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Abstract

The spread of disinformation on social media platforms is harmful to society. This

harm may manifest as a gradual degradation of public discourse; but it can also take

the form of sudden dramatic events such as the 2021 insurrection on Capitol Hill. The

social media platforms themselves are in the best position to prevent the spread of

disinformation, as they have the best access to relevant data and the expertise to use

it. However, mitigating disinformation is costly, not only for implementing detection

algorithms or employing manual effort, but also because moderating content impacts

user engagement and thus potential advertising revenue. Since the costs of harmful

content are borne by other entities, the platform will therefore have no incentive to

exercise the socially-optimal level of effort.

A similar problem exists for the environmental regulation domain, where the costs

of adverse events are not directly borne by a firm, the mitigation effort of a firm is not

observable, and the causal link between a harmful consequence and a specific failure

is difficult to prove. For environmental regulation, one solution is to perform costly

monitoring to ensure that the firm takes adequate precautions according to a specified

rule. However, a fixed rule for classifying disinformation becomes less effective over

time, as bad actors can learn to sequentially and strategically bypass it.

In this thesis, we develop a formal model to capture incentives of social platforms

relating to the control of online disinformation; our framework incorporates these

important features of the disinformation prevention domain. Encoding our domain

as a Markov decision process, we demonstrate that no penalty based on a static rule,

no matter how large, can incentivize adequate effort. Penalties based on an adap-
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tive rule can incentivize optimal effort, but counterintuitively, only if the regulator

sufficiently overreacts to harmful events by requiring a greater-than-optimal level of

effort. We discuss key implications of our formal results, highlight inherent challenges

of regulating disinformation, and provide promising directions for future work.
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Chapter 1

Introduction

Contemporary web and social media platforms provide a ripe ground for the spread

of false news, hoaxes, and disinformation [1]. Compounding the problem, social

platforms’ business models often conflict with efforts that can mitigate these problems.

Facebook, for instance, uses machine learning models to maximize user engagement.

In doing so, however, these models also favor content that is toxic and filled with

conspiracy, lies, and misleading, divisive information [2–4].

We use disinformation to refer to all such toxic content, including all kinds of false

and fabricated news posing as truth, created with the intention to mislead [1]. The

unmitigated spread of disinformation is harmful to society. The harm can be direct

physical or emotional distress to an individual; it may also manifest as a negative

externality affecting public discourse, or social welfare. Examples include the under-

mining of public health response due to Covid-19 false rumors [5, 6], disease outbreaks

via anti-vaccination propaganda [7], violent conspiracy movements surrounding the

2020 US presidential elections [8, 9], and horrific incidents such as the Pizzagate

shooting [10], or ethnic violence in Myanmar [11].

The costs of these rare and dramatic events are borne exclusively by society,

rather than the social platforms themselves. Furthermore, these events are inher-

ently stochastic as it is impossible to predict with certainty that a given collection

of content will cause a specific harm. And mitigating disinformation is costly: Fil-

1



tering, demoting or assigning warning labels to associated content entails both the

direct costs of implementing classification algorithms or employing manual detection

effort, and also the indirect opportunity costs of advertising revenue due to subse-

quent losses in user engagement [12, 13]. Therefore, platforms such as Facebook and

Twitter face no compelling incentives to prevent the spread of disinformation. Thus,

relying on platforms to police themselves will not work [14]. The only reason for a

profit-motivated platform to control the spread of disinformation is to avoid penalties

imposed either by users or a public regulator.

Techniques for mitigating disinformation must leverage tools in artificial intelli-

gence (AI), which further complicates the issue of misaligned incentives. The sheer

scale at which users generate and share content on social platforms mean that any

form of content moderation must rely, to some degree, on the automation afforded

by AI in order to handle the vast volume of data. This aspect is different from tra-

ditional publishing, television, and print media where humans are involved in the

editorial feedback loop before any content is allowed to be published. The problem of

assigning liability for content, thus, is also much simpler in traditional media. With

user-generated content on social platforms, however, the quality and accessibility of

data determine whether AI will be effective at moderating content. But because only

platforms have full, real-time access to their data, the problem is thus to motivate

their use of AI to proactively mitigate disinformation — in spite of their self-interest

in not doing so [14] — without having the same expertise or access to data.

The principal-agent framework of microeconomics models the interactions between

an agent, who can influence the probability of an outcome by incurring costly effort,

and a principal, who has preferences over the outcome. We model the domain of

disinformation prevention through this lens, with a platform as an agent who, via

technological expertise and access to data, has the ability but not the incentive to

undertake costly precautions against the spread of disinformation, and a regulator as

the principal who seeks to balance the cost of precautions against the harm caused
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by disinformation.

We begin by reviewing related work on techniques for mitigating disinformation

and provide a background on the principal-agent model applied to regulation in Chap-

ter 2. We then lay out our modeling assumptions in Chapter 3. We make three key

assumptions. First, any attempt to regulate the actions of a platform before harm

occurs (using a so-called negligence standard) must specify what level of effort for

mitigating disinformation is adequate. Even if this specification is left implicit, we

can model its effect as being a public model, operated by the regulator, requiring some

level of effort. Second, any given public model will, in practice, require less effort over

time as disinformation authors can learn to circumvent it; the platform is thus able

to get away with expending less effort policing disinformation in order to save on

costs, since the data and expertise needed to continuously re-train a model of content

harmfulness is possessed by the platforms but not the regulators. Third, the public

standard for content that ought to be prohibited on the platform will increase after

a harmful event.

We formalize these assumptions as a Markov decision process (MDP) in Chapter 4,

and use the model to derive our main results. We show that that no level of fines

based on a static public model can induce optimal effort. However, in the presence

of a public model that reacts to a harmful event by increasing the required level of

effort, the platform’s individually-optimal effort may exceed that currently required

by the public model. In particular, the platform may be incentivized to continue

exerting effort at a specific threshold when the public model becomes less stringent

over time. However, perhaps counterintuitively, this effort threshold will fall short of

the socially-optimal level unless the public model sufficiently overreacts as a response

to any harmful event, by requiring a level of effort that is greater than socially optimal.

Finally, to further demonstrate the complexity of this incentive problem, we show

that even under a simpler, more stylized setting — where the regulator has the same

technical ability as the platform and the costs of harm from disinformation are known
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— absent knowledge of the platform’s costs of effort, there is no specification of the

public model’s required effort that will always incentivize the socially-optimal level

of effort. We thus conclude that the design of mechanisms that may elicit the costs

of foregone engagement incurred by the platform in policing disinformation is one of

the promising directions for future work. Chapter 5 covers a detailed discussion of

our main takeaways and additional prescriptions.
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Chapter 2

Background and Related Work

In this chapter, we provide a brief overview of the microeconomic concepts that

will aid in understanding interdisciplinary work of this kind. We start by situating

this thesis within the disinformation prevention domain through a survey of existing

techniques for combating false news online.

2.1 Fighting Falsity Online

Detecting disinformation. A popular approach towards limiting online disinfor-

mation is to develop tools or frameworks that are effective in detecting associated

content. This process aims to identify disinformation in its initial stages so that mit-

igating efforts thereafter may restrict or eliminate exposure to users of social media.

Zhou and Zafarani [15] survey some techniques that make false news detection efficient

and explainable. These techniques are categorized into four areas: knowledge-based

methods that involve fact-checking, style-based methods that focus on studying lin-

guistic features of false content, propagation-based methods that analyze how such

content spreads in the social network, and source-base methods that investigate the

credibility of sources that generate false news. The goal of studying these and other

characteristic features of the false news ecosystem, such as those surveyed by Kumar

and Shah [1], is to develop algorithms and tools for early detection.

Knowledge-based methods mainly involve fact-checking, which in turn can be either
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manual or automatic. Fact-checking is the process of extracting claims made in

a given piece of content that is to be verified and checking these against known

facts [15]. Manual fact-checking can either be crowd-sourced from users on social

platforms, similar to Facebook or Twitter provisioning its users with the ability to

report hoax content [16, 17]; or it can also be conducted via third-party websites

such as Snopes1, PolitiFact2, or FactCheck 3 that employ domain experts dedicated to

serving the public by debunking disinformation. Since manual fact-checking will not

scale well with the volume of content generated on social media, work on developing

automated fact-checking tools to assist human fact-checkers also exists [18]. The idea

here is to develop a uniform structure to represent claims or statements in a given

text so that it can be readily processed and compared to an existing set of facts.

For instance, a simple representation of the form (Subject, Predicate, Object) may

encode sentences like “Cristiano Ronaldo scored his 58th career hat-trick yesterday”

as (CristianoRonaldo, goals, 3) [15].

While knowledge-based and style-based detection techniques focus on analyzing

the textual content of disinformation — so that predictive classifiers might be trained

to readily and effectively flag false news — propagation-based techniques study how

such content disseminates amongst users in a given social network. Vosoughi et al.

[19] have conducted an empirical study of tweets on Twitter to analyze the differences

between the spread of true and false news stories. They codify the diffusion pattern

of a news story in the form of a cascade, which is a simple tree-like representation

where the root encodes the initial tweet and every subsequent level represents the

how far (tree depth) and widespread (tree breadth) it spreads in the network. Such a

representation helps compare false and true stories via precise measures: It is shown

that false news stories travel faster, farther, and more widely than true news stories

[19]. Such an analysis not only aids in investigating the causes and consequences of

1https://www.snopes.com
2https://www.politifact.com
3https://www.factcheck.org
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disinformation proliferation, but it also helps formulate propagation-based false news

detection as a classification problem: If users share a certain news story in a way that

its diffusion cascade mimics that of previously spread false content, that story may

potentially be flagged as requiring additional investigation.

Our work starts from the assumption that the platform has the ability to detect

and limit the spread of objectionable content [20]. Our focus instead is on modeling

the incentives faced by the platform to not exercise this ability.

Mitigating the effects of disinformation. Once effective technology for detect-

ing disinformation content and diffusion networks is implemented, the next step is

to mitigate or limit the impact such content may have on users. A straightforward

approach is to simply remove associated content from the platform entirely; another

is to demote or down-rank content so that it is less likely to be served on users’

feeds. These approaches rely on platforms to undertake action to reduce the spread

of disinformation since the recommendation algorithms serving content to users are

proprietary. However, there are also studies conducted by third-party researchers of-

fering other solutions for mitigating the effects of disinformation once it has entered

the social network.

