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ABSTRACT

A hybrid weighted interacting particle filter, the selectively resampling particle filter (SERP), is used to detect
and track multiple ships maneuvering in a region of water. The ship trajectories exhibit nonlinear dynamics and
interact in a nonlinear manner such that the ships do not collide. There is no prior knowledge on the number
of ships in the region. The observations model a sensor tracking the ships from above the region, as in a low
observable SAR or infrared problem. The SERP filter simulates particles to provide the approximated conditional
distribution of the signal in the signal domain at a particular time, given the sequence of observations. After
each observation, the hybrid filter uses selective resampling to move some particles with low weights to locations
that have a higher likelihood of being correct, without resampling all particles or creating bias. Such a method
is both easy to implement and highly computationally efficient. Quantitative results recording the capacity of
the filter to determine the number of ships in the region and the location of each ship are presented. The hybrid
filter is compared against an earlier particle filtering method.
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1. INTRODUCTION

Filtering theory is an active and current research field with wide applications to real world problems in areas
such as financial markets, signal processing, communication networks, target detection and tracking, pollution
tracking, and search and rescue. Signals are usually modeled and described by stochastic dynamical systems
which cannot be observed directly and completely. We can only obtain some partial, distorted, and corrupted
observations of their states. The purpose of filtering is to find probabilistic knowledge of the past path, current
state, or future changes of the signals based on the back observations.

For signal tracking, most practical models apply to the single target scenario. But in reality, we may face
many situations with multiple targets, for example, in surveillance, navigation, financial markets, communication
networks, etc., in which it is critical to determine how many targets are located in a space domain based on
imperfect observations. From a mathematical modeling point of view, we can describe the motions of multiple
targets by a weakly interacting stochastic dynamical system. Thus, the signal can be regarded as a measure-
valued Markov process. For a brief introduction to filtering for such a Markov process in a Polish space, we refer
to Section 1.1 in Ballantyne, Chan and Kouritzin.2

Since our signal is often nonlinear, it is not possible to solve the filtering problems both practically and
analytically. Recently, several adaptive particle system methods have been proposed and designed to provide
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approximate solutions to nonlinear filtering problems. Del Moral and Salut7 introduced the adaptive particle
system approach to filtering, Kurtz and Xiong10 described and analyzed the classical weighted particle method,
the “cautious” branching particle method was introduced by Kouritzin and first discussed in Ballantyne, Chan
and Kouritzin,1 and the hybrid weighted particle filter method (SERP) was proposed by Kouritzin and first
discussed in Ballantyne, Kim and Kouritzin.3 Note that the classical weighted particle filter doesn’t adapt its
particle locations based upon observations. Thus, for this filter, most particle evolutions differ significantly from
the real signal and the method assigns significant weights to a very few particles, which will cause the approximate
filter to degenerate. The SERP filter overcomes these drawbacks and exhibits much better performance in
simulations.

Here, we mention some existing works for multi-target tracking by Mahler and Zajic,11 Orton and Fitzger-
ald,12 Hue, Le Cadre and Pérez9 and Ballantyne, Chan and Kouritzin.2 Mahler and Zajic11 were interested in
finding the unknown number of targets in the region of state space rather than the exact location of each target,
and used the probability hypothesis density (PHD) to design an approximate multi-target filter to estimate the
expected number of targets. Orton and Fitzgerald12 applied independent partition particle filter method for
tracking the direction-of-arrival (DOA) of multiple moving targets. In the resampling step, particles with high
weights are copied many times, and those with low weights only a few, or not at all. Hue, Le Cadre and Pérez9

proposed the multi-target particle filter (MTPF), which combines the two major steps (prediction and weighting)
of the classical particle filter with a Gibbs sampler-based estimation of the assignment probabilities. They also
added two statistical tests to decide if a target has appeared or disappeared from the surveillance area.

