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Abstract

Universal approximation refers to the property of a collection of functions

to approximate continuous functions. Past literature has demonstrated that

neural networks are dense in continuous functions on compact subsets of finite-

dimensional spaces, and this document extends those findings to non-compact

and infinite dimensional spaces using homeomorphism methods. The first re-

sult herein is a universal approximation theorem for Tychonoff spaces, which is

where the input to the neural network comes from some Tychonoff space. The

resulting theorem shows that neural networks can arbitrarily approximate uni-

formly continuous functions (with respect to the sup metric) associated with a

unique uniformity. The result relies on constructing a homeomorphism from a

collection of real-valued functions defined on the same space that collectively

separate and strongly separate points. The Tychonoff space is shown to be

metrizable in the case where only a countable number of such functions is re-

quired. The second result, as a product of the Tychonoff result, is a universal

approximation theorem for spaces of positive-finite measures. The motivation

for our second result comes from particle filtering with the goal of making

a decision based on the state distribution. We also provide some discussion

showing that neural networks on positive-finite measures are a generalization

of deep sets.
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Chapter 1

Introduction

1.1 Machine Learning

In statistical machine learning, practitioners are often faced with the task of

making predictions based on past data examples.

Let X and R be the sets of possible predictor values and target values,

respectively; p(x, y) be the population probability distribution over X × R;
and suppose D = {(xi, yi)}ni=1 ⊂ X × R represent the past data examples

sampled independently from p(x, y). The goal is to find a ”good” predictor

function f : X → R such that f(xi) is ”close” to yi for each i = 1, . . . , n

from a collection of possible predictor functions, denoted M, as defined by

the practitioner. Whether a predictor function is good is a judgement for

the practitioner to make; however, often one tries to choose the function that

minimizes some kind of mean error. Suppose r : R×R → [0,∞) is the selected

error function, then the mean error for a predictor function across p(x, y) could

be defined as

Ã(f) =

∫
X×R

r(f(x), y) dp(x, y), (1.1)

for which the best predictor function g with respect to p(x, y) is defined as

g̃ = argmin
f∈M

{Ã(f)}, (1.2)
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which may or may not be unique.

The next main question that arises is: how does the practitioner find g̃?

There are a few practical issues to work through which are:

1. p(x, y) is unknown, and

2. Can each f ∈ M be represented on a computer?

Fortunately, there are solutions. For (1), the practitioner has the data sample

to work with, so they can use the empirical distribution in place of the popu-

lation distribution. As such, the average error for a predictor function across

D may be calculated as

An(f) =
1

n

n∑
i=1

r(f(xi), yi), (1.3)

where the best predictor function g with respect to D is given as

ĝn = argmin
f∈M

{An(f)}. (1.4)

For (2), the practitioner can choose a parameterized computer-workable func-

tion fθ where θ embodies the parameters controlling the behaviour of the

predictor function. Typically the parameters are real numbers, so suppose

Θ ⊂ Rd, and define a new collection of computer-workable functions as MΘ =

{fθ : θ ∈ Θ} that, ideally, closely resembles M from (1.2). Now the search for

the best prediction function becomes a search for θ̂ defined as follows:

θ̂ = argmin
θ∈Θ

{An(fθ)}, (1.5)

and so fθ̂ ∈ MΘ.

Another question to ask is: how different are fθ̂ and ĝn? If the difference

is small, then the practitioner can willingly use fθ̂ as a replacement for ĝn

as the best predictor function; however, if the difference is quite large, then

they should choose a more sophisticated class of parameterized functions. Ulti-

mately, the answer depends on how closelyMΘ is toM in some way. Consider

the following definition:
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Definition 1.1.1 (Uniform Dense). Let F and G be collections of real valued

functions with common domain X. We say F is uniform dense in G if and

only if for each g ∈ G and ϵ > 0, there exists an f ∈ F such that

sup {|f(x)− g(x)| : x ∈ X} < ϵ. (1.6)

In addition, if F ⊂ G, then F is said to be a uniform dense subset of G.

It then follows that if MΘ is uniform dense in M, then the practitioner

can rest assured that fθ can be made close enough to ĝn for some setting of θ.

Often the practitioner wishes for MΘ to be uniform dense within a collection

of continuous functions of interest; in which case, MΘ is said to have the

universal approximation property.

Cybenko 1989 showed that neural networks have the universal approxima-

tion property. In particular, he showed that functions of following form:

x 7→
n∑

j=1

βjσ(a
′
jx− θj) aj ∈ Rk; βj, θj ∈ R, (1.7)

where ′ denotes transpose (so a′jx is the dot product of a and x) and σ is a

real to real valued function1, are uniform dense in the continuous functions

defined on [0, 1]k.

In what follows, let C(X) be the collection of real valued continuous func-

tions on X, and f |A be the restriction of f to the subset A ⊂ X.

Definition 1.1.2 (Uniform Dense on Compacts). Let X be a topological

space. Then, F ⊂ C(X) is said to be uniform dense on compacts of X if for

each compact K ⊂ X, {f |K : f ∈ F} is uniform dense in C(K).

Hornik 1991 extended the work of Cybenko 1989 to all the compact subsets

of Rk. We repeat the theorem here.

1Additionally, σ must be discriminatory, which is to say that
∫
[0,1]k

σ(a′jx − θj) dµ = 0

for each aj ∈ Rk and θj ∈ R implies µ = 0.

3



Theorem 1.1.3. If σ : R → R is continuous, bounded and non-constant, then

the following functions

⋃
n∈N

{
x 7→

n∑
j=1

βjσ(a
′
jx− θj) : aj ∈ Rk; βj, θj ∈ R

}
(1.8)

are uniform dense on compacts of Rk.

Proof. See Theorem 2 from Hornik 1991. ■

There are many collections of functions that are uniform dense of the com-

pacts2 of Rk; however, (for this work) we need not focus on the variety of such

collections, but rather that they exist.

A question to consider is: what universal approximation results can be had

when the function domain is not Rn? Suppose X is a topological space, and

for the moment that h : X → Rn is a homeomorphism. Given a compact set

K ⊂ X, it follows that h|K : K → h(K) is a homeomorphism to the compact

set h(K) ⊂ Rn, so we see that for any g ∈ C(K), we have g = g ◦ h|−1
K ◦ h|K

and g◦h|−1
K ∈ C(h(K)). Letting An denote the neural networks from Theorem

1.1.3, given ϵ > 0 there is f ∈ An such that

ϵ > sup
{
|f(p)− g ◦ h|−1

K (p)| : p ∈ h(K)
}

(1.9)

= sup {|f ◦ h|K(q)− g(q)| : q ∈ K} , (1.10)

which is to say that {p 7→ f ◦ h|K(p) : f ∈ An} is uniform dense in C(K). As

K is arbitrary, it follows that {p 7→ f ◦ h(p) : f ∈ An} is uniform dense on

compacts of X.

The above example suggests that homeomorphisms are a useful tool to

achieving universal approximation results for non-real input values; however,

there is a few other questions to answer which are:

1. Is there a uniform dense result for when X is not compact?

2. What if X is infinite dimensional? That is, there is no such homeomor-

phism h : X → Rn for some n ∈ N.
2This includes deep neural networks (see Kidger and Lyons 2020 Theorem 3.2).
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To motivate the above questions further with an example, consider the

following hidden Markov model:

X0 = x0 ∼ p(x0) (1.11)

Xi|Xi−1 = xi ∼ p(xi | xi−1) (1.12)

Yi|Xi = yi ∼ p(yi | xi) (1.13)

for i = 1, . . . , n and xi, yi ∈ R. The Xi are hidden (non-observed) random

variables, while the Yi are observed for i < n. The goal is then to compute

the conditional distribution for the hidden variables given the observations

p(xi | yi, i < n). Particle filtering is a common technique for computing the

distribution by representing it as m ∈ N number of weighted particles. For

j = 1, . . . ,m let dj ∈ R and Lj > 0 be the particle value and likelihood

(given yi for i < n), respectively, for the j-th particle. Then the unnormalized

measure based on the particles is given as

µ(A) =
m∑
j=1

LjIdj(A), (1.14)

where A ⊂ R is some measurable set and Ic is the indicator function (Ic(A) 7→ 1

if c ∈ A and is 0 otherwise), can be used to represent the target distribution

as

p(xi ∈ A | yi, i < n) ≈ µ(A)

µ(R)
, (1.15)

where ≈ means ”approximately”. Both µ and p(xi ∈ A | yi, i < n) give us

information about the hidden variable Xi given the past yi’s, but how can

we best utilize this information? Suppose that we want to learn a decision

function with a positive-finite measure as an input. It is then natural to

ask: what class of decision functions is appropriate for us to approximate

continuous functions of positive-finite measures? We are unable to use our

homeomorphism tricks exactly as done previously because the input space is

infinite dimensional. However, Ma et al. 2020 (section 3.4) has shown some

successful empirical work on this matter by evaluating the moment generating

5



function for the input measure µ at various points, then passing those points

into a neural network. We can compute the moment generating function for

µ evaluated at v ∈ R as below:

Mµ(v) =

∫
ev·z dµ(z) (1.16)

=
m∑
i=1

Lj · ev·dj . (1.17)

Hence, their decision functions look like

µ 7→ f (Mµ(v1), . . . ,Mµ(vk)) , (1.18)

where f ∈ Ak is a neural network on Rk. In Ma et al. 2020, the v1, . . . , vk are

implemented as parameters, so the points in which they evaluate the moment

generating function are learned. It is the goal of this document to provide

some theoretical justification for this practise by providing a universal approx-

imation theorem for positive-finite measures.

Chapters 2 through 6 provide the necessary mathematical background.

Chapter 2 is focused on notation for sets and functions. Chapter 3 is about

topological spaces which provide the framework for continuity. Chapter 4 is

about point separation ideas which we will use to construct homeomorphisms

on infinite dimensional spaces. Chapter 5 introduces uniform spaces for the

purpose of identifying the class of functions for which our universal approx-

imation theorems hold: they are exactly the uniformly continuous functions

associated to a unique uniformity. Chapter 6 discusses measure spaces and

topological spaces of measures as well as some homeomorphism ideas specific

to measures.

Chapter 7 is where our universal approximation theorems are kept. The

main results are Theorem 7.2.2 for Tychonoff spaces and Theorem 7.3.2 for

spaces of positive-finite measures.

Chapter 8 concludes with some practical discussion related to the learning

process, as well as thoughts about how neural networks with measures as

inputs can be seen as a generalization of deep sets.
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Chapter 2

Basic Notation

This brief chapter provides basic notation and concepts for sets and functions

that will be used extensively throughout the following chapters.

2.1 Sets and Functions

We use ”
.
=” when defining an object via equality. We will use ∅, N, and R to

represent the empty set, positive integers, and real numbers, respectively. We

use ∞ to indicate countable infinity.

”⊂” and ”⊃” are used to denote set containment including equality; that

is A ⊂ B if and only if x ∈ A implies x ∈ B. We use ”\” for set difference, so

A \B .
= {x ∈ A : x ̸∈ B}.

Given a set X, we denote R0(X) as the set of all non-empty finite subsets

of X.

Let X and Y be sets. We use the standard notation f : X → Y to denote a

function f with domain X and range Y . When defining a function pointwise,

it is useful to use the notation ”7→” to indicate point assignment, so f(p) 7→ q

implies f(p) = q. However, ”7→” allows us to define mappings without referring

to f ; for example, if the context is R to R functions, then {p 7→ ap2 : a ∈
(0,∞)} is the set of parabolas with a minimum at 0. Should f be invertible,

then f−1 is defined as its inverse.

Given two functions f : X → Y and g : Y → U , the composition of g and

7



f is denoted g ◦ f : X → U .

Suppose A ⊂ X and B ⊂ Y . We refer to f(A)
.
= {f(x) ∈ Y : x ∈ A} and

f−1(B)
.
= {x ∈ X : f(x) ∈ B} as the image of A under f and pre-image of B

under f , respectively. The following fact about pre-image is indispensable.

Fact 2.1.1. Suppose Si ⊂ Y for each i ∈ I, and f a function mapping elements

of X to elements of Y . The following are true:

1. f−1
(⋂

i∈I Si

)
=
⋂

i∈I f
−1(Si), and

2. f−1
(⋃

i∈I Si

)
=
⋃

i∈I f
−1(Si).

The restriction of f to the domain A is a function denoted f |A : A → Y

defined as f |A(x)
.
= f(x) for each x ∈ A. If D is a collection of functions with

common domain X, then D|A
.
= {f |A : f ∈ D} is the collection D restricted

to the domain A.

We use the symbols ∨ and ∧ to represent binary operations of max and min

functions, respectively. That is, x ∨ y 7→ max{x, y} and x ∧ y 7→ min{x, y}.

2.2 Cartesian Products

We let A × B
.
= {(x, y) : x ∈ A, y ∈ B} denote the Cartesian product of

non-empty sets A and B. Given an index set I and collection of non-empty

sets {Yi}i∈I we denote the Cartesian product of the collection as
∏

i∈I Yi
.
=

{(xi)i∈I : xj ∈ Yj for each j ∈ I}. In the common case where Yi = Y for each

i ∈ I, we use the alternative notation Y I .
=
∏

i∈I Y . When the cardinality of

I is n ∈ N∪ {∞}, it is often convenient to instead use the notation Y n rather

than Y I .

We use the Cartesian product Y X to represent the collection of all functions

from X to Y and B(X, Y ) ⊂ Y X is the bounded functions from X to Y .

Given an index set I, non-empty I0 ⊂ I, and collection of non-empty sets

{Yi}i∈I we define the I0 projection function on
∏

i∈I Yi as

πI0 :
∏
i∈I

Yi →
∏
i∈I0

Yi (2.1)

8



πI0 ((xi)i∈I) 7→ (xi)i∈I0 . (2.2)

In the common case I0 has cardinality of 1, then I0 = {j} for some j ∈ I, so

we then define πj
.
= π{j}. Suppose fi : X → Yi is a mapping for each i ∈ I and

let D = {fi : i ∈ I}, then we define the function⊗
D : X →

∏
i∈I

Yi (2.3)⊗
D(x) 7→ (fi(x))i∈I , (2.4)

which simultaneously evaluates all of the functions in D.

9



Chapter 3

Topological Spaces

Universal approximation is about continuous functions. And continuous func-

tions live in topology. So it should be of no surprise that we start our mathe-

matical background here and that this Chapter is the largest.

The first section starts with introducing basic notation and terminology

regarding topological spaces including topological bases and nets. This leads

to the topic of homeomorphisms, whose glue-like properties will be vital for

this work. Next, we introduce some common types and classifications of topo-

logical spaces that we will encounter in future Chapters. Then we discuss

how topologies may be generated from any collection of functions with com-

mon domain, and the resulting topology ensures the collection of functions are

continuous. Our last section is about sequential spaces which make the verifi-

cation of continuity much easier by only having to study convergent sequences

as opposed to nets.

3.1 Standard Topological Notions

We will make use of standard topological definitions from Munkres 2000 and

Willard 2004. A topology on a set X is a collection T of subsets of X having

the following three properties:

1. {∅, X} ⊂ T .

10



2. C ⊂ T implies
⋃
S∈C

S ∈ T .

3. C0 ∈ R0(T ) implies
⋂
S∈C0

S ∈ T .

The ordered pair (X, T ) is called a topological space, the elements of T are

called the open sets of X, and {X \S : S ∈ T } are called the closed sets of X.

When no confusion arises, the ordered pair notation will be suppressed and

we will simply refer to X as a topological space.

For later convenience, we introduce alternative notation helpful for refer-

ring to related topologies. Let X be a topological space and A ⊂ X be non-

empty. By O(X) and C (X) we denote the families of all open and closed sub-

sets ofX, respectively. That is, O(X, T ) = T and C (X, T ) = {X\S : S ∈ T }.
Additionally,

OX(A)
.
= {O ∩ A : O ∈ O(X)} (3.1)

denotes the subspace topology of A induced from X.

A function f mapping elements of topological spaces X to Y is continuous

if f−1(A) ∈ O(X) for each A ∈ O(X). The collection of continuous functions

from X to Y is denoted C(X;Y ) or C((X, TX); (Y, TY )) depending on the need

for clarity. In the case where Y is the real numbers R with standard topology,

then the abbreviated notation C(X) or C(X, TX) may instead be used.

Suppose T and T ′ are topologies on X and T ⊂ T ′. We then say T is

coarser than T ′ or, equivalently, T ′ is finer than T . It is clear then that

T ⊂ T ′ implies C((X, T );Y ) ⊂ C((X, T ′);Y ); that is, finer topologies (on

domain spaces) emit richer classes of continuous functions.

A basis for a topology on X is a collection B of subsets of X (called basis

elements) such that

1. For each x ∈ X, there is a B ∈ B such that x ∈ B.

2. For any two basis elements B1 and B2, if x ∈ B1 ∩ B2, then there is a

B3 ∈ B such that x ∈ B3 ⊂ B1 ∩B2.

The topology T generated by B is defined as follows: A ⊂ X is in T if for each

x ∈ A, there is a basis element B ∈ B such that x ∈ B ⊂ A.
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We now reiterate the following three facts from Munkres 2000 (pages 78 -

81).

Fact 3.1.1. If B is a basis for a topology T , then T is the collection of all

unions of elements of B.

Fact 3.1.2. Let (X, T ) be a topological space. Suppose that C ⊂ T such that

for each U ∈ T and each x ∈ U , there is an element of C ∈ C such that

x ∈ C ⊂ U . Then C is a basis for T .

Fact 3.1.3. Let B and B′ be bases for the topologies T and T ′, respectively,

on X. Then the following are equivalent:

1. T ′ is finer than T .

2. For each x ∈ X and each basis element B ∈ B containing x, there is a

basis element B′ ∈ B′ such that x ∈ B′ ⊂ B.

A subbasis S for a topology on X is a collection of subsets of X whose

union equals X. That is, ⋃
V ∈S

V = X. (3.2)

The topology generated from a subbasis S is generated from the following

basis:

B[S] .=

{ ⋂
U∈U0

U : U0 ∈ R0[S]

}
. (3.3)

Alternatively, it is useful to think of topologies in terms of neighborhoods

and neighborhood bases, which we define below.

Definition 3.1.4 (Neighborhood, Neighborhood Base). If X is a topological

space and x ∈ X, a neighborhood of x is a set U which contains an open set

V containing x. A neighborhood base at x is a collection of neighborhoods Nx

at x with the property: if U is any neighborhood of x, then U ⊃ V for some

V ∈ Nx.
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Proposition 3.1.5. Let X be a set and Nx be a collection of subsets of X for

each x ∈ X that satisfy the following properties:

• V ∈ Nx implies x ∈ V ,

• V1, V2 ∈ Nx implies there is some V3 ∈ Nx such that V3 ⊂ V1 ∩ V2, and

• V ∈ Nx implies there is some V0 ∈ Nx such that if y ∈ V0, then there is

some W ∈ Ny with W ⊂ V .

Suppose T is a collection of subsets of X, that satisfy: U ∈ T if and only if

x ∈ U implies there is a Vx ∈ Nx such that Vx ⊂ U . Then T is a topology on

X and, for each x ∈ X, Nx is a neighborhood base at x.

Proof. Proven by Willard 2004 Theorem 4.5. ■

Definition 3.1.6 (First-countable). If each p ∈ X has a countable neighbor-

hood base, then X is said to be first-countable.

3.1.1 Nets and Limit Points

Next, we bring forth some properties of nets and limit points in topological

spaces, which are yet another way to think about topological spaces.

Definition 3.1.7 (Limit point, Closure). Suppose X is a topological space,

A ⊂ X, p ∈ X, and Np be the neighborhood system at p. We say p is a limit

point of A if A ∩ O ̸= ∅ for each O ∈ Np. We define the closure of A as the

intersection of all closed sets containing A and is denoted as A or cl[A].

Proposition 3.1.8. Let A be a subset of a topological space X and let A′ be

the set of all limit points of A. Then

1. A = A ∪ A′,

2. A is closed if and only if A = A.

Proof. See Munkres 2000 Theorem 17.6 and Corollary 17.7. ■

Definition 3.1.9 (Directed sets). A set Λ is a directed set if and only if there

is a relation ≤ on Λ satisfying:

13



• λ ≤ λ, for each λ ∈ Λ,

• if λ1 ≤ λ2 and λ2 ≤ λ3 then λ1 ≤ λ3,

• if λ1, λ2 ∈ Λ then there is some λ3 ∈ Λ with λ1 ≤ λ3, λ2 ≤ λ3.

Definition 3.1.10 (Nets, Subnets, Sequence). A net in a set X is a function

P : Λ → X, where Λ is some directed set. The point P (λ) is usually denoted

xλ and we may prefer the notation (xλ)λ∈Λ or simply (xλ) when there is no

confusion regarding the directed set.

Given a directed set M , a subnet of P is the composition P ◦ ϕ, where
ϕ : M → Λ satisfies:

• ϕ(µ1) ≤ ϕ(µ2) whenever µ1 ≤ µ2, and

• for each λ ∈ Λ, there is some µ ∈M such that λ ≤ ϕ(µ).

Like for nets, often P ◦ ϕ(µ) will be denoted as xλµ .

A sequence is a net whose directed set has the cardinality of the natural

numbers.