One such technique draws from concepts in human cognitive psychology to study

deception cues that influence users’ decision-making process related to sharing con-

tent in the social network [21]. The authors propose the implementation of plugins on

social platforms that characterize content based on its acceptability (retweets in Twit-

ter, for instance), source credibility (number of unique initial shares, for instance),

message coherence, and message consistency, thereby guiding users about the veracity

of content they encounter. The goal here is to provide users with informative cues so

that they are less likely to share disinformation.

Another, more proactive intervention is the “Facts Before Rumors” campaign [22],

where the focus is to preempt the kinds of rumours that are likely to spread on a
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social network — based on user locations and localized news content, for example —

and counteract these in advance by employing certain users to spread truthful news.

This proactive methodology exploits the content diffusion network of a given social

platform and set of users; and it seeks to expose enough users to truthful information

so that they are less likely to believe in and forward false rumors.

Other interventions focus on curing the effects of disinformation instead of prevent-

ing it initially. For example, the “Correct the Record” initiative proposes a visual

correction that may be sent to users exposed to false content on Facebook [23]. An

advantage of this method is that it does not rely on predicting whether each piece

of content contains disinformation as it is served to users, which is difficult due to

problems of scale; instead, it allows platforms to be more reactive and debunk stories

only after these are verified by experts as being false rumors. Moreover, the visual

corrections proposed in [23] may seamlessly integrate with Facebook’s existing user

interface so as to provide the least possible friction to users exposed to disinformation.

Again, this thesis work focuses less on advocating a particular mitigation tech-

nique; rather, our goal is to determine the conditions under which platforms can be

induced to actively implement any such technique to prevent harm from the spread

of disinformation.

2.2 Hidden-Action Principal-Agent Model

Many economic interactions involve two parties, a principal and an agent, where the

agent’s choice of action imposes some form of (negative or positive) externality on the

principal. In most realistic scenarios, the principal cannot directly monitor or observe

the agent’s action, but instead only observes a stochastic outcome resulting from it.

For example, in the interaction between a property insurer (principal) and a property

owner (agent), if the insurer bears the costs of any damages to the property, the owner

might not be incentivized to maintain it and might engage in risky behaviors (e.g.

leave the kitchen unattended while cooking). This situation exemplifies the problem of
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moral hazard, which is an important feature of the principal-agent interaction because

it precludes straightforward incentive schemes. Many employment settings also share

this characteristic. For example, the CEO (principal) of a small startup company —

whose income is directly related to the company’s growth and product sales — would

want their employees (agent) to undertake effort that profits the company (e.g. a

UI/UX developer improving the company’s website leading to increased traffic and

sales). But if the employees are simply compensated at a fixed hourly rate, they

might not be incentivized to put in their best effort to benefit the company.

Naturally, it will be in the principal’s interests to influence the agent’s choice of

action. The principal may therefore be invested in drafting a contract for such in-

fluence in order to guard against the problem of moral hazard [24]. The need for

a contract arises due to information asymmetry between the two parties — that is,

the agent has more information or expertise about their actions than the principal.

For property insurance, the hidden information is the agent’s act of not maintaining

the property and engaging in some risky behavior; for the startup company example,

the hidden information is the UI/UX developer’s expertise in developing clean, func-

tional websites; whereas for our setting, AI is the source of asymmetric information:

Only platforms possess the expertise, models and data to promptly flag and mitigate

disinformation.

2.2.1 Contract Theory Meets Computer Science

The principal-agent model is central to contract theory, which is an important field in

microeconomics. This area has recently gained traction in the algorithmic game the-

ory community, primarily through works such as [24–26], where the aim is to concisely

represent principal-agent settings and computationally characterize the design of op-

timal contracts4 permitted by such settings. For example, Dütting et al. [24] contrast

optimal contracts with their simple, linear counterparts for the classic principal-agent

4An optimal contract is one that maximizes the principal’s expected reward assuming that the
agent best responds to the contract [26].
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situation [27] — that is, where the principal devises an outcome-dependent payment

scheme to induce the agent to undertake some costly action — and show that while an

optimal contract is straightforward to compute via linear programming, it is complex

and unintuitive in practice. The authors explain the prevalence of simple contracts via

a novel notion about their robustness, providing also the worst-case approximation

guarantees of these contracts.

Our work is similar to these studies in that we consider the optimal design problem

of maximizing the utility of the principal, who in our setting is a social welfare-

maximizing regulator. Yet, instead of a computational complexity analysis for the

design of contracts in classic principal-agent settings, we represent disinformation

prevention as a principal-agent problem through our descriptive MDP model, which

to our knowledge is a unique and first approach towards modeling the incentives faced

by social platforms pertaining to the mitigation of false news and other toxic content.

Unlike those cited works, the outcome space for our setting is simply the realization

of a single harmful event due to the unmitigated spread of disinformation; our focus

as such is specifically on the design of penalty contracts or schemes enforced by

some regulatory agency in order to contain this stochastic externality, or harm from

disinformation.

2.2.2 Regulating Stochastic Externalities

The hidden action principal-agent model can also be applied to the regulation of firms

that generate stochastic externalities as a result of their operations. Examples include

harmful accidents such as medical product failures, oil spills, nuclear waste leakages

and other forms of pollution [28]. Moral hazard exists in these settings because firms

(agent) might not be incentivized to take a costly precaution (unobservable action)

to reduce accident risk, which is where a regulatory authority (principal) steps in to

specify a penalty contract to guarantee some form of enforcement.

Cohen [29] explores optimal enforcement strategies for the regulation of firms that
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stochastically pollute the environment in the form of oil spills. It is shown that

under a strict liability standard, where a polluting firm is always penalized if an oil

spill occurs regardless of its level of precautionary effort, the firm can be induced to

exercise the socially-optimal or first-best level of effort. However, this requires that a

specific firm can be identified as being responsible for a spill.

When a strict liability standard is impractical — for example because the perpe-

trator of harm cannot be reliably identified — a regulator might prefer to expend

resources to monitor a firm’s effort directly. In these situations, a negligence standard

can be preferable, in which a firm is not held responsible for an accident if it can

demonstrate that it took adequate precautions. Naturally, the quality of information

available for regulatory monitoring is a consideration for enforcing such a standard

[30].

Our domain shares many of the features of the oil spill prevention domain: There

are stochastic externalities associated with the spread of certain kinds of content on

social platforms (harm from disinformation), as there are with firms transporting oil

(oil spills); the likelihood or severity of such harm may be reduced to some degree if

platforms exercise responsible and proactive content moderation, but not completely

eliminated as the harm is ultimately a direct outcome of individual actions — akin

to a spill that occurs because of inclement weather and not due to the oil tanker

being faulty. However, our domain is also importantly different from that of oil spill

regulation, mainly because of the difficulty in specifying adequate precautions against

disinformation and also due to the strategic nature of disinformation authors. The

following section expands on these differences. In Chapter 3 that introduces our

formal, descriptive model, we will elaborate on the similarities and highlight how

these key differences prevent the application of standard enforcement strategies.
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2.3 Why Online Disinformation is Different

Disinformation prevention via regulatory mechanisms has its own unique challenges.

First, there are ongoing debates around assigning liability for content hosted by social

platforms [14], particularly due to editorial control being different for the social media

setting. As discussed previously, it is infeasible to implement human-in-the-loop feed-

back for every piece of real-time, user-generated content shared on online platforms,

as this medium is unlike traditional forms of media; there exist as such not only the

issue of scalabilty for any disinformation mitigation technology, but also the question

about whether similar liability rules for harmful content should apply to social media

as they would for traditional media.

Second, in order to handle the vast volume of content, AI must be utilized for the

proactive and automated flagging of disinformation. This aspect complicates regu-

lation because the data powering such AI is only accessible to the social platforms

themselves. Moreover, the recommendation algorithms that filter and serve content

to users are also proprietary. Therefore, unlike for the environmental regulation do-

main, mandating exact precautions against the spread of disinformation for social

platforms is likely to be an involved process for any regulatory authority — espe-

cially in comparison to, for example, specifying precise conditions that render an oil

tanker safe for the transport of oil, or promoting adequate technology that will reduce

emissions causing air pollution.

Third, and also different from pollution regulation, there exists the issue of mali-

cious actors responding strategically to any explicitly fixed rules or precautions against

the spread of disinformation. Authors and purveyors of disinformation are constantly

coming up with new, sophisticated methods to ensure that their fabricated stories

disseminate online: Techniques include obfuscation strategies to hide disinformation

propagating networks and the origins of propagandist content; and also changing the

content itself via constructing new falsehoods, or targeting different groups [2, 31].
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Any successful attempts to moderate such users or content at scale must therefore

utilize all the technical expertise and data required to counteract efforts of these bad

actors. Regulation becomes challenging because only social platforms have access to

such resources and data, and they are not necessarily incentivized to undertake action

at the expense of losses in user engagement [12, 14].

2.4 Mechanism Design

Another closely related body of work is the economic theory of mechanism design,

where the goal is to design protocols or procedures that mediate interactions between

strategic agents in order to achieve some desired objective. Naturally, the outcome

is subject to the constraint that agents behave selfishly, in that they act according

to their rational self-interests; and also that agents hold some private information,

that is their hidden types. A mechanism seeks to attain the desired outcome by in-

centivizing agents to report their private types. Mechanism design theory contrasts

with the standard principal-agent model with respect to where the information asym-

metry exists: it is the agents’ type information that is hidden from the mechanism

designer; whereas, for the principal-agent model, the principal cannot directly observe

an agent’s action(s), which form(s) the source of asymmetric information.

Because this thesis is concerned with setting up a regulatory policy in order to

achieve a desired social outcome — that is, the socially-optimal level of control of

disinformation — mechanism design is a pertinent framework for our domain. As

described previously, we consider the harm from the spread of disinformation as a

negative externality inextricably linked with the usage of social media platforms,

akin to pollution being a by-product of certain firms’ production activities. Indeed,

Baliga and Maskin [32] formally demonstrate that in the presence of nonexcludable

externalities such as pollution, government intervention in the form of a mechanism

is necessary to achieve Pareto-efficient outcomes. Yet, in applying classic findings of

mechanism design literature to their pollution reduction model, the authors assume
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that agents’ pollution reduction efforts are verifiable by the government. This as-

sumption is quite strong as it bypasses the problem of moral hazard entirely, which

is central to the principal-agent setting and thus also a key feature of our domain.