In the aforementioned papers, it is assumed that targets are moving according to independent Markovian
dynamics. In this paper, similarly to Ballantyne, Chan and Kouritzin,2 we consider weakly interacting multiple
targets (to avoid collisions and to attract distant targets) and regard the (random) unknown number of targets
as part of our signal which enables us to handle cases in which the initial number of targets is unknown and that
number may change over time. Also, our particle filter methods are different from those used in12 and.9 We
discuss the implementation of branching particle filter and SERP filter methods for a multiple dinghy tracking
problem and compare the computational efficiency of these two methods.

This paper is organized as follows: Section 2 describes in detail the two particle filter methods, MIBR and
SERP, which will be used in our multiple dinghy tracking problem. In Section 3, the multiple dinghy tracking
problem is described by considering the signal model, as given by different dinghy motion behaviors, and the
observation model. In Section 4, the application of the filtering techniques to the problem is described in detail
and simulation data is presented comparing the filter performance in terms of computational efficiency and error
values. Lastly, in Section 5, conclusions are presented.

2. PARTICLE FILTERS

2.1. Background

For nonlinear filtering problems, it is usually impossible to find exact finitely recursive solutions. To obtain
a computationally feasible solution, some kind of approximation is required. Particle filters are particularly
appropriate since they can be applied to very general models and are easy to implement. The classical particle
filter method (Monte-Carlo method) is composed of two stages: the particles are evolved according to the signal
state equation during the prediction step; then, weights are calculated using the likelihood of the new observation
combined with the previous weights. Unfortunately, it is well-known that the resulting particle scheme is not
effective because the deviation of the particles may be too large and the growth of the weights is difficult to
control.

In the past decade, a resampling step has been added to the classical scheme by adapting the particles to
observations. Different types of resampling techniques have been developed, some examples of which are: the
bootstrap filter by Gordon, Salmond and Smith,8 the adaptive interacting particle filter by Del Moral and Salut,7

the adaptive branching particle filter by Crisan and Lyons,5 the refining interacting particle filter by Del Moral,
Kouritzin and Miclo,6 the refining branching particle filter by Ballantyne, Chan and Kouritzin,2 and the refining
hybrid weighted interacting particle filter by Ballantyne, Kim and Kouritzin.3 The adaptive, non-refining particle
filter methods introduce some unnecessary randomness in the resampling step which degrades performance, while
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the refining particle filter methods are designed to undertake a reduced amount of resampling which has been
demonstrated to be superior. In this paper, the refining branching particle filter (MIBR) and refining hybrid
weighted interacting particle filter (SERP) methods are applied to a multi-target tracking problem.

2.2. Branching particle filter

The MITACS-PINTS Branching Particle Filter, or MIBR Filter, was introduced by Fleischmann and Kouritzin
and first published in Ballantyne, Chan and Kouritzin1 (then known as the refining branching particle filter).
This particle method selects particles for duplication or removal based on their Bayes update factor from the
current observation.

2.2.1. Branching filter update algorithm

The MIBR filter algorithm proceeds as follows:

1. Initialize particles {ξ10 , ξ2
0 , . . . , ξ

N
0 } by sampling from the initial signal distribution.

2. Repeat for k = 1, 2, . . .

(a) Simulate the evolution of the particles forward independently of each other over the time interval
tk − tk−1. Call the new particles just prior to the next observation {ξ1tk−, ξ

2
tk−, . . . , ξ

N
tk−}.

(b) Repeat for i = 1, 2,..., N

i. At the kth observation, evaluate ζi
k = Ŵ i

kN∑ N
i=1 Ŵ i

k

− 1, where Ŵ i
k is the Bayes update factor for the

ith particle at time tk.
ii. If ζi

k < 0, remove particle ξi
tk− with probability −ζi

k.
iii. Otherwise, if ζi

k > 0, add �ζi
k� particles at the location ξi

tk− . Then, add one more particle at this
site with probability ζi

k − �ζi
k�.

(c) Introduce unbiased particle control to bring the number of particles back to N .

(d) Re-label the resulting particles {ξ1tk
, ξ2

tk
, . . . , ξN

tk
}.

The approximated conditional distribution for the signal state is calculated via

P (Xtk
∈ A|Y1, . . . , Yk) ≈ 1

N

N∑
i=1

1ξi
tk

∈A. (1)

Note that for many problems, most of the particles are neither branched nor removed, since the value of ζi
k is

often close to 0.

