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Abstract

The paradigm of fine-tuning Pre-trained Language Models (PLMs) has been

successful in Entity Matching (EM). Many contemporary works leverage PLM-

based models to push the state of the results. However, using the power of

transformer-based models has some downsides in this task. Despite their re-

markable performance, PLMs exhibit a tendency to learn spurious correlations

from training data. In this thesis, we aim to investigate whether PLM-based

EM models can be trusted in real-world applications where data distribution

is different from that of training. To this end, we design an evaluation bench-

mark to assess the robustness of structured EM models to facilitate their de-

ployment in real-world settings. Then, we prescribe simple modifications that

can improve the robustness of PLM-based EM models for structured and un-

structured data. Also, to evaluate the model’s performance on unstructured

entity matching, we develop a new unstructured matching dataset. We extend

our experiments further to study the effect of deep classifiers, data augmen-

tation, and loss function on the model’s robustness. Our experiments show

that while yielding superior results for in-domain generalization, our proposed

model significantly improves model robustness compared to state-of-the-art

EM models.
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In practical life we are compelled to follow what is most probable ; in
speculative thought we are compelled to follow truth.

– Baruch Spinoza, The Letters.
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Chapter 1

Introduction

1.1 Problem & Motivation

In most natural language tasks, named entities play an important role, but
unfortunately, they can be traceless. In general, documents, records, and data
sources contain mentions of entities that are ambiguous in most cases. The
ambiguity sometimes can happen because of partial data representation. To
shed more light, consider these two examples:

Example 1.1.1 Both sentences contains ’Bush’ but the first one refers to
George W. Bush, while the second one is about George H. W. Bush , the
father.

1. Mr. Bush got a crucial helping hand in life because of his name and
family connections. Otherwise, he would probably not have been
admitted to Andover and then Yale. [44]

2. At Andover, Bush was captain of the baseball and soccer teams, and
the senior class president. He graduated on his eighteenth birthday
in 1942. That same day, he enlisted in the United States Navy. [39]

Although both sentences in this example contain the word ‘Bush’, what is
not explicitly clear is whether they reference the same real-world entity or, to
be more accurate, the person who is being referenced in these sentences is the
same. This ambiguity is primarily due to the fact that we have multiple people
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with their names starting with Bush and these sentences do not contain the
whole name, which is a typical pattern.

This problem can get even more complex in cases where the mention contains
the full name, e.g. a product title or a person’s full name, but still not linkable
to a single real-world entity as there are multiple entities with the same iden-
tifier. For example, the name ‘James Smith’ can refer to multiple persons,
some of which are shown below, based on Wikipedia:

Example 1.1.2 4 examples out of more than 300 returned result for the name
’James Smith’ from Wikipedia.

• James Smith, Australian rules footballer for Richmond Football
Club.

• James Smith, American boxer and host of In This Corner

• James Smith, Medal of Honor recipient in the American Civil War

• James Smith, Canadian-born philosopher

In both examples, the surface text of the mention alone is not enough to
identify the reference. However, by incorporating both the mention and its
surrounding text into the analysis, we may be able to gain a more robust
understanding of the context and, in most cases, be able to disambiguate the
mentions. Considering the second sample in Example 1.1.1, the combination
of other mentions in the surrounding text can lead us to link the mention to
George H. W. Bush:

... Andover , George H.W. Bush was captain of the baseball and soccer
teams, and the senior class president. He graduated on his eighteenth

birthday in 1942 . That same day, he enlisted in the United States Navy .

Figure 1.1: Cluster of mentions in the surrounding text can help with the
mention disambiguation.
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Linked mentions in a document can play a crucial role in Natural Language
Processing (NLP) tasks. They may assist in extracting more information about
named entities, discovering new entities, obtaining abstract representations of
texts, and carrying out semantic searches. As a result, a few highly important
subtasks in natural language understanding have been introduced for identi-
fying these names:

• Named Entity Recognition (NER), which recognizes and catego-
rizes mentions based on predefined categories such as Person, Organiza-
tion, Location, Time Expression, Quality, and other prevalent categories.

• Named Entity Disambiguation (NED), which links the ambiguous
mentions to a unique entity in a Knowledge Base (KB). These methods
usually rely on a NER tool and a KB to extract the names from text
and then match them to the candidate entities inside the KB.

• Named Entity Matching (EM), Also known as Record Linkage, is
a task that tends to match two different names in the same or across
multiple data sources to determine whether these two mentions refer to
the same real-world entity. Figure 1.2 shows different types of EM.

Figure 1.2: A few EM types. Duplicate Detection is a type of Record Linkage
where the source and destination datasets are the same.

3



1.2 Entity matching

A Named Entity is a real-world object, such as a Person, a Place, an Orga-
nization, or a Product, which is often denoted by a proper noun in the context
of the information extraction process. An entity mention can exist as a text
span or a table record. An EM task can be defined as linking a proper name
to a distinct real-world entity.

Problem Formulation Let D1 and D2 be two data sources containing en-
tity mentions. The goal of EM is to find all pairs of entity mentions between
D1 and D2 that refer to the same real-world entity based on the similarity of
their attributes. These pairs are called matches. Commonly, the EM task has
two stages: blocking phase and matching.

Blocking The goal of blocking is to reduce the search space for EM from
cross product D1 ×D2 to a candidate set C ⊆ D1 ×D2 where |C| << |D1 ×

D2|; C includes only pairs of entity mentions that are considered as potential
matches. Without this step, EM has a time complexity of O(n2), as every
mention must be compared and checked with all others [65]. Many researchers
study blocking and propose methods that can be categorized into four classes:
attribute equivalence, sorted neighbourhood, hash-based, and deep learning
[65].

Attribute equivalence aims at filtering mention pairs based on their attribute
values, keeping the pairs that share similar attributes. The simplest form
of equivalence or similarity is substring matching, where a pair remains a
candidate if their textual similarity score exceeds a threshold. Hash-based
blocking is a generalization of attribute equivalence, which keeps a pair if they
share the same hash value, using a pre-specified hash function.

In the sorted neighbourhood approach, records are sorted according to some
4



attribute(s). Two records are considered candidates if they are near each other
in the sorted order. This may be implemented using a fixed window that is
moved sequentially over the sorted list. For each window, a candidate set is
created by pairing each record within the window with other records in the
window. The set of all those candidates forms C. On the other hand, deep
learning-based methods find candidate matches by capturing and considering
the semantic properties of data [5].

In this work, we use datasets introduced in DeepMatcher [60], which has the
candidate set C compiled and ready to use. These datasets are developed
using the Magellan [40] framework by combining different blocking systems.
As a result, our study does not focus on blocking.

As mentioned earlier, entity matching has to decide which two records refer to
the same real-world entity. This is essential in data integration, which often
arises when two data records describe to the same entity but are obtained
from different sources. Although EM has a simple definition, it is generally
difficult to suggest a sound solution. There are several factors that make it
challenging.

Multiple Sources The main challenge is that EM models are required to
match entities usually from different sources with different schema and poor
data quality. Data pre-processing is often essential for a sound EM solution
since stored data are hardly clean, well-structured, or homogeneous [6]. It is
important to bring both data sources into a uniform or a similar format, by
transforming the schemes as close as possible yet maintaining the semantics.

Voluminous Sources The number of potential or candidate matches can
be huge even though the number of correct matches can be very small. Such
characteristics can cause an extreme imbalance between positive and negative
matches [6]. In order to avoid checking all possible combinations, the Block-
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ing step is required to ignore pairs of entries that are far-fetched to refer to
the same real-world entity. This process can help to reduce the number of
candidate pairs and improve performance, particularly in massive datasets.

Deep Contextual Knowledge Finally, with mentions even structured ide-
ally, deep semantic information and external sources may be required to pre-
dict a correct match.

All the aforementioned factors make EM complex. To match two candidate
mentions correctly, it is necessary to have a substantial understanding of the
language and sometimes domain-specific knowledge. Therefore, EM remains
a challenge, despite all the advanced approaches that have been developed to
date.

1.3 Characteristics of Data and EM Models

As illustrated, EM is neither an easy nor a straightforward task. Recent EM
models utilize Deep Learning based techniques and significantly improve the
state-of-the-art results. One of these techniques is the paradigm of fine-tuning
Pre-trained Language Models (PLMs), which is shown to have a remarkable
performance.

Despite their superior performance, in some cases, deep learning models may
be susceptible to imbalanced data or to extracting wrong patterns by empha-
sizing learning the implicit data pattern rather than the task. In this case,
the trained model is highly adapted to the distribution and pattern in the
data, which can affect the validity of results and influence the robustness of
the model for EM tasks.

In this study, our main focus is on the PLM-based EM tasks. In order to pro-
vide a more detailed explanation of the task, the next section reviews different

6



data types on which EM may be performed.

1.3.1 Data types

Although EM arises in many domains and applications with different data
formattings, these data types are usually categorized into three main classes:
structured, unstructured, and semi-structured. Based on the type of data
source that an EM model can work with, a model may also be categorized into
structured EM for structured data, and unstructured EM for unstructured and
semi-structured [60].

Structured Data Structured Data often refers to data in a tabular format
where each row describes an entity using a set of columns and rows can have
relations with other rows. This is also the standard format for many EM
models. The main advantage of structured data type is that it makes the data
serialization part much faster and easier as we have different attributes that
define the entity as columns. Hence, a structured EM model can serialize these
attributes by simply joining them together without much data pre-processing.