Definition 3.1.11 (Net convergence). Let (xλ)λ∈Λ be a net in a topological

space X. Then (xλ)λ∈Λ converges to p ∈ X (denoted xλ → p) if and only if

for each neighborhood U of p, there is some λ0 ∈ Λ such that λ ≥ λ0 implies

xλ ∈ U . We then say p is a limit of (xλ)λ∈Λ and is denoted as limλ∈Λ xλ when

the limit is unique.

Proposition 3.1.12. Let (xλ) be a net in a topological space X and suppose

x ∈ X. The following statements are true:

1. If xλ = x for each λ, then xλ → x.

2. If xλ → x, then every subnet of (xλ) converges to x.

3. If every subnet of (xλ) has a subnet converging to x, then (xλ) converges

to x.

14



Proof. (1.) Each neighborhood of x contains x = xλ, so it is clear that xλ → x.

(2.) Pick a neighborhood U of x and subnet (xλµ) of (xλ). There is some λ0 ∈ Λ

such that λ ≥ λ0 implies xλ ∈ U . By Definition 3.1.10, for a subnet we can

choose µ0 such that λ0 ≤ λµ0 . It then follows that xλµ ∈ U for all µ ≥ µ0, so

xλµ → x.

(3.) Suppose (xλ) does not converge to x. Then, for some neighborhood U

of x, for each λ there is λ0 ≥ λ such that xλ0 ̸∈ U . That is, there is a subnet

(xλµ) such that xλµ ̸∈ U for all µ. It then follows that a further subnet of (xλµ)

cannot converge x, which is a contradiction. ■

It is the following three propositions that demonstrate the importance of

nets within the study of general topological spaces. In particular, nets perfectly

characterize closed sets, continuity, and compactness.

Proposition 3.1.13. Suppose X is a topological space and A ⊂ X. Then

x ∈ A if and only if there is a net (xλ) in A with xλ → x.

Proof. See Willard 2004 Theorem 11.7. ■

Proposition 3.1.14. Suppose X and Y are topological spaces and f : X → Y .

Then f is continuous at p ∈ X if and only if f(xλ) → f(p) whenever xλ → p.

Proof. See Willard 2004 Theorem 11.8. ■

Proposition 3.1.15. A topological space is compact if and only if each net

has a convergent subnet.

Proof. See Willard 2004 Theorems 17.4 and 11.5. ■

3.1.2 Homeomorphisms

Much of the work in later chapters is dedicated to the construction of homeo-

morphisms. For now, all we do is define them and list some useful facts about

them.

Definition 3.1.16 (Bijection, Inverse, Homeomorphism, Embedding). Sup-

pose X and Y are topological spaces and f : X → Y . If, for each q ∈ Y there
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is a unique x ∈ X such that f(x) = y, then f is a bijection. If f is a bijection,

then its inverse is denoted f−1 : Y → X and defined as f−1(y) = x if and only

if f(x) = y. We call f a homeomorphism if it is a continuous bijection with

continuous inverse. If f : X → f(X) is a homeomorphism then f is called an

embedding of X into Y .

Proposition 3.1.17. Suppose X and Y are topological spaces and f : X → Y

is a bijection. Then the following are equivalent:

1. f is a homeomorphism,

2. A ⊂ X is open in X if and only if f(A) is open in Y ,

3. A ⊂ X is closed in X if and only if f(A) is closed in Y ,

4. A ⊂ X implies f(cl[A]) = cl[f(A)],

5. For any net (xλ) and point p in X, xλ → p if and only if f(xλ) → f(p).

Proof. See Willard 2004 Theorem 7.9 for (1 - 4). (5) follows from Proposition

3.1.14. ■

3.2 Common Topologies

Here, we present some common types of topologies that will dominate our

analysis. Recall that, for a topological space X, O(X) and C (X) refer to the

open and closed sets of X, respectively.

Definition 3.2.1 (Metric, Metric space, Metric topology, Metrizable space).

A metric for a set X is a real-valued function ρ : X×X → R with the following

properties holding for any x, y, z ∈ X:

1. ρ(x, y) = ρ(y, x),

2. ρ(x, y) = 0 implies x = y,

3. ρ(x, y) ≤ ρ(x, z) + ρ(z, y).
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The ordered pair (X, ρ) is called a metric space. The metric topology on X,

denoted Oρ(X), is the topology generated from the following basis

Bρ(X)
.
=
{
{x ∈ X : ρ(x, y) < ϵ} : y ∈ X, ϵ > 0

}
. (3.4)

A topological space (X, T ) is metrizable if there exists a metric such that

Oρ(X) = T .

Remark 3.2.2. It follows trivially that for any subset A ⊂ X, Bρ(A) is a basis

for the subspace topology on A induced by X. So subspaces of metrizable

spaces are metrizable.

Definition 3.2.3 (Standard topology of real numbers). The mapping given

by (x, y) 7→ |x − y| for each x, y ∈ R is called the standard metric and the

topology it generates on R is called the standard topology.

Remark 3.2.4. Unless otherwise stated, it is assumed R is equipped with the

standard topology.

Interestingly, different metrics may generate the same metric topologies.

We will illustrate this concept in the following example.

Example 3.2.5. Let d1(x, y)
.
= |x− y| be the standard metric on R.

The arctan metric defined as d2(x, y)
.
= |arctanx− arctan y| for each

x, y ∈ R, is indeed a metric on R that generates the standard topology.

To prove this, recall that for each x ∈ R

arctanx =

∫ x

0

1

1 + z2
dz. (3.5)

Therefore, we have

1. d2(x, y) =
∣∣∣∫ x

y
1

1+z2
dz
∣∣∣ = ∣∣− ∫ y

x
1

1+z2
dz
∣∣ = ∣∣∫ y

x
1

1+z2
dz
∣∣ = d2(y, x),

2.
∣∣∣∫ x

y
1

1+z2
dz
∣∣∣ = 0 implies x = y since 1

1+z2
> 0, and

3. d2(x, y) = |(arctanx− arctan z)− (arctan y − arctan z)|
≤ | arctanx− arctan z|+ | arctan y − arctan z|
= d2(x, z) + d2(y, z),
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which demonstrates that d2 is a metric on R.

We now work to show that d2 generates the standard topology;

that is, Od1(R) = Od2(R). This task is accomplished by making use of

Fact 3.1.3 twice.

Since 1
1+z2

≤ 1 for each z ∈ R, we have

|arctanx− arctan y| =
∣∣∣∣∫ x

y

1

1 + z2
dz

∣∣∣∣ (3.6)

≤
∣∣∣∣∫ x

y

1 dz

∣∣∣∣ (3.7)

= |x− y| , (3.8)

that is, d2(x, y) ≤ d1(x, y) for each x, y ∈ R. Therefore, we have

{x ∈ R : d1(x, y) < ϵ} ⊂ {x ∈ R : d2(x, y) < ϵ} (3.9)

for each y ∈ R and ϵ > 0.

Suppose U ∈ Bd2(R) and z ∈ U . Then U has the following form

U = {x ∈ R : |arctanx− arctan y| < ϵ} (3.10)

for some y ∈ R and ϵ > 0. Since z ∈ U , we have

{x ∈ R : d2(x, y) < ϵ} ⊃ {x ∈ R : d2(x, z) + d2(z, y) < ϵ} (3.11)

= {x ∈ R : d2(x, z) < ϵ− d2(z, y)} (3.12)

⊃ {x ∈ R : d1(x, z) < ϵ− d2(z, y)} (3.13)

which is a basis element of Bd1(R). Therefore, Od1(R) ⊃ Od2(R) by

Fact 3.1.3.

We will again use Fact 3.1.3; but first, we bring forth some more

properties of arctan and d2. Let g : R → R be defined as g(z)
.
= 1

1+z2
.

If |x| < |y| we have

x2 < y2 (3.14)
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=⇒ 1

1 + x2
>

1

1 + y2
(3.15)

=⇒ g(x) > g(y) (3.16)

which shows that for any closed interval [a, b], we have

inf
z∈[a,b]

g(z) = min{g(a), g(b)} > 0. (3.17)

It then follows that

d2(x, y) =

∣∣∣∣∫ x

y

g(z) dz

∣∣∣∣ (3.18)

≥
∣∣∣∣∫ x

y

inf
w∈[x,y]

{g(w)} dz
∣∣∣∣ (3.19)

=

∣∣∣∣∫ x

y

min{g(x), g(y)} dz
∣∣∣∣ (3.20)

= |(x− y)min{g(x), g(y)}| (3.21)

= |x− y}|min{g(x), g(y)} (3.22)

= d1(x, y)min{g(x), g(y)} (3.23)

≥ d1(x, y)min{g(a), g(b)} (3.24)

that is, d2(x, y) ≥ d1(x, y)min{g(a), g(b)} for each x, y ∈ [a, b].

Letting ky,ϵ = min{g(y − ϵ), g(y + ϵ)}, we have

{x ∈ R : ky,ϵd1(x, y) < ϵ} ⊃ {x ∈ R : d2(x, y) < ϵ} (3.25)

for each y ∈ R and ϵ > 0.

We now return to finish off the proof using Fact 3.1.3. Suppose

V ∈ Bd1(R) and z ∈ V . Then V has the following form

V = {x ∈ R : |x− y| < ϵ} (3.26)

for some y ∈ R and ϵ > 0. Since z ∈ V , we have

{x ∈ R : d1(x, y) < ϵ} ⊃ {x ∈ R : d1(x, z) + d1(z, y) < ϵ} (3.27)
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= {x ∈ R : d1(x, z) < ϵ− d1(z, y)} (3.28)

⊃ {x ∈ R : d2(x, z) < ky,ϵ(ϵ− d1(z, y))} (3.29)

which is a basis element of Bd2(R). Therefore, Od1(R) ⊂ Od2(R) by

Fact 3.1.3, which completes the proof.

Definition 3.2.6 (Cauchy sequence, complete space). Let (X, d) be a metric

space. A sequence of points (xn)
∞
n=1 in X is said to be a Cauchy sequence in

(X, d) if it has the property that given ϵ > 0, there is an integer N such that

d(xn, xm) < ϵ whenever n,m ≥ N . A metric space is said to be complete if

every Cauchy sequence converges.

In what follows, let B(X, Y ) and CB(X, Y ) be the collection of bounded

and bounded continuous functions, respectively, from X to Y .

Definition 3.2.7 (sup metric). If (Y, d) is a metric space and B(X, Y ) is the

bounded functions from the set X to Y , then the sup metric is defined on

B(X, Y ) as

ρ(f, g) = sup{d(f(p), g(p)) : p ∈ X}. (3.30)

Proposition 3.2.8. Let X be a topological space and let (Y, d) be a complete

metric space. Then CB(X, Y ) is closed and complete in B(X, Y ) equipped with

the sup metric.

Proof. See Munkres 2000 and explanation on page 270. ■

Definition 3.2.9 (Hausdorff space). A topological space X is called a Haus-

dorff space if the following is true: If p, q ∈ X, and p ̸= q, then there exist sets

U, V ∈ O(X) with p ∈ U and q ∈ V such that U ∩ V = ∅.

Remark 3.2.10. Clearly, it follows that if (X, T ) is a Hausdorff space and

T ⊂ T ′, then (X, T ′) is a Hausdorff space too (assuming T ′ is still a valid

topology on X).

Proposition 3.2.11. Suppose (xλ) is a net in a Hausdorff space X, such that

xλ → p ∈ X. Then, limλ xλ = p (i.e. it is the unique limit).

20



Proof. Suppose xλ → q ∈ X. As X is Hausdorff, we can choose open neigh-

bourhoods Op, Oq such that Op ∩ Oq = ∅. As (xλ) converges to both p and q,

there are indices λp, λq such that xλ ∈ Op and xλ ∈ Oq for all λ > max{λp, λq},
which is a contradiction since the intersection is empty. ■

Proposition 3.2.12. Let (X, ρ) be a metric space. The metric topology of X

is a Hausdorff space.

Proof. Suppose p, q ∈ X and p ̸= q. Let ζ = ρ(p, q) and note that ζ > 0. Then

choose open sets U =
{
x ∈ X : ρ(x, p) < ζ

2

}
and V =

{
x ∈ X : ρ(x, q) < ζ

2

}
and assume z ∈ U . We then have

ζ = ρ(p, q) ≤ ρ(p, z) + ρ(q, z) (3.31)

<
ζ

2
+ ρ(q, z) (3.32)

=⇒ ζ

2
< ρ(q, z), (3.33)

so z ̸∈ V . It follows that U ∩ V = ∅. ■

Proposition 3.2.13. Finite subsets of Hausdorff spaces are closed.

Proof. See Munkres 2000 Theorem 17.8. ■

Definition 3.2.14 (Completely Regular, Tychonoff space). A topological

space X is called completely regular if and only if for each A ∈ C (X) and

point p ∈ X \ A there exists a continuous function f : X → [0, 1] such that

f |A = 0 and f(p) = 1. If X is also Hausdorff, then X is called a Tychonoff

space.

Proposition 3.2.15. Subspaces of Tychonoff spaces are Tychonoff.

Proof. See Munkres 2000 Theorem 33.2 ■

Proposition 3.2.16. Let (X, ρ) be a metric space. The metric topology of X

is a Tychonoff space.

21



Proof. By Proposition 3.2.12, we need only show that X is completely regular.

Given A ∈ C (X) and p ∈ X \A, we choose the continuous function fA,p : X →
R defined as

fA,p(x)
.
= 1 ∧ inf {ρ(x, y) : y ∈ A}

inf {ρ(p, y) : y ∈ A}
, (3.34)

which has the required properties that x ∈ A implies fA,p(x) = 0 and fA,p(p) =

1. ■

3.3 Topologies Induced from Collections of Func-

tions

Interestingly, we can define a topology in terms of a collection of functions. In

fact, this is how one of the topologies on measures is defined in Chapter 6.

Definition 3.3.1. Let X be a set and A ⊂ X. For an index set I, let Yi be

a topological space and fi : X → Yi for each i ∈ I. The topology induced by

D .
= {fi}i∈I on A ⊂ X, denoted by OD(A), is the one generated from the

subbasis

SD(A)
.
=
{
f−1
i (O) ∩ A : O ∈ O(Yi), i ∈ I

}
. (3.35)

Remark 3.3.2. For any O ∈ O(Yi) and fi ∈ D, we have f−1
i (O)∩A ∈ SD(A) ⊂

OD(A). Therefore, f |A ∈ C((A,OD(A)), Yi). That is, for any collection of func-

tions D, we are able to generate a topology on A such that D|A are continuous.

Further, OD(A) is the coarsest topology such that D|A are continuous.

Proposition 3.3.3. Let X be a set and A ⊂ X. For an index set I, let Yi

be a topological space with subbasis Si and fi : X → Yi for each i ∈ I. Letting

D .
= {fi}i∈I , the following collection of sets

SD(A; {Si}i∈I)
.
=
{
f−1
i (O) ∩ A : O ∈ Si, i ∈ I

}
(3.36)

is a subbasis on A ⊂ X that generates OD(A).

22



Proof. First, we show SD(A; {Si}i∈I) is a subbasis for a topology on A.⋃
V ∈SD(A;{S}i∈I)

V =
⋃
i∈I

⋃
O∈Si

f−1
i (O) ∩ A (3.37)

=
⋃
i∈I

f−1
i

( ⋃
O∈Si

O

)
∩ A (3.38)

=
⋃
i∈I

f−1
i (Yi) ∩ A (3.39)

=
⋃
i∈I

X ∩ A (3.40)

= X ∩ A (3.41)

= A. (3.42)

Next, we employ Fact 3.1.3 twice to show SD(A; {Si}i∈I) generates OD(A).

Let T denote the topology generated from the subbasis SD(A; {Si}i∈I). By

(3.3), B[SD(A; {Si}i∈I)] and B[SD(A; {O(Yi)}i∈I)] are bases for T and OD(A),

respectively.

Since Si ⊂ O(Yi), it is clear that B[SD(A; {Si}i∈I)] ⊂ B[SD(A; {O(Yi)}i∈I)],
so T ⊂ OD(A).

Conversely, suppose U ∈ B[SD(A; {O(Yi)}i∈I)] and x ∈ U . Then, for

some I0 ∈ R0[I], U has the form

U =
⋂
i∈I0

f−1
i (Oi) ∩ A (3.43)

where Oi ∈ O(Yi) for each i ∈ I0. For each i ∈ I0, we have fi(x) ∈ Oi; hence,

there is a basis element Bi ∈ B[Si] such that fi(x) ∈ Bi ⊂ Oi. By (3.3),

Bi =
⋂

V ∈Vi
V for some Vi ∈ R0[Si]. It then follows that

x ∈
⋂
i∈I0

f−1
i (Bi) =

⋂
i∈I0

f−1
i

( ⋂
V ∈Vi

V

)
∩ A (3.44)

=
⋂
i∈I0

⋂
V ∈Vi

f−1
i (V ) ∩ A (3.45)

∈ B[SD(A; {Si}i∈I)], (3.46)
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so T ⊃ OD(A) by Fact 3.1.3, which completes the proof. ■

An important case to consider for the topology OD(A) is when D is a

collection of real-valued functions; that is, when D ⊂ RX where R is given the

standard topology. Recall that a basis for the standard topology on R is given

as

Bρ(R) =
{{

b ∈ R : |a− b| < ϵ
}
: a ∈ R, ϵ > 0

}
, (3.47)

where ρ is the standard metric. Therefore, a subbasis for OD(A) is given as

SD(A;Bρ(R))
.
=
{
f−1(O) ∩ A : O ∈ Bρ(R), f ∈ D

}
(3.48)

=

{
f−1
(
{b ∈ R : |a− b| < ϵ}

)
∩ A : a ∈ R, ϵ > 0, f ∈ D

}
(3.49)

=

{{
x ∈ X : |a− f(x)| < ϵ

}
∩ A : a ∈ R, ϵ > 0, f ∈ D

}
(3.50)

which then generates the basis B[SD(A;Bρ(R))] given by the following sets{ n⋂
i=1

{
x ∈ X : |ai − fi(x)| < ϵi

}
∩ A : ai ∈ R, ϵi > 0, fi ∈ D, n ∈ N

}
. (3.51)

Proposition 3.3.4. Suppose X is a topological space, A ⊂ X, and D ⊂ RX

where R is given the standard topology. The following collection of sets{{
x ∈ A : max

1≤i≤n
|fi(y)− fi(x)| < ϵ

}
: y ∈ A, ϵ > 0, fi ∈ D, n ∈ N

}
, (3.52)

denoted as BD(A), is a basis for OD(A).

Proof. We wish to employ Fact 3.1.2. Notice the following

{
x ∈ A : max

1≤i≤n
|fi(y)− fi(x)| < ϵ

}
(3.53)

=
n⋂

i=1

{
x ∈ A : |fi(y)− fi(x)| < ϵ

}
(3.54)
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=
n⋂

i=1

{
x ∈ X : |fi(y)− fi(x)| < ϵ

}
∩ A. (3.55)

Therefore, BD(A) ⊂ B[SD(A;Bρ(R))] ⊂ OD(A) (where SD(A;Bρ(R)) and

B[SD(A;Bρ(R))] are given by (3.48) and (3.51), respectively). Now suppose

U ∈ B[SD(A;Bρ(R))] and y ∈ U . Then U has the form

U =
n⋂

i=1

{
x ∈ X : |ai − fi(x)| < ϵi

}
∩ A (3.56)

for some fi ∈ D, ai ∈ R, ϵi > 0, and n ∈ N. Since y ∈ U , we have fi(y) ∈
(ai − ϵi, ai + ϵi) for each i = 1, . . . , n. Define ϵ∗y as follows

ϵ∗y
.
= min

1≤i≤n
{ϵi − |ai − fi(y)|} . (3.57)

Then

Vy =
n⋂

i=1

{
x ∈ X : |fi(y)− fi(x)| < ϵ∗y

}
∩ A (3.58)

=
{
x ∈ A : max

1≤i≤n
|fi(y)− fi(x)| < ϵ∗y

}
(3.59)

is a basis element of BD(A) such that y ∈ Vy ⊂ U . ■

3.3.1 Product Topology

The product topology is defined on Cartesian products and is generated via the

projection functions. Notation for Cartesian products and projection functions

was provided in Chapter 2.2.

Definition 3.3.5 (Product Topology, Product Space). Let I be an index set

and suppose Yi is a topological space for each i ∈ I. We define the product

topology on the Cartesian product
∏

i∈I Yi as OD
(∏

i∈I Yi
)
where D = {πi}i∈I1.

A Cartesian product equipped with the product topology is called a product

space.

1πi are the projection functions defined in 2.2.

25



Remark 3.3.6. It is assumed that Cartesian products of topological spaces are

product spaces unless otherwise noted.

Proposition 3.3.7. Let X be a topological space; I be an index set; Yi be a

topological space for each i ∈ I; fi : X → Yi be a mapping for each i ∈ I;

D = {fi : i ∈ I}; and recall the notation
⊗

D defined by (2.4). Then the

following statements are true:

1. For each J ⊂ I, πJ :
∏

i∈I Yi →
∏

i∈J Yi is continuous.

2.
⊗

D : X →
∏

i∈I Yi is continuous if and only if fi is continuous for each

i ∈ I.

3.
⊗

D : X →
∏

i∈I Yi is continuous at x ∈ X if and only if fi is continuous

at x ∈ X for each i ∈ I.