2.3. Selectively resampling particle filter

The selectively resampling particle (SERP) filter was first mentioned in Ballantyne, Kim and Kouritzin3 (then
known as the weighted interacting or hybrid particle filter), and further discussed in Bauer, Kim and Kouritzin.4

In this method, particles are evolved as in the classical weighted method until such a time that the ratio of
the largest particle weight to the smallest particle weight exceeds some factor ρ. Then, particles are resampled
pairwise until the ratio of the weights falls within the value ρ.
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2.3.1. SERP update algorithm

The SERP filter algorithm proceeds as follows:

1. Initialize particles {ξ10 , ξ2
0 , . . . , ξ

N
0 } by sampling from the initial signal distribution. Set W i

0 = 1 ∀i (or to a
value designed to compensate for a skew in the initial sampling of the particles; see Section 2.3.3).

2. Repeat for k = 1, 2, . . .

(a) Simulate the evolution of the particles forward independently of each other over the time interval
tk − tk−1. Call the new particles just prior to the next observation {ξ1tk−, ξ

2
tk−, . . . , ξ

N
tk−}.

(b) At the kth observation, update the weight for all particles by the equation W i
k = Ŵ i

kW
i
k−1, where Ŵ i

k

is the Bayes update factor for the ith particle at time tk.
(c) Resample all particles until W i1

k < ρW i2
k , ∀i1, i2, as described in Section 2.3.2.

(d) Re-label the resulting particles {ξ1tk
, ξ2

tk
, . . . , ξN

tk
}.

The approximated conditional distribution of the signal state is calculated via

P (Xtk
∈ A|Y1, ..., Yk) ≈

∑N
i=1 W

i
k1ξi

tk
∈A∑N

i=1 W
i
k

. (2)

There are numerous computational details that can be exploited to make this algorithm very efficient. The
types of data structures used to store the particles and their weights can significantly affect the fidelity and
computational performance of the SERP method. As well, the sum of the particle weights must be maintained
within the minimum and maximum computer representation limits on the implementing architecture. Because
of this, a particle re-weighting method is introduced after the re-labeling step to scale each particle weight by an
identical factor should the sum of the weights overrun some predefined minimum or maximum value.

2.3.2. Resampling procedure

Particles are resampled in a pair-wise fashion in the SERP method. The highest particle weight, say that of
particle i1, and the lowest particle weight, say that of particle i2, are compared to one another. If W i1

k > ρW i2
k ,

then the particles are resampled. Both particles take the state value of particle ξi1 with probability W
i1
k

W
i1
k +W

i2
k

or the state value of particle ξi2 with probability W
i2
k

W
i1
k +W

i2
k

. Afterwards, both W i1
k and W i2

k are set to the value

W
i1
k +W

i2
k

2 .

2.3.3. Particle initialization

For the particle methods in which particles retain nonuniform associated weights across observation steps, there
is the potential to bias the initial particle sampling in a manner which is counterbalanced by including a com-
pensating factor in the initial particle weight. For example, it may be useful to increase the number of particles
that are initially deployed to search some portion of the signal domain. This technique is similar to importance
sampling, except that it occurs during the particle initialization. If the particle filter resamples every particle at
each observation, then many of the particles that are initialized with low weights will be immediately lost. In
contrast, if the parameter ρ takes appropriate values, the SERP algorithm allows for particles to be initialized
with weight less than one without the likelihood of immediate relocation through resampling.

