
Theoretical and Computational Aspects of Mixture
Models, with Applications to Empirical Bayes Methods

by

Sile Tao

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

STATISTICS

Department of Mathematical and Statistical Sciences

University of Alberta

© Sile Tao, 2018



Abstract

This thesis studies mixture models, in particular the estimation of mixing

distributions and their applications to empirical Bayes prediction. The ob-

jectives are two-fold: to study the large-sample property of empirical Bayes

estimators; to develop algorithms for the nonparametric estimation of mixing

distributions as well as methods inspired by the Kiefer-Wolfowitz nonparamet-

ric maximum likelihood estimator.

Asymptotic optimality of empirical Bayes estimators is a topic that has

been in past studied by various authors, starting from Robbins (1956), and

continued by Deely and Zimmer (1976), Robbins (1964), and Rutherford and

Krutchkoff (1969). They all worked in somewhat different settings, focusing

not only on mixture models but the general empirical Bayes methodology.

Moreover, these authors considered exclusively the squared loss in predictions.

In this thesis, we establish asymptotic optimality for the empirical Bayes es-

timators; the results apply not only for the squared loss, but for a large class

of convex loss functions. A consistency result of Bayes estimators for mix-

ture models for a large class of convex loss functions is provided under mild

conditions. Nowadays, decision problems involving alternative loss functions

other than the squared loss are becoming increasingly popular. For instance,

Mukherjee, Brown, and Rusmevichientong (2015) have recently applied a para-

metric empirical Bayes method to the so-called newsvendor problem involving

a piecewise linear loss function. The last chapter of this thesis compares their

methodology with one that is based on mixture models, and discusses the

potential of the latter in this field.
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The second part of the thesis is devoted to the estimation of mixing distri-

bution in mixture models. Based on the breakthrough of Koenker and Mizera

(2014), see also Dicker and Zhao (2014), Abadie and Kasy (2017), we pro-

pose four estimation methods/algorithms. Cutting-Plane Method, which for

technical reasons comes last, is in fact an alternative algorithm for the Kiefer-

Wolfowitz nonparametric maximum likelihood estimator studied by Koenker

and Mizera. However, unlike their algorithm, the Cutting-Plane Method is

also applicable in higher-dimensional parameter spaces. The same is true

for the remaining three proposed methods. Projected Stochastic Gradient

is capable of working in even higher dimensions but its convergence may be

slow. Stochastic Average Approximation is generally much faster but in some

versions, its estimation target differs from that of Kiefer-Wolfowitz nonpara-

metric maximum likelihood estimator. This is even more true for Constraint

Resampling, which is in fact an autonomous and novel estimation method;

its properties, as well as those of other proposed methods are assessed via

simulations and theoretical results. The penultimate chapter is devoted to

facilitate the multivariate data-analytical applications of the developed algo-

rithms. Nonparametric empirical Bayes methods are studied in the presence

of explanatory variables. A nonparametric empirical Bayes regression model

is later proposed. In contrast to some of the previous approaches, such a

regression model has a very simple form and inherits most of theoretical prop-

erties of nonparametric empirical Bayes procedures. Unlike methods based on

the partial linear model, the parameter estimation procedure is equivalent to

solving a convex optimization problem in function space and can be efficiently

solved by the proposed algorithms.

iii



Acknowledgements

Firstly, I would like to thank my supervisor Dr. Ivan Mizera for his guid-

ance, his unceasing encouragement and the freedom he has given me to find

my own research path throughout my entire PhD program. He introduced me

to empirical Bayes methods and mathematical optimization, two fascinating

fields that continuously stimulate my interests. He has taught me many things

from what are good research topics to what is the right order of doing them.

I am privileged to be supervised by him and words fail to express my deepest

regards towards him.

I would like to express my deepest gratitude to Dr. Keumhee Chough, Dr.

Nicolas Guay, Dr. Linglong Kong, Dr. Brendan Pass and Dr. Juxin Liu for

being a part of my thesis examining committee and for going over my thesis.

Moreover, I would like to thank to the group studies organized by Dr.

Linglong Kong and Dr. Ivan Mizera, where I learned optimization and modern

statistics. We had a lot of fun there. I would also like to thank to Training

Consultant Center: the experience working there is unique and it reshapes my

understanding of statistics.

Furthermore, I would like to thank all my friends. Chenzhe Diao, Chi

Dong, Peng Liu, Michelle Michelle, Matthew Stephen, Wei Tu, Dengdeng Yu,

Li Zhang and Ning Zhang gave insightful suggestions on the various stages of

my research.

Special thanks go out to my parent, Yang Xia and Zhenmin Tao, and my

grandmother, Tianmei Huang, for their love and unceasing support.

iv



Table of Contents

1 Introduction 1

2 Preliminaries 5

2.1 Oracle Predictions in Mixture Models . . . . . . . . . . . . . . 5

2.2 Empirical Bayes Methodology Based on Mixture Models . . . 7

2.3 Alternative Methodologies in Empirical Bayes Prediction . . . 9

2.4 Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . 14

3 Asymptotic Optimality of Empirical Bayes Predictions Based

on Mixture Models 29

3.1 Asymptotic Optimality . . . . . . . . . . . . . . . . . . . . . 30

3.2 Consistency of Expected Posterior Loss and Minimizers . . . . 38

4 Algorithms for Kiefer-Wolfowitz Dual Problem 42

4.1 Primal and Dual Formulations of Kiefer-Wolfowitz Problem . 43

4.2 Geometric Properties of Kiefer-Wolfowitz Maximum Likelihood

Estimation Problem . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Projected Stochastic Gradient Methods . . . . . . . . . . . . . 50

4.4 Sample Average Approximation . . . . . . . . . . . . . . . . . 60

4.5 Constraints Resampling . . . . . . . . . . . . . . . . . . . . . 75

4.6 Cutting-Plane Methods . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Computational Concerns . . . . . . . . . . . . . . . . . . . . . 84

4.8 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Nonparametric Empirical Bayes Regression 91

5.1 Bayes Linear Regression . . . . . . . . . . . . . . . . . . . . . 92

5.2 Nonparametric Empirical Bayes Regression . . . . . . . . . . . 93

5.3 Baseball Batting Average Prediction . . . . . . . . . . . . . . 99

v



6 Nonparametric Empirical Bayes Prediction under Quantile

Loss 102

6.1 Basic Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Nonparametric Empirical Bayes Methodology . . . . . . . . . 106

6.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4 Forecasts for Product Demand . . . . . . . . . . . . . . . . . 112

7 Conclusions and Future Work 115

Bibliography 119

vi



Chapter 1

Introduction

This thesis concerns the problem of fitting mixture models and the applica-

tions of the mixture methodology arising in the empirical Bayes methodology.