Mechanism design, hence, does not directly apply to our scenario because the

regulator cannot reliably observe a social platform’s efforts to curb the spread of

harmful content. We therefore utilize the principal-agent framework to model the

regulation of disinformation. The goal for the regulator (principal) is to incentivize

a platform (agent) to use its proprietary expertise and AI technology — which are

not available to the regulator — to responsibly limit toxic and harmful content in

order to control the harm from disinformation. The following chapter introduces our

formal descriptive model.
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Chapter 3

Modeling the Regulation of
Disinformation

We have the following scenario: A regulator (principal) would like the platform

(agent) to limit the amount of disinformation spread to control the likelihood of

a stochastic and observable harmful event. The underlying assumption is that the

unmitigated spread of disinformation on social platforms makes the occurrence of

harm more likely.

We assume the platform possesses a proprietary classification model that accurately

assigns for every a piece of content the probability of it causing harm [12, 20]. Thus,

extremely violent, graphic, or objectionable content, which contains nudity, racism,

child pornography, or any form of human/animal abuse, is tagged by the model with

a very high harm probability value. Other, benign forms of content, such as cute

photos of pets or birthday greetings, are assigned with a very low harm probability

value.

Using this model, the platform can flag content exceeding some chosen harm proba-

bility threshold as being unacceptable and in violation of their community standards

of acceptable postings. Thus, the platform’s mitigation effort constitutes first de-

tecting such content, and thereafter employing methods to either filter it entirely,

downgrade it so that it appears on fewer user feeds, or label it with a warning in-

voking users’ discretion. As discussed previously, the exact choice of technique is not
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important for this analysis; any and all such methods effectively count as the plat-

form exercising precautions against the spread of harmful content and, by extension,

disinformation.

Let H be the binary random variable indicating whether harm occurs with density

function h(e) = Pr[H | e] ∈ (0, 1] representing the probability that harm occurs if

the platform exerts effort e. Similar to [29], we assume that although the platform

is unable to control this externality directly, the platform can make it less likely for

harm to occur by exercising more effort. In line with the standard economic model

of unilateral accidents [28, 33, 34], we assume diminishing returns to effort — that is,

effort reduces risk of harm at a decreasing rate: h′(e) < 0 and h′′(e) ≥ 0.1

The business model of social platforms is primarily based on online advertising

generated when users engage with content by liking, clicking, and sharing [14, 35].

Thus, in addition to the direct costs of implementing content moderation, mitigating

disinformation is costly due to the indirect costs of losing potential ad revenue. Let

c(e) denote the cost of exerting effort e. We assume effort is increasingly costly, that

is c′(e) > 0 and c′′(e) > 0, which is also standard under the unilateral accident model.

Given their behavioral advertising business model, platforms face no incentives

to moderate attention-grabbing content, toxic or otherwise, especially because they

do not directly incur the costs of any societal harm [12, 14]. Under this scenario

of misaligned incentives, a social welfare-maximizing regulator aims to incentivize

the platform to exercise adequate precautions against the spread of disinformation.

Concretely, the regulator wishes to maximize the expected social welfare,

EW (e) = −h(e)D − c(e), (3.1)

where D is the societal cost of harm (in dollars) due to disinformation, assumed to

be constant here for simplicity.

The socially-optimal or first-best effort maximizing (3.1) is given by e∗ = argmaxeEW (e).

1Though the cited studies assume strict convexity of harm function, that is h′′(e) > 0, our results
are robust towards slightly relaxing this assumption.

16



At e∗, the sum of the total expected costs of harm, or h(e∗)D, and the platform’s

costs of exerting this effort, or c(e∗), is minimized; thus, e∗ by definition is the plat-

form’s precautionary effort at which the cost of any additional effort is balanced by

the expected cost of damages due to harm.

We discuss possible regulatory schemes by which the platform is induced to exert

effort e∗, and further expand on domain specific features for our descriptive model.

3.1 Strict Liability

Under the strict liability standard, the platform is held completely liable for any

harmful event, irrespective of its precautionary effort. To incentivize the first-best

level of effort e∗, the strict liability fines T must equal D, the societal cost of harm

[29]; thus, the platform’s expected utility is given by,

EU(e) = −c(e)− h(e)T, (3.2)

which equals the expected social welfare equation (3.1).

A regulator might pick this enforcement standard because it does not require ex-

pending resources to monitor the platform’s effort, which is only imperfectly observ-

able because of the difficulty in identifying the exact mechanics of the platform’s

proprietary algorithms. However, strict liability is impractical for a few reasons.

Most importantly, the direct causal links between any harmful event and the plat-

form are sufficiently loose for this standard not to work, since the perpetrators are

ultimately individuals; the platform can claim plausible deniability, or point to efforts

at prohibiting dangerous content after the harm has already occurred, akin to when

Facebook and Twitter banned groups like “QAnon” or “Proud Boys” after the insur-

rection on Capitol Hill [36]. Furthermore, it is also difficult to estimate D a priori as

the harm could manifest in different forms.
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3.2 Negligence

Under this standard, a regulator must specify a duty of care that the platform must

follow in order to avoid liability for any harm. Monitoring the platform’s effort is

thus necessary to determine liability.

Although monitoring is imperfect, the platform’s content moderation efforts are

not completely unobservable: there exists a crude public notion about the kinds of

content that ought to be limited on social platforms. From an incentive standpoint, a

negligence standard already exists in the sense that there is not a lot of nudity or child

pornography, or content with explicit death threats, vile or racist remarks on most

social platforms — platforms like Facebook and Twitter expend ample resources to

enforce their community standards via active content moderation [20, 37]. Presum-

ably, platforms do not want public outrage, or to be charged with trafficking or any

other forms of liability for such content, which if not controlled would be reported

extensively in popular press.

We model this descriptive situation with the presence of an explicit public model,

operated by a regulator, that fixes a required level of precautionary effort for mit-

igating disinformation. In reality, there is no concept of an explicit public model

specifying effort, but rather an implicit public notion about the types of content that

ought to be moderated by the platform. Nonetheless, regardless of what the public

standards are at any given moment, these standards imply a certain level of precau-

tionary effort, which we encode with an explicit public model to simplify our formal

analysis.

3.3 Performative Prediction of Disinformation

When predictions about the actions of an agent influence outcomes for that agent,

there is a risk that the predictive model will cease to be accurate. For example, a

certain keyword that is extremely predictive of a message being spam may cease to
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be predictive once we filter based on it, as spammers will now have an incentive to

stop using that keyword. Predictions that exhibit this problem are performative2 —

the prediction influences the outcome [38]. Classifying disinformation is performative

in this sense because bad actors can learn to bypass any detection model with new

forms of disinformation [2].

We assume the platform has sufficient technical resources and the data to retrain

its proprietary model in order to counterbalance performativity; that is, the platform

is able to successfully classify future modifications of disinformation via predicting

true harm probabilities of associated content. The same is not true for the public

model as the regulator does not possess the same expertise or access to data. The

regulator in theory could utilize open-source, state-of-the-art disinformation detection

learning models to effectively flag false content as not satisfying the public standard

[39, 40]. Yet, to the extent that platform data is not completely accessible to the

public [41], these open-source models will be susceptible to performative prediction of

new, evolved forms of disinformation unless retrained with the same, easily accessible

data that is available to the platform.

Consequently, because it is publicly accessible, the public model weakens over time

due to performativity as disinformation authors strategically learn to circumvent it.

We encode this feature effectively as a gradual downward drift or decrease in the public

model’s required effort if harm does not occur. However, if harm occurs, we see a

public backlash in that the public’s tolerance of content linked to the harmful event

gets lower ex post. This is akin to when Facebook and Twitter began suspending

accounts, content, and hashtags linked to the Capitol Hill riots [42]. We encode this

backlash as an effective increase in the public model’s required effort as a response to

a harmful event.

2Note that we use the terms performative and performativity in a specific, strictly technical sense
that differs from their colloquial usage.
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Chapter 4

Formal Model

We formalize our model as a MDP incorporating descriptive features of our domain as

described in the previous section and defined by (S,A, Pe, Re) where S is the discrete

state space of the current effort ec required by the public model, A is the continuous

set of actions representing the platform’s choice of effort e, Pe(ec, e
′
c) = Pr[st+1 = e′c |

st = ec, at = e] is the transition probability to state e′c by exerting effort e in state

ec, and Re = −c(e) is the immediate reward of exerting effort e, which is simply the

cost of effort e. Consistent with MDP literature [43], we use π : S → A to denote

an arbitrary, deterministic policy specifying the platform’s choice of effort e ∈ A

for all ec ∈ S. The state value function vπ(ec) = Re + γE[vπ(st+1)] is the expected

discounted value of following policy π from state ec; the state-action value function

qπ(ec, e) = Re+E[vπ(st+1)|At = e] is the expected discounted value of choosing effort

e in state ec, and then following policy π thereafter.

4.1 Optimal Effort Under a Static Public Model

In the first analysis, we assume a static standard model with no downward drift of the

public model’s required effort level and no backlash if harm occurs; that is, the effort

required by the public model remains fixed at ec. Under this negligence standard, the

platform is only subject to ex ante regulation via regulatory audits, and not penalized

ex post if harm occurs.
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Let r ∈ [0, 1] be the probability that the regulator conducts an audit of the plat-

form’s effort and let Pf (e | ec) ∈ [0, 1] be the probability that the platform fails its

audit if it exerts effort e, given the current required effort ec. If the platform fails the

audit, it is liable for fines F . Thus, assuming risk-neutrality, the platform’s expected

utility under ex ante regulation is,

EU(e | ec) = −c(e)− rPf (e | ec)F. (4.1)

Definition 1 The adequate level of effort e is the point beyond which the probability

of failing the audit Pf (e | ec) = 0, where ec is the public model’s prescribed effort.

Note that effort ec is considered adequate because it is specified by the regulator.

Thus, by definition, Pf (e | ec) = 0 for all e ≥ ec: the platform never fails its audit

by at least following the public model’s prescribed effort (full compliance). Now note

that for any given ec and fine structure F , there exists an individually-optimal level of

effort that maximizes (4.1). By inspection, this individually-optimal level will never

exceed ec, irrespective of how large the size of fines F is.

Proposition 1 Given a fixed adequate effort level e′, there exists no fine scheme F

that can incentivize the platform to exert more effort than e′.