2.3.4. Parameter explanation

The parameter ρ determines the amount of resampling that the SERP method performs. When ρ = 1, the
SERP method is similar to the interacting particle method in that all particles are resampled at each simulation
iteration. At the other extreme, when ρ = ∞, the SERP method becomes the classical weighted method, since
no particles are resampled. This parameter allows for dynamic customization of the extent of resampling and
may be a time-dependent value, or may depend on the state of the particle system. An empirical solution to the
optimal value of ρ at time t is being investigated in the context of a stochastic control problem.
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3. PROBLEM DEFINITION

3.1. Signal description

Suppose that (S0, d0) is some complete, separable metric space and that B is the Borel σ-field for S0. We let S
denote the space of finite, non-negative Borel measures µ on S0, metrized by the extended Prohorov distance

d(µ, ν) .= inf{ε > 0 : µ(B) ≤ ν(Bε) + ε, ν(B) ≤ µ(Bε) + ε ∀B ∈ B}, (3)

where Bε .= {x ∈ S0 : d0(x, y) < ε for some y ∈ B}. Then, (S, d) is also a complete, separable metric space.

Our signal measure is a homogeneous Markov process X on S constructed as

Xt(B) =
Mt∑
j=1

δXj
t
(B) = number of targets inB, (4)

where Mt is the random number of targets depending on t. Since it is vital that Xt is a Markov process, we
consider the case in which Mt is decreasing through the removal of targets to a cemetery state when they leave
a bounded portion of the target domain, and we limit possible target interactions to weak interactions, meaning
those that can be represented in terms of Xt itself. In this case, X is a (P0,L)-Markov process, where P0 is the
initial signal measure distribution and the operator L describes the probabilistic evolution of the signal, including
the target interactions. The weak interactions are designed to repel nearby targets in order to avoid collisions
and to attract distant targets. This is enforced indirectly by increasing the probability that the orientation
change of a target is away from other close targets, and increasing the probability that the orientation change of
a target is towards other distant targets. Our model thereby reflects loose coordination of the targets.

3.1.1. Target models with interactions

We assume that there is a random number Mt of targets, where Mt ∈ {0, 1, 2, 3} . Each target has seven
state variables: (xj

t , yj
t ) and (ẋj

t , ẏj
t ) denote the current planar location and velocity, respectively, of the jth

target; θj
t and θ̇j

t are the orientation and angular velocity; and χj
t denotes the current maneuver type from the

possible set of {drifting, rowing, motoring}. The domain of (xj , yj) is taken to be the set [0, R] × [0, R], where
R = 192, and any target which leaves this domain through its stochastic evolution is removed from the signal
measure, decrementing Mt by one. We use the notation Xj

t
.= (xj

t , y
j
t , θ

j
t , ẋ

j
t , ẏ

j
t , θ̇

j
t , χ

j
t ) for the state of target j

and Xt(·) =
∑Mt

j=1 δXj
t
(·) for the signal measure. In order to write the stochastic equations for these variables we

let {Bj,a, Bj,b, Bj,c}Mt
j=1 be independent standard Brownian motions with dimensions three, two, and two. Also,

we define the following attraction-repulsion field:

κ(s1, s2) =

{
0 s1 = s2
Π(s1,s2)
1000N − 3

4(Π(s1,s2)−ε) s1 �= s2
, (5)

κx(s1, s2) = κ(s1, s2)
πx(s1) − πx(s2)

Π(s1, s2)
, (6)

and

κy(s1, s2) = κ(s1, s2)
πy(s1) − πy(s2)

Π(s1, s2)
(7)

for all ships s1, s2 ∈ S0 (the domain of the targets Xj
t ), where

Π(s1, s2) =
√

|πx(s1)−πx(s2)|2 + |πy(s1)−πy(s2)|2 (8)

is a pseudometric and πx, πy denote projection onto the x and y components. The effect of this field, when
incorporated into the stochastic Itô equations that describe the motion of the individual targets, is to draw a
target slightly towards the pack if it is distant and to repel it from any one other target to which it becomes too
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close. The value ε = 10 represents the closest distance that two targets should come to each other. We define
the following variables to enact this attraction-repulsion:

φr,j
t =

√∫ ∣∣∣κ(z,Xj
t )

∣∣∣2 Xt(dz), (9)

and
φθ,j

t = arctan(
∫

κy(z,Xj
t )Xt(dz),

∫
κx(z,Xj

t )Xt(dz)), (10)

which represent the strength and orientation of the deflecting force, and both of which decompose into sums over
the finite set of targets.

