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ABSTRACT

In  2001, Gluskin, L itvak and Tomczak-Jaegermann, using probabilistic 

methods inspired by some earlier work o f G luskin ’s, provided an example of a 

convex body lacking symmetric projections. We revisit th is example and give 

a different proof of its  existence. The argument presented here makes use of a 

probabilis tic  decoupling technique due to  Szarek and Tomczak-Jaegermann.

Additiona lly , we discuss a classical estimate due to  John on the Banach- 

M azur distance between an a rb itra ry  n-dimensional Banach space and the 

H ilbe rt space I t  is shown tha t an alternate proof of th is estimate follows 

from  a recent improvement of Kwapien’s theorem.
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Chapter 1

Introduction

The theory of finite-dimensional normed spaces, or equivalently symmetric 

convex bodies, has witnessed a tremendous amount of ac tiv ity  in  the last sev­

eral decades. New techniques, drawing from  different areas o f mathematics, 

have been successfully applied to  many d ifficu lt and long-standing open prob­

lems. This theory falls under what is now termed as Asymptotic Geometric 

Analysis , a central aspect of which is the study o f certain numerical invariants 

tha t depend on dimension and the characteristic behavior of these invariants 

tha t appears as the dimension tends to  in fin ity. One such invariant is the 

classical notion of Banach-Mazur distance.

The study of Banach-Mazur distance essentially began in  1948 w ith  an 

estimate by John on the distance between an a rb itra ry  symmetric convex 

body in  Rn and the Euclidean ball. John proved tha t the distance is at most 

y/n. The first observation in  th is thesis is tha t an alternate proof of John’s 

estimate follows from  a recent characterization of Banach-Mazur distance due 

to Efraim .

A n  immediate consequence of John’s estimate is an upper bound on just 

how large the Banach-Mazur distance between two symmetric convex bodies in  

Mn can be: any two such bodies have a distance o f at most n. The problem of 

actua lly finding examples of bodies tha t exhib it th is m axim al distance proved 

to  be rather d ifficu lt. I t  was Gluskin, in  1981, who fina lly  proved tha t such

1
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bodies exist. His work is im portant not only because i t  solved a previously 

in tractable problem bu t also provided a fundamentally new approach to  dis­

tance investigations. G luskin was the firs t to  introduce random bodies and, in  

add ition to  the new class of bodies, provided a set of far-reaching probabilistic 

methods and tools. His work has heavily influenced the development o f the 

theory o f symmetric convex bodies and a considerable amount o f ac tiv ity  by 

researchers such as Mankiewicz, Szarek and Tomczak-Jaegermann.

Recent research has examined the case o f convex bodies tha t are not sym­

metric. Many questions about the sim ilarities and differences between the 

sym metric and non-symmetric cases have been answered in  recent years. One 

such question is the m ain topic considered in  th is thesis. I t  has been con­

jectured tha t given a non-symmetric convex body in  R n, there is always a 

proportiona l rank projection of th is body which is almost symmetric. In  2001, 

G luskin, L itvak and Tomczak-Jaegermann, using probabilistic techniques, pro­

vided an example tha t disproves the conjecture. The approach o f the proof 

uses some basic geometric observations about non-symmetric bodies but then 

invokes the same methods as in  the symmetric case.

The m ain result of th is thesis is an alternate proof of the existence of said 

example. The approach of our proof is the same save for one key ingredient: 

rather than working d irectly w ith  some unpleasant dependent conditions, as 

in  the orig inal proof, the argument presented here makes use of a recent prob­

abilistic decoupling technique introduced by Szarek and Tomczak-Jaegermann 

for extracting independent behavior from  dependent events.

2
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Chapter 2

Prelim inaries

2.1 Banach Spaces and Banach-Mazur Distance

We brie fly  recall some basic concepts from  functional analysis. See, e.g., [5] 

fo r more detailed background inform ation.

A  Banach space is a vector space X  equipped w ith  a norm  ||-|| such th a t it  

is complete in  the metric induced by the norm. A lthough some defin itions and 

background results mentioned in  th is  thesis are stated for a rb itra ry  Banach 

spaces, our results deal only w ith  finite-dimensional Banach spaces over the 

field o f real numbers. This means tha t for us a finite-dimensional Banach space 

is sim ply Mn equipped w ith  a norm  ||-||.

A  Hilbert space is a Banach space (A , ||-||) equipped w ith  an inner- 

product (•, •) such tha t ||x|| =  a / (x , x) for every x  £ X .

Exam ple 2.1. For x =  (aq ,. . . ,  xn) £ IRn and for 1 < p  <  oo let

Set £p =  (M". || ■ ||p). Then is Banach space for each 1 <  p <  oo and is a

max 12;:
i < n

for 1 <  p <  00

for p =  00.

H ilbe rt space only for p =  2. □

3
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A  linear operator T  between Banach spaces A  and Y  is bounded i f  there 

is a constant A  such tha t \\Tx\\ <  /l||:r|| for each x  G X .  The smallest such 

constant A  is said to  be the operator norm of T  and is denoted ||T||, i.e., 

Ill’ll =  s u p { | f  : I  #  0}. The set o f a ll bounded linear operators from  X  in to

Y  is denoted by B (X .  Y), which is itself a Banach space when equipped w ith  

the operator norm. T  G B (X , Y )  is an isomorphism i f  there is an element 

T_1 G B (Y ,X )  such tha t T T ~ X =  T ~ XT  =  I .  T  G B ( X ,Y )  is an isom etric  

isom orphism  i f  i t  is an isomorphism tha t preserves norms, i.e., \\Tx\\ — ||.x|| 

for every x  G A .

Banach spaces X  and Y  are (isom etrically) isomorphic i f  there is some 

(isometric) isomorphism T  mapping X  onto Y.

In  the case when dim  A  =  d im  Y  =  n, the set of a ll isomorphisms from  X  

to  Y  can be identified w ith  the set G L n of invertible n  x n  matrices w ith  real 

entries.

The Banach-M azur distance between isomorphic Banach spaces X  and

Y  is defined by

d (X ,Y )  :=  in f{ | |T || | |T _1|||T : X  —> Y  is an isomorphism }. (2.1)

I f  X  and Y  are not isomorphic we set d(X , Y )  =  oo. Note th a t d(X ,  Y ) >  1 

and d(-, •) satisfies a m ultip lica tive  triangle inequality, tha t is to  say, d(X ,  Y ) <  

d(X , Z )d(Z . Y)  for any Banach spaces A , Y  and Z .