4.
⊗

D : X →
∏

i∈I Yi is an embedding if and only if it is injective and

O(X) = OD(X).

5. A net (xλ) in
∏

i∈I Yi converges to p if and only if for each i ∈ I,

πi(xλ) → πi(p) in Yi.

6. If Yi is Hausdorff for each i ∈ I, then
∏

i∈I Yi is Hausdorff.

7. If Yi is Tychonoff for each i ∈ I, then
∏

i∈I Yi is Tychonoff.

Proof. See Munkres 2000 Theorems 18.1 and 19.6 for (1-3), 19.4 for (6), and

33.2 for (7). See Willard 2004 Theorem 8.12 for (4) and 11.9 for (5). ■

Proposition 3.3.8. Suppose N ∈ N∪{∞}. The following is a metric on RN

that generates the product topology:

ρ(x, y) 7→
N∑

n=1

2−n
(
|xn − yn| ∧ 1

)
(3.60)

for each x, y ∈ RN. That is, RN is metrizable.

Proof. See the proof of Willard 2004 Theorem 24.11. ■
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3.4 Sequential Spaces

Sequential spaces are topological spaces whose properties are often reduced to

the checking of sequences, rather than having to deal with nets. As we shall

see, a sequential space can be generated from any topology and, in fact, this

is what we do in Chapter 6 when defining a topology on a set of measures.

The generated sequential space shares the same convergent sequences as the

original space. Some nice sources for study of sequential spaces can be found

in Vermeeren 2010 and Antosik, Boehme, and Mohanadi 1985.

Definition 3.4.1 (Eventually in, Sequentially Open, Sequential Space). Sup-

pose X is a topological space, A ⊂ X, and (xn) is a sequence in X. We say

(xn) is eventually in A if there is an N ∈ N such that n ≥ N implies xn ∈ A.

The set A is said to be sequentially open if every sequence in X that converges

to a point in A is eventually in A. X is a sequential space if every sequentially

open set is open.

Proposition 3.4.2. Open sets are sequentially open.

Proof. Suppose A is open in a topological space X, p ∈ A, and xn → p in X.

Clearly, A is a neighborhood of p. So by the definition of net convergence (xn)

is eventually in A. ■

Definition 3.4.3 (Sequentially Continuous). Given topological spaces X and

Y , a function f : X → Y is sequentially continuous if for any sequence (xn)

and point p ∈ X such that xn → p we have f(xn) → f(p).

One of the nice properties about sequential spaces is that continuity is the

same as sequential continuity as we see next.

Proposition 3.4.4. Let X be a sequential space and Y be a topological space.

Then f : X → Y is continuous if and only if f is sequentially continuous.

Proof. Sequences are nets, so continuity of f implies sequential continuity by

Proposition 3.1.14. In the reverse direction, let A be open in Y . We must show

f−1(A) is sequentially open in X. Let (xn) be a sequence in X converging to

p ∈ f−1(A). As f is sequentially continuous, we see that (f(xn)) is a sequence
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in Y converging to f(p) ∈ A. By Proposition 3.4.2, A is sequentially open,

so (f(xn)) is eventually in A, which implies (xn) is eventually in f−1(A), so

f−1(A) is sequentially open. ■

The collection of sequentially open sets defines a finer topology than the

original space.

Proposition 3.4.5. Suppose (X, T ) is a topological space. The collection of

sequentially open sets, denoted Ts, is a topology on X. Further T ⊂ Ts.

Proof. First, we show Ts is a topology on X. Clearly, {∅, X} ⊂ Ts. Suppose

C ⊂ Ts and let AC =
⋃

A∈C A. If p ∈ AC, then there is some A0 ∈ C such that

p ∈ A0. Therefore if (xn) converges to p, then it is eventually in A0 and AC.

Next, suppose C0 ∈ R0(Ts) and let AC0 =
⋂

A∈C0 A. If p ∈ AC0 , then p ∈ A

for each A ∈ C0. Therefore if (xn) converges to p, then we can define NA such

that xn ∈ A for each n ≥ NA and choose N = max{NA : A ∈ C0} implying

xn ∈ AC0 when n ≥ N .

Open sets are sequentially open by Proposition 3.4.2, so T ⊂ Ts. ■

Definition 3.4.6 (Generating a sequential space). Given a topological space

(X, T ), we denoteQ(X, T ) as the sequential topology onX generated from the

topology T according to Proposition 3.4.5. That is, Q(X, T ) is the collection

of sequentially open sets with respect to (X, T ).

Remark 3.4.7. It should be clear that a topological space (X, T ) is a sequential

space if and only if T = Q(X, T ).

The next result shows that a topological space X and its generated sequen-

tial space share the same convergent sequences.

Proposition 3.4.8. Suppose (X, T ) is a topological space and let Ts = Q(X, T ).

Then, a sequence (xn) converges to p ∈ X with respect to (X, T ) if and only

if it converges to p with respect to (X, Ts).

Proof. Proposition 3.4.5 says T ⊂ Ts, so convergence in (X, Ts) implies con-

vergence in (X, T ) by Definition 3.1.11. Conversely, suppose (xn) converges

to p with respect to (X, T ) and let Ap ∈ Ts be an open neighborhood of p
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with respect to (X, Ts). Since Ap ∈ Ts, it is a sequential open set with respect

to (X, T ) by Definition 3.4.6, implying (xn) is eventually in Ap. Therefore,

xn → p with respect to (X, Ts). ■

Now, we would like to better understand when we are working with a

sequential space. First we define a sequential limit point, which is analogous

to nets except for the sequential setting.

Definition 3.4.9 (Sequential Limit Point). Let X be a topological space and

A ⊂ X. Then, p is a sequential limit point of A if there exists a sequence in A

converging to p.

Remark 3.4.10. Every sequence is a net, so it should be clear that sequential

limit points are always limit points.

Proposition 3.4.11. Let X be a first-countable2 topological space. Then,

1. A point p ∈ X is a limit point of A ⊂ X if and only if p is a sequential

limit point of A.

2. X is a sequential space.

Proof. See Munkres 2000 Theorem 30.1 for (1.). We show (1.) implies (2.).

By Definition 3.4.1 of a sequential space, we must show sequential sets are

open. Let B ⊂ X be sequentially open and we argue that X \B is closed. Let

p be a limit point of X \B, so by (1.) there must be a sequence (xn) in X \B
converging to p ∈ X. If p ∈ B, then (xn) must be eventually in B; however,

xn ∈ X \ B for all n, so a contradiction has been reached. Therefore, X \ B
contains all of its limit points, which is to say that it is closed. ■

Proposition 3.4.12. Metrizable spaces are first-countable.

Proof. See Munkres 2000 pages 130/131. ■

The previous two results turn out to be quite important. It is often the case

in universal approximation that we are at least working with a metric space,

so Propositions 3.4.12 and 3.4.11 tell us we can check topological properties

2First-countable was defined in Definition 3.1.6
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using sequences instead of nets. For example, Proposition 3.4.4 says continuity

is reduced to sequential continuity.

Our universal approximation results rely on the construction of homeo-

morphisms, so it is natural to wonder if homeomorphisms preserve sequential

spaces. The answer is yes and is shown in the next result.

Proposition 3.4.13. Suppose (X, TX) is a sequential space and (Y, TY ) is a

topological space. If h : X → Y is a homeomorphism, then Y is a sequential

space.

Proof. Suppose A ⊂ Y is sequentially open. We must show A ∈ TY . Let (xn)

be a sequence converging to p ∈ f−1(A). By Proposition 3.1.17 (5), it follows

then that f(xn) is a sequence converging to f(p) ∈ A, so f(xn) is eventually

in A since A is sequentially open. Therefore, there is some N ∈ N such that

f(xn) ∈ A when n ≥ N , which implies xn ∈ f−1(A) when n ≥ N . That is, xn

is eventually in f−1(A), so f−1(A) is sequentially open and so it is open (as

X is a sequential space). It then follows from Proposition 3.1.17 (2) that A is

open. ■

The next result is rather important for homeomorphism construction. It

is often easier to confirm continuity in the forward direction of a bijective

function than in the reverse direction. The following result makes the reverse

direction a bit easier by reducing it to checking for sequential continuity.

Proposition 3.4.14. Suppose X is a topological space; M ⊂ RX is countable;

and
⊗

M : X →
⊗

M(X) is a bijection. Then [
⊗

M]−1 is continuous if

and only if, for any sequence (xn) in X, we have g(xn) → g(p) for all g ∈ M
implies xn → p in X.

Proof. Since M is countable, Proposition 3.3.8 says RM is metrizable and so is⊗
M(X) as a subspace, so it is first-countable by Proposition 3.4.12. It then

follows from Proposition 3.4.11 that we only need [
⊗

M]−1 to be sequentially

continuous to claim it is continuous. Suppose (yn) is a sequence in
⊗

M(X)

converging to q. Since
⊗

M is a bijection, define xn
.
= [
⊗

M]−1(yn) and

p
.
= [
⊗

M]−1(q), so (xn) is the corresponding sequence in X. By Proposition

3.3.7 (5), (yn) converges to q in
⊗

M(X) if and only if (πg(yn)) converges to
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πg(q) for each g ∈ M. However, πg(yn) = g(xn) and πg(q) = g(p). So we have

yn → q in
⊗

M(X) if and only if g(xn) → g(p) for all g ∈ M, which is to say

that yn → q in
⊗

M(X) implies xn → p in X. So [
⊗

M]−1 is sequentially

continuous and hence is continuous. ■
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Chapter 4

Point Separation

In the introductory chapter, we presented some universal approximation re-

sults on finite dimensional topological spaces by utilizing homeomorphisms.

Our plan of action for handling infinite dimensional spaces is no different;

however, the homeomorphisms becomes more complicated. This section pro-

vides many results about the necessary and sufficient conditions required to

construct homeomorphisms on general Tychonoff spaces.

If X is a topological space, then we wish to identify a collection of real

valued functions M such that
⊗

M : X → RM is an embedding into a com-

pact subset of RM. As we shall see, our goal is achieved when M is said to

both separate points (s.p.) and strongly separate points (s.s.p.) on X. In

the case where M is countable, then the s.s.p. condition may be confirmed

by checking if [
⊗

M]−1 is sequentially continuous, which we instead say M
determines sequential point convergence.

4.1 (Strong) Separation of Points

The main goal of this section is to introduce the strong separation of points

(s.s.p.) property; however, first we need to know what it means to separate

points (s.p.).

Definition 4.1.1 (Separation of Points). Let M be a class of functions map-

ping A to B. If for every x, y ∈ A with x ̸= y there exists f ∈ M such that
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f(x) ̸= f(y), then M is said to separate points (s.p.).

The separating points property is going to be important for homeomor-

phism construction as its presence implies a bijection.

Proposition 4.1.2. Let X be a topological space. If M ⊂ RX separates points

on X, then:

1.
⊗

M : X →
⊗

M(X) is a bijection,

2. M ⊂ C(X) implies X is a Hausdorff space,

3. M ⊂ N ⊂ RX implies N s.p. on X, and

4. A ⊂ X implies M|A s.p. on A.

Proof. (1.) Suppose p ̸= q ∈ X. M s.p. on X implies there is some g ∈ M
such that g(p) ̸= g(q). It follows then that πg ◦

⊗
M(p) ̸= πg ◦

⊗
M(q), so⊗

M(p) ̸=
⊗

M(q). That is, for each r ∈
⊗

M(X) there is a unique p ∈ X

such that
⊗

M(p) = r, so
⊗

M is a bijection.

(2.) For any pair of points p, q ∈ X, there is some real valued continuous

function, say f , such that f(p) ̸= f(q). Let r = |f(p)−f(q)|
3

> 0, then sets

(f(p) − r, f(p) + r) and (f(q) − r, f(q) + r) are open balls containing f(p)

and f(q), respectively, and have empty intersection. Since f is continuous,

f−1[(f(p)− r, f(p) + r)] ∋ p and f−1[(f(p)− r, f(p) + r)] ∋ q are open in X

and have empty intersection due to Fact 2.1.1. It then follows that X is

Hausdorff by Definition 3.2.9.

(3.) For p ̸= q ∈ X, there is g ∈ M ⊂ N such that g(p) ̸= g(q).

(4.) For p ̸= q ∈ A ⊂ X, there is g ∈ M such that g(p) ̸= g(q), so

g|A(p) ̸= g|A(q). ■

Now we define strong separation of points and provide some basic relevant

properties.

Definition 4.1.3 (Strong Separation of Points). Let (X, T ) be a topological

space and M ⊂ RX be a collection of real valued mappings. Then M strongly
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separates points (s.s.p.) if, for every x ∈ X and neighborhood Ox of x, there

is a finite collection {g1, . . . , gk} ∈ R0(M) such that

inf
y ̸∈Ox

max
1≤i≤k

|gi(y)− gi(x)| > 0. (4.1)

Proposition 4.1.4. Let X be a topological space; M ⊂ RX be a collection of

real valued functions on X; and A be a subspace of X. The following properties

hold:

1. If M s.s.p. and M ⊂ N ⊂ RX , then N also s.s.p.

2. If M s.s.p. on X, then M|A s.s.p. on A.

3. Let T1 ⊂ T2 be topologies on X. If M s.s.p. on (X, T2), then M s.s.p.

on (X, T1).

Proof. First, we show 1. M s.s.p., so given x ∈ X and neighborhood Ox there

is a finite collection {g1, . . . , gk} ⊂ M ⊂ N that satisfy (4.1), hence N s.s.p.

Next, we show 2. Let TX and TA denote the topologies on X and A,

respectively where TA
.
= {A ∩ S | S ∈ TX} is the subspace topology. Fix

x ∈ A and let OA
x
.
= A∩OX

x be a neighborhood of x with respect to TA, where

OX
x ∈ TX . (2) follows from observing that:

inf
y ̸∈OA

x

max
1≤i≤k

∣∣∣gi|A(y)− gi|A(x)
∣∣∣ ≥ inf

y ̸∈OX
x

max
1≤i≤k

∣∣∣gi(y)− gi(x)
∣∣∣ (4.2)

since A \OA
x = A \OX

x ⊂ X \OX
x .

Finally, we prove 3. If O1
x is a neighborhood of x with respect to topology

T1, then there exists a P 1
x ∈ T1 such that O1

x ⊃ P 1
x . Since T1 ⊂ T2, we have

P 1
x ∈ T2 and O1

x is also a neighborhood of x with respect to topology T2.

Therefore, (4.1) is satisfied trivially for O1
x, and so M s.s.p. on (X, T1). ■

The next proposition provides an alternative means of defining the strong

separation of points property, that is particularly useful when the topology of

some space is defined by a collection of real valued functions like was shown

in Definition 3.3.1.
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Proposition 4.1.5. Suppose (X, T ) is a topological space and M ⊂ RX is a

collection of real valued functions on X. Then M s.s.p. on (X, T ) if and only

if T ⊂ OM(X).

Proof. By Proposition 3.3.4, BM(X) is a basis for OM(X) with sets of the

form

Bq,ϵ(M0)
.
=
{
p ∈ X : max

f∈M0

|f(q)− f(p)| < ϵ
}

M0 ∈ R0(M). (4.3)

If M s.s.p., then for each Oq ∈ T there exist M0 ∈ R0(M) and ϵ > 0

such that inf p̸∈Oq{maxf∈M0 |f(q)− f(p)|} = ϵ, which implies Bq,ϵ(M0) ⊂ Oq.

It then follows from Fact 3.1.3 that T ⊂ OM(X).

Conversely, now assume T ⊂ OM(X). For each neighborhood Nq of q,

there is an Oq ∈ T such that q ∈ Oq ⊂ Nq. By assumption, Oq ∈ T implies

Oq ∈ OM(X), so there is M0 ∈ R0(M) and ϵ > 0 such that Bq,ϵ(M0) ⊂ Oq.

It then follows that infp ̸∈Oq{maxf∈M0 |f(q)− f(p)|} ≥ ϵ > 0, so M s.s.p. ■

Now we provide a result that shows how s.p. relates to s.s.p. via a spaces

Hausdorff property.

Proposition 4.1.6. Let X be a topological space, A ⊂ X be non-empty, and

D ⊂ RX . Then, the following statements are true:

(a) If {{x} : x ∈ A} ⊂ C (X), especially if A is a Hausdorff subspace of X,

then D strongly separating points on A implies D separating points on

A.

(b) D separates points on A if and only if (A,OD(A)) is a Hausdorff space.

Proof. We provide the proof from Dong and Kouritzin 2020 Proposition 9.2.1.

(a) The Hausdorff property of (A,OX(A)) (if any) implies {{x} : x ∈ A} ⊂
C (A,OX(A)) by Proposition 3.2.13. We then prove (a) by contradiction. If

D fails to separate points on A, then there exist distinct x, y ∈ A such that⊗
D(x) =

⊗
D(y). Since {y} is a closed set and D strongly separates points

on A, there exist Dx ∈ R0(D) and ϵ ∈ (0,∞) such that y ∈ {z ∈ A :

maxf∈Dx |f(x)− f(z)| < ϵ} ⊂ A \ {y}, Which is a contradiction.
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(b - Sufficiency) follows by (a) (with A = (X,OD(X))).

(b - Necessity) Let x1, x2 ∈ A be distinct. Since D separates points on A,

there exists an f ∈ D such that ϵ0
.
= |f(x1)− f(x2)| > 0. Then, we define

Oi
.
= {z ∈ A : |f(xi)− f(z)| < ϵ0

3
} ∈ OD(A) for each i = 1, 2 and observe that

x1 ∈ O1, x2 ∈ O2 and O1 ∩O2 = ∅. ■

The last result for this section, shows that continuous functions that s.s.p.

and s.p. only occur when working in a Tychonoff space. The result also is

the reason why our universal approximation results are limited to Tychonoff

spaces.

Proposition 4.1.7. Let X be a topological space. Then, the following state-

ments are equivalent:

1. X is a Tychonoff space.

2. C(X) separates and strongly separates points on X.

3. CB(X) separates and strongly separates points on X.

Remark 4.1.8. IfM ⊂ C(X) s.p and s.s.p., then C(X) s.p. and s.s.p. implying

X is Tychonoff.

Proof. We provide the proof from Dong and Kouritzin 2020 Proposition 9.3.1.

(1 → 2) Suppose Op ∈ O(X) is an open neighborhood of p ∈ X and let

A = X \ Op ∈ C (X) so p ̸∈ A. Since E is a Tychonoff space, there is a

fA,p ∈ C(X; [0, 1]) such that fA,p|A = 0 and fA,p(p) = 1 by Definition 3.2.14.

It then follows that {q ∈ X : |fA,p(p)− fA,p(q)| < ϵ} ⊂ Op for each ϵ ∈ (0, 1).

We then have O(X) ⊂ OC(X)(X) by Fact 3.1.3, which implies C(X) s.s.p. on

X by Proposition 4.1.5. Proposition 4.1.6 (a) implies C(X) s.p. on X.

(2 → 3) Letting ρ be the standard metric on R, it follows from Proposition

3.3.3 that, for any collection of real valued functions on X,

SD(X;Bρ(R)) = {{q ∈ X : a− r < f(q) < a+ r} : a ∈ R, r > 0, f ∈ D} is a

subbasis for OD(X). For each f ∈ C(X), define the function

gr,a,f
.
= (f ∨ (a − r)) ∧ (a + r), which is bounded, continuous, and satisfies

{q ∈ X : a − r < gr,a,f (q) < a + r} = {q ∈ X : a − r < f(q) < a + r}. So
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OCB(X)(X) ⊃ OC(X)(X) ⊃ O(X); and hence, CB(X) s.s.p. on X by Propo-

sition 4.1.5. By Proposition 4.1.2, X is Hausdorff, so Proposition 4.1.6 (a)

implies CB(X) s.p. on X.

(3 → 1) Pick p ∈ X and A ∈ C (X) such that p ̸∈ A. Since CB(X) s.s.p.

on X, there exist M0 ∈ R0(CB(X)) and ϵ > 0 such that

p ∈
{
q ∈ X : max

f∈M0

|f(p)− f(q)| < ϵ

}
⊂ X \ A, (4.4)

from which it follows that

h(q)
.
= 1−min

{
1,

maxf∈M0 |f(p)− f(q)|
ϵ

}
(4.5)

is a continuous function from X to [0, 1] such that h|A = 0 and h(p) = 1.

Hence, by Definition 3.2.14, X is a Tychonoff space. ■

4.2 Homeomorphisms

Recall the main point of this chapter was to construct homeomorphisms, which

we said were related to s.s.p. and s.p. properties. We have already seen

that s.p. implies a bijection and, in addition, s.s.p. implies the bijection has

a continuous inverse, which we will see shortly. First, there is yet another

property to consider, which we define next.

Definition 4.2.1 (Determines Point Convergence, Determines Sequential Point

Convergence). Let X be a topological space and M ⊂ RX . We say M deter-

mines point convergence on X if and only if, for any net (xλ) and point p in

X, we have g(xλ) → g(p) for each g ∈ M implies xλ → p in X. Similarly, we

say M determines sequential point convergence on X if and only if, for any

sequence (xn) and point p in X, we have g(xn) → g(p) for each g ∈ M implies

xn → p in X.

