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ABSTRACT

In 2001, Gluskin, Litvak and Tomczak-Jaegermann, using probabilistic
methods inspired by some earlier work of Gluskin’s, provided an example of a
convex body lacking symmetric projections. We revisit this example and give
a different proof of its existence. The argument presented here makes use of a
probabilistic decoupling technique due to Szarek and Tomczak-Jaegermann.

Additionally, we discuss a classical estimate due to John on the Banach-
Mazur distance between an arbitrary n-dimensional Banach space and the
Hilbert space £3. It is shown that an alternate proof of this estimate follows

from a recent improvement of Kwapien’s theorem.
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Chapter 1
Introduction

The theory of finite-dimensional normed spaces, or equivalently symmetric
convex bodies, has witnessed a tremendous amount of activity in the last sev-
eral decades. New techniques, drawing from different areas of mathematics,
have been successfully applied to many difficult and long-standing open prob-
lems. This theory falls under what is now termed as Asymptotic Geometric
Analysis, a central aspect of which is the study of certain numerical invariants
that depend on dimension and the characteristic behavior of these invariants
that appears as the dimension tends to infinity. One such invariant is the
classical notion of Banach-Mazur distance.

The study of Banach-Mazur distance essentially began in 1948 with an
estimate by John on the distance between an arbitrary symmetric convex
body in R™ and the Euclidean ball. John proved that the distance is at most
/1. The first observation in this thesis is that an alternate proof of John’s
estimate follows from a recent characterization of Banach-Mazur distance due
to Efraim.

An immediate consequence of John’s estimate is an upper bound on just
how large the Banach-Mazur distance between two symmetric convex bodies in
R”™ can be: any two such bodies have a distance of at most n. The problem of
actually finding examples of bodies that exhibit this maximal distance proved

to be rather difficult. It was Gluskin, in 1981, who finally proved that such
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bodies exist. His work is important not only because it solved a previously
intractable problem but also provided a fundamentally new approach to dis-
tance investigations. Gluskin was the first to introduce random bodies and, in
addition to the new class of bodies, provided a set of far-reaching probabilistic
methods and tools. His work has heavily influenced the development of the
theory of symmetric convex bodies and a considerable amount of activity by
researchers such as Mankiewicz, Szarek and Tomczak-Jaegermann.

Recent research has examined the case of convex bodies that are not sym-
metric. Many questions about the similarities and differences between the
symmetric and non-symmetric cases have been answered in recent years. One
such question is the main topic considered in this thesis. It has been con-
jectured that given a non-symmetric convex body in R", there is always a
proportional rank projection of this body which is almost symmetric. In 2001,
Gluskin, Litvak and Tomczak-Jaegermann, using probabilistic techniques, pro-
vided an example that disproves the conjecture. The approach of the proof
uses some basic geometric observations about non-symmetric bodies but then
invokes the same methods as in the symmetric case.

The main result of this thesis is an alternate proof of the existence of said
example. The approach of our proof is the same save for one key ingredient:
rather than working directly with some unpleasant dependent conditions, as
in the original proof, the argument presented here makes use of a recent prob-
abilistic decoupling technique introduced by Szarek and Tomczak-Jaegermann

for extracting independent behavior from dependent events.
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Chapter 2

Preliminaries

2.1 Banach Spaces and Banach-Mazur Distance

We briefly recall some basic concepts from functional analysis. See, e.g., [5]
for more detailed background information.

A Banach space is a vector space X equipped with a norm ||-|| such that it
is complete in the metric induced by the norm. Although some definitions and
background results mentioned in this thesis are stated for arbitrary Banach
spaces, our results deal only with finite-dimensional Banach spaces over the
field of real numbers. This means that for us a finite-dimensional Banach space
is simply R™ equipped with a norm |-||.

A Hilbert space is a Banach space (X, ||-||) equipped with an inner-
product (-, -) such that ||z|| = 1/(x,z) for every z € X.

Example 2.1. For ¢ = (21,...,2,) € R* and for 1 < p < oo let

1

]l = (élx”p) "ol p < oo

max|z;| for p = 0.
i<n

Set £3 = (R™,||-l,). Then ¢7 is Banach space for each 1 < p < oo and is a
Hilbert space only for p = 2. 1
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A linear operator T between Banach spaces X and Y is bounded if there
is a constant A such that | Tz|| < Al|z|| for each £ € X. The smallest such

constant A is said to be the operator norm of T and is denoted ||T], ie.,

||| = sup{ le"'; T‘” : z # 0}. The set of all bounded linear operators from X into
Y is denoted by B(X,Y), which is itself a Banach space when equipped with
the operator norm. 7' € B(X,Y) is an isomorphism if there is an element
T-!' e B(Y,X) such that TT~! = T-'T = I. T € B(X,Y) is an isometric
isomorphism if it is an isomorphism that preserves norms, i.e., || Tz|| = ||z]|
for every z € X.

Banach spaces X and Y are (isometrically) isomorphic if there is some
(isometric) isomorphism 7" mapping X onto Y.

In the case when dim X = dimY = n, the set of all isomorphisms from X
to Y can be identified with the set GL,, of invertible n X n matrices with real
entries.

The Banach-Mazur distance between isomorphic Banach spaces X and
Y is defined by

d(X,Y) = inf{||T||||T*|IT : X — Y is an isomorphism}. (2.1)

If X and Y are not isomorphic we set d(X,Y") = co. Note that d(X,Y) > 1
and d(-, -) satisfies a multiplicative triangle inequality, that is to say, d(X,Y") <
d(X, Z)d(Z,Y) for any Banach spaces X, Y and Z.