I f  we restrict ourselves to  the finite-dimensional case then Banach-Mazur 

distance is pa rticu la rly  useful since any two spaces of the same dimension are 

isomorphic. In  th is  case, the in fim um  in  (2.1) is actually atta ined and thus 

d( A , Y ) =  1 i f  and only i f  A  is isometric to  Y . I f  we denote the closed un it ball 

in  a Banach space A  by B z , i.e., B z  =  {z  G Z  : \\z\\ <  1}, then d{A , Y ) is the 

smallest positive number d such tha t there exists an isomorphism T  : X  —> Y  

satisfying

B y  C T'f.Bx’] C dBy.  (2.2)

For more background in form ation on Banach-Mazur distance, refer to [17].

4
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2.2 Convex Geometry in JRn

In  the present section we fix  our notation and term inology and recall some 

basic notions of convex geometry in  Mn. We assume tha t Mn is equipped w ith  

the canonical Euclidean inner product, which we denote by (•, •), as well as the 

induced norm, which we w ill denote by |-|. As a word of caution, |• | is used 

elsewhere in  th is thesis to denote bo th  the card inality of a fin ite  set and the 

absolute value of a scalar. The standard un it vector basis for M.re is denoted

by (e i)L i-

For B e l " ,  the convex hull o f B  is the collection o f a ll convex combina­

tions o f elements in  B,  i.e., the collection of a ll elements of the fo rm  Y^T=i ^ i x i> 

where m  E N, aq , . . . ,  x m E B  and the A,’s are non-negative scalars such tha t 

Y l lL i  K  =  1- The absolute convex hull of B, denoted absconvB, is the 

convex hu ll of B  U (—B ), where - B  :=  { - b  : b G B } .  I t  can be shown tha t 

x  E absconvR i f  and only i f  x =  Y1T=i  ^ ix *> where m  E N, x 1}. . . ,  x m E B  and

the Ays are scalars such tha t |A-| <  1.

Recall the classical theorem of Caratheodory, the proof o f which can be 

found, e.g,, in  [9].

T h e o re m  2.2. I f  B  is a subset o f W 1 and i f  x  G convB  then there exists 

x i , . . . ,  x n+i G B  such that x  E conv { x \ , . . . ,  x n+ i} .

C o n ve x  B o d ie s

A  subset K  C I T  is a convex b o d y  i f  i t  is compact, convex and has non­

empty in terior. Throughout th is chapter, K , L  and M  denote convex bodies 

in  Wn.

The Minkowski sum  of K  and L  is the set K  +  L  :=  { x  +  y : x  G K , y G 

L } .  The translate of K  by a G Rn is the set K a :=  K  — a :=  K  +  { —a}  

and for a  G R, we let a K  { a x  : x  G K } .  The polar of K  is the set

K °  :=  {y  G R n : (y, x ) <  1 for every x  G K } .

The M in k o w s k i fu n c t io n a l,  or gauge fu n c t io n a l,  of K ,  denoted ||-||ic, 

is defined by ||a:||x :=  in f{A  > 0 : i G  A K }  for x  G Mn. Here and throughout

5
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th is  thesis we use the convention tha t in f 0 =  oo.

A  convex body K  is c e n tra lly  s y m m e tr ic  i f  — x £ K  whenever x  £ K .  

Thus centra lly symmetric convex bodies are na tura lly  centered at the origin. 

The set o f a ll centrally symmetric convex bodies in  Mn is denoted by C S n . I f  

K  £ C S n then 11 • 11 k  defines a norm  on Mn. Conversely, i f  X  =  (K n, 11 • 11) is a Ba­

nach space then the closed un it ball B x  is a centrally symmetric convex body 

in  R n and \\-\\bx =  INI- Thus there is a natura l one-to-one correspondence:

centra lly symmetric 1 f n-dimensional 1 ^  ^

convex bodies in  Mn J [  real Banach spaces J

I f  K  is not centrally symmetric then ||-||k  is not a norm. If, however, we 

assume tha t 0 is an in terior point of K  then ||-||^ is a positive ly homogenous 

sublinear functiona l on R n.

The g e o m e tr ic  d is tan ce  d between K  and L  is defined by

d (K , L) ■= in f {af3 : a  >  0, (3 >  0, (1 /P )L  C K  c  a L } .

Clearly d ( K , L ) >  1 and d (K ,L )  =  d ( L ,K ) .  Geometric distance also 

satisfies a m ultip lica tive  triangle inequality, i.e., d ( K , L ) <  d(K , M ) d ( M , L ).

E x a m p le  2.3. Let B™ :=  B(n. The smallest value of j3 for which (1 /(3)B^  can 

be inscribed in  B ^  is 1 and the smallest value of a  for which aB% circumscribes 

B is \ fr i.  Thus the geometric distance between the Euclidean ball B% and 

the cube B ^  is equal to  yfn. □

Given the correspondence in  (2.3) we autom atically have a notion of Banach- 

M azur distance for centrally symmetric convex bodies in  Mn. B y (2.2), the 

Banach-Mazur distance between centrally symmetric convex bodies K  and L  

may be defined exp lic itly  by

d{K , L ) :=  in f {d (T [K ],  L ) : T  £ G L n}.

In  the case of convex bodies tha t aren’t  centrally symmetric, 0 may not be
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the na tu ra l center for measuring geometric distance. When defining Banach- 

M azur distance for bodies tha t are not necessarily centrally symmetric we need 

to  consider the choice of position, i.e., we need to  consider a ll possible centers in  

each body. Thus the Banach-Mazur distance between arbitrary  convex bodies 

K  and L  is defined by

d { K , L)  :=  m i{d (T [K x], L y) : x  G K , y  G L , T  G G L n}. (2.4)

In  fact, i t  is convenient to use the equivalent defin ition

d ( K , L)  =  in f { d (T [K x\, L y) : x, y G R n, T  G G L n}. (2.5)

To see tha t these are equivalent, suppose tha t x ,y  G Rn, A >  0, T  G G L n are 

such tha t L y C T [ K X] C AL y. I f  A =  1 then L y =  T [ K X] and hence each body 

can be shifted to  contain the origin. I f  A >  1 then L y C AL y, which implies 

th a t 0 E L y. Indeed, by compactness there exists z G L y w ith  m inim um  

distance to the origin. Then (1 /A )z G L y and i f  z ^  0 we have | ( l /A )z |  <  |^|, 

a contradiction. This means th a t y e  L  and x  G K .

I f  K  and L  are centrally symmetric then the infim um  in  (2.4) is atta ined 

at x  =  y — 0 and thus th is defin ition is an extension of the notion o f Banach- 

M azur distance to  a rb itra ry  convex bodies.

A M easure of A sym m etry for Convex Bodies

In  th is  section we discuss a notion of asymmetry for convex bodies th a t are 

not necessarily centrally symmetric. We follow the presentation in  [8].

One natural measure of asymmetry for a convex body K  is the quantity

5 {K ) :=  in i{d (K ,  L )  : L  G C S n}

=  in f {d (T [K x\, Ly)  : x, y G IT ,  T  G G L n, L  G C S n}.

