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Abstract

Observations from the gas giants Jupiter or Saturn allow for researchers to construct geo-

physical fluid dynamical numerical models in an attempt to replicate the observed features.

Most models aim at replicating the zonal jets and the eddies observed on these gas giants

to understand how they are driven. Two dominant theories have arisen as a result of the

controversy of the generation of these features: the weather layer hypothesis and the deep

winds hypothesis. The weather layer hypothesis assumes that the zonal jets are driven by

cloud physics in the troposphere while the deep winds hypothesis states that these jets are

driven by convection in the deep interior. Some success has been seen in the weather layer

models as some were able to generate eddies or even great storms. Whereas some success

has been seen in the deep winds models as some were able to generate equatorial and high

latitude zonal jets.

Most deep winds models are based on Boussinesq or anelastic convection in a rotating

spherical shell. Convection is implemented by using either constant entropy boundary condi-

tions or constant radial entropy gradient boundary conditions. This allows for the generation

of zonal jets for a strong enough thermal forcing since the secondary flow comes from the

interaction between the convection cells and the outer boundary. However, based off mea-

surements from the Galileo space probe, they imply that Jupiter has a stably stratified fluid

layer near the top of its atmosphere. Typically, these models that replicate the zonal jets do

not include the stably stratified fluid layer near the top boundary.

Due to developments in general circulation model software, regional models can be used

to simulate local fluid dynamics in a rotating spherical shell. However, if models focus on

either poles of the planet, conventional spherical coordinate system is not optimal since

singularities exist at the poles. Instead, a cubed-sphere curvilinear grid system can be used

to successfully resolve these models. This should allow for emphasis of fluid dynamics at the

region with a reduced computational cost compared to full spherical shell models.

In this thesis, we implement rotating convection models in both full and regional rotating

ii



spherical shell models. The full spherical shell model implements the constant conductive

radial entropy gradient boundary conditions to allow for anelastic convection in the models

and to add the stably stratified fluid layer at the outer boundary. For the regional convection

simulation, we model a Boussinesq fluid at the North polar region of a rotating spherical

shell using a cubed-sphere curvilinear grid system. The results from the rotating anelas-

tic convective spherical shell models without the stably stratified fluid layer near the outer

boundary show zonal flow oscillations for a high enough thermal forcing, where they indicate

that the fluid is in a relaxation oscillation regime. Implementing the stratified fluid layer

leads to a tendency towards suppression in these oscillations via decrease in their ampli-

tude. However, for a thick enough layer, these oscillations become suppressed such that the

model does not evolve into the relaxation oscillation state. The retrograde jets from models

with no stratified fluid layer also became smoother when the stably stratified fluid layer is

implemented.

Long-lived eddies have also been generated for the near-Boussinesq case of the rotating

anelastic spherical shell models with the stably stratified fluid layer. These eddies are gen-

erated for a large enough thermal forcing and drift around the tangent cylinder. However,

increasing the thermal forcing leads to a merging of these long-lived eddies, leading to the

generation of anticyclonic great eddies. Other models with a higher density stratification in

this thesis did not generate any long-lived eddies.

Based on the results from the regional model with horizontal periodic boundary condi-

tions, the fluid motion associated with convective mixing is strong enough to interact with the

corners of the geometry. Different open horizontal boundary conditions were implemented

in an attempt to eliminate the interaction. However, the results using these conditions lead

to either interactions with the corners or numerical problems.
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Chapter 1

Introduction

Before discussing numerical experiments on gas giants, we first present key features of the

atmospheric fluid dynamics observed on gas giants in our solar system. The replication of

these features is the primary goal of these numerical experiments as they provide us with

further understanding in the fluid dynamical process involved in their formation. In this

chapter, we will focus on presenting key features that Jupiter and Saturn exhibit on their

atmosphere and two theories that attempt to explain the mechanism that drives the observed

zonal jets.

1.1 Observations of Jupiter and Saturn

Many observations of Jupiter come from unmanned spacecraft and ground-based telescopes

with spacecraft observations dating back to the Pioneer 10 flyby mission in 1973 and ground-

based observations dating back to Cassini in the 17th century (Anderson et al., 2002; Hide,

1968). In addition to Pioneer 10, other flyby spacecrafts, such as the Cassini-Huygens

space probe, were launched to further collect observational data on Jupiter (Porco et al.,

2003). However, the Galileo spacecraft is the first to conduct an orbiter mission, which was

launched in 1989 (Vasavada & Showman, 2005). This mission provided measurements on

the deep wind and thermal structures of Jupiter near the equator (Atkinson, Pollack, &

Seiff, 1998; Magalhaes, Seiff, & Young, 2002). The current orbiter mission to provide further

observational data on Jupiter is Juno, where the spacecraft was launched in 2011 and has

been in orbit since July 5, 2017 (Nybakken, 2011).

One noticeable feature observed on Jupiter’s atmosphere is its banded structure, which

is highly correlated with strong zonal winds and can be seen in Figure 1.1. There are two

types of bands: the dark bands (or belts) and the light bands (or zones). The dark bands
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Figure 1.1: This image of Jupiter captured by Cassini in 2000 (NASA, 2009).

are anticyclonic while the light bands are cyclonic. The banded structure is caused by the

shearing action between two adjacent zonal jets flowing in opposite directions (Smith &

Hunt, 2004). Figure 1.2 shows that Jupiter exhibits high latitudinal prograde jets and a

strong equatorial prograde jet. The retrograde jets are generally weaker than the prograde

jets.

Besides the the zonal wind structure, Jupiter also exhibits vortices on its atmosphere.

One of the most remarkable features that corresponds to Jupiter’s vorticity structure is the

Great Red Spot (Smith & Hunt, 1976). This spot is a large, oval shaped anticyclonic storm

that resides around the planetographic latitude of 22oS (Hide, 1961; Smith & Hunt, 1976).

From Smith and Hunt (2004), the Great Red Spot is measured to be 39,000km in East-West

length and 12,500 in North-South width. This spot is rather long-lived with observations

tracing back to roughly 300 years ago (Smith & Hunt, 1976). However, this Great Red
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Figure 1.2: The zonal wind profile of Jupiter based on observations from Cassini. Note that

the prograde flow is represented by positive values of the velocity while the retrograde flow

is represented by the negative values. The data used to produced this graph is from Simon

et al. (2015).

Spot is confined within the South Tropical Zone, which is flanked in the North by the South

Equatorial Belt and to the South by the South Temperate Belt. It also has a mean westward

drift speed of 3 m s−1 and a maximum velocity of 120 m s−1 (Smith & Hunt, 1976). The

Great Red Spot also has a maximum relative vorticity of roughly 6·10−5 s−1, which is roughly

1/3 of the local planetary vorticity (Smith & Hunt, 2004).

The vorticity structure on Jupiter’s atmosphere also consists of smaller white oval storms

and instabilities in the North and South poles. Several white oval storms can be seen at

planetographic latitudes 33oS and 41oS on Figure 1.1 (Smith & Hunt, 2004). From Smith

and Hunt (2004), smaller white ovals can also be seen near planetographic latitudes 17oN,

34oN and 40oN. These white ovals can have their major diameter range between 1000 km to

5000 km. Recent observations made by the Juno spacecraft also show eddies at the North

and South poles, as seen on Figures 1.3 and 1.4, respectively.

Apart from atmospheric observations, measurements made by satellites and telescopes

along with theoretical models provide inferences of the interior structure of Jupiter. The
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Figure 1.3: Image of Jupiter’s North pole captured by the Juno spacecraft in August 27,

2016 (NASA, 2016c).

interior structure of Jupiter has three unique, quasi-homogeneous regions that can be classi-

fied from the interior to the surface as the solid inner core, the fluid metallic envelope, and

the fluid molecular layer (Guillot, 1999; Nellis, Weir, & Mitchell, 1996). The molecular layer

consists primarily of molecular (or non-conductive) hydrogen and helium, which indicates

that this region is not significantly affected by Lorentz forces. The metallic region on the
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Figure 1.4: Image of Jupiter’s South pole captured by the Juno spacecraft in 2017 at an

altitude of 52,000 km (NASA, 2017).

other hand consists primarily of metallic (or conductive) hydrogen and helium, which implies

that the regional fluid behaviour is significantly affected by Lorentz forces. From Gastine,

Wicht, Duarte, Heimpel, and Becker (2014) and French et al. (2012), the molecular envelope

in Jupiter extends from the surface to 0.9 of Jupiter’s radius.

Saturn’s atmosphere exhibits features similar to Jupiter’s atmosphere. One feature that

Saturn shares with Jupiter is that it exhibits a banded structure on its atmosphere, which

can be seen in Figure 1.5. Similar to Jupiter, Saturn’s banded structure is correlated with

its zonal wind jets (Garcia-Melendo, Perez-Hoyos, Sanchez-Lavega, & Hueso, 2011; Smith et

al., 1981). Due to observations collected from the Cassini spacecraft, Saturn also exhibits

high latitude zonal jets (Garcia-Melendo et al., 2011). Eddies at both the North and South

poles of Saturn are also observed, which can be seen in Figures 1.6 and 1.7, respectively.

However, the molecular envelope has been estimated to be 0.6 of Saturn’s radius from the

surface (Liu, Goldreich, & Stevenson, 2008).
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Figure 1.5: Image of Saturn captured by the Cassini spacecraft in 2016 (NASA, 2016d).

1.1.1 Galileo Mission

In 1989, the Galileo spacecraft was launched from the Atlantis space shuttle orbiting Earth

towards Jupiter, with its mission to collect observational data on Jupiter and its moons over

the course of two years (Fischer, 2001). Unlike the Voyager missions, Galileo was an orbiter

one. The spacecraft released the Galileo probe in 1995, which was capable of collecting

extensive data at Jupiter’s atmosphere between the surface and 22 bars (D’Amario, Bright,

& Wolf, 1992; Vasavada & Showman, 2005). Along with the data collected from Jupiter’s

moons, the Galileo mission was considered a success. At September 21, 2003, the Galileo

probe was scuttled via direct plummet into Jupiter near the equator, thus marking the end

of the Galileo mission (Vasavada & Showman, 2005).

Data collected by the atmospheric structure investigation instruments attached to the

probe provides some information on the temperature structure of Jupiter’s atmosphere be-

tween 0 and 22 bars at a planetographic latitude of roughly 7.3oN (Atkinson et al., 1998;

Magalhaes et al., 2002). From data collected by the instruments, Magalhaes et al. (2002)

were able to derive the pressure dependant temperature gradient (dT/dzd) profile of Jupiter’s

atmosphere with depth zd. Based on the temperature data from the T1 temperature sensor

alone (see FIG. 7 of Magalhaes et al. (2002)), the pressure dependant temperature gradient

profile varies between a minimum of roughly -0.10 K km−1 and a maximum of roughly 0.25

K km−1. Based on Magalhaes et al. (2002), any value of dT/dzd > 0 implies static stability.

Strong stratification exists between 0 and 9 bars. However, the atmospheric region past 9

bars appears to be weakly stratified since dT/dzd fluctuates between that static stability and

instability regions.
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Figure 1.6: Image of Saturn’s North pole captured by the Cassini spacecraft in December 3,

2016 (NASA, 2016a).

Along with the atmospheric structure investigation measurements, the Doppler winds

experiment instruments attached to the Galileo probe has allowed it to collect zonal wind

data up to and including 22 bars (Atkinson et al., 1998). The analysis of the zonal wind

structure data (see Figure 4 of Atkinson et al. (1998)) indicates that these winds plateau

at around 170 m s−1 past 10 bars up to and including 22 bars, and reaches a maximum

of around 180m/s near 5 bars. This data suggest that the zonal wind structure could be

constant beyond 22 bars. However, this is uncertain until more data can be collected beyond

22 bars in Jupiter’s atmosphere.
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Figure 1.7: Image of Saturn’s South pole captured by the Cassini spacecraft in May 11, 2007

(NASA, 2016b).

1.2 Two Models on Zonal Flow Driving Mechanism

The data provided by both the atmospheric structure investigation and Doppler winds ex-

periment has sparked some controversy about how Jupiter is able to maintain such a strong

zonal wind structure. One hypothesis called the shallow or weather layer hypothesis claims

that the winds are restricted within the cloud layer, where these winds are driven by cloud

physics. The other is the deep winds hypothesis, which claims that the winds are driven

within the deep convective region of the planet.

1.2.1 Weather Layer Hypothesis

The weather layer hypothesis claims that these wind jets are driven by mechanisms within

the cloud layer at the troposphere (Vasavada & Showman, 2005). From Irwin, Weir, Taylor,

Calcutt, and Carlson (2001), belts from Jupiter’s banded structure have high thermal emis-

sions while zones have low thermal emissions, in which this variability is mainly driven by

the cloud layer at around the 1.4 bar region. The likely mechanism for this thermal emissions

contrast is the condensation in the cloud layer. This leads to latitudinal thermal contrasts

that may result in vertical shear according to the thermal wind equations (Vasavada &

Showman, 2005). From both the cloud layer and the thermal contrasts, this leads to the

possibility that these flows are quasi-barotropic and are driven by baroclinic instabilities on

a rapidly rotating planet (Williams, 1978).
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1.2.2 Deep Winds Hypothesis

Based on the zonal wind profile from Atkinson et al. (1998), it suggests that these zonal

flows are adiabatic. This could be due to a strong convection region in the deep interior

that extends downward from the base of the stably stratified region to the base of Jupiter’s

molecular envelope (Vasavada & Showman, 2005). Assuming a convective rotating gas giant

with a molecular layer, convection cells will form around the tangent cylinder as a result,

where the tangent cylinder is a surface that is parallel to the planetary axis of rotation ẑ

and is tangent to the inner boundary as seen in Figure 1.8 (Busse, 1976). The fluid in these

convection cells moves in the form of Taylor columns that extend across the molecular layer

(Busse, 1976; Pedlosky, 1987).

From the deep winds hypothesis, the zonal winds observed in Jupiter are driven from

an interaction between the Taylor columns and the outer boundary within the molecular

envelope (Busse, 1976). The interaction between the Taylor columns and the outer boundary

leads to the generation of secondary zonal flow (Zhang, 1992). The curvature of the outer

boundary also leads to a tilt in the convection cells (Zhang, 1992). This results in a positive

feedback loop such that the generation of the secondary zonal flow will continue to tilt of

the convection cells until the Reynolds stresses balances out the internal viscous stresses

(Vasavada & Showman, 2005; Zhang, 1992). The zonal flow saturation and the energy

cascade cessation can be scaled by the Rhines Scale, which is inversely proportional to the

boundary curvature effect described by the β-parameter (Heimpel, Aurnou, & Wicht, 2005;

Rhines, 1975). Note that previous deep winds models typically only consider the molecular

layer. This is because the Lorentz forces associated with the metallic envelope act as a

restoring force such that the fluid motion in this envelope is much less than the motion in

the molecular layer.

1.2.3 Computational Models

Computational models that follow the weather layer hypothesis have seen success in gener-

ating some atmospheric properties as seen on Jupiter. A recent study by Morales-Juberias

and Dowling (2013) was able to replicate a great storm similar to that of the Great Red

Spot on Jupiter. However, their model does not include any cloud physics. Another study

by Scott and Polvani (2007) was able to generate a banded structure on an anelastic rotating

gas giant. Unfortunately, their model was unable to get the strong equatorial prograde jet

observed on Jupiter. However, most computational models that follow the Weather Layer

hypothesis are effectively 2.5-dimensional as radial or vertical velocity components are typ-
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Figure 1.8: An azimuthal slice of a spherical shell rotating around ẑ with the conductive

layer shaded by red representing the inner boundary and the non-conductive layer shaded by

blue. The tangent cylinder is represented by the orange translucent rectangle that is tangent

to the inner boundary and parallel to ẑ. Note that the conductive layer has a radius of 0.6

of the spherical shell’s radius.

ically solved from the mass conservation equation after numerically solving the horizontal

velocity components assuming hydrostatic balance (Dowling et al., 1998; Rivier, Loft, &

Polvani, 2002).

Numerical simulations following the deep winds hypothesis on gas giants have seen some

success in generating zonal jets with properties equivalent to Jovian zonal jets. One of

the first computational studies to generate zonal jets on a rotating Boussinesq convective

spherical shell is from Heimpel et al. (2005). This experiment was able to generate a strong

prograde equatorial jet and weaker high latitude alternating jets. Implementation of the
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anelastic approximation has only occurred in recent studies. Both studies from Gastine and

Wicht (2012) and Jones and Kuzanyan (2009) implemented rotating anelastic convective

spherical shell models with constant entropy boundary conditions. Their results show that

increasing the density stratification will cause the convection cells to form around the outer

boundary instead of the inner boundary. The explanation for this behaviour is that the

larger buoyancy terms become more confined near the outer boundary, while the fluid den-

sity increases at the inner boundary for increasing density stratification (Gastine & Wicht,

2012). The introduction of a stably stratified thin layer near the outer boundary have only

been found in recent studies. For example, Takehiro and Lister (2001) implemented the

stably stratified fluid layer near the outer boundary using constant temperature boundary

conditions at the inner and outer radii for rotating convective Boussinesq spherical shell

models. They showed that stably stratified fluid layer acts as a low pass filter, such that it

attenuates the large wavenumber horizontal components of the convection cells. This means

that the large wavenumber horizontal components can penetrate the stably stratified fluid

layer while the small scale components remains within the convectively unstable layer. Thus,

the implication is that the large scale horizontal components contributes to the zonal flow

near the outer boundary. Another study from Heimpel, Gastine, and Wicht (2016) use con-

stant entropy gradient boundary conditions to implement a stably stratified thin layer near

the outer boundary of a rotating anelastic convective spherical shell. Since an inward radial

entropy gradient is set at both boundaries, a volumetric entropy sink was used to ensure that

the overall heat of the system does not increase to infinity over time. Their model exhibits a

strong equatorial prograde jet, weaker higher latitude alternating jets and long-lived eddies

at the poles.

1.3 Objectives

In this thesis, we use numerical models to explore the effects that the stratified layer near

the top boundary have on the fluid dynamics of rotating anelastic spherical shells with

convection, and the fluid dynamics of North polar regional models on a rotating Boussinesq

spherical shell with convection. For our models with the stratified fluid layer, we conduct a

parameter study by varying the thermal forcing, the density stratification, and the stratified

fluid layer thickness of different models to see what dependancies the fluid motion exhibits.

We find that the the stably stratified fluid layer has a tendency to suppress zonal flow

oscillations. We also find that zonal jets become smoother as the stably stratified fluid layer

increases. However, for near-Boussinesq models with the stratified fluid layer thickness that
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extends from the outer boundary to half of the spherical shell, we are able to generate long-

lived eddies and even great eddies, where these great eddies are comparable to the Great

Red Spot on Jupiter. For the regional models, we apply the cubed-sphere coordinate system

onto our North polar regional models to avoid the avoid the polar singularities that the

conventional spherical Laplacian has. We also use various horizontal boundary conditions,

such as periodic and open, to account for the strong fluid motion associated with convection.

The results from these models are either unrealistic or numerically unstable.

Chapter one of describes the atmospheric dynamics of the gas giants based on obser-

vational data of Jupiter and Saturn. Chapter two introduces the numerical methods and

software used in these models. Chapter three discusses the results and feasibility of us-

ing regional modelling of Boussinesq convection on the North pole of the rotating spherical

shell. Chapter four discusses the implementation of the stably stratified fluid layer using the

constant conductive radial entropy gradient boundary conditions and its effect on the fluid

dynamics of the rotating anelastic convection on a spherical shell with varying density strat-

ification and thermal forcing. Chapter five analyzes eddy generation of a near-Boussinesq

model with an implemented stably stratified fluid layer.
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Chapter 2

Numerical Methods

Two sets of numerical models were used to simulate atmospheric behaviour of gas giants. The

first set of models use the global circulation model (GCM) software MITgcm. This software

is versatile such that it allows the use of non-linear orthogonal coordinate systems. MITgcm

was used to simulate fluid motion near the North pole of a rotating Boussinesq spherical shell

using cubed-sphere coordinate system but with a maximum latitudinal extent with origin

at 90oN. The second set of models use a dynamo modelling software called MagIC, which

allows for numerical simulations of the fluid motion of rotating anelastic spherical shells with

convection.

2.1 MagIC

The pseudo-spectral software, MagIC, solves the magnetohydrodynamic (MHD) conservation

equations for an anelastic fluid model in a spherical shell. This software is publicly available

at https://github.com/magic-sph/magic under the GNU GPL v3 licence. This software

was originally an anelastic solar dynamo code made by Glatzmaier (1984), which was later

used for the geodynamo by Glatzmaier and Roberts (1995). Wicht (2002) modified the

software to include an electrically conducting inner core. The Boussinesq version of the

code called MAG was developed by U. Christensen, Olson, and Glatzmaier (1999), which

uses temperature as its primary thermal variable. Further modifications by Gastine and

Wicht (2012) implemented the anelastic approximation which replaced temperature with

entropy. Recently, the spherical harmonics library called SHTns was implemented in MagIC

(Schaeffer, 2013). MagIC allows for implementation of constant entropy and constant radial

entropy gradient boundary conditions. This software was also tested and benchmarked

against other dynamo models (Breuer et al., 2010; U. R. Christensen et al., 2001; Jones
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et al., 2011). For this thesis, the non-magnetic form of the MHD equations are used with

constant radial entropy gradient boundary conditions.

2.1.1 Rotating Boussinesq Convection Equations

A fluid that flows in response to heating below and cooling above undergoes the process of

thermal convection (Chandrasekhar, 1981). Conservation of mass, momentum and energy

are needed to provide a complete mathematical description of the fluid motion, in which the

formulation of these equations can be seen in literature such as Chandrasekhar (1981), Ped-

losky (1987), and Tritton (1988). In order to obtain a unique solution, boundary conditions

need to be specified. For the case of a convective Boussinesq fluid, thermal boundary con-

ditions across the top and bottom are defined with either constant temperature or constant

radial temperature gradient.

For a convective fluid inside a spherical shell with an inner radius ri and an outer radius ro

with a rotation rate of Ω = Ωẑ along the axis of rotation ẑ, the mass conservation equation

is given by

∂ρ

∂t
+∇ · ρu = 0, (2.1)

where ρ = ρ(r, t) is the density with spherical position vector r = (r, θ, φ) and time t, and

u = u(ur(r, t), uφ(r, t), uθ(r, t)) is the velocity field that includes the r, φ, and θ velocity

components defined as ur, uφ, and uθ, respectively.

The momentum conservation equation with rotation and convection is given by

∂u

∂t
+ u · ∇u = −1

ρ
∇P − 2Ω(ẑ × u) + ν∇2u+ αgT r̂ − gr̂, (2.2)

where P = P (r, t) is the pressure, T = T (r, t) is the temperature, ν is the kinematic viscosity,

α is the thermal expansion coefficient, and g is the gravitational acceleration along the r̂

direction. However, we can rewrite the pressure as

P = P + P ′, (2.3)

where P0 is the hydrostatic pressure and P ′ is the perturbation pressure. Since ∇P̄ = −gρr̂,

we can rewrite the momentum conservation equation as

∂u

∂t
+ u · ∇u = −1

ρ
∇P ′ − 2Ω(ẑ × u) + ν∇2u+ αgT r̂. (2.4)
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The energy conservation equation with no internal heat generation is defined by

∂T

∂t
+ u · ∇T = κ∇2T , (2.5)

where κ is the thermal diffusivity.

Under the Boussinesq approximation, a fluid that can be treated as incompressible from

the flow can simplify the governing equations by making ρ = ρ0 homogeneous in all but the

energy conservation equation. This simplifies equation (2.1) to

∇ · u = 0, (2.6)

which changes equation (2.4) to

∂u

∂t
+ u · ∇u = − 1

ρ0
∇P ′ − 2Ω(ẑ × u) + ν∇2u+ αgT r̂. (2.7)

This approximation is valid when modelling thermal convection in oceans, mantles and inner

cores, where the fluid experiences negligible density changes due to compression (Glatzmaier,

2014).