If we restrict ourselves to the finite-dimensional case then Banach-Mazur
distance is particularly useful since any two spaces of the same dimension are
isomorphic. In this case, the infimum in (2.1) is actually attained and thus
d(X,Y) = 1if and only if X is isometric to Y. If we denote the closed unit ball
in a Banach space Z by Bz, i.e., Bz ={z € Z:||z|| <1}, then d(X,Y) is the
smallest positive number d such that there exists an isomorphism 7' : X — Y
satisfying

By C T[Bx] C dBy. (22)

For more background information on Banach-Mazur distance, refer to [17].
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2.2 Convex Geometry in R"

In the present section we fix our notation and terminology and recall some
basic notions of convex geometry in R™. We assume that R” is equipped with
the canonical Euclidean inner product, which we denote by (-, -), as well as the
induced norm, which we will denote by |-|. As a word of caution, |-| is used
elsewhere in this thesis to denote both the cardinality of a finite set and the
absolute value of a scalar. The standard unit vector basis for R™ is denoted
by (e:)ims-

For B C R", the convex hull of B is the collection of all convex combina-
tions of elements in B, i.e., the collection of all elements of the form ', Az,
where m € N, z;,...,2, € B and the \;’s are non-negative scalars such that
>ori A = 1. The absolute convex hull of B, denoted absconvB, is the
convex hull of BU (—B), where —B := {—b : b € B}. It can be shown that
z € absconvB if and only if & = 377", A\;z;, where m € N, 24,...,2,, € B and
the \;’s are scalars such that > 70 |\ < 1.

Recall the classical theorem of Caratheodory, the proof of which can be

found, e.g,, in [9].

Theorem 2.2. If B is a subset of R" and if x € conv B then there exists

Tiy.. ., Tt € B such that x € conv{z1,...,Zns1}-

Convex Bodies

A subset K C R" is a convex body if it is compact, convex and has non-
empty interior. Throughout this chapter, K, L and M denote convex bodies
in R™.

The Minkowski sum of K and L istheset K+ L:={z+y:z€ K,y €
L}. The translate of K by a € R" is the set K, := K —a := K + {—a}
and for « € R, we let aK = {az : x € K}. The polar of K is the set
Ko :={yeR": (y,z) <1 for every z € K}.

The Minkowski functional, or gauge functional, of K, denoted |-||x,
is defined by ||z||x = inf{\ > 0: z € AK} for z € R". Here and throughout

5
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this thesis we use the convention that inf §§ = co.

A convex body K is centrally symmetric if —z € K whenever z € K.
Thus centrally symmetric convex bodies are naturally centered at the origin.
The set of all centrally symmetric convex bodies in R" is denoted by CS™. If
K € CS™ then ||-||x defines a norm on R". Conversely, if X = (R", ||-||) is a Ba-
nach space then the closed unit ball Bx is a centrally symmetric convex body

in R™ and ||-||zx = ||-||- Thus there is a natural one-to-one correspondence:

centrally symmetric n-dimensional
= . (2.3)
convex bodies in R" real Banach spaces

If K is not centrally symmetric then ||-||x is not a norm. If, however, we
assume that 0 is an interior point of K then ||-||x is a positively homogenous
sublinear functional on R™.

The geometric distance d between K and L is defined by

d(K,L) :=inf{af:a>0,8>0,(1/8)L C K C aL}.

Clearly d(K,L) > 1 and d(K,L) = d(L,K). Geometric distance also

satisfies a multiplicative triangle inequality, i.e., d(K, L) < d(K, M)d(M, L).
Example 2.3. Let By := B. The smallest value of 3 for which (1/8)Bj can

be inscribed in BY, is 1 and the smallest value of o for which aB7 circumscribes
B is v/n. Thus the geometric distance between the Euclidean ball Bf and
the cube BY is equal to 1/n. O

Given the correspondence in (2.3) we automatically have a notion of Banach-
Mazur distance for centrally symmetric convex bodies in R™. By (2.2), the
Banach-Mazur distance between centrally symmetric convex bodies K and L

may be defined explicitly by

d(K,L) = inf{d(T[K],L) : T € GL5}.

In the case of convex bodies that aren’t centrally symmetric, 0 may not be

6
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the natural center for measuring geometric distance. When defining Banach-
Mazur distance for bodies that are not necessarily centrally symmetric we need
to consider the choice of position, i.e., we need to consider all possible centers in

each body. Thus the Banach-Mazur distance between arbitrary convex bodies
K and L is defined by

d(K, L) = inf{d(T[K,), L,) : v € K,y € L,T € GL,}. (2.4)

In fact, it is convenient to use the equivalent definition

~

d(K, L) = inf{d(T[K,), L,) : 7,y € R*,T € GL, }. (2.5)

To see that these are equivalent, suppose that z,y € R*, A > 0,7 € GL,, are
such that L, C T[K,] C AL,. If A =1 then L, = T[K,] and hence each body
can be shifted to contain the origin. If A > 1 then L, C AL,, which implies
that 0 € L,. Indeed, by compactness there exists z € L, with minimum
distance to the origin. Then (1/\)z € L, and if z # 0 we have |(1/A)z]| < |2],
a contradiction. This means that y € L and z € K.

If K and L are centrally symmetric then the infimum in (2.4) is attained
at £ = y = 0 and thus this definition is an extension of the notion of Banach-

Magzur distance to arbitrary convex bodies.

A Measure of Asymmetry for Convex Bodies

In this section we discuss a notion of asymmetry for convex bodies that are
not necessarily centrally symmetric. We follow the presentation in [§].

One natural measure of asymmetry for a convex body K is the quantity

S(K) = inf{d(K,L):LeCS"}

— inf{d(T[K.],L,) : 7,y € R",T € GL,, L € CS§"}.

It will be convenient to consider a slight modification of this definition. Define
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the asymmetry constant of K by

§(K) = inf{d(T[K,),L) : ¢ € R*,T € GL,, L € CS"},

which simply reduces to

§(K) = nf{d(K,, L) : v € K, L € CS™}.