In the first formal estimation of a mixture model, Pearson (1894) studied

the ratio of “forehead breath” to body length of 1000 crabs and estimated a

two component normal mixture model by the method of moments. He was

assuming the underlying distribution of his data has the density

f1 (y) p1 + f2 (y) p2,

where fi are component densities and pi are component weights of the mixing

distribution so that p1 + p2 = 1 and pi ≥ 0 for all i. This is an example of the

simplest mixture model which has finite and known number of components.

We are left to estimate the support points, the masses of the discrete mixing

distribution and the parameters of the components.

A more general version of this scheme may have the number of components

unknown; in such a case, we may put masses and support points together to
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get one mixing probability measure. Identifiability issues may push us to

assume the components known up to nuisance parameters which are in turn

fully determined by the mixing probability measure. The mixture distributions

then have the density ˆ
Θ

f (y|θ) dF (θ) ,

where Θ is the parameter space and the form of f is assumed to be known

– up to θ, which in turn is controlled by a probability measure F , typically

considered in quite extensive generality, in a “nonparametric way”. It is this

type of mixture models that is considered in this thesis.

In this thesis, we study the asymptotic optimality of empirical Bayes es-

timator for a large class of convex loss functions. Nowadays, there are many

decision problems involving loss functions other than the squared loss. For

example, recently Mukherjee et al. (2015) have applied a parametric empir-

ical Bayes method to the newsvendor problem where a piecewise linear loss

function is used to describe whether a vendor orders too much or too little.

However, the majority of empirical Bayes literature consider only the quadratic

loss and leave the questions of the large-sample properties under alternative

loss functions not answered, e.g. Deely and Zimmer (1976), Robbins (1964)

and Rutherford and Krutchkoff (1969) all focused on the asymptotic optimal-

ity of empirical Bayes estimator under the squared loss. In this thesis, we

prove the asymptotic optimality for a large class of convex loss functions un-

der some mild conditions. Moreover, we provide a consistency result of Bayes

decision rule for mixture models for a large class of convex loss functions.

In the second part, we propose optimization algorithms for solving or ap-

proximating the Kiefer-Wolfowitz nonparametric maximum likelihood estima-
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tor. When the dimension of parameter space is one, we can use the discretiza-

tion based method proposed by Koenker and Mizera (2014) by restricting

the prior distribution on a fine grid and then applying modern interior-point

method. Such an approach reduces the computational effort by several orders

of magnitude by comparison to prior EM-based methods. However, as the di-

mension of the parameter space increases, the number of grid points required

in the discretization method grows exponentially fast and the problem quickly

becomes computationally intractable. Possible cure comes out of an insight

that although the primal formulation of the Kiefer-Wolfowitz maximum likeli-

hood estimation problem is infinite-dimensional, the objective function of the

dual formulation is finite dimensional. For this reason, we focus on solving

the dual problem and we propose four numerical algorithms for the dual prob-

lem which aim for solving or approximating Kiefer-Wolfowitz MLE when the

dimension of parameter space is relatively high.

Chapter 5 of the thesis is to facilitate the multivariate data-analytic appli-

cation of the developed algorithms. To this end, we study how to incorporate

nonparametric empirical Bayes methods in the presence of explanatory vari-

ables and propose a novel regression model, called the nonparametric empirical

Bayes regression. In the past, various approaches have been tried to generalize

the empirical Bayes framework to regression problems, e.g. Cohen, Green-

shtein, and Ritov (2013), Fay III and Herriot (1979), Jiang and Zhang (2010)

and Koenker (2015). In contrast to some of the previous approaches, our

new model has a very simple form and inherits most of theoretical properties

of nonparametric empirical Bayes procedure. Furthermore, unlike the meth-

ods based on the partial linear model, the parameter estimation procedure in

our proposed regression model is equivalent to solving a convex optimization
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problem in function space and it can be efficiently solved by the developed

algorithms.

The thesis is organized as follows. In Chapter 2, we review empirical Bayes

paradigms and discuss both parametric and nonparametric empirical Bayes;

we also introduce the basic of convex optimization and some algorithms will

be used later on. In Chapter 3, we show certain empirical Bayes procedures

under alternative loss functions are asymptotically optimal. In Chapter 4,

we propose four alternative algorithms for the Kiefer-Wolfowitz dual prob-

lem which aim for solving the maximum likelihood estimation problem when

the dimension of parameter space is relatively high. In Chapter 5, we study

how to incorporate nonparametric empirical Bayes methods in the presence of

explanatory variables and propose the nonparametric empirical Bayes regres-

sion model. In Chapter 6, we study the newsvendor problem in the inventory

management.
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Chapter 2

Preliminaries

2.1 Oracle Predictions in Mixture Models

We are concerned with the problem of estimating θi ∈ Rp, based on the

observations y1, ..., yn and

yi
ind∼ fi(·|θi) (2.1)

for i = 1, ..., n and yi ∈ Rp. The provision of different error distributions fi

is to allow for inclusion of covariates; without them all fi = f , which will be

assumed in what follows, unless the contrary is explicitly specified.

The θi’s are viewed as drawn independently from a distribution F . The

performance of an estimator θ̂i is evaluated based on the mean squared loss

function

1

n

n∑
i=1

∥θ̂i − θi∥2.

Suppose the mixing distribution F is known, the problem of multiple pre-

diction fits into the standard Bayesian paradigm: the mathematical model for

the pair (y, θ) is identical to a Bayesian model in which the conditional distri-
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bution of y given the realized parameter Θ = θ is f (y|θ) and F is the prior

distribution on Θ. Given an i.i.d. sample y1, ..., yn from the mixture density

f (y) =

ˆ
Θ

f (y|θ) dF (θ) ,

we want to find Bayes estimators or decision rules so that the Bayes risk using

the squared loss is minimized.