3.1.2. Maneuver type

The target state variable χj
t is a Markov chain with state space {1, 2, 3}, representing adrift, rowing, and motoring

respectively. The rates are given by:

λ1→3
j,t (Xj

t ,Xt) = λ2→3
j,t (Xj

t ,Xt) = 100φr,j
t , (11)

λ1→2
j,t (Xj

t ,Xt) = λ2→1
j,t (Xj

t ,Xt) =
3
10
, (12)

and
λ3→1

j,t (Xj
t ,Xt) = λ3→2

j,t (Xj
t ,Xt) =

1
200φr,j

t

. (13)

Since the attraction-repulsion field only affects the motion of a target if it is motorized, a strong field increases
the likelihood that the target will switch into, or stay in, the motorized maneuver.

The differential equations describing the motion of target j depend on the maneuver type χj
t , as follows:

1. Adrift (χj
t = 1) In this case,

d

ẋj
t

ẏj
t

θ̇j
t

 =

 Fẋ(ẋj
t , ẏ

j
t , θ

j
t )

Fẏ(ẋj
t , ẏ

j
t , θ

j
t )

Fθ̇(ẋj
t , ẏ

j
t , θ̇

j
t , θ

j
t )

 dt +

1 0 0
0 1 0
0 0 0.5

 dBj,a
t , (14)

where Bj,a
t is a three-dimensional standard Brownian motion mentioned previously. To make the simulation

more realistic, frictions Fẋ, Fẏ, and Fθ̇ are included in the equation. The calculation of this friction is
similar for each motion type and is described below in Equations (19 - 23).

2. Rowing (χj
t = 2) In this case, [

ẋj
t

ẏj
t

]
=

[
ḟ j

t cos θj
t

ḟ j
t sin θj

t

]
, (15)

where ḟ j
t represents scalar velocity in the forward direction, with

d

[
ḟ j

t

θ̇j
t

]
=

[
(3.5 − ḟ j

t + Fḟ (ẋj
t , ẏ

j
t , θ

j
t ))

Fθ̇(ẋj
t , ẏ

j
t , θ̇

j
t , θ

j
t )

]
dt +

[√
(4 − ḟ j

t )(ḟ j
t − 3) 0

0 0.4

]
dBj,b

t , (16)

where Bj,b
t is a two-dimensional standard Brownian motion. This Itô equation is designed to maintain the

speed of the ship between three and four pixels per time unit.
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3. Motorized (χj
t = 3) In this case, [

ẋj
t

ẏj
t

]
=

[
ḟ j

t cos θj
t

ḟ j
t sin θj

t

]
, (17)

where ḟ j
t represents scalar velocity in the forward direction, with

d

[
ḟ j

t

θ̇j
t

]
=

[
(9.5 − ḟ j

t + Fḟ (ẋj
t , ẏ

j
t , θ

j
t ))

(φθ,j
t − θ̇j

t )φr,j
t + Fθ̇(ẋj

t , ẏ
j
t , θ̇

j
t , θ

j
t )

]
dt +

[√
(10 − ḟ j

t )(ḟ j
t − 9) 0

0 0.4

]
dBj,c

t , (18)

where Bj,c
t is a two-dimensional standard Brownian motion.

Friction is calculated according to the following model:

Fẋ(ẋ, ẏ, θ) =

{
− ẋ

√
ẋ2+ẏ2

Fr(ẋ,ẏ,θ) · f� if ẋ �= 0, ẏ �= 0

0 if ẋ = ẏ = 0
, (19)

Fẏ(ẋ, ẏ, θ) =

{
− ẏ

√
ẋ2+ẏ2

Fr(ẋ,ẏ,θ) · f� if ẋ �= 0, ẏ �= 0

0 if ẋ = ẏ = 0
, (20)

Fr(ẋ, ẏ, θ) =

√
(ẋ cos θ + ẏ sin θ)2 +

1
4

(ẏ cos θ − ẋ sin θ)2, (21)

Fḟ (ẋ, ẏ, θ) =
√
Fẋ(ẋ, ẏ, θ)2 + Fẏ(ẋ, ẏ, θ)2, (22)

and
Fθ̇(ẋ, ẏ, θ̇, θ) = −θ̇fθ, (23)

where f� and fθ are constant parameters indicating the magnitude of the planar velocity and change-in-orientation
frictions, and are equal to 0.25 and 2 respectively. These formulas have the effect of increasing the planar velocity
friction as the direction of motion of the ship becomes more orthogonal to the orientation of the ship, and
decreasing this friction as the velocity vector becomes more parallel to the orientation of the ship.