It can be shown that §(K) < 6(K) < 26(K).
Although the asymmetry constant of K is defined using arbitrary bodies of
CS"™, one can use certain centrally symmetric convex bodies defined in terms

of K and the center of symmetry only, as the following observation illustrates.

Lemma 2.4. If K is a conver body in R™ then

§(K) = inf{d(K.,K,N(-K,)):a€ K}

= inf{d(K,,conv(K, U (—-K,))):a € K}.

Proof: Let A>1,a € K and L € CS” be such that K, C L C AK,. Then
—-K,C L Cc —AK, so that

K,N(—K,) C conv(K,U(—K,)) C L C A(K,N(—K,)) C Aconv(K,U(—K,)),

which implies the required identities. O

For A > 1, we say that K is A-symmetric if §(K) < A. More precisely, we

say that K is A-symmetric with respect to (the center) a € K if d(K,,L) < A
for some L € CS".

Lemma 2.5. Let K be a convex body in R™ and let a € K. The following are

equivalent:

(a) K is A-symmetric with respect to a.

(b) —K, C AK,.
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(c) |—zllk, < Allz|lk, for every xz € R™.

Proof: This is a trivial consequence of the preceding lemma and the following

properties of gauge functionals corresponding to any convex bodies K and L.
i. L C K if and only if ||z||x < ||z||r for every z € R™.

ii. If @ > 0 then ||z||ax = L|lz||x for every z € R™. O

The asymmetry constant of a simplex will be computed at the end of the

next section.

2.3 John’s Theorem and Some Consequences

In 1948, John proved that any convex body K in R" contains a unique ellipsoid
(affine image of BY) £ of maximal volume and, moreover, K C n€. In addition,
John showed that if K is centrally symmetric then K C /n€. Thus John’s
theorem gives an upper bound of 4/n for the Banach-Mazur distance between
an arbitrary n-dimensional Banach space and #5. In the next chapter we
provide an alternate proof of this estimate. We'll state John’s theorem in
terms of his characterization of the maximal volume ellipsoid since it will be
useful in exploring some examples that illuminate the concepts presented so

far. The following formulation is from [1].

Theorem 2.6. Bl is the ellipsoid of mazimal volume contained in the convex
body K C R™ if and only of BY C K and, for some m > n, there are Euclidean

unit vectors (ug)™,, on the boundary of K, and positive numbers (¢;), for
which

m

(a) > cu; =0 and

=1
m

(b) x =>_ c;i{us, x)u; for all x € R™.

=1

In this case, one has K C nBY. If K is centrally symmetric then K C \/nBj.
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Remark 2.7. There is an analogous statement for the minimal volume ellipsoid
containing a convex body K for which the conditions (a) and (b) hold; one

should simply reverse the inclusion By C K.
Corollary 2.8. If X is an n-dimensional Banach space then d(X, £5) < /n.
The following example, from [2], illustrates the utility of John’s theorem.

Example 2.9. We saw in Example 2.3 that the geometric distance between
the Euclidean ball B} and the cube BZ is equal to y/n; the Banach-Mazur
distance is no smaller. To see this, let £yax be the ellipsoid of maximal volume
contained in the cube and let £niq be the ellipsoid of minimal volume containing
the cube. Then since +e; (i = 1,...,n) provide the decomposition in (a) and
(b), we have &y = By. A similar decomposition for the minimal volume
ellipsoid, one which uses each vertex of the cube, implies that &€, = v/nBj.
Thus if T € GL,, is such that

TBy c B C dT'By

then

d"vol (TB}) = vol (dTBY) > vol (Emin) = (V)" vol (Emax) > (v/n)" vol (T BY) .
Thus d > \/n and hence d(BYy, BL) = v/n. O

Next we’ll compute the asymmetry constant of a simplex. We acknowledge
Dr. A. Litvak for showing us this argument. Similar conditions will have
to be enforced when finding a lower bound for the asymmetry constant for

(projections of)) the convex body considered in chapter 5.

Example 2.10. Let S be a simplex in R™, i.e., the convex hull of n+1 affinely
independent points in R”. We will show that 6(S) = n. Notice that for any
T € GL, and for any z € R"™ we have 6(S) = §(T'[S;]). It will be convenient

to have one representation of a simplex to show the upper bound 6(S) < n

10
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and another representation to show the lower bound 6(S) > n. The upper
bound is immediate: if B} is the maximal volume ellipsoid contained in S
then B} C S C nBj giving us 6(S) < n. To show the lower bound, assume
that BY is the ellipsoid of minimal volume containing S = conv {v1, ..., Un41}.
Let (u;)™; and (¢;)%; be given by John’s theorem. Assume that the u;’s are
distinct. Since each u; € 0S5, and since S C B7 it follows that each u; must be
a vertex of S. But the u;’s were assumed to be distinct so we have m < n+ 1.
If m = n then >, csu; = 0 and, in particular, (u;)}, is linearly dependent,
a contradiction. Hence m =n+ 1, |v;] =1 for each i € {1,...,n+ 1} and we

have

n+1
(a) Y cv;=0 and
i=1

n+1
(b) x =Y ¢;(v;, z)v; for every z € R™.

i=1

We will first show that ¢; = ... = cpp1 = ;5. It follows from (a) that
¢i = ;4 ¢(v;, —v;) for each ¢ € {1,...,n+ 1}. Condition (b) implies that
n+1
1= (v, = > ¢;j{v;,v;)? which gives 1 — ¢; = Y ¢j(v;,v;)? for each i €
=1 J#

{1,...,n+1}. Also by (b), we have n = trace(l,) = Z?:ll ¢;{v;,v;) = Z?:ll ¢j.