Proof. By contradiction. Suppose the platform prefers to exert effort e > e′. Thus,

the following must hold:

EU(e|ec) > EU(e′|ec)

⇐⇒ −c(e)− rPf (e|ec)F > −c(e′)− rPf (e
′|ec)F

By definition, Pf (e
′|ec) = 0 and therefore Pf (e|ec) = 0. Thus,

−c(e)− rPf (e|ec)F > −c(e′)− rPf (e
′|ec)F

⇐⇒ −c(e) > −c(e′)

⇐⇒ c(e′) > c(e)
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which does not hold for e > e′ because by assumption c′(e) > 0 for all e (contradic-

tion).

This result trivially follows from the specified conditions: for any two adequate

effort levels, the platform will pick lower effort because that will maximize (4.1). Thus,

with the static public model, no amount of fines solely based on ex ante regulation,

no matter how large, can induce the platform to exercise more effort than the public

model’s specified ec. Only if ec = e∗, and if the regulator can guarantee full compliance

with the public model, can this scheme incentivize socially-optimal effort.

4.2 Optimal Effort Under an Adaptive Public Model

We now consider an adaptive MDP setup. The current state represents the required

level of effort ec; if no harm occurs, the required effort reduces over time due to

performativity; and if harm does occur, then the required effort increases to eh,

representing public backlash.

Assumption 1 Given a fixed fine structure F and the effort required by the public

model ec, the platform’s individually-optimal effort level is at least ec.

This assumption is without loss of generality: we will label the states of the MDP

according to the individually-optimal static effort required given F and ec.
1

Assumption 2 At state ec, the transition probability to the high effort state eh > ec is

simply Pe(ec, eh) = h(e), the probability that harm occurs given the platform exercises

effort e.

Note that the harm probability and thus the transition to state eh only depends on

the platform’s effort e, and not on the state ec. This transition encodes the public

backlash.

1The platform will thus never exert less than ec effort in state ec, but we will see that it will
sometimes exert more.
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Definition 2 The next state with required effort lower than ec is χ(ec) = sup{s ∈

S | s < ec}.

Assumption 3 If harm does not occur, we assume a weakening of the public model

via a continuous downward drift of the public model’s prescribed effort — that is,

the effort either lowers to χ(ec) with drift probability g(ec), or stays fixed at ec with

probability 1− g(ec).

Note that the drift probability to state χ(ec) only depends on the current state ec,

and not the platform’s effort e, conditional on the harm’s not occurring. The decrease

in effort encodes performativity.

Lemma 1 Fix a state ec representing the current effort required by the public model,

and an arbitrary policy π, and let eh > ec be the effort that the public model will

require if harm occurs. For all e2 > e1 ≥ ec,

qπ(ec, e2) > qπ(ec, e1) ⇐⇒ d(π, ec)− vπ(eh) >
c(e2)− c(e1)

γ(h(e1)− h(e2))
, (4.2)

where d(π, ec) = g(ec)vπ(χ(ec)) + (1− g(ec))vπ(ec).

Proof. At ec, the state-action value function for some effort e is given by:

qπ(ec, e) = Eπ[Rt+1 + γvπ(St+1) | St = ec, At = e]

=
∑︂
e′c

P (e′c | s = ec, a = e)[−c(e) + γvπ(e
′
c)]

= −c(e) + γ[h(e)vπ(eh) + (1− h(e))(g(ec)vπ(χ(ec)) + (1− g(ec))vπ(ec))]

By substituting in d(π, ec) = g(ec)vπ(χ(ec)) + (1− g(ec))vπ(ec) we have:

qπ(ec, e) = −c(e) + γ[h(e)vπ(eh) + (1− h(e))d(π, ec)]. (4.3)
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Thus, for qπ(ec, e2) > qπ(ec, e1), we have:

−c(e2) + γ[h(e2)vπ(eh) + (1− h(e2))d(π, ec)] >

−c(e1) + γ[h(e1)vπ(eh) + (1− h(e1))d(π, ec)]

⇐⇒ −c(e2) + γ[h(e2)vπ(eh) + d(π, ec)− h(e2)d(π, ec)] >

−c(e1) + γ[h(e1)vπ(eh) + d(π, ec)− h(e1)d(π, ec)]

⇐⇒ −c(e2) + γh(e2)vπ(eh) + γd(π, ec)− γh(e2)d(π, ec) >

−c(e1) + γh(e1)vπ(eh) + γd(π, ec)− γh(e1)d(π, ec)

⇐⇒ −c(e2) + γh(e2)vπ(eh)− γh(e2)d(π, ec) >

−c(e1) + γh(e1)vπ(eh)− γh(e1)d(π, ec)

⇐⇒ −c(e2)− γh(e2)(d(π, ec)− vπ(eh)) >

−c(e1)− γh(e1)(d(π, ec)− vπ(eh))

⇐⇒ γh(e1)(d(π, ec)− vπ(eh))− γh(e2)(d(π, ec)− vπ(eh)) > c(e2)− c(e1)

⇐⇒ γ(h(e1)− h(e2))(d(π, ec)− vπ(eh)) > c(e2)− c(e1)

⇐⇒ d(π, ec)− vπ(eh) >
c(e2)− c(e1)

γ(h(e1)− h(e2))
.

Given ec, Lemma 1 specifies the condition under which the platform’s picks one

effort level over another from the continuous action set A, expressed via the state-

action value function of the MDP.

Definition 3 We call πτ a threshold strategy with threshold τ if πτ (ec) = max{τ, ec}

for all ec ∈ S.

Threshold strategies form a class of policies that can induce more aggressive effort

as specified by the condition in Lemma 1. The following results characterize impor-

tant features of threshold strategies lending support to our main derivation of the

platform’s optimal policy in Theorem 1.
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Lemma 2 Given a threshold strategy πτ , the state value function vπτ (ec) is fixed for

all ec ≤ τ .

Proof. The state value function for some arbitrary ec ≤ τ is given by,

vπτ (ec) = −c(τ)+γ[h(τ)vπτ (eh)+(1−h(τ))[g(ec)vπτ (χ(ec))+(1−g(ec))vπτ (ec)]]. (4.4)

Note that the platform’s policy specifying effort for all ec ≤ τ is fixed by definition;

that is, πτ (ec) = τ for all ec ≤ τ . Thus, the transition to state eh is also fixed because

the transition probability h(τ) is fixed. And similarly, the probability that harm does

not occur is also fixed at (1− h(τ)).

Let e0 = minS. We prove inductively that vπτ (ek) = vπτ (e0) for all e0 ≤ ek ≤ τ .

The base case (vπτ (e0) = vπτ (e0)) is immediate. For the inductive step, assume that

vπτ (ek−1) = vπτ (e0). Then

vπτ (ek) = −c(τ) + γ[h(τ)vπτ (eh) + (1− h(τ))(1− g(ek))vπτ (ek) + (1− h(τ))g(ek)vπτ (ek−1)]

= −c(τ) + γ[h(τ)vπτ (eh) + (1− h(τ))(1− g(ek))vπτ (ek) + (1− h(τ))g(ek)vπτ (e0)].

Thus, vπτ (ek) = g(ek)V1 + (1− g(ek))V0, where

V1 = −c(τ) + γ[h(τ)vπτ (eh) + (1− h(τ))vπτ (ek−1)]

= −c(τ) + γ[h(τ)vπτ (eh) + (1− h(τ))vπτ (e0)]

= vπτ (e0)

and

V0 = −c(τ) + γh(τ)vπτ (eh) + γ(1− h(τ))vπτ (ek)

= −c(τ) + γh(τ)vπτ (eh) + γ(1− h(τ))[g(ek)V1 + (1− g(ek))V0].

25



Note that the following is also true for V1:

V1 = −c(τ) + γ[h(τ)vπτ (eh) + (1− h(τ))vπτ (e0)]

= −c(τ) + γ[h(τ)vπτ (eh) + (1− h(τ))g(ek)vπτ (e0) + (1− h(τ))(1− g(ek))vπτ (e0)]

= −c(τ) + γh(τ)vπτ (eh) + γ(1− h(τ))g(ek)vπτ (e0) + γ(1− h(τ))(1− g(ek))vπτ (e0)

=
∞∑︂
j=0

γj(1− h(τ))j(1− g(ek))
j[−c(τ) + γh(τ)vπτ (eh) + γ(1− h(τ))g(ek)vπτ (e0)]

= vπτ (e0)

for all g(ek) ∈ [0, 1].

Thus, for V0:

V0 = −c(τ) + γh(τ)vπτ (eh) + γ(1− h(τ))[g(ek)V1 + (1− g(ek))V0]

= −c(τ) + γh(τ)vπτ (eh) + γ(1− h(τ))[g(ek)vπτ (e0) + (1− g(ek))V0]

= −c(τ) + γh(τ)vπτ (eh) + γ(1− h(τ))g(ek)vπτ (e0) + γ(1− h(τ))(1− g(ek))V0

=
∞∑︂
j=0

γj(1− h(τ))j(1− g(ek))
j[−c(τ) + γh(τ)vπτ (eh) + γ(1− h(τ))g(ek)vπτ (e0)]

= V1

= vπτ (e0).

But then

vπτ (ek) = g(ek)V1 + (1− g(ek))V0

= g(ek)vπτ (e0) + (1− g(ek))vπτ (e0)

= vπτ (e0)

for all g(ek) ∈ [0, 1], and we are done.

Lemma 2 fixes the reward of exerting effort at a specific threshold, thereby enabling

a straightforward characterization and analysis of the platform’s policy — amid all

the possible drifting states of the public model — by means of a stable level of effort

τ .
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Proposition 2 For all threshold strategies πτ , we have that vπτ (eh) ≤ vπτ (ec) holds

for all ec ∈ S.

Proof. For ease of notation, let S = {e0, e1, . . . , eh} denote the set of all states with

e0 < · · · < eh, and let π = πτ with τ = 0. Note that this specification is w.l.o.g.;

for τ > 0, we will consider a subset of S such that the first state of this subset

e0 = sup{e ∈ S | e ≤ τ}, since from Lemma 2 we know that the state value function

for all e ≤ τ is fixed.

Now we move on to the proof. Suppose the claim is false. Then {e | vπ(e) <

vπ(e
h)} ≠ ∅. Let ez = min{e | vπ(e) < vπ(e

h)} and d(ej) = (1 − g(ej))vπ(e
j) +

g(ej)vπ(e
j−1) for all 0 ≤ j ≤ h.

First, observe that

d(ez) = (1− g(ez))vπ(e
z) + g(ez)vπ(e

z−1)

≥ (1− g(ez))vπ(e
z) + g(ez)vπ(e

z)

= vπ(e
z),

where the inequality follows from combining the assumptions vπ(e
h) > vπ(e

z) with

vπ(e
z−1) ≥ vπ(e

h), both from the definition of ez. Note that if ez = e0, then the same

result holds, since g(e0) = 0.

