00

Comparisons of Spinal Alignment between Standing Positions in Healthy Adolescents or Adolescents with Idiopathic Scoliosis; A Systematic Review

Introduction

- Scoliosis is a 3D deformation of the spine.¹
- Adolescent idiopathic scoliosis (AIS) is scoliosis in adolescents without a known cause.
- Patients with AIS have many x-rays taken of their spines, increasing risk of cancer.²
- EOS Imaging
 - Frontal and lateral x-rays taken simultaneously
 - Reduces radiation by up to $9x^3$
 - When an x-ray is taken, patients' arms have to be raised.
 - Unknown if effect on habitual standing
 - Inconsistent positioning across healthcare centers
 - 3D Ultrasound imaging (3DUS)
 - Non-invasive information in all 3 planes

Objective: Comparing arm position used during radiography that best represents habitual standing posture in healthy adolescents and adolescents with idiopathic scoliosis.

Methods

Search Strategy

- Databases searched: Medline, CINAHL, Embase, and Web of Science (all on June 29, 2022)
- Strategy created with terms using our inclusion and exclusion criteria (listed below) Screening Strategy
- Two reviewers screened 1,332 abstracts
- Third reviewer would resolve conflicting votes
- Included papers moved into a full text review
- **Extraction**
- Used a Google spreadsheet
- Extracted data included sample size, angle measurements and imaging type **Data Synthesis**
 - Study quality analyzed using the appraisal tool for Cross-Sectional Studies (AXIS)
 - Level of Evidence statements were created using a method adapted by Cornelius et al
 - Meta-analysis done for relevant studies

Sample Extracted Data

Study	Ν	Age (years)	Image method	Arm position	Inclusion Criteria
Faro 2004	50	14.7 ± 2.3	Lateral spine x- ray	StandingClavicle	Between and including 10 and 18 years old AIS or healthy controls
Marks 2009	22	13 ± 2 (12-20)	Reflective markers, 8 cameras	 Standing Active 30° Passive 30° Clavicle 	
Marks 2003	15	12 ± 1.9 (10-14)	Reflective markers, 36-in x- rav	 Standing Shoulder 45° Knees 45° Shoulders/knees 	Comparison to at least 1 standing position Ultrasound, x-ray, Standing MRI, Fluoroscopy, or Surface topography used
Asano			3D projection	45° • Standing	
2015	24	11.9	scanner	Clavicle	
Wojciech 2013	694	10-18	3D surface topography	StandingClavicle	Cohort or Cross- sectional study design
Abe 2016	42	12.6	3D projection scanner	StandingClavicle	
Pasha 2016	37	10-18	EOS bi-planar x- rav	ClavicleHands on wall	

Annika L. Visser¹, Brianna J. Fehr¹, Eric C. Parent¹ 1. Department of Physical Therapy, University of Alberta

Conclusions

- relevant studies show limited results
- information)
- SVA

- spine

Literature Cited

- upright positional magnetic resonance imaging? *Spine*, *38*(7), 576–580.
- Idiopathic Scoliosis. Spine, 21 (13), 1540-1547.
- radiographs. Spine deformity, 3(2), 144-150.
- sagittal spinal alignment in adolescent patients?. Scoliosis, 10(1), 1-1.
- scoliosis. Spine, 29(20), 2284-2289.
- representation of a patient's sagittal balance?. Spine, 34(9), 949-954.

- Spine, 28(11), 1176-1182.

Acknowledgements

AXIS Quality Assessment

Appropriate study design? ustified sample size? Sample taken from appropriate population? Appropriate selection process? Appropriate variables and risk factors measured? Variables and risk factor measured correctly? Methods sufficiently described? Appropriate time between taking images? Did response rate raise concerns about bias? Results presented for all analyses described? Authors' conclusions justified by results? Did funding or conflict affect authors' interpretation?

AXIS shows that the studies were rated moderately or low quality, but small number of

Many studies missing relevant information (Cobb angle, AIS groups, positioning

• Most common positions compared were Habitual Standing, Clavicle, and Active positions

• Most common spinal parameters measured were whole thoracic kyphosis, lordosis, and

• Research shows the position most similar to habitual standing was the Clavicle position but this still has moderate effects on spinal parameters (most notably SVA)

In the future, more research needs to be done with more positions to create a broader range of results and to find a position that is more similar to habitual standing

There is research underway to show the effect of 10 arm positions on parameters of the

Diefenbach, C., et al. (2013). Is radiation-free diagnostic monitoring of adolescent idiopathic scoliosis feasible using Levy, A., et al. (1996). Reducing the Lifetime Risk of Cancer from Spinal Radiographs Among People with Adolescent

Luo, T. D., et al. (2015). Cumulative radiation exposure with EOS imaging compared with standard spine

4. Asano, F., et al. (2015). Does lateral whole-spine radiograph taken by fists-on-clavicle position represent reliable global

5. Faro, F. D., et al. (2004). Evaluation of a functional position for lateral radiograph acquisition in adolescent idiopathic

6. Marks, M., et al. (2009). Which lateral radiographic positioning technique provides the most reliable and functional

Pasha, S., et al. (2016). Bi-planar spinal stereoradiography of adolescent idiopathic scoliosis: considerations in 3D alignment and functional balance. European Spine Journal, 25(10), 3234-3241.

8. Wojciech, G., et al. (2013). The position with fingers on clavicles has no influence on vertical trunk inclination and kyphosis but significantly changes surface topography lordosis angle. Scoliosis, 8(2), 1-2.

9. DEFORMITY, A. (2016). Oral Presentations EUROSPINE 2016 Berlin, Germany, 5–7 October. Eur Spine J, 25(3), S287-S333. 10. Marks, M. C., et al. (2003). Standing lateral radiographic positioning does not represent customary standing balance.

Thank you to WISEST and the Spinal Research Lab for the opportunity to explore a career in STEM.

• Search Strategy created by librarian Liz Dennett from the University of Alberta.