I t  w ill be convenient to  consider a slight m odification of th is definition. Define

7
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the asym m etry constant of K  by

6 {K ) :=  in i { d ( T [K x\, L )  : x £ Mn, T  £  G L n, L  £ C S n},

which sim ply reduces to

5 {K )  =  in i { d ( K x, L ) : x £ K , L  £ C S n}.

I t  can be shown tha t S(K) <  5 (K )  <  28(K ).

A lthough the asymmetry constant of K  is defined using a rb itra ry  bodies of 

C S n, one can use certain centrally symmetric convex bodies defined in  terms 

of K  and the center of symmetry only, as the following observation illustrates.

L e m m a  2.4. I f  K  is a convex body in  R n then

S(K) =  mf{d(Ka, K an ( - K a) ) : a £ K }  

=  in f{d(Ka, conv(Ka U (~Ka))) : a £ K} .

P ro o f: Let A  >  1, a £ K  and L  £  C S n be such tha t K a C L  C A K a. Then 

—K a C L  C —A K a so tha t

K an { - K a) C con-v(KaU ( - K a)) C i C  A{Kan ( - K a)) C Aconv(A:aU ( -A :a)),

which implies the required identities. □

For A  >  1, we say tha t K  is A -s y m m e tr ic  i f  5 (K ) <  A. More precisely, we 

say tha t K  is A-sym metric w ith  respect to  (the center) a £ K  i f  d (K a, L )  <  A  

for some L  £ CSn.

L e m m a  2.5. Let K  be a convex body in  R n and let a £ K .  The following are 

equivalent:

(a) K  is A-symmetric with respect to a.

(b) - K a C A K a.

8
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(c) l l - ^ l k a  <  M \x \\Ka fo r  every x  G Mn .

Proof: This is a tr iv ia l consequence o f the preceding lemma and the following 

properties of gauge functionals corresponding to any convex bodies K  and L.

i. L  C K  i f  and only i f  \\x \\k  <  \\x \\l  for every x  G R n.

ii. I f  a >  0 then ||x||a^  =  ^ ||£ ||ir for every x G R n. □

The asymmetry constant of a simplex w ill be computed at the end o f the 

next section.

2.3 John’s Theorem and Some Consequences

In  1948, John proved tha t any convex body K  in  R n contains a unique ellipsoid 

(affine image of B f ) £  o f m axim al volume and, moreover, K  C n£.  In  addition, 

John showed tha t if  K  is centrally symmetric then K  C \ fn £ .  Thus John’s 

theorem gives an upper bound of n  for the Banach-Mazur distance between 

an a rb itra ry  n-dirnensional Banach space and T l. I n the next chapter we 

provide an alternate proof o f th is estimate. We’l l  state John’s theorem in  

terms of his characterization o f the m axim al volume ellipsoid since it  w ill be 

useful in  exploring some examples tha t illum inate the concepts presented so 

far. The follow ing form ulation is from  [1],

Theorem  2.6. B% is the ellipsoid of maximal volume contained in  the convex 

body K  C Mn i f  and only i f  B f  C K  and, fo r  some m  >  n, there are Euclidean 

un it  vectors (u j)"L1; on the boundary o f K ,  and positive numbers fo r

which

m
(a) ci ui =  0 and

i = 1

m
(b) x =  Y f x )u i fo r  all x  G K T

i—1

In  this case, one has K  C n B f .  I f  K  is centrally symmetric then K  C \ f n B f .

9
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Remark 2.7. There is an analogous statement for the m in im al volume ellipsoid 

containing a convex body K  for which the conditions (a) and (b) hold; one 

should sim ply reverse the inclusion B f  C K .

Corollary 2.8. I f  X  is an n-dimensional Banach space then d (X , £%) ^  V™-

The follow ing example, from  [2], illustrates the u t il i ty  o f John’s theorem.

Exam ple 2.9. We saw in  Example 2.3 th a t the geometric distance between 

the Euclidean ba ll B f  and the cube BJf is equal to yfn\ the Banach-Mazur 

distance is no smaller. To see this, let £max be the ellipsoid of m axim al volume 

contained in  the cube and let £min be the ellipsoid of m in im al volume containing 

the cube. Then since ie *  (i =  1 , . . . ,  n) provide the decomposition in  (a) and

(b), we have £max =  B%. A  sim ilar decomposition for the m in im al volume 

ellipsoid, one which uses each vertex of the cube, implies th a t 8rnin =  y/nB'f.  

Thus i f  T  G GLn is such tha t

T B f  c 5 " C  d T B f

then

dn vol ( T B f )  =  vol (d T B f)  >  vol (£min) =  (y/H)n vol (£max) >  (y fh)n vol ( T B f ) .

Thus d >  \ f n  and hence d(B%, B^f j =  y/n. □

Next we’l l  compute the asymmetry constant of a simplex. We acknowledge 

D r. A. L itvak for showing us th is argument. Sim ilar conditions w ill have 

to  be enforced when finding a lower bound for the asymmetry constant for 

(projections of) the convex body considered in  chapter 5.

Exam ple 2.10. Let S' be a simplex in  Mn, i.e., the convex hu ll of n + 1 affinely 

independent points in  PA. We w ill show th a t S(S) =  n. Notice tha t for any 

T  G GLn and for any z G Rn we have S(S) = <5(T[SZ]). I t  w ill be convenient 

to  have one representation o f a simplex to  show the upper bound S(S) <  n

10
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and another representation to  show the lower bound S(S) >  n. The upper 

bound is immediate: i f  B% is the m axim al volume ellipsoid contained in  S 

then £?2 C S C n B % giving us 5(S) <  n. To show the lower bound, assume 

th a t B% is the ellipsoid of m inim al volume containing S =  conv { v i , . . . ,  u „+ i} .  

Let (uj)™ i  and be given by John’s theorem. Assume tha t the Ui s are

d is tinc t. Since each Ui E  dS, and since S C B'^ i t  follows tha t each rq must be 

a vertex o f S. B u t the iq ’ s were assumed to  be distinct so we have m  <  n  +  1. 

I f  rn =  n  then XX=i ciui =  ^ anc^ h i particu lar, (u j)”=1 is linearly dependent, 

a contradiction. Hence m  =  n  +  1, |u;| =  1 for each i  E { 1 , . . . ,  n  +  1} and we 

have

n + 1
(a) ^ 2  C i Vi  =  0 and

i — 1

n+l
(b) x  =  ci { vh x )vi for every x E Rn.

