

Evaluation and Development of Machine Learning based Algorithms for Predicting Distributed Denial of Service (DDoS) Attack

Qozeem Adeshina

dst_bytes

Count

srv_count

dst_host_same_src_port_rate

Feature Types	Feature Names	Number of Features
Basic features	duration, protocol_type, etc.	9
Content features	logged_in, num_root, etc.	13
Traffic features	count, srv_count, etc.	9

Performance Evaluation

i diformation Evaluation				
Classifier	Train Score	Test Score	Train Time (seconds)	
Random Forest	0.99	0.99	19.34	
Decision Tree	1.00	0.98	0.64	
Gradient Boosting	0.98	0.98	133.36	
Nearest Neighbor	0.98	0.97	16.91	
Logistic Regression	0.83	0.83	33.65	
Linear SVM	0.82	0.82	3154.66	
Ada Boost	0.77	0.77	9.61	
Multinomial Naïve Bayes	0.67	0.67	0.07	
Naïve Bayes	0.65	0.65	0.15	
Neural Net	0.53	0.53	146.72	

Conclusions and Future Works

- ❖ Gradient Boosting, Random Forest, Nearest Neighbors and Decision Tree are recommended for DDoS attack prediction (consistent accuracy over 95%).
- SVM has proven to be the slowest when classifying DDoS and normal traffics. It is therefore not recommended during DDoS traffic classification when speed is paramount.
- We would like to explore deep learning Algorithms and incorporate domain knowledge for DDoS prediction

Contact

Qozeem Adeshina

MSc.IT, Concordia University of Edmonton Email: qadeshin@student.concordia.ab.ca

References

1. S. Pande et al. (2021) DDOS Detection Using Machine Learning Technique. Recent Studies on Computational Intelligence.

Performance

Determination o

Best Model

Flowchart of ML based Algorithms for Predicting DDoS Attack

2. P. S. Saini et al. (2020) Detection of DDoS Attacks using Machine Learning Algorithms. International Conference on Computing for Sustainable Global Development 3.R. Doshi, N. Apthorpe and N. Feamster. (2018) Machine Learning DDoS Detection for Consumer Internet of Things Devices. IEEE Security and Privacy Workshops.