Assume the decision rule d(y) is separable: d(y) = (d1(y1), ..., dn(yn)). It

is sufficient to consider univariate Bayes decision problems. Let π(θ) be the

density of the prior F , then the posterior density has the form

π(θ|y) = f(y|θ)π(θ)
f(y)

.

To obtain the Bayes estimator of θ, we choose a decision rule d to minimize

the Bayes risk ˆ
Y

ˆ
Θ

(θ − d)2f(y|θ)π (θ) dydθ,

which is equivalent to minimize the expected posterior loss

ˆ
Θ

(θ − d)2π(θ|y)dθ,

where Y is the sample space and Θ is the parametric space. Differentiating

with respect to d and taking into account the posterior density integrates to

1, we obtain the Bayes estimator as the posterior mean

d(y) = E(θ|y) =
ˆ
Θ

θ
f(y|θ)dF (θ)

f(y)
,

where f(y) =
´
Θ
f(y|θ)dF (θ).
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The following theorem states that the Bayes rule exists in most cases and

it is optimal with respect to the selected loss function.

Theorem 2.1. (Lehmann and Casella, 1998, page 228) Suppose the follow-

ing assumptions hold for the problem of estimating θ with non-negative loss

function L(θ, d).

(a) There exists an estimator δ0 with finite risk.

(b) For almost all y, there exists a value δF (y) minimizing

E (L (Θ, δ(y)) |y) .

Then δF (y) is a Bayes estimator.

2.2 Empirical Bayes Methodology Based on

Mixture Models

Empirical Bayes methods estimate either the mixing distribution or the

Bayes rule directly from the mixture. In this thesis, we start with a method

based on estimating mixing distributions. Such a method has been proposed

in 1956 by Robbins and then elaborated by Kiefer and Wolfowitz (1956).

Suppose the prior is completely unspecified, the method of Kiefer and

Wolfowitz (1956) estimates the unknown prior via maximum likelihood. This

amounts to

min
F∈F
−

n∑
i=1

log

ˆ
Rp

f (yi|θ) dF (θ), (2.2)

where F is the class of all probability distribution functions on Rp. Once the

estimator Fn is obtained, we replace F in the Bayes decision rule by its MLE
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Fn. For example, under the squared loss, the estimated Bayes decision rule

has the form ´
Rp θf (y|θ) dFn(θ)´
Rp f (y|θ) dFn(θ)

.

For the large-sample properties, Kiefer and Wolfowitz (1956) studied the

consistency of Kiefer-Wolfowitz MLE Fn and they showed the MLE Fn con-

verge weakly to the true prior F in a sense that

ˆ
f̃dFn →

ˆ
f̃dF

for every continuous and bounded real-valued function f̃ . The consistency

proof of Kiefer and Wolfowitz assumes the finiteness of Kullback-Leibler infor-

mation which is hard to verify in the mixture model. Pfanzagl (1988) relaxed

this assumption by merely requiring the continuity of likelihood function. A

modern review of the consistency of Kiefer-Wolfowitz MLE can be found in

Chen (2017).

The recent revival interest in empirical Bayes methods for compound deci-

sion problem is in computational methods, see, e.g. Brown (2008), Brown and

Greenshtein (2009), Cohen et al. (2013), Dicker and Zhao (2014), Efron (2011,

2012, 2013), Greenshtein and Itskov (2014), Jiang and Zhang (2009, 2010). To

numerically solve the problem (2.2), some discretization methods have to be

used. However, the number of grid points required in the discretization grows

exponentially fast as the dimension of the parameter space p increases. The

discretization method is not suitable to solve the problem with a large p.
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2.3 Alternative Methodologies in Empirical Bayes

Prediction

For completeness, the alternative empirical Bayes approaches, such as

Tweedie’s formula and James-Stein estimator, are reviewed in this section.

Readers familiar with empirical Bayes methodology may skip the basic expo-

sition presented here.

2.3.1 Tweedie’s Formula

Suppose the observed data y and the parameter of interest η are taken

from Rp with p ≥ 1. The parameter η has a prior density q and the real-

valued likelihood function of η is taken from multivariate exponential family,

as defined in DasGupta (2011),

f(y|η) = exp
{
ηTT (y)− A(η)

}
f0(y),

where η is is the natural or canonical parameter of the family, T is a known

function and A(η) is the cumulant generating function and f0(y) = f(y|η = 0).

Theorem 2.2. Under the settings above, Bayes rule for η with the squared

loss has the form

E (η|y) = ∇ log (f (y) /f0 (y)) . (2.3)

Proof. Write λ (y) = log (f (y) /f0 (y)). Then

∇λ (y) =

(
f0 (y)

f (y)

)(
∇f (y) f0 (y)− f (y)∇f0 (y)

f 2
0 (y)

)
=
∇f (y)
f (y)

− ∇f0 (y)
f0 (y)

. (2.4)
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By Lebesgue’s dominated convergence theorem, differentiation under the in-

tegral sign is legitimate for the exponential family, so that

∇f (y) =

ˆ
d

dy
f (y|η) q (η) dη

=

ˆ {
eη

TT (y)−ψ(η)ηf0 (y) + eη
TT (y)−ψ(η)∇f0 (y)

}
q (η) dη

= f0 (y)

ˆ
eη

TT (y)−ψ(η)ηq (η) dη +∇f0 (y)
ˆ
eη

TT (y)−ψ(η)q (η) dη

= f0 (y)

ˆ
eη

TT (y)−ψ(η)ηq (η) dη +
∇f0 (y)
f0 (y)

f (y) . (2.5)

Substituting (2.5) into (2.4), we obtain

∇λ (y) =
f0 (y)

´
eη

TT (y)−ψ(η)ηq (η) dη

f (y)

= E (η|y) .

The expression (2.3) is called Tweedie’s formula and it was first provided

by Robbins (1956). Efron calls such an expression Tweedie’s formula because

that Robbins “credits personal correspondence with Maurice Kenneth Tweedie

for an extraordinary Bayesian estimation formula”. In some literature, this

formula is also referred to Robbins’ formula but in this thesis we follow the

terminology of Efron’s paper. The formula (2.3) coincides for p = 1 with that

derived in Efron (2011), who mentions a possibility of multivariate extension.