We w ill firs t show tha t c\ — . . .  =  cn+\ — I t  follows from  (a) tha t 

Cj =  CJ (v.i • ~ vi) h)r each i  E { 1 , . . . ,  n  +  1}. Condition (b) implies tha t
n+ l

1 =  (vi,Vi) =  cj { vj ’ vi ) 2 which gives 1 — q  =  J 2 cj ( vj ’ vi ) 2 f ° r  each i  G

{ 1 , . . . ,  n + l } .  Also by (b), we have n  =  trace (/n) =  Y^j= i cj ( vj i  vj ) =  Z q = i cj-  

Using the Cauchy-Schwarz inequality twice, we have

n+ l

n =
i— 1 jyti

i= l
n+ l n + l

n.

Therefore equality holds in  each inequality above and hence there exists a

11
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such th a t for any i  G { 1 , . . . ,  n  +  1}, the equality y/n — Ci =  a y /1  — Ci holds. 

Th is implies tha t c\ — . . .  =  cn+1 =  .

Now, by Lemma 2.5, S is A-sym metric w ith  respect to a £ S i f  and only i f

—Sa C ASa <=> —(vi — a) C ASa for each i e { l , . . . , n  +  l }

||—(vi — a)||g0 <  A  for each % G { 1 , . . . ,  n  +  1}.

Thus to  show tha t 5(S) >  n  i t  is sufficient to  prove th a t for any a £ S, 

there is at least one i  <  n +  l  such tha t

| | - 0 i  -  a ) I k  >  n. (2.6)

F ix  i  £  { 1 , . . . ,  n  +  1}. Condition (a) implies tha t —b *  =  nvj i  i-e-> 

—^Vi lies on a face o f S. Thus =  1, tha t is, ||— b | s  =  n. Thus we

have shown tha t (2.6) is true for a =  0. A n elementary argument shows tha t 

(2.6) is true for an a rb itra ry  center a £ S. Thus we obtain the lower estimate 

6{S) >  n. □

2.4 Volumes of Convex Bodies

A  key argument in  chapter 5 involves a comparison of volumes. In  particular, 

we w ill need the volume formulas

on

v o l (B ?) =  -

and

vol ( f l» )  =
T(1 +  n /2 )  ’

where T denotes the Gamma function. A  useful too l for calculations is S tir­

ling ’s approximation: n\ «  y /2 im ( n /e ) n , where the nota tion f ( n )  «  g(n) 

means lim  =  1. In  particular, there are absolute constants C'i >  0, D,: >  0
n —»oo 3 \ n )

12
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(i = 1,2) such that

( C . /n Y  <  vol (B?) <  (C i /n ) n

and

( A / n ) ?  <  vol (£?2 ) <  (£>2/ n ) t .

Recall the classical inequality due to  Santalo [13].

Theorem  2.11. Let K  C l "  be a centrally symmetric convex body. Then

/  vol (K )  vol (K ° )

V vol (B%)2 /

The follow ing is a result due to Ba ll and Pajor [3] and G luskin [7].

Theorem  2.12. Let 1 <  n <  m and let x \ , . . .  , x m £ R” be such that aq ^  0 

fo r  some i. Then

vol ({a; £ R n : \ ( x , X i ) \  <  1 fo r  every i } ) "  >

1_
n

<  1.

Q.y[e\J 1 +  lo g (m /n ) ’

where a  :=  max|aq|.
i < m

A  consequence of th is  theorem is tha t the volume of sets o f the form

K  =  absconv {a?i,. . . ,  x m}  is comparable, up to  a logarithm ic factor, w ith

the volume of B™ — absconv { e i , . . . ,  en}.

Corollary 2.13. Let 1 < n < m and let aq, . . . ,  xm £ Rn. Then

vol (absconv {(a^)™ ^}) <  vol ^ 3 « \ / l  +  lo g (m /n )5 ” ^ ,

where a  :=  max|aq|.
i < m

Proof: Set K  :=  absconv {(aq)™: }  so tha t

K °  =  { x  £ I T  : \{x, y)\ <  1 for a ll y  £ K }

— {x  £ Rn : | ( r ,X j) |  <  1 for all i  <  m }.

13
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Theorem 2.11 and Theorem 2.12 imply that

v o l(£?)2

vol (K °)

((ay /e /2 )  y / l  +  lo g (m /n j)  v o l ( f f i )

7r”  ^ (« v /e /2) \ /T T lo g ( rn 7^ ^  vol ( 5 " )  

vol ( 3 a ^ /T £ B o g ( m J ^ B ^  •

□

2.5 Probabilistic Tools

Let (Cl, P) be a probab ility  space. I f  h is a random variable defined on Cl and

B  is a subset o f its  range, we w ill use the no ta tion  P({cu G Cl : h(u>) G B } )  and

P ({/?, G B } )  interchangeably.

O f particu la r interest to  us are Gaussian random variables w ith  N ( 0,1) 

d is tribu tion , i.e., those random variables 7 : f 2 —» R satisfying

1 f  x 2
P (7 G B )  =  —j =  / e 2 dx

v27r J b

for any Borel set B C f .

In  the n-dimensional case, i f  7* ( i =  1 , . . . ,  n) are independent Gaussian 

random  variables w ith  1V(0,1) d is tribu tion  then the random variable h : Cl —> 

E n defined by h =  (71, . . . ,  7n) satisfies

P ( {h  G B } )  =  j  e_L2~dx 1 . . .  dxn

for any Borel set B  c W 1. In  th is  case, we say tha t h is a Gaussian vector.

A  crucial property of Gaussian vectors is ro ta tiona l invariance: i f  U =  

(u i j ) i j = 1 is a an orthogonal m a trix  then the random variable Uh  has the same

14
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d is tr ibu tion  as h, meaning tha t the equality

P ({h e  £ } )  = P ({Uh e  B})

is satisfied for any Borel set B  C l " .

I f  h is a Gaussian vector, we say tha t g — (1 /  y/n)h is a normalized  

Gaussian vector. This choice of norm alization yields tha t the expected value 

of | g |2 is equal to  1. The density of a normalized Gaussian vector is given by 

(n /2n)n/2e~n\x\2/2. The following properties appear as part of Fact 1 in  [12] 

and w ill be used in  chapter 5.

Theorem  2.14. Let g : 12 —> Rn be a normalized Gaussian vector. Then

i. fo r every r-dimensional subspace E  C M” , - \/^Pe9 a normalized Gaus­

sian vector in E , where P& denotes the orthogonal projection onto E.

ii. P {|g\ € [1/2, 2]} >  1 — e~m for some absolute constant c > 0.

iii. fo r every Borel set B  C M”  we have

P { *  <= n : € B ]  <

2.6 Gaussian Type and Cotype

Gaussian type and cotype arise in  Banach-Mazur distance investigations and 

in  th is  thesis w ill be used exactly for th is purpose. See, e.g., [17] for a more 

detailed discussion.