2.1.1.1 Dynamic Similarity

If the non-dimensional governing parameters of two similar fluid systems match each other

equally, then their fluid motion are dynamically similar to each other (Tritton, 1988). In the

case for rotating convection, these governing parameters can be obtained by first determin-

ing the non-dimensional form of the governing equations. In order to convert the governing

equations represented by equations (2.5) to (2.7) into their non-dimensional form, the vari-

ables r, u, t, T , and P must first be expressed in terms of their dimensionless counterparts
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denoted by the ∗ notation represented by the following equations:

r = (d)r∗,

u =
(κ
d

)
u∗,

t =

(
d2

κ

)
t∗,

T = (ΔT )T ∗,

P ′ =
(ρκν

d2

)
P ∗.

(2.8)

Note that d = ro − ri represents the length scale, d2/κ represents the thermal diffusion time

scale, and ΔT represents the temperature difference between the top and bottom boundaries.

Substituting equation (2.8) into the momentum conservation equation (2.4) turns it into

(
κ2

d3

)(
∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
=−

(ρκν
d3

) 1

ρ
∇∗P ∗ −

(κ
d

)
2Ω(ẑ × u∗)+

+
( κ

d3

)
ν∇∗2u∗ + (ΔT )αgT ∗r̂,

(2.9)

where ∇ = (1/d)∇∗.

Dividing both sides of equation (2.9) by κ2/d3 leads to

(
∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
=−

(ν
κ

)
∇∗P ∗ −

(
d2

κ

)
2Ω(ẑ × u∗)+

+

(
1

κ

)
ν∇∗2u∗ +

(
ΔTd3

κ2

)
αgT ∗r̂.

(2.10)
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However, dividing both sides of equation (2.10) by ν/κ leads to

(κ
ν

)(
∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
=−∇∗P ∗ − 2

(
Ωd2

ν

)
(ẑ × u∗)+

∇∗2u∗ +
(
gαΔTd3

κν

)
T ∗r̂.

(2.11)

The coefficients in equation (2.11) form the non-dimensional parameters that classify and

govern the fluid motion present in the system. Rewriting equation (2.11) as

1

Pr

(
∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
= −∇∗P ∗ − 2

E
(ẑ × u∗) +∇∗2u∗ +RaT ∗r̂, (2.12)

these parameters are called the Prandtl Number Pr, the Ekman Number E, and the Rayleigh

number Ra, which are represented by

Pr =
ν

κ
, (2.13)

E =
ν

Ωd2
, (2.14)

and

Ra =
gαd3ΔT

κν
. (2.15)

The Prandtl number Pr is defined as the ratio between kinematic viscosity and thermal

diffusivity. The Ekman number E represents the ratio between kinematic viscosity and the

Coriolis term. The Rayleigh number Ra represents the ratio between buoyancy term and

the diffusivity term (Wicht, 2002). Note that each convective model has a critical Rayleigh

number Rac. If Ra > Rac, then instabilities occur in the fluid model due to convection

(Chandrasekhar, 1981). Otherwise, the fluid remains stable with a dominant conductive

heat transport.

Equation (2.8) is substituted into the energy conservation equation (2.5), becoming

(
κΔT

d2

)(
∂T ∗

∂t∗
+ u∗ · ∇∗T ∗

)
=

(
κΔT

d2

)
∇∗2T ∗. (2.16)
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Since the coefficients on both sides of equation (2.16) are the same, the conservation equation

remains relatively unchanged as seen by the following equation:

∂T ∗

∂t∗
+ u∗ · ∇∗T ∗ = ∇∗2T ∗. (2.17)

Likewise, the conservation of mass equation represented by equation (2.6) is simply

∇∗ · u∗ = 0. (2.18)

2.1.2 Rotating Anelastic Convection Equations

For fluid models that undergo non-negligible density variations under mechanical forcing,

the Boussinesq approximation would not be appropriate to use. However, solving the fully

compressible rotating convection equations would also include sound waves in the model.

Unfortunately, sound waves would make resolving the model computationally costly because

the timescales of them are much smaller than the timescales of the convective fluid motion

(Jones et al., 2011). Therefore, an appropriate approximation to use that would allow for non-

negligible density variations and eliminate sound waves is be the anelastic approximation.

Based on Jones et al. (2011) and Gastine and Wicht (2012), the rotating anelastic con-

vection equations are derived by separating the thermodynamic variables (density ρ, temper-

ature T and pressure P ) into their adiabatic background state (denoted by the bar notation)

and perturbation term (denoted by the ′ notation). These variable turn into the following

equations:

ρ = ρ̄+ ρ′,

T = T̄ + T ′,

P = P̄ + P ′.

(2.19)

Assuming that gravity g(r) ∼ r−2 for a fluid in a spherical shell with inner radius ri and an

outer radius ro, ρ̄ is defined as

ρ̄(r) = T̄mp , (2.20)
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where T̄ is represented by

T̄ (r) =
c0

(1− η)r
+ 1− c0. (2.21)

The coefficient c0 is defined as

c0 =
η

1− η

(
exp

[
Nρ

m

]
− 1

)
, (2.22)

where Nρ is defined by

Nρ = ln

[
ρ̄(ri)

ρ̄(ro)

]
. (2.23)

Note that η = ri/ro represents the radius ratio and Nρ represents the number of density

scale heights or density stratification (Gastine & Wicht, 2012). The fluid in the spherical

shell is modelled as an ideal gas with background density ρ̄, background temperature T̄ , and

polytropic index mp (Gastine & Wicht, 2012).

From Gastine and Wicht (2012), this leads to the dimensionless conservation equations

for mass, momentum and energy defined as

∇ · ρ̄u = 0, (2.24)

E

(
∂u

∂t
+ u · ∇u

)
=

1

ρ̄
∇P ′ − 2ẑ × u+

RaE

Pr

r2o
r2
sr̂ +

E

ρ̄
∇ · S, (2.25)

and

ρ̄T̄

(
∂s

∂t
+ u · ∇s

)
=

1

Pr
∇ · ρ̄T̄∇s+Diρ̄S2, (2.26)

respectively, where the traceless rate-of-strain tensor S is represented by

S = ρ̄

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij

∂uk

∂xk

)
. (2.27)

Equation (2.27) is in indicial notation using the Kronecker delta δij. Note that these equa-

tions are applied onto a fluid in a spherical shell of shell thickness d = ro− ri with a rotation

rate of Ω around an axis of rotation ẑ with an entropy difference of Δs across the inner and

outer radii. The fluid properties used in these equations are thermal diffusivity κ, kinematic
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viscosity ν and specific heat at constant pressure cp.

Similar to the non-dimensional form for the Boussinesq rotating convection equations,

the anelastic rotating convection equations also have governing non-dimensional parameters.

For the anelastic version, the Prandtl number Pr, Ekman number E and Rayleigh number

defined by the following equations:

Pr =
ν

κ
, (2.28)

E =
ν

Ωd2
, (2.29)

Ra =
goαd

3Δs

cpκν
. (2.30)

Note that go = g(r = ro). The dissipation number Di is defined by

Di =
ηPr

Ra

(
exp

[
Nρ

m

]
− 1

)
. (2.31)

Another non-dimensional parameter that can also be applied to equation (2.24) is the

modified Rayleigh number Ra∗ defined by

Ra∗ =
RaE2

Pr
=

goΔs

cpΩd
, (2.32)

which turns equation (2.25) into

E

(
∂u

∂t
+ u · ∇u

)
=

1

ρ̄
∇P ′ − 2ẑ × u+

Ra∗

E

r2o
r2
sr̂ +

E

ρ̄
∇ · S. (2.33)

However, to obtain unique solutions in solving these governing equations, boundary con-

ditions need to be defined at ri and ro. For the case of an anelastic fluid, constant conductive

entropy or constant conductive entropy gradient boundary conditions can be implemented.

As such, the modified flux-based Rayleigh number Ra∗f is introduced and defined by

Ra∗f =
g

cpΩ2

∣∣∣∣∂sc∂r

∣∣∣∣Nu∗, (2.34)
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where sc is the conductive entropy and Nu∗ is the modified Nusselt number represented by

Nu∗ =
Qf

ρTΩd2(dsc/dr))
. (2.35)

Note that Qf represents the heat flux.

2.1.3 Poloidal and Toroidal Decomposition

Before discussing the numerical methods used in the pseudo-spectral code MagIC, a de-

scription of poloidal and toroidal decomposition is needed. The following sections detailing

the poloidal and toroidal decomposition, the spherical harmonic representation, the radial

representation, and the time stepping are based on the MagIC documentation.

Any vector field, a, that satisfies

∇ · a = 0 (2.36)

is called a solenoidal field. Since ρ̄u in the mass conservation equation for the anelastic

approximation defined by equation (2.24) satisfies (2.36), it can be separated into poloidal

and toroidal components defined by

ρ̄u = ∇× (∇× Uγ r̂) +∇× Uζ r̂, (2.37)

where Uγ is the poloidal potential and Uζ is the toroidal potential.

In spherical coordinates, the horizontal gradient operator ∇Hb, the horizontal divergence

operator ∇H · a, and the horizontal curl operator ∇H × a are defined by

∇Hb =
1

r

∂b

∂θ
θ̂ +

1

r sin θ

∂b

∂φ
φ̂, (2.38)

∇H · a =
1

r sin θ

∂

∂θ

(
sin θa · θ̂

)
+

1

r sin θ

∂

∂φ

(
a · φ̂

)
, (2.39)

and

∇H × a =
1

r

[
1

sin θ

∂

∂φ
(a · r̂)− ∂

∂r
(ra · φ̂)

]
θ̂ +

1

r

[
∂

∂r
(ra · θ̂)− ∂

∂θ
(a · r̂)

]
φ̂, (2.40)

where b is any given scalar field (e.g., Griffiths, 1999). The horizontal Laplacian ΔH is a
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combination of both the horizontal gradient and the horizontal divergence and is defined by

ΔH = ∇H · ∇H =
1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
, (2.41)

which can operate on any scalar field.

Expanding equation (2.37) turns ρ̄u into

ρ̄u =
1

r

[
− 1

r sin θ

(
∂

∂θ

(
sin θ

∂Uγ

∂θ

)
+

1

sin θ

∂2Uγ

∂φ2

)
r̂ +

(
∂

∂r

∂Uγ

∂θ

)
θ̂+

+
1

sin θ

(
∂

∂r

∂Uγ

∂φ

)
φ̂

]
+

1

r

[
1

sin θ

(
∂Uζ

∂φ

)
θ̂ −

(
∂Uζ

∂θ

)
φ̂

]
,

(2.42)

which can be simplified into

ρ̄u = −ΔHUγ r̂ +∇H
∂

∂r
Uγ +∇H × (Uζ r̂). (2.43)

Taking the curl of ρ̄u turns equation (2.43) into

∇× ρ̄u =

[
− 1

r sin θ

∂

∂φ

(
ΔH +

∂2

∂r2

)
Uγθ̂ +

1

r

∂

∂θ

(
ΔH +

∂2

∂r2

)
Uγφ̂

]
+

+

[
1

r2 sin θ

(
∂

∂θ

(
sin θ

∂Uζ

∂θ

)
+

1

sin θ

(
∂2Uζ

∂φ2

))
r̂ +

+
1

r

(
∂

∂r

∂Uζ

∂θ

)
θ̂ +

1

r sin θ

(
∂

∂r

∂Uζ

∂φ

)
φ̂

]
,

(2.44)

which can be simplified into

∇× ρ̄u =
1

r

[(
∂

∂θ
φ̂− 1

sin θ

∂

∂φ
θ̂

)(
ΔH +

∂2

∂r2

)
Uγ

]
+∇H

∂

∂r
Uζ −ΔHUζ r̂. (2.45)
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2.1.4 Spherical Harmonic Representation

A natural choice for expanding the θ and φ terms is the spherical harmonics function Y m
l (θ, φ)

defined by

Y m
l (θ, φ) = Pm

l (cos θ)eimφ, (2.46)

where l andm represent the degree and order, respectively. The function Pm
l is the associated

Legendre function defined by

Pm
l (x) = (1− x2)|m|/2

(
d

dx

)|m|
Pl(x), (2.47)

where Pl represents the Legendre polynomial defined by

P l(x) =
1

2ll!

(
d

dx

)l

(x2 − 1)l, (2.48)

(e.g., Griffiths, 2005).

MagIC normalizes equation (2.46) using the orthogonality relation represented by

∫ 2π

0

∫ π

0

Y m
l (θ, φ)Ȳ m′

l′ (θ, φ) sin θdθdφ = δll′δ
mm′

, (2.49)

leading to

Y m
l (θ, φ) =

√
1

4π

(2l + 1)(l − |m|)!
2(l + |m|)! Pm

l (cos θ)eimφ(−1)m. (2.50)

Note that Ȳ m
l represents the complex conjugate of Y m

l . Thus, the poloidal potential Uγ(r, θ, φ)

can be represented in terms of the normalized spherical harmonics. This means that Uγ(r, θ, φ)

can be defined as

Uγ(r, θ, φ) =
lmax∑
l=0

l∑
m=−l

Wlm(r)Y
m
l (θ, φ). (2.51)

In order to transform Uγ(r, θ, φ) from grid space into spherical harmonic space, a two step

process is needed. The spherical coefficient function Wlm(r), represented by

Wlm(r) =
1

π

∫ π

0

Wm(r, θ)P
m
l (cos θ) sin θdθ, (2.52)
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needs to be solved, where Wm(r, θ) is defined by

Wm(r, θ) =
1

2π

∫ π

0

Uγ(r, θ, φ)e
−imφdφ. (2.53)

Note that Uγ(r, θ, φ) is a real function such that the complex conjugate of Wlm(r) can be

rewritten as W ∗
lm(r) = Wl,−m due to the symmetry of spherical harmonics. As a result,

m ≥ 0 is only considered when solving for Wlm(r).

MagIC solves the coefficient function by first discretizing the grid space in θ and φ. The

latitudinal points are defined as θ = θj, which are set by the Gaussian quadrature with Nθ

number of points while φ = φi are the longitudinal points defined evenly with a minimum

Nφ = lmax + 1 number of points. MagIC numerically solves (2.52) using

glm(r) =
1

Nθ

Nθ∑
j=1

wjgm(r, θj)P
m
l (cos θj), (2.54)

where fast Fourier transforms are applied in the longitudinal direction where wj represents

the weights. Note that lmax is chosen such that lmax = (Nθ−1)/3 in order to prevent aliasing.

2.1.5 Radial Representation

The radial dependencies are expanded into Chebyshev polynomials Cn(x), which is defined

by

Cn(x) = cos(n arccos(x)) (2.55)

of order n for −1 ≤ x ≤ 1 in MagIC. However, −1 ≤ x ≤ 1 is mapped onto the radial

direction of range ri ≤ r ≤ ro. Expanding Wlm(r) in terms of Cn(r) leads to

Wlm(r) =
N∑

n=0

WlmnCn(r), (2.56)

which is truncated to order N .

To transform Wlr(r) into spectral space from grid space, Wlmn must be solved by

Wlmn =
2− δn0

π

∫ 1

−1

Wlm(r(x))Cn(x)√
1− x2

dx, (2.57)
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where x(r) is defined as

x(r) = 2
r − ri
ro − ri

− 1. (2.58)

For CNr−1 with Nr number of Chebyshev radial grid points, the radial grid points with index

k = 1, 2, ..., Nr can be determined by first discretizing x using

xk = cos

(
π

k − 1

Nr − 1

)
. (2.59)

Then, the Chebyshev radial grid points are chosen using the Chebyshev polynomials defined

by

Cn(xk) = cos

(
π
n(k − 1)

Nr − 1

)
(2.60)

The advantage of using the Chebyshev polynomials for defining the radial grid points

is that it increases the grid point density towards the inner and outer boundaries where

thermal and viscous boundary layers are defined, allowing the program to better resolve the

fluid behaviour near the boundaries. To prevent aliasing, N > Nr must be chosen where N

represents the total number of radial grid points and is typically chosen as N = Nr + 2.

2.1.6 Time Stepping

MagIC uses a combination of both implicit and explicit approaches for time stepping. Ex-

plicit time stepping schemes are typically accurate but are computationally expensive due to

the rather low time step δt required to satisfy the stability criterion of the given numerical

model (Press, Teukolsky, Vetterling, & Flannery, 2007). On the other hand, implicit time

stepping schemes are typically stable for larger time steps, which can be more computation-

ally efficient compared to explicit schemes. However, when choosing the appropriate scheme

for solving the governing equations, a purely implicit scheme will not be computationally

efficient since all of the spherical harmonic terms are coupled by the non-linear terms. This

results in a loss in computational efficiency at higher resolution, which outweighs the gain

from purely implicit schemes due to the involvement of a large matrix rather than a series

of smaller matrices. Another foreseeable problem is the Coriolis term because it has the

(l,m, n) modes that couple with the (l− 1,m, n) and (l+1,m, n) modes. The Coriolis term

also couples with both the toroidal and poloidal flow potentials. Thus, combining both im-

plicit and explicit schemes would lead to a more computationally efficient method compared
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to either fully implicit or fully explicit schemes.

To describe the explicit and implicit time stepping scheme that MagIC uses, the general

differential equation in time needs to be considered and is defined as

∂x

∂t
= −QI(x, t) +QE(x, t), (2.61)

where QI represents the implicit time stepping scheme and QE represents the explicit time

stepping scheme. Note that Qk
I = QI(x, tk) and xk = x(tk) where tk represents the kth time

step. Using the recursive time stepping equation, tk+1 = tk + δt, the implicit time stepping

scheme can be defined as(
xk+1 − xk

δt

)
QI

= − (
wQk+1

I + (1− w)Qk
I

)
, (2.62)

where the weight of tk+1 is defined as w. Note that if w = 0.5, then (2.62) resembles that of

the implicit Crank-Nicholson scheme (Press et al., 2007).

The explicit time stepping scheme is defined as

(
xk+1 − xk

δt

)
QE

=
3

2
Qk

E − 1

2
Qk−1

E , (2.63)

which is known as the Adams-Bashforth scheme.

The combination of equations (2.62) and (2.63) leads to

(
xk+1 − xk

δt

)
+ wQk+1

I + (1− w)Qk
I =

3

2
Qk

E − 1

2
Qk−1

E , (2.64)

which is the mixed implicit and explicit time stepping scheme that MagIC uses.

2.1.7 Diagnostics and Output

MagIC has built-in functions that allows for output of diagnostic ascii files and visualization

binary files. The diagnostics files are typically time series files, with emphasis on the kinetic

energy time series. This kinetic energy time series file contains both the toroidal and poloidal

volume averaged energy components, providing information on the thermal forcing strength

and the zonal flow development of the fluid system. Another useful diagnostic file is the

background entropy, density, and gravity radial profiles of the fluid system. The binary files

on the other hand provide information on the entropy and velocity profiles of the fluid flow

at a given timestep. The r, φ, and θ components of both the fluid velocity are available
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for visualization along any surface of constant φ, θ, or r. The entropy profiles can also be

visualized along any surface of constant φ, θ, or r. The fluid velocity is typically scaled by

the Reynolds number Re = Re(ui) defined by

Re(ui) =
uid

ν
, (2.65)

where it uses the ith component of velocity field u. The Reynolds number represents a ratio

between the inertial forces and the momentum diffusivity. However, another non-dimensional

number to scale the velocity field to is the Rossby number, which is defined by

Ro(ui) =
ui

Ωd
. (2.66)

For rotating fluid models, the Rossby number is preferred over the Reynolds number since

it shows the strength of the fluid speed relative to the Coriolis term. To convert the Rossby

number from the Reynolds number,

Ro = ReE (2.67)

must be used, where E is the Ekman number. The kinetic energy is solved using a volume

(V ) integration given by

KE =
1

2

∫
V

ρ̄u · udV , (2.68)

which is separated into the toroidal and poloidal components KEζ and KEγ, respectively,

such that KE = KEζ + KEγ. However, to keep KE consistent with Gastine and Wicht

(2012), the velocity u in equation (2.68) will not be scaled to Ro.

2.2 MITgcm

MITgcm is a global circulation model that can solve both the Boussinesq and anelastic gov-

erning equations of either ocean or atmospheric systems. This software is public, which is

available at http://mitgcm.org/public/source code.html under the copyright of Mas-

sachusetts Institute of Technology. This software uses the the finite-volume method to solve

the Boussinesq non-hydrostatic governing equations using an Arakawa-C grid (Adcroft, Hill,

& Marshall, 1997; Marshall, Adcroft, Hill, Perelman, & Heisey, 1997; Marshall, Hill, Perel-

man, & Adcroft, 1997). Due to the use of the finite-volume method, MITgcm allows for
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implementation of flexible topography models systems from small scales (such as lakes or

rivers) to larger scales (such as oceans or planets) (Adcroft, Campin, Hill, & Marshall, 2004).

MITgcm also implements the forward quasi-second order Adams-Bashford time-stepping

scheme for the momentum conservation equations (Adcroft et al., 1997). MITgcm boasts

automatic maintenance for generated adjoint and allows for serial or parallel jobs across

multiple computer technologies (Heimbach, Hill, & Giering, 2002; Hill, Adcroft, Jamous, &

Marshall, 1999; Hill & Marshall, 1996). Furthermore, this program allows implementation

of Cartesian, cylindrical, spherical, or any well defined orthogonal grid system such as the

cubed-sphere grid, which was benchmarked against the cubed-sphere model by Held and

Suarez (1994) (Adcroft et al., 2004). Another key feature for MITgcm is the implementa-

tion of horizontal open boundary conditions (Gopalakrishnan, Cornuelle, Hoteit, Rudnick, &

Owens, 2013). For this thesis, the linear free-surface non-hydrostatic Boussinesq equations

are used on a regional cubed-sphere oceanic model with several different horizontal boundary

conditions implemented. The descriptions of the governing equations and open boundary

conditions are based on the MITgcm documentation.

2.2.1 Governing Equations

Global circulation model’s simulate fluid dynamical behaviour on atmospheric or oceanic

systems that are typically associated with Earth. They do this by solving the conservation

equations for mass, momentum and potential temperature equations. For oceanic models,

the salinity conservation equation is used if salinity is included in the model. However,

GCM’s also require the density of states to solve these equations, which are normally based

off an ocean or atmospheric system. For regional numerical models, horizontal and vertical

boundary conditions must be set such that solving the governing equations converge to a

unique solution.

The Boussinesq momentum conservation for the non-hydrostatic formulation is separated

into both the horizontal and vertical components defined by

∂uh

∂t
+ u · ∇uh +

1

ρ0
∇hP

′ + (2Ω× u)h = Gh (2.69)

and

∂u3

∂t
+ u · ∇u3 +

1

ρ0

∂P ′

∂x3

+ k̂ · (2Ω× u)− ρ′

ρ0
g = k̂ ·G, (2.70)

respectively, under any given orthogonal coordinate system x = x1î + x2ĵ + x3k̂, where
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û = u1(x)î+u2(x)ĵ+u3(x)k̂ is the velocity field, h notation denotes horizontal components

î and ĵ, pressure P , density ρ, planetary vorticity Ω, and the dissipation and metric terms

G. Note that in order to derive equations (2.69) and (2.70), ρ and P are separated into their

reference and perturbation terms denoted by 0 and ′ notation, respectively, represented by

ρ = ρ0 + ρ′ (2.71)

and

P = P0 + P ′. (2.72)

Density ρ is typically associated with the equation of state, which in this case is the linear

approximation for an ocean body defined by the empirical equation

ρ(T,S , P ) = ρ0(1− αT (T − T0)− βS (S − S0) + βP (P − P0)), (2.73)

where S is salinity and T is temperature. The parameters αT , βS and βP are defined

as the thermal expansion coefficient, saline contraction coefficient and the compressibility

coefficient, respectively. For an ocean system, these parameters are conventionally set to

αT ≈ 2(±1.5) · 10−4K−1, βS ≈ 7.6(±0.2) · 10−4ppt−1 and βP ≈ 4.1(±0.5) · 10−10Pa−1

(Vallis, 2006). Note that the reference or hydrostatic pressure P0 is absent in the momentum

conservation equation since it provides no contribution to the fluid dynamics.