Figure 1.3: Structured EM models usually match records between two tables.

Unstructured Data For unstructured data, entity descriptions lack a pre-
defined data model or a predefined structure. This type of data is usually
heavy in text, and may contain dates, facts, and numbers in documents, which
cannot be easily queried using SQL databases. Analyzing this type of data
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is generally more complex than that of structured data as it may need more
data preparation.

Figure 1.4: Unstructured EM models match text spans between two docu-
ments.

Semi-Structured Data Data in semi-structured format may not conform
to a fixed structure such as a relational table; nevertheless, data may contain
tags and markers to separate components or to enforce a hierarchy. Usually,
semi-structured data contains a long body of unstructured data as a column
or attribute.

1.4 Pre-Trained Language Models (PLMs)

Deep learning is a computational model, composed of multiple processing lay-
ers connected to learn a data representation with numerous levels of abstrac-
tion. Deep learning methods have improved the state-of-the-art in various
tasks in NLP and other fields of study, including speech recognition, visual
object recognition, and object detection. Deep learning uncovers complex fea-
tures in large datasets by using the backpropagation algorithm to indicate
how a machine should change its internal states that are used to compute the
representation in each layer from the representation in the previous layer [73].
In other words, deep learning models consist of a large number of nodes dis-
tributed in different layers that captures features from the input of each layer
as an abstraction to the next layer. Finally, the last layer compiles the internal
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state of the previous layers, which are sometimes called hidden layers, as the
output of the model. In order to capture the features from the input, we need
to adjust the weight of each node in the network. A large amount of data
may be needed for a model to master a complex task like Object Detection.
This process is called the training step. After training a model, traditional
deep learning models maintain their internal state to perform the task they
are trained for, but they have a major problem with a sequence of inputs that
are not independent.

Figure 1.5: Unstructured EM models match text spans between two docu-
ments.

Tasks such as speech recognition [74], Machine Translation [79], and unseg-
mented connected handwriting recognition [29] are complex machine-learning
problems for traditional feed-forward neural networks [83]. A deep learning
model needs to be able to work on arbitrary sequences of inputs to solve these
problems. Traditional models do not have any memory unit to maintain the
association between the current input and previous ones. Recurrent Neural
Networks (RNN) [35] and Long-Short Term Memory (LSTM) [33] networks
are proposed to solve this problem. They have an internal memory unit that
can maintain information from the previous iterations alongside the internal
state of the model. Combining these two parameters helps them to understand
the meaningful connection between inputs and solve more complex tasks, but
even these models are not efficient enough for complex NLP tasks. The main
issue with LSTM and RNN models is called Gradient vanishing. It simply
means they cannot hold the history of older iterations and are not able to pro-
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cess long sequences of data, including lengthy texts. The transformer model
[85] is introduced to solve this problem. Transformer models use an Encoder-
Decoder based architecture alongside an attention mechanism that helps them
to extract context from a large sequence of data and keep their focus on the
important part. Figure 1.5 shows the internal structure of a transformer block.

Pre-trained Language Models (PLMs) are general-purpose transformer-based
models that are applicable to different Natural Language Processing (NLP)
tasks. These models are trained on an extensive corpus such as Wikipedia.
Due to the fact that transformers can process long input sequences, these
models can understand the language context adequately. They can then get
adapted for a specific NLP task [87] using the concept of fine-tuning a model,
which is a transfer learning technique [2]. Document classification, text sum-
marization, content generation, and sentence paraphrasing are some of the
real-world applications of the PLMs [25], [80], [87], [90], [92], [93].

One of the most popular pre-trained language models is the Bidirectional En-
coder Representations from transformers (BERT) [18] model, which to this
day is still one of the state-of-the-art models. One of the key innovations of
BERT is the application of bidirectional training to language modeling, con-
trary to previous efforts, which either analyzed text sequences left-to-right or
combined left-to-right and right-to-left analysis. Here, the encoder part reads
the entire sequence of input words at once, which helps the model to learn the
context of a word based on all of its surroundings. Like other transformers,
BERT is trained on a large dataset. The training step, as shown in Figure 1.6,
consists of two objectives, Masked-Language Modeling (MLM) and Next Sen-
tence Prediction (NSP):

• MLM: MLM stands for the training objective that 15% of the input
tokens from the training set are masked randomly, and the model at-
tempts to learn and predict the masked token based on the surrounding

10



Figure 1.6: Masked-Language Modeling and Next Sentence Prediction objec-
tives for training BERT

tokens.

• NSP: Unlike the MLM task, which focuses on a smaller context to pre-
dict the masked token, the NSP objective is to understand longer-term
dependencies across sentences. In this task, the model receives two sen-
tences and is expected to answer if the second sentence comes after the
first sentence. Of the sentence pairs used for training, some are closely
related sentences (with one sentence following the other in some text),
but most of them are two random unrelated sentences. Learning to pre-
dict these connections can help the model to understand longer texts.

The performance of the models on different tasks shows that a bidirectional
trained model would have a deeper understanding of the context compared to
a single-directional model [18].

1.5 Contribution

Thesis Statement In this thesis, we aim to bring to light the unreliability
problems of PLM-based EM models by studying their robustness capabilities
under domain shift. We argue that under various out-of-domain scenarios that
can arise in real-world applications, PLM-based models would fail as they are
known to rely on spurious patterns in the data. To the best of our knowledge,
no previous work has studied the robustness of PLM-based models for the EM
task.
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This study focuses on EM models using PLMs and aims at improving their ro-
bustness by applying simple modifications that are discovered based on inten-
sive experiments. We introduce RobEM, an improved PLM-based EM model
that focuses on robustness with the proposed modifications. PLMs, due to
their exceptional language understanding performance, have been widely used
in different tasks. While this characteristic makes them an excellent choice
for handling the EM task, the same ability to discover and understand the
implicit sense in data raises the question of whether the superior performance
is related to the patterns in data or whether the model mastered the EM task.

The first step to understanding the question and its answer is to investigate
the common strategies in EM models from a robustness perspective. In this
step, we consider different structured EM task characteristics and how they
affect a PLM-based EM model. To assess the robustness in a real-world setup,
we evaluate the model with different distribution shifts on a few benchmark
datasets. We also propose a new benchmarking schema for data perturbation
and various distribution shifts.

Following an extensive evaluation of the model, we propose a few modifications
to the current state-of-the-art model, Ditto, in order to improve the robustness
of the model both within and outside the domain. Furthermore, we extend
our proposed model, RobEM, to be applicable to unstructured data sources.
As a final step, we provide a new distribution-shifted dataset, adapted from
CoNLL En 2003, that can be used for the evaluation of RobEM in a real-world
environment.

1.6 Outline

The rest of this study is organized as follows:
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Chapter 2 discusses the background and the related work. In this chapter,
we also review a few related tasks to entity matching.

Chapter 3 discusses our proposed model, RobEM, for structured EM. This
chapter also examines the common strategies in EM models based on our
proposed robustness approach. In the end, we compare the performance of
RobEM to that of the current state-of-the-art models, to demonstrate the
effectiveness of the proposed model.

Chapter 4 extends the RobEM model to unstructured data sources. Fur-
thermore, we generate a dataset based on CoNLL En 2003 to evaluate our
model on documents and compare its results with a state-of-the-art model.
We also test the model on a new balanced dataset to assess its performance in
out-of-distribution environment. The new dataset is generated by combining
documents from CoNLL and scraping additional documents from the Internet
using Google news and Wikidata.

Chapter 5 Finally, Chapter 5 recaps our findings, concludes the thesis, and
provides some possible directions for future work.
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Chapter 2

Related Works & Backgrounds

Information Extraction can be categorized into several sub-tasks, and one of
these sub-tasks is Entity matching (EM) which attempts to determine whether
two instance representations point to an identical real-world entity. The prob-
lem of entity matching has been considered under various names from different
communities since its definition in 1959 by Newcombe et al. [61]. While nu-
merous approaches have been suggested, most traditional EM approaches are
based on features and attributes similarity, rule extraction, statistical meth-
ods, and learning techniques.

Despite the remarkable progress made using traditional approaches, most re-
cent solutions use deep learning models such as recurrent neural networks and
long short-term memory due to their superior representation of semantic rela-
tions and contextual information. However, some of these models are limited
in their contextual representation, especially when they are applied to long
sequences of text. PLMs are better positioned to address this problem, and
many recent EM works employ PLMs.

In this chapter, we briefly review different classes of work on EM. We start with
a review the most prominent and cited traditional EM methods to have a better
overview of the task. Then we study the deep learning based approaches, their
advantages, and limitations over traditional models. Furthermore, we explore
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the PLM-based solutions to EM, their strengths, and some of the limitations
this thesis aims to address.

Finally, we review a few closely related tasks to EM. While these related tasks
aim for a different goal, some of the challenges are the same or similar. For
example, entity alignment, as one of these tasks, tries to match entities from
two knowledge graphs.

2.1 Structured Entity Matching

We start this section with a review of traditional methods before moving into
discussing more contemporary deep learning approaches inclduing non-PLM
and PLM-based models.