Let X  be a Banach space. Let ( 7 i) ^ i  be a sequence of independent Gaus­

sian random variables w ith  N ( 0 , 1) d is tribu tion  defined on some probability  

space (12, P). For each positive integer k, define the Gaussian type 2 constant, 

denoted by a ^ X ) ,  as the smallest number C  satisfying

<  c  I^TWxiW'
v 2 = 1  

15
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for all Xi , . . . ,  Xk e l  For each positive integer k, define the Gaussian cotype

2 constant, denoted by ll^iX),  as the smallest number C  satisfying

for a ll x ± , . . .  ,Xk £ X .

Let a 2(X )  =  s u p a ^ X )  and (32{ X ) =  s\xp(32(X ) .  We say tha t X  has
k k

Gaussian type 2 if  a 2(X )  <  oo and tha t X  has Gaussian cotype 2 i f  

f o iX )  <  oo.

2.7 s-N ets in Banach Spaces

In  chapter 5 we employ a standard approxim ation technique which uses the 

notion of an e-net.

Let X  =  (Mn, ||-||) be a Banach space, Y  a subset of X  and e >  0. A  

subset M  o f Y  is an e-ne t for Y  i f  for any y E Y  there exists x E A f  such tha t

\ \ x - y \ \  <  e.

The following estimate, while not optim al, is sufficient for our purposes. 

The proof can be found, for instance, in  [12].

Lemma 2.15. There exists an e-net M  for B x  such that |A/"[ <  (1 +  2 /e )n.

Lemma 2.16. I f  N  is a e -net for B x  and U C B x  then there is a (2e) — net 

M. for U such that \M\ < \Af\.

Proof: For x E M  let B (x ,e )  :=  { y  E X  : \\x — y || <  e). For each x E M

choose yx E B (x ,  e) n  U  i f  possible. Let X i  =  { y x} .  Then for any u E U  there 

is an x  E A f  w ith  ||« — x|| <  e and hence B(x ,  e) f l  U  ^  0. Thus there exists 

yx E X i  such tha t ||rr — yx || <  e and hence \\u — yx \\ <  2e. □

16
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Chapter 3

The D istance to a Hilbert Space

The purpose of the present chapter is to  provide another proof of the classical 

estimate by John on the distance of an a rb itra ry  n-dimensional Banach space 

to  n-dimensional Euclidean space, which we have stated as Corollary 2.8. We’ll 

firs t need to  develop the necessary term inology and machinery.

Let X  and Y  be Banach spaces and let T  6 B ( X ,Y ) .  We say th a t T  

factors through a H ilbert space i f  there is a H ilbert space H  and linear 

operators R  G B(X , H), S  € B(H , Y)  such tha t T  — SR . Let

72CO :=  inf{i|JT||||5'[| : R  g B ( X , H ) , S e  B ( H , Y ) , T  =  SR }.

The following is a result by Lindenstrauss and Pelczynski [11]. The proof 

can also be found in  [17] (Proposition 13.11).

Theorem  3.1. Let X  and Y  be Banach spaces and let T  G ©(X, Y ). Then T  

factors through a Hilbert space if  and only if  there exists C such that for any 

k G N, for any x \ , . . .  ,Xk G X ,  for any orthogonal matrix U  =  we

have
/  k  k \  I (  k \  2

(EiC^jin ^  Ell*0 •

\ i = l  j = 1 /  \ i= l  /

Moreover, the smallest such C coincides with 72 (T).

The notion o f factoring through a H ilbert space is pa rticu la rly  useful when

17
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Him X  =  n  since the identity  map I  : X  - *  X  factors through the H ilbe rt 

space £2 and d(X,  £2) =  72(^)-

Another theorem tha t provides an upper bound on the distance between 

an a rb itra ry  Banach space and a H ilbe rt space is the classical theorem due to  

Kwapien [10].

Theorem  3.2. A Banach space X  is of Gaussian type 2 and Gaussian cotype 

2 if and only if it is isomorphic to a Hilbert space H. In this case, d(X,  H)  < 

a 2(X)(32(X).

I f  X  =  (Mn, j|-||) is an a rb itra ry  Banach space, i t  can be shown (see, e.g., [17]

Proposition 12.3) th a t a 2(X) < yfn and 32{X) <  yfn and hence Kwapien’s

theorem gives the upper estimate d(X,£2) <  n. So w ithou t any a p rio ri

in form ation on the space X,  Theorem 3.2 does not provide a useful estimate.

A  recent characterization o f d (X , P]), due to  E fra im  [6], improves on the

theorem of Kwapien. The improvement is achieved by revising the definitions

of the Gaussian type 2 and Gaussian cotype 2 constants.

To state the theorem we w ill need to introduce some notation. Let X  =

(Wl, |-||) be a Banach space. For a positive integer k, let X k =  ®^=1 X.  For
/ , \ 1/2

x  =  ( x i , . . . ,  Xk) E X k define || x  \\2 =  ( )  ■ Let 0 ( k )  be the set

of orthogonal k x  k  matrices. O (k)  acts on the set X k in  a na tura l way: for 

U  =  (Uij)kj =1 E 0 ( k )  and ~x E X k let

U  x  ~  ( /G  u i j x j  I
V t = 1 / i = i

For ~x E X k, the orbit of ~x is the set {UIc : U E 0(k)} .

Let ( 7 i) ^ i  be a sequence of Gaussian random variables w ith  N ( 0 , 1) d is tr i­

bu tion  defined on a p robab ility  space (12, P). For each positive integer k and 

for each ~x E X k we w ill denote by the smallest number C satisfying

1 1

18
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for any Ij  G 0(~x).  For each positive integer k and for each ~x G X k we will

denote by  (IF ), the smallest number C  satisfying

fo r any ~y G 0(~x).

The m ain result in  [6] is the following theorem.

Theorem  3.3. Let X  be an n-dimensional Banach space. Then

d (X ,£ 2) =  sup sup a f \~ x ) j3 (2 \ ~ x )  <  18 sup ot^(~x)(32l\~ x ) .

Before sketching the proof, we w ill comment on the potentia l importance o f 

th is  theorem. I t  is believed tha t th is characterization may be applied to a long­

standing open problem concerned w ith  im proving the estimate of Corollary 

2.8 for some particu lar well-known Banach spaces (Banach spaces of type p, 

1 <  p <  2). W hile we were not able to  produce any results on th is  particu lar 

problem, an im portan t first step is recovering the classical estimate of John. 

Sketch of Proof: For ~x G X k let

Rotationa l invariance of the Gaussian d is tribu tion  implies tha t l(~x) =  l(~y)

for any ~y G <D(Lc). For ~x ^  0 let

l(~x)

x  2

and set 0 ^ ( 0 )  =  0. F ix  a positive integer k and Tc G X fc\ {0 } .  Then

(3.1)

19
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In our notation, Theorem 3.1 and the comments following it imply that

d(X,  Bf) =  sup sup sup j j - i ^ j j 2 ,
feeN -£<=xk ~yeO(Tc) II x lb 

x ^ o

which, given (3.1), yields

d(X , ££) =  sup sup a ^ \ l c ) P 2k\~x )- 
k l?£Xk

Finally, it  can be shown tha t

sup c c ^ \ T c ) ^  (fx) — sup i f x ) ^  i f x ) .
~x £X k ~x&Xk

We w ill not prove the inequality in  Theorem 3.3. Let us sim ply mention 

th a t it  is based on the following theorem by Tomczak-Jaegermann [16].