As the latter is not readily available in the literature, we provide a multivariate

version here.

According to Tweedie’s formula, the Bayes rule depends directly on the

marginal distribution which can be estimated by kernel density estimation or
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Lindsey’s method (Efron, 2011); therefore, it is in principle not necessary to

estimate the prior density q.

Example 2.3. Suppose y|µ ∼ Np(µ,Σ), where the covariance matrix Σ is

known. Then the canonical parameter is η = Σ−1µ and the function T has the

form T (y) = y. From Tweedie’s formula (2.3), we have

E(η|y) =
d log (f (y) /f0 (y))

dy

=
d log(f(y))

dy
− d log(f0(y))

dy

=
d log(f(y))

dy
+ Σ−1y,

where

f0(y) = (2π)−
p
2 |Σ|−

1
2 exp

{
−y

TΣ−1y

2

}
.

Then Bayes rule for µ would be,

E(µ|y) = y + Σ
d log(f(y))

dy
.

2.3.2 Parametric Empirical Bayes

Consider the setting defined in Section 2.1. If we can specify the parametric

family of F but leave certain hyperparameters unknown and the hyperparame-

ters eventually are estimated from the data, this is called parametric empirical

Bayes. The first major work in this area was made by Efron and Morris (1975,

1977). The procedure is first writing out the marginal distribution and then

obtain the estimators for all hyperparameters. As soon as the prior is specified,

the standard Bayesian follows and we can compute the posterior expectation
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without any trouble.

In this section, James-Stein estimator is studied as an example of paramet-

ric empirical Bayes.

The approach leading to the James-Stein estimator assumes the observed

density and the prior are both normal. To illustrate the idea, let us start

with the univariate case. Consider θ ∼ N(0, a) with a unknown and the error

distribution f(y|θ) is N(θ, 1). Since we do not know the value of a in the prior

N(0, a), the standard Bayes approach cannot be used directly. However, we

can follow empirical Bayes paradigm and extract the information about a from

the marginal distribution of y.

It is not hard to see that the marginal distribution of y is again a normal

distribution with mean 0 and variance a+ 1. The Bayes estimator of θi is

θ̂i = E(θi|yi) =
(
1− 1

â+ 1

)
yi.

Using the method of moments, we obtain a for an estimator

â =

∑n
i=1 y

2
i

n
− 1.

In the empirical Bayes, the unknown term 1/(a + 1) is unbiasedly estimated

by (n− 2)/
∑n

i=1 y
2
i . This results is the James-Stein estimator

θ̂
(JS)
i =

(
1− n− 2∑n

i=1 y
2
i

)
+

yi,

where the notation (·)+ is defined as

(x)+ := max {x, 0} .

12



More generally, assume that θi
iid∼ N(M,A) and yi|θi

ind∼ N(θi, σ
2
0) with

i = 1, ..., n and n ≥ 4, where the hyperparameters M and A are the mean and

variance of the prior distribution. The marginal density of yi is

yi ∼ N(M,A+ σ2
0)

and the posterior density

θi|yi ∼ N(M +B(yi −M), Bσ2
0),

where

B =
A

A+ σ2
0

.

Now the Bayes estimator of θi is

θ̂i =M +B(yi −M).

Although the values of A and B are unknown at the beginning, we can obtain

the estimators from marginal density. Eventually, the James-Stein estimator

acquires the form

θ̂
(JS)
i = y +

(
1− (n− 3)σ2

0

S

)
+

(yi − y), (2.6)

where S =
∑n

i=1(yi − y)2.

The estimator (2.6) shrinks each observed value yi toward sample mean

y. The amount of shrinkage depends on other observations. This fact might

counter our intuition because each observation yi is taken independently, but
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in most cases this type of shrinkage will reduce the total squared of error and

improve the performance of the estimate of θi.

For n ≥ 3, the James-Stein estimator always has smaller risk than MLE

with the squared loss .

Theorem 2.4. (James and Stein, 1961) For n ≥ 3, the following is true that

E
{
||θ̂(JS) − θ||2

}
< E

{
||θ̂(MLE) − θ||2

}

for all θ.

2.4 Convex Optimization

For self-containedness, an overview of deterministic and stochastic opti-

mization is provided, which will be used to develop algorithms to solve or

approximate Kiefer-Wolfowitz MLE in later chapter. In particular, we dis-

cuss cutting-plane method, stochastic gradient method and sample average

approximation. Readers familiar with optimization may skip this section.

2.4.1 Deterministic Convex Programming

Convex optimization is a subfield of mathematical optimization that studies

the problems of minimizing convex functions over convex sets. The convex-

ity makes optimization easier since the local minimum must be global mini-

mum. Therefore, first-order conditions are sufficient for optimality (Rockafel-

lar, 1993).

Subsections 2.4.1.1 and 2.4.1.2 follow the materials in Boyd and Vanden-

berghe (2004).
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2.4.1.1 Terminology

Basic terminology in convex optimization is introduced here. In determin-

istic convex programming, we consider problems having the form

min
x∈Rn

f0 (x) (2.7)

subject to fi (x) ≤ 0, i = 1, ...,m,

hi (x) = 0, i = 1, ...,m′

where the functions f0, f1, ...fm are convex and h1, ..., hm′ are affine. We call

the function f0 : Rn → R objective function or cost function. The inequalities

fi (x) ≤ 0 are called the inequality constraints and the corresponding functions

fi : Rn → R the inequality constraint functions. The equations hi (x) = 0 are

called the equality constraints and hi : Rn → R are the equality constraint

functions. If there is no constraints, i.e., m = m′ = 0, the problem is called

unconstrained.

The set of points for which the objective and all constraint functions are

defined is called the domain of the problem:

D =
m⋂
i=1

domfi ∩
m′⋂
i=1

domhi.

A point x ∈ D is called feasible if it satisfies all the inequality constraints

fi (x) ≤ 0, i = 1, ...,m and all the equality constraints hi (x) = 0, i = 1, ...,m′.