It then follows that

vπ(e
z) = −c(ez) + γ[h(ez)vπ(e

h) + (1− h(ez))d(ez)]

≥ −c(ez) + γ[h(ez)vπ(e
h) + (1− h(ez))vπ(e

z)]

> −c(ez) + γ[h(ez)vπ(e
z) + (1− h(ez))vπ(e

z)]

= −c(ez) + γvπ(e
z)

≥
∞∑︂
j=0

γj(−c(ez)).

We now show inductively that vπ(e
k) ≥ vπ(e

h) for all z ≤ k < h.
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The base case is eh−1. Suppose the contrary that vπ(e
h−1) < vπ(e

h). Then we have

d(eh) = (1− g(eh))vπ(e
h) + g(eh)vπ(e

h−1)

≤ vπ(e
h),

because 0 ≤ g(eh) ≤ 1, which gives

vπ(e
h) = −c(eh) + γ[h(eh)vπ(e

h) + (1− h(eh))d(eh)]

≤ −c(eh) + γ[h(eh)vπ(e
h) + (1− h(eh))vπ(e

h)]

= −c(eh) + γvπ(e
h)

≤
∞∑︂
j=1

γj(−c(eh))

<
∞∑︂
j=1

γj(−c(ez))

< vπ(e
z),

contradicting the definition of ez.

For the inductive step, assume that vπ(e
k) ≥ vπ(e

h), for some z < k < h. Then we

show that vπ(e
k−1) ≥ vπ(e

h). Assume not; then similarly we have

d(ek) = (1− g(ek))vπ(e
k) + g(ek)vπ(e

k−1)

≤ (1− g(ek))vπ(e
k) + g(ek)vπ(e

h)

≤ (1− g(ek))vπ(e
k) + g(ek)vπ(e

k)

= vπ(e
k)
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and thus

vπ(e
k) = −c(ek) + γ[h(ek)vπ(e

h) + (1− h(ek))d(ek)]

≤ −c(ek) + γ[h(ek)vπ(e
h) + (1− h(ek))vπ(e

k)]

≤ −c(ek) + γ[h(ek)vπ(e
k) + (1− h(ek))vπ(e

k)]

= −c(ek) + γvπ(e
k)

≤
∞∑︂
j=1

γj(−c(ek))

<
∞∑︂
j=1

γj(−c(ez))

< vπ(e
z)

< vπ(e
h)

≤ vπ(e
k),

again yielding a contradiction.

Therefore, vπ(e
k) ≥ vπ(e

h) is true for all z ≤ k < h, which in particular implies

that the initial claim {e | vπ(e) < vπ(e
h)} ≠ ∅ must be false, thus completing the

proof.

Proposition 2 establishes eh as the worst state for the platform following a threshold

strategy. Intuitively, because it encodes the public backlash, eh by definition is the

highest effort the public model will require and thus it must also yield the lowest

expected discounted reward for the platform. Crucially, this guarantee of the lowest

reward in state eh acts as the incentivizing mechanism for the platform to exert more

effort than explicitly required by the public model.

Given these MDP dynamics of performativity and public backlash as a response to

harm, we characterize the platform’s individually-optimal effort policy at any state

ec. The following existing results support our main result in Theorem 1.

Lemma 3 (Boyd and Vandenberghe [44]) Suppose f is a differentiable function
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of one variable in dom(f). Then f is convex if and only if

f(y)− f(x) ≥ f ′(x)(y − x)

holds for all x, y ∈ dom(f). And analogously for strict convexity,

f(y)− f(x) > f ′(x)(y − x) (4.5)

for all x ̸= y.

Lemma 4 (Sutton and Barto [43]) Given a pair of deterministic policies π and

π′ such that for all states s ∈ S

qπ(s, π
′(s)) ≥ vπ(s),

then vπ′(s) ≥ vπ(s).

We now specify the platform’s individually-optimal policy under the adaptive MDP

setup: the public model’s prescribed effort ec increases to the high effort state eh if

harm occurs; and ec decreases over time conditional on harm not occurring. The

following theorem demonstrates that the optimal policy for the platform under these

dynamics is to follow a threshold strategy.

Theorem 1 The optimal strategy π∗ for the platform is a threshold strategy π∗ = πê,

with threshold

ê = sup

{︃
e ∈ [0, eh]

⃓⃓⃓⃓
qπe(s−1(e), e)− qπe(eh, π

e(eh)) ≥ − c′(e)

γh′(e)

}︃
, (4.6)

where s−1(e) = sup{ec ∈ S | ec ≤ e}.

Proof. By contradiction. Suppose πê is suboptimal. Then by the process of policy

improvement, there must exist a state ec where some effort e ̸= πê(ec) guarantees a

higher expected reward than πê(ec). Thus, we apply the policy improvement theorem

(Lemma 4) to find any such ec where qπê(ec, e) > vπê(ec) holds, which would imply

that a greedy deviation from πê exists as the better policy.
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Case 1 (∀ec): Less aggressive effort than ec The first deviation from πê at

any ec might be to exert less aggressive effort e < ec. Suppose that less aggressive

effort e guarantees a higher expected reward than the required effort ec. However, we

know that lower effort than ec does not guarantee a higher expected reward for all ec

because ec by definition is the platform’s individually-optimal level of effort. Thus,

we have a contradiction and this deviation does not work.

Case 2 (ec ≤ ê): Less aggressive effort than ê Suppose that the platform

prefers to exert less aggressive effort e1 such that ec ≤ e1 < ê. Then qπê(ec, e1) >

qπê(ec, ê) must be true.

Thus, qπê(ec, ê) > qπê(ec, e1) must not be true (contrapositive); or, by substituting

in equation (4.2) from Lemma 1, the following must not hold:

d(πê, ec)− vπê(eh) >
c(ê)− c(e1)

γ(h(e1)− h(ê))
. (4.7)

From the definition in (4.6), note that because ê is the supremum taken over a

closed interval, it satisfies the following equation (intermediate value theorem):

qπê(s−1(ê), ê)− qπê(eh, eh) = − c′(ê)

γh′(ê)
. (4.8)

Now consider the L.H.S of (4.7) and of (4.8). Recall that d(πê, ec) = g(ec)vπê(χ(ec))+

(1−g(ec))vπê(ec). Since π
ê(ec) = ê is fixed for all ec < ê, the value functions vπê(χ(ec))

and vπê(ec) must be equal (Lemma 2). Thus, d(πê, ec) = vπê(ec) as 0 ≤ g(ec) ≤ 1.

Furthermore, because s−1(ê) < ê by definition, qπê(s−1(ê), ê) = vπê(ec) must be true.

Moreover, vπê(eh) = qπê(eh, eh) as eh ≥ ê. Thus, the L.H.S of (4.7) and of (4.8) are

equal, or

d(πê, ec)− vπê(eh) = qπê(s−1(ê), ê)− qπê(eh, eh). (4.9)

Suppose that the following is true of the R.H.S of (4.7) and (4.8):

− c′(ê)

γh′(ê)
>

c(ê)− c(e1)

γ(h(e1)− h(ê))
(4.10)
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Thus,

− c′(ê)

γh′(ê)
>

c(ê)− c(e1)

γ(h(e1)− h(ê))

⇐⇒ − c′(ê)

h′(ê)
>

c(ê)− c(e1)

h(e1)− h(ê)

⇐⇒ − c′(ê)(e1 − ê)

h′(ê)(e1 − ê)
> − c(e1)− c(ê)

h(e1)− h(ê)

⇐⇒ c(e1)− c(ê)

h(e1)− h(ê)
>

c′(ê)(e1 − ê)

h′(ê)(e1 − ê)

Notice that the final inequality is always true: we know by assumption that c is

strictly convex (c′′(e) > 0) and so from equation (4.5) in Lemma 3 it follows that the

numerator of the L.H.S must be strictly greater than the numerator of the R.H.S,

that is c(e1) − c(ê) > c′(ê)(e1 − ê); similarly, because h is convex (h′′(e) ≥ 0), the

denominator of the L.H.S must be weakly greater than the denominator of the R.H.S,

that is h(e1) − h(ê) ≥ h′(ê)(e1 − ê). Since h′(e) < 0 and e1 < ê, it follows that the

L.H.S fraction overall is strictly greater (less negative) than the R.H.S fraction (more

negative).

Therefore, if (4.10) holds, then condition (4.7) must also hold because:

qπê(s−1(ê), ê)− qπê(eh, eh) = − c′(ê)

γh′(ê)

⇐⇒ d(πê, ec)− vπê(eh) = − c′(ê)

γh′(ê)

>
c(ê)− c(e1)

γ(h(e1)− h(ê))
.

If (4.7) holds, the contrapositive statement is false, and so the original statement

must also be false; thus, the platform instead prefers to exactly exert effort ê, and no

less, for all ec < ê, a contradiction.

Case 3 (ec ≤ ê): More aggressive effort than ê Suppose the platform prefers

to exert excessive effort at some e2 > ê. It follows that qπê(ec, e2) > qπê(ec, ê) must

hold, and so we have (Lemma 1):

d(πê, ec)− vπê(eh) >
c(e2)− c(ê)

γ(h(ê)− h(e2))
, (4.11)
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must also hold. Recall from (4.9) that,

d(πê, ec)− vπê(eh) = qπê(s−1(ê), ê)− qπê(eh, eh).

Thus,

d(πê, ec)− vπê(eh) >
c(e2)− c(ê)

γ(h(ê)− h(e2))

⇐⇒ qπê(s−1(ê), ê)− qπê(eh, eh) >
c(e2)− c(ê)

γ(h(ê)− h(e2))

We know from (4.8) that,

qπê(s−1(ê), ê)− qπê(eh, eh) = − c′(ê)

γh′(ê)
.