Theorem  3.4. Let X  be an n-dimensional Banach space. Then for every 

k > n we have

&n(X) < a k(X)  < V 2xan(}C)

and

Pn{X) < pk{X) < 2(3n(X).

□
Corollary 2.8, up to an absolute constant, is now a tr iv ia l consequence. 

Corollary 3.5. Let X  be an n-dimensional Banach space. Then

d{X,t%) < 18\/n.

20
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Proof: Notice that for U e 0(n)  and ~x G X n we have

\u  % H2 — (
j = 1 j= 1 

n (  n

^  ( Z )  Z i i w i
i =1 \ j= l

1
2 \  2

1
n n  \  2 /  n  \  2

,|2 3 I< E E W  2 >
\  i= l j= l /  \ t = l

=  ^Jn\\~x\\2

Thus Theorem 3.3 and (3.1) im p ly tha t

d ( X , i ” ) <  18 sup a ^ \~ x ) (d i2?>i^c) <  18 sup sup
~ Z e X n lc<EXn U e O (n )  \ \ x \\2

~x^0

21
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Chapter 4 

D ecoupling Weakly D ependent 

Events

The m ain argument o f this thesis invokes a clever probabilis tic  technique in­

troduced by Szarek and Tomczak-Jaegermann, a specific example of which 

is presented in  [15] (Proposition 3.1). Since the generalized fo rm  [14] o f the 

argument is unpublished, we record its statement and proof in  th is  chapter. 

The statement is somewhat technical so we include the follow ing description 

also taken from  [14].

Suppose we have a collection o f sets defined in  terms of independent coor­

dinates in  a “ local” way, i.e., while membership in  each o f the sets may depend 

on many or even a ll coordinates, i t  may be verified by looking at just a few 

coordinates at a time. Given this, the probab ility  o f the intersection o f these 

sets can be “almost” estimated as i f  they were independent; more precisely, 

not by a product o f the ir probabilities but by a homogeneous polynom ial in  

the ir probabilities, the degree of which is high and the number of terms of 

which is controlled.

In  our case, we are concerned w ith  the events of some independent Gaus­

sian vectors belonging to  the convex hull o f many other Gaussian vectors. 

Caratheodory’s theorem, which we have stated as Theorem 2.2, provides the 

criterion for determ ining membership in  terms of fewer coordinates.

22
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Let (12, P) be a probab ility  space. For rri £ N  we use the no ta tion  [to] to 

denote the set { 1, . . . ,  m }.

P roposition  4.1. Let 1 <  k <  m /2 . Consider a fam ily  of events { f2 j/  : i  £ 

[m], I  C [m ]} satisfying the following conditions:

(i) f o r  any i  £ [m] and I  C [m] we have

^ l i , I  ~  (̂ _J •

I ' c i
\ r \ < k

(ii) f o r  any I ,  J  C [m] with I  Pi J  =  0 the events { L l i j  : i  £ J }  are indepen­

dent.

Then fo r  any I <  m / (2k +  1), we have

p ( r W . , c ) <  e  n ^ ) -
\i=l / Jc[m] ieJ

|J|=Z

Proof: The proposition is based on the following lemma.

L e m m a  4.2 . Let T , . . . ,  I m be subsets o f [m] such that i  $  h  and { I f  <  k fo r  

all i  £ [m]. Then there exists J  C [m] with  |J| >  m /(2 k  +  1) such that

J  n  | J  T  =  0 .

Assume for the moment tha t the lemma is true. Observe th a t condition 

(i) gives us

h e  h e  H  = >  i \ h  e n ij2  (4.1)

for any i  £ [to].

Let I <  m /(2 k  +  1) and set J  { J  C [to] : |J| =  /} .  We w ill prove the

23
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fo llow ing inclusion:
m

n c u (4.2)
i=  1 J z J  ie J

Let u  G P | . Using (i), for each i  G [m] there exists 7, i  (tha t may 

depend on a;) w ith  |p| <  k such tha t w G PliLi ^ i,h■ By Lemma 4.2, there is 

a set J  w ith  \J\ >  m /(2 k  +  1) such tha t 7* C J c for iG  J. Then (4.1) implies 

th a t i \ i i C f f j  jc for each j  G J  and hence we obtain u  G P|ieJ U7jjc . The set 

J  also depends on cu but, in  any case, we have proven (4.2).

B y (ii), the fam ily { fp  jc : i  G J }  is independent, hence P (P l ie j^ i .J 0) =  

and, using (4.1), we have f i^ jc  C ( iG  J), from  which the

conclusion follows. □

The inclusion (4.2) is crucial to  the above argument. I t  says tha t while the 

events £li may be dependent, the assumptions (i) and (ii) guarantee tha t 

the dependency is no worse than considering a (albeit much larger) collection 

o f independent events.

Lastly, we address the proof o f Lemma 4.2. This follows easily from  the 

next theorem, a result by Ba ll [4] (Theorem 1.3').

T h e o re m  4.3. Let m be a positive integer and let A  =  ( % ) y =i be a matrix  

with real entries satisfying

(i) ai j  >  0 fo r  all i , j  G [m] and an — 0 f o r  all i  G [m\.

fo r  all s G [t].

P roof of Lemma 4.2: Let A  =  (a^)™ be defined by =  1/k  i f  j  G I i  and 

aij =  0 otherwise. Then A  satisfies the assumptions of Theorem 4.3. Thus for

m
(ii) Y h aij — 1 f or i  e lm }-

Then fo r  each integer t there is a part it ion  { J s}*=1 o f [m] into t  mutually

disjoint subse ts  s u c h  t h a t

24
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t = 2k + 1 there is a partition {JS}1=1 of {1, . . . ,  m}  such that

l E J sj^Js

fo r a ll ,s G [t]. In  particular, al3 =  0 whenever i , j  G Js and .s G [t]. B u t 

some s we have |.7S| >  which is what we wanted.

25
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Chapter 5 

A Convex B ody W ithout 

Sym m etric Projections

Some recent developments in  the theory of convex bodies led to  the following 

conjecture:

C o n je c tu re  5.1. For every convex body K  C W 1 there is a projection P  with  

rank P  «  n /2  such that

5 {P K )  <  C,

where C  is an absolute constant.

The following theorem due to  Gluskin, L itvak and Tomczak-Jaegermann

[8] settles the conjecture.