2.1.1 Traditional Approaches

EM has long been studied in the database community under different names
such as data duplication, record linkage, etc. [21]. Jin et al. [37] use Leven-
shtein distance [48] to compare the textual descriptions of two enties. Lev-
enshtein distance, commonly used for measuring textural similarity, is the
minimum number of perturbations, in the character level, required to trans-
form from string to another string. An optimal Levenshtein distance is de-
termined using a dynamic programming algorithm. Using this method, the
authors achieve an improvement in accuracy. However, the time complexity
of this algorithm is an issue on large databases. Also feature-based methods
are generally dependent on the choice of a similarity function and a similar-
ity threshold. Finding a good similarity function and an optimal threshold is
always challenging, making the approach not flexible for out-of-domain envi-
ronments.

Rule-based EM models use a set of matching rules to measure the similarity
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between a pair of records. As an example, Jacard(titlea, titleb) ≥ 0.9 is a sim-
ple rule for matching the titles. In [22], the authors aim to find dependencies
between attributes to optimize the rule set and match tuples from unreliable
data sources by assessing a subset of key attributes. By identifying the de-
pendencies between attributes, the authors optimize the rule set to determine
what attributes to compare and how to compare them. For example, two ta-
bles containing credit card holder information may have two rows referencing
the same person with the same value for the postal code but different values
in the address field. Since there is a dependency between the address and
the postal code, the similarity of the two addresses of the client may be in-
ferred based on the postal code alone. They also propose a general algorithm
to identify a subset of attributes as the key for EM. Their proposed method
outperforms the baseline result by 20% in recall and precision and improves
the performance up to 30% on a credit card dataset. Similarly, Lim et al. [52]
use a rule-based method in their study, but they need to ensure that the rules
yield the right results every time. It is, therefore, critical that the rules do
not reflect heuristics but rather reflect absolute truths and serve as functional
dependencies.

The authors of [15] suggest a learning-based solution to estimate the likeli-
hood ratio and the correlation between entity pairs. First, they train their
model on a labeled pair of entities. Afterward, the authors use the learned
values and the trained weights as the statistical parameters of the model to
present all possible matching pairs in the test dataset. Verykios et al. [86]
suggest a method for matching records where the possibility of missing values
and inconsistency exists. Their decision tree model is cost-optimal, where the
problem of matching is considered as a classification task and a bayesian deci-
sion theory that is utilized with constant error costs for certain types of error.
They use a probability distribution as the probable cost values for the errors
when their model is uncertain.
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Singh et al. [77] attempt to formalize matching rules as General Boolean
Formulas and cast the problem of matching as Logic programming. Having
all rules in General Boolean Formulas format allows them to generate new
rules by a logical combination of basic rules. As a result, their method can
generate a concise and interpretable rule set automatically, given only positive
and negative matching samples.

Rule-based approaches formalize the selection of similarity metrics for different
attributes; however, it cannot help with the fact that these types still need to
be tuned by an expert to adapt to a new setup. Learning-based methods
can minimize this effort. Tejada et al. [84] develop an EM framework, called
Active Atlas, which compares the shared attributes of the instances being
matched. In this system, specific attributes are essential for deciding if two
entities match. Unlike previous methods that require manual construction
of rules, Active Atlas learns to tailor mapping rules based on these essential
attributes, through limited user input, to a specific application domain. The
experimental results demonstrate that Active Atlas achieves higher accuracy
across various application domains while requiring less expert involvement
than previous methods.

Using trainable measures of textual similarity, Bilenko and Mooney [9] present
MARLIN, a framework for improving duplicate detection. They propose learn-
able text distance functions for each database field. Additionally, the study
shows that such measures can adapt to a notion of similarity that is appro-
priate to the domain values of a field. The authors present two learnable
text similarity measures: an extended variant of learnable string Levenshtein
distance and a new vector-space-based measure trained using Support Vector
Machines. It has been shown that the proposed framework is more accurate
than rule-based and attribute-based techniques at detecting duplicate data
across six datasets, including Fodor and Zagat and Cora1.

1Duplicate Detection, Record Linkage, and Identity Uncertainty: Datasets provided on:
https://www.cs.utexas.edu/users/ml/riddle/data.html
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2.1.2 Deep Learning Approaches

Prior to PLMs DeepMatcher [60], a prominent EM model, uses RNNs and
the attention mechanism. In this paper, Mudgal et al. propose a two-step
approach, where in the first step, an attribute embedding component takes
the value of each column and generates an attribute embedding. Then in the
second step, an attribute similarity representation summarizes and compares
attributes to generate a final similarity score.

Auto-EM [98] applies transfer learning, similar to the popular trend in PLMs,
to learn from a general-purpose model trained on massive knowledge bases.
The authors show that a hierarchical neural network architecture can be used
for training over a KB with rich synonyms of the same entity types in order
to improve the ability of the model to cope with insufficient training data in
an unexplored environment.

In another work [19], the authors present DeepER, an EM approach based
on RNNs and LSTMs. Their fundamental contribution is specifying proper
word embedding as their serialization layer for EM. This serialization layer is
the primary part of an effective EM solution which serializes a tuple into a
proper word embedding. In addition, authors develop an EM classifier and
an efficient blocking strategy based on Locality Sensitive Hashing [27]. To
this end, several word embeddings, including word2vec [57], GloVe [68], and
fastText [10] are tested on structured data to investigate how the results are
affected. DeepER achieves a higher F1-score and maintains its performance
on multiple datasets introduced in Magellan [40] compared to the rule-based
and ML-based state-of-the-art methods [17], [28], [40], [41].

PLM-based Approaches Recent EM models have shifted to the paradigm
of fine-tuning PLMs to tackle the problem and achieve the highest performance
using their excellent understanding and learning capability of languages. Ditto
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[51], the state-of-the-art EM model, concatenates the attributes in a pair of
records to form a sequence and fine-tunes a PLM using a sequence classi-
fication objective. As part of their work, the authors also study standard
optimizations in EM, including summarization for long textual columns, en-
riching attributes with domain knowledge using Entity Resolution tools, and
a wide range of Data Augmentation techniques. Ditto uses attribute headings
or column names in its serialization step, which can be a challenge because
the header is not always guaranteed to be available.

JointBERT [66] uses a dual-objective training method that combines binary
matching and multi-class classification, forcing the model to predict entity
identifiers and matching decisions. The multi-class classifier is responsible for
learning and identifying descriptions of individual entities. Then the binary
matching decides the matching of the pairs of identifying descriptions. For
each pair of labeled entities, they train their model with two objectives, multi-
class classification and binary matching, simultaneously. Through this dual-
objective training, the model is forced to view the matching task not only
as a comparison of two isolated entity descriptions but as an opportunity to
incorporate into its decision-making information from other descriptions of
the respective entities seen during training. This method improves the model
performance for seen entities by 1% to 5%, in terms of the F1-score, compared
to single-objective transformer-based solutions. However, for the same reason,
the model underperforms on unseen entities.

A recent study [99] proposed REMS, a Relation-aware Entity Matching method,
to investigate and employ the potential relationship between different columns
to improve the task. In order to add these relationships, they first perform a
preprocessing step to extract any possible relation. For example, for a record
containing name, manufacturer, and release data, there is a made by relation-
ship between the name and the manufacturer, which can be injected into the
serialization. As another example, having a table for books with their title
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and authors, we can join the title and author using a written by relationship.
Using Sentence-BERT, they embed attribute and their relations into an entity
description and cast the problem of EM as sentence similarity.

2.2 Unstructured Entity Matching

During the past few years, extensive efforts have been made to develop ad-
vanced matching techniques and benchmarks for entity matching (EM); how-
ever, most of these resources are developed under the assumption that both
entities exist in a structured data format or table records. Nevertheless, the
types of data collection in the real-world for EM could be unstructured, semi-
structured, and structured, for which these approaches are not applicable.
Unstructured EM is a task where the mentions are mostly text spans inside
large documents, and representing these mentions is essential. Unlike the en-
tity linking and entity disambiguation tasks that attempt to match mentions
to a knowledge graph, unstructured EM aims to match different mentions in
documents without any reference to a knowledge graph. Unstructured EM is
crucial when documents contain mentions of emerging entities, where a refer-
ence to a knowledge graph is not available. This section reviews the literature
on unstructured EM in addition to recent works introducing General Entity
Matching as a new approach that applies to both structured and unstructured
data types [88]. Similat to the structured EM, our review is not exhaustive
and lists some of the most renowned works referenced in the literature.

2.2.1 Traditional Approaches

Ali and Cristianini [4] provide an end-to-end system for extracting and match-
ing named entities from unstructured news. This work aims to match named
entities from more than 9 million scraped news articles from the internet using
Information fusion techniques. As the name suggests, information fusion is the
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process of combining metrics and attributes to improve accuracy. They com-
pute and aggregate the string similarity scores using Levenshtein and q-Gram
[82], a graph neighborhood similarity [8], and a binary co-reference similarity
of mentions to achieve a linear combined similarity metric which helps to im-
prove the precision and recall. To compute the co-reference similarity, they
generate a co-reference set for each mention and check for the intersection of
the sets. The reported result of combined metrics outperforms the baseline
results achieved by individual metrics.

Authors in [12] propose an end-to-end EM pipeline to minimize the human
labeling effort for entity matching on unstructured data sets. Their model uses
an Active Learning approach with several NLP techniques to preprocess the
record pairs on unstructured data before a classification phase. Their model
can be used as a plugin for other methods, such as support vector machines
(SVM), random forests, and deep neural networks.