Thus, in order to guarantee that (4.11) holds, the following must be true:

− c′(ê)

γh′(ê)
>

c(e2)− c(ê)

γ(h(ê)− h(e2))

⇐⇒ − c′(ê)

h′(ê)
>

c(e2)− c(ê)

h(ê)− h(e2)

⇐⇒ − c′(ê)(e2 − ê)

h′(ê)(e2 − ê)
> − c(e2)− c(ê)

h(e2)− h(ê)

⇐⇒ c(e2)− c(ê)

h(e2)− h(ê)
>

c′(ê)(e2 − ê)

h′(ê)(e2 − ê)

However, notice that this inequality does not hold for e2 > ê: since c is strictly

convex, we know from Lemma 3 that the numerator of the L.H.S is strictly greater

than that of the R.H.S, that is c(e2)− c(ê) > c′(ê)(e2− ê); and similarly, because h is

convex, the denominator of the L.H.S is weakly greater than that of the R.H.S, that

is h(e2)− h(ê) ≥ h′(ê)(e2 − ê). Since h′(e) < 0 and ê < e2, it follows that the L.H.S

fraction overall must be strictly smaller (more negative) than the R.H.S fraction (less

negative), that is,

c(e2)− c(ê)

h(e2)− h(ê)
<

c′(ê)(e2 − ê)

h′(ê)(e2 − ê)

must be true, a contradiction.
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Case 4 (ec > ê): More aggressive effort than ec We prove an intermediate

result to arrive at our contradiction for this case. We first show that ê is the optimal

effort threshold for all threshold strategies.

Let τ be the smallest τ > ê satisfying qπτ (e, πτ (e)) ≥ qπê(e, πê(e)) for all e ∈ S.

Let s−1(τ) = e1 < τ . Then following the definition of ê in (4.6), we have

qπτ (e1, τ)− vπτ (eh) <
−c′(τ)

γh′(τ)

⇐⇒ qπτ (e1, τ)− vπτ (eh) <
−c′(σ)

γh′(σ)

for e1 < σ < τ and τ−σ sufficiently small. But since d(πτ , e1) = qπτ (e1, τ) (Lemma

2), we have

d(πτ , e1)− vπτ (eh) <
−c′(σ)

γh′(σ)

<
c(τ)− c(σ)

γ(h(σ)− h(τ))
,

which implies by Lemma 1 that qπτ (e1, σ) ≥ qπτ (e1, τ), and hence by the policy

improvement theorem, vπσ(e) ≥ vπτ (e) for all e ∈ S, contradicting the definition of τ .

Hence there is no such threshold τ > ê, and so ê is the optimal threshold among all

threshold strategies.

Now suppose the platform prefers to exert more aggressive effort at e2 > ec for

some ec > ê. Thus, by Lemma 1, the following must hold:

d(πê, ec)− vπê(eh) >
c(e2)− c(ec)

γ(h(ec)− h(e2))

⇐⇒ g(ec)vπê(χ(ec)) + (1− g(ec))vπê(ec)− vπê(eh) >
c(e2)− c(ec)

γ(h(ec)− h(e2))
.
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Thus, we have:

g(ec)vπê(χ(ec)) + (1− g(ec))vπê(ec)− vπê(eh) >
c(e2)− c(ec)

γ(h(ec)− h(e2))

> − c′(ec)

γh′(ec)

> − c′(ê)

γh′(ê)

= qπê(s−1(ê), ê)− qπê(eh, eh)

= vπê(s−1(ê))− vπê(eh).

Thus,

g(ec)vπê(χ(ec)) + (1− g(ec))vπê(ec)− vπê(eh) > vπê(s−1(ê))− vπê(eh)

⇐⇒ g(ec)vπê(χ(ec)) + (1− g(ec))vπê(ec) > vπê(s−1(ê)),

which implies that vπê(ec) > vπê(s−1(ê)) and/or vπê(χ(ec)) > vπê(s−1(ê)). Thus, it

follows that a new threshold strategy with threshold strictly greater than ê will be

preferable to ê, since exerting more aggressive effort e2 in state ec such that e2 > ec > ê

yields a better value. However, this implication contradicts our intermediate result

because no threshold greater than ê is optimal and we are done.

The process of policy improvement must give us a strictly better policy except

when the original policy is already optimal [43]. Since there exists no greedy deviation

e ̸= πê(ec) such that q(ec, e) > q(ec, π
ê(ec)) is true for any ec, the proposed policy πê

must be optimal, thus completing the proof.

The result follows from the first-order condition of convexity [44] and the policy

improvement theorem [43]. Intuitively, the theorem statement holds because past a

certain level of effort, the gain to the platform of not exerting more effort is traded

off against the increased probability of transitioning to the eh state, which yields the

lowest expected reward as shown in Proposition 2.

The primary takeaway from Theorem 1 is that the platform is incentivized to ex-

ert more aggressive effort at threshold ê, despite an over-time reduction of the public
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model’s prescribed effort ec due to the performative prediction of disinformation.

Thus, the platform’s optimal effort level is stable at ê for all states ec ≤ ê. The regu-

latory scheme that induces more aggressive effort is the ex post public backlash, that

is when the required effort increases to eh, which effectively poses as stricter future

ex ante regulation as a response to a harmful event. This result is also important

because with the correct choice of public backlash eh, the platform can in theory be

induced to exert the socially optimal level of effort e∗. We formalize this claim in the

following proposition.

Proposition 3 For any given socially optimal level of effort e∗, there exists a MDP

consistent with our given conditions such that the optimal policy for the platform is

a threshold strategy with threshold τ = e∗.

Proof. We know from Theorem 1 that under the specified conditions, the platform’s

optimal effort at any state ec is a threshold strategy with threshold τ = ê. In order to

induce e∗ as the optimal threshold, ê must equal e∗; thus, from the defining constraint

in (4.6), there must exist some eh such that the following holds:

qπe∗ (s−1(e∗), e∗)− qπe∗ (eh, π
e∗(eh)) = − c′(e∗)

γh′(e∗)

⇐⇒ vπe∗ (e0)− vπe∗ (eh) = − c′(e∗)

γh′(e∗)
. (4.12)

where e0 = s−1(e∗) ≤ e∗ (by definition).

Thus, we have

vπe∗ (e0) = −c(e∗) + γ[h(e∗)vπe∗ (eh) + (1− h(e∗))vπe∗ (e0)]

vπe∗ (e0) = −c(e∗) + γh(e∗)vπe∗ (eh) + γ(1− h(e∗))vπe∗ (e0)

vπe∗ (e0)− γ(1− h(e∗))vπe∗ (e0) = −c(e∗) + γh(e∗)vπe∗ (eh)

vπe∗ (e0)[1− γ(1− h(e∗))] = −c(e∗) + γh(e∗)vπe∗ (eh),

and finally

vπe∗ (e0) =
−c(e∗) + γh(e∗)vπe∗ (eh)

1− γ(1− h(e∗))
. (4.13)
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By substituting (4.13) in (4.12), we have

vπe∗ (e0)− vπe∗ (eh) = − c′(e∗)

γh′(e∗)

−c(e∗) + γh(e∗)vπe∗ (eh)

1− γ(1− h(e∗))
− vπe∗ (eh) = − c′(e∗)

γh′(e∗)

−c(e∗) + γh(e∗)vπe∗ (eh)− (1− γ(1− h(e∗)))vπe∗ (eh) = −c′(e∗)(1− γ(1− h(e∗)))

γh′(e∗)

−vπe∗ (eh)[−γh(e∗) + 1− γ(1− h(e∗))] = c(e∗)− c′(e∗)(1− γ(1− h(e∗)))

γh′(e∗)

−vπe∗ (eh)[−γh(e∗) + 1− γ + γh(e∗))] = c(e∗)− c′(e∗)(1− γ(1− h(e∗)))

γh′(e∗)

−vπe∗ (eh)(1− γ) = c(e∗)− c′(e∗)(1− γ(1− h(e∗)))

γh′(e∗)
,

and finally

− vπe∗ (eh) = (
1

1− γ
)(c(e∗)− c′(e∗)(1− γ(1− h(e∗)))

γh′(e∗)
). (4.14)

We show by the intermediate value theorem (IVT) that (4.14) holds for some

eh ∈ (emin, emax) where emin and emax correspond to the lowest and highest possible

levels of effort, respectively.

Let G(eh) = −vπe∗ (eh) − K where K = ( 1
1−γ

)(c(e∗) − c′(e∗)(1−γ(1−h(e∗)))
γh′(e∗)

). First,

observe that −vπe∗ (eh) ∈ (c(eh),
c(eh)
1−γ

) by construction. Moreover, note that K > 0.

Thus, we have the following at the lower bound of eh:

G(emin) = −vπe∗ (emin)−K

<
c(emin)

1− γ
− (

1

1− γ
)(c(e∗)− c′(e∗)(1− γ(1− h(e∗)))

γh′(e∗)
)

=
c(emin)

1− γ
− c(e∗)

1− γ
+ (

1

1− γ
)(
c′(e∗)(1− γ(1− h(e∗)))

γh′(e∗)
)

< 0,

for all e∗ ≥ emin.
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And we have the following at the upper bound of eh:

G(emax) = −vπe∗ (emax)−K

> c(emax)−K

> 0,

which holds because the cost of exerting maximum possible effort, or c(emax), is

sufficiently large (by assumption).

Hence, because G(emin) < 0 < G(emax), it follows by the IVT that there exists

some eh ∈ (emin, emax) such that

G(eh) = 0

⇐⇒ −vπe∗ (eh)−K = 0

⇐⇒ −vπe∗ (eh) = K

⇐⇒ −vπe∗ (eh) = (
1

1− γ
)(c(e∗)− c′(e∗)(1− γ(1− h(e∗)))

γh′(e∗)
),

and we are done.

The existence proof for eh directly follows from the defining constraint of the plat-

form’s optimal policy in (4.6) and the continuity assumptions of the cost and harm

functions. An interesting consequence of this result, however, is captured in the fol-

lowing proposition, where we effectively specify a strict lower bound on the public

backlash as a necessary condition to induce the socially-optimal effort e∗.

Proposition 4 The platform’s optimal stable effort is guaranteed to be socially sub-

optimal unless the public model overreacts by requiring effort eh > e∗ if harm occurs.

Proof. This result directly follows from the defining condition of the platform’s stable

effort ê in (4.6). For ê to equal e∗, the required effort eh must be strictly greater than

e∗. By definition, ê is the supremum over the closed interval [0, eh] and so if eh < e∗,

then ê < e∗ is also true.
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If eh = e∗, then ê < e∗ is also true; the L.H.S of (4.6) equals zero for e = eh, or

qπeh (s−1(eh), eh)− qπeh (eh, π
eh(eh)) = 0,

while the R.H.S is always positive, or

− c′(eh)

γh′(eh)
> 0,

since c′(e) > 0 and h′(e) < 0 for all e ∈ [0, 1], and therefore the inequality is not

satisfied. Thus, eh > e∗ must be true in order for the platform’s stable effort ê to

equal e∗.