T h e o re m  5.2. There is an absolute constant c >  0 such that f o r  any positive 

integer n, there exists a convex body K  C l n satisfying

8 (P K )  >
c\Jn log n ’

f o r  all projections P  of rank r  >  cy/n logn .

In  the present chapter we provide an alternate proof o f th is  theorem. The 

approach is the same as tha t of the original argument bu t the proof o f our 

Proposition 5.3 uses the technique in  chapter 4.

26
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Before proving the theorem we w ill say a few words about the general 

approach o f the proof. Let m  >  n. Our convex body K  w ill be o f the form  

K  :=  conv i } ,  where are points ly ing  inside 2P£- I f  r  <  n

and P  is any projection of rank r, then for A r =  r / (c ^ /n logn ), Lemma 2.5 

implies th a t P K  is T^-symmetric w ith  respect to  a G P K  i f  and only i f

— (Pgi — a) e A r conv { {P g j  — a)j<m} for a ll i < m ,  

which implies tha t

— (Pgi — a) G A r conv { (P g j — a) j^h  0 } for a ll i  < m ,  

or equivalently

- P g i  G A r conv { (P g j  -  (1 +  1 / A r )P a ) j^ i ,  ~ ( l / A r )a }  (5.1)

for each i  <  m  (note tha t Pa  =  a since a G P K ) .

Thus to  prove the theorem, it  is sufficient to  select g i , . . . , g m so tha t for 

any r  >  c.\Jn log n, for any projection P  o f rank r  and any translate a G 2B%,

(5.1) fails for at least one i  <  m.

Rather than considering each projection P  and each translate a we w ill 

consider a suitable e-net of projections and an e-net o f translates and violate 

a s lightly  stronger condition than tha t of (5.1) on these nets. I t  is formalized 

in  Proposition 5.3. The theorem w ill then follow from  a simple approxim ation 

argument.

P ro o f:  I t  is sufficient to  prove the theorem for orthogonal projections only.

Indeed, let P  be any projection and let Q be the orthogonal projection w ith  the 

same kernel as P. Then Q and P  have the same rank and since R ange(/—P) C 

ke rP  =  kerQ , we have Q ( I  — P) =  0, i.e., Q =  Q P.  Thus i f  P K  is A- 

symmetric then so is Q [P K ]  =  Q K .

Let m  =  10n3, £ =  l / ( 3 y ^ )  and A r =  r / (c^/n  log n)  w ith  c >  0 an absolute
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constant to  be determined later.

Let M. be an £-net for 2B f  and let M r be an e-net (w ith  respect to  the 

operator norm) o f rank r  orthogonal projections. By section 2.7 we can assume 

th a t |A//| <  (6 /e )” 2 and \M \  <  (6 /e )n.

Proposition  5.3. There exist vectors gx, . . . ,  gm G 2 B f  such th a t ' i r  satisfying 

A r >  1, VQ G A//, V5 € M. there is at least one i  < m  such that

- Q g i  & A r conv | (Q g j  -  (1 +  1 / A ^ Q b ) ^  , - { l / A r )Qb^ +  IZ A re Q B f .

P roof o f Proposition 5.3: Let gX:. . .  ,gm be independent normalized Gaus­

sian random vectors defined on a p robab ility  space (12, P) as in  section 2.5. We 

are pa rticu la rly  interested in  a subset 12° C 12, w ith  p robab ility  exponentially 

close to  1, on which | ^  |qo | G [1/2,2] for each 1 <  j  <  m.  B y Theorem 2.14.ii, 

for each 1 <  j  <  m,  there exists a subset 0 )’ C 12 such tha t \g3\ ^ |  G [1/2,2] and
m

P(12°) >  1 — e~~d’n for some absolute constant d! >  0. Thus setting 12° :=  f j  12°
j '= i

and observing tha t

m
P(12\12°) =  P ( | J  12\12?) <  m  maxP(12\12°) <  me~d'n <  e~dn (5.2)

for some absolute constant d >  0, yields the desired set.

Let r 0 :=  c ^ /n logn. For any integer r  >  r 0, Q G Afr ,b G M .,1  C 

{ 1 , . . . ,  m } and u  G 12, let

2 l/(r, Q, b, u )  :=  A r conv { (Q h j(o j) ) jej ,  —(1 / A r )Qb} +  13Ar eQ B f

and

2 ljbs(r, Q , b,u)  :=  Ar  absconv { ( Q h j ( u ) ) je/, —(1 / A r )Qb} +  13AreQ B f,

where we have set hj :=  gj — (1 +  1/A r )b.

As in  chapter 4 we w ill use the nota tion [m\ to  denote the set { 1 , . . . ,  m }.
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The nota tion  -c denotes the complement o f a set w ith  respect to  [to]. We w ill 

show th a t there is an absolute constant £ >  0 such tha t

r ( n  n  > x - ^  <5'3)
\ r > r o  Q&Afr b eM . i< m  J

by estim ating the probab ility  o f the complement o f the set appearing in  (5.3). 

Note tha t to  prove the proposition i t  is enough to  show tha t the p robab ility  

in  (5.3) is positive.

F ix  r  >  r 0, Q e J\fr and b G M .  W rite  21 j ( u )  =  2 lj(r, Q, b, u )  and 2 lfbs(o>) =  

2 lfbs(r, Q.b,u>). For i  G [to] and I  C [to] set

fT ,/ • ^  2l/(cn)}.

Consider the fam ily of sets { i k j  : i  £ [to], I  C [to ]} in  the context (and 

notation) of Proposition 4.1. The first step is to  prove th a t (i) holds for 

k =  r  +  1, i.e., for any i  G [m] and any I  C [to] we have

U  (5-4)
i ' c i

\ r  |<r+l

To see tha t (5.4) holds, let i  G [to] and I  C [to]. F ix u  G i \ / .  Then 

3Z i  G 13AreQB2 such tha t

-Q g i (u )  -  Zi G A r conv {(Qhj(cu))j € l , ~ ( l / A r )Qb} .

B y Caratheodory’s theorem, there exists I '  =  I '(to) C I  w ith  \I '\ <  r  +  1 such 

tha t

-Q g i{u j)  -  zi G A r conv { (Q h j(u j)) je I / , ~ ( l / A r )Qb} .

In  other words, uj G and hence we have

^ i , I  C Q i , I '  •

I ' d
\ I ' \ < r + l
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Conversely, i f  / '  C I  and \I'\ <  r  +  1 then clearly uj G implies tha t

UJ G Oj j.

Now i f  I  and J  are disjoint subsets of [m], the independence of the events 

{O i,/ : i  G J }  follows from  the independence of the collections (gi)ie i and 

(9 j ) j e J -

Having proven tha t both o f the hypotheses in  Proposition 4.1 are satisfied, 

we may apply it  for I =  |~m/(5r)] and J  :=  { J  C [m\ : |J| =  I } .  (Here we use 

the no ta tion  |V| to  denote the smallest integer larger than x.)