Implementation of the free surface can also be included. Since the models of interest are

convective fluid regional models on a rotating spherical shell, no precipitation, evaporation,

or run-offs are needed. Therefore, the linear approximation for the free surface is given by

∂ι

∂t
+ u1|x3=ι−ι0

∂ι

∂x2

+ u2|x3=ι−ι0

∂ι

∂x2

+ u3|x3=ι−ι0 = 0, (2.74)

where ι is the elevation of the fluid relative to the mean fluid elevation ι0 (Roullet & Madec,

2000). Note that depth coordinate at ι0 is set to x3 = 0. Under the Boussinesq approxima-

tion, equation (2.74) can be rewritten as

∂ι

∂t
+ u1|x3=ι−ι0

[
1− ∂ι

∂x2

]
+ u2|x3=ι−ι0

[
1− ∂ι

∂x2

]
= 0. (2.75)

Note that the linear free surface approximation is needed if the non-rigid lid and free-slip top

boundary conditions are implemented in MITgcm. For rotating convective fluid dynamics,

the rigid lid approximation would be detrimental as it filters out external gravity waves,
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altering the nature of the barotropic Rossby waves (Roullet & Madec, 2000). Free-slip

is also needed as the no-slip boundary conditions suppresses zonal flow at the boundaries

(Gastine & Wicht, 2012).

Under the Boussinesq approximation, the conservation of mass equation is defined by

∇h · uh +
∂u3

∂x3

= 0. (2.76)

The potential temperature (Θ) conservation equation is defined by

∂Θ

∂t
+ u · ∇Θ = GΘ, (2.77)

where GΘ represents the forcing and dissipation of Θ. To describe potential temperature,

let us consider a fluid parcel at some pressure P and temperature T . If we take the fluid

parcel and adiabatically brought it to P0, then the temperature of the fluid at P0 is called

potential temperature, which is a conserved quantity (Pedlosky, 1987).

In this thesis, the fluid in the regional models do not have salinity. Thus, the salinity

conservation equation will not be used.

MITgcm uses the constant horizontal eddy viscosity Ah instead of kinematic viscosity

where h represents the horizontal component. By definition, horizontal eddy viscosity rep-

resents the the damping term due to stresses from the vertical plane and is defined by

Ah =
(vC
π

)2

δs2|D̄|, (2.78)

which is based on formulation from Smagorinsky (1963), where vC represents a dimensionless

scaling factor, δs represents the local grid spacing and |D̄| representing the the horizontal

velocity deformation rate. Eddy viscosity is somewhat similar to the kinematic viscosity

because they both can be thought of as the diffusivity of momentum and vorticity (Tritton,

1988).

2.2.2 Open Boundary Conditions

The typical horizontal boundary conditions implemented in regional models are periodic.

Periodic boundary conditions are defined by

χ(x = BL1) = χ(x = BL2), (2.79)

where χ is any dynamic variable and x can be any horizontal coordinate (x1 or x2) with
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x = BL1 and x = BL2 indicating the location of both boundaries along x. However, the use

of periodic horizontal boundary conditions is unrealistic for some models, such as North or

South pole regional models or models with strong thermal forcing at the bottom boundary.

Thus, open boundary conditions were implemented in MITgcm to allow for more realistic

fluid behaviour in regional models, which are defined such that the boundary in the model

can appear as though it extends to infinity (Camerlengo & O’Brien, 1980).

One example of dampening the fluid motion at the horizontal open boundary is the

sponge layer. In MITgcm, it is represented by

Gsponge
χ =

(1− l∗)(χ− χBL)

(1− l∗)τb − l∗τi
. (2.80)

The dissipation term applied to any dynamic variable χ in their respective conservation

equation is called Gsponge
χ , where 0 < l < Ls with sponge layer thickness Ls and l∗ = l/Ls,

χBL represents χ located at any horizontal boundary, and τb and τi represents the relaxation

time scales at the boundary and at l = 0, respectively. The problem with the open boundary

conditions with a sponge layer is that it potentially requires a large number of grid points

to be set up as the sponge layer for the model to converge to a realistic solution.

Another way of damping the fluid at the horizontal open boundary is the radiative

condition, in which MITgcm implements the Orlanski boundary conditions from Orlanski

(1976). The Orlanski condition are a modification of the Sommerfield radiative condition,

which solves the radiation condition, represented by

∂χ

∂t
+ Cχ

∂χ

∂x
= 0, (2.81)

at the boundaries, where Cχ is the wave phase velocity. Orlanski (1976) numerically deter-

mines Cχ using

Cχ = − χk
B−1 − χk−2

B−1

χk
B−1 + χk−2

B−1 − χk−1
B−1

δx

2δt
, (2.82)

where χk
B = χ(tk, xB) with time tk = t0 + kδt for some initial time t0 and xB representing

the location of the boundary with index B. To determine χk+1
B , the recursive equation given

by

χk+1
B =

1− δt
δx
Cχ

1− δt
δx
Cχ

χk−1
B +

2 δt
δx
Cχ

1 + δt
δx
cχ

χk
B−1 (2.83)
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must be used. Equation (2.83) must also satisfy the following condition:

0 ≤ Cχ < δx/δt. (2.84)

2.2.3 Cubed-Sphere Coordinate System

Ideally, using the conventional spherical coordinate system should suffice for simulating the

fluid dynamics of a rotating spherical fluid model. However, let’s consider the full spherical

gradient term as seen in the momentum conservation equations (2.69) and (2.70) given by

Δb = r̂
∂b

∂r
+ θ̂

1

r

∂b

∂θ
+ φ̂

1

r sin θ

∂

∂φ
, (2.85)

where b is any scalar field. Due to the presence of the 1/ cosλ = 1/ sin θ term in the

spherical gradient operator with latitude λ, a singularity exists at λ = 90oN or S (Adcroft et

al., 2004). Another problem with using the conventional spherical convention is the spacing

near the poles. Defining the spacing between two points along a line of constant latitude as

δx with constant longitudinal spacing defined as δφ, δx decreases as λ increases northward

or southward from the equator as seen by

δx = Rδφ cosλ, (2.86)

where R is the mean planetary radius and φ is the longitude (Adcroft et al., 2004).

One way to get around this is the cubed-sphere coordinate system. It projects a sphere

onto a cube of length a by partitioning the sphere into six equal faces labelled Pn for n =

1, 2, 3, 4, 5, 6. The faces P5 and P6 are the North and South faces respectively as seen in Figure

2.1 (Nair, Thomas, & Loft, 2005). Each face has their own local Cartesian coordinate system

defined as (xn, yn) and centred on their respective face such that |xn| ≤ a/2 and |yn| ≤ a/2.

An example of the cubed-sphere coordinate system on a full sphere can be seen on Figure

2.2. MITgcm implements the conformal grid from Rancic, Purser, and Mesinger (1996) and

the use of finite volume scheme to solve the momentum equations (Adcroft et al., 2004).

Studies such as Kwok, Hunke, Maslowski, Menemenlis, and Zhang (2008) and Kataria et

al. (2016) use MITgcm with implementation of the cubed-sphere coordinate system to allow

more uniform spacing and avoid polar singularities.
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Figure 2.1: A schematic showing all of the faces of a cube labelled Pn for n = 1, 2, 3, 4, 5, 6.

Note that the dashed lines represents the respective Pn’s connection with other faces such

as P5’s connection with P3.

2.2.4 Diagnostics and Output Files

Just like MagIC, MITgcm outputs both ascii diagnostic and binary visualization files. How-

ever, the diagnostic files must be implemented by an external package and only outputs

the diagnostic value horizontally averaged per vertical level per time step. To simplify the

diagnostic output, the code was modified such that the diagnostic values are volumetrically

averaged per time step instead. The diagnostic variable used is the squared velocity compo-

nent value ui
2, which is proportional to the kinetic energy of the system. The visualization

binary files are outputted per time step. These binary files output the velocity components,

temperature, and surface height in a three-dimensional array per time step. All dynamic

and diagnostic outputs are in dimensional units. The velocity and energy variables will be

scaled in terms of the Rossby number defined by

Ro(ui) =
ui

LΩ
, (2.87)

where L is the vertical length scale of the model. Time will also be scaled to the viscous
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Figure 2.2: A schematic of a 16x16 cubed-sphere coordinate system using the Gnomic grid.

The figure on the left uses a spherical representation of the earth with different colours

indicating different faces. The figure on the right provides another view of the cubed-sphere

coordinate system centred on one of the faces (GFDL, 2016).

diffusion time defined by

τ =
L2

A
. (2.88)

The volume averaged temperature time series data are also scaled into a non-dimensional

quantity (T ∗) defined by

T ∗ =
1

ΔT

(
T − ΔT

2

)
, (2.89)

where ΔT represents the temperature difference between the top and bottom boundaries.
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Chapter 3

Regional Rotating Boussinesq

Non-Hydrostatic Simulations using

Cubed-Sphere Curvilinear Grid

System

Depending on the topography and coordinate system, regional modelling provides more focus

on the fluid dynamics of smaller fluid bodies or a small region of fluid planets. The focus

of this regional model will be on the polar region of a rotating convective Boussinesq fluid

planet in an attempt to replicate the high latitude jets as observed on Jupiter and Saturn

by various space probes and ground-based telescopes. Appropriate top and bottom thermal

boundary conditions are implemented to force the fluid into a convective state.

To ensure that the fluid is forced into a convective regime, the thermal forcing must be

strong enough such that the Rayleigh number is larger than the system’s critical Rayleigh

number. This is done by implementing a constant hot temperature boundary condition

at the lower boundary and a constant cold temperature boundary condition at the upper

boundary such that the temperature difference across the upper and lower boundaries leads to

a Rayleigh number greater than the critical Rayleigh number. The thermodynamic properties

of the model, such as the thermal diffusivity and thermal expansivity, are also modified such

that the Rayleigh number is past critical.

Since this is a regional model focusing on a polar region of a rotating convective Boussi-

nesq planet, the cubed-sphere coordinate system is more appropriate to use. This eliminates

the complication of the singularity located at 90oN when using the spherical coordinate sys-

tem. However, the addition of a regional cubed-sphere model adds another complication in
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deciding the appropriate horizontal boundary conditions for this model. Thus, the periodic,

sponge, and the radiative horizontal boundary conditions have been selected to determine if

such conditions are adequate for the regional model.

In this chapter, the horizontal and open boundary conditions are applied onto a convective

polar regional model of a rotating Boussinesq planet to understand the fluid dynamics at

the region.

3.1 Coordinate System

For all regional models in this chapter, the horizontal coordinates are represented by a

cubed-sphere coordinate system with a Chebyshev polynomial equivalent representation for

the depth coordinate system centred. Note that the models are centred at the North pole

of the planet (90oN). The horizontal geometry looks similar to a square as seen on Figure

3.1. The implementation of the cubed-sphere coordinate system is needed to eliminate polar

singularities and small volume spacing near the poles exhibited by conventional spherical

coordinate system (Adcroft et al., 2004). Along the radial axis, the model geometry can be

thought of as a region of a spherical shell with an outer radius Ro km and inner radius Ri

km. The depth grid spacing (δx3j) is selected by using the Chebyshev equivalent polynomials

given by

δx3j = C cos

(
jπ

N

)
(3.1)

for N points and some constant C ≈ Ro − Ri. Note that N does not necessarily represent

the true number of radial grid points as the radial grid points near j = 1 and j = N

for j = 1, 2, ..., N − 1, N , can reach small values of δx3j, which can be difficult to resolve

and unnecessary to the model. As such, values near j = 1 and j = N can be ignored

by choosing a cut off value Ncut. This leads to a modified indexing system given by j =

Ncut + 1, Ncut + 2, ..., N −Ncut − 2, N −Ncut − 1. The inner radius Ri can be determined by

summing all values of δzj and subtracting the known Ro by that sum.

3.2 Model Parameters

The modelling of planetary fluid convection depends on the non-dimensional parameters,

the governing equations and the boundary conditions. For the non-dimensional parameters,

the Rayleigh number Ra, the Ekman E and the Prandtl number Pr are needed, which are
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Figure 3.1: The horizontal geometry of the regional model represented by the blue shaded

region. The solid green line represents the 55oN line of latitude, which also represents the

minimum latitudinal extent of the region. The maximum extent of the model is represented

by the 42oN line of latitude (blue line).

defined by the following equations:

Ra =
gαTΔTL3

AKT

, (3.2)

E =
A

L2Ω
, (3.3)

Pr =
A

KT

. (3.4)

The modified Rayleigh number Ra∗ = RaE2/Pr is typically used since it represents the

thermal forcing to rotational constraint ratio. Note that these parameters use the eddy

viscosity A, thermal diffusivityKT , the volumetric thermal expansivity coefficient αT , gravity
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g, planetary rotation rate Ω, total depth L, and the temperature difference across the top

and bottom boundaries ΔT . Note that L is determined by summing all values of δzj used

in the model. The governing equations used are the non-hydrostatic equations for a rotating

Boussinesq fluid with the equation of state represented by the linear approximation for the

ocean.

The implementation of the resolution is dependent on the E and the Courant-Freidrichs-

Lewy (CFL) condition. For the numerical model to resolve correctly, the CFL condition,

given defined by

A <
min[δxh]

2

4δt
, (3.5)

must be satisfied, where min[δxh] represents the minimum value of the horizontal grid spacing

δxh and δt represents the time step (Griffies & Hallberg, 2000). In addition to the CFL

condition, the Ekman layer (δE) must also be resolved, implying that the inequality

max[δx3] < δE = L
√
E (3.6)

must be satisfied, where max[δx3] represents the maximum value of the vertical grid spacing

δx3 (Tritton, 1988). In terms of gas giants, E is estimated at ∼ 10−16 for Jupiter and ∼ 10−17

for Saturn (Gastine, Heimpel, & Wicht, 2014). However, a model with E ∼ 10−16 would

make it nearly impossible to resolve the fluid dynamics using numerical software because

the computational resources required would be too costly relative to the resources currently

available. Thus, a much larger E is required.

The regional models presented in this chapter all use the same model parameters, initial

conditions and vertical boundary conditions. For this study, E = 10−4 and Pr = 1 are

used based on rotating convective spherical shell models from Gastine and Wicht (2012) and

Gastine, Heimpel, and Wicht (2014). All regional models are thermally forced to a convective

state with Ra∗ ≈ 0.08802, which is past critical where Ra∗c ≈ 0.04700. Constant temperature

and free-slip boundary conditions are implemented at the top and bottom boundaries with a

temperature difference of ΔT = 30oC and linear free surface at the top. In terms of the fluid

property, the Boussinesq fluid is salinity-free with an eddy viscosity of A = 1.22647 · 104 m2

s−1 and thermal diffusivity of KT = 1.22647·104 m2 s−1. The volumetric thermal expansivity

coefficient is also set to αT = 2.10029·10−6 oC−1 with a reference density of 1000kg m−3. The

spherical shell itself has a rotation period of 8.64 · 104 s with a radius ratio of Ri/Ro ≈ 0.80

and constant gravitational acceleration of 9.81 m s−2. The regional model itself is roughly

square in the latitude-longitude axes centred at 90oN. The resolution is 180×180×135 where
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135 represents the number of depth grid points.

3.3 Initial Conditions

When a fluid starting at rest is heated at the lower boundary, it can reach different equi-

librium regimes, depending on Ra∗. When Ra∗ < Ra∗c , the fluid is in the conductive state.

The depth dependent temperature profile of a conductive fluid is defined by

T (x3) = Tt +
Tb − Tt

L
x3 (3.7)

with temperature T and depth x3, where x3 = 0 defines the surface such that Tt = T (x3 = 0)

and Tb(x3 = L). When Ra∗ > Ra∗c , the fluid reaches a convective state. In order to save

computational resources, the initial condition of all regional models is set such that the fluid

is at rest with a temperature profile similar to that of a conductive state defined by

T(x1, x2, x3) = Tt +
Tb − Tt

L
x3 + εΔTΓ(x1, x2, x3) (3.8)

with horizontal coordinates x1 and x2, vertical coordinate x3, and white noise perturbation

function Γ(x1, x2, x3) defined as a random number generated from a uniform probability

distribution function with maximum amplitude 1. Note that ε is a coefficient that determines

the maximum amplitude of the white noise generated. In our models, we use ε = 0.4.

3.4 Results of North Pole Regional Models

In this study, MITgcm was used to generate the results of three regional models with different

horizontal boundary conditions. The first horizontal boundary condition tested is periodic.

The other two are horizontal open boundary conditions with the sponge and the Orlanski

conditions.

3.4.1 Horizontal Periodic Boundary Conditions

In this regional model, the periodic boundary conditions on both horizontal coordinates were

implemented. Mathematically, this is defined by

χ(x = BL1) = χ(x = BL2) (3.9)

for any dynamic variable χ along a horizontal coordinate BL1 ≤ x ≤ BL2. Note that x can
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be either horizontal coordinate, x1 or x2, with location of the boundary layer denoted as BL

along x. As seen in Figure 3.1, there are four horizontal boundaries.

The time series data for the radial kinetic energy can be seen on Figure 3.2 where the

kinetic energy is represented by Ro2(u3) for vertical velocity u3 and time is scaled to the

viscous diffusion time given by

τ =
L2

A
(3.10)

with vertical length scale L = Ro − Ri. This leads to τ ≈ 1.355 · 108 s. The fluid motion in

the regional model reached a steady state past t ≈ 0.011τ .

Examining the radial velocity at the bottom boundary scaled by the Rossby number

Ro(u3) presented in Figure 3.3(a), the image provides some unrealistic results that are most

likely due to numerical errors. Focusing on the diagonal line associated with the local

maximum and minimum areas, the magnitude of u3 appears to be relatively high compared to

other parts of the Figure 3.3(a). This implies that despite the implementation of the periodic

boundary conditions, the fluid is somehow interacting with the corners of the topography.

3.4.2 Horizontal Sponge Condition

In this model, the horizontal sponge condition is implemented. Recall that the damping

term for any dynamic variable χ of a fluid in a sponge layer of thickness Ls is represented

by

Gsponge
χ =

(1− l∗)(χ− χBL)

(1− l∗)τb − l∗τi
, (3.11)

where Gsponge
χ is the dissipation term due to the sponge layer for any dynamic variable χ in

their respective conservation equation with 0 < l < Ls with sponge layer thickness Ls and

l∗ = l/Ls, χBL represents χ located at any horizontal boundary, and τb and τi represents the

relaxation time scales at the boundary and at l = 0, respectively. We choose the number of

grid points for the sponge layer to be Ns = 40, which sets Ls. Since the horizontal resolution

for this model is 180× 180, this implies that along any horizontal coordinate, 80 out of 180

grid points are set as the sponge layer at both boundaries. The relaxation time scales are

set to τb = 49.4 s and τi = τ = 4.94 · 109 s. With an exponent difference of log10[τb/τi] = 8,

this should be sufficient to dampen the fluid to zero motion at the sponge layer.

The kinetic energy time series data u3 scaled to the squared Rossby number Ro2(u3) for

this model is presented in Figure 3.2. Based on Figure 3.2, the model has reached a steady
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convective state past t ≈ 0.010τ .

Examining the radial velocity along the horizontal coordinates at the lower boundary

given by Figure 3.3(b) at t ≈ 0.0207τ indicates some numerical problems, which similar to

the model with horizontal periodic boundary conditions. The diagonal line associated with

the local maximum and minimum areas exhibit high magnitude radial velocity behaviour.

This indicates that the fluid is interacting with the corners causing a reflective behaviour

along those lines of longitude. Figure 3.3(b) also shows that there is fluid motion along

within the sponge layer. This implies that the fluid motion driven by the thermal forcing is

strong enough to overcome the damping term within the sponge layer.

3.4.3 Horizontal Orlanski Condition

To set up the Orlanski conditions along the horizontal open boundaries, estimations of the

maximum phase velocity and the average time period are needed. Recall that the Orlan-

ski conditions are a modification of the Sommerfield radiative conditions which solves the

radiation condition represented by

∂χ

∂t
+ Cχ

∂χ

∂x
= 0 (3.12)

at the boundaries, where Cχ is the wave phase velocity of any dynamic variable χ (Orlanski,

1976). Orlanski (1976) numerically determines Cχ with

Cχ = − χk
B−1 − χk−2

B−1

χk
B−1 + χk−2

B−1 − χk−1
B−1

δx

2δt
, (3.13)

where χk
B = χ(tk, xB) with time tk = t0 + kδt for some initial time t0, and xB representing a

boundary point with index B. To determine χk+1
B , the recursive equation given by

χk+1
B =

1− δt
δx
Cχ

1− δt
δx
Cχ

χk−1
B +

2 δt
δx
Cχ

1 + δt
δx
Cχ

χk
B−1 (3.14)

must be used, where Cχ must satisfy 0 ≤ Cχ < δx/δt.

Based on Zhang (1992), the non-dimensional angular frequency and wavenumber of a

rotating convecting Boussinesq spherical fluid shell are in the order of ∼ 100 and ∼ 30

respectively. Note that models they use are near critical runs where (Ra∗ − Ra∗c)/Ra∗c are

of order 0.1. They determine both the non-dimensional angular frequency and wavenumber

based on the number of convection cells their models exhibit and the time it takes for one

of the cells to make a full rotation, respectively, where the time is scaled by the viscous
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diffusion time. Since the Taylor columns rotate around the tangent cylinder, the length

scale of Lω = cS2πRi is used where cS is a scaling factor and ω is the angular frequency

associated with the rotation of these columns around the tangent cylinder. From Zhang

(1992), they use a Taylor number of Ta = 1010, where Ta is defined as

Ta =

(
2Ω

ν

)2 (
1

1− η

)4

. (3.15)

Using η = 0.4 from Zhang (1992), ω/Ω = 1/180. With the non-dimensional wavenumber,

the dimensional wavelength can be approximated with Lω ≈ (2πRi)/30. Thus, if we choose

Cχ = ΩLs, then cS = (1/30)(1/2π)(1/80) ≈ 2.95 ∗ 10−5. In this model, we test cS between

2.0 · 10−5 and 1.0.

However, the resulting models using the Orlanski conditions became numerically unsta-

ble. The Orlanski condition uses the radiation condition defined by equation (3.12) and

solves for the phase speed Cχ with equation (3.12). Unfortunately, if there exist waves of

different phase velocities or non-wave behaviour such as Taylor columns or eddies, then the

Orlanski conditions will not be able to resolve the model correctly since they can only account

for waves of one phase speed (Gallacher, Hebert, & Schaferkotter, 2011). Considering that

this model is rotating with E = 10−4 and thermally forced with Ra∗ ≈ 0.088 ≈ 1.544Ra∗c ,

there will exist waves of different wave speeds throughout the model. Due to the convective

fluid action, this has led to numerically unstable models using the Orlanski condition.

3.4.4 Discussion

Models that use both the horizontal periodic and open boundary conditions either output

unrealistic results or become numerically unstable. The model that uses the horizontal

periodic boundary conditions results in strong fluid behaviour at the diagonal line associated

with the local maximum and minimum areas. This implies that there is some interaction

along the corners of the model’s topography. Likewise, this behaviour can also be observed

at the model using the horizontal sponge layer. Another issue is that the sponge layer

does not fully dampen the fluid motion near the outer boundary. The model using the

Orlanski condition, on the other hand, is numerically unstable. The most likely cause of

such unrealistic fluid motion in all three models is due to the strong fluid motion driven by

convection such that the Orlanski conditions are unable to appropriately resolve the motion

near the boundaries.