An optimization problem is said to be feasible if there exists at least one

feasible point, and infeasible otherwise. The set of all feasible points is called

the feasible set or the constraint set.
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The optimal value p∗ of the problem is defined as

p∗ = inf
x
{f0 (x) : fi (x) ≤ 0, i = 1, ...,m, hi (x) = 0, i = 1, ...,m′} .

The optimal value p∗ is allowed to take on the extended values ±∞. If the

problem is infeasible, we have p∗ =∞. If there is a sequence of feasible points

{xk} such that limk→∞ f0 (xk) = −∞, then p∗ = −∞ and such a problem is

called unbounded below.

We say x∗ is an optimal point or minimizer to the problem (2.7), if x∗

is feasible and f0 (x
∗) = p∗. The set of all optimal points is the optimal set

denoted

Xopt = {x : fi (x) ≤ 0, i = 1, ...,m, hi (x) = 0, i = 1, ...,m′, f0 (x) = p∗} .

2.4.1.2 Lagrange Duality in Convex Optimization

Taking the constraints into account, we write the objective function with

a weighted sum of the constraints: the Lagrangian L : Rn × Rm × Rm′ → R

associated with the problem 2.7 is defined to be

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +
m′∑
i=1

νihi(x).

The vectors λ and ν are called Lagrange’s multiplier vectors. We define the

Lagrange dual function as the minimum value of the Lagrangian over x:

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +
m′∑
i=1

νihi(x)

)
.
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If the Lagrangian is unbounded below in x, the dual function takes the value

−∞.

We use the curled inequality symbol ≽ (and its strict form ≻) to denote

componentwise inequality (and strict inequality, respectively) between vectors.

It can be shown (Boyd and Vandenberghe, 2004, page 216) that for λ ≽ 0

and any ν, the dual function gives the lower bound on the optimal value p∗ of

the problem (2.7)

g(λ, ν) ≤ p∗. (2.8)

A natural question is: what is the greatest lower bound that can be obtained

from the dual function? This leads to the optimization problem

max
λ,ν

g(λ, ν) (2.9)

subject to λ ≽ 0,

which is called the Lagrange dual problem associated with the problem (2.7);

the original problem (2.7) is then called the primal problem.

If we denote the optimal value of the dual as d∗, it can be shown that

d∗ ≤ p∗. The equality does not hold in general, but if the primal problem is

convex with the equality constraints Ax = b, we usually have strong duality

d∗ = p∗ under some mild conditions. One of those is called Slater’s condition.

Before we state Slater’s condition, we need to introduce some related con-

cepts. The set of all affine combinations of points in some set C ⊂ Rn is called

the affine hull of C and and denoted aff (C):

aff (C) :=

{
k∑
i=1

θixi : x1, ..., xk ∈ C,
k∑
i=1

θk = 1

}
.
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We define the relative interior of the set C, denoted relint (C), as its interior

relative to aff (C):

relint(C) :=
{
x ∈ C|B(x, r)

⋂
aff(C) ⊆ C, for some r > 0

}
,

where B (x, r) = {y : ∥y − x∥ ≤ r}.

Slater’s condition says that there exists an x ∈ relint(D), such that each

inequality is strictly satisfied:

fi(x) < 0, i = 1, ...,m, Ax = b.

Theorem 2.5. (Slater’s theorem) If the problem is convex of the form

min f0(x)

subject to fi(x) ≤ 0, i = 1, ...,m,

Ax = b,

with f0, ..., fm convex and satisfies Slater’s condition, then strong duality holds.

For any optimization problem with differentiable objective and constraint

functions satisfying strong duality, any pair of primal and dual optimal points,

say x̃ and (λ̃, ν̃), must satisfy the Karush–Kuhn–Tucker (KKT) conditions:

fi(x̃) ≤ 0, i = 1, ...,m,

hi(x̃) = 0, i = 1, ...,m′,
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λ̃i ≥ 0, i = 1, ...,m,

λ̃ifi(x̃) = 0, i = 1, ...,m,

∇f0(x̃) +
m∑
i=1

λ̃i∇fi(x̃) +
m′∑
i=1

ν̃i∇hi(x̃) = 0.

Moreover, when the primal problem is convex, the KKT conditions are also

sufficient for the points to be primal and dual optimal.

Theorem 2.6. If a convex optimization problem with differentiable objective

and constraint function satisfies Slater’s condition, then the KKT conditions

provide necessary and sufficient conditions for optimality: x is optimal if and

only if there are (λ, ν) that, together with x, satisfy the KKT conditions.

2.4.1.3 Cutting-plane Methods

Cutting-plane methods are a class of methods that solve general convex

and quasiconvex optimization problems by iteratively refining the feasible set.

Usually these methods are “less efficient for problems to which interior-point

methods apply” (Boyd and Vandenberghe, 2007), but cutting-plane methods

do not require evaluating the objective and all the constraint functions, as well

as as their first and second derivatives at each iteration. This make cutting-

plane methods attractive for problems with a very large number of constraints.

The introduction provided in this subsection is based on the materials of Boyd

and Vandenberghe (2007).

The goal of cutting-plane method is to find a point in a convex set X ⊂ Rn,

known as the target set, or, in some cases, to determine that X is empty. In

an optimization problem, the target set X can be taken as the set of optimal

points for the problem, and our goal is to find an optimal point for the problem.
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We do not have direct access to any description of the target set X, otherwise

the optimization problem is solved already. Instead, for any query point x ∈

Rn, we have a piece of information, called oracle, which tells us either x ∈ X

(in which case we are done), or returning a separating hyperplane between x

and X, i.e., a ̸= 0 and b such that

aT z ≤ b for z ∈ X, aTx ≥ b.

This hyperplane is called a cutting-plane, or cut, since it cuts or eliminates the

halfspace
{
z : aT z > b

}
from our search: no point in this halfspace could be

in the target set X.

Now let us discuss the details of how to construct cutting-planes in inequal-

ity constrained problems. Consider an inequality constrained problem

min
x∈Rn

f0 (x)

subject to fi (x) ≤ 0, i = 1, ...,m,

where f0, ..., fm are convex. The target set X is the optimal set.

Definition 2.7. (Subgradient) For a real-valued function f : Rn → R, g is a

subgradient of f at x if

f (y) ≥ f (x) + gT (y − x) for all y.