Using the Cauchy-Schwarz inequality twice, we have

n+1

n = § :2 :cj<vj1_vi>
i=1 j#i
n+1

. NI I AY
E : § :CJ § :CJ<U]7U1>
i=1 \| j i
n+1

= Z\/”*Ci\/l —¢

IA

n+1 n+41
< (n—c) Z(l —c;)
i=1 =1

Therefore equality holds in each inequality above and hence there exists «

11
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such that for any ¢ € {1,...,n + 1}, the equality /n — ¢; = ay/1 — ¢; holds.
This implies that ¢c; = ... =¢p41 = ni—l-l
Now, by Lemma 2.5, S is A-symmetric with respect to a € § if and only if

—S, CAS, < —(v;—a)C AS, foreachi € {l,...,n+1}

<— ||—(v;—a)l|ls, < Aforeachie{l,...,n+1}.

Thus to show that 6(S) > n it is sufficient to prove that for any a € S,

there is at least one 7 < n + 1 such that
|—(vi — a)lls, = n. (2.6)

Fix i € {1,...,n+1}. Condition (a) implies that —;v; = 3., Lvj, ie.,
—1y; lies on a face of S. Thus ||Zv;||s = 1, that is, ||—v;l|s = n. Thus we
have shown that (2.6) is true for a = 0. An elementary argument shows that

(2.6) is true for an arbitrary center a € S. Thus we obtain the lower estimate
5(S) > n. O

2.4 Volumes of Convex Bodies

A key argument in chapter b involves a comparison of volumes. In particular,

we will need the volume formulas

n 2"
and
LBr 7Tn/?
VO( 2)_F(1+n/2)7

where I" denotes the Gamma function. A useful tool for calculations is Stir-
ling’s approximation: n! ~ +/27wn(n/e)*, where the notation f(n) ~ g(n)
f(n)

means lim o = 1. In particular, there are absolute constants C; > 0, D; > 0
n—0co

12
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(¢ = 1,2) such that
(C1/n)" < vol (BY) < (Co/n)"

and
(D1/n)? < vol (Bf) < (Da/n)?.
Recall the classical inequality due to Santalé [13].

Theorem 2.11. Let K C R" be a centrally symmetric convez body. Then

<vol (VI;)(V;;)(ZKC’) )i <1

The following is a result due to Ball and Pajor [3] and Gluskin [7].

Theorem 2.12. Let 1 < n < m and let x1,..., %, € R" be such that z; # 0

for some i. Then

2

= an/er/1 +log(m/n)’

3=

vol ({z € R™ : |(z, z;)| <1 for every i})

where o := max|x;].
i<m

A consequence of this theorem is that the volume of sets of the form
K = absconv{z,...,z,} is comparable, up to a logarithmic factor, with

the volume of B = absconv {ey,...,e,}.

Corollary 2.13. Let 1 <n <m and let z1,...,2,, € R". Then

vol (absconv {(z;)/%;}) < vol (3@\/%3?) ;

where « := max|z;|.
<m

Proof: Set K := absconv {(x;)7*,} so that

K° = {zeR":|{(z,y)|<1lforally € K}

= {2z €R": [{z,z;)] <1forall i <m}.

13
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Theorem 2.11 and Theorem 2.12 imply that

vol (K) < %11((%%
< ((a\/_é/Q) 1+ 10g(m/n))n \:)—()11(53% vol (BY)
< 7" ((a\/E/Q) 1+ log(m/n)>nvol (BY)

< wvol (30(\/1—%-—1@7—;/?)3?) .

2.5 Probabilistic Tools

Let (Q,P) be a probability space. If h is a random variable defined on (2 and
B is a subset of its range, we will use the notation P({w € Q : h(w) € B}) and
P({h € B}) interchangeably.

Of particular interest to us are Gaussian random variables with N(0,1)

distribution, i.e., those random variables v : {2 — R satisfying

22
P(y e B) = —\/% /Be_"fdm

for any Borel set B C R.
In the n-dimensional case, if v; (i = 1,...,n) are independent Gaussian

random variables with N(0, 1) distribution then the random variable A : 2 —
R"™ defined by h = (v, ..., 7,) satisfies

P({h e B)) = <\/—12_;>n/Be"‘m2ﬁdx1...dxn

for any Borel set B C R". In this case, we say that h is a Gaussian vector.
A crucial property of Gaussian vectors is rotational invariance: if U =

(u47)7 ;=1 is a an orthogonal matrix then the random variable Uh has the same

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



distribution as h, meaning that the equality
P({h € B}) =P({Uh € B})

is satisfied for any Borel set B C R".

If h is a Gaussian vector, we say that ¢ = (1/4/n)h is a normalized
Gaussian vector. This choice of normalization yields that the expected value
of |g|? is equal to 1. The density of a normalized Gaussian vector is given by
(n/2m)*/2e~"1**/2 The following properties appear as part of Fact 1 in [12]

and will be used in chapter 5.
Theorem 2.14. Let g : 2 — R™ be a normalized Gaussian vector. Then

i. for every r-dimensional subspace E C R, \/gPEg is a normalized Gaus-

sian vector in E, where Py denotes the orthogonal projection onto E.
ii. P{|g| € [1/2,2]} > 1— e~ for some absolute constant ¢ > 0.

iii. for every Borel set B C R™ we have

P{we:glwye B} <e

2.6 Gaussian Type and Cotype

Gaussian type and cotype arise in Banach-Mazur distance investigations and
in this thesis will be used exactly for this purpose. See, e.g., [17] for a more
detailed discussion.

Let X be a Banach space. Let (;)52; be a sequence of independent Gaus-
sian random variables with N(0,1) distribution defined on some probability
space (€2, P). For each positive integer k, define the Gaussian type 2 constant,
denoted by af(X), as the smallest number C satisfying

(/ DISBEIEEC )éso@nwin?)é
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for all z1, ...,z € X. For each positive integer k, define the Gaussian cotype

2 constant, denoted by 3%(X), as the smallest number C satisfying

(Zlixin?) < (/ DIRRER >>

for all z1,..., 2, € X.