Regional models that attempt to understand and focus on the fluid dynamics of polar

regional models of a rotating spherical shell using convection must either test other horizontal
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boundary conditions not accounted for in the models in this chapter or modify the parameters

governing the sponge or Orlanski conditions to account for the strong fluid motion associated

with convection.

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Time(τ)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

R
o
2

Periodic

Sponge

Figure 3.2: The vertical velocity kinetic energy time series data of the regional models using

the viscous diffusion time scale τ and with u2
3 scaled to Ro2(u3).
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(a) Periodic

(b) Sponge

Figure 3.3: The radial velocity of the regional models at the bottom boundary scaled to

the Rossby number. These images are taken at τ ≈ 0.0207, which is at their respective

stable state. Note that the positive direction for the vertical velocity is the radially inward

direction.
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Chapter 4

Parametric Study of Rotating

Anelastic Spherical Shell Convection

with a Stratified Layer

Based on the Galileo space probe’s measurements on Jupiter’s atmosphere, stable stratifica-

tion at the outer boundary could play a role in the fluid dynamics of the planet’s atmosphere

(e.g., Magalhaes et al., 2002). For our models that use the rotating anelastic convective

spherical shell, implementing the constant conductive radial entropy gradient boundary con-

ditions at the inner and outer radii will allow a layer of stable stratification to occur near

outer boundary of the shell. The stably stratified fluid layer thickness could be modified

by changing the difference of the conductive radial entropy gradient across the boundaries.

Since the outward entropy flux from the inner boundary represents the heat contribution

from the inner radius and the inward entropy flux from the outer boundary represents the

heat contribution from the outer radius, a volumetric entropy sink is needed to ensure the

overall thermal energy of the model does not increase over time.

To bring the fluid into a convective state, the model’s Rayleigh number must be greater

than its critical Rayleigh number. Determining the system’s critical Rayleigh depends on the

stably stratified fluid layer thickness, the rotational constraint, and the density stratification

of the system.

Since very few studies explored the effects that the stably stratified fluid layer near the top

boundary have on the fluid dynamics of rotating anelastic spherical shells with convection,

we conduct a parameter study in an attempt to understand it. This chapter explores the

effects that the Rayleigh number, the density stratification and the stably stratified fluid

layer thickness have on the fluid dynamics of the models. These results will be compared to
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benchmark studies from Gastine and Wicht (2012) and Cuff (2016), which focus on numerical

models with no stratified fluid layer.

4.1 Model Parameters

Rotating anelastic convective spherical shell models are controlled by non-dimensional pa-

rameters and boundary conditions. Typically, the Rayleigh number Ra controls the thermal

forcing of these models, which is defined as

Ra =
goαd

3Δs

cpκν
(4.1)

for the rotating anelastic convective spherical shell models. Note that κ is the thermal

diffusivity, ν is the kinematic viscosity, cp is the specific heat at constant pressure, and s is

the entropy. However, the modified Rayleigh number Ra∗ will be used instead and is defined

by

Ra∗ =
RaE2

Pr
, (4.2)

where the Ekman number E controls the rotational state and the Prandtl number Pr controls

the kinematic viscosity to thermal diffusivity ratio. In terms of the background state (denoted

by the bar notation) of the density ρ̄(r), the fluid is modelled as an ideal gas with a polytropic

index mp and density stratification (or number of density scale heights) Nρ where ρ̄(r) is

defined as

ρ̄(r) = T̄mp . (4.3)

Note that T̄ (r) is defined by

T̄ (r) =
c0

(1− η)r
+ 1− c0, (4.4)

where c0 is defined as

c0 =
η

1− η

(
exp

[
Nρ

mp

]
− 1

)
(4.5)
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and Nρ is given by

Nρ = ln

[
ρ̄(ri)

ρ̄(ro)

]
. (4.6)

Note that η = ri/ro represents the radius ratio where ri represents the inner radius of the

spherical shell and ro represents the outer radius. The thermal boundary conditions for

these models are either constant conductive entropy or constant conductive radial entropy

gradient across the inner and outer radii. The mechanical boundary conditions on the other

hand can be either free-slip or no-slip at the inner and outer radii.

Resolution for these numerical models are based on the Ekman layer. For the numerical

model to resolve, the inequality given by

max[δr] < δE = d
√
E (4.7)

must be satisfied, where max[δr] represents the maximum grid point spacing along the radial

direction δr and δE represents the Ekman layer with length scale d = ro − ri, which is

normalized to d = 1.0. To keep the models consistent with Gastine and Wicht (2012),

a radius ratio of η = 0.60 will be used, which also avoids numerical problems and a high

computational cost associated in using models of higher η. Estimated values of E for Jupiter

and Saturn are E ∼ 10−16 and E ∼ 10−17, respectively (Gastine, Heimpel, & Wicht, 2014).

However, resolving models with E ∼ 10−16 or lower requires a huge amount of computational

resources. Thus, a constant value of E = 10−4 is set for the numerical models in this chapter,

which is consistent with Gastine and Wicht (2012). Based on both Gastine and Wicht (2012)

and Gastine, Heimpel, and Wicht (2014), a Prandtl number of Pr = 1 is used. Free-slip

boundary conditions at the top and bottom are used since they do not suppress zonal flow at

the outer boundary (Gastine & Wicht, 2012). As for the background density, we use mp = 2

to keep it consistent with Gastine and Wicht (2012). However, all models in this chapter use

constant conductive radial entropy gradient boundary conditions to vary the stably stratified

fluid layer thickness near the outer boundary. MagIC software was used to generate all the

results of their respective models presented in this chapter.
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4.2 Onset of Convection for Variations in the Stably

Stratified Fluid Layer Thickness

To ensure that a model reaches a convective state, the model’s Rayleigh number Ra must

be greater than the critical Rayleigh number Rac. This leads to the formation of M number

of linear convection cells around the inner boundary, where m is also the wavenumber in the

convective system. If Ra < Rac, then heat transport is dominated by conduction, where all

modes are suppressed. Since the models are anelastic, the density stratification will affect

the dynamics of the convection cells. Implementation of stably stratified fluid layer will also

affect the dynamics.

Gastine and Wicht (2012) studies the changes that the convection cells in anelastic models

experience for varying Nρ. For their models, they use the depth-dependent Rayleigh number

R(r). However, we define R(r) with

R(r) =
g(r)β(r)

goβi

Ra∗, (4.8)

which is based on Heimpel et al. (2016), where r is the radius constrained between η ≤
r/ro ≤ 1.00. Gravity g is define by

g(r) = go

(ro
r

)2

, (4.9)

where gravity at the outer boundary is set to go = g(ro) = 1. The conductive radial entropy

gradient is defined as β(r) = dsc/dr, where βi = β(ri). Note that if a region of fluid has

R(r) < 0, then it is stably stratified, while a fluid with R(r) > 0 is convectively unstable.

A fluid that has R(r) = 0 is neutrally buoyant. The conductive entropy sc is solved using

∇ · (ρ̄T̄∇sc) = −H, (4.10)

where H is the volumetric entropy sink that ensures heat conservation (Heimpel et al.,

2016). The radial point of neutral buoyancy is denoted as rnb = roηnb
. It is defined such

that R(r = rnb) = 0, which means that the thickness of the stably stratified fluid layer is

defined as ro − rnb = ro(1− ηnb).

Figure 4.1 shows the g∂sc/∂r profile for various Nρ with various stably stratified fluid

layer thicknesses. For Nρ = 10−2, 1, 3, 5 models, the values of ηnb chosen are 0.70, 0.76,

0.80, 0.90, 0.96, 0.98 and 1.00. Starting from Nρ = 10−2 that exhibits concave up g∂sc/∂r

curvature, for increasing Nρ, the curvature of g∂sc/∂r gradually changes from concave up to
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concave down, specifically from Nρ = 1 to Nρ = 3. The stability also increases for increasing

Nρ, which is denoted by the value of |dsc/dr| at r/ro = 1.00.

The results of determining the modified critical Rayleigh number Ra∗c = RacE
2/Pr

can be seen in Table 4.1 along with M for various Nρ and ηnb. For decreasing ηnb, Ra∗c
increases, as seen in Table 4.1. The time series data, presented in Figure 4.2 for Nρ = 3

for ηnb = 1.00, 0.90, 0.80, and 0.70, also shows that the near critical models remains in

the linear regime or the time independent kinetic energy state. Kinetic energy is defined as

KE = KEζ +KEγ, where KEζ is the toroidal component of the kinetic energy and KEγ is

the poloidal component. Since convection cells form at areas of high buoyancy, the thermal

forcing at the inner boundary must be strong enough to overcome the stably stratified fluid

layer at the outer boundary. This results in an increasing Ra∗c for decreasing ηnb to thermally

force the fluid into a convective state, which can be seen in Table 4.1. Another effect for

decreasing ηnb is that it decreases the thickness of the convection cells, which can be seen in

Figure 4.3, where it presents images of the radial velocity at the equator for Nρ = 3 with

various ηnb at Ra∗ = Ra∗c . Similar to the results of Gastine and Wicht (2012), Table 4.1 also

shows that Ra∗c increases for increasing Nρ. Increasing Nρ also decreases the thickness of

the convection cells as seen in Figure 4.4 for ηnb = 1.00, where this figure shows the radial

velocity at an equatorial slice for the Nρ = 5, 3, 1, and 10−2 models at Ra∗ = Ra∗c . The

wave number m also increases as Nρ increases, which is determined by counting the number

of convection cells around the inner radius. Note that a pair of minimum and maximum

areas denoted by the red and blue colours, respectively, represents a convection cell.

Nρ ηnb Ra∗c m

10−2 0.70 0.0081 14

10−2 0.76 0.0050 18

10−2 0.80 0.0044 20

10−2 0.90 0.0038 20

10−2 0.96 0.0034 20

10−2 0.98 0.0034 20

10−2 1.00 0.0033 20

1 0.70 0.0136 31

1 0.76 0.0086 32

1 0.80 0.0074 33

1 0.90 0.0060 33

1 0.96 0.0056 33

1 0.98 0.0055 33
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1 1.00 0.0054 33

3 0.70 0.0183 41

3 0.76 0.0129 41

3 0.80 0.0116 41

3 0.90 0.0096 43

3 0.96 0.0091 43

3 0.98 0.0090 43

3 1.00 0.0088 43

5 0.70 0.0201 43

5 0.76 0.0148 44

5 0.80 0.0132 44

5 0.90 0.0116 45

5 0.96 0.0112 46

5 0.98 0.0111 46

5 1.00 0.0111 46

Table 4.1: Results of finding Ra∗c for each ηnb model for Nρ = 10−2, 1, 3 and 5. The

normalized neutral buoyancy point ηnb is set by using the constant entropy gradient boundary

conditions at the inner and outer radii. Note that m represents the wavenumber of each

model.

4.3 Convective Regimes for Variations in the Stably

Stratified Fluid Layer Thickness

When the thermal forcing of the model dominated by Ra∗ increases, fluid flow becomes

more turbulent and time dependent. The convection cells also become less regular and

more time dependent due to the turbulent motion of the fluid. The result of the irregular

convection cells leads to the generation of zonal winds as a manifestation of the convection

cells extending up to the outer boundary. However, this is dependent on both the thermal

forcing and the stable stratification layer thickness of the model.

Models for Nρ = 10−2, 1, 3, 5 and ηnb = 0.80, 0.90, 0.96, 0.98, 1.00 have been used to

show the effects increasing Ra∗. Table 4.2 shows Nρ, ηnb, Ra∗ and resolution of the respective

models tested, where the resolution is in the form of Nr × Nφ for Nr number of radial grid

points and Nφ number of φ grid points. Note that the number of θ grid points is Nθ = Nφ/2.

As seen in Table 4.2, we increase the resolution for increasing Ra∗, which implies that the

computational cost increases. This is expected since we must satisfy the CFL conditions
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defined by

max

[ |u1|
δx1

+
|u2|
δx2

+
|u3|
δx3

]
δt < 1 (4.11)

to resolve the models. Note that max[F ] represents the maximum value of any given function

F , ui for i = 1, 2, 3 represents the velocity components, δxi represents the grid spacing, and

δt represents the time step. If Ra∗ increases, then the magnitude of the fluid speed will

increase and thus require a thinner grid spacing to satisfy the CFL conditions (Zang, Street,

& Koseff, 1994).

Table 4.2 also shows each model’s root mean square of the Rossby number at their steady

state, which denoted as RMS(Ro). As Ra∗ increases for constant ηnb and Nρ, RMS(Ro)

increases. However, RMS(Ro) generally increases if ηnb increases for constant Nρ and Ra∗.

The same also goes for increasing Nnb with constant ηnb and Ra∗.

Nρ ηnb Ra∗/Ra∗c Resolution (Nr ×Nφ) RMS(Ro)

10−2 0.80 1.0 97× 256 1.5030 · 10−4

10−2 0.80 11.4 97× 256 9.3878 · 10−3

10−2 0.80 22.7 97× 256 1.6855 · 10−2

10−2 0.80 45.4 97× 256 2.3620 · 10−2

10−2 0.80 68.2 97× 256 2.8731 · 10−2

10−2 0.80 90.9 97× 256 3.1266 · 10−2

10−2 0.80 113.6 97× 256 3.3116 · 10−2

10−2 0.80 227.3 193× 384 3.4674 · 10−2

10−2 0.80 454.5 193× 384 5.0210 · 10−2

10−2 0.80 681.8 193× 384 6.4141 · 10−2

10−2 0.80 1136.4 385× 384 6.3007 · 10−2

10−2 0.90 1.0 97× 256 2.4495 · 10−4

10−2 0.90 13.2 97× 256 1.3177 · 10−2

10−2 0.90 26.3 97× 256 2.3338 · 10−2

10−2 0.90 52.6 97× 256 3.5173 · 10−2

10−2 0.90 78.9 97× 256 4.3739 · 10−2

10−2 0.90 105.3 97× 256 5.1472 · 10−2

10−2 0.90 131.6 97× 256 6.3678 · 10−2

10−2 0.90 263.2 193× 384 6.6616 · 10−2

10−2 0.90 526.3 193× 384 0.11701

10−2 0.90 789.5 193× 384 0.13233

10−2 0.96 1.0 97× 256 2.5463 · 10−4
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10−2 0.96 13.9 97× 256 1.4718 · 10−2

10−2 0.96 27.8 97× 256 2.5668 · 10−2

10−2 0.96 55.6 97× 256 3.7596 · 10−2

10−2 0.96 83.3 97× 256 4.9710 · 10−2

10−2 0.96 111.1 97× 256 6.0590 · 10−2

10−2 0.96 138.9 97× 256 7.8850 · 10−2

10−2 0.96 277.8 193× 384 9.2890 · 10−2

10−2 0.96 555.6 193× 384 0.10496

10−2 0.96 833.3 193× 384 0.13306

10−2 0.96 1470.6 385× 384 0.16675

10−2 0.98 1.0 97× 256 1.1955 · 10−4

10−2 0.98 13.9 97× 256 1.5160 · 10−2

10−2 0.98 27.8 97× 256 2.6280 · 10−2

10−2 0.98 55.6 97× 256 3.9060 · 10−2

10−2 0.98 83.3 97× 256 5.1710 · 10−2

10−2 0.98 111.1 97× 256 6.0870 · 10−2

10−2 0.98 138.9 97× 256 7.7270 · 10−2

10−2 0.98 277.8 193× 384 0.10552

10−2 0.98 555.6 193× 384 0.13200

10−2 0.98 833.3 193× 384 0.15375

10−2 0.98 1470.6 385× 384 0.17113

10−2 1.00 1.0 97× 256 1.6769 · 10−4

10−2 1.00 13.9 97× 256 1.5580 · 10−2

10−2 1.00 27.8 97× 256 2.7700 · 10−2

10−2 1.00 55.6 97× 256 4.0360 · 10−2

10−2 1.00 83.3 97× 256 5.1910 · 10−2

10−2 1.00 111.1 97× 256 6.4240 · 10−2

10−2 1.00 138.9 97× 256 7.4370 · 10−2

10−2 1.00 277.8 193× 384 0.10546

10−2 1.00 555.6 193× 384 0.14083

10−2 1.00 833.3 193× 384 0.15636

10−2 1.00 1515.2 385× 384 0.17552

1 0.80 1.0 97× 256 1.2075 · 10−4

1 0.80 6.8 193× 256 1.2210 · 10−2

1 0.80 13.5 193× 256 2.1940 · 10−2

1 0.80 27.0 193× 256 3.2640 · 10−2

1 0.80 40.5 193× 256 4.1330 · 10−2

1 0.80 54.1 193× 256 4.8940 · 10−2

1 0.80 67.6 193× 256 9.0680 · 10−2
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1 0.80 135.1 481× 384 8.0990 · 10−2

1 0.80 270.3 481× 384 9.5680 · 10−2

1 0.80 405.4 481× 384 0.10428

1 0.80 675.7 481× 384 0.10428

1 0.90 1.0 97× 256 1.0765 · 10−4

1 0.90 8.3 193× 256 1.9700 · 10−2

1 0.90 16.7 193× 256 3.3520 · 10−2

1 0.90 33.3 193× 256 5.1670 · 10−2

1 0.90 50.0 193× 256 6.7690 · 10−2

1 0.90 66.7 193× 256 8.1680 · 10−2

1 0.90 83.3 193× 256 9.1230 · 10−2

1 0.90 166.7 481× 384 0.10538

1 0.90 333.3 481× 384 0.12277

1 0.90 500.0 481× 384 0.15776

1 0.90 833.3 481× 384 0.10562

1 0.96 1.0 97× 256 1.3754 · 10−4

1 0.96 8.9 193× 256 2.3990 · 10−2

1 0.96 17.9 193× 256 3.9100 · 10−2

1 0.96 35.7 193× 256 6.2600 · 10−2

1 0.96 53.6 193× 256 8.1830 · 10−2

1 0.96 71.4 193× 256 9.4350 · 10−2

1 0.96 89.3 193× 256 0.10541

1 0.96 178.6 481× 384 0.11076

1 0.96 357.1 481× 384 0.10856

1 0.96 535.7 481× 384 0.11168

1 0.96 892.9 481× 384 0.11134

1 0.98 1.0 97× 256 1.2641 · 10−4

1 0.98 9.1 193× 256 2.5030 · 10−2

1 0.98 18.2 193× 256 4.0580 · 10−2

1 0.98 36.4 193× 256 6.3930 · 10−2

1 0.98 54.5 193× 256 8.5560 · 10−2

1 0.98 72.7 193× 256 9.9040 · 10−2

1 0.98 90.9 193× 256 0.10966

1 0.98 181.8 481× 384 0.11467

1 0.98 363.6 481× 384 0.10933

1 0.98 545.5 481× 384 0.11443

1 0.98 909.1 481× 384 0.12995

1 1.00 1.0 97× 256 1.1794 · 10−4

1 1.00 9.3 193× 256 2.6100 · 10−2
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1 1.00 18.5 193× 256 4.1710 · 10−2

1 1.00 37.0 193× 256 6.5660 · 10−2

1 1.00 55.6 193× 256 8.6420 · 10−2

1 1.00 74.1 193× 256 0.10258

1 1.00 92.6 193× 256 0.11403

1 1.00 185.2 481× 384 0.11783

1 1.00 370.4 481× 384 0.11441

1 1.00 555.6 481× 384 0.11777

1 1.00 925.9 481× 384 0.12174

3 0.80 1.0 97× 256 2.1330 · 10−4

3 0.80 4.3 289× 256 1.5580 · 10−2

3 0.80 8.6 289× 256 3.5500 · 10−2

3 0.80 17.2 289× 256 5.3330 · 10−2

3 0.80 25.9 289× 256 6.8890 · 10−2

3 0.80 34.5 289× 256 8.1460 · 10−2

3 0.80 43.1 289× 256 9.0680 · 10−2

3 0.80 86.2 577× 384 0.10891

3 0.80 172.4 577× 384 0.11214

3 0.80 431.0 577× 384 0.12520

3 0.90 1.0 97× 256 1.6812 · 10−4

3 0.90 5.2 289× 256 2.7890 · 10−2

3 0.90 10.4 289× 256 5.1570 · 10−2

3 0.90 20.8 289× 256 8.0430 · 10−2

3 0.90 31.2 289× 256 0.10565

3 0.90 41.7 289× 256 0.12172

3 0.90 52.1 289× 256 0.13177

3 0.90 104.2 577× 384 0.14271

3 0.90 208.3 577× 384 0.16152

3 0.90 312.5 577× 384 0.16132 · 10−2

3 0.90 520.8 577× 384 0.16251

3 0.96 1.0 97× 256 1.4931 · 10−4

3 0.96 5.5 289× 256 3.2260 · 10−2

3 0.96 11.0 289× 256 5.9220 · 10−2

3 0.96 22.0 289× 256 9.1830 · 10−2

3 0.96 33.0 289× 256 0.11312

3 0.96 44.0 289× 256 0.13983

3 0.96 54.9 289× 256 0.14359

3 0.96 109.9 577× 384 0.17578

3 0.96 219.8 577× 384 0.18636
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3 0.96 329.7 577× 384 0.13575

3 0.96 549.5 577× 384 0.20668

3 0.98 1.0 97× 256 1.7243 · 10−4

3 0.98 5.6 289× 256 4.2900 · 10−2

3 0.98 11.1 289× 256 6.5890 · 10−2

3 0.98 22.2 289× 256 9.8950 · 10−2

3 0.98 33.3 289× 256 0.12569

3 0.98 44.4 289× 256 0.13415

3 0.98 55.6 289× 256 0.14486

3 0.98 111.1 577× 384 0.18329

3 0.98 222.2 577× 384 0.19671

3 0.98 333.3 577× 384 0.13870

3 0.98 555.6 577× 384 0.21319

3 1.00 1.0 97× 256 1.8444 · 10−4

3 1.00 5.7 289× 256 4.2280 · 10−2

3 1.00 11.4 289× 256 6.1980 · 10−2

3 1.00 22.7 289× 256 9.7410 · 10−2

3 1.00 34.1 289× 256 0.12336

3 1.00 45.5 289× 256 0.13606

3 1.00 56.8 289× 256 0.15008

3 1.00 113.6 577× 384 0.18415

3 1.00 227.3 577× 384 0.15832

3 1.00 340.9 577× 384 0.13713

3 1.00 568.2 577× 384 0.16393

5 0.80 1.0 97× 256 1.8294 · 10−4

5 0.80 3.8 289× 256 1.5260 · 10−2

5 0.80 7.6 289× 256 3.8900 · 10−2

5 0.80 15.2 289× 256 7.5480 · 10−2

5 0.80 22.7 289× 256 9.5630 · 10−2

5 0.80 30.3 289× 256 9.1080 · 10−2

5 0.80 37.9 289× 256 0.10216

5 0.80 75.8 1921× 640 0.10492

5 0.90 1.0 97× 256 1.7562 · 10−4

5 0.90 4.3 289× 256 2.7770 · 10−2

5 0.90 8.6 289× 256 6.3320 · 10−2

5 0.90 17.2 289× 256 0.10701

5 0.90 25.9 385× 384 0.13681

5 0.90 34.5 385× 384 0.15586

5 0.90 43.1 385× 384 0.16634
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5 0.90 86.2 1537× 640 0.10398

5 0.96 1.0 97× 256 1.4158 · 10−4

5 0.96 4.5 289× 256 3.4040 · 10−2

5 0.96 8.9 289× 256 6.9580 · 10−2

5 0.96 17.9 289× 256 0.11724

5 0.96 26.8 385× 384 0.13942

5 0.96 35.7 385× 384 0.15555

5 0.96 44.6 385× 384 0.16990

5 0.96 89.3 769× 640 0.20411

5 0.98 1.0 97× 256 8.7000 · 10−5

5 0.98 4.5 289× 256 3.3670 · 10−2

5 0.98 9.0 289× 256 7.0790 · 10−2

5 0.98 18.0 385× 384 1.1566

5 0.98 27.0 385× 384 1.1299

5 0.98 36.0 385× 384 1.3614

5 0.98 45.0 385× 384 1.5387

5 0.98 90.1 1537× 640 1.7114

5 1.00 1.0 97× 256 1.2607 · 10−4

5 1.00 4.5 289× 256 3.5420 · 10−2

5 1.00 9.0 289× 256 7.3870 · 10−2

5 1.00 18.0 385× 384 1.0943

5 1.00 27.0 385× 384 1.4761

5 1.00 36.0 385× 384 1.6205

5 1.00 45.0 385× 384 1.8520

5 1.00 90.1 1537× 640 1.9995

Table 4.2: The resolution used to run each model with their respective Nρ, Ra∗, and ηnb

inputs at E = 10−4. The RMS(Ro) output at their respective model’s steady state is also

presented. Note that Nθ = Nφ/2 and the maximum spherical harmonic degree is set to

lmax = (Nθ − 1)/3.