The set of all subgradients of f at x is called the subdifferential of f at x,

denoted as ∂f (x).

To find a cutting-plane for this problem at the query point x, we first check
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for feasibility. If x is not feasible, then we compute the subgradient gj of any

violated constraint fj at x (If fj is differentiable, then gj = ∇fj (x).) and

construct a cut as

fj (x) + gTj (z − x) ≤ 0.

The above halfspace defines a cutting-plane, since any optimal point z ∈ X

satisfies the linear inequality: From the definition of subgradient

fj (x) + gTj (z − x) ≤ fj (z) for all z.

Any optimal point must be feasible: fj (z) ≤ 0. Therefore, all the optimal

points lie on the one side of the hyperplane and this gives a cutting-plane.

Now suppose that the query point x is feasible. Take g0 ∈ ∂f0 (x). If

g0 = 0, then from the definition of subgradient we have f0 (x) ≤ f0 (z) for all

z. The query point x must be an optimal and we are done. So we assume

g0 ̸= 0. In this case we construct a cutting-plane as

gT0 (z − x) ≤ 0.

Again, we need to justify all the optimal points lie on the one side of the

hyperplane: For any z ∈ X, we must have

gT0 (z − x) ≤ f0 (z)− f0 (x) ≤ 0.

Without loss of generality we assume the target set X is contained in a

polyhedron P0 = {z : Cz ≤ d} which is known. Now suppose the algorithm

does not stop in k steps: none of the query points were announced by the
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oracle to be in the target set X, then we have k cutting-planes

aTi z ≤ bi, i = 1, ..., k.

From the construction of the algorithm, every point in target set must satisfy

these inequalities:

X ⊂ Pk = {z : Cz ≤ d, aTi z ≤ bi, i = 1, ..., k}.

To find the minimizer, we only need to consider points in the localization

polyhedron Pk.

If Pk is empty, then the target set X is empty: the problem has no solution

and we stop. If it is not, we choose a new query point x(k+1) in Pk. If

x(k+1) ∈ X, then we are done. If not, the oracle generates a new cutting-plane

and we can update the localization polyhedron by adding the new inequality.

Algorithm 1 Cutting-plane algorithm

Ensure: an initial polyhedron P0 = {z : Cz ≤ d} ⊃ X
1: k ← 0
2: repeat
3: Choose a point x(k+1) in Pk
4: if x(k+1) ∈ X then
5: stop
6: else
7: update Pk by adding the new inequality

Pk+1 ← Pk ∩
{
z : aTk+1z ≤ bk+1

}
8: end if
9: if Pk+1 = ∅ then
10: stop
11: end if
12: k ← k + 1
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The critical step that how to choose the next query point x(k+1) in inside

the current localization polyhedron Pk is not fully specified. Different ways of

choosing query points lead to different cutting-plane algorithms.

There are a large class of cutting-plane methods, called interior point

cutting-plane methods, selecting query points in a way that the size of Pk+1

is as small as possible, or equivalently, the new cut removes irrelevant points

as many as possible from the current polyhedron Pk. When we query the ora-

cle at x(k+1), we do not know which halfspace will be returned; we only know

x(k+1) will be in the excluded halfspace. No matter which halfspace is returned

by the oracle, we want a good reduction in the size of localization polyhedron.

This suggests that we should choose x(k+1) to be some kind of center of Pk.

For this choice of query point, we can cut away a good portion of Pk no matter

which halfspace is returned by the oracle. Many modern cutting-plane algo-

rithms are within this class: the center of gravity algorithm, maximum volume

ellipsoid cutting-plane method, Chebyshev center cutting-plane method and

analytic center cutting-plane method.

In the very first paper of cutting-plane methods of Kelley (1960), the query

point x(k) is chosen as the optimal solution to the current polyhedron approx-

imation Pk, instead of all kinds of centers. For certain class of problems, Kel-

ley’s method can outperform interior point cutting-plane methods (du Merle,

Goffin, and Vial, 1998): If “the optimal point of the current polyhedral ap-

proximation of the problem turns out to be optimal for the original problem

itself, then [Kelley’s algorithm] terminates at once with a provable optimal

solution”. Other interior point cutting-plane methods are slower by design,

since they avoid the optimal point of polyhedral approximation in the next

iteration.
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An example follows. Consider a convex optimization problem

min
x∈Rn

f0 (x)

subject to fi (x) ≤ 0, i = 1, ...,m.

Apply any basic cutting-plane methods. If the algorithm does not stop at k

step and the query point x(k) is infeasible, then the preceding discussion enable

us to construct cuts as

fj
(
x(k)
)
+ gTj

(
z − x(k)

)
≤ 0

and the index j can be any violated constraint

j ∈ {i : fi (x) > 0, for some i = 1, ...,m} .

Common choices for the indices are the most violated inequality argmaxi fi (x),

any violated inequality or simply all violated inequalities.

2.4.2 Stochastic Convex Programming

Stochastic programming is mathematical programming with stochastic el-

ements present in objective function or constraints. Generally a stochastic

programming problem has the form

min
x∈X

Ef0 (x, Y )

subject to Egi (x, Y ) ≤ 0, i = 1, ...,m,
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Ehi (x, Y ) = 0, i = 1, ...,m′,

where X is a nonempty closed subset of Rn, Y is a random variable with

probability distribution P which is supported on a set Y ⊂ Rp and all the

functions f0, fi and hi map X × Y to R. Such a problem is called convex if

the following conditions hold: (1) f0 and gi are all convex in x for each y,

i = 1, ...,m; (2) hi is affine in x for each y, i = 1, ...,m′; (3) X is a convex

set. Except for very limited cases, the stochastic terms do not have analytical

expressions and therefore difficult to evaluate. If the dimension p is relatively

large, the discretization based methods will not perform well, since the number

of grid points grows exponentially fast. Later on we will discuss two commonly

used algorithms in the field: stochastic gradient method and sample average

approximation. References for stochastic programming are Kall, Wallace, and

Kall (1994), Shapiro, Dentcheva, and Ruszczyński (2009).

In fact, many statistical problems are stochastic programming problems.