2.2.2 Deep Learning Approaches

An EM model is introduced by Brunner and Stockinger [13], based on four
common PLMs, BERT [18], XLNet [95], RoBERTa [54] and DistilBERT [76].
The authors conduct comprehensive experiments to compare these PLMs. The
authors propose a General Entity Matching model as it can work both with
structured and unstructured data. They report that a PLM-based model out-
performs traditional methodologies with a 27.5% margin on average. Paganelli
et al. [64] conduct a deep study of a PLM-based model for EM on both struc-
tured and unstructured data. Their model is implemented using BERT and
fine-tuned for the EM task. Their study aims to perform a multi-facet investi-
gation of the elements to determine how fine-tuning the model on the EM task
affects PLMs. According to their findings, fine-tuning mainly affects the last
layers of the BERT architecture, and this layer primarily contributes to clas-
sifying matching / non-matching entities. Also, their study shows PLM-based
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models can learn the structure of input data, demonstrating the susceptibility
of the model to distribution shift and domain changes.

2.3 EM relation to other IE Tasks

EM is usually an important component in automated retrieval of information
about a selected subject from textual data sources. There are multiple other
components that are either related or address part of the same problem. Entity
Alignment is another task in this category. While structured and unstructured
EM concentrate on matching entities between two tables or documents, Entity
Alignment seeks to find and match equivalent relations between entities in
different knowledge graphs. The primary Entity Alignment task is detecting
dangling entities where an entity cannot be matched or aligned with other
entities across knowledge graphs. Sun et al. [81] design a multi-task learning
framework based on the distribution of nearest-neighbor distances, nearest-
neighbor classification, marginal ranking, and background ranking to solve
the problem of dangling entities. Initially, they find the matching entities
between two knowledge graphs in an Entity Alignment step. Then they create
a candidate list using the list of remaining dangling entities in each knowledge
graph. Finally, they use their detection model to find and match entities.
Likewise, Wu et al. [91] estimate the similarities between entities with the help
of a neighborhood matching network, which captures neighborhood differences
and topological structures to handle the matching process. Jain et al. [36]
develop a solution to speed up matching heterogeneous entity representations
in a low resource setting based on PLMs.

Named Entity Recognition (NER), as another task in this category, identifies
text spans in a textual document that mentions a real-world entity. Many
NER tools have been proposed using rule-based approachs [1], [20], [23], [72]
and Deep Learning [2], [26], [62], [96], [97].
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Lastly, Named Entity Disambiguation or Entity Linking (EL) is another im-
portant task in IE. As mentioned in Chapter 1, the goal of EL is to link the
mentions to their referent entities in a knowledge graph. Despite the large
body of past works and contributions in this area, the large number of ongo-
ing research shows that the problem is not solved and that entity linking is
an important task [14]. Similar to the EM, most recent studies in EL develop
their model using PLMs [49], [55], [71], [78], [94].
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Chapter 3

Structured Entity Matching

The paradigm of fine-tuning Pre-trained Language Models (PLMs) has been
successful in entity matching (EM). Despite their remarkable performance,
PLMs exhibit a tendency to learn spurious correlations from training data.
In this chapter, we aim at investigating whether PLM-based structured EM
models can be trusted in real-world applications where data distribution is
different from that of training. To this end, we design an evaluation benchmark
to assess the robustness of EM models to facilitate their deployment in real-
world settings. We also introduce an unsupervised baseline, based on an off-
the-shelf PLM, to serve as a strong baseline for distribution shift evaluations.

Our assessments reveal that data imbalance in the training data is a key prob-
lem for robustness. We also find that data augmentation alone is not sufficient
to make a model robust. As a remedy, we prescribe simple modifications that
can improve the robustness of PLM-based EM models. Our experiments show
that while yielding superior results for in-domain generalization, our proposed
model significantly improves the model robustness compared to state-of-the-
art EM models.
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3.1 Introduction

In many real-world applications where data is integrated from multiple sources,
matching mentions that refer to the same real-world entities is crucial. Entity
matching (EM) aims at automatically detecting such mentions or records that
are likely derived from different schemas. With the recent success of transfer-
learning from large pre-trained language models (PLMs) [11], [18], [69], [70] in
many NLP tasks, EM models such as Ditto [51] have followed suit to leverage
PLMs for EM. The paradigm of fine-tuning PLMs has achieved remarkable
performance on several well-known EM benchmarks.

Figure 3.1: A schematic overview of our proposed model

Despite their success and popularity, PLMs are no panacea [7]. Numerous
studies [56], [63] have found their tendency to learn the underlying spurious
patterns in data. This essentially means that PLMs tend to acquire a su-
perficial understanding of the task at hand and are more likely to fail under
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different circumstances, such as distribution shift. Such shortcomings lead to
inexplicable errors that inhibit their deployment in real-world applications.

EM can also be vulnerable to these problems. In this work, we investigate
whether PLM-based models can be deployed for entity matching “in the wild,”
where the distribution of the test data often differs from that of the training
data in a real-world setting. This is especially pivotal in EM as stored data
from different sources are hardly homogeneous [6]. To this end, we study
the robustness of these models to shed light on their pitfalls under various
distribution shifts. Our focus in this paper is on “structured” data where the
content of the records and the ordering of the fields vary from one domain to
the next.

For this purpose, we first fine-tune a PLM-based model on a dataset, then
evaluate it on several crafted test benchmarks in a zero-shot fashion. The
benchmarks are created to evaluate EM models for two types of robustness that
are prevalent in real-world settings: domain shift and structural shifts. For
domain shift, we conduct out-of-domain evaluations, and for structural shifts,
we devise perturbation strategies to modify the structure of tuples without
altering the matching outcome.

In addition to the distribution shift and the change in structure between do-
mains, the EM data is highly imbalanced. Table 3.1 shows this phenomenon
for several well-known datasets. Data Augmentation (DA) is a common tech-
nique to circumvent this problem. In essence, DA makes a model invariant to
changes that are less relevant to the task. Although shown effective, we find
that DA alone is not sufficient for building a model that is robust to distri-
bution shift. As a remedy, we propose a simple loss function to strengthen
the models’ ability to put more emphasis on the minority label. We also pro-
vide two other recommendations to make PLM-based EM models more robust.
Our experiments corroborate that our proposed model is more robust than the
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state-of-the-art EM models1.

Our main contributions can be summarized as follows:

• We investigate the impact of common strategies in EM models from the
robustness perspective.

• We design an evaluation framework to test the robustness of EM models
under various distribution shifts.

• Based on our findings, we propose simple modifications to Ditto, the
state-of-the-art EM model, to build a robust model that surpasses Ditto
on in-domain tests as well as out-of-domain tests.

3.2 Preliminaries

The goal of EM is to successfully match mentions, derived from presumably
different data sources, that refer to the same real-world entity. In this work,
our focus is on the structured data where mentions are stored as tuples [60].
In particular, suppose A = {A0, A1, ..., An} and B = {B0, B1, ..., Bm} denote
two data sources where Ai and Bj represent records in each data source. Each
record consists of several attributes — i.e., Ai = (a1, a2, a3, ...ak). Ai = Bj if
and only if both Ai and Bj depict the same real-world entity. EM is char-
acterized as a binary classification task to predict whether two records are
identical or not. In a PLM-based EM model, two records are concatenated to-
gether, separated by a special token. The model is fine-tuned using a sequence
classification objective.

1Our code and models are released at https://github.com/makbn/robem
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3.3 RobEM: A Robust Entity Matcher

We build our model, namely RobEM, atop Ditto, the state-of-the-art EM
model that leverages PLMs for identifying identical pairs. Our primary focus
is to make a PLM-based model for EM more robust. To this end, we modify
Ditto as discussed next. Figure 3.1 shows a high-level overview of our model.

3.3.1 Data Imbalance

In EM datasets, there is an extreme imbalance between examples labeled
as negative and positive [6], rendering the negative examples as the major-
ity class. However, Ditto and other prominent EM models use the standard
cross-entropy loss, which does not take into account the data imbalance dur-
ing training. We circumvent this problem by a common method, known as
weighted cross-entropy, which is basically the standard cross-entropy, albeit
with weights for each class [100]. The weights are typically proportional to
the frequency of each class in the training data [50].

3.3.2 Dispensing with Attribute Names

In practice, structured records are collected from anywhere on the web. These
records may lack attribute names due to a variety of reasons — e.g., pars-
ing difficulties, or missing information. However, using attribute names is
a common practice in EM [51], [60]. As a result, EM models are likely to
become impaired when faced with circumstances where attribute headers are
not given, curbing their robustness capabilities. To overcome this issue, we
dispense with the assumption that attribute names are present in the data to
account for such cases. This essentially denotes that our model purely relies
on the content of each record for matching.
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Figure 3.2: Deep classifier head we employ in our model

3.3.3 Classifier Head

In Ditto, the task-specific classification head that projects the output of a PLM
to logits is a linear layer. However, due to the complexity of the task, adding
a non-linearity in this layer can be helpful. Thus, as it is shown in Figure 3.2,
we employ tanh with dropout, following the classifier head in RoBERTa [54],
in the task-specific classifier head:

y = W2 · tanh(W1 · E ′
[CLS] + b1) + b2. (3.1)

3.3.4 Unsupervised EM Baseline

Moreover, we introduce a simple baseline, dubbed UnsupEM, that takes an
off-the-shelf PLM to determine whether two tuples are equivalent based on
their similarity in the embedding space. In particular, we first feed each tuple
into a PLM and take the output of the [CLS] token as the representation of the
tuple. We then compute the cosine similarity between the two representations.
A similarity that is above a certain threshold indicates equivalency.
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3.3.5 Serialization

As we mentioned earlier, we use the attributes of each data entry to generate a
sentence and solve the EM task as a sentence classification problem. Similar to
previous state-of-the-art work [51], we join all attributes to create a sentence
representation for each data entry. However, unlike previous work, we only
use the value of attributes instead of utilizing both their names and values.
While using the name of the columns can be considered an indicator for each
attribute’s start, it does not help to improve the results in our experiments.