The study conducted by Gastine and Wicht (2012) determined the convections regimes

that exist amongst the rotating anelastic convective spherical shell models for various Nρ and

Ra∗ values tested using constant conductive entropy boundary conditions. Cuff (2016) also

presents the convection regimes they found but with models using the constant conductive

radial entropy gradient boundary conditions, but with ηnb = 1.00 only. The first regime is

associated with fluids near the onset of convection, which is called the linear state. The

fluid in this state generates linear convection cells with time independent kinetic energy.
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Examples of this can be seen in the time series data of Nρ = 3 models with ηnb = 1.00, 0.90,

0.80 and 0.70 at Ra∗ = Ra∗c shown in Figure 4.2. Slightly increasing Ra∗ leads to the next

regime where both the poloidal and the toroidal kinetic energies oscillate at the same period

with similar amplitudes denoted as the quasi-perioidic regime while the toroidal component

dominates the poloidal component. Despite the oscillations in the fluid flow, the convection

cells are maintained. However, increasing Ra∗ even more changes the regime from the quasi-

perioidic state to the first chaotic state. In this state, the toroidal kinetic energy dominates

the poloidal component, implying that the zonal flow dominates the kinetic energy. The next

regime is another oscillatory one after increasing Ra∗ called the relaxation oscillation state.

In this state, the toroidal kinetic energy is still dominant but both the toroidal and poloidal

components oscillate at the same frequency. The amplitude of the toroidal kinetic energy

oscillations tends to be much greater than the poloidal kinetic energy oscillations. The final

regime is the second chaotic regime, where the toroidal energy dominates the poloidal energy

after increasing Ra but with fluid motion similar to that of the first chaotic state. The order

of these regimes are given by

Linear → Quasi-periodic → Chaotic(1) → Relaxation Oscillation → Chaotic(2), (4.12)

where Chaotic(1) represents the first chaotic regime and Chaotic(2) represents the second

chaotic regime.

Figures 4.5 to 4.9 shows the kinetic energy time series data for Nρ = 10−2 and ηnb = 1.00,

0.98, 0.96, 0.90, 0.80 models of various Ra∗ values. Models with Ra∗ = Ra∗c exhibit linear

convective regime, which can be seen in (a) of Figures 4.5 to 4.9. Increasing Ra∗ to ∼ 4.5Ra∗c
exhibits the time dependent quasi-periodic convective regime, which can be seen in (b) of

Figures 4.5 to 4.9. Increasing Ra∗ even more leads to the first chaotic regime, where no

discernible pattern is observed in the kinetic energy time series data, which can be seen in

(c) to (f) of Figures 4.5 to 4.9. The Nρ = 10−2 does not exhibit the relaxation oscillation

regime for increasing Ra∗. In all Nρ = 10−2 models that exhibit the quasi-periodic or the

first chaotic state, the toroidal kinetic energy component dominates the poloidal component.

The kinetic energy time series data for higher stratification models (Nρ = 1, 3 and 5) with

ηnb = 1.00, 0.98, 0.96, 0.90, 0.80 are shown in Figures 4.10 to 4.24. These models exhibit the

linear convective regime at Ra∗ = Ra∗c . Increasing Ra∗ changes the regime from linear to

quasi-periodic. Further increases to Ra∗ lead to the first chaotic regime. However, some of

the higher stratification models exhibit the relaxation oscillation regime for increasing Ra∗,

which is absent in the Nρ = 10−2 models. Lower values of ηnb appear to inhibit the formation

of the relaxation oscillation regime. Examples of this can be seen in the Nρ = 3 models with

57



ηnb = 0.80, which are shown in Figures 4.19. None of these models exhibit the relaxation

oscillation regime. They can be compared with the ηnb = 1.00 models, in which higher Ra∗

models exhibit the relaxation oscillation regime, where they are shown in Figures 4.15(c) to

4.15(f). The second chaotic regime is only exhibited in the Nρ = 5 models with ηnb = 0.80,

which can be seen in Figures 4.24(e) and 4.24(f). The relaxation oscillation regime for the

Nρ = 5 model with ηnb = 0.80 is presented in Figure 4.24(d).

Figure 4.25 shows the convection regime diagram for Nρ = 10−2 for various Ra∗/Ra∗c
and ηnb values with Ra∗c dependent on ηnb and Nρ. The convection regimes exhibited by the

Nρ = 10−2 models only exhibits the first three regimes. The Ra∗ range for the models that

exhibit the linear and the quasi-periodic regimes lengthens as ηnb decreases. For increasing

Nρ from Nρ = 10−2, models with Nρ = 1 start exhibiting the relaxation oscillation regime

at ηnb = 0.98 and 1.00 for Ra∗/Ra∗c > 25, which can be seen in Figure 4.26. The relaxation

oscillation regime is exhibited for all ηnb models except for ηnb = 0.80 for increasing Nρ to

Nρ = 3, which can be seen in Figure 4.27. However, the second chaotic regime is present for

Nρ = 5 models with ηnb = 0.80 only, which is shown in Figure 4.28.

Note that the Nρ = 10−2 with Ra∗ = 0.5000 models with ηnb = 1.00, 0.98, and 0.96 reach

numerical instability. These models are still used since they are relatively stable up to but

not including the point of instability. Thus, the time series data for these models will only

include the numerically stable state only.

4.4 Development of Zonal Flow

Since convection drives the zonal flow of a fluid inside a rapidly rotating spherical shell and

the stably stratified fluid layer has a tendency to restrict three-dimensional flow near the

outer boundary to two-dimensional horizontal flow, both the Taylor-Proudman theorem and

the thermal winds phenomenon should play a role in the zonal flow development of these

models. In order to mathematically introduce both the Taylor-Proudman theorem and the

thermal winds phenomenon, the anelastic Navier Stokes equation represented by

E

(
∂u

∂t
+ u · ∇u

)
=

1

ρ̄
∇P ′ − 2ẑ × u+

RaE

Pr

r2o
r2
sr̂ +

E

ρ̄
∇ · S (4.13)

needs to be revisited, where S is the traceless rate-of-strain tensor defined by

S = ρ̄

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij

∂uk

∂xk

)
, (4.14)
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in which S is in summation notation with Kronecker delta δik. Note that P
′ is the perturba-

tion pressure and r is the radius, where ro is the outer radius of the spherical shell rotating

around the axis of rotation ẑ with rotation rate Ω and entropy s. By applying the curl on

both sides of equation (4.13), we get the vorticity equation, which is given by

E

(
∂ω

∂t
+ ω · ∇u

)
= 2

(
∂u

∂z
− ẑ∇ · u

)
+∇×

(
RaE

Pr

r2o
r2
sr̂

)
, (4.15)

where vorticity ω = ∇ × u. For a small enough Rossby number such that ω << 2Ωẑ,

equation (4.15) converts to

2

(
ẑ∇ · u− ∂u

∂z

)
= ∇×

(
RaE

Pr

r2o
r2
sr̂

)
. (4.16)

4.4.1 Thermal Wind Equations

Based on (Pedlosky, 1987), the thermal wind equations are determined from the q and φ

components of the vorticity equation (4.16), where q is the cylindrical radius.

Solving the curl of the right hand side of equation (4.16) using the spherical coordinate

system while maintaining the cylindrical coordinates on the left hand side, the φ component

can be written as

∂uφ

∂z
=

RaE

2Pr

r2o
r3

∂s

∂θ
. (4.17)

Note that we obtained the azimuthally averaged profiles of both the left and right hand sides

of equation (4.17) for several different numerical models. Both profiles are highly correlated

with each other. Therefore, the results that are presented are with respect to the right hand

side, which will still be denoted as ∂uφ/∂z.

The other component of the thermal wind equations is the q component is defined by

∂uq

∂z
=

RaE

2Pr

1

q

∂

∂q

(
r2o
r2
s

)
. (4.18)

4.4.2 Modified Taylor-Proudman Theory

If s undergoes small variations or viscosity is negligible such that E = 0, then the right hand

side of (4.16) goes to zero and thus the thermal wind phenomenon will not occur, which is
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represented by

(
ẑ∇ · u− ∂u

∂z

)
= 0. (4.19)

We expand equation (4.19) to get

ẑ

(
1

q

∂

∂q
(quq) +

1

q

∂uφ

∂φ

)
− q̂

∂uq

∂z
− φ̂

∂uφ

∂z
= 0. (4.20)

From equation (4.20), we get

∂

∂q
(quq) +

∂uφ

∂φ
=

∂uq

∂z
=

∂uφ

∂z
= 0, (4.21)

which show that the horizontal velocity components are z independent. Expanding the z

component of equation (4.20) leads to

q
∂uq

∂q
+ uq +

∂uφ

∂φ
= 0. (4.22)

If we rewrite equation (4.22) as

∂uφ

∂φ
= −q

∂uq

∂q
− uq, (4.23)

it implies that ∂uφ/∂φ must change to counteract any variations of either uq or q∂uq/∂q.

If uq remains constant in q, then ∂uφ/∂φ = −uq to ensure that equation (4.21) is satisfied.

This implies that uφ will never be constant in φ unless uq = 0 and ∂uq/∂q = 0. Even then,

∂uφ/∂φ = 0 does not guarantee that uφ = 0. This shows that uφ is the dominant horizontal

velocity component.

Substituting the z component of equation (4.20) into the anelastic continuity equation,

given by

∇ · ρ̄u = ρ̄∇ · u+ u · ∇ρ̄ = 0, (4.24)

leads to

ρ̄
∂uz

∂z
= −u · ∇ρ̄. (4.25)
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Equation (4.25) can also be written as

∂uz

∂z
= −1

ρ̄

(
uq

q

∂

∂q
(qρ̄) + uz

∂ρ̄

∂z

)
. (4.26)

From Pedlosky (1987) and Zhang and Schubert (2000), equations (4.21) and (4.26) are

consistent with the Taylor-Proudman theorem, but modified for the rotating convective

anelastic spherical shell models. These equations show that for infinitesimally steady fluid

motion, it is nearly two dimensional and dominated by uφ (Zhang & Schubert, 2000). This

would imply that ∂uz/∂z ≈ 0, meaning that fluid motion will be in the form of columnar

convection cells, which is parallel to the axis of rotation. However, if the model follows the

Boussinesq approximation, then ∂uz/∂z = 0 can be obtained trivially. This implies that

2Ω · ∇u = 0. (4.27)

However, the theorem breaks down when the columns interact with the outer boundary.

This interaction causes secondary motion to occur in the form of zonal flow. The interaction

between the outer boundary curvature and the convection cells leads to a tilt in these cells.

The generation of the zonal secondary flow further tilts the cells until the Reynolds stresses

balance the internal viscous stresses (Vasavada & Showman, 2005; Zhang, 1992). The scale

to describe the zonal flow saturation and its energy cascade cessation is called the Rhines

scale, which is inversely proportional to the β-parameter (Rhines, 1975). The β-parameter

is associated with the β effect, which defines the effect that the global rotation of the model

has on the fluid as it travels towards either the North or South pole from the equator

(Pedlosky, 1987). In shallow models, the β-paramater is associated with an approximation

of the planetary vorticity f given by

f ≈ 2Ω sinλ ∼ f0 + β0y, (4.28)

where f0 is defined as

f0 = 2Ω sinλ0 (4.29)

with latitude λ and distance from the equator y. The parameter β0 is defined as

β0 =
2Ω cosλ0

ro
(4.30)

(e.g., Pedlosky, 1987). For spherical shells, the β-parameter is a topographical one defined
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as βh, which is given by

βh = −2Ω
dh/dq

h
, (4.31)

where h = 2ro sinλ (Heimpel et al., 2005).

4.4.3 Comparing Thermal Wind Equations and Modified

Taylor-Proudman Theory

To recap, the thermal wind equations are defined as

∂uφ

∂z
=

RaE

2Pr

r2o
r3

∂s

∂θ
(4.32)

and

∂uq

∂z
=

RaE

2Pr

1

q

∂

∂q

(
r2o
r2
s

)
, (4.33)

while the modified Taylor-Proudman theorem involves

∂

∂q
(quq) +

∂uφ

∂φ
=

∂uq

∂z
=

∂uφ

∂z
= 0 (4.34)

and

∂uz

∂z
= −1

ρ̄

(
uq

q

∂

∂q
(qρ̄) + uz

∂ρ̄

∂z

)
. (4.35)

The derivation for both the thermal wind equations and the modified Taylor-Proudman

theorem relies on the vorticity equation (4.15), assuming that ω << 2Ωẑ. However, the

differences between them can be seen in terms of how the horizontal velocity components,

uφ and uq, are used. For the thermal wind equations, the horizontal velocity components

are three-dimensional such that they will change in z if the entropy changes in θ or q. The

thermal wind equations also show that the zonal jets are governed by changes in entropy

along θ. The modified Taylor-Proudman theorem, on the other hand, states that the motion

is nearly two-dimensional and that the horizontal velocity components are z independent.

However, the ∂uz/∂z depends on uz, uq and ρ̄. In terms of the zonal jets, the modified

Taylor-Proudman theorem and from Zhang (1992) indicate that they are generated from the

interaction between the convection cells and curvature of the outer boundary.
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4.4.4 Results

Figures 4.29 to 4.36 show the axisymmetric (or azimuthally averaged) ∂s/∂r profile for

Nρ = 10−2, 1, 3, and 5 with ηnb = 1.00 and 0.80. For the Nρ = 1.00 and ηnb = 1.00 mod-

els presented in Figure 4.31, the axisymmetric radial entropy gradient starts out roughly θ

independent for Ra∗ = Ra∗c . As Ra∗ increases, the axisymmetric radial entropy gradient

becomes more θ dependent at the equatorial area, which is represented by the large magni-

tude axisymmetric radial entropy at the equatorial region parallel to the tangent cylinder.

However, the stability throughout the spherical shell increases as Ra∗ increases. This leads

to the strong convectively unstable fluid becoming constrained near inner boundary as Ra∗

increases. This can be seen in Nρ = 1.00 models with ηnb = 1.00 with Ra∗ = 0.5000 and

0.7500, which are shown in Figures 4.31(e) to 4.31(f). This behaviour is somewhat similar

when ηnb decreases to ηnb = 0.80 while maintaining Nρ = 1, as seen in Figure 4.32. Due

to the presence of the stably stratified fluid layer, the major differences can be seen for

increasing Ra∗. As Ra∗ increases, the stability in both the stably stratified fluid layer and

the convectively unstable layer increases, where the stability increase means that ∂s/∂r de-

creases. An example of this can be seen in the Nρ = 1.00 models with ηnb = 0.80, which are

shown in Figure 4.30. The behaviour of increasing stability for increasing Ra∗ throughout

the spherical shell have been seen in Nρ = 10−2, 1, 3, and 5 models with ηnb = 1.00, 0.98,

0.96, 0.90, and 0.80.

In terms of the thermal winds phenomenon, Figures 4.37 to 4.44 show the axisymmetric

∂uφ/∂z profile for Nρ = 10−2, 1, 3, and 5 with ηnb = 1.00 and 0.80. For Nρ = 1.00 models

with ηnb = 1.00, the magnitude of ∂uφ/∂z is the largest near the tangent cylinder near the

inner boundary at Ra∗ = Ra∗c , which can be seen in Figure 4.39. However, the non-zero

∂uφ/∂z areas near the tangent cylinder expand around the spherical shell as Ra∗ increases.

This results in dominance of ∂uφ/∂z > 0 in the Southern hemisphere and ∂uφ/∂z < 0 in

the Northern hemisphere. These dominant areas want to force the fluid near the tangent

cylinder to rotate in the retrograde direction. Since these dominant areas span through-

out the spherical shell, they do not greatly affect the zonal jets. As ηnb decreases, both

hemispheres exhibit a mix of ∂uφ/∂z > 0 and ∂uφ/∂z < 0 areas near the outer boundary

near the tangent cylinder. However, dominance of ∂uφ/∂z > 0 in the Southern hemisphere

and ∂uφ/∂z < 0 in the Northern hemisphere is still exhibited in these models, which are

similar to the ηnb = 1.00 ones. An example of this can be seen in the Nρ = 1 models for

ηnb = 0.80, which can be seen in Figure 4.40. For the Nρ = 3 and 5 models with ηnb = 1.00

and ηnb = 0.80 and the Nρ = 10−2 models with ηnb = 1.00, which can be seen in Figures 4.41

to 4.44 and Figure 4.37, they follow a similar behaviour to the Nρ = 1 models. However, the
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Nρ = 10−2 models with ηnb = 0.80 is a unique case with all the numerical models tested as

it exhibits a mix ∂uφ/∂z > 0 and ∂uφ/∂z < 0 areas throughout the entire shell, which can

be seen in Figure 4.38.

Figures 4.45 to 4.56 show the axisymmetric zonal velocity (uφ) profile for Nρ = 10−2, 1, 3

and 5 models with ηnb = 1.00, 0.90 and 0.80 and various Ra∗ values. For Nρ = 10−2 models,

which can be seen in Figures 4.45 to 4.47, their axisymmetric zonal flow velocity profiles

show that the strong retrograde jets represented by the blue area near the tangent cylinder

has a larger thickness and magnitude compared to the strong prograde jet represented by

the red area for for Ra∗c . As Ra∗ increases for ηnb = 1.00 and 0.90, which can be seen

in Figures 4.45 and 4.46, both the retrograde and prograde jets decrease in thickness and

increase in magnitude. However, the Nρ = 10−2 models with ηnb = 0.80 are different from the

other models, which are seen in Figure 4.47. While the models with Ra∗ < 0.50000 behave

similarly compared to the ηnb = 1.00 and 0.90 models for small Ra∗, the Ra∗ = 0.5000

and Ra∗ = 1.0000 models do not, which are seen by Figures 4.47(e) to 4.47(f). While the

retrograde jet thickness decreases from Ra∗ = 0.5000 to Ra∗ = 1.0000, the prograde jet also

decreases in thickness but retracts from the outer boundary. The magnitude of the prograde

jet also decreases with increasing Ra∗ starting from Ra∗ = 0.1000, which can be seen in

Figures 4.47(d) to 4.47(f).

The behaviour exhibited by Nρ = 10−2 models and ηnb = 1.00, 0.98, 0.96 and 0.90 are

also exhibited by Nρ = 1, 3 and 5 models with ηnb = 1.00, 0.98, 0.96, 0.90 and 0.80, which are

presented by Figures 4.48 to 4.56. However, with higher density stratification (Nρ ≥ 1) and

Ra∗ ≥ 0.0500 models, a tilting behaviour with the origin point at the equator can be noticed,

which can be seen in (c) to (f) of Figures 4.48 to 4.56. The tilt angle increases for increasing

Nρ, which an example can be seen for ηnb = 1.00 and Ra∗ = 0.5000 models with Nρ = 1,

3, and 5 presented in Figures 4.48(e), 4.51(f), and 4.54(f), respectively. Decreasing ηnb also

increases the tilt, which, for example, can be seen for Nρ = 1 models with Ra∗ = 0.5000

and ηnb = 1.00, 0.90, and 0.80 presented in Figures 4.48(f), 4.52(f), and 4.53(f), respectively.

Increasing Ra∗ also increases the tilt angle for all ηnb = 1.00, 0.98, 0.96, 0.90 and 0.80 and

for Nρ = 1, 3, and 5 models.

Besides using the axisymmetric zonal velocity profile of the model, analyzing the zonal

velocity at the outer boundary using a hammer projection allows us to observe the zonal flow

development of the models. For the Nρ = 1 models with ηnb = 1.00, increasing Ra∗ turns

the zonal flow from a smooth form to a more rough form, which can be seen in Figure 4.57.

This leads to the dissipation of the structured convection cells at the outer boundary, which

leads to the formation of both the prograde and retrograde jets. Decreasing ηnb to ηnb = 0.80

also leads to a similar behaviour for increasing Ra∗. However, the strong retrograde jets for
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the ηnb = 0.80, which are seen in Figure 4.58, are smoother compared to the ηnb = 1.00

models. Increasing Nρ to Nρ = 3 exhibits similar behaviour as mentioned for Nρ = 1 for

both ηnb = 1.00 and 0.80, which can be seen in Figures 4.59 and 4.60.

4.5 Discussion

A benchmark study from Gastine and Wicht (2012) conducted numerical simulations us-

ing rotating convective anelastic spherical shell models with constant conductive entropy

boundary conditions. They were able to generate strong polar prograde jets for Nρ = 10−2,

1, 2, and 3 with Ra∗ ∼ 0.1. Weak polar prograde jets, however, were generated from high

Ra∗ models with Nρ = 4, whereas none were generated for Nρ = 5. They also show that

their near critical (Ra∗ ∼ Ra∗c) models generate convection cells near the inner boundary for

models with Nρ = 10−2. However, as Nρ increases, the convection cells move towards the

outer boundary and becomes more constrained. The explanation for this behaviour is based

on the depth dependent Rayleigh number R defined by equation (4.8), which is associated

with buoyancy. Their models with Nρ = 10−2 show that when R(r = ri) > R(r = ro), the

fluid near the inner boundary is more buoyant than the fluid at the outer boundary. As Nρ

increases, R(r = ri) started to decrease while R(r = ri) started to increase. At Nρ = 2,

R(r = ri) < R(r = ro), which is when the convection cells start to move towards the outer

boundary. They were also able to show five convective regimes for increasing Ra∗, which are

similar to the convective regimes shown in equation (4.12). However, none of their Nρ = 4

and 5 models exhibit the relaxation oscillation regime.

A later benchmark study by Cuff (2016) used the constant conductive radial entropy

gradient boundary conditions for their rotating convective anelastic spherical shell models.

Specifically, they use the neutral buoyancy condition at the outer radius (or ηnb = 1.00) with

E = 10−4 and Nρ = 10−2, 3, 5, and 7. While none of their models were able to generate

strong polar prograde jets, they were able to generate weaker, alternating high latitudinal

zonal jets near the outer radius for high Ra∗ models with Nρ ≥ 1. Unlike models from

Gastine and Wicht (2012), their models exhibit a tilt in the strong prograde and retrograde

jets for Nρ ≥ 3 models. The tilt angle increases for increasing Ra∗ and increasing Nρ. Their

near critical models show that the convection cells always formed near the inner boundary.

The explanation for this is that R(r = ri) > R(r = ro) = 0 for all their models that use

the neutral buoyancy condition at the outer radius. They also used their models to identify

the convective regimes they observed. Their Nρ = 10−2 models were unable to exhibit the

relaxation oscillation regime, whereas their Nρ = 3, 5 and 7 models exhibit it at higher Ra∗.
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However, none of their models were able to go into the the second chaotic state.