Let ao(X) = supaf(X) and Bo(X) = supB5(X). We say that X has
Gaussian type Qkif a2(X) < oo and that IiX has Gaussian cotype 2 if
B2(X) < o0

2.7 e-Nets in Banach Spaces

In chapter 5 we employ a standard approximation technique which uses the
notion of an e-net.

Let X = (R™ ||||) be a Banach space, Y a subset of X and ¢ > 0. A
subset N of Y is an e-net for Y if for any y € Y there exists z € N such that
lz—yll <e.

The following estimate, while not optimal, is sufficient for our purposes.

The proof can be found, for instance, in [12].
Lemma 2.15. There exists an e-net N for Bx such that |N| < (1+2/¢)™.

Lemma 2.16. If N is a e-net for Bx and U C Bx then there is a (2¢) — net
M for U such that |IM| < |N|.

Proof: For z € Nlet B(z,e) :=={y € X : [z —y|| <¢e}. Foreachz e N
choose y, € B(z,e)NU if possible. Let M = {y,}. Then for any u € U there
is an x € N with ||u — z|| < ¢ and hence B(z,£) NU # @. Thus there exists
Yz € M such that ||z — y,|| < € and hence ||u — y,|| < 2e. O

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

The Distance to a Hilbert Space

The purpose of the present chapter is to provide another proof of the classical
estimate by John on the distance of an arbitrary n-dimensional Banach space
to n-dimensional Euclidean space, which we have stated as Corollary 2.8. We'll
first need to develop the necessary terminology and machinery.

Let X and Y be Banach spaces and let T € B(X,Y). We say that T
factors through a Hilbert space if there is a Hilbert space H and linear
operators R € B(X, H), S € B(H,Y) such that T = SR. Let

w(T) = nf{||R[||S|| : R € B(X,H),S € B(H,Y), T = SR}.
The following is a result by Lindenstrauss and Pelczynski [11]. The proof

can also be found in [17] (Proposition 13.11).

Theorem 3.1. Let X andY be Banach spaces and let T € B(X,Y). Then T
factors through a Hilbert space if and only if there exists C' such that for any
ke N, for any z1,...,x2x € X, for any orthogonal matriz U = (uij)ﬁjzl we

have

kook 3 k :
<Zﬂzuz’ijﬂjH2> SC'(ZH%IP) :

i=1 j=1

Moreover, the smallest such C' coincides with vyo(T).
The notion of factoring through a Hilbert space is particularly useful when

17
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dim X = n since the identity map I : X — X factors through the Hilbert
space ¢4 and d(X, £5) = yo(I).

Another theorem that provides an upper bound on the distance between
an arbitrary Banach space and a Hilbert space is the classical theorem due to

Kwapien [10].

Theorem 3.2. A Banach space X is of Gaussian type 2 and Gaussian cotype
2 if and only if it is 1somorphic to a Hilbert space H. In this case, d(X, H) <
QQ(X)/BQ (X)

If X = (R", ||-]|) is an arbitrary Banach space, it can be shown (see, e.g., [17)
Proposition 12.3) that as(X) < 4/n and B2(X) < +/n and hence Kwapien’s
theorem gives the upper estimate d(X,¢3) < n. So without any a priori
information on the space X, Theorem 3.2 does not provide a useful estimate.

A recent characterization of d(X, £3), due to Efraim [6], improves on the
theorem of Kwapien. The improvement is achieved by revising the definitions
of the Gaussian type 2 and Gaussian cotype 2 constants.

To state the theorem we will need to introduce some notation. Let X =
(R", ||-|l) be a Banach space. For a positive integer k, let X* = le X. For
T = (20 .om) € X° dofine [ 7 = (Th ) - Let O(k) be the set
of orthogonal k£ x k matrices. O(k) acts on the set X* in a natural way: for
U= (uy)f;; € O(k) and T € X* let

k k
= E U,ijl'j .
J=1 i=1

For 7 € X* the orbit of 7" is the set {UT : U € O(k)}.
Let ()2, be a sequence of Gaussian random variables with N(0, 1) distri-
bution defined on a probability space (2,P). For each positive integer k and

for each 7 € X* we will denote by agk)(?), the smallest number C satisfying

( / IIZ% P dB( )20(121?11%?)é
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for any ¥ € O(7T). For each positive integer k and for each 7 € X* we will

denote by ﬂék)(?), the smallest number C satisfying

(leyAlQ) <C(/HZ% Jyil|*dP ))

for any i € O(%).

The main result in [6] is the following theorem.

Theorem 3.3. Let X be an n-dimensional Banach space. Then

d(X,43) = sup sup of(T)B(T) <18 sup of(T)EV(T).
keN FeXxk Texn
Before sketching the proof, we will comment on the potential importance of
this theorem. It is believed that this characterization may be applied to a long-
standing open problem concerned with improving the estimate of Corollary
2.8 for some particular well-known Banach spaces (Banach spaces of type p,
1 < p < 2). While we were not able to produce any results on this particular

problem, an important first step is recovering the classical estimate of John.
Sketch of Proof: For 7’ € X* let

(/IIZ% ) 2B >>§.

Rotational invariance of the Gaussian distribution implies that I[(Z') = I(Y)
for any 7 € O(Z). For T # 0 let

I(7)

(T =

and set agk)(O) = 0. Fix a positive integer k and 7 € X*\{0}. Then

S l——> — —
P pd )y < L)y Wl o T (3.1)

17l yeo) (V) geom) 1712
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In our notation, Theorem 3.1 and the comments following it imply that

d(X,43) =sup sup sup

7
keN Texk ¢eO(7) 'z ||
z#0

which, given (3.1), yields

d(X,63) =sup sup o (Z)B(T).
k Texk
z#£0

Finally, it can be shown that

sup ol (Z)B(T) = sup o (@)BF (7).
zTeXk TeXk

We will not prove the inequality in Theorem 3.3. Let us simply mention

that it is based on the following theorem by Tomczak-Jaegermann [16].