Moreover, repeating the attributes’ names for all data entry representations
can cause a false positive bias problem, especially with shorter attributes,
because adding the same repetitive tokens to each short attribute can make
the sequences more similar from the model’s point of view. One possible
solution is considering names as language model special tokens, which needs a
considerable amount of training data to fine-tune the existing special tokens
embeddings and learn the new ones. Furthermore, including attributes’ names
can cause vulnerability when we do not have the same schema in both data
sources A and B or the schema is missing.

In our case, we serialize each data entry just by concatenation of attributes
using a separator token ATTR. To illustrate, for each data entry (Ai, Bj) where
Ai = (a1, a2, ..., ak) and Bj = (b1, b2, ..., bk) we have the following serialization:

S(Ai, Bj) ::= [CLS] a1 ATTR a2 ATTR ... ATTR ak [SEP] b1 ATTR b2 ATTR ...

ATTR bk [SEP]

The [SEP] token is used to separate two sequences during serialization, while
the [CLS] token is necessary for BERT [18] to encode the two sequence pairs.
Then this encoded vector will be used by the classifier head to do the EM
task. Our experiments show that excluding the names from the serialization
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can contribute to the final robustness of the model.

3.4 EM Robustness Benchmark

To assess the robustness capabilities of EM models, we devise a series of prob-
ing tests, simulating the distribution shifts that may arise in real-world sce-
narios. The first test is domain shift — or out-of-domain — where the domain
of test data differs from that of training data. Our main goal here is to under-
stand whether PLM-based EM models have actually mastered the task rather
than relying on spurious patterns in the data. To this end, a model, trained
on one dataset, is tested against the other datasets.

The next series of tests attempt to replicate schema discrepancies between the
tuples from two different data sources. For this purpose, we check the invari-
ance against structural shifts via applying a set of five perturbation operations
on the original test data to produce five new test sets. Those perturbation op-
erations are discussed next.
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Figure 3.3: Perturbation operations for the schema discrepancy robustness
benchmark. Key columns are shown in italic.

3.4.1 Robustness to column order (SFF)

The ordering of columns does not affect the matching result between a pair
of tuples. To ensure this condition, we shuffle columns of a tuple for each
example in the test data.

3.4.2 Robustness to absence of non-key columns (DRP)

Non-key columns are columns that do not contribute to the matching result
between a pair of tuples — e.g., price in Figure 3.3. Matching should re-
main invariant to inclusion or exclusion of non-key columns. This condition is
enforced by randomly dropping one or more non-key columns.
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3.4.3 Robustness to missing values (MIS)

The existence of missing values is prevalent when dealing with noisy data
sources such as web tables. To imitate this, we randomly replace one or more
non-key columns with NULL.

3.4.4 Robustness to extraneous columns (EXT)

The presence of irrelevant non-key columns does not affect the matching result
between a pair of tuples. We enforce this case by randomly adding columns
from other datasets for each test example. EXT test can achieved by adding
one or more irrelevant columns to the sample. The new columns can be of
type integer, floating-point, or string. We suggest using columns from other
datasets rather than random words for text columns.

3.4.5 Robustness to different data types (TYP)

Data entries can be expressed in a handful of ways without changing their
semantics. This is especially the case for numerical values. For instance, “1k”
is equivalent to “1,000” and “1e3”. We curate several hand-crafted rules to
randomly convert numbers to different formats to enforce this condition.

3.5 Experiments

3.5.1 Setup

We implemented our models using the Hugging Face transformers library [89].
We select RoBERTabase [54], a well-known PLM, that is shown to be effective
in EM [51]. In addition, we apply the half-precision floating-point optimization
to speed up training and prediction [31], [45]. We follow the hyperparameter
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configuration of Ditto for training our models. In particular, we set the max-
imum sequence length to 256, the batch size to 64, and the number of epochs
to 40. The learning rate is set to 3e-5 with a linear decay. All experiments
were conducted on a single Nvidia V100 32GB GPU with the batch size set
to 64 in both the training and evaluation cycles and the epoch number to 40.

3.5.2 Evaluation Metric

Like previous EM studies, we use the F1 score to evaluate our method and
compare it with state-of-the-art models. By taking their harmonic mean,
the F1 score combines the precision and recall of a classifier into a single
metric, while accuracy only skims the correctly classified observations for both
positive and negative samples. Typically, the F1 score is used to compare the
performance of two classifiers and determine which is more effective [53]. We
calculate F1 score:

Precision =
TP

TP + FP
(3.2)

Recall =
TP

TP + FN
(3.3)

F1score = 2× Precision×Recall

Precision+Recall
(3.4)

where the TP , FP , and FN are based on the output of the model and datasets’
ground truth.

3.5.3 Datasets

We use 8 datasets, introduced in DeepMatcher [60]. The datasets are derived
from an entity resolution benchmark [42] as well as the Magellan data reposi-
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tory [40]. The datasets are collected from a wide range of domains, including
products, publications, and businesses. For all datasets, each example consists
of candidate pairs from two structured tables within the same schema. The
ratio of matched pairs varies from 9.4% for Walmart-Amazon to 25% for the
Company dataset [51]. Generally, there are 1-8 attributes. Table 3.1 presents
the size of each dataset2.

Table 3.1: Datasets size. P. refers to the tuple pairs marked as a match. And
N. is the number of non-matched instances. The Attributes column shows the
number of attributes in each table being matched.

Dataset Train Set (N./P.) Test Set (N./P.) Attributes
iTunes-Amazon 243 / 78 82 / 27 8
Amazon-Google 6175 / 699 2059 / 234 3
BeerAdvo-RateBeer 228 / 40 77/14 4
DBLP-ACM 6085 / 1332 2029 / 444 4
DBLP-Scholar 14016 / 3207 4672 / 1070 4
Fodors-Zagats 501 / 66 167 / 22 6
Walmart-Amazon 5568 / 576 1856 / 193 5
Abt-Buy 5127 / 616 1710 / 206 3

3.5.4 In-Domain Generalization

We first examine the generalization of EM models to unseen test data that
are from the same domain as the training data. For in-domain experiments,
we compare our results with two prominent neural entity matching models:
Deepmatcher+ [38], an RNN-based model, and Ditto [51], a PLM-based model
with the same number of parameters. Since all of these works use the same
train, validation, and test splits for their experiments, we directly report the
results from the corresponding papers [38], [51].

As presented in Table 3.2, RobEM consistently surpasses Ditto, on all datasets,
except for two datasets, iTunes-Amazon (-1.65%), and DBLP-Scholar (-0.22%).

2A detailed description of datasets is available at: https://github.com/anhaidgroup/
deepmatcher/blob/master/Datasets.md
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Interestingly, the highest performance gain (+8.99%) is achieved on Abt-Buy.
UnsupEM understandably trails all the baselines and RobEM on all datasets
because it does not exploit any supervised signals from the data. We also
repeat our evaluation with different combinations of our modifications. While
the improvements achieved by each modification individually are comparable,
the improvement acquired by dispensing with attribute names is more sig-
nificant on all datasets with an average of 1.8% improvement. The largest
improvement is seen for Abt-Buy with an improvement value of 3.95%.

Removing attribute names can primarily reduce false positive by removing
unnecessary repetitive tokens in the representation sentences. The impact of
having these repetitive tokes is noticeable when the data set has shorter text.
In Abt-Buy, one data source has an average of 15 words over three attributes
describing an entity. By adding column names, COL, and VAL tokens for each
attribute, in the best scenario, nine tokens are added to the serialization of
the data source, which matches the entity serialization from the other source.
This means, on average, we have a 35.7% matching bias regardless of the
label. Also, dispensing with attribute names can help if the same attribute
has a different column name in each data source.

The improvement achieved by the weighted cross entropy loss function is 1.55%
on average, and the largest improvement is seen for Fodors-Zagats with a
higher degree of imbalance. Moreover, the mean advancement achieved by a
deep classifier is 1.17%, with the highest impact on Abt-Buy. The results for
the deep classifier modification show that datasets with a higher number of
attributes are more challenging than datasets with fewer attributes.

3.5.5 Out-of-Domain Generalization

We compare RobEM with UnsupEM and Ditto in out-of-domain experiments,
where the model is trained on one dataset (e.g. iTunes-Amazon) and tested
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Table 3.2: F1 scores for in-domain experiments. DeepMatcher+ and Ditto
results are taken verbatim from [51] (DK).

Dataset DM+ UnsupEM Ditto RobEM
iTunes-Amazon 91.2 54.54 97.80 96.15 -1.65
Abt-Buy 62.8 21.84 81.69 90.68 +8.99
Amazon-Google 70.7 31.04 74.67 76.64 +1.97
BeerAdvo-RateBeer 78.8 64.70 90.46 93.33 +2.87
DBLP-ACM 98.45 92.77 99.10 99.21 +0.11
DBLP-Scholar 94.7 69.77 95.80 95.62 -0.18
Fodors-Zagats 100.0 86.95 100.00 100.00 0.00
Walmart-Amazon 73.6 29.85 83.73 86.68 +2.95

Table 3.3: F1 scores for in-domain experiments using Data Augmentation
(DA). DeepMatcher+ and Ditto results are taken verbatim from [51].