3.2. Observation model

The observation process consists of a sequence of images arriving at an interval of tk+1 − tk = 0.1 time units at
observation times {tk}∞k=1. Each image is a two-dimensional pixel raster {Y (l,m)

k }R
l,m=1 with height and width R

pixels. The value Y
(l,m)
k represents the (l,m) pixel in the two-dimensional raster of the observation at time tk.

The observations are constructed by

Y
(l,m)
k = h(l,m)(Xtk

) + V
(l,m)
k , (24)

where h(l,m)(X) = 1(l,m)∈AX
and V

(l,m)
k is a zero-mean normal random variable with standard deviation σV .

The set AX consists of all points within the polygon representations of the target ships of the signal X. The
constituent target polygons of AX are defined as follows: for each target ship Xj , 1 ≤ j ≤ MX,

1. Place a box with sides of length 8 perpendicular to the raster grid and centered at point (xj , yj),

2. Add a triangle of height 4 to the right side of the box so that the base of the triangle is the side of the box,

3. Rotate the resulting polygon by the angle θj about (xj , yj).
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3.3. Objective

The problem is to estimate the conditional distribution of the signal state based solely on the noisy observations
and the initial signal distribution X0. That is, the objective is to calculate

P
(
Xt ∈ A

∣∣∣ σ {
Y

(l,m)
k , 1 ≤ l,m ≤ R, k : tk ≤ t

})
. (25)

The observations are not preprocessed in any way; they are used directly by the filter.

4. SIMULATIONS

4.1. Simulation description

Figure 1. Three target simulation with the SERP filter

Both filters, MIBR and SERP, are run against 50 simulations of signal evolution and observation process.
The data from the same observation process simulation is used by both filter types to construct approximate
distributions and their error values.

Each simulation starts at time t0 = 0 time units and progresses to t50 = 5 time units. The signal targets
range over a positional domain (x, y) ∈ ([0, 192], [0, 192]) and have an initial distribution constructed as follows:
a random number of targets is selected from among the possibilities zero, one, two, and three with uniform
distribution, and then each such target is positioned at a random location in the target domain according to
a two-dimensional Gaussian random variable, truncated to have support only within the target domain, with
standard deviation 19.2 (the width of the x and y coordinates in the target domain divided by ten). If two
targets are located less than the (x, y)-Euclidean distance of 15 pixels from each other then one is randomly
repositioned. Each target is given a uniform random orientation. It has a one third probability to be exhibiting
each motion type and the initial velocity is randomly determined based on this motion type. The initial change
in orientation is zero for all targets.

Observations have width and height R = 192 pixels, are constructed at time intervals tk+1 − tk = 0.1 time
units, and the pixel-by-pixel independent noise standard deviation is σV = 3.

The filters use particles of the form ξj
t = X

j
t as their sample measures from the domain of signal measures.

Each of the two types of filters uses N = 400, 000 particles in its approximation. In the MIBR filter, the particles
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are initialized with uniform distribution over the possible number of targets, in accordance with the initial signal
distribution. The SERP filter has the advantage of being able to retain a weight for particles that is not unity,
and can evolve through observation updates without necessarily resampling particles with weights other than
1. For this reason SERP particles can be initialized with a distribution among target counts that differs from
that of the signal, as described in Section 2.3.3, as long as this is balanced by multiplying the initial weights
by a compensating factor. For these simulations, the SERP particles are distributed among zero, one, two, and
three target cases with probabilities 1

80,000 ,
999

80,000 ,
13
80 , and 33

40 , providing many more particles to explore the more
extensive portions of the signal domain corresponding to high target numbers. The constant, non-optimized
value ρ = 1024 is used in the SERP filter to determine the extent of resampling.