Theorem 3.4. Let X be an n-dimensional Banach space. Then for every

k > n we have

an(X) < (X)) < V27an(X)

and

Bn(X) < Bie(X) < 26,(X).

Corollary 2.8, up to an absolute constant, is now a trivial consequence.

Corollary 3.5. Let X be an n-dimensional Banach space. Then

d(X, &) < 18v/n.
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Proof: Notice that for U € O(n) and 7 € X™ we have

Il

non 3
U2 <ZHZ uijfvjll§>

i=1 j=1

[V

< (2 Znuijxjn)?

= x/ﬁll z Hz

Thus Theorem 3.3 and (3.1) imply that

Uz
d(X, £3) < 18 sup a(")( )8 (F) <18 sup sup (LR < 18y/n.
Texn xe;)é{()n UeO(n) ” T ||
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Chapter 4

Decoupling Weakly Dependent

Events

The main argument of this thesis invokes a clever probabilistic technique in-
troduced by Szarek and Tomczak-Jaegermann, a specific example of which
is presented in [15] (Proposition 3.1). Since the generalized form [14] of the
argument is unpublished, we record its statement and proof in this chapter.
The statement is somewhat technical so we include the following description
also taken from [14].

Suppose we have a collection of sets defined in terms of independent coor-
dinates in a “local” way, i.e., while membership in each of the sets may depend
on many or even all coordinates, it may be verified by looking at just a few
coordinates at a time. Given this, the probability of the intersection of these
sets can be “almost” estimated as if they were independent; more precisely,
not by a product of their probabilities but by a homogeneous polynomial in
their probabilities, the degree of which is high and the number of terms of
which is controlled.

In our case, we are concerned with the events of some independent Gaus-
sian vectors belonging to the convex hull of many other Gaussian vectors.
Caratheodory’s theorem, which we have stated as Theorem 2.2, provides the

criterion for determining membership in terms of fewer coordinates.
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Let (£2,P) be a probability space. For m € N we use the notation [m] to
denote the set {1,...,m}.

Proposition 4.1. Let 1 < k < m/2. Consider a family of events {{;; : i €
[m], I C [m]} satisfying the following conditions:

(i) for any i € [m] and I C [m] we have

Qr=|J Qur.
r'cl

C
|'|<k
(ii) for any I,J C [m] with INJ =0 the events {1 : i € J} are indepen-
dent.
Then for any l < m/(2k + 1), we have

P (ﬂ Qi,{z’}“) < 3 TIPE ge)-
=1 JC[m]

m)] i€J
|J|=t

Proof: The proposition is based on the following lemma.

Lemma 4.2. Let I, ..., I, be subsets of [m] such thati & I; and |I;| <k for
all i € Im]. Then there exists J C [m] with |J| > m/(2k + 1) such that

ieJ

Assume for the moment that the lemma is true. Observe that condition

(i) gives us
Lcl,C [m] = (21"[1 C Qi,]g (41)

for any i € [m)].
Let | <m/(2k+1) and set J := {J C [m] : |J| = l}. We will prove the
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following inclusion: _
(e < U Qs (4.2)
i=1 JeJied
Let w € (2 & e Using (i), for each i € [m] there exists I; # ¢ (that may
depend on w) with |[;| < k such that w € (-, €; 1, By Lemma 4.2, there is
a set J with |.J| > m/(2k + 1) such that I; C J® for i € J. Then (4.1) implies
that 7, C €, o for each i € J and hence we obtain w € [;c;§; jo. The set
J also depends on w but, in any case, we have proven (4.2).

By (ii), the family {€2; yc : @ € J} is independent, hence P (Mics Rige) =
[Lic; P(S 1) and, using (4.1), we have Q; x C €, (3¢ (¢ € J), from which the
conclusion follows. d

The inclusion (4.2) is crucial to the above argument. It says that while the
events (; ;yc may be dependent, the assumptions (i) and (ii) guarantee that
the dependency is no worse than considering a (albeit much larger) collection
of independent events.

Lastly, we address the proof of Lemma 4.2. This follows easily from the

next theorem, a result by Ball [4] (Theorem 1.3').

Theorem 4.3. Let m be a positive integer and let A = (ay)75-; be a matriz

with real entries satisfying
(i) a;; >0 for alli,j € [m] and a;; = 0 for all i € [m].

(1) i ai; <1 for alli € [m)].

j=1
Then for each integer t there is a partition {Js}._; of [m] into t mutually

disjoint subsets such that
2
E a; < -, 1€ Js
4 t
Jj€Js
for all s € [t].

Proof of Lemma 4.2: Let A = (a;;)7} be defined by a;; = 1/k if j € I; and

a;; = 0 otherwise. Then A satisfies the assumptions of Theorem 4.3. Thus for
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t = 2k + 1 there is a partition {Js},_; of {1,...,m} such that

2 1 . 7
2 S gy <p e

JEJs

for all s € [t]. In particular, a;; = 0 whenever 4,5 € J; and s € [t]. But for

_m

T which is what we wanted. U]

some s we have |Js| >
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Chapter 5

A Convex Body Without

Symmetric Projections

Some recent developments in the theory of convex bodies led to the following

conjecture:

Conjecture 5.1. For every convez body K C R™ there is a projection P with
rank P = n/2 such that
§(PK) < C,

where C is an absolute constant.

The following theorem due to Gluskin, Litvak and Tomczak-Jaegermann

[8] settles the conjecture.