Dataset Ditto (All) + DA RobEM + DA
iTunes-Amazon 97.06 98.18 +1.12
Abt-Buy 89.33 90.9 +1.57
Amazon-Google 75.58 79.06 +3.48
BeerAdvo-RateBeer 94.37 96.55 +2.18
DBLP-ACM 98.99 99.10 +0.11
DBLP-Scholar 95.60 95.86 +0.26
Fodors-Zagats 100.00 100.00 0.00
Walmart-Amazon 86.76 84.61 -2.15

on another dataset (e.g. Amazon-Google). UnsupEM offers a lower bound for
supervised models. The vis-a-vis results — i.e., the difference between RobEM
and the baselines — that consist of 56 runs are reported in Figure 3.4. Only on
15 cases in total, RobEM lags behind UnsupEM. Furthermore, when trained
on BeerAdvo-RateBeer, RobEM struggles most with out-of-domain general-
ization. On the other hand, the models that are trained on iTunes-Amazon
and BeerAdvo-RateBeer significantly outperform Ditto on all 7 datasets.

In total, RobEM trails Ditto on 17 cases. Overall, the improvements of RobEM
over UnsupEM and Ditto are statistically significant in 34 and 31 cases, respec-
tively. Finally, we find that UnsupEM is a strong baseline in out-of-domain
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Operator Explanation
span_del Delete a randomly sampled span of tokens

span_shuffle Randomly sample a span and shuffle the tokens’ order
attr_del Delete a randomly chosen attribute and its value

attr_shuffle Randomly shuffle the orders of all attributes
entry_swap Swap the order of the two data entries e and e′

Table 3.4: Ditto Data augmentations

tests, leading both RobEM and Ditto on 13 tests.

3.5.6 Data Augmentation

Data augmentation (DA) is a long-known technique to counter data imbalance
and to boost the generalization capabilities of models. In this section, we aim
at evaluating RobEM and Ditto when trained on augmented data. We follow
the DA method presented in Ditto. In particular, Ditto DA involves generating
augmented data online during training. Each example is augmented via a
series of consecutive operations that randomly perturb attributes and tokens.
Following Ditto, we generate one augmented sample for each training example.
Table 3.4 shows Ditto DA methods.

The in-domain results for DA are presented in the right columns of Table 3.2.
DA does not improve the in-domain performance of Ditto on three datasets,
iTunes-Amazon, DBLP-ACM, and DBLP-Scholar. However, DA brings in-
domain improvements for RobEM on all datasets but two cases. RobEM+DA
consistently outperforms Ditto+DA on all datasets, except on Walmart-Amazon.

In the out-of-domain experiments, the results, presented in Figure 3.5, are con-
sistent with our findings in Figure 3.4(b). Specifically, RobEM+DA, trained
on iTunes-Amazon, BeerAdvo-RateBeer, and Walmart-Amazon, outperforms
Ditto on all 7 datasets by a significant margin, except for one case. DA helps
RobEM, trained on Amazon-Google, to achieve better results than Ditto on
5 datasets. However, when comparing RobEM with DA and without, we find
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Figure 3.4: Difference between F1 scores of RobEM and two baselines, Ditto
(b) and UnsupEM (a) in zero-shot out-of-domain experiments.
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Figure 3.5: Difference between F1 scores of RobEM+DA and Ditto+DA in
zero-shot out-of-domain experiments.

using DA improves 3 out of 56 tests. This essentially highlights that DA is
not necessarily useful for robustness under domain shift.

3.5.7 Schema Discrepancy Generalization

We conduct our robustness test only on the best performing models from
the out-of-domain experiment. More precisely, we adopt the models, trained
on iTunes-Amazon using DA throughout this section. We surmise that our
findings can be extended to other datasets as well. To understand the impact
of DA, we employ DA techniques, akin to the ones we adopted to generate
the robustness benchmark in Section 3.4. The idea is to imitate the cases of
potential distribution shift to teach the model during training. For brevity, we
only use the methods for SFF, as defined in Section 3.4, in this experiment to
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generate augmented datasets offline:

• Tuple Swap (SW), inspired by Ditto, refers to swapping the left tuple
with the right one for each training example.

• Attribute Shuffle (SF), inspired by Ditto, shuffles the order of at-
tributes for each training example.

Table 3.5 shows the results, averaged over 20 runs, for RobEM and Ditto on
our robustness benchmark. We report the average performance drop (∆avg),
compared to in-domain results3. We observe that Ditto DA method is more
robust, compared to SW and SF as it yields the lowest performance drop
for both RobEM and Ditto. Also, RobEM is consistently more robust than
Ditto across all three DA methods. Interestingly, SFF and DRP are the two
most challenging perturbation tests for RobEM and Ditto, respectively. Thus,
the STF generates different test data from a dataset for each of the above
transformations in addition to the original test set. To generate data, for each
sample that consists of a pair of entity rows, we keep one entity row unchanged
and apply the above suggestions to the other. For comparison, the difference
in means (MD) for each model can be calculated. Table 3.5 shows the STF
results for RobEMand Ditto on iTunes-Amazon dataset.

We ran each transformation 20 times for each model and recorded the average.
Then we subtract the original result from each to compute the related MD. In
all 3 cases, our model achieves smaller negative MD, which shows its robustness
to the data alteration.

3We attempted to replicate the Ditto results using the official codebase. Our results for
Ditto+DA is 93.1%, whereas in the original paper, 97.1% is reported.
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Table 3.5: F1 scores on iTunes-Amazon dataset on our EM robustness bench-
mark. The perturbation operations are defined in Section 3.4.

DA in-
domain SFF DRP MIS EXT TYP ∆avg

R
ob

E
M SF 96.15 91.6 93.35 96.15 95.74 97.13 -1.35

SW 98.11 93.83 96.29 97.69 99.25 97.95 -1.10
Ditto 98.18 96.8 98.11 98.11 97.74 98.11 -0.40

D
it

to

SF 96.42 95.47 91.94 96.42 96.42 93.69 -1.63
SW 94.54 90.29 91.78 92.85 92.96 94.54 -2.05
Ditto 93.10 92.81 89.47 90.56 93.76 93.10 -1.16

Table 3.6: The 9 datasets divided into 4 categories of domains summarized by
Ditto [51].

Datasets Domains
Amazon-Google, Walmart-Amazon Software / Electronics
Abt-Buy, BeerAdvo-RateBeer Product
DBLP-ACM, DBLP-Scholar,
iTunes-Amazon Citation / Music
Company, Fodors-Zagats Company / Restaurant

3.6 Summary

In this chapter, we investigated the robustness capabilities of EM models under
domain shifts and structural shifts. We prescribe simple guidelines to build
robust models that are suitable for deployment in the wild. Our proposed
model outperforms the state-of-the-art PLM-based EM model under distri-
bution shift. We hope that our findings spurs development of more robust
EM models. Also, our robustness benchmark can be a basis for a thorough
assessment of future EM models.

We explore unstructured data, complex data augmentation techniques and
other forms of distribution shift in the next chapter.
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Figure 3.6: Out-of-domain F1 scores When DA is applied.
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Chapter 4

Unstructured Entity Matching

4.1 Introduction

As a recap of our work in the previous chapter, our study shows the power
of using PLMs such as RoBERTa [54] and BERT [18] for the EM task while
investigating the impact of common strategies from the robustness perspec-
tive. We also demonstrate that the PLMs achieve a remarkable performance
through a fine-tuning paradigm for structured EM. We suggest a few sim-
ple modifications to make Ditto more robust on in-domain and out-of-domain
tests. We further propose a benchmark framework to evaluate the robustness
of structured EM models in a real-world setting which is expected to be noisy.
All our studies and research in the previous chapter are dedicated to a spe-
cific type of data known as structured data, where data are in some tabular
formats. There has been a large body of work on EM for structured data, and
our work focuses on using pre-trained language models.

Unstructured data, on the other hand, have not been explored widely through
the lens of entity matching. A recent study reports that 95% of businesses cite
the problem of managing unstructured data as a challenge for their business
[46]. This emphasizes the importance of extracting and linking entities in
unstructured sources to their referents or identifying emerging entities.
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In this chapter, we challenge the power of the proposed EM model, RobEM,
and evaluate it for the EM task on unstructured data. For unstructured data,
to the best of our knoeledge, no large annotated data exists at the time of
this writing; thus, we develop a dataset, called News-Pair dataset, based on
CoNLL En 2003 [75], by pairing documents that refer to the same real-world
entity. Documents can have multiple mentions and those mentioned can refer
to different entities (as shown in Example 4.1.1). For our task, each docu-
ment in our collection contains a primary mention, and each document pair
has a label that shows if their primary mentions refer to the same real-world
entity.

Example 4.1.1 Sample data from the generated unstructured EM dataset
based on CoNLL documents

• Left Document:
...fire a shot into the top corner. It looked like turning into a rout as
Hwang Sun Hong rapidly ... minutes later direct from a corner kick
that <MEN> Korean <MEN> goalkeeper Kim Byung reached
with one hand but failed to keep out. With 65 minutes gone...