Our ancillary result in Proposition 4 captures the counterintuitive nature of the

penalty scheme according to our model: it is not sufficient to set the ex post required

effort to the optimal effort e∗, assuming e∗ were known; instead, to incentivize optimal

effort, the public model must overreact and mandate suboptimal effort eh > e∗ as a

response to any harmful event.

4.3 Incentivizing Socially-Optimal Effort Under a

Robust Public Model

Our descriptive model requires overreacting to harmful events in order to incentivize

socially-optimal effort. But since mandating suboptimal effort via such an overreac-

tion is undesirable, we consider a simpler problem setting: suppose that the regulator

has access to the platform’s proprietary model and its underlying data, which can

now be used as the public model robust to performativity. The regulator thus has

knowledge of the harm function h. Suppose further that the societal costs of harm D

are also given; the only missing information is the cost function c, or the platform’s

costs of effort to mitigate disinformation.

Proposition 5 There is no way of adjusting the effort ec required by the public model,

purely as a function of the harm function h and the cost of damages D, without
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regard to the cost function c, such that the platform is always incentivized to exert the

socially-optimal level of effort.

Proof. Consider the simplest possible case where we assume there exist only two

possible cost functions, c1 and c2. Let e∗1 be the socially-optimal effort induced by

cost function c1 and e∗2 be that induced by cost function c2, and let e∗2 > e∗1. Note that

the e∗1 and e∗2 can be trivially computed from equation (3.1) by equating the marginal

social welfare to zero.

Suppose that the actual socially-optimal effort is e∗1. Note first that if the regulator

sets the public model to require effort ec = e∗1, there should not be any increase in

this level of effort because a transition to some new eh > ec will mandate excessive

and therefore suboptimal effort as the platform at least follows the public model’s

specified effort (by assumption). Thus, if the public model is set to require effort e∗1,

we are done.

However, now suppose that the actual socially-optimal effort is e∗2 and the public

model currently specifies e∗1 as the required effort. Then, an increase in effort to e∗2 is

necessary to incentivize the platform to exert the socially-optimal effort (contradic-

tion).

Similarly, a decrease in the effort required by the public model does not guarantee

that platform is always induced to exert the socially-optimal effort level: If e∗2 is

socially-optimal, then a decrease in the required effort to some ec < e∗2 does not

guarantee that the platform will continue to exert effort at e∗2; the platform may

exert less and therefore socially suboptimal effort at ec, since without increasing the

required effort, there is no way for a static public model to induce the platform to

exert more than the prescribed effort as shown in Proposition 1. Therefore, if the

public model is set to require e∗1, the platform is no longer guaranteed to exert the

socially-optimal e∗2.

Thus, because no adjustment to the public model’s required effort works, the regu-
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lator needs to know whether the platform’s true cost function is c1 or c2 to incentivize

the socially-optimal effort at all times. And since there exist more than just two pos-

sible choices for the platform’s actual cost function, there is no way for a regulator

to guarantee that the platform exerts socially optimal effort for mitigating disinfor-

mation with any increasing or decreasing adjustments to the public model’s required

effort.

This result shows that even if a regulator has precise control over the public model,

without knowledge of the platform’s costs, there is no way to set up the public model’s

effort threshold such that the platform’s individually-optimal effort level is always

socially optimal. Thus, since social platforms’ costs of precautionary effort underpin

the incentive problem, it is crucial to model these costs in more detail to better

understand their incentives relating to the control of disinformation. Determining

how engagement translates to money, therefore, serves as an important avenue for

future exploration, as platforms risk losing out on engagement revenue with content

moderation.
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Chapter 5

Takeaways and Prescriptions

The focus of this chapter is to emphasize areas where this thesis work may be extended

for more fruitful insights regarding the regulation of social platforms. We briefly

restate our main assumptions and results before segueing into the main discussion.

Our formal results captured in the previous chapter follow from certain key as-

sumptions supporting our descriptive model. To restate concisely, we assume that

only social platforms have the best access to the technical resources, expertise, and

user data required to effectively mitigate disinformation. A regulator can only imper-

fectly monitor a social platform’s effort to reduce the spread of toxic content, based

on some public notion of harmfulness of content that specifies if certain content ought

not to be hosted by the platform. However, disinformation authors can inundate plat-

forms with new forms of harmful content. As such, the public standard for content

moderation will prove to be ineffectual at identifying rapidly evolving forms of disin-

formation, unless some harmful event occurs, thereby enabling the public to update

their beliefs about content that is harmful and ought to be removed from platforms.

Under these conditions, Theorem 1 and Proposition 4 demonstrate that the public

standard of effort required to mitigate disinformation — in terms of specifying what

content must be limited from platforms — must become excessive, or socially sub-

optimal, as a response to the occurrence of some harm, in order to induce a social

platform to perform the adequate, or socially optimal, level of control of disinforma-
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tion. Clearly these results exhibit undesirable properties; regulation of platforms via

mandating excessive content moderation is not a practical recommendation. Further-

more, our impossibility result (Proposition 5) captures another undesirable property:

even if a regulator possesses the same technical expertise and resources as a social

platform, there is no way to induce the platform to control disinformation adequately

via our mode of ex ante negligence regulation, without knowledge of the platform’s

costs of content moderation efforts.

Despite these perhaps unenviable conclusions, our modeling exercise offers valuable

insights into the incentive issues relevant to platforms’ control of online disinforma-

tion. Moreover, our results provide a lens through which further regulatory prescrip-

tions for controlling disinformation might be derived. Accordingly, we highlight our

modeling constraints and assumptions that will be worthwhile to relax or expand

upon in derivative work.

5.1 Homogeneous Harm

One of the primary features of our model is expressing the harm from disinformation

as a binary event and assuming that it effects all people equally. Recall our assumption

from Chapter 3 that the platform possesses a proprietary machine learning model

that assigns for every item of content the probability that it will cause some harmful

event H yielding a fixed societal cost D. Essentially, such a model considers only

one particular dimension of harm for every content item, that is, how likely is it for

some event to occur due to that content being hosted and its induced engagement.

This binary notion of harm might seem restrictive, especially because the harm from

disinformation can manifest in many forms: rare events such as the Capitol Hill riots

or the Pizzagate shooting are dramatic and immediately observable, in comparison to

harm from the degradation of public discourse or from the spread of climate change

denial or anti-vaccine propaganda, which are more subtle manifestations. Regardless,

our binary notion of harm is without loss of generality.
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To illustrate, recall that we consider a simple probability density function h(e) =

Pr[H|e] of a harmful event for a certain level of mitigating effort e, and think of

this event as yielding a fixed cost to society, D. Indeed, equation (3.1) captures the

expected amount of harm h(e)D in terms of quantifying the expected societal costs

should the harmful event occur. But different levels of mitigating effort might give

rise to different types of harm. Furthermore, there might exist multiple dimensions

of harmfulness associated with the different kinds of user-generated content. For ex-

ample, consider a model that simply measures the amount of toxicity in a content

item through explicitly checking its text, image or video message [45], and not, as

in our setup, the likelihood of that item causing a specific harmful event. Nonethe-

less, equation (3.1) can be augmented to capture different types of harm: we will

simply substitute our harm function with different probability distribution functions

for the different dimensions of harm and include the associated societal costs. This

practice will preserve our model’s notion of quantifying expected harm. Thus, it is

straightforward to extend our model for different kinds of harm.

5.2 Heterogeneous Content

While our notion of measuring content harmfulness via a binary harmful event is

without loss of generality, it is meaningfully different to consider the heterogeneity of

content in terms of how harmful a particular piece of content is and how much benefit

it brings to a social platform. Our simple model of a platform’s costs as a function

of effort, c(e), implicitly encodes the platform’s valuation for content: recall that c(e)

comprises the indirect costs of the platform losing out on advertising revenue due

to the loss of user engagement with the deployment of content moderation efforts;

moreover, our model implies homogeneity of all content with respect to the amount of

user engagement for each item. In reality, however, just as content is not homogeneous

in terms of the varying degrees of harmfulness of each item, content will also differ

in the levels of user engagement attained. Therefore, modeling this heterogeneous
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relationship of the harm and benefit of content will likely drive different conclusions.

For example, with such explicit modeling, one question we might hope to answer is

whether highly toxic content is more likely to produce high levels of user engagement

(in the form of likes, shares, retweets, comments etc.) than less toxic content, thereby

being more valuable to the platform. Recent examples indicate the prevalence of this

phenomenon [3, 4, 6, 19, 46]. In theory, assuming it could only pick one, a social

platform would prefer hosting a content item that attains or is predicted to attain

more user engagement instead of one that does not attain as much, all else being

equal [2, 12]. But this approach of maximizing user engagement becomes problematic

when content that is highly toxic, false, or misleading achieves high levels of user

engagement or virality, since the costs of harmful content are borne exclusively by

society. Thus, answering our question will shed light on the degree to which the

incentives of social platforms relating to the control of disinformation are misaligned

with those of society.

Additionally, understanding the relationship between toxicity and benefit of con-

tent is important as it informs the nature of any regulatory restrictions required

to realign these incentives. We may find instances where harmful content only at-

tains low levels of user engagement on social platforms. The regulation mechanisms

to induce prompt mitigation of disinformation will likely differ in this situation in

comparison to the one described previously. Because the regulator is social welfare-

maximizing, we care about the overall costs of the regulatory mechanisms imposed on

social platforms. As such, a platform should not be needlessly penalized for hosting

viral content, especially if it is the case that highly toxic content is less likely to attain

high levels of user engagement.

In essence, a social platform benefits from more user engagement than less, irre-

spective of whether such engagement is induced from harmful or benign content. But

because it is only society that incurs the costs of harmful content, the idea behind

any regulatory scheme is to reduce the amount of toxicity spread on platforms. A
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regulator cannot directly exert the effort required to contain toxic content without

access to the platform’s proprietary data and technical resources. Thus, a possible

approach to regulate platforms might be via devising a mechanism based on taxation.

5.2.1 Taxing Toxicity

A Pigouvian tax is a tax on a market transaction that generates a negative externality

borne by individuals not directly involved in the transaction [47]. Such a tax may be

levied on firms that generate pollution as a result of their production processes. The

carbon tax is one such example of a Pigouvian tax: when individuals purchase goods

produced by firms, carbon emissions might be a by-product of the production process

causing air pollution, which is a negative externality impacting the environment and

imposing a cost on individuals not directly involved in the initial production and

purchase transaction. Thus, a regulatory body specifies a price that firms must pay

for the amount of carbon they emit. This tax is meant to “internalize” the costs of

the externality to the firm’s production process.