From our convective regime diagrams shown in Figures 4.25 to 4.28, the models with ηnb =

1.00 show results that are similar to the results from Cuff (2016). Comparing our results to

Cuff (2016), they both show that the Nρ ≥ 1 models exhibit the relaxation oscillation regime

for higher Ra∗ while the Nρ = 10−2 models do not. However, when we decrease ηnb, we found

the second chaotic regime, which can be seen in the Nρ = 5 models with ηnb = 0.80 shown in

Figure 4.28. While the second chaotic regime is absent in the study Cuff (2016), models from

Gastine and Wicht (2012) exhibit it. However, they were able to get this regime with their

lower stratification (Nρ ≤ 3) models, whereas we were only able to get it at Nρ = 5 with

ηnb = 0.80. Decreasing ηnb also leads to an inhibition of the relaxation oscillation regime,

while the Ra∗ range in the first chaotic regime increases. The quasi-periodic regime increases

in the Ra∗ range when ηnb decreases.

For our models, none of the Nρ ≥ 1 models generated any high latitudinal jets, which

are jets with latitudes greater than the strong retrograde jets near the tangent cylinder.

However, these models exhibit a tilt in both the strong prograde and retrograde jets, similar

to models from Cuff (2016). The tilting angle also increases with increasing Ra∗ and Nρ.

Unlike the Nρ = 10−2 models from Cuff (2016), we were able to replicate strong prograde

jets at the poles for Ra∗ ≥ 1.0000 and ηnb = 1.00, 0.98, 0.96, and 0.90, which can be seen

in (f) of Figures 4.45 to 4.46. Our near critical models also show that the convection cells

are constrained near the inner boundary, which are consistent with the near critical models

from Cuff (2016).

The axisymmetric ∂uφ/∂z profiles from the Nρ = 1 and 3 models with ηnb = 1.00 and

0.80, as shown in Figures 4.39 to 4.42, have dominance of ∂uφ/∂z > 0 in the Southern

hemisphere and ∂uφ/∂z < 0 in the Northern hemisphere. However, the introduction of

a stably stratified fluid layer leads to a generation of ∂uφ/∂z < 0 areas in the Northern

hemisphere and ∂uφ/∂z > 0 areas in the Southern hemisphere near the tangent cylinder

near the outer boundary for a large enough Ra∗. This implies that with a large enough Ra∗

and a low enough ηnb, the thermal winds phenomenon should affect the zonal flow near the

outer boundary. However, both the ηnb = 0.80 and the ηnb = 1.00 models appear to be

similar, which makes it difficult to determine the effect the thermal winds phenomenon on

the ηnb = 0.80 models with Nρ ≥ 1. The exception lies with the Nρ = 10−2 models with

ηnb = 0.80, in which they have mixture of ∂uφ/∂z < 0 and ∂uφ/∂z > 0 in both hemispheres

with no dominance of either one.

One of the effects that the stably stratified fluid layer has on the fluid dynamics is that

it has a tendency towards suppression of the zonal flow oscillations. This can be inferred

from its interaction with the kinetic energy oscillations at higher Ra∗. From the convective
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regime diagrams shown in Figures 4.25 to 4.28, as ηnb decreases, the Ra∗ needed to reach the

relaxation oscillation regime also increases. However, if a fluid is in the relaxation oscillation

regime, the amplitudes of the oscillations decrease as ηnb decreases. An example of this

phenomenon can be seen in a comparison of the time series data for Nρ = 3 models with

ηnb = 1.00, 0.90, and 0.80 for Ra∗ ≥ 0.300. Starting with ηnb = 1.00, the models that exhibit

the relaxation oscillation regime are with Ra∗ ≥ 0.1000, which are shown in Figures 4.15(d)

to 4.15(f). These models can be compared with the Nρ = 3 models with ηnb = 0.90 for

Ra∗ ≥ 0.1000, which are shown in Figures 4.18(d) to 4.18(f). The oscillation amplitudes

from the Nρ = 3 models with ηnb = 0.90 for Ra∗ ≥ 0.1000 are smaller than the ηnb = 1.00

models for Ra∗ ≥ 0.1000. However, the relaxation oscillation regime does not appear in the

ηnb = 0.80 models for Ra∗ ≥ 0.1000, which can be seen in Figures 4.19(d) to 4.19(f). This

further shows that the stably stratified fluid layer has a tendency towards suppression of

zonal flow oscillations.

The zonal velocity at r = ro for Nρ = 1 and 3 models with ηnb = 0.80 also show that the

stably stratified fluid layer restricts the fluid flow to two dimensions, which can be seen in

Figures 4.58 and 4.60. This can be seen in comparing the strong prograde and retrograde jets

generated in the ηnb = 0.80 models with their ηnb = 1.00 counterparts, which are presented in

Figures 4.57 and 4.59. The strong prograde and retrograde jets generated in the ηnb = 1.00

models are less smooth compared to their ηnb = 0.80 counterparts.

Another effect that the stably stratified fluid layer has on the fluid dynamics can be

inferred from the convective regime diagram for the Nρ = 5 models, which are shown in

Figure 4.28. For the ηnb = 0.8 models, they exhibit the relaxation oscillation regime at

7.5 ≤ Ra∗/Ra∗c ≤ 22.5. However, when Ra∗/Ra∗c > 22.5, then the oscillations become

suppressed and thus reach the second chaotic regime. This implies that as Ra∗ increases,

the stability in the stably stratified fluid layer also increases. This could mean that for a

large enough Ra∗, any models that exhibit the relaxation oscillation regime for ηnb 
= 1.00

could force the fluid into the second chaotic state and thus, further constrain the fluid motion

along r.

However, Nρ = 10−2 models with ηnb = 0.80 are special cases, especially for Ra∗ ≥ 0.4000.

These models will be discussed with great detail in the next chapter.
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(c) Nρ = 3
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(d) Nρ = 5

Figure 4.1: g∂sc/∂r profile for models with various Nρ and ηnb values. The normalized

neutral buoyancy point ηnb used in these models are 0.70, 0.76, 0.80, 0.90, 0.96, 0.98, and

1.00, which are represented by the purple, green, dark blue, pink, brown, red, and light blue

lines, respectively.
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(a) ηnb = 1.000 at Ra∗c = 0.0088
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(b) ηnb = 0.900 at Ra∗c = 0.0096
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(c) ηnb = 0.800 at Ra∗c = 0.0116
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(d) ηnb = 0.700 at Ra∗c = 0.0183

Figure 4.2: Time Series of the radial velocity for ηnb = 1.00, 0.90, 0.80 and 0.70 of Nρ = 3 at

steady state. The black line represents the total kinetic energy KE = KEζ +KEγ, where

KEζ is the toroidal component of the kinetic energy and KEγ is the poloidal component.

Note that KEζ is represented by the red line and KEγ is represented by the blue line.
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(a) ηnb = 1.000 at Ra∗c = 0.0088 (b) ηnb = 0.900 at Ra∗c = 0.0096

(c) ηnb = 0.800 at Ra∗c = 0.0116 (d) ηnb = 0.700 at Ra∗c = 0.0183

Figure 4.3: Equatorial slice images of the radial velocity for ηnb = 1.00, 0.90, 0.80 and 0.70

of Nρ = 3 at steady state for their respective value of Ra∗c . A convection cell is represented

by a pair of maximum and minimum areas near the inner boundary.
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(a) Nρ = 5 at Ra∗c = 0.0111 (b) Nρ = 3 at Ra∗c = 0.0088

(c) Nρ = 1 at Ra∗c = 0.0054 (d) Nρ = 10−2 at Ra∗c = 0.0033

Figure 4.4: Equatorial slice images of the radial velocity for Nρ = 5, 3, 1, and 10−2 for

ηnb = 1.00 at steady state for their respective value of Ra∗c . A convection cell is represented

by a pair of maximum and minimum areas near the inner boundary.
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(b) Ra∗ = 4.4Ra∗c = 0.0150
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(c) Ra∗ = 14.7Ra∗c = 0.0500
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(d) Ra∗ = 29.4Ra∗c = 0.1000
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(e) Ra∗ = 147.1Ra∗c = 0.5000
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(f) Ra∗ = 294.1Ra∗c = 1.0000

Figure 4.5: Kinetic energy time series data for Nρ = 10−2 at ηnb = 1.00. The black line

represents the total kinetic energy KE = KEζ +KEγ, where KEζ is represented by the red

line and KEγ is represented by the blue line.
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(b) Ra∗ = 4.4Ra∗c = 0.0150
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(c) Ra∗ = 14.7Ra∗c = 0.0500
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(d) Ra∗ = 29.4Ra∗c = 0.1000
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(e) Ra∗ = 147.1Ra∗c = 0.5000
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(f) Ra∗ = 294.1Ra∗c = 1.0000

Figure 4.6: Kinetic energy time series data for Nρ = 10−2 at ηnb = 0.98. The black line

represents the total kinetic energy KE = KEζ +KEγ, where KEζ is represented by the red

line and KEγ is represented by the blue line.
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(a) Ra∗ = Ra∗c = 0.0036
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(b) Ra∗ = 4.2Ra∗c = 0.0150
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(c) Ra∗ = 13.9Ra∗c = 0.0500

0
.7

0
.8

0
.9

1
.0

1
.1

1
.2

1
.3

1
.4

Time (τ)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

K
E

x10
6

(d) Ra∗ = 27.8Ra∗c = 0.1000
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(e) Ra∗ = 138.9Ra∗c = 0.5000
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(f) Ra∗ = 277.8Ra∗c = 1.0000

Figure 4.7: Kinetic energy time series data for Nρ = 10−2 at ηnb = 0.96. The black line

represents the total kinetic energy KE = KEζ +KEγ, where KEζ is represented by the red

line and KEγ is represented by the blue line.

74



0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

1
.1

Time (τ)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
K
E

x10
2

(a) Ra∗ = Ra∗c = 0.0038
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(b) Ra∗ = 3.9Ra∗c = 0.0150
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(c) Ra∗ = 13.2Ra∗c = 0.0500
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(d) Ra∗ = 26.3Ra∗c = 0.1000

0
.2

5

0
.5

0

0
.7

5

1
.0

0

1
.2

5

1
.5

0

1
.7

5

2
.0

0

2
.2

5

2
.5

0

Time (τ)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

K
E

x10
7

(e) Ra∗ = 131.6Ra∗c = 0.5000
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(f) Ra∗ = 263.2Ra∗c = 1.0000

Figure 4.8: Kinetic energy time series data for Nρ = 10−2 at ηnb = 0.90. The black line

represents the total kinetic energy KE = KEζ +KEγ, where KEζ is represented by the red

line and KEγ is represented by the blue line.
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(b) Ra∗ = 4.5Ra∗c = 0.0200
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(c) Ra∗ = 11.4Ra∗c = 0.0500
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(d) Ra∗ = 22.7Ra∗c = 0.1000
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(e) Ra∗ = 113.6Ra∗c = 0.5000
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(f) Ra∗ = 227.3Ra∗c = 1.0000

Figure 4.9: Kinetic energy time series data for Nρ = 10−2 at ηnb = 0.80. The black line

represents the total kinetic energy KE = KEζ +KEγ, where KEζ is represented by the red

line and KEγ is represented by the blue line.
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(b) Ra∗ = 1.8Ra∗c = 0.0100
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(e) Ra∗ = 92.6Ra∗c = 0.5000

0
.3

0

0
.4

5

0
.6

0

0
.7

5

0
.9

0

1
.0

5

1
.2

0

1
.3

5

Time (τ)

0

1

2

3

4

5

6

7

K
E

x10
7

(f) Ra∗ = 138.9Ra∗c = 0.7500

Figure 4.10: Kinetic energy time series data for Nρ = 1 at ηnb = 1.00. The black line

represents the total kinetic energy KE = KEζ +KEγ, where KEζ is represented by the red

line and KEγ is represented by the blue line.
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(e) Ra∗ = 90.9Ra∗c = 0.5000
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Figure 4.11: Kinetic energy time series data for Nρ = 1 at ηnb = 0.98. The black line

represents the total kinetic energy KE = KEζ +KEγ, where KEζ is represented by the red

line and KEγ is represented by the blue line.
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Figure 4.12: Kinetic energy time series data for Nρ = 1 at ηnb = 0.96. The black line

represents the total kinetic energy KE = KEζ +KEγ, where KEζ is represented by the red

line and KEγ is represented by the blue line.
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Figure 4.13: Kinetic energy time series data for Nρ = 1 at ηnb = 0.90. The black line

represents the total kinetic energy KE = KEζ +KEγ, where KEζ is represented by the red

line and KEγ is represented by the blue line.
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Figure 4.14: Kinetic energy time series data for Nρ = 1 at ηnb = 0.80. The black line

represents the total kinetic energy KE = KEζ +KEγ, where KEζ is represented by the red

line and KEγ is represented by the blue line.
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Figure 4.15: Kinetic energy time series data for Nρ = 3 at ηnb = 1.00. The black line

represents the total kinetic energy KE = KEζ +KEγ, where KEζ is represented by the red

line and KEγ is represented by the blue line.
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Figure 4.16: Kinetic energy time series data for Nρ = 3 at ηnb = 0.98. The black line

represents the total kinetic energy KE = KEζ +KEγ, where KEζ is represented by the red

line and KEγ is represented by the blue line.
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Figure 4.17: Kinetic energy time series data for Nρ = 3 at ηnb = 0.96. The black line

represents the total kinetic energy KE = KEζ +KEγ, where KEζ is represented by the red

line and KEγ is represented by the blue line.
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Figure 4.18: Kinetic energy time series data for Nρ = 3 at ηnb = 0.90. The black line

represents the total kinetic energy KE = KEζ +KEγ, where KEζ is represented by the red

line and KEγ is represented by the blue line.
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(d) Ra∗ = 8.6Ra∗c = 0.1000
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(e) Ra∗ = 25.9Ra∗c = 0.3000
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(f) Ra∗ = 43.1Ra∗c = 0.5000

Figure 4.19: Kinetic energy time series data for Nρ = 3 at ηnb = 0.80. The black line

represents the total kinetic energy KE = KEζ +KEγ, where KEζ is represented by the red

line and KEγ is represented by the blue line.
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(a) Ra∗ = Ra∗c = 0.0111
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(c) Ra∗ = 4.5Ra∗c = 0.0500
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(d) Ra∗ = 9.0Ra∗c = 0.1000
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(e) Ra∗ = 27.0Ra∗c = 0.3000
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(f) Ra∗ = 45.0Ra∗c = 0.5000

Figure 4.20: Kinetic energy time series data for Nρ = 5 at ηnb = 1.00. The black line

represents the total kinetic energy KE = KEζ +KEγ, where KEζ is represented by the red

line and KEγ is represented by the blue line.
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(a) Ra∗ = Ra∗c = 0.0111
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(b) Ra∗ = 1.8Ra∗c = 0.0200
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(c) Ra∗ = 4.5Ra∗c = 0.0500
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(d) Ra∗ = 9.0Ra∗c = 0.1000
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(e) Ra∗ = 27.0Ra∗c = 0.3000
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(f) Ra∗ = 45.0Ra∗c = 0.5000

Figure 4.21: Kinetic energy time series data for Nρ = 5 at ηnb = 0.98. The black line

represents the total kinetic energy KE = KEζ +KEγ, where KEζ is represented by the red

line and KEγ is represented by the blue line.
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(a) Ra∗ = Ra∗c = 0.0112
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(b) Ra∗ = 1.8Ra∗c = 0.0200
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(c) Ra∗ = 4.5Ra∗c = 0.0500
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(d) Ra∗ = 8.9Ra∗c = 0.1000
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(e) Ra∗ = 26.8Ra∗c = 0.3000
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(f) Ra∗ = 44.6Ra∗c = 0.5000

Figure 4.22: Kinetic energy time series data for Nρ = 5 at ηnb = 0.96. The black line

represents the total kinetic energy KE = KEζ +KEγ, where KEζ is represented by the red

line and KEγ is represented by the blue line.
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(a) Ra∗ = Ra∗c = 0.0116
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(b) Ra∗ = 1.7Ra∗c = 0.0200
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(c) Ra∗ = 4.3Ra∗c = 0.0500
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(d) Ra∗ = 8.6Ra∗c = 0.1000
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(e) Ra∗ = 25.9Ra∗c = 0.3000

1
.5

7
6

1
.5

8
4

1
.5

9
2

1
.6

0
0

1
.6

0
8

1
.6

1
6

1
.6

2
4

1
.6

3
2

1
.6

4
0

Time (τ)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

K
E

x10
9

(f) Ra∗ = 43.1Ra∗c = 0.5000

Figure 4.23: Kinetic energy time series data for Nρ = 5 at ηnb = 0.90. The black line

represents the total kinetic energy KE = KEζ +KEγ, where KEζ is represented by the red

line and KEγ is represented by the blue line.
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(a) Ra∗ = Ra∗c = 0.0132
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(b) Ra∗ = 1.5Ra∗c = 0.0200
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(c) Ra∗ = 3.8Ra∗c = 0.0500
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(d) Ra∗ = 7.6Ra∗c = 0.1000
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(e) Ra∗ = 22.7Ra∗c = 0.3000
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(f) Ra∗ = 37.9Ra∗c = 0.5000

Figure 4.24: Kinetic energy time series data for Nρ = 5 at ηnb = 0.80. The black line

represents the total kinetic energy KE = KEζ +KEγ, where KEζ is represented by the red

line and KEγ is represented by the blue line.

91



15 30 45 60 75 90 10
5

12
0

13
5

Ra ∗ /Ra ∗

c

0.80

0.85

0.90

0.95

1.00

η n
b

Linear

Quasi-periodic

Chaotic(1)

Figure 4.25: The convection regime diagram for Nρ = 10−2 and E = 10−4 for various ηnb

and Ra∗/Ra∗c . The regimes indicated by the legend in this graph presents the convection

regimes the models were exhibiting based on their respective ηnb and Ra∗/Ra∗c values. The

range for Ra∗/Ra∗c goes up to Ra∗ = 0.5000, where Ra∗c is dependant on ηnb. The yellow

dots represents the models presented in this chapter given by Figures 4.5 to 4.9. The purple

dots represent the models that were not presented in this chapter.
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Figure 4.26: The convection regime diagram for Nρ = 1 and E = 10−4 for various ηnb and

Ra∗/Ra∗c . The regimes indicated by the legend in this graph presents the convection regimes

the models were exhibiting based on their respective ηnb and Ra∗/Ra∗c values. The range

for Ra∗/Ra∗c goes up to Ra∗ = 0.5000, where Ra∗c is dependant on ηnb. The yellow dots

represents the models presented in this chapter given by Figures 4.10 to 4.14. The purple

dots represent the models that were not presented in this chapter.
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Figure 4.27: The convection regime diagram for Nρ = 3 and E = 10−4 for various ηnb and

Ra∗/Ra∗c . The regimes indicated by the legend in this graph presents the convection regimes

the models were exhibiting based on their respective ηnb and Ra∗/Ra∗c values. The range

for Ra∗/Ra∗c goes up to Ra∗ = 0.5000, where Ra∗c is dependant on ηnb. The yellow dots

represents the models presented in this chapter given by Figures 4.15 to 4.19. The purple

dots represent the models that were not presented in this chapter.
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Figure 4.28: The convection regime diagram for Nρ = 5 and E = 10−4 for various ηnb and

Ra∗/Ra∗c . The regimes indicated by the legend in this graph presents the convection regimes

the models were exhibiting based on their respective ηnb and Ra∗/Ra∗c values. The range

for Ra∗/Ra∗c goes up to Ra∗ = 0.5000, where Ra∗c is dependant on ηnb. The yellow dots

represents the models presented in this chapter given by Figures 4.20 to 4.24. The purple

dots represent the models that were not presented in this chapter.
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(a) Ra∗ = Ra∗c = 0.0034 (b) Ra∗ = 4.4Ra∗c = 0.0150

(c) Ra∗ = 14.7Ra∗c = 0.0500 (d) Ra∗ = 29.4Ra∗c = 0.1000

(e) Ra∗ = 147.1Ra∗c = 0.5000 (f) Ra∗ = 294.1Ra∗c = 1.0000

Figure 4.29: The azimuthally averaged radial entropy gradient profile of the rotating spher-

ical shell with Nρ = 10−2 at ηnb = 1.00. Note the ∂s/∂r ≥ 0 implies that the fluid is

convectively unstable while ∂s/∂r < 0 implies the fluid is in a stably stratified state.
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(a) Ra∗ = Ra∗c = 0.0044 (b) Ra∗ = 4.5Ra∗c = 0.0200

(c) Ra∗ = 11.4Ra∗c = 0.0500 (d) Ra∗ = 22.7Ra∗c = 0.1000

(e) Ra∗ = 113.6Ra∗c = 0.5000 (f) Ra∗ = 227.3Ra∗c = 1.0000

Figure 4.30: The azimuthally averaged radial entropy gradient profile of the rotating spher-

ical shell with Nρ = 10−2 at ηnb = 0.80. Note the ∂s/∂r ≥ 0 implies that the fluid is

convectively unstable while ∂s/∂r < 0 implies the fluid is in a stably stratified state.
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(a) Ra∗ = Ra∗c = 0.0054 (b) Ra∗ = 1.8Ra∗c = 0.0100

(c) Ra∗ = 9.3Ra∗c = 0.0500 (d) Ra∗ = 18.1Ra∗c = 0.1000

(e) Ra∗ = 92.6Ra∗c = 0.5000 (f) Ra∗ = 138.9Ra∗c = 0.7500

Figure 4.31: The azimuthally averaged radial entropy gradient profile of the rotating spheri-

cal shell with Nρ = 1 at ηnb = 1.00. Note the ∂s/∂r ≥ 0 implies that the fluid is convectively

unstable while ∂s/∂r < 0 implies the fluid is in a stably stratified state.
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(a) Ra∗ = Ra∗c = 0.0074 (b) Ra∗ = 4.1Ra∗c = 0.0300

(c) Ra∗ = 6.8Ra∗c = 0.0500 (d) Ra∗ = 13.6Ra∗c = 0.1000

(e) Ra∗ = 67.6Ra∗c = 0.5000 (f) Ra∗ = 101.4Ra∗c = 0.7500

Figure 4.32: The azimuthally averaged radial entropy gradient profile of the rotating spheri-

cal shell with Nρ = 1 at ηnb = 0.80. Note the ∂s/∂r ≥ 0 implies that the fluid is convectively

unstable while ∂s/∂r < 0 implies the fluid is in a stably stratified state.
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(a) Ra∗ = Ra∗c = 0.0088 (b) Ra∗ = 2.8Ra∗c = 0.0200

(c) Ra∗ = 8.5Ra∗c = 0.0750 (d) Ra∗ = 11.4Ra∗c = 0.1000

(e) Ra∗ = 34.1Ra∗c = 0.3000 (f) Ra∗ = 56.8Ra∗c = 0.5000

Figure 4.33: The azimuthally averaged radial entropy gradient profile of the rotating spheri-

cal shell with Nρ = 3 at ηnb = 1.00. Note the ∂s/∂r ≥ 0 implies that the fluid is convectively

unstable while ∂s/∂r < 0 implies the fluid is in a stably stratified state.
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(a) Ra∗ = Ra∗c = 0.0116 (b) Ra∗ = 1.7Ra∗c = 0.0200

(c) Ra∗ = 4.3Ra∗c = 0.0500 (d) Ra∗ = 8.6Ra∗c = 0.1000

(e) Ra∗ = 25.9Ra∗c = 0.3000 (f) Ra∗ = 43.1Ra∗c = 0.5000

Figure 4.34: The azimuthally averaged θ entropy gradient profile of the rotating spherical

shell with Nρ = 3 at ηnb = 0.80. Note the ∂s/∂r ≥ 0 implies that the fluid is convectively

unstable while ∂s/∂r < 0 implies the fluid is in a stably stratified state.