Proposition 4.2.2. Let X be a topological space and M ⊂ RX . Then, M
determines point convergence on X implies M determines sequential point

convergence on X.
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Proof. By Definition 3.1.10, sequences are nets. Hence, if M determines point

convergence on X, (xn) is a sequence in X, p ∈ X, and g(xn) → g(p) for

each g ∈ M; then xn → p. So M determines sequential point convergence on

X. ■

Below is a culmination of the different ways in which homeomorphisms are

related to s.s.p. and determining point convergence properties. We will make

use of this proposition repeatedly in future chapters.

Proposition 4.2.3. Suppose X be a Hausdorff space or C(X) s.p. on X

and let M ⊂ RX . Statements (1 - 3) are equivalent and imply (4). If M is

countable then (1 - 4) are equivalent.

1.
⊗

M : X →
⊗

M(X) has a continuous inverse. If M ⊂ C(X), then⊗
M : X →

⊗
M(X) is a homeomorphism.

2. M s.s.p. on X.

3. M determines point convergence on X.

4. M determines sequential point convergence on X.

Proof. (1 ↔ 2) See Blount and Kouritzin 2010 Lemma 1.

(2 ↔ 3) See Blount and Kouritzin 2010 Lemma 4.

(3 → 4) Follows directly from Definition 4.2.1 as all sequences are nets.

(4 → 1, M countable) Follows from Proposition 3.4.14. ■

The next proposition provides a way in which we can tell if there is a

countable collection that strongly separates points. Note that a topological

space whose topology can be generated from a topological base of countable

size is said to have a countable base.

Proposition 4.2.4. If (X, T ) has a countable basis and M ⊂ C(X) s.s.p.,

then there is a countable collection {gi}∞i=0 ⊂ M that s.s.p. Moreover, {gi}∞i=0

can be taken closed under either multiplication or addition if M is.

Proof. Proven by Blount and Kouritzin 2010 Lemma 2. ■
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Recall that Proposition 4.1.7 tells us the bounded continuous functions

s.s.p. on Tychonoff spaces. Hence, if we have a Tychonoff space with a count-

able base, then we can be sure there is a countable collection of bounded

continuous functions that are closed under multiplication and s.s.p..

4.3 Compactification

Compact sets are often nicer to deal with than perhaps our original space. This

section provides some propositions telling us when we can view the original

space as a subspace of a compact set. First we start with an interesting result

demonstrating the ”niceness” of compact sets.

Proposition 4.3.1. Let X be a compact space and M ⊂ C(X). Then, X

is a Hausdorff space and M strongly separates points on X if and only if M
separates points on X.

Proof. We provide the proof from Dong and Kouritzin 2020 Lemma 9.2.4.

Due to Proposition 4.1.2 (2) and Proposition 4.1.6 (a), we need only show

M s.p. on the compact X implies M s.s.p. on X. Further, by Proposition

4.2.3, we need only show M s.p. implies M determines point convergence on

X.

Let (xλ) be a net such that limλ f(xλ) = f(x) for all f ∈ M. Since X is

compact, Proposition 3.1.15 applies, and so there exists a subnet (xλµ) and

p ∈ X such that xλµ → p. Further, for each f ∈ M, limλ f(xλ) = f(x)

implies limµ f(xλµ) = f(x) and, since xλµ → p and f is continuous, we also

have limµ f(xλµ) = f(x) = f(p). As M s.p. on X, we can conclude x = p,

so xλµ → x. As every subnet has a subnet converging to x, we have shown

xλ → x, so M determines point convergence and s.s.p. on X. ■

So when X is compact, it is enough to show M ⊂ C(X) s.p. on X in order

to get the s.s.p. property, which is often much easier than trying to show M
s.s.p. directly.

Now we work to show when we are in a subspace of a compact space.
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Definition 4.3.2 (Compactification, Equivalent, Unique). Suppose X is a

topological subspace of a compact space S. Then, S is called a compactification

of X if X = S. If S and T are compactifications of X, then we say they are

equivalent up to homeomorphism if there exists a homeomorphism h : S → T

such that h(p) = p for each p ∈ X. If every compactification of X with a

proposed property property is equivalent, then it is said that S is unique up

to homeomorphism.

Proposition 4.3.3. Let X be a topological space and M ⊂ RX be a collection

of bounded functions. Then, the following statements are equivalent:

1. M ⊂ CB(X) separates and strongly separates points on X.

2. X admits a unique compactification S up to homeomorphism such that⊗
M extends to a homeomorphism between S and the closure of

⊗
M(X)

in RM.

3.
⊗

M is an imbedding of X in RM.

Proof. We provide the proof from Dong and Kouritzin 2020 Lemma 9.3.4.

(1 → 2) Kouritzin 2016 Theorem 6 (1 - 3) shows that there exists a compact

S and homeomorphism h : S → cl[
⊗

M(X)] such that h|X =
⊗

M. We show

S is unique up to homeomorphism. Suppose T is another compactification of

X such that b : T → cl[
⊗

M(X)] such that b|X =
⊗

M. Then b−1◦h : S → T

is a homeomorphism such that b−1 ◦ h(p) = p for each p ∈ X, which implies S

and T are equivalent.

(2 → 3) Is proven directly as X is a subspace of S.

(3 → 1) By Proposition 3.3.7 (4),
⊗

M is injective and O(X) = OM(X).

Given p ̸= q ∈ X,
⊗

M(p) ̸=
⊗

M(q); hence, πf ◦
⊗

M(p) ̸= πf ◦
⊗

M(q)

for some f ∈ M and πf ◦
⊗

M = f , so M s.p. on X. Finally, M s.s.p. by

Proposition 4.1.5. ■

The compactification S and the associated homeomorphism will be vi-

tal when proving our universal approximation result for Tychonoff spaces in

Chapter 7.
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Interestingly, when there is a countable collection of functions that separate

and strongly separate points, we can define a metric on the compactified space

S.

Proposition 4.3.4. Let X be a topological space; N ∈ N ∪ {∞}; M =

{gi}Ni=1 ⊂ C(X) s.p. and s.s.p. on X; and let h : S → cl[
⊗

M(X)] de-

note the extended homeomorphism mentioned in Proposition 4.3.3 (2). Then,

S is metrized by the following metric:

d(x, y) 7→
N∑
i=1

2−i (|gi(x)− gi(y)| ∧ 1) ∀x, y ∈ S (4.6)

where gi
.
= πi ◦ h for each i = 1, . . . , N .

Proof. See Kouritzin 2016 Theorem 6 (4). ■

Remark 4.3.5. As X is a subspace of S, the above metric is also valid for X.

4.4 Examples

Here we present some examples of functions that strongly separate points.

First, we start off with a proposition that can make it easier to discover such

collections of functions.

Proposition 4.4.1. Let (X, T ) be a topological space and the members of

M0 ⊂ RX and M ⊂ RX are bounded. Suppose M ⊂ M0 (where the bar

denotes closure under the sup metric1). If M separates points or strongly

separates points, then M0 does also.

Proof. We provide the proof from Dong and Kouritzin 2020 Corollary 9.2.3.

By Proposition 3.2.8, we have M0 ⊂ CB(X,OM0(X);R); hence, M ⊂
C(X,OM0(X);R) and OM(X) ⊂ OM0(X).

So M s.p. on (X, T ) implies (X,OM(X)) is a Hausdorff space by Propo-

sition 4.1.6 (b). Then OM(X) ⊂ OM0(X) implies (X,OM0(X)) is also a

Hausdorff space so M0 s.p. on (X, T ) too by Proposition 4.1.6.

1The sup metric was defined in Definition 3.2.7.
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So M s.s.p. on (X, T ) implies T ⊂ OM(X) ⊂ OM0(X) by Proposition

4.1.5, so M0 s.s.p. on (X, T ) too. ■

We would like to discuss how one may use the above result. By Proposition

4.1.5, M s.s.p. on (X,OM(X)). So if the topology on X is defined by a

collection of functions, then we only need a uniform dense collection M0 to

get the s.s.p. property.

Example 4.4.2. Suppose X is a Tychonoff space. Proposition 4.1.7

tells us CB(X) s.s.p. and s.p. on X. So any uniform dense subset of

CB(X) provides us with the s.s.p. and s.p. properties.

We can also use knowledge of homeomorphisms to quickly satisfy the strong

separation of points property for simpler spaces.

Example 4.4.3. The projection functions s.s.p. and s.p. on RI where

I is any index set. To see this, letM = {πi : i ∈ I}, which then implies⊗
M is just the identity function on RI , so it is a homeomorphism.

The next example is interesting because each function is non-zero in a

bounded region, so each function can be ”turned off” depending on the input.

Example 4.4.4 (From Blount and Kouritzin 2010). Suppose (X, d)

is a metric space. Then the following collection of functions are con-

tinuous, s.p., and s.s.p. on X:

{gq,k(p) 7→ (1− kd(p, q)) ∨ 0 : q ∈ X, k ∈ N}. (4.7)

Finally, we conclude with Hibert spaces.

Example 4.4.5. Suppose X is a Hilbert space with inner product

⟨·, ·⟩ : X ×X → R and a countable complete orthonormal basis B. By
Parseval’s identity, for each p ∈ X we have the following relationship:

p =
∑
e∈B

⟨p, e⟩e. (4.8)
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So define ge(p) 7→ ⟨p, e⟩ and let M = {ge : e ∈ B}. If p ̸= q, then

p− q =
∑
e∈B

⟨p− q, e⟩e ̸= 0, (4.9)

so, by the orthogonality of B, there is some e ∈ B such that ⟨p−q, e⟩ =
ge(p) − ge(q) ̸= 0, implying M s.p. on X. The topology on X is

induced by the metric d(p, q) 7→
√

⟨p− q, p− q⟩, and it is clear that

the function dp(q) 7→ d(p, q) is continuous as Od(X) is generated by

sets of the form

{q ∈ X : d(p, q) < ϵ} = {q ∈ X : dp(q) < ϵ}. (4.10)

Also, by expanding d(q − p, e) and letting p = 0, one finds that

ge(q) =
1

2

(
d0(q)

2 − de(q)
2 + 1

)
, (4.11)

which shows ge is continuous. Hence we have that M ⊂ C(X). Now

suppose (xn) is a sequence in X such that ge(xn) → ge(p) for each

e ∈ B. That is, we have ⟨xn, e⟩ → ⟨p, e⟩. So by the completeness of B,
we have

lim
n→∞

xn = lim
n→∞

∑
e∈B

⟨xn, e⟩e =
∑
e∈B

⟨p, e⟩e = p, (4.12)

and impliesM determines sequential point convergence, which is enough

to conclude that M s.s.p. on X since it is countable by Proposition

4.2.3.
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Chapter 5

Uniform Spaces

Uniform spaces are to uniform continuity as topological spaces are to conti-

nuity. In this section, we introduce tools to extend the concept of uniform

continuity beyond metric spaces to the more general notion of uniform spaces.

First, we motivate the use of uniform spaces through an example showing that

uniform continuity cannot entirely be explained through topological spaces.

Then, we provide a formal definition of uniform spaces and provide some

introductory results as well as explore how uniform spaces are related to topo-

logical spaces. Finally, we show how uniformly continuous functions may be

extended to compact sets.

5.1 Motivation

For metric spaces, uniformly continuous functions are defined according to the

metrics associated with their input and output spaces. A uniformly continuous

function between metric spaces is defined as below.

Definition 5.1.1 (Uniformly Continuous). Let f be a function mapping be-

tween metric spaces (X, dX) and (Y, dY ). Then f is considered uniformly

continuous if for every ϵ > 0 there exists δ > 0 such that

dY (f(p), f(q)) < ϵ (5.1)

for all p and q in X for which dX(p, q) < δ.
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There are two questions that may naturally arise about the uniform conti-

nuity definition provided for metrics spaces:

1. Can it be extended to non-metric spaces?

2. Can it be entirely described through topological spaces?

The answer to the first question is yes and will be left to the next section. How-

ever, the answer to the second question is no, as we shall see in the following

example.

Example 5.1.2. Recall the following metrics on R from Example

3.2.5:

d1(x, y)
.
= |x− y| d2(x, y)

.
= |arctanx− arctan y| (5.2)

which both generate the standard topology. Now consider the real

continuous function f : R → R defined as f(x)
.
= x for each x ∈ R. Is

f uniformly continuous? It depends on the metric. We consider four

cases:

(a) fa : (R, d1) → (R, d1),

(b) fb : (R, d1) → (R, d2),

(c) fc : (R, d2) → (R, d1), and

(d) fd : (R, d2) → (R, d2).

It follows trivially that fa and fd are uniformly continuous as

di(x, y) = di(f(x), f(y)) < ϵ for i = 1, 2.

Now let us look at fb. Recall from Example 3.2.5 lines (3.6 - 3.8)

that d2(x, y) ≤ d1(x, y) for each x, y ∈ R. Given ϵ > 0, choose δ = ϵ

and it follows that d2(f(x), f(y)) = d2(x, y) ≤ d1(x, y) < δ = ϵ. So fb

is uniformly continuous.

Finally, we consider fc. Suppose n = 1, 2, . . . and consider the

sequences xn
.
= n and yn

.
= 2n. Clearly, d1(xn, yn) = n → ∞. Also,
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by similar argument to lines (3.14 - 3.24), we have

d2(xn, yn) =

∫ yn

xn

1

1 + z2
dz (5.3)

≤
∫ yn

xn

sup
w∈[xn,yn]

{
1

1 + w2

}
dz (5.4)

=

∫ yn

xn

1

1 + x2n
dz (5.5)

=
(yn − xn)

1 + x2n
(5.6)

=
n

1 + n2
→ 0. (5.7)

That is, for any δ,M > 0 there is an N ∈ N such that d1(xN , yN) > M

and d2(xN , yN) < δ. Hence, fc is not uniformly continuous.

The previous example demonstrated that uniform continuity is not entirely

a topological property; which is to say that we cannot rely on the topologies of

a function’s domain and range to determine whether it is uniformly continuous.

The next section will answer the question of: how can we extend the concept

of uniform continuity to spaces without a metric?

5.2 Formal Introduction

This section shows how uniform continuity can be extended to non-metric

spaces by introducing uniformities and uniform spaces. The majority of the

material to be presented here can be found in sections 35-37 of Willard 2004.

It is common to characterize the continuity of a function pointwise; that

is, a function is continuous if (and only if) it is continuous at each point in its

domain. However, it is nonsensical to describe uniform continuity pointwise,

since a function is uniformly continuous if mapped points are close for any

pair of domain points within a certain degree of closeness. The particular

location of the domain points is irrelevant. The main takeaway is that uniform

continuity requires that we have some concept of closeness between points.

A metric d on a set X automatically provides closeness information as we
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can say that the set {(x, y) : d(x, y) < ϵ; x, y ∈ X} consists of point pairs that

are within ϵ distance from each other. This is a hint that we may be able to

extend the definition of uniform continuity beyond metric spaces by instead

considering subsets of the Cartesian product X ×X. A uniformity does just

this.

Before providing the definition for a uniformity, we first make note of some

notation for subsets of X ×X.

Definition 5.2.1 (Diagonal). If X is a set, then the diagonal of X is defined

as ∆(X)
.
= {(x, x) : x ∈ X}.

Definition 5.2.2 (Relation). If A is a subset of X × X, then A is called a

relation. If (x, y) ∈ A, then x is related to y.

Remark 5.2.3. If x is related to y it is not necessarily the case that y is related

to x.

Definition 5.2.4 (Inverse Relation, Symmetric). If A is a relation, then the

inverse relation of A is defined as A−1 .
= {(y, x) : (x, y) ∈ A}. If A = A−1,

then A is symmetric.

Definition 5.2.5 (Composition of relations). If A and B are subsets of X×X,

then the composition of A and B is defined as A ◦ B .
= {(x, y) : for some z ∈

X, (x, z) ∈ A and (z, y) ∈ B}.

Remark 5.2.6. This is related to the idea of composition of functions for if

f : X → X and g : X → X are functions, then {(x, g ◦ f(x)) : x ∈ X}
= {(x, y) : for some z ∈ X, (x, z) ∈ X × f(X) and (z, y) ∈ X × g(X)}.

We are finally ready to introduce the definitions of a uniformity and a

uniform space.

Definition 5.2.7 (Uniformity). A uniformity1 on a set X is a collection D of

subsets of X ×X which satisfy:

1. A ∈ D =⇒ ∆(X) ⊂ A,

1There are equivalent definitions of a uniformity as explained by Willard 2004 chapters
35 and 36. The definition used in this document is for diagonal uniformities.

47



2. A1, A2 ∈ D =⇒ A1 ∩ A2 ∈ D,

3. A ∈ D =⇒ B ◦B ⊂ A for some B ∈ D,

4. A ∈ D =⇒ B−1 ⊂ A for some B ∈ D, and

5. A ∈ D and A ⊂ B ⊂ X ×X =⇒ B ∈ D.

Definition 5.2.8 (Uniform Space, Surroundings). A set X together with uni-

formity D form a uniform space. The members of D are called surroundings.

Given a uniform space X, we use the notation U (X) to denote the uniformity

on X.

Looking at the definition of a uniformity, we can see the remnants of a

metric. Condition 1 is an extension of d(x, y) = 0 if and only if x = y,

condition 3 comes from the triangle inequality (see accompanying proof for

Definition 5.2.15), and condition 4 is analogous to the symmetry of a metric

(d(x, y) = d(y, x)).

Proposition 5.2.9. Suppose X is a uniform space and A ⊂ X. The collection

defined as UX(A)
.
= {D ∩ (A× A) : D ∈ U (X)} is a uniformity on A.

Proof. We show UX(A) is a uniformity on A. By definition, for each E ∈
UX(A), there exists a D ∈ U (X) such that E = D ∩ (A× A).

(Condition 1) ∆(X) ⊂ D implies ∆(X)∩(A×A) ⊂ D∩(A×A). Therefore,
∆(A) ⊂ E for each E ∈ UX(A).

(Condition 2) Suppose Di ∈ U (X), Ei ∈ UX(A), and Ei = Di ∩ (A × A)

for i = 1, 2. Then E1 ∩ E2 = D1 ∩ D2 ∩ (A × A), and D1 ∩ D2 ∈ U (X), so

E1 ∩ E2 ∈ UX(A).

(Condition 3) D ∈ U (X) implies there is a B ∈ U (X) such that B ◦
B ⊂ D. Suppose (a, b) ∈ [B ∩ (A× A)] ◦ [B ∩ (A× A)]. Then there exists a

z∗ ∈ X such that (a, z∗) ∈ B ∩ (A× A) and (z∗, b) ∈ B ∩ (A× A). However,

B∩(A×A) ⊂ B; therefore, (a, b) ∈ B◦B and (a, b) ∈ (A×A)◦(A×A) = A×A.
It follows that [B ∩ (A× A)]◦ [B ∩ (A× A)] ⊂ B ◦B∩(A×A) ⊂ D∩(A×A).

(Condition 4) D ∈ U (X) implies there is a B ∈ U (X) such that B−1 ⊂ D.

It follows that both D ∩ (A×A) and B ∩ (A×A) are elements of UX(A), so

we have [B ∩ (A× A)]−1 = B−1 ∩ (A× A) ⊂ D ∩ (A× A).
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(Condition 5) Suppose E1 ⊂ E2 ⊂ A × A and E1 ∈ UX(A); therefore,

there is a D ∈ U (X) such that E1 = D ∩ (A × A). Clearly, D ⊂ D ∪ E2,

so D ∪ E2 ∈ U (X), and it then follows that (D ∪ E2) ∩ (A × A) ∈ UX(A).

However, (D ∪ E2) ∩ (A× A) = [E2 ∩ (A× A)] ∪ [D ∩ (A× A)] = E2. ■

Definition 5.2.10 (Relative Uniformity, Uniform Subspace). Suppose X is

a uniform space and A ⊂ X. Then UX(A) (defined in Proposition 5.2.9) is

called the relative uniformity induced on A by X. With this uniformity, A is

called a uniform subspace of X.

Just like how a topological space may be generated from a topological basis,

we can generate a uniformity from a uniform basis. We define a uniform basis

next, and provide a means of identifying when a collection of subsets of X×X
is indeed a uniform basis.

Definition 5.2.11 (Uniform Base). E is a uniform base for D if and only if

E ⊂ D and each D ∈ D contains some E ∈ E. A uniformity is generated from

a base through repeated use of condition 5; that is D = {D ⊂ X ×X | E ⊂
D,E ∈ E}.

Proposition 5.2.12. The symmetric surroundings form a uniform base.

Proof. First, we demonstrate that, for any uniformity D, we have D ∈ D

implies D−1 ∈ D. From condition (4), we have E−1 ⊂ D for some E ∈ D and

so E ⊂ D−1. It follows that D−1 ∈ D from condition (5).

Now suppose D ∈ D. It then follows from condition (2) that D∩D−1 ∈ D

which is symmetric. ■

Proposition 5.2.13. Suppose E is a collection of subsets of X ×X. Then E

is a basis for some uniformity on X if and only if E satisfies conditions (1),

(3), and (4) as well as the below modified version of (2):

A1, A2 ∈ E =⇒ B ⊂ A1 ∩ A2 for some B ∈ E. (5.8)

Proof. We first show that D = {D ⊂ X ×X | E ⊂ D,E ∈ E} is a uniformity

on X when E satisfies all stated conditions. In what follows, let A1, A2 ∈ D

be arbitrary. Then, there exists B1, B2 ∈ E such that B1 ⊂ A1 and B2 ⊂ A2.
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(Condition 1) ∆(X) ⊂ B for any B ∈ E, so we have ∆(X) ⊂ B1 ⊂ A1.