Theorem 5.2. There is an absolute constant ¢ > 0 such that for any positive

integer n, there exists a convex body K C R™ satisfying

T
§)(PK) > ——,
(PK) 2 cyv/nlogn

for all projections P of rank r > cy/nlogn.

In the present chapter we provide an alternate proof of this theorem. The
approach is the same as that of the original argument but the proof of our

Proposition 5.3 uses the technique in chapter 4.
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Before proving the theorem we will say a few words about the general
approach of the proof. Let m > n. Our convex body K will be of the form
K = conv {(g;),}, where g1,...,gm are points lying inside 2B3. If r < n
and P is any projection of rank 7, then for A, = r/(c\/nlogn), Lemma 2.5
implies that PK is A,-symmetric with respect to a € PK if and only if

—(Pg; — a) € A, conv{(Pg; — a)j<m} foralli<m,
which implies that
—(Pg; — a) € A, conv{(Pg; — a)j%,0} foralli<m,
or equivalently
—Pg; € A, conv {(Pg; — (1 +1/A,)Pa)jx, —(1/Ar)a} (5.1)

for each i < m (note that Pa = a since a € PK).

Thus to prove the theorem, it is sufficient to select g, ..., g so that for
any r > c¢y/nlogn, for any projection P of rank r and any translate a € 2B,
(5.1) fails for at least one i < m.

Rather than considering each projection P and each translate a we will
consider a suitable e-net of projections and an e-net of translates and violate
a slightly stronger condition than that of (5.1) on these nets. It is formalized
in Proposition 5.3. The theorem will then follow from a simple approximation

argument.

Proof: It is sufficient to prove the theorem for orthogonal projections only.
Indeed, let P be any projection and let () be the orthogonal projection with the
same kernel as P. Then @ and P have the same rank and since Range(I—P) C
ker P = ker ), we have Q(I — P) = 0, ie,, @ = QP. Thus if PK is A-
symmetric then so is Q[PK] = QK.

Let m = 10n3, ¢ = 1/(3y/n) and A, = r/(cy/nlogn) with ¢ > 0 an absolute
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constant to be determined later.
Let M be an e-net for 2B} and let AV, be an e-net (with respect to the

operator norm) of rank r orthogonal projections. By section 2.7 we can assume
that [N,| < (6/¢)" and |[M| < (6/¢)".

Proposition 5.3. There exist vectors g1, . .., gm € 2BY such that Vr satisfying
A, >1,¥Q € N,,VYb € M there is at least one i < m such that

~Qg; & Ay conv {(ng - (1 t+ 1/A1")Qb)j¢i ) _(1/Ar)Qb} + 13AT€QB;L'

Proof of Proposition 5.3: Let g1, ..., gn be independent normalized Gaus-
sian random vectors defined on a probability space (€2, P) as in section 2.5. We
are particularly interested in a subset Q° C ., with probability exponentially
close to 1, on which |g;|qo| € [1/2,2] for each 1 < j < m. By Theorem 2.14.ii,
for each 1 < j < m, there exists a subset 29 C ) such that | gle;J’ € [1/2,2] and

P(Q9) >1— e~?™ for some absolute constant d’ > 0. Thus setting Q° := () Q)
j=1

and observing that

P(Q\Q°) = ]P’(U Q\Qg) < mmJaxIP(Q\Q?) < me 4 < edn (5.2)
=1

for some absolute constant d > 0, yields the desired set.

Let ry := cy/nlogn. For any integer r > 79, @ € N,,b € M, I C
{1,...,m} and w € Q, let

Ar(r,Q,b,w) = A, conv {(Qh;(w))jer, —(1/A;)Qb} + 13A,£Q B3
and
A2 (r, Q, b,w) = A, absconv {(Qh;(w))jer, —(1/A,)Qb} + 13A,£QBy,

where we have set h; := g; — (1 + 1/A,)b.

As in chapter 4 we will use the notation [m] to denote the set {1,...,m}.
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The notation -® denotes the complement of a set with respect to [m]. We will

show that there is an absolute constant £ > 0 such that

P(ﬂ N N U{w—czgi(w)w{i}cm,b,w)}) ST (5.3)

r>rg QEN, be M i<m

by estimating the probability of the complement of the set appearing in (5.3).
Note that to prove the proposition it is enough to show that the probability
in (5.3) is positive.

Fixr > 19, Q € N, and b € M. Write A(w) = A (r, @, b,w) and A*(w) =
A3Ps(r, Q. b,w). For i € [m] and I C [m] set

Qir=A{w: —Qg(w) € Ar(w)}.

Consider the family of sets {Q;; : i € [m],I C [m]} in the context (and
notation) of Proposition 4.1. The first step is to prove that (i) holds for

k=r+1,1ie., for any i € [m] and any I C [m] we have
Q“ = U Q’i,]" (54)
rcr
[I<r+1

To see that (5.4) holds, let i € [m] and I C [m]. Fix w € Q;;. Then
Jz; € 13A,eQB% such that

—Qgi(w) — z € Ar conv {(Qh;(w))jer, —(1/A-)Qb} .

By Caratheodory’s theorem, there exists I' = I'(w) C I with |I’| <7+ 1 such
that

—Qgi(w) — % € Ar conv {(th (W))jel’, —(1/AT)Qb} .

In other words, w € €2;  and hence we have

Qi,I C U Qiyp.

rcrl
I |<r+1
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Conversely, if I’ C I and |I'| < r + 1 then clearly w € (), p implies that
w€E Q.

Now if I and J are disjoint subsets of [m], the independence of the events
{Qir : i € J} follows from the independence of the collections (g;)icr and
(9j)je-

Having proven that both of the hypotheses in Proposition 4.1 are satisfied,
we may apply it for [ = [m/(5r)] and J := {J C [m] : |J| = {}. (Here we use
the notation [z] to denote the smallest integer larger than z.)