Social platforms offer products and services enabling a multitude of users to connect

with each other, and create and share content. But while most of these services are

free for users, the actual customers of platforms are advertisers willing to purchase

advertising space on the platforms. Essentially, the more users a platform has, the

more lucrative it is for advertisers to pay for the platform’s services to target them

with ads; moreover, the more time these users spend engaging with other users and

content on the platform, the greater the opportunity for the platform to cater to

the precise needs of advertisers. Note that in this particular transaction, a negative

externality may be generated from user engagement that is induced from toxic content

on the platform: such engagement imposes a cost only on the users of social media,

or society overall, and not on the platform and advertisers involved in the original

transaction.

Thus, social platforms exhibit the precise criterion of generating negative exter-
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nalities that calls for the levying of a Pigouvian tax. To elaborate, consider a toy

example. Suppose a platform’s true valuation for some content is $1M calculated

in terms of the engagement and eyeballs it attracts, thereby affording the platform

more opportunity to sell advertising space. Now further suppose that a subset of this

content is toxic, and the cost of damages to society due to the externality generated

from user engagement are estimated to be at most $150K. From the lens of welfare

economics, a tax should not be imposed on the platform for hosting such content

due to the positive net social benefit. However, if instead the two costs are swapped

— the cost of the externality exceeds the platform’s valuation for content — then a

tax should be levied on the platform if it chooses to host this content. Under ideal

circumstances, the amount of tax would be equal to the cost of damages due to the

externality generated [47].

Naturally, a regulator will require a good predictive harm model to measure con-

tent harmfulness, or the extent to which a piece of content will give rise to toxic

engagement. An efficient taxation scheme will pick a tax rate proportional to the

measure of toxicity of content; that is, content classified as ludicrously toxic should

have the highest tax rate, while content classified as acceptable the lowest, assum-

ing more toxic content hosted online makes the occurrence of a harmful event more

likely. Ideally, the hope is that with a good harm model, the regulator can restrict

taxation to the subset of content that drives toxic engagement, while leaving other

benign content untaxed; and furthermore, an increasing tax rate with the toxicity of

content will induce the platforms to take proactive measures to limit the spread of

such content in order to avoid paying large sums of taxes.

However, devising a taxation scheme as such might not be practical. Developing

a good harm model to measure content toxicity will likely require an access to data

and expertise that is only available to platforms. Therefore, a mechanism designer

(regulator) might instead impose taxation in a more crude manner, for example,

by levying a tax on user engagement on the platform more generally, rather than
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on the harmfulness of hosted content. As discussed previously, although regulating

engagement does not bear directly on content toxicity — the entity we wish to control

on social platforms — it might nevertheless be the only means of controlling online

disinformation through taxation. In terms of implementation, the regulator can ask

the platform report its cost function for moderating content and then tax the platform

based on its report. Thus, this crude notion of taxation fits well with our simple

model of the cost function, as the indirect costs of effort essentially capture the

value of engagement. Furthermore, as shown in Proposition 5, the platform’s costs

of effort underpin the incentive problem for disinformation mitigation; thus, any

effective mechanism must in some way be responsive to these costs. Naturally, such

a mechanism must also factor in incentives that might prevent the platform from

misreporting its true cost function for moderating content, in the hopes of attaining

a lower tax rate, for instance.

5.3 Prospective Versus Retrospective Harm

Throughout this work, we have only considered a prospective, or predictive, notion

of harm. That is, our simple harm model predicts the likelihood of a unique harmful

event for a given level of mitigating effort. In Chapter 3, however, through our

discussion of the strict liability standard, we are effectively dealing with a retrospective

notion of harm: we claim that regulatory enforcement of limiting disinformation via

a strict liability standard necessitates ascribing responsibility for harm after the fact.

The challenge of assigning blame lies in identifying the direct causal links between

the harmful event and a specific social platform, given the presence of a multitude

of platforms, the inter-connectivity of users and thus also content shared on the

platforms, and harm being carried out by individuals. Thus, in our assertion about

the impracticality of a strict liability standard, we implicitly assume the difficulty of

programming a retrospective model of harm, that is, one that can correctly ascribe

responsibility to a platform for harm.
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Indeed, it is infeasible to expect a regulator to have a perfect retrospective harm

model programmed to assign blame for harm. Because if such a model did exist,

without making any claims about its exact form, it is clear from our analysis that

a regulator could simply enforce a strict liability standard to penalize the platform

if it were deemed guilty — via use of this retrospective harm model — for causing

some harmful event, thereby effectively aligning the incentives of social platforms with

that of society. However, one question to explore is whether we can utilize a softer

notion of retrospective reasoning in combination with our prospective harm model

to regulate disinformation. Concretely, is there some combination of a predictive

harm model and a model short of fully attributing responsibility to social platforms

for harm after the fact such that a regulator can incentivize the optimal effort for

mitigating disinformation?

Exploring the incentive properties of regulation via a prospective harm model com-

plemented by retrospective reasoning can be a worthwhile future extension of our

work. We have already shown that a perfect prospective model of harm is insufficient

to incentivize adequate control of disinformation: indeed, our impossibility result

(Proposition 5) demonstrates that even if a regulator possesses a perfect predictive

model of harm, knowledge of the platform’s costs of effort is necessary for any hope

of inducing the socially-optimal level of effort from the platform. Incorporating a

retrospective notion of harm can, hence, complement a predictive harm model for

detecting disinformation. There is already a sense in which a good predictive model

of harm relies on retrospective reasoning: Donald Trump’s misinformed tweet about

the efficacy of hydroxychloroquine in curing Covid-19 drove purchases of this anti-

malarial drug and increased false rumours surrounding the pandemic [48, 49]; but this

fact offers an opportunity to program classification models with more information to

promptly flag future iterations of such misinformation.

Ultimately, retrospective reasoning is beneficial as such because it can elucidate

new data on which a good predictive model of harm should be trained. We can ask
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questions about what ground truth data should be included to train a good predic-

tive model of harm, or about why it would make more sense to disregard previous

training data in light of new information post hoc, for example. Furthermore, unlike

a predictive harm model, a retrospective model cannot be gamed and circumvented

by bad actors, for it relies on determining causes of harm after the fact. The practice

of determining causes for events, in fact, is related to the concept of actual causality.

Actual Causality Halpern [50] describes actual causality as the problem of de-

termining what specific events explain a particular observation or incident about

the world. This notion is contrasted to that of general causality, or type causality,

which is forward-looking and used for predictions. To elaborate, actual causality is

backward-looking in the sense that we know a particular event to have occurred and

seek out explanations for why it did; type causality, conversely, focuses on general

causal statements like “excessive alcohol assumption causes liver failure” [50]. Thus,

in the context of societal harm from disinformation, the problem of actual causality

looks at a specific harmful incident, say the Capitol Hill riots, and asks what events

in particular caused it to occur. These factors could include individuals from certain

conspiracy groups, which in turn might have been nudged by particular pieces of con-

tent spread on social platforms, which in turn were the means by which individuals

coordinated the attacks [9].

Thus, programming a retrospective harm model for disinformation implies solving

the problem of actual causality: in order to assign responsibility for some harmful

event after the fact. But while solving actual causality perfectly might be intractable,

there is value to be derived from considering a weaker notion of causality in the form

of retrospective reasoning, as discussed previously. Consequently, a promising future

direction of this will explore the merits of assigning a weaker form of liability to

platforms, in conjunction with negligence, both ex ante and ex post, in order to

target a better regulatory response for controlling disinformation on social platforms
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— especially in comparison to an overreaction, or of such response being impossible

under our descriptive model’s constraints.
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Chapter 6

Conclusion

Events like the Covid-19 “infodemic” or the Capitol Hill riots are recent examples

of the harm associated with disinformation. There is increasing evidence that the

failure of social media platforms to control the spread of disinformation is due to

incentive issues rather than a lack of technical ability [12, 14, 46]. This work provides

a formal analysis of these incentive issues that adapts the standard principal-agent

framework to incorporate the unique features of the domain. Our formal model,

although stylized, includes what we take to be key aspects of the setting, including

the performativity of disinformation classification and public backlash as a response

to harmful events. Our formal results provide insights for the effective regulation of

social media platforms.

We argue that although a strict liability standard would theoretically align the plat-

form’s incentives with those of society, it is unlikely to be practical given the difficulty

of assigning responsibility for harmful events to specific instances of disinformation

ex post. Using our formal model, we derive a number of results relating to the use

of a negligence standard. Most importantly, we show that in the absence of a public

backlash to harmful events, there is no monitoring scheme that can induce platforms

to perform a socially-optimal level of control of disinformation. However, when the

public model includes the possibility of overreacting to a harmful event by requiring

a greater than socially optimal level of effort, a platform can be incentivized to exert
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more diligent effort than explicitly required by the regulator. Ultimately, because

mandating suboptimal effort is undesirable, we advocate devising mechanisms that

may elicit platforms’ costs of precautionary effort for limiting disinformation. Our

final impossibility result emphasizes this call for transparency as we show that absent

knowledge of these costs, there is no way to reliably induce a socially-optimal level of

control of disinformation under a negligence standard, even if all other parameters of

the setting are given.

Our model makes a number of simplifying assumptions. Treating public standards

as an explicit model implies that a platform can guarantee a given probability of

escaping punishment if it conforms to an explicit standard, which is an oversimplifi-

cation of reality. The assumption that the platform can perfectly tune its model is

also unrealistic; technical challenges, although they may not pose the main obstacle

to the practical control of disinformation, are nevertheless a real issue [2]. Extend-

ing the model to more richly model these aspects are important directions for future

work, in addition to those explored in Chapter 5.

Disinformation is one of the most urgent problems facing society. But it is a

problem driven by incentives as much as by technology. This work takes a first step

toward explicitly modeling the incentive issues that must be accounted for by any

effective solution to the problem.

6.1 Ethical Considerations

Regulating social media is an especially sensitive issue. Although allowing disinfor-

mation to spread unchecked is clearly unsustainable, disinformation control always

runs the risk of becoming censorship. In this work, we take the existence of a “public

model” of acceptable postings for granted. However, the content of this public stan-

dard is a question of societal standards that can be settled only by public debate.

Similarly, we analyze the use of “monitoring” without specifying its exact form. A

naively implemented monitoring scheme would run the risk of serious privacy viola-
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tions.
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