(Condition 2) By (5.8), there is a B3 ∈ E such that B3 ⊂ B1∩B2 ⊂ A1∩A2.

Since B3 ∈ E and B3 ⊂ A1 ∩ A2, it follows that A1 ∩ A2 ∈ D.

(Condition 3) B1 ∈ E implies there is a B3 ∈ E ⊂ D such that B3 ◦ B3 ⊂
B1 ⊂ A1.

(Condition 4) B1 ∈ E implies there is a B3 ∈ E ⊂ D such that B−1
3 ⊂

B1 ⊂ A1.

(Condition 5) Suppose A3 is such that A1 ⊂ A3 ⊂ X ×X. Since B1 ⊂ A1

and B1 ∈ E, it follows that A3 ∈ D.

Next, we show that each condition is necessary for D to be a uniformity.

(Condition 1) Choose B ∈ E such that ∆(X) ̸∈ B. Then E ⊂ D implies

B ∈ D showing D is not a uniformity.

(Condition 5.8) Choose B1, B2 ∈ E such that there is no E ∈ E such that

E ⊂ B1 ∩ B2. Each A ∈ D contains some E ∈ E which is not contained by

B1 ∩B2, so A ̸⊂ B1 ∩B2.

(Condition 3) Since B ⊂ A implies B ◦B ⊂ A◦A, if there is no E ∈ E such

that E ◦E ⊂ B for some B ∈ E, then there is no D ∈ D such that D ◦D ⊂ B.

(Condition 4) Since B ⊂ A implies B−1 ⊂ A−1, if there is no E ∈ E such

that E−1 ⊂ B for some B ∈ E, then there is noD ∈ D such thatD−1 ⊂ B. ■

We brought in the notion of a uniformity in order to extend the idea of a

metric, so it is perhaps unsurprising that a metric may be used to generate

a uniformity. We demonstrate this now with the following proposition and

definition.

Proposition 5.2.14. Given a metric d on X, the following sets form a base

for a uniformity on X:

Dϵ
.
= DX,d,ϵ

.
= {(x, y) ∈ X ×X | d(x, y) < ϵ} ϵ > 0. (5.9)

Proof. We show the collection of sets does indeed form a basis for some uni-

formity.

(Condition 1) ϵ > 0 implies (x, x) ∈ Dϵ for any x ∈ X, so ∆(X) ⊂ Dϵ.
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(Condition 5.8) Suppose ϵ2 > ϵ1 > 0, then we have Dϵ1 ∩Dϵ2 = Dϵ1 which

is a basis element.

(Condition 3) Suppose (a, b) ∈ Dϵ1 ◦Dϵ2 , then there exists a point z∗ ∈ X

such that d(a, z∗) < ϵ1 and d(z∗, b) < ϵ2. By the triangle inequality, we have

d(a, b) ≤ d(a, z∗) + d(z∗, b) < ϵ1 + ϵ2, so it follows that Dϵ1 ◦ Dϵ2 ⊂ Dϵ1+ϵ2 .

Hence, for anyDϵ, we can choose the basis elementD ϵ
2
to satisfyD ϵ

2
◦D ϵ

2
⊂ Dϵ.

(Condition 4) d(x, y) = d(y, x), so D−1
ϵ = Dϵ which is a basis element. ■

Definition 5.2.15 (Metric Uniformity). A uniformity generated according to

Proposition 5.2.14 is referred to as the metric uniformity generated by d on

X and is denoted as Ud(X).

Definition 5.2.16 (Standard Uniformity on Real Numbers). The standard

uniformity on R is the metric uniformity generated from the standard metric2.

Different metrics may or may not generate different metric uniformities.

We showcase one example where the generated uniformities are the same and

another where they are not.

Example 5.2.17. Suppose X is a set, d is a metric on X, and a > 0.

Then da(x, y)
.
= ad(x, y) defines a metric on X which generates the

same metric uniformity as d. This follows from the fact that

{(x, y) : da(x, y) < ϵ} = {(x, y) : d(x, y) < ϵ
a
}, so the uniform bases

are the same.

Example 5.2.18. Let d1 and d2 be defined as they were in Examples

3.2.5 and 5.1.2. That is,

d1(x, y)
.
= |x− y| d2(x, y)

.
= |arctanx− arctan y| . (5.10)

Fix ϵ > 0, and let D = {(x, y) : d1(x, y) < ϵ}. We claim D ̸∈ Ud2(R).
If D were a surrounding for Ud2(R), then there would be a basis

element E = {(x, y) : d2(x, y) < δ} ∈ Ud2(R) with δ > 0 such that

E ⊂ D. By similar argument to lines (5.4 - 5.7) we can choose a > 0

such that d2(a, y) < δ for all y > a meaning that {(a, y) : y > a} ⊂ E.

2The standard metric was defined in Definition 3.2.3
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Choosing b > a + 2ϵ implies (a, b) ̸∈ D. Therefore, E ̸⊂ D, so D ̸∈
Ud2(R), and the uniformities are different.

Further yet, by line (3.9), we have

{(x, y) : d1(x, y) < ϵ} ⊂ {(x, y) : d2(x, y) < ϵ}, so we have shown that

Ud2(R) is an exclusive subset of Ud1(R).

Next, we present a minor result that will be useful in later sections when

working with restrictions of metrics.

Proposition 5.2.19. Suppose X is a uniform space with metric uniformity

generated from the metric dX . Let A ⊂ X and define the metric dA on A

as dA(x, y) 7→ dX(x, y) for each x, y ∈ A. Then the metric uniformity on A

generated by dA is the subspace uniformity on A inherited from X (UdA(A) =

UX(A)).

Proof. By definition, {DX,dX ,ϵ : ϵ > 0} is a uniform base for UdX (X). By the

definition of a uniform base, it is easy to see that {(A× A) ∩DX,dX ,ϵ : ϵ > 0}
is a uniform base for UX(A). However, (A × A) ∩ DX,dX ,ϵ = DA,dA,ϵ, and

{DA,dA,ϵ : ϵ > 0} is a uniform base for UdA(A) by definition. So UdA(A)

and UX(A) have equivalent uniform bases. Hence, the uniformities are the

same. ■

5.2.1 Connection to Topological Spaces

Topological spaces are the means in which we characterize continuity, and we

have mentioned that uniform spaces can be used to characterize uniform conti-

nuity. Hence, it is reasonable to ask how a uniformity relates to a topology. As

it turns out, every uniformity defines a topology we call the uniform topology.

We present this next.

Definition 5.2.20. Suppose X is a set and D ⊂ X ×X. It is then useful to

introduce the set D[x]
.
= {y ∈ X | (x, y) ∈ D}.

Proposition 5.2.21. Suppose D is a uniformity on X. Then, for each x ∈ X,

the following collection of sets:

Nx
.
= {D[x] : D ∈ D} (5.11)
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satisfy the properties of Proposition 3.1.5, forming a neighborhood base at x

and defines a topology on X. The same topology is formed if a uniform base

E is used in place of D.

Proof. First, we show, for any uniform base E, N E
x
.
= {E[x] : E ∈ E} satisfies

the properties of Proposition 3.1.5 by adapting the proof provided by Willard

2004 Theorem 35.6. For any E ∈ E, we have ∆(X) ⊂ E, therefore x ∈ E[x].

Next, for E1, E2 ∈ E, we can choose E3 ∈ E such that E3 ⊂ E1 ∩ E2, and

observe that E3[x] ⊂ (E1 ∩ E2)[x] = E1[x] ∩ E2[x]. Finally, A ∈ E implies

there is B ∈ E such that B ◦B ⊂ A; therefore, y ∈ B[x] implies B[y] ⊂ A[x].

Let TE and TD represent the topologies generated by N E
x and ND

x , respec-

tively, according to Proposition 3.1.5. We show TE = TD. Clearly, N E
x ⊂ ND

x ,

so TE ⊂ TD. Now let U ∈ TD and x ∈ U . It follows that there is Vx ∈ ND
x

such that Vx ⊂ U . However, Vx ∈ ND
x implies there is a D ∈ D such that

Vx = D[x]. Since D ∈ D there is E ∈ E such that E ⊂ D. We then have

E[x] ∈ N E
x that satisfies E[x] ⊂ Vx ⊂ U , so U ∈ TE = TD. ■

Definition 5.2.22 (Uniform Topology, Uniformizable, Compatible). The uni-

form topology is the one generated from a uniformity according to Proposition

5.2.21. We say a topological space is uniformizable if it is the uniform topol-

ogy generated by some uniformity. Similarly, a uniform space and topological

space are compatible with each other if the uniform topology is equivalent to

the topology equipped to the topological space.

Remark 5.2.23. Unless otherwise mentioned, it is typical to assume that a

given uniform space is also a topological space with its respective uniform

topology.

Generally speaking, a uniformizable topology may be compatible with

many uniformities. We already saw an example of this with the real numbers

and standard topology. Example 3.2.5 showed that the metrics d1(x, y)
.
=

|x− y| and d2(x, y)
.
= |arctanx− arctan y| each generate the standard topol-

ogy, and Example 5.2.18 showed us that the uniformities generated by these

metrics are in fact different. As we will see in Propostion 5.2.24, the uni-

form topologies generated by these metric uniformities are indeed the standard

topology; hence, they are each compatible with the standard topology.
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Conveniently, the uniform topology of a uniform subspace and metric uni-

formity correspond exactly with the topological subspace and metric topology,

respectively.

Proposition 5.2.24. The uniform topology generated by a metric uniformity

is the metric topology.

Proof. Suppose X is a set with metric d and recall that

E = {{(x, y) : d(x, y) < ϵ} : ϵ > 0} is a uniform base for the metric uniformity

generated by d. Proposition 5.2.21 then states that Nx = {D[x] : D ∈ E} is

a neighborhood base at x. Suppose D ∈ E, then D[x] = {y : d(x, y) < ϵ} is a

topological basis element for the metric topology (see Definition 3.2.1 where

the metric topology is defined). It then follows that

Bd(X) =
⋃
x∈X

Nx. (5.12)

■

Proposition 5.2.25. The uniform topology generated by the relative unifor-

mity is the subspace topology.

Proof. Note that ifNx is a neighborhood base for a topology onX, and A ⊂ X,

then {U ∩ A : U ∈ Nx} is a neighborhood base for the subspace topology on

A. We then have

{E[x] : E ∈ UX(A)} = {(D ∩ (A× A))[x] : D ∈ U (X)} (5.13)

= {D[x] ∩ A : D ∈ U (X)} . (5.14)

■

Now that we have learned that a uniform space may be used to define a

topological space, it is natural to wonder about the sorts of traits that can

be said about the aforementioned uniform topology. The next result, from

Willard 2004, is quite satisfying considering this document is primarily focused

on Tychonoff spaces (defined as a completely regular Hausdorff space).
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Proposition 5.2.26. A topological space is uniformizable if and only if it is

completely regular.

Proof. Proved by Willard 2004 Theorem 38.2. ■

The main takeaway from Proposition 5.2.26 is that each Tychonofff space

has at least one uniformity that is compatible with its topology.

In the previous section, Definition 5.1.1 defined uniform continuity for func-

tions between metric spaces. One of the goals of this section is to extend

uniform continuity to uniform spaces. We do this next.

Definition 5.2.27 (Uniformly Continuous). Let X and Y be uniform spaces.

A function f : X → Y is uniformly continuous if and only if for each E ∈
U (Y ), there is some D ∈ U (X) such that (x, y) ∈ D ⇒ (f(x), f(y)) ∈ E.

The main results of this document are concerned with real valued functions;

hence, it is unsurprising we introduce notation to denote real valued uniformly

continuous functions.

Notation 5.2.28 (Collection of uniformly continuous functions). Suppose

(X,D) and (Y,E) are uniform spaces. We denote the collection of uniformly

continuous functions from X to Y as CU((X,D); (Y,E)), though often we will

just say CU(X;Y ) when there is no confusion over the particular uniformities.

We reserve CU(X,D) (and similarly CU(X)) for when Y is the real numbers

with standard uniformity.

For metric spaces, uniformly continuous functions are continuous functions.

This relationship remains the same for uniform spaces when the topologies in

question are generated from the uniformities. Also, restrictions of uniformly

continuous functions to uniform subspaces are uniformly continuous.

Proposition 5.2.29. Every uniformly continuous function is continuous with

respect to the uniform topologies.

Proof. Let X and Y be uniform spaces with respective uniform topologies

T U
X and T U

Y ; f : X → Y be uniformly continuous; and O ∈ T U
Y . We show

f−1(O) ∈ T U
X .

55



Suppose a ∈ f−1(O). Then Proposition 5.2.21 says Ma = {D[a] : D ∈
U (X)} is a neighborhood base at a and Nf(a) = {E[f(a)] : E ∈ U (Y )} is a

neighborhood base at f(a). Since f(a) ∈ O and O ∈ T U
Y , there is a B ∈ U (Y )

such that B[f(a)] ∈ Nf(a) and B[f(a)] ⊂ O. The uniform continuity of f

indicates there is an A ∈ U (X) such that (x, y) ∈ A implies (f(x), f(y)) ∈ B,

from which it then follows that f(A[a]) ⊂ B[f(a)]. We have then shown A[a] ⊂
f−1(O) and clearly A[a] ∈ Ma, so f

−1(O) ∈ T U
X by Definition 5.2.22. ■

Proposition 5.2.30. Let X and Y be uniform spaces and suppose f : X → Y

is uniformly continuous. If A is a uniform subspace of X, then f |A is uniformly

continuous.

Proof. Recall that UX(A)
.
= {(A× A) ∩D | D ∈ U (X)} is the subspace uni-

formity on A inherited from X.

Let E ∈ U (Y ). By the uniform continuity of f , there exists a D ∈ U (X)

such that (x, y) ∈ D implies (f(x), f(y)) ∈ E. Since (A×A)∩D ⊂ D, we also

have (x, y) ∈ (A × A) ∩ D implies (f(x), f(y)) ∈ E. Clearly, (A × A) ∩ D ∈
UX(A), so f |A is uniformly continuous. ■

In the study of topological spaces we see domain spaces with finer topologies

emit richer classes of continuous functions. This trend holds true for uniform

spaces but instead with respect to the uniformities.

Proposition 5.2.31. Suppose Y is a uniform space; D1 and D2 are unifor-

mities on X; and D1 ⊂ D2. Then CU((X,D1);Y ) ⊂ CU((X,D2);Y ).

Proof. Follows directly from Definition 5.2.27. ■

Example 5.2.32. We continue off from Example 5.2.18 where we

showed that the uniformity generated by the arctan metric is con-

tained within the standard uniformity on the real numbers. It follows

then from Proposition 5.2.31 that each uniformly continuous func-

tion with domain uniformity generated by the arctan metric is also

uniformly continuous if the domain were instead equipped with the

standard uniformity. Further, Example 5.1.2 case (c) indicates that

the containment is strict (a proper subset).
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5.3 Extending to Compact Spaces

Now that we have put in the work to understand uniform spaces, we finally

get to see their relevant properties required for the rest of this document. In

particular, for some compact space X, we will want to better understand the

collection of real-valued continuous functions on X restricted to some dense

subspace A, which is denoted C(X)|A. As it turns out, C(X)|A is in fact

the uniformly continuous functions on A with a particular uniformity that is

unique. The title of this section is inspired by the dual problem where one

asks under what conditions can a uniformly continuous function f : A→ R be

extended to X? Just as C(X)|A are restrictions of C(X), C(X) are extensions

of C(X)|A.
We have already defined Cauchy sequences in metric spaces (Definition

3.2.6). As this chapter continues to generalize via uniformities, it is perhaps

then unsurprising that we instead discuss Cauchy nets in uniform spaces.

Definition 5.3.1 (Cauchy nets). Let X be a uniform space. A net (xλ)λ∈Λ

in X is Cauchy if and only if for each D ∈ U (X), there is some λ0 ∈ Λ such

that (xλ1 , xλ2) ∈ D whenever λ1, λ2 ≥ λ0.

A net converges or is Cauchy depending upon the topology and uniformity,

respectively. As we learned from Proposition 5.2.21, each uniformity emits

a topology called the uniform topology. In the case where the topology in

question is the uniform topology, we have the following result.

Proposition 5.3.2. Every convergent net is Cauchy.

Proof. We provide the proof fromWillard 2004 Theorem 39.2 with some added

details. It follows from Propositions 5.2.12 and 5.2.13 that for any surrounding

D ∈ U (X) there exists a symmetric E ∈ U (X) such that E ◦ E ⊂ D. Now

suppose xλ → x. For some λ0, we have xλ ∈ E[x] for all λ > λ0 (recall

that E[x] is a neighborhood of x by Definition 5.2.22). Finally, let λ1 and

λ2 be larger than λ0. It then follows that (xλ1 , x) ∈ E and (x, xλ2) ∈ E, so

(xλ1 , xλ2) ∈ E ◦ E ⊂ D. ■

Just as continuous functions map convergent nets to convergent nets, we

have uniformly continuous functions map Cauchy nets to Cauchy nets.
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Proposition 5.3.3. Suppose f : X → Y is uniformly continuous and (xλ)λ∈Λ

is a Cauchy net in X. Then (f(xλ))λ∈Λ is a Cauchy net in Y .

Proof. Choose E ∈ U (Y ). By the uniform continuity of f , there is some

D ∈ U (X) such that (x, y) ∈ D ⇒ (f(x), f(y)) ∈ E. Since (xλ)λ∈Λ is Cauchy,

there is some λ0 ∈ Λ such that (xλ1 , xλ2) ∈ D whenever λ1, λ2 ≥ λ0. Therefore,

(f(xλ1), f(xλ2)) ∈ E whenever λ1, λ2 ≥ λ0; hence, (f(xλ))λ∈Λ is Cauchy. ■

We now have enough to answer the question of when can a uniformly

continuous function defined on a dense subspace be extended to the closure.

The answer is that we can create such an extension when the codomain is a

complete uniform space, which we define next.

Definition 5.3.4 (Complete uniform space). A uniform space is called com-

plete if every Cauchy net converges.

Remark 5.3.5. R with its standard uniformity is complete.

Theorem 5.3.6. Let A ⊂ X be a uniform subspace, Y be a complete uniform

space, and f : A → Y be uniformly continuous. For each p ∈ A choose a net

(xpλ) in A such that xpλ → p and define the following function

g(p)
.
= lim

λ
xpλ. (5.15)

Then g extends f to A and is uniformly continuous.

Proof. See Willard 2004 Theorem 39.10. ■

At the beginning of this section, we mentioned a relationship between con-

tinuous functions on compact spaces and uniformly continuous functions on

dense subspaces. Below is the result that allows us to make this connection.

Recall from Definition 5.2.22 that a uniform space and topological space are

compatible with each other if the uniform topology is equivalent to the topol-

ogy equipped to the topological space.

Proposition 5.3.7. Let X be a compact Hausdorff space. Then,

1. X has only one uniformity compatible with its topology, and
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2. every continuous function is uniformly continuous.

Proof. See Willard 2004 Theorems 36.18 and 36.19 and Corollary 36.20. ■

We now combine the past two propositions to reach the main result to

carry forward from this chapter. In what follows, let CU(X) denote the set of

real uniformly continuous functions on the uniform space X.

Proposition 5.3.8. Let X be a compact Hausdorff space and A be a dense

uniform subspace of X [i.e. A = X]. Then C(X)|A = CU(A).

Proof. By Theorem 5.3.7, X being a compact Hausdorff space implies there is

a unique uniformity on X compatible with its topology and CU(X) = C(X).

By Proposition 5.2.30, each uniformly continuous function restricted to a

uniform subspace is uniformly continuous, so we have C(X)|A = CU(X)|A ⊂
CU(A).

Likewise, by Theorem 5.3.6 and the completeness of R, each real valued

uniformly continuous function may be extended to the closure of its domain,

so we have CU(A) ⊂ CU(X)|A = C(X)|A. ■

Remark 5.3.9. A word of warning needs to be mentioned when interpreting

the presented proposition. AlthoughX is only compatible with one uniformity,

the topology of A may be compatible with many; and, as is often the case in

future chapters, we only particularly care about A. We must remind ourselves

that the uniformity defined on A is the subspace uniformity inherited from

X (even though we may not care so much about X). See Example 5.3.10 for

more on this discussion.

Example 5.3.10. Here we construct an example to illustrate pos-

sible confusion that may arise when interpreting Proposition 5.3.8.

Recall from Example 3.2.5 when defining the arctan metric we said

arctanx =
∫ x

0
1

1+z2
dz for each x ∈ R. Also, it is well known that

limx→±∞ arctanx = ±π
2
. This knowledge can be used to create a met-

ric for the compact space R .
= R ∪ {−∞,∞} defined as

d2(x, y) =

∣∣∣∣limp→x
arctan p− lim

q→y
arctan q

∣∣∣∣ , (5.16)
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which is equivalent to the arctan metric when restricted to R.
R is a dense subspace of R, so Proposition 5.3.8 applies, but the

caution lies in the interpretation of CU(R). In particular, R inherits

its uniformity from R, so what exactly is this uniformity? It is not

the standard uniformity as defined in Definition 5.2.16, but instead is

equivalent to the uniformity generated by the arctan metric. That is,

we should add the metric to the notation as such: CU(R,Ud2
(R)),

or else confusion may arise. We know from Example 5.2.32 that

CU(R,Ud2
(R)) is a strict subset of CU(R,Ud1(R)) (R with standard

uniformity), so a mistake in interpretation would be costly.