The remainder of the proof is devoted to estimating the probability of the
events €, ;ye (i € [m]). We will use Theorem 2.14.iii and therefore need a
volume estimate on the sets 2yc(w). In fact, an estimate on the volume of
Ql??fc (w) will be sufficient. The next lemma shows that the majority of these

sets (meaning w € 2°) have volume comparable to that of Bf.

Claim 5.4. For any i € [m] and for any w € Q°, we have

vol (Q[?E’}Sc (w)) < (72A,+/logn)" vol (BY).

Proof: Let i € [m] and let w € Q°. Write g; = g;(w), hj = h;(w) and Ql?l?}sc =

Q[??}Sc(w). Then |Qh;| < |Qg;] + (1 + 1/A,)Qb| < 6 and |—(1/A4,)@b| < 2.

Observe that (1/4/n)By C B} = absconv{e;}; which implies that
13A,eQB} C A, absconv {(Qe))l_; },
where €} := 6e;. Setting
B := A, absconv {(Qh;);i, —(1/A,)Qb, (Q€})i=1 }
gives us
2(??;.; = A, absconv {(Qh;) ., —(1/A,)Qb} + 13A,eQ By C 2B.
Since B is the absolute convex hull of p := (m — 1) + n+ 1 points all lying
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inside 6 B% and since p/r < 2m, Corollary 2.13 implies that

vol (2%8) < vol (36Aﬂ/1+1og(2m)BI)
< wvol (72Ar\/1ognB71"> ,

which proves our claim. [
Claim 5.5. There is an absolute constant ¢ > 0 for which the estimate
IP (Ql,{l}c> S 6—Cr
is satisfied for any i € [m).
Proof: Fix ¢ € [m]. Denote by P x P the product measure on §2 x . Set

A= {(w,5) € 2 x Q: —Quiw) € AL (@)}

Observe that

P(Q,0) < PlweQ:—Qg(w) € ATy (w)}

= PxPA), (5.5)

since the vector g; is independent of the collection (g;);»;. But (5.5) is in turn

equal to

/Q/QXA(W,@)dIP’(w)dP(@) = /Q\QO/QXA(QJ,&)dIP(w)dP(@)
"’/QO/QXA(LU,@)dP(w)d]P’(@),

where (20 is the set satisfying (5.2). Observe first that

/ / a0, D) P)PE) < [ dP@) < e
Javae Ja Q\Q0

Recall that A, = r/(cy/nlogn). By Theorem 2.14.iii and Claim 5.4, for any
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fixed @ € Q°, we have

[ xalw.5)aBw) = Plw €2: ~Qalw) € @)D
= P({weQ: —V/n/rQu(w) € Vn/ra5 (@)})
vol (/n/r2t2%, (@)

vol (B})

(/%) o (2)

< (150/¢)".

T
ez

IN

IA

Thus we obtain

P(Q; ye) < (150/c)" + e ™ < e (5.6)
for an appropriate choice of absolute constants c and ¢ > 0. As ¢ was arbitrary,
(5.6) holds for every i € [m]. O

Observe now that for any 1 < k < m, Stirling’s formula implies the esti-

mate () < (em/k)*, hence |T| = (i, /%,y7) < exp([m/(5r)]log(5er)). Thus
Proposition 4.1 yields

P (ﬂ Qum“) < > TIP@e)
=1 JcJ ied
1]
|7 | max (B 30)

< exp([m/(5r)] log(er)) exp(=Cr[m/(5r)])
e (5.7)

A

A

IA

where 1 > 0 is an absolute constant. Note that up until this point the rank r,
projection @) and translate b were fixed but the calculations so far clearly do

not depend on their particular values. Thus the estimate (5.7) holds for any
r, () and b.
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To finish the proof of Proposition 5.3, observe that

]P’(U U U ﬂQi’{i}c> < n]Nn||M|£ng>b<]P’(ﬂ Qi,{i}“)

r>rg QEN, be M i<m i<m
< n(18y/n)" (18y/n)"em™
< e
for some absolute constant £ > 0. This proves the proposition. (

Now take g1, ..., gm given by Proposition 5.3 and set K := conv {(g;)i~; }.
Let cv/nlogn < r < n and let P be an orthogonal projection of rank r. Then
PK is A,-symmetric with respect to a € PK if and only if

—(Pg; —a) € A, conv {(Pg; — a)j<m} foralli<m
which implies that
—(Pg; —a) € A, conv {(Pg; —a);j#;,0} foralli<m
or equivalently
—Pg; € A, conv {(Pu;)jz, —(1/Ar)a}  foralli <m (5.8)

where we have set u; := g; — (1+ 1/A,)a (note that Pa = a since a € PK).
Choose @ € N, such that ||@Q— P|| < € and note that max [(Q — P)g;| < 2e.

Since PM is an e-net for PK there is a b € M such thazt |Pb—a| < ¢ and

hence |Qb — a| < |@Qb— Pbl + |Pb— a| < 3¢. Fix i < m. By (5.8), there are

non-negative scalars o, ..., o, with S7° . a; = 1 such that
F=1"1

—Pg; = A, Z a;Puj — asa.
J#i
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Setting v; := g; — (1 + 1/A,)b, we obtain

dist (—Qgi, A, conv {(Qu;) 4, —(1/Ar)Qb})
< -Qa — (4,3 a,Qu; — i)

i

< |Pgi - Qail + 1A Y a;(Pu; — Quj)| + |ei(Qb — a))|
i

< 264 8A, + 3¢

< 13A,e.

Thus if PK is A,-symmetric with respect to a then there are ) € N, and
b € M such that

dist(—Qg;, A, conv {(Qu;) 2, —(1/A,)Qb}) < 13A€

for all i < m. This contradicts Proposition 5.3 and hence proves the theorem.
U
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