Consider a Bayes parameter estimation problem under the loss L (θ, d), where

θ is the parameter of interest and d is the Bayes decision rule for θ. Let f (y|θ)

be the sampling distribution. We are looking for a decision d minimizing the

Bayes risk:

min
d

EθEYL (θ, d)

or equivalently

min
d

Eθ|y (L (θ, d)) .

It is well known that under the squared loss L (θ, d) = (θ − d)2, the Bayes

rule is the posterior mean. If the prior distribution is known, the computation

of Bayes decision rule is usually straightforward. However, for alternative
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loss functions other than the squared loss, we usually do not have explicit

expression and we need numerical algorithms to solve these problems.

2.4.2.1 Stochastic Gradient Method

Stochastic gradient method is a gradient method replacing the true gradient

with a sample approximation in each iteration and the algorithm economizes

on the computational cost of gradient at every iteration. For these reasons,

stochastic gradient method is widely used in large-scale machine learning prob-

lems (Bottou, 2010). This overview is based on a survey of Boyd and Mutapcic

(2006).

Consider an unconstrained minimization problem of a convex differentiable

objective function f : Rn → R. Let x(k) denote the kth iterate, αk > 0 the

kth step size. The classical gradient methods use the update

x(k+1) = x(k) − αk∇f
(
x(k)
)
, k ∈ N.

The idea of stochastic gradient method is the following: If the true gradient

∇f
(
x(k)
)
= E

(
g̃;x(k)

)
for some random vector g̃, we can replace it by a sample

approximation. In such a way, the update steps can be done efficiently. With

some carefully chosen step sizes, the algorithm converges.

To see an example, let us consider a linear regression problem, which has

the form

min
β∈Q

1

n

n∑
i=1

(
yi − xTi β

)2
,

where Q is a nonempty compact convex subset of Rp and the sample size n

can be very large. Due to the appearance of Q, we may not have analytical

solution. Another difficulty here is the large sample size n: If we are thinking
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projected gradient based methods, then in each iteration we need to compute

the gradient g (x, y; β) = (−2/n)
∑n

i=1

(
yi − xTi β

)
xi. The summation over n

terms here is computationally expensive. Instead, we may try some stochastic

gradient methods. First, we can interpret the deterministic regression problem

as a stochastic optimization problem:

min
β∈Q

EPn

((
Y −XTβ

)2)
,

where Pn is the empirical distribution function. Let β(k) denote the kth iterate,

αk > 0 the kth step size and ξ
(k)
1 , ..., ξ

(k)
N a random sample of (X, Y ) with

N ≪ n. Stochastic gradient method uses the update

β(k+1) = β(k) − αk
N

N∑
i=1

g
(
ξ
(k)
i ; β(k)

)
.

As we can see, in the update steps, it only uses a small fraction of training

data and it can be much more efficient than the gradient descent methods.

In fact, the requirement of f to be differentiable is unnecessary. It can be

relaxed by replacing the gradient by its subgradient. Such a method is known

as stochastic subgradient method. See Boyd and Mutapcic (2006) for details.

2.4.2.2 Sample Average Approximation

Suppose we have a stochastic optimization problem with expectations in-

volved: either in the objective function or in the constraints (or both). The

underlying probability distributions are known but the expectations are usu-

ally difficult to evaluate. In that case, it is natural to think about some

sampling techniques and replace the true probability distributions with their
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sample estimates. In the literature on stochastic programming, e.g. Shapiro

et al. (2009), Shapiro (2010), this is referred to as the sample average approxi-

mation problem, and in machine learning as the empirical mean optimization.

To be precise, let us consider the following stochastic problem:

min
x∈X

E (f (x, Y )) .

Here X is a nonempty closed subset of Rn, Y is a random variable with prob-

ability distribution P which is supported on a set Y ⊂ Rp and f : X×Y → R.

Suppose we have a sample ξ1, ..., ξN of the random variable Y , for example,

they can be generated by Monte Carlo sampling techniques, then the sample

average approximation problem has the form

min
x∈X

1

N

∑N

i=1
f (x, ξi) .

With some regularity conditions, we expect the sample based optimal value f̂N

and optimal solution x̂N get close to the true ones as the sample size increases.

In this way, we solve the stochastic programming problem by randomization

techniques.
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Chapter 3

Asymptotic Optimality of

Empirical Bayes Predictions

Based on Mixture Models

In this chapter, we prove the convergence of Bayes risk for certain empirical

Bayes procedures and show the consistency of Bayesian decision rules under a

large class of convex loss functions.

Nowadays, there are many decision problems involving alternative loss

functions other than the squared loss. For example, in robust regression, check

loss and Huber’s loss are widely used to avoid the dangers posed by outliers.

In certain applications, alternative loss functions are selected simply because

they have real-world interpretations: for the newsvendor problem in the inven-

tory management, a piecewise linear loss function is used to describe the loss

whether a vendor orders too much or too little. However, the majority of em-

pirical Bayes literature only consider the quadratic loss and leave the questions

of asymptotic optimality under alternative loss functions not answered.
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In a fundamental paper, Robbins (1964) proved an empirical Bayes pro-

cedure is asymptotically optimal. The paper gives conditions under which a

consistent estimator of the Bayes procedure is asymptotically optimal. How-

ever, one of the conditions does not hold for the regular quadratic loss function

when the parameter space is unbounded. Deely and Zimmer (1976) recognize

this fact and obtain asymptotic optimality property for quadratic loss function

under some weaker conditions than Robbins. Martin (2015) generalizes the

results of Deely and Zimmer to general loss functions and proves an empiri-

cal Bayes procedure is asymptotically optimal, but Martin’s result relies on a

strong assumption that Lebesgue’s dominant theorem holds. In this chapter,

we prove the asymptotic optimality for a large class of convex loss functions

under some mild conditions.

3.1 Asymptotic Optimality

3.1.1 Notation and Theorem

Suppose the parameter of interest is θ, taking values in R, an observable

random variable Y takes values in Y , an action a takes values in set A, a

decision rule t maps Y into A, a loss function L (θ, a) ≥ 0, and a prior dis-

tribution F on R. It is assumed that Y has a conditional probability density

function with respect to some measure µ on Y denoted by f (y|θ) . The Bayes

risk associate with a decision rule t is given by

r (F, t) =

ˆ
R

ˆ
Y
L (θ, t (y)) f (y|θ) dµ (y) dF (θ) .