As we show next, the uniformly continuous functions mentioned in Proposi-

tion 5.3.8 share many properties with continuous functions defined on compact

spaces.

Proposition 5.3.11. Under the conditions of Proposition 5.3.8, CU(A) is

closed under addition and multiplication and CU(A) ⊂ CB(A).

Proof. C(X) = CB(X) is closed under addition and multiplication and C(X)|A =

CU(A). ■

Remark 5.3.12. The conditions of Proposition 5.3.8 can not be removed en-

tirely as the following example shows. Consider R with its standard uniformity

and the identity function f : R → R defined as f(x) 7→ x. Then f ∈ CU(R);
however, f 2 ̸∈ CU(R).

Proposition 5.3.13. Suppose X and Y are compact uniform spaces; A ⊂
X and B ⊂ Y are dense uniform subspaces in X and Y , respectively; and

h : X → Y is a homeomorphism such that h(A) = B. Then CU(A,UX(A)) =

{f ◦ h : f ∈ CU(B,UY (B))}.

Proof. From Proposition 5.3.8, we know that CU(A) = C(X)|A and CU(B) =

C(Y )|B, thus we need only show C(X) = {f ◦ h : f ∈ C(Y )}.
Given f ∈ C(Y ), f ◦ h : X → R is a composition of continuous functions,

so it is continuous; hence C(X) ⊃ {f ◦ h : f ∈ C(Y )}.
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Further, by symmetry we must have C(Y ) ⊃ {g ◦h−1 : g ∈ C(X)}. It then
follows that

C(X) ⊃{f ◦ h : f ∈ C(Y )} (5.17)

⊃{f ◦ h : f ∈ {g ◦ h−1 : g ∈ C(X)}} (5.18)

={g ◦ h−1 ◦ h : g ∈ C(X)} (5.19)

=C(X) (5.20)

■

Remark 5.3.14. The compactness criteria is rather important as it implies

we are working with a very particular uniformity that is tied to continuous

functions on compact spaces. Generally speaking, homeomorphisms do not

preserve uniform continuity. Consider the four homeomorphisms presented in

Example 5.1.2, which are pointwise and topologically equivalent (the topolo-

gies of their domain and codomains is the same); however, fc is not uniformly

continuous. Therefore, fa ◦ fc is not uniformly continuous.

Now for a result that involves point separation properties from the previous

chapter.

Notation 5.3.15. Let X be a topological space; M ⊂ CB(X) s.p. and s.s.p.

on X; and S be the unique compactification (up to homeomorphism) of X

described in Proposition 4.3.3 statement 2. As S is compact, there is a unique

uniformity compatible with the topology on S by Proposition 5.3.8, which we

denote as SM(S) and similarly the inherited uniform subspace on X from S

is SM(X). However, typically X is the intended focus of attention, so we will

often exclude X from the notation in order to keep things tidy. So will use

SM when there is not risk of confusion.

Proposition 5.3.16. Suppose X is a topological space, and let M ⊂ CB(X)

separate and strongly separate points on X. Then CU(X,SM) separates and

strongly separates points on X and M ⊂ CU(X,SM).

Proof. By Proposition 4.3.3,
⊗

M extends to a homeomorphism ĥM : S →
cl[
⊗

M(X)], where cl[·] denotes closure in RM, and S is compact.
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For each g ∈ M, define ĝ
.
= πg ◦ ĥM (π is the projection function). Then

ĝ is a continuous extension of g to the compact set S. Since X is a dense

uniform subspace of the compact Hausdorff space S, we have by Proposition

5.3.8 that CU(X,SM) = C(S)|X ∋ ĝ|X = g. This holds for all g ∈ M, hence

we have M ⊂ CU(X,SM). It follows from Proposition 4.1.4 that CU(X,SM)

separates and strongly separates points on X. ■

Remark 5.3.17. If M = CB(X), then CU(X) = CB(X) and the compactified

space S is the Stone–Čech compactification.
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Chapter 6

Measure Spaces and Spaces of

Measures

Measure spaces provide the backbone for probability theory. It is assumed

the reader has some familiarity with the material, so we will not dwell too

much on the basics; however, relevant parts will be covered to serve as a

refresher as well as to establish notation for following chapters. The first

section covers the very basics of measure spaces and notation. Section two

introduces a few topologies on the set of positive-finite measures (which induces

a topology on the probability measures via the subspace topology): these are

(1) the weak topology and (2) the topology of weak convergence. The two

topologies are related in the sense that the topology of weak convergence is

the sequential topology generated from the weak topology, so they share the

same set of convergent sequences. Lastly, we present some results indicating

when a collection of functions s.s.p. on these spaces which will be of particular

importance for our universal approximation theorems.

6.1 Measure Spaces

In this section, we introduce notation and some basic facts about measure

spaces. The majority of the material can be found Dudley 2002.

Definition 6.1.1 (σ-algebra, Measurable Space). Let X be a nonempty set,
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and Σ be a collection of subsets of X. Then Σ is called a σ-algebra if the

following conditions hold:

1. ∅, X ∈ Σ,

2. {Ai}∞i=1 ⊂ Σ implies
⋃∞

i=1Ai ∈ Σ, and

3. A ∈ Σ implies X \ A ∈ Σ.

Σ makes X a measurable space.

Remark 6.1.2. By De Morgan’s laws, conditions (2) and (3) imply
⋂∞

i=1Ai ∈ Σ

when {Ai}∞i=1 ⊂ Σ.

Proposition 6.1.3. Suppose C is a collection of subsets of a set X, and define

σ(C) as the intersection of all σ-algebra’s on X that contain C. Then σ(C) is
a σ-algebra on X. We say σ(C) is the σ-algebra generated by C.

Proof. Every σ-algebra on X contains ∅ and X, so {∅, X} ⊂ σ(C).
In what follows, let S(X, C) denote the collection of all σ-algebra’s on X

that contain C. If {Ai}∞i=1 ⊂ σ(C), then {Ai}∞i=1 ⊂ Σ for each Σ ∈ S(X, C),
so
⋃∞

i=1Ai ∈ Σ for each Σ ∈ S(X, C); hence,
⋃∞

i=1Ai ∈ σ(C). Likewise,

if A ∈ σ(C), then A ∈ Σ for each Σ ∈ S(X, C), so X \ A ∈ Σ for each

Σ ∈ S(X, C); hence, X \ A ∈ σ(C). ■

Definition 6.1.4 (Borel σ-algebra, Borel sets). Suppose X is a topological

space. Then B(X)
.
= σ(O(X)), where σ(·) is defined as in Proposition 6.1.3,

is called the Borel σ-algebra on X. The elements of B(X) are called Borel

sets.

Remark 6.1.5. IfX is a uniform space, then O(X) is assumed to be the uniform

topology, so B(X) is well defined. Further, it should be clear that uniformities

with equivalent uniform topologies also have equivalent Borel σ-algebras.

Definition 6.1.6 (Measurable Functions). Let X and Y be measurable spaces

with respective σ-algebra’s ΣX and ΣY . A function f : X → Y is measurable

if B ∈ ΣY implies f−1(B) ∈ ΣX . We use M(X, Y ) to denote the collection

of measurable functions, but may use the suppressed notation M(X) when Y

is the real numbers with ΣY = B(R). Similarly, MB(X, Y ) (or MB(X) when

suppressed) will denote bounded measurable functions.
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Proposition 6.1.7. Suppose X and Y are measurable spaces with respective

σ-algebra’s ΣX and ΣY ; and C ⊂ ΣY is such that σ(C) = ΣY . Then a function

f : X → Y is measurable if and only if B ∈ C implies f−1(B) ∈ ΣX .

Proof. See Dudley 2002 Theorem 4.1.6. ■

Proposition 6.1.8. Suppose X and Y are topological spaces. Then C(X, Y ) ⊂
M(X, Y ) where X and Y are equipped with their respective Borel σ-algebra’s.

Proof. Suppose f ∈ C(X, Y ). As f is continuous, we have B ∈ O(Y ) implies

f−1(B) ∈ O(X). However, O(X) are Borel sets of X and B(Y ) = σ(O(Y )),

so f is measurable by Proposition 6.1.7. ■

Definition 6.1.9 (Measure, Measure Space). Suppose Σ is a σ-algebra on a

set X. Then µ : Σ → [0,∞] is called a measure on Σ if it satisfies the following

properties:

1. µ(∅) = 0, and

2. for any countable collection {Ai}∞i=1 ⊂ Σ of mutually disjoint sets (i.e.

Ai ∩ Aj = ∅ when i ̸= j), we have

µ

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai). (6.1)

The set X with σ-algebra Σ and measure µ is called a measure space.

Definition 6.1.10 (Positive-Finite Measure, Probability Measure). If (X,Σ, µ)

is a measure space that satisfies 0 < µ(X) <∞ and µ(A) ≥ 0 for each A ∈ Σ,

then µ is called a positive-finite measure. Additionally, if µ(X) = 1, then µ is

a probability measure.

We conclude this section with a few results demonstrating that positive-

finite measures can be thought of as scaled probability measures.

Proposition 6.1.11. If µ is a positive-finite measure on the measurable space

(X,Σ) and c > 0, then ν
.
= c · µ is a positive-finite measure on the same

measurable space.
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Proof. First, show ν is a measure. ν(∅) = c · µ(∅) = c · 0 = 0. If {Ai}∞i=1 ⊂ Σ

is a countable collection of mutually disjoint sets then

ν

(
∞⋃
i=1

Ai

)
= c · µ

(
∞⋃
i=1

Ai

)
(6.2)

= c ·
∞∑
i=1

µ(Ai) (6.3)

=
∞∑
i=1

c · µ(Ai) (6.4)

=
∞∑
i=1

ν(Ai). (6.5)

So ν is a measure on (X,Σ). ν is positive-finite since for c > 0 we have

µ(X) <∞ ⇐⇒ c · µ(X) < c · ∞ = ∞ (6.6)

and

µ(A) ≥ 0 ⇐⇒ c · µ(A) ≥ c · 0 = 0. (6.7)

■

Proposition 6.1.12. If µ is a positive-finite measure on the measurable space

(X,Σ), then ν
.
= µ

µ(X)
is a probability measure on the same measurable space.

Proof. Since µ is a positive-finite measure, we have µ(X) > 0 implies 1
µ(X)

> 0

and so by Proposition 6.1.11, ν = 1
µ(X)

·µ is a positive-finite measure on (X,Σ).

Also, ν(X) = 1
µ(X)

· µ(X) = 1, so it is a probability measure on (X,Σ). ■

6.2 Spaces of Measures

There are two topologies on finite measures that we will examine: the weak

topology and the topology of weak convergence. Subsequently, this implies two

topologies on probability measures provided through the subspace topology.
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First, we introduce some notation that will commonly used when working with

measures.

Notation 6.2.1 (Collections of Measures). We denote M+(E,Σ) as the col-

lection of all finite-measures on the measurable space (E,Σ). Like wise,

P(E,Σ) is the collection of all probability measures. Often the σ-algebra

will be dropped from the notation when E is a topological space, in which

case (E,B(E)) is the measurable space.

Remark 6.2.2. Clearly, we have P(E) = {µ : µ(E) = 1, µ ∈ M+(E)}, so
P(E) ⊂ M+(E).

Notation 6.2.3 (Lebesgue Integral). Given a measure space (E,Σ, µ) and

f ∈ M(E), we use the common notation
∫
E
f dµ for the Lebesgue integral

developed in chapter 4 of Dudley 2002.

Notation 6.2.4 (Functionals). Given a measurable space (E,Σ) and f ∈
MB(E), we define the functional f ∗ as the mapping given as

f ∗(µ) 7→
∫
E

f dµ (6.8)

for each µ ∈ M+(E). If D ⊂MB(E), then D∗ .
= {f ∗ : f ∈ D}.

Now we are ready to introduce the first of the two topologies, which is

defined based on a collection of functionals.

Definition 6.2.5 (Weak Topology of Finite Measures). Let (E, T ) be a topo-

logical space. Then the weak topology on M+(E) is defined as OCB(E)∗(M
+(E))

and is then denoted as T W .

Remark 6.2.6. By definition, T W is the coarsest topology on M+(E) such

that CB(E)
∗ ⊂ C(M+(E)).

Before getting to the second topology, we first define a common convergence

criteria for spaces of measures.

Definition 6.2.7 (Weak Convergence, Weak Limit Point). Let E be a topo-

logical space. A sequence of measures {µn}n∈N ⊂ M+(E) is said to converge
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weakly to µ ∈ M+(E), written µn ⇒ µ, if µn → µ with respect to the weak

topology T W . This type of convergence is called weak convergence. µ is a

weak limit point of Γ ⊂ M+(E) if there exists a sequence in Γ that converges

weakly to µ.

The above definitions might sound familiar. Way back when we discussed

sequential spaces (Chapter 3.4), we defined a sequential limit point of a set A

as being a point p in a topological space X such that there exists a sequence

in A converging to p. So a weak limit point is the same as a sequential limit

point. However, weak convergence can also be understood in terms of CB(E)
∗.

As the below result shows, CB(E)
∗ determines sequential point convergence.

Proposition 6.2.8. µn ⇒ µ if and only if f ∗(µn) → f ∗(µ) holds for every

f ∈ CB(E).

Proof. Assume µn ⇒ µ. CB(E)
∗ are continuous in the weak topology and

any sequence is a net; hence, by proposition 3.1.14, we have µn → µ implies

f ∗(µn) → f ∗(µ) for each f ∈ CB(E).

Conversely, given µ ∈ M+(E) and neighborhood Nµ ∈ T W , there exist

M0 ∈ R0(CB(E)) and ϵ > 0 such that

µ ∈
{
ν ∈ M+(E) : max

f∈M0

|f ∗(µ)− f ∗(ν)| < ϵ

}
(6.9)

=
⋂

f∈M0

{
ν ∈ M+(E) : |f ∗(µ)− f ∗(ν)| < ϵ

}
⊂ Nµ, (6.10)

since CB(E)
∗ s.s.p. by Definition 6.2.5. Since we have f ∗(µn) → f ∗(µ) for

every f ∈ M0, there exists some Mf,ϵ ∈ N such that

f ∗(µn) ∈ (f ∗(µ)− ϵ, f ∗(µ) + ϵ) for each n ≥ Mf,ϵ. Thus, we can choose Mϵ =

maxf∈M0{Mf,ϵ} ∈ N, which guarantees that µn ∈ Nµ for all n ≥ Mϵ. So

µn ⇒ µ. ■

Often, it is of particular use to find a subcollection M ⊂ CB(E) that

need only be checked to conclude µn ⇒ µ. The following proposition gives

us conditions on M so we can do just that when working with probability

measures.
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Proposition 6.2.9. Suppose that E is a topological space; {Pn} ∪ {P} ⊂
P(E); and M ⊂ CB (E) is countable, s.p., s.s.p., is closed under multiplica-

tion, and ∫
E

g dPn →
∫
E

g dP ∀g ∈ M. (6.11)

Then Pn ⇒ P .

Proof. See Blount and Kouritzin 2010 Theorem 6. ■

Now we define our second topology based on the weak convergence criteria.

Definition 6.2.10 (Topology of Weak Convergence). The topology of weak

convergence on M+(E) is defined as the sequentially open sets of M+(E)

generated from the weak topology1. We denote the topology of weak conver-

gence as T WC .

As the topology of weak convergence is the sequential space generated

from the weak topology, we would like to restate some results from our study

of sequential spaces in Chapter 3.4, but within the context of positive-finite

measures. Also, in the case where E is a metrizable space, the two topologies

are equivalent and allows us to view continuity in terms of sequences rather

than nets.

Proposition 6.2.11. The following are true:

1. T W and T WC share the same convergent sequences.

2. T W ⊂ T WC.

3. f ∈ C(M+(E), T WC) if and only if f is sequentially continuous; that is,

µn ⇒ µ implies f(µn) → f(µ).

4. If E is a metrizable space, then (M+(E), T W ) is metrizable and T W =

T WC.

1See Definition 3.4.5
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Proof. By Definition 6.2.10, (M+(E), T WC) is a sequential space. So we have:

(1.) Follows from Proposition 3.4.8.

(2.) Follows from Proposition 3.4.5.

(3.) Follows from Proposition 3.4.4.

(4.) The development of the Prohorov metric on (P(E), T W ) is discussed

in chapter 3 of Ethier and Kurtz 1986 and is extended to (M+(E), T W ) in

Chapter 9 problem 6. The equality of the topologies then follows from Propo-

sition 3.4.11 as metric spaces are sequential spaces. ■

6.3 Strong Separation of Measures

Here, we showcase some results that will be useful in identifying collections of

functionals that separate and strongly separate points on spaces of measures.

First, we start off with some results about sequences of measures which apply

to both T W and T WC as they share the same convergent sequences.

Proposition 6.3.1 (Dong and Kouritzin 2020; Fact 10.1.19). Let E be a

topological space. Then, the following statements are true:

1. µ1 = µ2 in M+(E) if and only if µ1

µ1(E)
= µ2

µ2(E)
in P(E) and µ1(E) =

µ2(E).

2. µn ⇒ µ if and only if limn→∞ µn(E) = µ(E) and

µn

µn(E)
⇒ µ

µ(E)
in P(E). (6.12)

Proof. (1) Follows from µ(A) = µ(E) µ
µ(E)

(A) for each A ∈ B(E) and µ ∈
M+(E).

(2.) Assume µn ⇒ µ. 1 ∈ CB(E) implies

lim
n→∞

µn(E) = lim
n→∞

∫
E

1 dµn =

∫
E

1 dµ = µ(E). (6.13)

Then

lim
n→∞

f ∗
(

µn

µn(E)

)
= lim

n→∞

f ∗(µn)

µn(E)
=
f ∗(µ)

µ(E)
= f ∗

(
µ

µ(E)

)
(6.14)
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holds for each f ∈ CB(E). Conversely, we have for each f ∈ CB(E) that

lim
n→∞

f ∗(µn) = lim
n→∞

µn(E)f
∗
(

µn

µn(E)

)
= µ(E)f ∗

(
µ

µ(E)

)
= f ∗(µ). (6.15)

■

The above result immediately implies a one to one relationship regarding

the determining sequential point convergence property, which we state next.

Proposition 6.3.2 (Dong and Kouritzin 2020; 10.1.20). Let E be a topological

space and 1 ∈ M ⊂MB(E). Then:

1. M∗ separates points on M+(E) if and only if M∗ separates points on

P(E).

2. M∗ determines sequential point convergence on M+(E) if and only if

M∗ determines sequential point convergence on P(E).

Proof. Follows from Proposition 6.3.1. ■

In the case where we are working with the topology of weak convergence,

a useful homeomorphism can be defined that relates positive-finite measures

with probability measures.

Proposition 6.3.3. Equip M+(E) and P(E) with the topology of weak con-

vergence and consider the function H : M+(E) → (0,∞) × P(E) defined as

H(µ) 7→
(
µ(E), µ

µ(E)

)
. Then H is a homeomorphism with inverse H−1(c, P ) 7→

c · P .

Proof. Proposition 6.3.1 (1) shows that H is a bijection, so all is left is to

demonstrate continuity. M+(E) and P(E) with the topology of weak con-

vergence are sequential spaces by definition. Further, (0,∞) is metrizable as

a subspace of R, so it is also a sequential space. Theorem 4 from Antosik,

Boehme, and Mohanadi 1985 says that the product of two sequential spaces is

sequential when one of the spaces is locally compact. Conveniently, (0,∞) is

locally compact, so we can conclude that (0,∞)×P(E) is a sequential space.

Hence, H is a mapping between sequential spaces, so its continuity properties
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are reduced to checking for sequential continuity, which has already been es-

tablished by Proposition 6.3.1 (2). So H is a homeomorphism when M+(E)

and P(E) are equipped with the topology of weak convergence. ■

The above is particularly important for our universal approximation results

where we will want bounded functionals. This boundedness property is satis-

fied when the measure is a probability measure. To see this, let f ∈ CB(E),

so there is some M > 0 such that M = sup{|f(q)| : q ∈ E}, from which it

follows that ∣∣∣∣∫ f dP

∣∣∣∣ <∫ M dP (6.16)

=M, (6.17)

implying f ∗(P ) is bounded for any P ∈ P(E).

Next, we provide a result demonstrating the difficulty in trying to find a

collection of functionals that s.s.p. on the topology of weak convergence.

Proposition 6.3.4. CB(E)
∗ always s.s.p. on (M+(E), T W ); however, CB(E)

∗

s.s.p. on (M+(E), T WC) if and only if T WC = T W .

Proof. Proposition 4.1.5 says that M s.s.p. on (X, T ) if and only if T ⊂
OM(X). So the result follows then from Definition 6.2.5 and Proposition

6.2.11 (1), where we have OCB(E)∗(M
+(E)) = T W ⊂ T WC . ■

With the above in mind, we will restrict our attention to when E is a

metric space, so that the weak topology and topology of weak convergence are

the same and we will only need to consider converging sequences rather than

nets (see Proposition 6.2.11). Now we have a nice proposition telling us when

we have the s.s.p. property on our spaces of measures.