• Right Document:
...(Netherlands) 41.58; 7.Jin Hua (China) 41.59; 8.Alena Korol-
eva (Russia) 41.64; 9.Chris Witty... Gerard Van Velde (Nether-
lands) 1:16.63 8.Kim Yoon-man <MEN> South Korea <MEN>
1:16.75 9.Jeremy Wotherspoon (Canada) 1:16.75 10.Miyabe Yasunori
(Japan) 1:16.86 Women’s 1,000 metres...

• Label: Match

An example document pair is shown in Example 4.1.1. We can see that the
surface texts can be different, but the mentions can reference the same entity.
More details of the dataset can be found in Section 4.4.1.

Unstructured EM is generally more challenging than structured EM because
the attributes that contribute to the linking of the mentions are not explicitly
listed. Since PLMs accept token sequences (i.e., text) as input, transforming
a candidate pair into a sequence of tokens is a critical challenge in both struc-
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tured and unstructured data. For structured data, as discussed in Chapter
3, RobEM appends the values of columns that describe an entity, forming a
sequence with a separator token between column values. Each column value
gives a feature of the entity and may possess information that helps with the
entity matching. For unstructured data, textual documents are already in the
form of a sequence of tokes. However, there are many different ways of extract-
ing features from a textual document, and not all of them contribute to the
task of disambiguation and matching. We propose a context-based approach
to serialize textual documents to provide input to RobEM.

Finally, as an alternative model and a baseline for our comparison, we imple-
ment a serialization step for Ditto, based on their serialization for the struc-
tured data, and follow their guidelines to prepare the data for their model. We
evaluate both Ditto and our model on the same data and under the same con-
ditions. As noted n the previous chapter, despite their success and popularity,
PLMs are no panacea and tend to learn the underlying spurious patterns in
data and are more likely to fail under different circumstances, such as distri-
bution shift [7], [56], [63]. For this reason, we extend our experiments further
to challenge both unstructured models in an out-of-domain environment.

For the out-of-domain experiment, we change the natural label distribution
of the dataset by adding some new samples. These samples are selected from
the minority class, and for each sampled pair, more documents that mention
those entities are collected from news sources on the web. Adding new pairs
to the dataset gives us a balanced dataset, allowing us to evaluate the models
under a distribution shift.

Our main contributions in this chapter can be summarized as follows:

• We extend our model by applying modifications to the serialization step
to handle the task of EM for unstructured data. We do the same for
Ditto based on their serialization for structured data.
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• We develop a new dataset based on documents from CoNLL En 2003
for entity matching on unstructured data. To further generate a new
balanced dataset, we collect online news documents by sampling for the
minority class.

• Using the developed unstructured datasets, we evaluate both Ditto and
RobEM extensively to assess their performances on the unstructured EM
task.

4.2 Problem Definition

We define a mention to be a consecutive sequence of tokens in a textual doc-
ument that refers to a real-world entity. For example, a mention may denote
a noun, a noun phrase, or a pronoun. Let us assume we have two documents:

DL = w1, w2, w3, ..., wn−1,ml, wn+1, ..., wm, and

DR = w′
1, w

′
2, w

′
3, ..., w

′
n−1,mr, w′

n+1, ..., w
′
k,

where DL has m tokens and DR has k tokens. Document DL contains mention
ml and docuemnt DR contains mention mr. The two mentions can have the
exact same surface text or may be different. The goal of an unstructured EM
is to find out whether ml and mr refer to the same real-world entity, denoted
as Ref(ml) = Ref(mr). Since many entities are not present in a knowledge
base, our goal is to do this entity matching without linking the mentions to a
knowledge base.

Previous works define unstructured EM as an EM task where the features are
long text. Company [40] and Abt-Buy [42] are two unstructured databases that
have been widely used in the literature, and none of them are a good example
of unstructured data for EM. The Company dataset consists of document pairs
pi = (a, b) where document a is the text of the Wikipedia page of a company
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and document b is the home page of the same company [60]. Both a and b

may contain mentions of the entity, but those mentions are not annotated,
and each document can have mentions of many other entities as well. For the
Abt-Buy dataset, we have a table with three attributes for each left and right
entity pair. The first attribute is a number and the third attribute is a short
text. It is only the second attribute that has a long text.

4.3 Unstructured Entity Matching

We want to study if our proposed model, RobEM, can be extended for an un-
structured EM, maybe by adding a new serialization layer. Note that RobEM
considers attribute values as entity features and appends them to create a
sentence that represents the entity.

4.3.1 Serialization

For each mention, we need to extract features from the document that contains
the mention. Various forms of features can be extracted from a textual context.
Similar to previous studies, a bag of words model may be used to collect the
features of an entity based on its mentions. Those features may be gathered
from the entire document [16], [30] or a smaller context window of tokens
surrounding the mention [32], [47], [58].

The co-occurrence of words in the contexts of or around two mentions may
indicate that two mentions are related. In most cases, the whole document
can be too long to be considered as a context and cannot be encoded with the
limited input size of PLMs. We consider a window of text around a mention
as its context and serialize the surface text of the mention and its left context
and right context, as shown in Figure 4.1. For a document pair (DL, DR), we
have the following serialization:
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Figure 4.1: RobEM unstructured serialization. For each document DL and
DR, we serialize the mention and its surrounding context window by appending
them and annotating the mention with the special token [MEN].

RobEMS(DL, DR) ::= [CLS] DL
L_CTX [MEN] ml [MEN] DL

R_CTX

[SEP] DR
L_CTX [MEN] mr [MEN] DR

R_CTX [SEP].

Likewise, we develop a similar serialization layer for Ditto following their guide-
lines:

DittoS(DL, DR) ::= [CLS] [COL] L_CTX [VAL] DL
L_CTX [COL] MEN [VAL] ml

[COL] R_CTX [VAL] DL
R_CTX [SEP]

[COL] L_CTX [VAL] DR
L_CTX [COL] MEN [VAL] mr [COL]

R_CTX [VAL] DR
R_CTX [SEP].

4.3.2 Loss function

As mentioned in Chapter 3, the weighted cross-entropy loss function addresses
the problem of overfitting deep learning models due to the data imbalance
[100]. For unstructured EM, data imbalance is a bigger problem because the
combination of non-matching mentions can be exponentially more than the
matching ones. Hence, we use the weighted cross-entropy loss function here
to amplify the impact of the minority class on the model.
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4.4 News-Pair: Unstructured EM Dataset

We are not aware of a public dataset for the problem of unstructured EM.
Hence, we develop News-Pair, an unstructured EM dataset, based on CoNLL
En 2003 [75] documents and AIDA [34] annotations. Each document usu-
ally contains mentions of multiple named entities. Therefore, datasets like
Company [40] that only contain a text body without any annotation of the
mention are less useful. As an example, consider the following document pair
from Company dataset:

Example 4.4.1 A document pair from the training set of Company dataset
with the label 0 or non-match.

Document A:
Fremantle is a British multinational television production and distribu-
tion company based in London. Fremantle takes its name from Fre-
mantle International, acquired by predecessor company All American
Television in 1994. Pearson Television was renamed FremantleMedia on
20 August 2001, following the 2000 merger of Pearson ...
Document B:
... now Randstad in numbers 6 695 teachers and support staff in work 3
938 schools needed our help 165 654 jobs filled in 2013 14 130 specialist
consultants delivering teachers the best in CPD want to enhance your
skills and set your CPD targets for the year take advantage of our free
CPD offering register now reversing the teacher exodus read our latest
report on the changing face of education recruitment in the UK ...

Based on the label provided in the dataset, these two documents are not re-
ferring to the same entity. Although the first document is about Fremantle
company and the second document is about Randstad, both documents make
references to other entities as well. For example, consider the word British in
Document A and UK in Document B. What can we say about these two men-
tions and if they are referring to the same entity? The problem is the dataset
does not have any information about the exact mention that are matched.
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4.4.1 Data format

Our News-Pair consists of 100,000 pairs of documents in the train set, 75,048
pairs in the validation set, and 59,130 pairs in the test set. Each document
pair is generated by appending two documents extracted from CoNLL dataset.

We first cluster all mentions using their linked references. Then, for each
mention, we extract a context window from its CoNLL document and save it
as the new document. For generating ‘positive’ or ‘match’ samples, we select
all combinations of mentions in different documents that reference the same
entity. In more than half of the positive pairs, the surface text for the left
and right mentions are identical, while many other pairs have non-identical
mentions and still refer to the same entity. We divide the positive samples
into mentions with identical surface text, referred to as SM, and mentions
where the surface texts are not identical, referred to as NM. NM includes
mentions that are non-identical but still reference the same entity.

Generating negative samples is more challenging. The combination of docu-
ment pairs with non-matching references can be large, and this can result in a
highly skewed dataset. To prevent this problem and to maintain the natural
distribution of negative samples, we first generate samples where the left and
right mentions have the same surface text but referencing different entities.
This set is denoted as SN. For the final category, referred to as NN, we follow
the previous steps and initially generate a massive set of mention pairs that
have different surface texts and refer to different entities. We randomly select
a subset of these samples with a size that matches the size of the SN set. This
procedure is followed for the training, validation, and test sets. In each case,
the documents are taken from the related sets in the oNLL dataset. Table 4.1
shows the size of each set in News-Pair dataset, divided into four categories,
SM, SN, NM, and NN.

51



Table 4.1: Number of document-pairs in each mention type. SM includes
pairs with the same surface text and the same reference, SN includes pairs
with the same surface text but refer to different entities, NM includes pairs
with different surface texts and the same reference, and NN includes pairs
with different surface texts and refers to different references.