101



(a) Ra∗ = Ra∗c = 0.0111 (b) Ra∗ = 1.8Ra∗c = 0.0200

(c) Ra∗ = 4.5Ra∗c = 0.0500 (d) Ra∗ = 9.0Ra∗c = 0.1000

(e) Ra∗ = 27.0Ra∗c = 0.3000 (f) Ra∗ = 45.0Ra∗c = 0.5000

Figure 4.35: The azimuthally averaged θ entropy gradient profile of the rotating spherical

shell with Nρ = 5 at ηnb = 1.00. Note the ∂s/∂r ≥ 0 implies that the fluid is convectively

unstable while ∂s/∂r < 0 implies the fluid is in a stably stratified state.
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(a) Ra∗ = Ra∗c = 0.0132 (b) Ra∗ = 1.5Ra∗c = 0.0200

(c) Ra∗ = 3.8Ra∗c = 0.0500 (d) Ra∗ = 7.6Ra∗c = 0.1000

(e) Ra∗ = 22.7Ra∗c = 0.3000 (f) Ra∗ = 37.9Ra∗c = 0.5000

Figure 4.36: The azimuthally averaged θ entropy gradient profile of the rotating spherical

shell with Nρ = 5 at ηnb = 0.80. Note the ∂s/∂r ≥ 0 implies that the fluid is convectively

unstable while ∂s/∂r < 0 implies the fluid is in a stably stratified state.
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(a) Ra∗ = Ra∗c = 0.0034 (b) Ra∗ = 4.4Ra∗c = 0.0150

(c) Ra∗ = 14.7Ra∗c = 0.0500 (d) Ra∗ = 29.4Ra∗c = 0.1000

(e) Ra∗ = 147.1Ra∗c = 0.5000 (f) Ra∗ = 294.1Ra∗c = 1.0000

Figure 4.37: The azimuthally averaged ∂uφ/∂z profile of the rotating spherical shell with

Nρ = 10−2 at ηnb = 1.00.
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(a) Ra∗ = Ra∗c = 0.0044 (b) Ra∗ = 4.5Ra∗c = 0.0200

(c) Ra∗ = 11.4Ra∗c = 0.0500 (d) Ra∗ = 22.7Ra∗c = 0.1000

(e) Ra∗ = 113.6Ra∗c = 0.5000 (f) Ra∗ = 227.3Ra∗c = 1.0000

Figure 4.38: The azimuthally averaged ∂uφ/∂z profile of the rotating spherical shell with

Nρ = 10−2 at ηnb = 0.80.
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(a) Ra∗ = Ra∗c = 0.0054 (b) Ra∗ = 1.8Ra∗c = 0.0100

(c) Ra∗ = 9.3Ra∗c = 0.0500 (d) Ra∗ = 18.1Ra∗c = 0.1000

(e) Ra∗ = 92.6Ra∗c = 0.5000 (f) Ra∗ = 138.9Ra∗c = 0.7500

Figure 4.39: The azimuthally averaged ∂uφ/∂z profile of the rotating spherical shell with

Nρ = 1 at ηnb = 1.00.
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(a) Ra∗ = Ra∗c = 0.0074 (b) Ra∗ = 4.1Ra∗c = 0.0300

(c) Ra∗ = 6.8Ra∗c = 0.0500 (d) Ra∗ = 13.6Ra∗c = 0.1000

(e) Ra∗ = 67.6Ra∗c = 0.5000 (f) Ra∗ = 101.4Ra∗c = 0.7500

Figure 4.40: The azimuthally averaged ∂uφ/∂z profile of the rotating spherical shell with

Nρ = 1 at ηnb = 0.80.
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(a) Ra∗ = Ra∗c = 0.0088 (b) Ra∗ = 2.8Ra∗c = 0.0200

(c) Ra∗ = 8.5Ra∗c = 0.0750 (d) Ra∗ = 11.4Ra∗c = 0.1000

(e) Ra∗ = 34.1Ra∗c = 0.3000 (f) Ra∗ = 56.8Ra∗c = 0.5000

Figure 4.41: The azimuthally averaged ∂uφ/∂z profile of the rotating spherical shell with

Nρ = 3 at ηnb = 1.00.
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(a) Ra∗ = Ra∗c = 0.0116 (b) Ra∗ = 1.7Ra∗c = 0.0200

(c) Ra∗ = 4.3Ra∗c = 0.0500 (d) Ra∗ = 8.6Ra∗c = 0.1000

(e) Ra∗ = 25.9Ra∗c = 0.3000 (f) Ra∗ = 43.1Ra∗c = 0.5000

Figure 4.42: The azimuthally averaged ∂uφ/∂z profile of the rotating spherical shell with

Nρ = 3 at ηnb = 0.80.
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(a) Ra∗ = Ra∗c = 0.0111 (b) Ra∗ = 1.8Ra∗c = 0.0200

(c) Ra∗ = 4.5Ra∗c = 0.0500 (d) Ra∗ = 9.0Ra∗c = 0.1000

(e) Ra∗ = 27.0Ra∗c = 0.3000 (f) Ra∗ = 45.0Ra∗c = 0.5000

Figure 4.43: The azimuthally averaged ∂uφ/∂z profile of the rotating spherical shell with

Nρ = 5 at ηnb = 1.00.
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(a) Ra∗ = Ra∗c = 0.0132 (b) Ra∗ = 1.5Ra∗c = 0.0200

(c) Ra∗ = 3.8Ra∗c = 0.0500 (d) Ra∗ = 7.6Ra∗c = 0.1000

(e) Ra∗ = 22.7Ra∗c = 0.3000 (f) Ra∗ = 37.9Ra∗c = 0.5000

Figure 4.44: The azimuthally averaged ∂uφ/∂z profile of the rotating spherical shell with

Nρ = 5 at ηnb = 0.80.

111



(a) Ra∗ = Ra∗c = 0.0034 (b) Ra∗ = 4.4Ra∗c = 0.0150

(c) Ra∗ = 14.7Ra∗c = 0.0500 (d) Ra∗ = 29.4Ra∗c = 0.1000

(e) Ra∗ = 147.1Ra∗c = 0.5000 (f) Ra∗ = 294.1Ra∗c = 1.0000

Figure 4.45: The azimuthally averaged zonal velocity profile of the rotating spherical shell

with Nρ = 10−2 at ηnb = 1.00. Note that zonal velocity greater than zero implies a prograde

directional flow while the opposite implies the retrograde direction.
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(a) Ra∗ = Ra∗c = 0.0038 (b) Ra∗ = 3.9Ra∗c = 0.0150

(c) Ra∗ = 13.2Ra∗c = 0.0500 (d) Ra∗ = 26.3Ra∗c = 0.1000

(e) Ra∗ = 131.6Ra∗c = 0.5000 (f) Ra∗ = 263.2Ra∗c = 1.0000

Figure 4.46: The azimuthally averaged zonal velocity profile of the rotating spherical shell

with Nρ = 10−2 at ηnb = 0.90. Note that zonal velocity greater than zero implies a prograde

directional flow while the opposite implies the retrograde direction.
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(a) Ra∗ = Ra∗c = 0.0044 (b) Ra∗ = 4.5Ra∗c = 0.0200

(c) Ra∗ = 11.4Ra∗c = 0.0500 (d) Ra∗ = 22.7Ra∗c = 0.1000

(e) Ra∗ = 113.6Ra∗c = 0.5000 (f) Ra∗ = 227.3Ra∗c = 1.0000

Figure 4.47: The azimuthally averaged zonal velocity profile of the rotating spherical shell

with Nρ = 10−2 at ηnb = 0.80. Note that zonal velocity greater than zero implies a prograde

directional flow while the opposite implies the retrograde direction.
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(a) Ra∗ = Ra∗c = 0.0054 (b) Ra∗ = 1.8Ra∗c = 0.0100

(c) Ra∗ = 9.3Ra∗c = 0.0500 (d) Ra∗ = 18.1Ra∗c = 0.1000

(e) Ra∗ = 92.6Ra∗c = 0.5000 (f) Ra∗ = 138.9Ra∗c = 0.7500

Figure 4.48: The azimuthally averaged zonal velocity profile of the rotating spherical shell

with Nρ = 1 at ηnb = 1.00. Note that zonal velocity greater than zero implies a prograde

directional flow while the opposite implies the retrograde direction.

115



(a) Ra∗ = Ra∗c = 0.0060 (b) Ra∗ = 2.5Ra∗c = 0.0150

(c) Ra∗ = 8.3Ra∗c = 0.0500 (d) Ra∗ = 16.7Ra∗c = 0.1000

(e) Ra∗ = 83.3Ra∗c = 0.5000 (f) Ra∗ = 125.0Ra∗c = 0.7500

Figure 4.49: The azimuthally averaged zonal velocity profile of the rotating spherical shell

with Nρ = 1 at ηnb = 0.90. Note that zonal velocity greater than zero implies a prograde

directional flow while the opposite implies the retrograde direction.
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(a) Ra∗ = Ra∗c = 0.0074 (b) Ra∗ = 4.1Ra∗c = 0.0300

(c) Ra∗ = 6.8Ra∗c = 0.0500 (d) Ra∗ = 13.6Ra∗c = 0.1000

(e) Ra∗ = 67.6Ra∗c = 0.5000 (f) Ra∗ = 101.4Ra∗c = 0.7500

Figure 4.50: The azimuthally averaged zonal velocity profile of the rotating spherical shell

with Nρ = 1 at ηnb = 0.80. Note that zonal velocity greater than zero implies a prograde

directional flow while the opposite implies the retrograde direction.
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(a) Ra∗ = Ra∗c = 0.0088 (b) Ra∗ = 1.7Ra∗c = 0.0150

(c) Ra∗ = 5.7Ra∗c = 0.0500 (d) Ra∗ = 11.4Ra∗c = 0.1000

(e) Ra∗ = 34.1Ra∗c = 0.3000 (f) Ra∗ = 56.8Ra∗c = 0.5000

Figure 4.51: The azimuthally averaged zonal velocity profile of the rotating spherical shell

with Nρ = 3 at ηnb = 1.00. Note that zonal velocity greater than zero implies a prograde

directional flow while the opposite implies the retrograde direction.
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(a) Ra∗ = Ra∗c = 0.0096 (b) Ra∗ = 1.6Ra∗c = 0.0150

(c) Ra∗ = 5.2Ra∗c = 0.0500 (d) Ra∗ = 10.4Ra∗c = 0.1000

(e) Ra∗ = 31.3Ra∗c = 0.3000 (f) Ra∗ = 52.1Ra∗c = 0.5000

Figure 4.52: The azimuthally averaged zonal velocity profile of the rotating spherical shell

with Nρ = 3 at ηnb = 0.90. Note that zonal velocity greater than zero implies a prograde

directional flow while the opposite implies the retrograde direction.
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(a) Ra∗ = Ra∗c = 0.0116 (b) Ra∗ = 1.7Ra∗c = 0.0200

(c) Ra∗ = 4.3Ra∗c = 0.0500 (d) Ra∗ = 8.6Ra∗c = 0.1000

(e) Ra∗ = 25.9Ra∗c = 0.3000 (f) Ra∗ = 43.1Ra∗c = 0.5000

Figure 4.53: The azimuthally averaged zonal velocity profile of the rotating spherical shell

with Nρ = 3 at ηnb = 0.80. Note that zonal velocity greater than zero implies a prograde

directional flow while the opposite implies the retrograde direction.
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(a) Ra∗ = Ra∗c = 0.0111 (b) Ra∗ = 1.8Ra∗c = 0.0200

(c) Ra∗ = 4.5Ra∗c = 0.0500 (d) Ra∗ = 9.0Ra∗c = 0.1000

(e) Ra∗ = 27.0Ra∗c = 0.3000 (f) Ra∗ = 45.0Ra∗c = 0.5000

Figure 4.54: The azimuthally averaged zonal velocity profile of the rotating spherical shell

with Nρ = 5 at ηnb = 1.00. Note that zonal velocity greater than zero implies a prograde

directional flow while the opposite implies the retrograde direction.
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(a) Ra∗ = Ra∗c = 0.0116 (b) Ra∗ = 1.7Ra∗c = 0.0200

(c) Ra∗ = 4.3Ra∗c = 0.0500 (d) Ra∗ = 8.6Ra∗c = 0.1000

(e) Ra∗ = 25.9Ra∗c = 0.3000 (f) Ra∗ = 43.1Ra∗c = 0.5000

Figure 4.55: The azimuthally averaged zonal velocity profile of the rotating spherical shell

with Nρ = 5 at ηnb = 0.90. Note that zonal velocity greater than zero implies a prograde

directional flow while the opposite implies the retrograde direction.
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(a) Ra∗ = Ra∗c = 0.0132 (b) Ra∗ = 1.5Ra∗c = 0.0200

(c) Ra∗ = 3.8Ra∗c = 0.0500 (d) Ra∗ = 7.6Ra∗c = 0.1000

(e) Ra∗ = 22.7Ra∗c = 0.3000 (f) Ra∗ = 37.9Ra∗c = 0.5000

Figure 4.56: The azimuthally averaged zonal velocity profile of the rotating spherical shell

with Nρ = 5 at ηnb = 0.80. Note that zonal velocity greater than zero implies a prograde

directional flow while the opposite implies the retrograde direction.
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(a) Ra∗ = Ra∗c = 0.0054 (b) Ra∗ = 1.8Ra∗c = 0.0100

(c) Ra∗ = 9.3Ra∗c = 0.0500 (d) Ra∗ = 18.1Ra∗c = 0.1000

(e) Ra∗ = 92.6Ra∗c = 0.5000 (f) Ra∗ = 138.9Ra∗c = 0.7500

Figure 4.57: A hammer projection of the zonal velocity of the rotating spherical shell with

Nρ = 1 at ηnb = 1.00 at the outer boundary. Note that zonal velocity greater than zero

implies a prograde directional flow while the opposite implies the retrograde direction.
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(a) Ra∗ = Ra∗c = 0.0074 (b) Ra∗ = 4.1Ra∗c = 0.0300

(c) Ra∗ = 6.8Ra∗c = 0.0500 (d) Ra∗ = 13.6Ra∗c = 0.1000

(e) Ra∗ = 67.6Ra∗c = 0.5000 (f) Ra∗ = 101.4Ra∗c = 0.7500

Figure 4.58: A hammer projection of the zonal velocity of the rotating spherical shell with

Nρ = 1 at ηnb = 0.80 at the outer boundary. Note that zonal velocity greater than zero

implies a prograde directional flow while the opposite implies the retrograde direction.
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(a) Ra∗ = Ra∗c = 0.0088 (b) Ra∗ = 1.7Ra∗c = 0.0150

(c) Ra∗ = 5.7Ra∗c = 0.0500 (d) Ra∗ = 11.4Ra∗c = 0.1000

(e) Ra∗ = 34.1Ra∗c = 0.3000 (f) Ra∗ = 56.8Ra∗c = 0.5000

Figure 4.59: A hammer projection of the zonal velocity of the rotating spherical shell with

Nρ = 3 at ηnb = 1.00 at the outer boundary. Note that zonal velocity greater than zero

implies a prograde directional flow while the opposite implies the retrograde direction.
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(a) Ra∗ = Ra∗c = 0.0116 (b) Ra∗ = 1.7Ra∗c = 0.0200

(c) Ra∗ = 4.3Ra∗c = 0.0500 (d) Ra∗ = 8.6Ra∗c = 0.1000

(e) Ra∗ = 25.9Ra∗c = 0.3000 (f) Ra∗ = 43.1Ra∗c = 0.5000

Figure 4.60: A hammer projection of the zonal velocity of the rotating spherical shell with

Nρ = 3 at ηnb = 0.80 at the outer boundary. Note that zonal velocity greater than zero

implies a prograde directional flow while the opposite implies the retrograde direction.
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Chapter 5

Vorticity Formation near the Tangent

Cylinder

Based on the previous chapter, implementing the stably stratified fluid layer near the outer

boundary using the constant conductive entropy radial gradient boundary conditions can

change the fluid dynamics of a rotating anelastic convective spherical shell. For one, the

stably stratified fluid layer has a tendency to force the fluid motion to be two dimensional,

which is along the azimuthal and cylindrical radial directions. This can be seen in rotating

anelastic spherical shell models with high density stratification in the previous chapter, where

the strong retrograde jets near the outer boundary start to become smoother when the stably

stratified fluid layer thickness increases. However, a special set of models exist where they

generate long-lived eddies near the tangent cylinder. These are the near-Boussinesq models

with a thick, stably stratified fluid layer. They also exhibit great eddies near the tangent

cylinder that are somewhat comparable to the Great Red Spot observed on Jupiter.

5.1 Two-Dimensional Eddy Formation

For two-dimensional turbulence to evolve freely, a coherent vorticity is needed (Carnevale,

McWilliams, Pomeau, Weiss, & Young, 1991). Consider the vorticity ω defined by

ω = ∇× u, (5.1)

where the fluid velocity field is denoted as u. Two-dimensional turbulence can form if one

of the components of ω is coherent, which means that it remains consistent in magnitude

and shape over time. Based on a numerical study conducted by Riley, Metcalfe, and Weiss-
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man (1981) analyzing the effects of vertical density stratification on turbulence of a non-

rotating Boussinesq fluid, the implementation of the stably stratified fluid layer along the

outer boundary has a tendency to inhibit the vortex line stretching. However, the horizontal

components of the vortex line is larger than the vertical component. This correlates to the

stably stratified fluid layer inhibiting the vertical growth of the fluid motion while enhancing

the horizontal growth within this layer. This enhancement could lead to the development of

two-dimensional eddies.

Two-dimensional eddies are constrained by the Rossby deformation radius Ld, which is

defined by

Ld = Hρ

√
|R(r)| (5.2)

(Heimpel et al., 2016). The density scale height Hρ is defined as

Hρ = − 1
d ln ρ̄
dr

, (5.3)

where background density is denoted as ρ̄. The depth dependant Rayleigh number, R(r), is

represented by

R(r) =
g(r)β(r)

goβi

Ra∗, (5.4)

where gravity is represented by g(r) with go = g(ro), radial entropy gradient is represented

by β(r) = dsc(r)/dr with βi = β(ri) and modified Rayleigh number is represented by

Ra∗ = RaE2/Pr. The Rossby deformation radius, Ld, represents the length scale that

result from the balance between the gravitational forces that want to keep the surface at

constant r flat and the Coriolis forces that want to deform it (e.g., Pedlosky, 1987). The

value of Ld roughly determines the length scale of the eddies.

5.2 Near-Boussinesq Model

One set of models that exhibit eddies near the tangent cylinder are the near-Boussinesq

(Nρ = 10−2) models with ηnb = 0.80, Prandtl number Pr = 1, Ekman number E = 10−4, and

radius ratio η = 0.60, where the stably stratified fluid layer thickness is defined as ro(1−ηnb).

At Ra∗ ≥ 91.5Ra∗c = 0.4000 with critical modified Rayleigh number Ra∗c = 0.0044, eddies

start forming near the tangent cylinder near the outer boundary of the rotating spherical

shell. The kinetic energy time series for Ra∗ = 0.4000, 0.5000, 1.0000, 2.0000, and 3.0000
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are presented in Figure 5.1, which all exhibit low frequency oscillations. The axisymmetric

(azimuthally averaged) radial entropy gradient profile (∂s/∂r) presented in Figure 5.2 of

the same models all exhibit perturbations in the weakly convective fluid layer (∂s/∂r ≈ 0)

near the tangent cylinder. These perturbations increase in area for the stably stratified

region as Ra∗ increases. However, the axisymmetric ∂uφ/∂z profile for Nρ = 10−2 models

(which can be seen in Figure 5.3) are different compared with the Nρ = 1 and 3 models with

ηnb = 0.80, which are shown in Figures 4.40 and 4.42, respectively. While the Nρ ≥ 1 models

exhibit ∂uφ/∂z > 0 dominance in the Northern hemisphere and ∂uφ/∂z < 0 in the Southern

hemisphere, the near-Boussinesq models with Ra∗ ≥ 0.400 experiences a mix of the two in

both hemispheres with the high magnitude areas constrained near the inner boundary and

near the tangent cylinder.

For Ra∗ = 0.4000, this model exhibit long-lived eddies near the tangent cylinder at both

the Northern and Southern hemispheres. Figure 5.4 shows a series of hammer projection

images at the outer boundary of the zonal velocity uφ between times t = 0.6805τ and

t = 0.7113τ . This figure shows six eddies rotating around the tangent cylinder of the spherical

shell indicated by a pair of maximum and minimum areas between the strong prograde and

retrograde jets at both hemispheres. However, each eddy in the Northern hemisphere has a

counterpart centred at the same longitude at the Southern hemisphere, where each pair of

eddies rotate around the tangent cylinder in the prograde direction at the same speed. Each

eddy in the Northern hemisphere appears to travel at different speeds. They also appear to

maintain their zonal velocity (uφ) magnitude while keeping their geometry time dependent.

The radial vorticity ωr at r = ro of the the model is presented in Figure 5.5 between

t = 0.6805τ and t = 0.7113τ . This figure indicates that much of the radial vorticity action

occur near the tangent cylinder at both hemispheres. The maximum and minimum areas in

Figure 5.5 can be associated with the eddies observed with in Figure 5.4.

The observations of the eddies in Ra∗ = 0.4000 are very similar to models with Ra∗ =

0.5000. However, the nature of these eddies changes drastically for increasing Ra∗ (Ra∗ ≥
1.0000). They merge to form great eddies at both hemispheres. Since increasing Ra∗ in-

creases the overall fluid speed and turbulent motion in the system, either a large fluid speed,

turbulent motion, or both are needed to generate these great eddies.

5.2.1 Generation of Great Eddies

Increasing the thermal forcing to Ra∗ = 1.0000 leads the formation of great eddies rotating

around the tangent cylinder for Nρ = 10−2 with ηnb = 0.80 at both hemispheres. For both

great eddies to form, the long-lived eddies (similar to the ones observed in Ra∗ = 0.4000)
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need to merge together. This can be seen in Figure 5.6, which shows the zonal flow velocity

of the Ra∗ = 1.0000 model in hammer projection form between t = 0.2047τ and t = 0.2223τ

at r = ro. Between t = 0.2117τ and t = 0.2187τ , which is associated with Figures 5.6(c) to

5.6(e), the Ra∗ = 1.0000 model shows the merging of two eddies at both hemispheres, which

is absent in the Ra∗ = 0.4000 model. This results in an eddy with a much larger zonal flow

magnitude with respect to the other eddies, which is shown in Figure 5.6(e). These merged

eddies maintain a time dependent geometry and zonal velocity magnitude. However, the

prograde part of these eddies appear to interact with the strong prograde jet via diagonal

trailing features.

These great eddies form when more of the long-lived eddies rotating around the tangent

cylinder begin to merge. This can be seen in Figure 5.7, which shows the zonal velocity

between t = 0.2258τ and t = 0.2433τ at the outer boundary. This figure shows that the

merging of two long-lived eddies leads the formation of a larger long-lived eddy, which is

shown in Figures 5.7(a) to 5.7(e). Finally, the remaining two large long-lived eddies at both

hemispheres merge together to form great eddies, which can be seen at Figure 5.7(f). The

resulting eddies do not have a diagonal prograde trailing features but rather a head and a

trailing feature along the tangent cylinder with prograde and retrograde components.

For the rest of the model, these great eddies remain relatively stable. Figure 5.8 shows

the final state of the great eddies between t = 0.3011τ and t = 0.3178τ . These great eddies

exhibit a head and tail feature travelling in the retrograde direction around the tangent

cylinder. They also have a faint retrograde zonal flow that surrounds the front of the eddies’

head. A strong prograde area or equatorial spot in between the eddies at the equator is

surrounded by retrograde flow and travels at the same speed as the great eddies. The

equatorial spot’s geometry and zonal flow magnitude is also time dependent. However, the

radial vorticity shown in Figure 5.9 between t = 0.3011τ and t = 0.3178τ also shows that

the great eddies at both hemispheres is anticyclonic.