The remainder o f the proof is devoted to  estimating the p robab ility  o f the 

events (j G [m]). We w ill use Theorem 2.14.iii and therefore need a

volume estimate on the sets Wj-^cO^). In  fact, an estimate on the volume of 

2 l^ sc (u>) w ill be sufficient. The next lemma shows tha t the m a jo rity  o f these 

sets (meaning uj G 12°) have volume comparable to tha t of B'[.

C la im  5.4. For any i  G [m] and fo r  any uj G 14°, we have

vol <  (72Ar y ^ o g n )r vol ( H [ ) .

P ro o f: Let i  G [m\ and let uj G 0 °. W rite  g-j — gj(uj), h j =  hj(uj) and 2 l^ sc =  

S lg c M .  Then \Qhj\ <  {Qgf +  |(1 +  l / A r )Qb\ <  6 and \ ~ { l / A r )Qb\ <  2. 

Observe tha t ( l / y W ) ! ^  C £>" =  absconv which implies th a t

ISAreQB™ C A r absconv {(Q e ')"=1}  ,

where e' :=  6ej. Setting

OS :=  A r absconv { ( Q h j ) ^ ,  - ( 1  / A r )Qb, (Qe-)"=1}

gives us

2lgfc =  A r absconv { (Q h j) j^ i ,  —(1 / A r )Qb} +  l3 A reQBV; C 205.

Since 18 is the absolute convex hu ll of p :=  (m — l j  +  n +  l  points a ll ly ing
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inside 6B r2 and since p/r  < 2m, Corollary 2.13 implies that

vol (203) <  vol (36Ar y / l  +  log{2m)B- 

<  vol ( j 2 A r ^ \ o g n B [ j  ,

which proves our claim. O

C la im  5.5. There is an absolute constant (  >  0 fo r  which the estimate

n m c) <  e - f

is satisfied fo r  any i  £ [m].

Proof: F ix  i  e  [m]. Denote by P x  P the product measure on f i  x  11. Set

A  :=  { { u ,u )  e f i x f i :  - Q g f i  u )  G 21^ (1 5 )}.

Observe tha t

P ( f \ {i}c) <  P { a ; e D : - Q 5 iH G 2 lJ }sc(o;)}

=  P x  P (A ), (5.5)

since the vector gi is independent of the collection (g fi jp i-  B u t (5.5) is in  tu rn  

equal to

Xa (^, w)dP(tu)dP(ij) =  / / XA(<^,^)dP(<^)dP(u;)
n Jo. Jn\n° Ja

+  /  /  x A(w,w)dP(u;)(iP(u;),
Jno Jo.

where D° is the set satisfying (5.2). Observe firs t tha t

[  [  Xa ( ^ j  u)dF(uj)dF(u) <  f  dP(cu) <
Jn\n° Jei Jn\a°

Recall tha t A r =  r / (cf i 'n log n ) . By Theorem 2.14.iii and C laim  5.4, for any
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fixed u j  G i l 0 , we have

j  X ^ , u ) < W { u )  =  F ( { c u e i l : - Q g i ( u ) e ^ ( Z ) } )
J 17

=  P ({ca e i l  : - \fn jrQ g i(u )  G v W ^ { ! j c ( ^ ) } )  

Vo i ( v W ^ a ^ c(S ))
<  e2 •

vol { B p

-  m  (72^ \ / ^ r

<  (150/c)5".

Thus we obtain

P ( f \ {0c) <  (150/c)r +  e~dn <  e ^ r (5.6)

for an appropriate choice of absolute constants c and £ >  0. As i  was arbitrary, 

(5.6) holds for every i  e [m\. □

Observe now tha t for any 1 <  k <  m, S tir lin g ’s form ula implies the esti­

mate ( f )  <  (e m / k ) \  hence \ J \  =  <  exp(|’m/(5r)~| log(5er)). Thus

Proposition 4.1 yields

p(fW )°) < E I I ^ ) ' )
\i=l / J d J  i<EJ

<  |J |m a x ( P ( ! \ { i} t ))M

<  e x p ([m /(5 r) ] log(5er)) exp(—( r \m /(5 r)~ \)

<  (5.7)

where rj >  0 is an absolute constant. Note tha t up u n til th is po in t the rank r ,

pro jection Q  and translate b were fixed but the calculations so far clearly do

not depend on the ir particu lar values. Thus the estimate (5.7) holds for any 

r ,  Q and b.
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To finish the proof of Proposition 5.3, observe that

p u u un
,r>ro Q&Afr b e M  i < m

<  n \N n\ \M \  m axP  ( p |
, i< m

<  n (1 8 v ^ )n2(18V ^)ne~??m

<  e - ^ 3

for some absolute constant £ >  0. This proves the proposition. □
Now take gi , . . . ,gm given by Proposition 5.3 and set K  :=  conv {(.9I) j= i} -  

Let c-sjn log n <  r  <  n and let P  be an orthogonal projection o f rank r . Then 

P K  is A r.-symmetric w ith  respect to  a £ P K  i f  and only i f

where we have set :=  g3 — (1 +  1 /A r )a (note tha t Pa =  a since a G P K ) .  

Choose Q e J \fr such tha t \\Q — P\\ <  e and note tha t max \(Q — P)gi\ <  2e.i
Since P M  is an e-net for P K  there is a b E M  such tha t \Pb — a\ <  £ and 

hence |Qb — a\ <  |Qb — Pb\ +  \Pb — a\ <  3e. F ix  i  <  m. B y (5.8), there are 

non-negative scalars « i , . . . ,  a m w ith  J2 jL i a j  — 1 such tha t

(Pgi — a) e A r conv { (P g j  — o)j<m } for a ll i  <  m

which implies tha t

(Pgi — a) G A r conv { (P g j  — a ) j f r ,  0 } for a l i i  <  m

or equivalently

Pgi E A r conv { ( P u j ) j7ti , —(1 /A r )a } for alI i  < m  (5.8)
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Setting v3 :=  g3 -  (1 +  1 /A r )b, we obtain

dist ( -Q g u  A r conv { ( Q v j ) ^ ,  - ( 1  / A r )Qb}) 

j Qg% ^   ̂ I

< I Pgi -  Qgt I + -  Qvj) I + M Q fr -  a)|

2e 8£j4r “I- 3s

<  13Are.

Thus i f  P K  is A r-symmetric w ith  respect to a then there are Q *E N r and 

b <G M .  such tha t

d is t(—Qgi, A r conv { (Q v j) j^ i ,  — ( l / A r )Qb})  <  13Ar e

for a ll i  <  m.  This contradicts Proposition 5.3 and hence proves the theorem.

□
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