Set / Type SM SN NM NN Total
Train 47,401 5,541 41,584 5,474 100,000
Validation 37,364 5,066 27,552 5,066 75,048
Test 27,656 5,784 19,906 5,784 59,130
Sum 234,178

4.4.2 Data Augmentation

Data augmentation (DA) has recently seen an increased interest in NLP due
to more work in low-resource domains and new tasks, as well as the popularity
of large-scale neural network models that require large amounts of training
data [24].

In our case, we need to add new samples to our minority class to balance
the dataset. To accomplish this, we need to add new negative samples to
SN where the two mentions have the same surface text, but they refer to
different entities. As mentioned earlier, many NN samples can be generated by
combining mentions with different surface text that refer to different references.
Increasing the number of these samples can cause the dataset to have an
implicit relationship between the surface texts of the mentions and the non-
match label, and the model can learn such relationships between non-matching
pairs.

Data augmentation in Ditto, as described in Chapter 3, is not much of an
option here. For a long text, changing or removing a token cannot augment a
new high-quality sample and likely will generate a repetitive sample that can
lead to overfitting on the train data.

In order to generate new high-quality samples, we use the available information
about referent entities to search and scrap new data. We have 1065 pairs in
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Table 4.2: Number of document-pairs in each set of balanced News-Pair
dataset.

Set / Type SM SN NM NN Total
Train 47,401 41,541 41,584 47,974 178,500
Validation 37,364 27,066 27,552 37,566 129,548
Test 27,656 19,784 19,906 28,784 96,130
Sum 404,178

our dataset where mentions have the same surface text, but those mentions
reference different entities. For each of these pairs, we extract the surface text
of the mention and both the left and the right references. Then we convert
the references to Wikidata QIDs using the Wikipedia pages of the references.
We create a query for each entity using its English description and entity type
in Wikidata. Having two queries for each pair of mentions, we search for new
online news documents in Google News and generate two sets of news for each
pair. Figure 4.2 shows the steps for generating new documents.

Sorting through the news articles News articles returned by Google can
be noisy. For instance, for the query ‘Wall Street, a street in Manhattan,’
the top 5 returned results are all about the ‘Wall Street Stock Exchange.’ We
do not have any public information on how Google matches a query with the
news, but this probably happens due to its high prior probability [43], [67].

To better understand the problem, we repeat our experiment with different
queries and review the returned results for each query. While the returned set
for each query is different, some results are common between different query
formulations of the same entity, and those documents generally have a closer
relationship with the entity. Therefore, we manually examine the returned
result for each query and determine its correctness. To do that, we select a
set of 20 random pairs from the SN category of our dataset. We retrieve the
top three news for each pair, three news for the left entity, and three news
for the right entity, using a description-based query (referred to as Q1) and
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Figure 4.2: News-Pair DA for generating new negative samples using existing
pairs and new online news documents. QIDs are extracted from the Wikipedia
URL of references by parsing the HTML content. Each query returns a set of
relevant news articles.
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a TYPE_OF query (referred to as Q2). We compute the accuracy under the
following three scenarios:

• Description Priority In this experiment, we prioritize retrieved news
by the description-based query (Q1) for each entity in a pair. If the
number of retrieved news by Q1 is insufficient, we select and add news
from the results of the TYPE_OF query (Q2).

• TYPE_OF Priority In contrast to Description Priority, In this
case, we prioritize retrieved news by the TYPE_OF query (Q2) results.
Likewise, we select and add news retrieved by Q1, if needed.

• Intersection This method combines results from both sets giving pri-
ority to the results of the description-based query. We change the order
of documents in the description-based results set if we have a news doc-
ument that appeared in both sets. For the news in the intersection, the
ordering is based on their rank on the description-based set. Figure 4.3
shows an example of sorting using the Intersection method.

We define accuracy as the percentage of selected results that matches the
query. Our evaluation shows that the best accuracies for Description Priority
and TYPE_OF Priority are %80 and %72, respectively. The accuracy for in-
tersection is %82; therefore, we use this method to generate the new document
pairs. Table 4.2 shows the size after adding our new pairs. We also generate
the augmented data for the test and validation set for our out-of-domain test.

4.5 Experiments

4.5.1 Setup

We use structured RobEM model from Chapter 3 and extend it by adding a
layer for unstructured data. Similar to our experiments on structured data,
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Figure 4.3: Sorting techniques for selecting new news documents for balanced
News-Pair dataset.

we set the maximum sequence length to 256, the batch size to 64, and the
number of epochs to 40. The learning rate is set to 3e-5 with a linear decay.
All experiments were conducted on a single Nvidia V100 32GB GPU with the
batch size set to 64 in both the training and evaluation cycles and the epoch
number to 40.

4.5.2 Dataset

We evaluate our models on News-Pair and balanced News-Pair datasets and
compare the model performance with that of Ditto. The details of these
datasets are available in Tables 4.1 and 4.2.

4.5.3 In-Domain Generalization

In this experiment, the models are trained and tested on datasets that follow
the same distributions. For example, a model trained on News-Pair is also
tested on News-Paid. We compare our results with Ditto, a state-of-the-art
model with the same number of parameters.

The authors of Ditto suggest a Domain Knowledge (DK) optimization step
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Table 4.3: F1 scores for in-domain experiments. ‘Pos. class’ row reflects the
F1 score based on SM and NM categories. ‘Neg. class’ represents the SN and
NN negative samples.

Ditto RobEM Ditto+DK RobEM+DK
Overall 95.32 97.37 +2.05 96.80 97.24 +0.44
Pos. Class 95.32 97.37 +2.05 96.8 97.24 +0.44
Neg. Class 78.69 88.96 +10.27 85.85 87.95 +2.1

where mentions in text are annotated with their types. The idea is to pre-
process the serialized inputs by tagging informative spans (e.g., product ID,
person name), inserting special tokens (e.g., ID, PERSON), and normalizing
specific spans (e.g., numbers) [51]. They provide two versions for DK, referred
to as General and Product, where General is applicable to all types of entities
and Product is specifically for product entities. We conduct our experiments
using their ‘General DK’ for both models and report our results. Table 4.3
presents the F1 score for our in-domain test using RobEM and Ditto. In all
cases, with and without DK, our model consistently outperforms Ditto. DK
improves the F-score of Ditto up to +8% for the non-matching class and by
+1.92% overall, but it does not improve the performance of RobEM. We think
the reason is that our model captures this extra information using a deep
classifier without DK.

4.5.4 Out-Of-Domain Generalization

Numerous works employ the fine-tuning technique to improve their perfor-
mance over a dataset. However, different factors may contribute to these
improvements with the model learning the task, data trends, and/or the vo-
cabulary. Recent research indicates that a high accuracy on a test set drawn
from the same distribution as the training set is not a sign that the model
has mastered the task. [59]. In our out-of-domain experiment, we aim at un-
derstanding the performance of the models when trained on one dataset and
tested on another dataset with a different distribution. To this end, we use
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Table 4.4: F1 scores for the out-of-domain experiment. We train both Ditto
and RobEM models on each dataset and then test each model on another
dataset.

Test dataset
News-Pair Balanced News-Pair

Ditto RobEM Ditto RobEM
News-Pair 96.40 96.63Train

dataset Balanced
News-Pair 94.29 94.88

News-Pairs and balanced New-Pair for this experiment. First, we train both
models on the training set of one dataset, then evaluate it with the test set of
the other dataset. For example, we train RobEM on News-Pair and test it on
balanced News-Pair.

Table 4.4 shows the result for the out-of-domain experiment. RobEM scores
96.63% in case the training set is News-Pair and the test set is balanced News-
Pair, which is +0.23 higher than Ditto. Also, when we use our balanced
News-Pair as the training dataset and News-Pair as the test dataset, our model
achieves 94.88%, which is better than Ditto.

4.6 Summary

In this chapter, we extend our structured EM model for unstructured data and
evaluate the performance of PLM-based models. Similar to structured EM, our
experiments show that PLM-based models can be effective for unstructured
data due to their ability to understand the language context. We also develop
two new unstructured matching datasets, one using documents from CoNLL
and another with additional new documents. In-Domain and Out-of-Domain
experiments show that our proposed modification in the previous chapter can
be generalized for the unstructured EM task.
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Chapter 5

Conclusion and Future direction

In this study, we present RobEM, a robust EM solution, using transformer-
based language models. RobEM uses a simple architecture to leverage pre-
trained LMs and implements further optimizations, including loss function,
data augmentation, and classification head, to improve the robustness of the
model. Our results show that the proposed model improves the robustness of
existing EM solutions on standard structured datasets while maintaining the
performance. The in-domain and out-of-domain experiments show a marginal
advantage over a state-of-the-art model. Also, we provide a robustness bench-
mark framework for structured EM to help researchers thoroughly test their
proposed EM solution under distribution shifts.

We extend our model for unstructured EM. To evaluate our PLM-based model,
we develop a new dataset based on the commonly used dataset, CoNLL En
2003. We then extend the proposed dataset using new documents that are
scraped from online news to build a balanced version. Our experiments on
both datasets show the effectiveness of the proposed modifications.

We plan to investigate our choices for additional optimizations in future works,
including complex data augmentation techniques. Also, we plan to investigate
the techniques to optimize the model speed to shorten the inference time in
settings where the number of possible combinations can be extremely high.
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