Theorem 6.3.5. Suppose that E is a topological space; g0 ∈ CB((0,∞)) s.p.

and s.s.p. on (0,∞); and M = {1} ∪ {gi}Ni=2 ⊂ CB (E) is countable, s.p.,

s.s.p., and is closed under multiplication. Further, define Wg0 [M]
.
= {µ 7→

g∗( µ
µ(E)

) : g ∈ M, g ̸= 1} ∪ {µ 7→ g0(µ(E))}. Then

1. M+(E) is metrizable and T WC = T W ,
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2. Wg0 [M] ⊂ CB(M+(E))

3. Wg0 [M] determines sequential point convergence on M+(E),

4. Wg0 [M] s.s.p and s.p. on M+(E),

5.
⊗

Wg0 [M] : M+(E) →
⊗

Wg0 [M](M+(E)) is a homeomorphism.

Proof. (1.) By Proposition 4.3.4, E is metrizable, so M+(E) is metrizable

(hence, Hausdorff) and T WC = T W by Proposition 6.2.11.

(2.) Justification for the boundedness of µ 7→ g∗( µ
µ(E)

) was provided in

(6.17). Boundedness of µ 7→ g0(µ(E)) comes from the boundedness of g0. We

get Wg0 [M] ⊂ CB(E)
∗ ⊂ C(M+(E)) since g0 and M are bounded continuous

functions on E.

(3.) From Proposition 6.2.9, we have that {g∗i }Ni=2 determines sequential

point convergence on P(E). Also, clearly g0 ∈ CB((0,∞)) determines se-

quential point convergence on (0,∞) as it s.p. and s.s.p. on (0,∞). It then

follows that the following collection determines sequential point convergence

on (0,∞)× P(E)

{g0 ◦ π1} ∪ {g∗i ◦ π2}Ni=2. (6.18)

The rest follows from the homeomorphism H : M+(E) → (0,∞) × P(E)

presented in Proposition 6.3.3.

(4.) S.s.p. is implied by (1.), (3.), Proposition 4.2.3 (4 → 2), and that

Wg0 [M] is countable. (1.) implies M+(E) is Hausdorff and combined with

Proposition 4.1.6, implies W[M] s.p..

(5.) Follows from (2.), (4.), and Proposition 4.2.3 (2 → 1). ■

We finish this chapter with a statement about uniformly continuous func-

tions.

Proposition 6.3.6. Suppose E is a topological space; g0 ∈ CB((0,∞)) s.p.

and s.s.p. on (0,∞); and let M ⊂ CB(E) be countable, s.p. and s.s.p. on E.

Then Wg0 [CU(E,SM)]2 s.p. and s.s.p. on M+(E).

2SM was defined in Notation 5.3.15.
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Proof. By Propositions 5.3.16 and 5.3.11, CU(E,SM(E)) separate and strongly

separate points on E, is closed under multiplication, and M ⊂ CU(E,SM).

As M is countable, say it is of size N ∈ N ∪ {∞} and M = {gi}Ni=1. Define

the following

Ni =

{∏
g∈C0

g : C0 ∈ R0

(
{gj}ij=1

)}
, (6.19)

which is finite for each i, so N =
⋃N

i=1Ni is countable, closed under multi-

plication, and contains M. Hence, N ⊂ CB(E) is countable, closed under

multiplication, s.p., and s.s.p. on E, so Wg0 [N ] s.s.p. and s.p. on M+(E) by

Proposition 6.3.5.

Further, N ⊂ CU(E,SM) since CU(E,SM) is closed under multiplication

and contains M. The result then follows from

Wg0 [N ] ⊂ Wg0 [CU(E,SM)]. ■
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Chapter 7

Universal Approximation

Results

Finally it is time to put all of the tools we have developed to use. It is now

that we will provide our universal approximation results for Tychonoff spaces

and spaces of measures. The route we take is to provide a uniform dense re-

sult on compact Hausdorff spaces while making use of the Stone-Weierstrass

Theorem. We then use our homeomorphism methods to compactify Tychonoff

spaces, which leads to our first main result: universal approximation of uni-

formly continuous functions. Lastly, we apply the Tychonoff result to spaces

of positive-finite measures.

7.1 Compact Hausdorff Spaces

Interestingly, just about all of the mathematical background presented so far

is irrelevant for this particular section as we instead rely heavily on the Stone-

Weierstrass Theorem to pull us directly to universal approximation on com-

pact Hausdorff spaces. Although we say ”the” Stone-Weierstrass Theorem,

there are in reality many different varieties of Stone-Weierstrass-like theorems.

What is common between them, however, is they are all about uniform dense

collections of algebras of functions, which we define next.

75



Definition 7.1.1 (Algebra). An algebra is a vector space that is also closed

under multiplication. That is, A is an algebra if it satisfies

1. x, y ∈ A implies c1x+ c2y ∈ A for every c1, c2 ∈ R

2. x, y ∈ A implies xy ∈ A

We now state a version of the Stone-Weierstrass Theorem adapted from

Rudin 1991 (details in Appendix A).

Theorem 7.1.2 (Stone-Weierstrass). Let X be a compact Hausdorff space and

let C(X) be the set of real continuous functions on X equipped with the sup

metric1. Suppose that:

1. A is a closed subalgebra of C(X),

2. A separates points on X,

3. A vanishes nowhere on X (i.e., at every p ∈ X, f(p) ̸= 0 for some

f ∈ A).

Then A = C(X).

Therefore, an algebra of continuous functions on a compact space X is

uniform dense in C(X) if it separates points and vanishes nowhere. In fact,

the algebra strongly separates points on X as we saw in Proposition 4.3.1

separate points implies strong separation of points in a compact Hausdorff

setting.

Given a subset of continuous functions M ⊂ C(X) closed under addition,

we can construct an algebra of continuous functions using the exponential

function.

Lemma 7.1.3. Suppose X is a topological space and M ⊂ C(X) is closed

under addition. Then the following collection of functions

Λ(M)
.
=

{
p 7→

n∑
i=1

cie
gi(p) | gi ∈ M; ci ∈ R;n ∈ N

}
, (7.1)

is an algebra and Λ(M) ⊂ C(X).
1The sup metric was defined in Definition 3.2.7.
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Proof. Scalar multiplication, addition, and composition of continuous func-

tions is continuous, so clearly Λ(M) ⊂ C(X). Now let λ
.
=
∑n

i=1 cie
gi ,

ϕ
.
=
∑m

j=1 dje
hj and a1, a2 ∈ R. Then,

a1λ+ a2ϕ = a1

n∑
i=1

cie
gi + a2

m∑
j=1

dje
hj (7.2)

=
n∑

i=1

a1cie
gi +

m∑
j=1

a2dje
hj (7.3)

=
∑

(b,f)∈W

bef ∈ Λ(M), (7.4)

where W = {(a1ci, gi)}ni=1 ∪ {(a2dj, hj)}mj=1. Since W ∈ R0[R×M] , we have

a1λ+ a2ϕ ∈ Λ(M). Also, we have

λϕ =

(
n∑

i=1

cie
gi

)(
m∑
j=1

dje
hj

)
(7.5)

=
n∑

i=1

m∑
j=1

cidje
gi+hj (7.6)

=
∑

(b,f)∈V

bef , (7.7)

where V = {(cidj, gi + hj) : i = 1, . . . , n; j = 1, . . . ,m}. Since V ∈ R0[R×M]

(as M is closed under addition), we have λϕ ∈ Λ(M). ■

Next, we use the Stone-Weierstrass Theorem to provide a supporting Lemma

indicating when our algebra is uniform dense in C(X).

Lemma 7.1.4. Let X be a compact Hausdorff space, and let M ⊂ C(X) be

closed under addition and separate points on X. Then Λ(M) (defined by 7.1)

is uniform dense in C(X).

Proof. We show Λ(M) satisfies the conditions of the Stone-Weierstrass Theo-

rem. M is closed under addition, so Λ(M) is a subalgebra of C(X). For any

g ∈ M, eg ∈ Λ(M) and eg(p) > 0 for all p ∈ X, so Λ(M) vanishes nowhere.

M separates points, so for p ̸= q ∈ X, there is a g ∈ M such that g(p) ̸= g(q),

and hence eg(p) ̸= eg(q), so Λ(M) separates points. ■
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Now we provide our main result for this section, which is universal approxi-

mation on compact Hausdorff spaces. We build our class of functions by taking

a collection that separate points on X and then input those too functions that

are uniform dense on compact sets.

Theorem 7.1.5. Let X be a compact Hausdorff space, and let M ⊂ C(X)

separate points on X. Suppose that, for every n ∈ N, Fn is uniform dense on

compacts of Rn. Then the following set is a uniform dense subset of C(X):

H(M)
.
=
{
p 7→ f(g1(p), . . . , gn(p)) : n ∈ N; f ∈ Fn; {gi}ni=1 ∈ R0(M)

}
.

(7.8)

Proof. Clearly, H(M) ⊂ C(X) as f(g1, . . . , gn) is a composition of continuous

functions, so what is left is to show H(M) is uniform dense in C(X).

We wish to employ Lemma 7.1.4 and the transitive property of dense sets;

however, Lemma 7.1.4 assumes M is closed under addition (unlike Theorem

7.1.5). To circumvent this, we construct a set M(+) which is closed under

addition and show H(M) is dense in Λ(M(+)) which is dense in C(X).

Define M(+) as follows:

M(+) .=

{∑
g∈H

g | H ⊂ M, H finite

}
. (7.9)

Clearly, M(+) is closed under addition and inherits the separating points prop-

erty from M (since M ⊂ M(+)), hence Λ(M(+)) is dense in C(X) by Lemma

7.1.4.

We now show H(M) is dense in Λ(M(+)). Each λ ∈ Λ(M(+)) takes on the

following form:

λ =
m∑
i=1

ci exp {hi} hi ∈ M(+), ci ∈ R (7.10)

=
m∑
i=1

ci exp

{ ∑
g∈H(i)

g

}
H(i) ⊂ M, |H(i)| <∞. (7.11)

Letting n =
∣∣⋃m

i=1H
(i)
∣∣, we can rewrite λ as a composition of continuous
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functions Γ : X → Rn, Φ : Rn → Rm, and Ψ : Rm → R defined as

Γ(x) 7→ (gi(x))
n
i=1 (7.12)

Φ((yi)
n
i=1) 7→

( n∑
i=1

yiI[gi∈H(j)]

)m

j=1

(7.13)

Ψ((zi)
m
i=1) 7→

m∑
i=1

cie
zi , (7.14)

so λ = Ψ ◦ Φ ◦ Γ.
X is compact and Γ is continuous, so Γ(X) ⊂ Rn is compact. Since

Ψ ◦ Φ ∈ C(Rn), we have for each ϵ > 0, there exists a function f ∈ Fn such

that

ϵ > sup { |(Ψ ◦ Φ)(y)− f(y)| : y ∈ Γ(X) } (7.15)

= sup { |(Ψ ◦ Φ ◦ Γ)(x)− (f ◦ Γ)(x)| : x ∈ X } (7.16)

= sup { |λ(x)− (f ◦ Γ)(x)| : x ∈ X } . (7.17)

By definition f ◦Γ ∈ H(M), so we have shown that H(M) is dense in Λ(M(+))

and C(X). ■

7.2 Tychonoff Spaces

Now we are ready for our first main result: universal approximation on Ty-

chonoff spaces. Our plan of action is to build a homeomorphism based on

the strong separation of points background that we developed in Chapter 4.

The homeomorphism can be extended to a compact Hausdorff space, which is

the correct setting to make use of our universal approximation result from the

previous section. The result demonstrates that we can approximate uniformly

continuous functions from a unique uniformity which has an associated metric

in the case where we have a countable collection of functions that strongly

separate points.

Definition 7.2.1 (Topological Neural Network). Suppose X is a topologi-

cal space; M ⊂ CB(X); and, for each n ∈ N, Fn ⊂ C(Rn). Then we let
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N(M, {Fn}∞n=1) denote the following collection of functions:

∞⋃
n=1

{
p 7→ f(g1(p), . . . , gn(p)) : f ∈ Fn; {gi}ni=1 ∈ R0(M)

}
. (7.18)

We call functions of the form given by (7.18) topological neural networks and

N(M, {Fn}∞n=1) is the collection of neural networks generated by M and

{Fn}∞n=1.

Theorem 7.2.2. Suppose X is a topological space; M ⊂ CB(X) separate

and strongly separate points on X; and, for each n ∈ N, Fn is uniform

dense on compacts of Rn. Then N(M, {Fn}∞n=1) is a uniform dense subset of

CU(X,SM)2. Additionally, if M is countable with cardinality N ∈ N ∪ {∞},
then SM is equivalent to the metric uniformity generated by the following

metric:

d(x, y) 7→
N∑
i=1

2−i (|gi(x)− gi(y)| ∧ 1) ∀x, y ∈ X. (7.19)

Proof. By Proposition 4.3.3,
⊗

M extends to a homeomorphism

ĥM : S → cl[
⊗

M(X)] where cl[·] denotes closure in RM and S is compact.

For each g ∈ M, define ĝ
.
= πg ◦ ĥM. Then ĝ is a continuous extension of

g to the compact set S. Define M̂ .
= {ĝ : g ∈ M}. We find that

⊗
M̂ is ĥM,

so it is a homeomorphism and by Proposition 4.3.3 we see that M̂ separates

points (and strongly separates points) on S.

Therefore, N(M̂, {Fn}∞n=1) is a uniform dense subset of C(S) by Theorem

7.1.5, from which it then follows thatN(M, {Fn}∞n=1) is a uniform dense subset

of C(S)|X = CU(X,SM) by Proposition 5.3.8.

Further, M̂ has the same cardinality as M, so when M is countable, it

follows by Proposition 4.3.4 that S is metrized by the following metric:

d̂(x, y) 7→
N∑
i=1

2−i (|ĝi(x)− ĝi(y)| ∧ 1) ∀x, y ∈ S. (7.20)

2SM was defined in Notation 5.3.15.
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Proposition 5.3.7 (1) implies that SM(S) is exactly the metric uniformity

U (S; d̂) as it is unique. Since ĝi|X = gi for each i, the metric d is just

d(x, y) 7→ d̂(x, y) ∀x, y ∈ X. (7.21)

So by Proposition 5.2.19 the subspace uniformity on X inherited from S is

the metric uniformity generated by d, which is to say that US(X) = SM =

Ud(X). ■

Remark 7.2.3. Even though we did not specifically say X is a Tychonoff space,

Proposition 4.1.7 tells us it has to be as there is some collection of continuous

functions that separate and strongly separate points on X.

The previous result showed that any particular uniformly continuous func-

tion may be approximated with a finite number of g’s. So how can we be sure

that we are capable of picking the correct ones for a given approximation task

considering there may be an infinite number of g’s to pick from? The next

result shows that when M is countable, the way in which we choose the g’s

is irrelevant for function approximation (assuming we can pick a large enough

number of them).

Theorem 7.2.4. Suppose X is a topological space, and let M = {gi}Ni=1 ⊂
CB(X) be countable where N ∈ N∪{∞}. Suppose that, for each n ∈ N, Fn is

uniform dense on compacts of Rn. Then the following functions:

Mn
.
=
{
p 7→ f(g1(p), . . . , gn(p)) : f ∈ Fn

}
(7.22)

have the property that Mn+1 is uniform dense in Mn.

Proof. Let Mn
.
= {gi}ni=1. Then, since each gi is bounded, we see that for each

n ∈ N,
⊗

Mn(X) ⊂ Kn for some compact Kn ⊂ Rn. Now suppose h ∈ Fn|Kn ,

so h : Kn → R is continuous. Observe the following function h′ : Kn+1 → R
defined as

h′(x) 7→ h(π1(x), . . . , πn(x)) (7.23)
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for each x ∈ Kn+1. Since h
′ is continuous on the compact Kn+1 ⊂ Rn+1, then

given ϵ > 0, there exists some function f ∈ Fn+1|Kn+1 such that

ϵ > sup{|f(x)− h′(x)| : x ∈ Kn+1} (7.24)

> sup{|f(g1(p), . . . , gn+1(p))− h′(g1(p), . . . , gn+1(p))| : p ∈ X} (7.25)

= sup{|f(g1(p), . . . , gn+1(p))− h(g1(p), . . . , gn(p))| : p ∈ X}, (7.26)

implying Mn+1 is uniform dense in Mn. ■

So adding more g’s only enriches the class of functions in which we can

approximate.

7.3 Spaces of Measures

In this section we show how to apply Theorem 7.2.2 to spaces of probability

and finite measures. We also provide a few examples of how one can use the

coming result for universal approximation on spaces of measures.

Recall the following notation introduced in Proposition 6.3.5. Given a

topological space E; bounded function g0; and collection M ⊂ CB(E), the

following are functionals on M+(E)

Wg0 [M]
.
=

{
µ 7→ g∗

(
µ

µ(E)

)
: g ∈ M, g ̸= 1

}
∪ {µ 7→ g0(µ(E))}. (7.27)

Definition 7.3.1 (Distributional Neural Network). Suppose E is a topological

space; g0 ∈ CB((0,∞)); for each n ∈ N, Fn ⊂ C(Rn); and M ⊂ CB(E). Let

Dg0(M, {Fn}∞n=1) denote the following collection of mappings:

µ 7→ f

(
g0 (µ (E)) ,

∫
E

g1
dµ

µ(E)
, . . . ,

∫
E

gn
dµ

µ(E)

)
, (7.28)

where f ∈ Fn+1; g1, ..., gn ∈ M ; and n ∈ N. We call functions of the form

given by (7.28) distributional neural networks and Dg0(M, {Fn}∞n=1) is the

collection of neural networks generated by M and {Fn}∞n=1.
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Theorem 7.3.2. Suppose E is a topological space; g0 ∈ CB(E) s.p. and s.s.p.

on (0,∞); M = {gi}Ni=1 ⊂ CB (E) s.p., s.s.p., is countable and closed under

multiplication; and Fn ⊂ C(Rn) is uniform dense on the compacts of Rn for

each n ∈ N. Then Dg0(M, {Fn}∞n=1) is a uniform dense subset of

CU

(
M+(E),SWg0 [M]

)
. Additionally, SWg0 [M] is equivalent to the metric uni-

formity generated by the following metric:

d(µ, ν) 7→


|g0(µ(E))− g0(ν(E))| ∧ 1

+
N∑
i=2

2−i

(∣∣∣∣g∗i ( µ

µ(E)

)
− g∗i

(
ν

ν(E)

)∣∣∣∣ ∧ 1

)
 (7.29)

for each µ, ν ∈ M+(E).

Proof. By Proposition 6.3.5, Wg0 [M] ⊂ CB(M+(E)) is countable, s.s.p., and

s.p. on M+(E). So the result follows directly from Theorem 7.2.2. ■

Next, we provide a Lemma that makes use of Proposition 4.4.1 that says if

M s.s.p. or s.p. and M0 is uniform dense in M, then M0 s.s.p. or s.p. also.

We end up with a similar result for spaces of measures.

Lemma 7.3.3. Let E be a metrizable topological space and assume M,M0 ⊂
CB(E); M∗ s.s.p. and s.p. on P(E); and M0 is uniform dense in M.

Then M∗
0 s.s.p. and s.p. on P(E). Further, given g0 ∈ CB((0,∞)) and

Fn ⊂ C(Rn) for each n ∈ N, we find that Dg0(M0, {Fn}∞n=1) is uniform dense

in Dg0(M, {Fn}∞n=1).

Proof. We have M0 is uniform dense in M, so given f ∈ M and ϵ > 0, there

is a g ∈ M0 such that

ϵ > sup{|f(p)− g(p)| : p ∈ E}. (7.30)

Therefore, ∣∣∣∣∫
E

f dP −
∫
E

g dP

∣∣∣∣ ≤ ∫
E

|f(p)− g(p)| dP (7.31)

<

∫
E

ϵ dP (7.32)
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= ϵ (7.33)

holds for each P ∈ P(E). which is to say that M∗
0 is uniform dense in M∗,

so it s.s.p. and s.p. on P(E) too by Proposition 4.4.1. As such, we can pick

some g0 ∈ CB((0,∞)) that s.p. and s.s.p. and conclude that Wg0 [M0] s.s.p.

and s.p. on M+(E).

Next, we would like to showDg0(M0, {Fn}∞n=1) is uniform dense inDg0(M, {Fn}∞n=1).