As depicted in Figure 1, the upper left image in our simulation represents the current state of the signal. The
upper right image represents the observation created from the current signal state. The bottom three panels
depict the filter’s conditional distribution of the signal given that the signal has one, two, or three targets.
Particles that contain zero targets are present in the filter, but do not display position information and are
therefore omitted from the simulation image.

The scenario is simulated 50 times over the time frame t = 5 time units for each of the possible initial number
of targets in the signal.

4.2. Comparison method

After every observation update the filters are compared in terms of an estimate error value. Normally, the error
of a particle filter approximation would be measured with a MSE defined by:

MSE(tk) =
1

rmax

rmax∑
r=1

d(Xr
tk
, E[Xr

tk
|Y r

1 , . . . , Y
r
k ])2, (26)

where Xr, Y r
k are the signal path and observations from run number r, rmax is the total number of simulation

runs, and d is some distance function defined on the signal domain. However, in the case of multiple targets in
which each particle X

j is a counting measure rather than a single point, and in which a distance between two
counting measures or the mean of a set of counting measures which may contain differing number of points has
no usual definition, no standard MSE calculation is possible and a different value for filter error must be defined.

Therefore, we define Υtk
(
{

X
j
tk

}N

j=1
,Xtk

), the error of the filter measure with respect to signal truth, to be

Υtk
(
{

X
j
tk

}N

j=1
,Xtk

) =
N∑

i=1

W i
k∑N

i′=1 W
i′
k

d(Xtk
,Xi

tk
), (27)

where for X = 1
MX

∑MX

j=1 δXj and Y = 1
MY

∑MY

j=1 δY j ,

d(X,Y) =

minσ∈perm{1,...,MY}
√∑MX

j=1

(
Π(Xj , Y σ(j))

)2 + (MY −MX)D2 MX ≤ MY

minσ∈perm{1,...,MX}
√∑MY

j=1

(
Π(Xσ(j), Y j)

)2 + (MX −MY)D2 MX > MY

. (28)

Here Π(Xj1 , Y j2) is the distance between the (x, y) locations of the targets Xj1 and Y j2 as defined by Equa-
tion (8), and D is the diagonal length of the target domain with respect to this distance function Π. For MIBR,
W i

k = 1 ∀i, k. Comparisons of accuracy between the two filters will be made in terms of this value Υtk
.

4.3. Filter comparison

The values Υtk
have been averaged over 50 runs using signals with 0, 1, 2 and 3 targets and at times tk, 0 ≤ tk ≤ 5.

Figure 2, Figure 3, Figure 4, and Figure 5 show these values for 0, 1, 2, and 3 target signals respectively with
the SERP and MIBR filters.
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Figure 2. 0 Target Mean Error

Figure 3. 1 Target Mean Error
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Figure 4. 2 Target Mean Error

Figure 5. 3 Target Mean Error
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The computation time for these simulations is not shown since processing was distributed across several
architectures, making it difficult to obtain a useful benchmark. Generally, however, the MIBR method required
more processing time, possibly because of extra duplications and deletions of particles as compared to SERP.

5. CONCLUSIONS
Except for early during the detection in the one target case, the SERP filter outperforms the MIBR filter under
the given distance metric. The worse performance in the one target case is possibly due to the reduced initial
particle count selected for the SERP filter, but this is compensated by the low error of SERP in the more
important and difficult two and three target problems, in which SERP outperforms MIBR significantly. In the
three target case, tracking two of the targets perfectly but not detecting the third would yield an error value of
Υ = D =

√
2 · 192 ≈ 271.5. The SERP filter averages less than this error in this case, while MIBR averages

worse than this value.
The selection of the ρ value for SERP will affect the filter performance. The SERP filter can have worse

performance and could have better performance with other ρ values. With this ρ value, the SERP filter has
better fidelity to the optimal filter and uses less processing time than the MIBR filter on this problem.
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