The azimuthal slice of uφ and uθ at t = 0.2231τ of the great eddies can be seen in

Figure 5.10 where the azimuthal slices are taken at the centres of both the minimum uθ

and uφ of the Northern great storm. Based on the azimuthal slices, these great eddies

extend from r = ro to the equator near the tangent cylinder. The uφ azimuthal slice of

the great eddies also indicates that the motion of the storm is in columnar form, implying

that they are driven by convection. This is presented in Figures 5.10(d) and 5.10(f). This is

further supported by images of the equatorial slice of the radial velocity between t = 0.3011τ

and t = 0.3178τ presented in Figure 5.11. The radial velocity of the model exhibits non-

linear convection cells but with a gap between large magnitude convection cells and the low

magnitude convection cells. The high magnitude convection cells at the counterclockwise
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side of the gap is associated with the great eddies of the model and drifts clockwise around

the inner boundary.

5.2.2 Increasing Rotational Constraint

While maintaining Ra∗ = 1.0000 for Nρ = 10−2 with ηnb = 0.80, the model with decreasing

E from E = 10−4 to E = 3.0 · 10−5 still maintains great eddies at both hemispheres. The

time series data for this model shown in Figure 5.12(a) exhibits low frequency oscillations

similar to the E = 10−4 models. The axisymmetric ∂s/∂z profile shown in Figure 5.12(b) for

the E = 3 · 10−5 model is also similar to the E = 10−4 models, which is shown in Figure 5.2.

However, the ∂uφ/∂z profile shown in Figure 5.12(c) exhibits a greater number of constrained

∂uφ/∂z > 0 and ∂uφ/∂z < 0 areas near the outer boundary and near the poles compared to

the E = 10−4 models.

The great eddies for the Nρ = 10−2 with ηnb = 0.80, Ra∗ = 1.0000, and E = 3.0 ·10−5 are

generated similarly to the E = 10−4 counterpart such that they are generated by the merging

of several long-lived eddies. This can be seen in Figure 5.13, where it shows the hammer

projection of the zonal velocity of the rotating convecting fluid at the outer boundary between

t = 0.6805τ and t = 0.7113τ . In this figure, the long-lived eddies all merge together to form

a pair of strong long-lived eddies, where the resulting eddy can be seen in Figure 5.13(f).

This pair roughly maintains their magnitude and geometry, which can be seen in Figure 5.14

between t = 0.1053τ and t = 0.1228τ . Figure 5.14 also shows that these eddies eventually

gain energy from the zonal flow until they transform into the great eddies as seen in Figure

5.15, where it drifts westward between t = 0.1351τ and t = 0.1504τ . These great eddies

remain relatively stable for the duration of the model, while they still have the head and the

trailing feature similar to the great eddies from the E = 10−4 model. The radial vorticity

at the outer boundary presented in Figure 5.16 between t = 0.1351τ and t = 0.1504τ shows

that the great eddies are anticyclonic in nature, which is consistent with the great eddies

from the E = 10−4 model. Azimuthal slices of both uφ and uθ presented in Figure 5.17 at

t = 0.3569τ are also similar to the E = 10−4 counterpart, showing that the great eddies are

driven by convection.

Another interesting feature for decreasing E is the generation of a high latitude prograde

jets adjacent to the retrograde jets. These high latitude prograde jets appear to be unaffected

by the strong long-lived eddies, nor do they affect the great eddies. The high latitude jets

begin to broaden and increase in zonal velocity magnitude as time progresses, which can be

seen in Figure 5.18, which represents the zonal velocity at r = ro between t = 1.342τ and

t = 1.371τ . The magnitude of the great eddies’ zonal velocity also increases with time.
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5.3 Discussion

Based on observations from the great eddies on Nρ = 10−2, Ra∗ = 1.0000, and ηnb = 0.80

models with E = 10−4 and E = 3 · 10−5, they share some characteristics similar to that of

the Great Red Spot on Jupiter. The Great Red Spot on Jupiter is an anticyclonic storm

that drifts westward at a planetographic latitude of 22oS (Hide, 1961). The great eddies

exhibit by the Nρ = 10−2 and Ra∗ = 1.0000 models are anticyclonic in nature that drift

westward near the tangent cylinder with latitude cos−1(η) ≈ 53oN and S. Assuming that the

radius ratio for Jupiter is 0.90, the latitude associated with the tangent cylinder is roughly

26o (Gastine & Wicht, 2012). This latitude is close to where the Great Red Spot of Jupiter

resides in. Another feature shared between both the great eddies and the Great Red Spot is

that they drift westward. However, one of the more trivial differences is that these models

produce a great eddy at each hemisphere, while there only exists one great eddy called the

Great Red Spot at the Southern Hemisphere for Jupiter (Vasavada et al., 1998).

Based on these models, the convective nature of the near-Boussinesq fluid is what drives

the generation of the great eddies. The azimuthal slices from both the E = 104 and E =

3·10−5 models, which can be seen in Figures 5.10 and 5.17, respectively, both show that these

great eddies extend in columnar form from the outer boundary to the equator. However, the

thermal winds generated at the outer boundary based on Figures 5.3 and 5.12 also conflict

with the zonal jets typically generated from rotating convection. The constrained ∂uφ/∂z < 0

and ∂uφ/∂z > 0 areas near the outer boundary and near the tangent cylinder want to force

the fluid to travel in the retrograde direction. However, the constrained ∂uφ/∂z > 0 and

∂uφ/∂z < 0 areas at the Northern and Southern hemispheres, respectively, near the tangent

cylinder and near the equator want to force the zonal flow in the prograde direction. The

directionality of these areas conflict with each other, which could be associated with the

generation of the two-dimensional turbulence within the the strong equatorial prograde jet.

This could explain why the rotating convective models with Nρ ≥ 1 from the fourth chapter

did not exhibit long-lived eddies at the outer boundary, in which these models show a

dominance in ∂uφ/∂z > 0 at the Southern hemisphere and ∂uφ/∂z < 0 at the Northern

hemisphere, but not a mixture of the two.

From Tritton (1988), the formation of both the long-lived and great eddies depend on

both on the mean velocity gradient and the density stratification of the fluid. To describe the

generation of turbulence, the Richardson number can be used. This number is represented
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by

Ri = − g(dρ̄/dr)

ρ̄(d<u>/dr)2
, (5.5)

where <u> is the mean velocity (e.g., Tritton, 1988). Equation (5.6) can be rewritten as

Ri = − gdE2(dρ̄/dr)

νρ̄(d<Ro>/dr)2
, (5.6)

where Ro is the Rossby number. Notice that the sign of the background density gradient is

important in defining Ri, whereas the sign of the mean velocity gradient does not matter.

If the density increases towards the top boundary (i.e., dρ̄/dr > 0), then Ri < 0, implying

that both the shear and the buoyancy leads to the generation of turbulence. For a small

negative Ri, shear is dominant in the flow, leading to the generation of eddies. However, if

negative Ri is large, then buoyancy is dominant, which leads to turbulent motion similar to

that of free convection. If the density increases towards the bottom boundary, then Ri > 0

and thus turbulence cannot be sustained for large Ri (Tritton, 1988).

The Nρ = 10−2 models with ηnb = 1.00, 0.98, 0.96, and 0.90 do not exhibit any long-

lived eddies, nor do any of the Nρ ≥ 1 models with ηnb = 1.00, 0.98, 0.96, 0.90, and 0.80.

This implies that a combination of both Nρ and ηnb play a role in the Richardson number.

However, there is an uncertainty in whether or not to increase or decrease ηnb from ηnb = 0.80

when Nρ increases from Nρ = 10−2 in order to replicate the great eddies. Decreasing Ek

also leads to a smaller Ri, which could result in the generation of eddies. Replicating the

great eddies for higher Nρ is needed to further understand the how stably stratified fluid

layer leads to the generation of long-lived eddies.
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(a) Ra∗ = 92.5Ra∗c = 0.4000
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(b) Ra∗ = 114.4Ra∗c = 0.5000
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(c) Ra∗ = 228.8Ra∗c = 1.0000
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(d) Ra∗ = 457.5Ra∗c = 2.0000
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(e) Ra∗ = 686.3Ra∗c = 3.0000

Figure 5.1: Kinetic energy time series data for Nρ = 10−2 at ηnb = 0.80 for E = 10−4. The

black line represents the total kinetic energy KE = KEζ +KEγ where KEζ is the toroidal

component of the kinetic energy and KEγ is the poloidal component. Note that KEζ is

represented by the red line and KEγ is represented by the blue line.
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(a) Ra∗ = 92.5Ra∗c = 0.4000 (b) Ra∗ = 114.4Ra∗c = 0.5000

(c) Ra∗ = 228.8Ra∗c = 1.0000 (d) Ra∗ = 457.5Ra∗c = 2.0000 (e) Ra∗ = 686.3Ra∗c = 3.0000

Figure 5.2: The azimuthally averaged radial entropy gradient (∂s/∂r) profile of the rotating

spherical shell with Nρ = 10−2 at ηnb = 0.80 for E = 10−4.
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(a) Ra∗ = 92.5Ra∗c = 0.4000 (b) Ra∗ = 114.4Ra∗c = 0.5000

(c) Ra∗ = 228.8Ra∗c = 1.0000 (d) Ra∗ = 457.5Ra∗c = 2.0000 (e) Ra∗ = 686.3Ra∗c = 3.0000

Figure 5.3: The azimuthally averaged ∂uφ/∂z profile of the rotating spherical shell with

Nρ = 10−2 at ηnb = 0.80 for E = 10−4.
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(a) t = 0.6805τ (b) t = 0.6868τ

(c) t = 0.6941τ (d) t = 0.7004τ

(e) t = 0.7070τ (f) t = 0.7113τ

Figure 5.4: A series of images between t = 0.6805τ and t = 0.7113τ for time t representing the

zonal velocity at the outer boundary of Nρ = 10−2, ηnb = 0.80, E = 10−4, and Ra∗ = 0.4000

model. These images shows the progression of the eddies indicated by a pair of maximum

and minimum areas near the tangent cylinder with uφ > 0 representing the prograde flow.
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(a) t = 0.6805τ (b) t = 0.6868τ

(c) t = 0.6941τ (d) t = 0.7004τ

(e) t = 0.7070τ (f) t = 0.7113τ

Figure 5.5: A series of images representing the radial vorticity of the fluid flow at the outer

boundary of Nρ = 10−2, ηnb = 0.80, E = 10−4 and Ra∗ = 0.4000 model. These images shows

the progression of the eddies indicated by a pair of maximum and minimum areas near the

tangent cylinder.
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(a) t = 0.2047τ (b) t = 0.2082τ

(c) t = 0.2117τ (d) t = 0.2152τ

(e) t = 0.2187τ (f) t = 0.2223τ

Figure 5.6: A series of images between t = 0.2047τ and t = 0.2223τ for time t representing the

zonal velocity at the outer boundary of Nρ = 10−2, ηnb = 0.80, E = 10−4, and Ra∗ = 1.0000

model. These images shows the progression of the eddies indicated by a pair of maximum

and minimum areas near the tangent cylinder with uφ > 0 representing the prograde flow.

Two eddies can be seen merging at (c) to (e).
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(a) t = 0.2258τ (b) t = 0.2293τ

(c) t = 0.2328τ (d) t = 0.2363τ

(e) t = 0.2398τ (f) t = 0.2433τ

Figure 5.7: A series of images between t = 0.6805τ and t = 0.7113τ for time t representing the

zonal velocity at the outer boundary of Nρ = 10−2, ηnb = 0.80, E = 10−4, and Ra∗ = 1.0000

model. These images show the formation of the great storm via merging of eddies indicated

by a pair of maximum and minimum areas near the tangent cylinder with uφ > 0 representing

the prograde flow.
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(a) t = 0.3011τ (b) t = 0.3047τ

(c) t = 0.3082τ (d) t = 0.3117τ

(e) t = 0.3152τ (f) t = 0.3187τ

Figure 5.8: A series of images between t = 0.6805τ and t = 0.7113τ for time t representing

the zonal velocity at the outer boundary of Nρ = 10−2, ηnb = 0.80, E = 10−4, and Ra∗ =

1.0000 model. These images shows the progression of the great eddies indicated by a pair

of maximum and minimum areas near the tangent cylinder with uφ > 0 representing the

prograde flow. Each storm exhibits a trailing feature.
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(a) t = 0.3011τ (b) t = 0.3047τ

(c) t = 0.3082τ (d) t = 0.3117τ

(e) t = 0.3152τ (f) t = 0.3187τ

Figure 5.9: A series of images between t = 0.6805τ and t = 0.7113τ for time t representing the

radial vorticity at the outer boundary of Nρ = 10−2, ηnb = 0.80, E = 10−4, and Ra∗ = 1.0000

model. The great eddies are indicated by the minimum area in the Northern hemisphere

followed by the maximum area in the Southern hemisphere within the same line of longitude.
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(a) uφ at r = ro (b) uθ at r = ro

(c) uφ at centre of min(uθ) (d) uθ at centre of min(uθ)

(e) uφ at centre of min(uφ) (f) uθ at centre of min(uφ)

Figure 5.10: The azimuthal slices of uφ and uθ of the Nρ = 10−2, ηnb = 0.80, E = 10−4, and

Ra∗ = 1.0000 model centred at the Northern great storm’s min(uθ) and min(uφ) based on

(a) and (b). Note that uθ > 0 implies that the fluid flows in the Northern direction. Note

that (a) and (b) show uφ and uθ at r = ro at t = 0.2231τ .
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(a) t = 0.3011τ (b) t = 0.3047τ

(c) t = 0.3082τ (d) t = 0.3117τ

(e) t = 0.3152τ (f) t = 0.3187τ

Figure 5.11: A series of images between t = 0.6805τ and t = 0.7113τ for time t representing

the equatorial slice of the radial velocity ur of Nρ = 10−2, ηnb = 0.80, E = 10−4, and

Ra∗ = 1.0000 model. The great eddies are indicated by the global minimum area in the

Northern hemisphere followed by the global maximum area in the Southern hemisphere

within the same line of longitude. Note that ur > 0 implies the fluid flows towards r = ro.
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(a) KE Time Series

(b) ∂s/∂r (c) ∂uφ/∂z

Figure 5.12: Time series data of Nρ = 10−2, ηnb = 0.80, E = 3.0 · 10−5, and Ra∗ = 1.0000

model represented by (a). The black line represents the total kinetic energy KE = KEζ +

KEγ where KEζ (Red Line) is the toroidal component of the kinetic energy and KEγ

(Blue Line) is the poloidal component. Azimuthal slice of the axisymmetric ∂s/∂r profile is

represented by (b). The azimuthally averaged ∂uφ/∂z profile is represented by (c).
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(a) t = 6.610 · 10−2τ (b) t = 6.982 · 10−2τ

(c) t = 7.355 · 10−2τ (d) t = 7.727 · 10−2τ

(e) t = 8.100 · 10−2τ (f) t = 8.473 · 10−2τ

Figure 5.13: A series of images between t = 6.518 · 10−2τ and t = 8.379 · 10−2τ for time t

representing the zonal velocity at the outer boundary ofNρ = 10−2, ηnb = 0.80, E = 3.0·10−5,

and Ra∗ = 1.0000 model. These images shows the progression of the eddies indicated by a

pair of maximum and minimum areas near the tangent cylinder with uφ > 0 representing the

prograde flow. Eddies start forming at (a) to (b) and then two eddies can be seen merging

at (c) to (e).
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(a) t = 0.1053τ (b) t = 0.1088τ

(c) t = 0.1123τ (d) t = 0.1162τ

(e) t = 0.1196τ (f) t = 0.1228τ

Figure 5.14: A series of images between t = 0.1053τ and t = 0.1228τ for time t representing

the zonal velocity at the outer boundary of Nρ = 10−2, ηnb = 0.80, E = 3.0 · 10−5, and

Ra∗ = 1.0000 model. These images show the formation of a strong long-lived eddies via

merging of eddies indicated by a pair of maximum and minimum areas near the tangent

cylinder with uφ > 0 representing the prograde flow.

149



(a) t = 0.1351τ (b) t = 0.1380τ

(c) t = 0.1411τ (d) t = 0.1441τ

(e) t = 0.1472τ (f) t = 0.1504τ

Figure 5.15: A series of images between t = 0.1351τand t = 0.1504τ for time t representing

the zonal velocity at the outer boundary of Nρ = 10−2, ηnb = 0.80, E = 3.0 · 10−5, and

Ra∗ = 1.0000 model. These images shows the formation of the great eddies via strong

retrograde and prograde jets feeding energy into the strong long-lived eddies.
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(a) t = 0.1351τ (b) t = 0.1380τ

(c) t = 0.1411τ (d) t = 0.1441τ

(e) t = 0.1472τ (f) t = 0.1504τ

Figure 5.16: A series of images between t = 0.1351τ and t = 0.1504τ for time t representing

the radial vorticity at the outer boundary of Nρ = 10−2, ηnb = 0.80, E = 3.0 · 10−5, and

Ra∗ = 1.0000 model.
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(a) uφ at r = ro (b) uθ at r = ro

(c) uφ at centre of min(uθ) (d) uθ at centre of min(uθ)

(e) uφ at centre of min(uφ) (f) uθ at centre of min(uφ)

Figure 5.17: The azimuthal slices of uφ and uθ of the Nρ = 10−2, ηnb = 0.80, E = 10−4, and

Ra∗ = 1.0000 model centred at the Northern great storm’s min(uθ) and min(uφ) based on

(a) and (b). Note that uθ > 0 implies that the fluid flows in the Northern direction. Note

that (a) and (b) show uφ and uθ at r = ro at t = 0.3569τ .
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(a) t = 1.342τ (b) t = 1.348τ

(c) t = 1.354τ (d) t = 1.360τ

(e) t = 1.365τ (f) t = 1.371τ

Figure 5.18: A series of images between t = 1.342τ and t = 1.371τ for time t representing

the zonal velocity at the outer boundary of Nρ = 10−2, ηnb = 0.80, E = 3.0 · 10−5, and

Ra∗ = 1.0000 model.
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(a) t = 1.342τ (b) t = 1.348τ

(c) t = 1.354τ (d) t = 1.360τ

(e) t = 1.365τ (f) t = 1.371τ

Figure 5.19: A series of images between t = 1.342τ and t = 1.371τ for time t representing

the radial vorticity at the outer boundary of Nρ = 10−2, ηnb = 0.80, E = 3.0 · 10−5, and

Ra∗ = 1.0000 model.
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Chapter 6

Conclusions

For the majority of this thesis, we focus on modelling the fluid dynamics of rotating anelastic

spherical shells with convection, which is based on previous studies that have generated zonal

jets with properties equivalent to Jovian zonal jets (e.g., Cuff, 2016; Gastine & Wicht, 2012).

Measurements from the Galileo space probe imply that Jupiter has a stably stratified fluid

layer between roughly 0 and 9 bars (Magalhaes et al., 2002). This layer could have an effect

on the fluid dynamics of a rotating convective anelastic spherical shell. Thus, we use the

constant conductive radial entropy gradient boundary conditions to include a stably stratified

fluid layer near the outer boundary. Parameters such as the number of density scale heights

(or density stratification denoted as Nρ), the stably stratified fluid layer thickness, and the

modified Rayleigh number Ra∗ are varied to understand the interaction between convection

and the stably stratified fluid layer

In chapter three, we simulate the fluid dynamics of polar regional models on a rapidly

rotating Boussinesq spherical shell with convection. Regional modelling should provide more

emphasis on the fluid dynamics at the selected area of the spherical shell. Due to the presence

of polar singularities associated with using the spherical coordinate system, the cubed-sphere

curvilinear grid coordinate system is used instead, where it projects a sphere onto a cube

with a local cartesian coordinate system on each face. However, using conventional horizontal

periodic boundary conditions would unlikely provide realistic results of the model. Thus,

two different horizontal open boundary conditions (sponge and Orlanski) were implemented

onto the rotating convective regional model. The end result is that all models output either

unrealistic results or experience numerical problems. This is likely due to the strong fluid

motion associated with a rotating convective system. Future models that want to focus on

the polar region of rotating convection spherical shell models must either adjust the sponge

or Orlanski conditions, or use different open boundary conditions to account for the strong
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fluid motion associated with rotating convection.

One noticeable effect that the stably stratified fluid layer has on the fluid dynamics of

the rotating anelastic spherical shell models with convection is that it has a tendency to

suppress zonal flow oscillations. Based on the kinetic energy time series data for each model,

we can deduce that a model can reach one of five regimes. For increasing Ra∗, they are the

linear, quasi-periodic, first chaotic, relaxation oscillation, and second chaotic states. The

zonal flow oscillations can be observed with models in the relaxation oscillation state. Based

on our results, the models that reach this state typically have a high density stratification

such that Nρ ≥ 1. As the stably stratified fluid layer thickness increases, the amplitude of

these oscillations decreases until they are fully suppressed. Examples of this behaviour can

be seen in the kinetic energy time series data for Nρ = 1, 3, and 5 models. Models that

exhibit full suppression of the zonal flow oscillations (i.e. high stratification models that

remain in the first chaotic state) can be seen with Nρ = 1 and ηnb = 0.94, 0.90, and 0.80,

and Nρ = 3 with ηnb = 0.80.

Another noticeable effect is that the stably stratified fluid layer has a tendency to restrict

the fluid flow to two dimensions. This can be seen by a comparison between the ηnb = 1.00

models and the ηnb = 0.80 models for Nρ = 1 and 3. As ηnb decreases, the rough retrograde

jets observed on ηnb models become smoother.

However, we also noticed that the stability in the stably stratified fluid layer increases

as Ra∗ increases. This can be inferred from the Nρ = 5 models with ηnb = 0.80. These

models with 7.5 ≤ Ra∗/Ra∗c ≤ 22.5 exhibit the relaxation oscillation regime, where Ra∗c
represents the critical Rayleigh number or the minimum Ra∗ needed for force the model into

a convective state. For Ra∗/Ra∗c > 22.5, these models exhibit the second chaotic state. This

implies that as Ra∗ increases, the stability in the stably stratified fluid layer also increases.

This can also be inferred from the azimuthally averaged radial entropy gradient (∂s/∂r)

profiles of each model. From these profiles, as Ra∗ increases, the stability throughout the

shell increases, which is denoted as a decrease in ∂s/∂r. This could imply that for any

ηnb 
= 1.00 models that exhibit the relaxation oscillation regime, the model could be forced

into the second chaotic state for a large enough Ra∗.

For a set of rotating convective near-Boussinesq (Nρ = 10−2) spherical shell models with

half of the shell from the outer boundary set as the stably stratified fluid layer (ηnb = 0.80),

they exhibit long-lived and great eddies near the tangent cylinder. The generation of long-

lived eddies requires a sufficiently large thermal forcing of at least Ra∗ = 0.4000. For each

long-lived eddy at the Northern hemisphere, there would be a long-lived eddy at the Southern

hemisphere, which is centred at the same longitude as its Northern counterpart. Further

increasing the thermal forcing to Ra∗ = 1.0000 leads to the merging of these long-lived
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eddies, leading to the formation of great eddies, which are seen near the tangent cylinder

at both hemispheres. Based on the azimuthal slices of the zonal velocity centred near the

great eddies, they show that the fluid motion is in columnar form, implying that the great

eddies are driven by convection. The characteristics of these eddies are somewhat similar

to the Great Red Spot observed in Jupiter such that they both have the same westward

drift direction, same anticyclonic nature, and similar latitudinal locations associated with

the tangent cylinder. This could also explain how the Great Red Spot is formed and how it

is driven.

To further investigate the effects of the stably stratified fluid layer, another parameter

study could be done by varying the Ekman number. By lowering the Ekman number, high

latitudinal jets could be formed. This can be seen for the Nρ = 10−2 model with ηnb = 0.80,

Ra∗ = 1.0000, and E = 3 · 10−5, where the typical value of E = 10−4 is used for the other

models. Decreasing the Ekman number could also lead to the generation of long-lived eddies

for Nρ ≥ 1 models. This can be inferred from the Richardson number, which indicates that

decreasing the Ekman number could lead to shear dominant flow, possibly resulting in the

generation of eddies.
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