock Unit: SV2 - KINK band zone * 0°

Poisson's ratio: 0.2 J1 dip/dd: 326 / 74
J1 average spacing: 0.5 m

RMR (89) 69 * 13°

*GSI (RMR-5) 64 * beddings and J1 intersection angle with extensometer borehole

Deformation 
Modulus (GPa)

ISRM (1979) Numerical Simulation Bieniawski (1978)
Hoek and Diederich    

(2006)

left/up plate 14.9 11.7

right/down plate 14.2 11.1

N l iff (k ) f b ddi b k l l d i h J i dR k d l (GP / )

38 27

Normal stiffness (k n ) of beddings back calculated using the JointedRock model (GPa/mm)

left/up plate 58

right/down plate 54
Test Group: 2
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Test Gallery: GR2 Pressure (3rd cycle): 14 MPa

T t O i t ti V ti l Di l t (l f / ) 0 956

PLV1R2

Test Orientation: Vertical Displacement (left/up): 0.956 mm
Test Gallery Azimut: N280° Displacement (right/down): 1.001 mm
Overburden: 65 m Beddings dip/dd: 215 / 80
Plate Diameter: 915 mm Beddings average spacing: 0.3 m

Rock Unit: SV3 * 10°

Poisson's ratio: 0.2 J1 dip/dd: 315 / 55
J1 average spacing: 0.3 m

RMR (89) 65 * 35°

*GSI (RMR-5) 60 * beddings and J1 intersection angle with extensometer borehole

Deformation 
Modulus (GPa)

ISRM (1979) Numerical Simulation Bieniawski (1978)
Hoek and Diederich    

(2006)

left/up plate 10.1 7.9

right/down plate 9.6 7.5

N l iff (k ) f b ddi b k l l d i h J i dR k d l (GP / )

30 20

Normal stiffness (k n ) of beddings back calculated using the JointedRock model (GPa/mm)

left/up plate 16

right/down plate 15
Test Group: 1
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Test Gallery: GR2 Pressure (3rd cycle): 14 MPa

T t O i t ti H i t l N135° Di l t (l ft/ ) 1 119

PLH1R2

Test Orientation: Horizontal - N135° Displacement (left/up): 1.119 mm
Test Gallery Azimut: N045° Displacement (right/down): --
Overburden: 95 m Beddings dip/dd: 215 / 80
Plate Diameter: 915 mm Beddings average spacing: 0.3 m

Rock Unit: SV3 * 10°

Poisson's ratio: 0.2 J1 dip/dd: 315 / 55
J1 average spacing: 0.3 m

RMR (89) 66 * 35°

*GSI (RMR-5) 61 * beddings and J1 intersection angle with extensometer borehole

Deformation 
Modulus (GPa)

ISRM (1979) Numerical Simulation Bieniawski (1978)
Hoek and Diederich    

(2006)

left/up plate 8.6 6.8

right/down plate -- --

iff (k ) f i i i d k (G / )

32 22

Normal stiffness (k n ) of beddings back calculated using the JointedRock model (GPa/mm)

left/up plate 14

right/down plate --
Test Group: 1
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Test Gallery: GR2 Pressure (3rd cycle): 14 MPa

T t O i t ti V ti l Di l t (l f / ) 1 02

PLV3R2

Test Orientation: Vertical Displacement (left/up): 1.02 mm
Test Gallery Azimut: N060° Displacement (right/down): 0.924 mm
Overburden: 115 m Beddings dip/dd: 000 / 00
Plate Diameter: 65 mm Beddings average spacing: 0.17 m

Rock Unit: SV3 - KINK band zone * 0°

Poisson's ratio: 0.2 J1 dip/dd: --
J1 average spacing: 0.8 m

RMR (89) 60 * 10°

*GSI (RMR-5) 55 * beddings and J1 intersection angle with extensometer borehole

Deformation 
Modulus (GPa)

ISRM (1979) Numerical Simulation Bieniawski (1978)
Hoek and Diederich    

(2006)

left/up plate 6.7 5.3

right/down plate 7.4 5.8

N l iff (k ) f b ddi b k l l d i h J i dR k d l (GP / )

20 14

Normal stiffness (k n ) of beddings back calculated using the JointedRock model (GPa/mm)

left/up plate 34

right/down plate 36
Test Group: 2

PLV3R2
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Test Gallery: GL2 Pressure (3rd cycle): 14 MPa

T t O i t ti V ti l Di l t (l f / ) 0 596

PLV2L2

Test Orientation: Vertical Displacement (left/up): 0.596 mm
Test Gallery Azimut: N180° Displacement (right/down): 0.551 mm
Overburden: 165 m Beddings dip/dd: 215 / 75
Plate Diameter: 915 mm Beddings average spacing: 0.15 m

Rock Unit: SV4 * 15°

Poisson's ratio: 0.2 J1 dip/dd: 305 / 60
J1 average spacing: 0.25 m

RMR (89) 58 * 30°

*GSI (RMR-5) 53 * beddings and J1 intersection angle with extensometer borehole

Deformation 
Modulus (GPa)

ISRM (1979) Numerical Simulation Bieniawski (1978)
Hoek and Diederich    

(2006)

left/up plate 16.2 12.9

right/down plate 17.5 13.7

N l iff (k ) f b ddi b k l l d i h J i dR k d l (GP / )

16 12

Normal stiffness (k n ) of beddings back calculated using the JointedRock model (GPa/mm)

left/up plate 35

right/down plate 23
Test Group: 2
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Test Gallery: GL2 Pressure (3rd cycle): 14 MPa

T t O i t ti i l 090° Di l t (l ft/ )

PLH2L2

Test Orientation: Horizontal - N090 Displacement (left/up): --

Test Gallery Azimut: N180° Displacement (right/down): 1.035 mm
Overburden: 165 m Beddings dip/dd: 220 / 80
Plate Diameter: 915 mm Beddings average spacing: 0.15 m

Rock Unit: SV4 * 40°

Poisson's ratio: 0.2 J1 dip/dd: 310 / 71
J1 average spacing: 0.25 m

RMR (89) 58 * 10°

*GSI (RMR-5) 53 * beddings and J1 intersection angle with extensometer borehole

Deformation 
Modulus (GPa)

ISRM (1979) Numerical Simulation Bieniawski (1978)
Hoek and Diederich    

(2006)

left/up plate -- --

right/down plate 9.3 6.9
16 12

Normal stiffness (k n ) of beddings back calculated using the JointedRock model (GPa/mm)

left/up plate --

right/down plate --
Test Group: 2
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