Let ψ ∈ Dg0(M, {Fn}∞n=1). Then for some n ∈ N;
{
f̃i
}n
i=2

⊂ Wg0 [M]; and

h ∈ C(Rn), ψ has the following form:

ψ(µ) 7→ h
(
g0(µ(E)), f̃2(µ), . . . , f̃n(µ)

)
. (7.34)

(7.35)

Further, let N = {µ 7→ g0(µ(E))}∪
{
f̃i
}n
i=2

and realize that for some compact

set K ⊂ Rn we have
⊗

N (M+(E)) ⊂ K. Hence, h|K is a continuous func-

tion on a compact set, so by Proposition 5.3.7, there is a unique uniformity

compatible with the topology on K and h|K is uniformly continuous. As the

topology is metrizable (inherited from Rn), the unique uniformity is equivalent

to the metric uniformity generated by any metric that generates the topology

on K. Therefore, for any ϵ > 0, there is a δϵ > 0 such that

d(p, q) < δϵ implies |h(p)− h(q)| < ϵ p, q ∈ K, (7.36)

where d is any metric that generates the topology on K; however, it will be of

convenience to choose the following metric

d(p, q) 7→
n∑

i=1

|πi(p)− πi(q)| (7.37)

which is a metric on Rn when n is finite (inspired by Proposition 3.3.8). Pre-

viously, we found that for each f̃i, there is a g̃i ∈ Wg0 [M0] such that

sup
{∣∣∣f̃i(µ)− g̃i(µ)

∣∣∣ : µ ∈ M+(E)
}
<
δϵ
n
, (7.38)
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and letting N0 = {µ 7→ g0(µ(E))} ∪
{
g̃i
}n
i=2

, we have

d
(⊗

N (µ),
⊗

N0(µ)
)
=

n∑
i=2

|f̃i(µ)− g̃i(µ)| (7.39)

< δϵ (7.40)

holds for all µ ∈ M+(E). Hence, Dg0(M0, {Fn}∞n=1) is uniform dense in

Dg0(M, {Fn}∞n=1). ■

What if we use topological neural networks to build distributional neural

networks? That is what we do next. Take note that the ”closed under addition

constraint” has been removed from M. We will talk more about why this may

be of use to practitioners in the next chapter.

Theorem 7.3.4. Suppose E is a topological space; g0 ∈ CB(E) s.p. and

s.s.p. on (0,∞); M = {gi}Ni=1 is countable, s.p. and s.s.p. on E; and, for

each n ∈ N, Fn,Hn ⊂ C(Rn) are uniform dense on the compacts of Rn. Then

Dg0(N(M, {Fn}∞n=1), {Hn}∞n=1) is a uniform dense subset of CU

(
M+(E),SWg0 [CU (E,SM)]

)
.

Proof. By Theorem 6.3.6, Wg0 [CU(E,SM)] are bounded continuous functions

that s.s.p. and s.p. on M+(E), so it then follows by Theorem 7.3.2 that

Dg0(CU(E,SM), {Hn}∞n=1) is a uniform dense subset of CU

(
M+(E),SWg0 [CU (E,SM)]

)
.

Also, Theorem 7.2.2 saysN(M, {Fn}∞n=1) is a uniform dense subset of CU(E,SM).

Hence, the result follows from Lemma 7.3.3(with M0 = N(M, {Fn}∞n=1) and

M = CU(E,SM)). ■

7.3.1 Examples

Example 7.3.5. Suppose E = [0, 1], x ∈ E and gi(x) = xi. As the

identity function is a homeomorphism, we have that g1 s.s.p. and s.p.

on E. Define M = {gi : i ∈ N}. Therefore, M ⊂ CB(E) is countable,

closed under multiplication, s.p and s.s.p on E. Let g0(x) = arctan(x),

which is 1-1 and s.s.p on R (as it is a homeomorphism) and we use the

result from Hornik in Theorem 1.1.3 to select as our Fn. Putting this
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all together, we have that functions of the following form

n∑
j=1

βjσ

(
a′j

(
arctan (µ ([0, 1])) ,

∫
x1

dµ

µ ([0, 1])
, ...,

∫
xk

dµ

µ ([0, 1])

)
− θj

)
,

(7.41)

where k, n ∈ N, aj ∈ Rk+1, and βj, θj ∈ R; are uniformly dense in

CU(M+([0, 1]),SWg0 [M]) by Theorem 7.3.2.

Example 7.3.6. Suppose E = [0, 1]d and define hi : [0, 1]
d → R as

hi(x) 7→ eπi(x). It then follows (via homeomorphisms) that the collec-

tion H = {hi : i = 1, . . . , d} s.p. and s.s.p. on E. We could repeat the

same technique as in Example 7.3.5 to get a collection that is count-

able and closed under multiplication, which would result in functions

of the following form

x 7→ en1π1(x)+...+ndπd(x); (7.42)

however, we instead take inspiration from Ma et al. 2020 (presented

in Chapter 1 of this document) and look at parameterized functions

of the following form

x 7→ ev
′x (7.43)

where v ∈ Rd represent parameters and ′ denotes transpose. Therefore,

take M = {x 7→ ev
′x : v ∈ Rd} and we can build similar functions as

in Example 7.3.5 to approximate the uniformly continuous functions

on M+([0, 1]d).
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Chapter 8

Concluding Thoughts

Now that the theoretical work has been covered, we use our final chapter to

bring forth some ideas inspired by our main results that may be of interest

to practitioners and researchers. The first idea illustrates the importance of

Theorem 7.3.4 for practitioners who would like to build distributional neu-

ral networks to approximate continuous functions of positive-finite measures.

The second realization is more for researchers interested in deep sets, where

we demonstrate their relatedness to distributional neural networks. Lastly,

we briefly suggest some areas for new research based on topological neural

networks.

8.1 For Practitioners

In this section, we discuss how Theorem 7.3.4 can aid the learning process by

not requiring M to be closed under multiplication.

Suppose we wish to learn a function λ ∈ C(E). Typically, the algorithm

designer chooses a parameterized function λΩ, where Ω ∈ RN represents N

parameters, and the designer wishes to find an optimal Ω̃ such that λΩ̃ is

closest to λ than any other λΩ (typically guided by data). However, often

the set of functions {λΩ : Ω ∈ RN} is not uniform dense in C(E), so there

is typically some amount of approximation error in λΩ̃ that we are unable to

remove.

87



Consider the case where E = [0, 1] and the algorithm designer chooses to

use a neural network of the kind found in Theorem 1.1.3. The designer would

choose a particular n ∈ N and function σ, while (βj, aj, θj)
n
j=1 ⊂ R3n would be

parameters. The set of functions {λΩ : Ω ∈ R3n}, then becomes{
n∑

j=1

βjσ(ajx− θj); aj, βj, θj ∈ R

}
(8.1)

which is clearly not uniform dense in C([0, 1]) as it is unable to uniformly

approximate (all) functions of the form{
n+1∑
j=1

βjσ(ajx− θj); aj, βj, θj ∈ R

}
, (8.2)

so there will likely be some unavoidable approximation error in λΩ̃ (note that

there could be no approximation error in the case where λ ∈ {λΩ : Ω ∈ R3n},
though this is unlikely the case in most real world problems).

Where did this approximation error come from? It stems from the algo-

rithm designer having to choose a particular n. Often n will be chosen as large

as is practically feasible considering computational constraints; regardless, a

decision must be made and will result in some amount of approximation error.

The magnitude of the approximation error is typically unknown, but could be

large enough to render λΩ̃ useless for a given application. In the particular

case of choosing n, often algorithm designers will try several guesses from a

carefully selected set (such as n ∈ {25, 26, 27, 28}), so they can observe when

increasing n does not practically reduce the approximation error.

The act of increasing n to reduce approximation error serves as an example

that may be used analogously across many other neural network architectures

(such as the number of layers or type of activation function); however, some-

times these sorts of methods are difficult or impractical as we will soon see.

Recall Theorem 7.3.2 and the subsequent example in subsection 7.3.1, and

suppose we wish to learn a function λ ∈ CU(M+([0, 1])). As the algorithm

designer, we have to make several decisions when constructing our set {λΩ :

Ω ∈ RN}. We need to choose a particular n ∈ N and activation function σ
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like we did previously; however, we also need to choose a particular k ∈ N and

functions (g1, . . . , gk) ⊂ M.

How do we go about picking (g1, . . . , gk)? This is quite a difficult task

as M is typically at least countably infinite due to it being closed under

multiplication. In the particular case of the example in subsection 7.3.1, it may

seem sensible to keep the powers small and choose (x1, x2, . . . , xk); however, we

could just as easily have chosen (x100, x200, . . . , x100k) or any other k functions

from M. What if perhaps we need x10
5
as one of our chosen functions? It is

unclear how we would be able to practically diagnose the need for x10
5
using

a technique similar to selecting n from a set like {25, 26, 27, 28}.
The problem is exacerbated as the dimmensionality of E increases. Suppose

D ∈ N, E = [0, 1]D, and x ∈ [0, 1]D. We can employ the same ideas from the

example in subsection 7.3.1, except we choose

M =

{
D∏
i=1

xdii : di ∈ N ∪ {0}

}
(8.3)

which is closed under multiplication, s.p., and s.s.p. on [0, 1]D. How do we

choose a good collection (g1, . . . , gk) ⊂ M? Again, it seems reasonable to try

to keep the powers di small, but even by keeping di ≤ 2 would require k ≥ 3D.

Interestingly, we can quite easily find a finite class of functions that s.p.

and s.s.p. on [0, 1]D, but is not closed under multiplication. For example, we

can simply use the projection functions (π1, . . . , πD). It is the need for being

closed under multiplication that causes M to be so large. That is the main

justification for Theorem 7.3.4. We will provide an example to see how this

may be implemented.

8.1.1 Practical Example

Suppose D ∈ N, E = [0, 1]D, and M = {π1, . . . , πD}. Therefore, M ⊂ CB(E)

is countable, s.p and s.s.p on E. Let g0(x) = arctan(x), which is bounded,

continuous, s.p., and s.s.p on R.
For Fn and Hn we use the neural networks described by Hornik in Theorem

1.1.3. However, we use the multidimensional version of Hornik for the Fn.
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That is, neural networks from Rk to Rm are uniform dense on compacts of Rk

(it is not hard to convince oneself that this is true). The multidimensional

neural networks we use will have the following form:

f(x)
.
=
[
f1(x), f2(x), . . . , fm(x)

]′ ′ is transpose, x ∈ Rk (8.4)

fi(x)
.
=

n∑
j=1

βi,jσ(a
′
jx− θj) i = 1, . . . ,m (8.5)

which allows us to represent the functions from Theorem 7.3.4 as

h

(
g0(µ(E)),

∫
E

f(g1, . . . , gn) dµ

)
. (8.6)

We can rewrite f in matrix notation as

f(x)
.
= Bσ(A′x− ϕ) ′ is transpose, x ∈ Rk (8.7)

A =
[
a1 . . . an

]
∈ Rk×n B =


β1,1 . . . βi,n
...

. . .
...

βm,1 . . . βm,n

 ∈ Rm×n (8.8)

Θ =


θ1
...

θn

 ∈ Rn (8.9)

where σ operates elementwise on vectors; that is, σ(
[ x1
x2
x3

]
) =

[
σ(x1)
σ(x2)
σ(x3)

]
.

As the algorithm designer, we need to choose a particular n1, n2,m ∈ N,
and activation function σ. In order to construct our λΩ, we first define the

following function ψA,B,Θ : M+(E) → R1+m as

ψA,B,Θ(µ)
.
=

 arctan
(
µ
(
[0, 1]D

))∫
[0,1]D

Bσ

(
A′

[
π1(x)

...
πD(x)

]
−Θ

)
dµ

µ ([0, 1]D)

 , (8.10)
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which results in the following set of functions {λΩ : Ω ∈ RN} given as
n2∑
j=1

qjσ
(
p′j ψA,B,Θ(µ)− ϕj

)
: A ∈ RD×n1 ; B ∈ Rm×n1

Θ ∈ Rn1 ; pj ∈ R1+m; qj, ϕj ∈ R

 (8.11)

.

The main advantage of the functions listed in (8.11) is that we no longer

require the algorithm designer to choose a small subset of functions (g1, . . . , gk)

from a large class M, but instead learn the best m functions (as determined

by the data).

8.2 Deep Sets

Deep sets refer to neural network like functions whose inputs (or outputs) are

sets. Some possible applications of deep sets include:

• online shopping where a customer may purchase multiple items in a

single online order,

• sports analytics where the goal is to understand the effectiveness of dif-

ferent lineup combinations of players in team sports, and

• a computer player for card games where players are dealt a hand of cards.

In the following discussion, we will only focus on when the input is a set.

Let [0, 1] be the collection of all possible items that could be in a set, so

2[0,1] represents the collection of all possible subsets of [0, 1]. Then a set func-

tion is a real valued function with domain 2[0,1]. The works of Zaheer et al.

2017 and Wagstaff et al. 2019 both study the ability of neural networks to ap-

proximate set functions, for which their analysis does so through permutation

invariant functions. A function t : [0, 1]n → R is permutation invariant if, for

any permutation p on n elements, it satisfies the following

t(x1, . . . , xn) = t(xp(1), . . . , xp(n)), (8.12)

91



with the intuition being that the order of objects in a set is irrelevant. Zaheer

et al. 2017 have identified how to express permutation invariant functions in

the following result.

Proposition 8.2.1. A function t : [0, 1]n → R is permutation invariant if and

only if it can be represented as

t(x1, . . . , xn) = ρ

(
n∑

i=1

ϕ(xi)

)
, (8.13)

for some continuous functions ϕ : [0, 1] → Rn+1 and ρ : Rn+1 → R.

Proof. See Zaheer et al. 2017 Theorem 7. ■

The representation for the permutation invariant functions listed in The-

orem 8.2.1 bear a striking resemblance to the neural networks described in

(8.6). To see this further, let us reconsider the measure µ described in (1.14)

from the particle filtering example except with the likelihood of each particle

set to 1. For each set {xi}ni=1 ⊂ R0([0, 1]), µ then becomes:

µ(A) =
n∑

i=1

Ixi
(A), (8.14)

for each measurable A ∈ B([0, 1]). Combining this representation with (8.6)

and the fact that the identity function s.p. and s.s.p. on [0, 1] (as it is a

homeomorphism) yields the following

h

(
g0(µ([0, 1])),

∫
[0,1]

f(z) dµ(z)

)
(8.15)

=h

(
g0(n),

n∑
i=1

f(xi)

)
(8.16)

=h

(
ψ

(
n∑

i=1

(1, f(xi))

))
(8.17)

where g0 : R → R is bounded, 1-1, and s.s.p. on R; f : [0, 1] → Rn is a neural
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network like those in (8.5); and ψ : Rn+1 → Rn+1 is defined as

ψ(y) 7→
(
g0(π1(y)), π2(y), . . . , πn+1(y)

)
. (8.18)

Clearly, (8.18) is of the same form as the functions in Theorem 8.2.1 where

ρ = h ◦ ψ and ϕ = (1, f). So we have shown that deep sets can be thought of

as a special case of Theorem 7.3.4.

In fact, it is perhaps more sensible to think of deep sets in terms of functions

on spaces of positive-finite measures. Theorem 3.3 of Wagstaff et al. 2019

says that there exist set functions t : 2[0,1] → R which cannot be represented

in the form of 8.13, which is not particularly surprising due to there being

uncountably infinite subsets of [0, 1] (some of which may be non-measurable).

However, the theory we have developed in this document is naturally able to

handle the case of (measurable) infinite sets. Suppose B ∈ B([0, 1]) is a set

we would like to input to a neural network. We can represent it as a measure

defined as

µB(A) 7→ ℓ(A ∩B), (8.19)

where ℓ is the Lebesgue measure, and results in the following functions

h

(
g0(µB([0, 1])),

∫
[0,1]

f(z) dµB(z)

)
(8.20)

=h

(
g0(ℓ(B)),

∫
B

f(z) dℓ(z)

)
. (8.21)

One must be careful with µB as it is incompatible with µ from (8.14) in

the sense that if B is finite (or countable), then µB = ℓ(B) = 0 ̸= µ. We

could try to make the finite and uncountably infinite cases more compatible

by using the following measure:

νB(A) 7→

 1
|B|
∑

x∈B Ix(A), B finite and non-empty

ℓ(A∩B)
ℓ(B)

, B uncountably infinite
, (8.22)

where |B| is the cardinality of B. It is clear that νB is a probability measure
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for each B ∈ B([0, 1]), so ν is more informative about the ”spread” of the set

rather than its size. Ultimately, the correct representation is likely to depend

on the particular application at hand.

8.3 Conclusions and Future Research

We have come along way. From topologies, to homeomorphisms and point

separation, to uniformities (which come with their own topologies), to measure

spaces and even topologies on measures. It has been quite the journey. And

we achieved what we sought out to do. Theorem 7.2.2 gave us universal

approximation on (non-compact) Tychonoff spaces and we applied the result to

find two Theorems for spaces of measures. The first one is Theorem 7.3.2, and

the second is Theorem 7.3.4 which was discovered with practitioner concerns

in mind. But, how can we extend our work further? What is next?

Let us look back at the previous section as inspiration for future research.

Deep sets were developed purposefully to have neural networks with permuta-

tion invariant inputs, which is a useful property unto itself. Connecting deep

sets to functions on positive-finite measures is interesting particularly because

it was unexpected. This all came about by attempting to pass a positive-finite

measure into a neural network, so it begs the question: what would happen

if we were to choose some other mathematical object? Would we discover

new types of neural networks with their own interesting properties? The main

tool needed to embark on such an endeavor is provided in Theorem 7.2.2 for

universal approximation on Tychonoff spaces. One can dream up their own

mathematical object, define a topology on the collection of them, find a class

of continuous functions which separate and strongly separate points, and then

Theorem 7.2.2 gives us universal approximation. The possibilities are end-

less.

94



Bibliography

[ABM85] P Antosik, TK Boehme, and F Mohanadi. “Concerning Sequential
Spaces”. In: (1985).

[EK86] Stewart N. Ethier and Thomas G. Kurtz. Markov processes : char-
acterization and convergence. Wiley, 1986. isbn: 9780470316658.

[Cyb89] George Cybenko. “Approximation by superpositions of a sigmoidal
function”. In: Mathematics of control, signals and systems 2.4
(1989), pp. 303–314.

[Hor91] Kurt Hornik. “Approximation capabilities of multilayer feedfor-
ward networks”. In: Neural networks 4.2 (1991), pp. 251–257.

[Rud91] Walter Rudin. Functional analysis. 2nd ed. McGraw-Hill, 1991.

[Mun00] James R Munkres. Topology. 2nd ed. Prentice Hall, 2000.

[Dud02] R. M. Dudley. Real analysis and probability. Cambridge studies
in advanced mathematics: 74. Cambridge University Press, 2002.
isbn: 9780511755347.

[Wil04] Stephen Willard. General Topology. Dover Publications, 2004.

[BK10] Douglas Blount and Michael Kouritzin. “On convergence deter-
mining and separating classes of functions”. In: Stochastic pro-
cesses and their applications 120.10 (2010), pp. 1898–1907.

[Ver10] Stijn Vermeeren. “Sequences and nets in topology”. In: arXiv
preprint arXiv:1006.4472 (2010).

[Kou16] Michael Kouritzin. “On tightness of probability measures on Sko-
rokhod spaces”. In: Transactions of the American Mathematical
Society 368.8 (2016), pp. 5675–5700.

[Zah+17] Manzil Zaheer et al. “Deep sets”. In: Advances in neural informa-
tion processing systems 30 (2017).

[Wag+19] Edward Wagstaff et al. “On the limitations of representing func-
tions on sets”. In: International Conference on Machine Learning.
PMLR. 2019, pp. 6487–6494.

95



[DK20] Chi Dong and Michael Kouritzin. “Replication and Its Applica-
tion to Weak Convergence”. In: arXiv preprint arXiv:2011.00484
(2020).

[KL20] Patrick Kidger and Terry Lyons. “Universal approximation with
deep narrow networks”. In: Conference on learning theory. PMLR.
2020, pp. 2306–2327.

[Ma+20] Xiao Ma et al. “Discriminative particle filter reinforcement learn-
ing for complex partial observations”. In: arXiv preprint arXiv:2002.09884
(2020).

96



Appendix A

Stone-Weierstrass for Real

Functions

A.1 Background

The Stone-Weierstrass Theorem provides conditions for an algebra of functions

to be uniformly dense in the set of continuous functions. However, there are

many different versions that either rely on different assumptions or are for

different domains or codomains. In this appendix, we demonstrate the Stone-

Weierstrass version from Rudin 1991 for complex functions implies the version

used in section 7.

First, we introduce some notation and terminology used to address complex

functions. A complex number is expressed as z = a + ib where i
.
=

√
−1 is

the imaginary unit and a, b ∈ R are the real and imaginary components of z,

respectively. Letting C be the set of complex numbers, we use Re : C → R
and Im : C → R to denote the functions which extract the real or imaginary

components of its input (Re(z) 7→ a and Im(z) 7→ b). The complex conjugate

of a complex number z is denoted z̄
.
= Re(z) − iIm(z). The barred notation

is used for the conjugate of complex valued functions as well.

We now state the Stone-Weierstrass Theorem from section 5.7 of Rudin

1991.

Theorem A.1.1. Let X be a compact Hausdorff space and let C(X,C) be the
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set of complex continuous functions on X equipped with the uniform norm.

Suppose that:

1. A is a closed subalgebra of C(X,C)

2. f ∈ A implies f̄ ∈ A

3. A separates points on X

4. At every p ∈ X, f(x) ̸= 0 for some f ∈ A

Then A = C(X,C).

A.2 Proof of Theorem 7.1.2

We are ready to justify the real-valued version as stated in Theorem 7.1.2.

Proof. First observe the following:

Re
(
C(X,C)

) .
= {Re(f) | f ∈ C(X,C)} = C(X,R). (1.1)

Now let B be a closed subalgebra of C(X,R) that satisfies conditions 3 and 4

of Theorem A.1.1. Define the following:

A
.
=
{
f + ig : f, g ∈ B

}
. (1.2)

A meets the conditions of Theorem A.1.1, therefore A = C(X,C) and by (1.1)

we have B = Re(A) = C(X,R). ■
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