First, let us introduce some concepts given by Robbins (1964).
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Definition 3.1. (Empirical Bayes procedure) Let tF (y) denote the Bayes rule

with the true prior distribution F . A function tn (y) := tn (y1, ..., yn; y) based

on the past and present observations and taking values in action space is called

empirical Bayes decision procedure if

tn (y)
p→ tF (y) ∀y.

That is, for any y and ϵ > 0,

P {ω : |tn (Y1 (ω) , ..., Yn (ω) ; y)− tF (y) | > ϵ} → 0, as n→∞.

Definition 3.2. (Asymptotically optimal) If an empirical Bayes procedure tn

has the property that

r (F, tn)→ r (F, tF ) , n→∞,

then tn is said to be asymptotically optimal.

In the following, we assume the loss function L is unbounded. For a

bounded loss function, asymptotic optimality can be obtained by using Rob-

bins’ method.

We make the following assumptions:

(A1) supy∈Y tF (y) <∞,

(A2) tn (y) is a consistent estimator of tF (y),

(A3) There exists a representing function ψ satisfying

L (θ, a) = ψ (|θ − a|) ,
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where ψ is an unbounded increasing convex function on R+ ∪ {0}.

By assumption (A1) and (A2), there exists 0 < M,N < ∞ such that

n > N implies |tn (y) | < M . To obtain the asymptotic optimality, we further

need

(A4) EFψ (M + |θ|) <∞.

Note that this assumption is stronger than EFψ (|θ|) <∞, since ψ is increasing

on R+. Therefore, we only require (A4) holds.

Remark 3.3. Due to a result of Karlin and Rubin (1956), if f (y|θ) is a member

of exponential family and the loss function satisfies (A3), then the Bayes rule

tF (y) is increasing in y. If Y = R, then (A1) requires limy→∞ tF (y) <∞.

Theorem 3.4. Under the assumptions (A1)-(A4), the modified decision rule

t̃n (y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
M if tn (y) > M

tn (y) otherwise

−M if tn (y) < −M

is asymptotically optimal.

Proof. From the construction of t̃n and the assumption (A2), we have limn t̃n (y) =

tF (y). Write h (θ) := ψ (M + |θ|). Then

L
(
θ, t̃n (y)

)
= ψ

(
|t̃n (y)− θ|

)
≤ ψ

(
|t̃n (y) |+ |θ|

)
≤ h (θ) .
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By Lebesgue’s dominated convergence theorem, we have

lim
n→∞

Eµ,F
(
L
(
θ, t̃n (y)

))
= Eµ,F

(
lim
n→∞

L
(
θ, t̃n (y)

))
= Eµ,F (L (θ, tF (y))) .

The last equality is due to the facts that (a) every convex function is contin-

uous; (b) tn (y) is a consistent estimator of tF (y).

For a real number k, let ⌈k⌉ denote the ceiling function which maps k to

the least integer.

Corollary 3.5. (k-th power absolute distance loss) Consider the loss function

L (θ, a) = |θ − a|k, where k ≥ 1. Assume the following conditions hold:

(1) supy∈Y tF (y) <∞,

(2) tn (y) is a consistent estimator of tF (y),

(3) EF
(
|θ|⌈k⌉

)
<∞.

Then the modified Bayes rule t̃n (y) is asymptotically optimal.

Proof. To apply Theorem 3.4, we only need to justify (A4): EF
(
(M + |θ|)k

)
<

∞. Without loss of generality, we can assume M ≥ 1 and then

EF
(
(M + |θ|)k

)
≤ EF

(
(M + |θ|)⌈k⌉

)
.

It is sufficient to show EF
(
(M + |θ|)⌈k⌉

)
is finite. Using binomial expansion,

we have

EF
(
(M + |θ|)⌈k⌉

)
=

⌈k⌉∑
m=0

⎛⎜⎝⌈k⌉
m

⎞⎟⎠M ⌈k⌉−mEF (|θ|m) .
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By Jensen’s inequality, if the pth-moment E (|Z|p) is finite, then all lower

moments must be finite: For m < p,

(E (|Z|m))p/m ≤ E
(
(|Z|m)p/m

)
= E (|Z|p) .

(Because |z|p is convex for p ≥ 1.) From assumption (3), we know EF
(
|θ|⌈k⌉

)
is

finite, so all lower moments must be finite and the assumption (5) in Theorem

3.4 holds.

Example 3.6. (Check loss) For τ ∈ (0, 1), pinball loss is represented by

ψ (r) =

⎧⎪⎪⎨⎪⎪⎩
− (1− τ) r if r < 0

τr if r > 0

.

Assume the following conditions hold:

(1) supy∈Y tF (y) <∞,

(2) tn (y) is a consistent estimator of tF (y),

(3) EF (|θ|) <∞.

Then the modified Bayes rule t̃n (y) is asymptotically optimal.

Example 3.7. (Huber loss) Huber loss is represented by

ψ (r) =

⎧⎪⎪⎨⎪⎪⎩
(r)2 /2 if |r| < c

c (|r| − c/2) if |r| > c

,

for some constant c > 0. Assume the following conditions hold:

(1) supy∈Y tF (y) <∞,

(2) tn (y) is a consistent estimator of tF (y),
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(3) EF (|θ|) <∞.

Then the modified Bayes rule t̃n (y) is asymptotically optimal.

3.1.1.1 The Squared Loss Function

For the regular squared loss function L (θ, a) = (θ − a)2, a bound of |tn (y) |

can be found explicitly. We make the following assumptions:

(B1) f and F are unimodal and symmetric,

(B2) E (Y 2) <∞ and EF (θ2) <∞,

(B3) tn (y) is a consistent estimator of tF (y).

The proof of the following result is very similar to Deely and Zimmer

(1976).

Theorem 3.8. Under the squared loss and the assumptions above, the modified

decision rule of tn:

t̃n (y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
|y|+ |ȳn| if tn (y) > |y|+ |ȳn|

tn (y) otherwise

−|y| − |ȳn| if tn (y) < −|y| − |ȳn|

is asymptotically optimal.

Proof. Due to Verbeek (1973), if the assumption (B1) holds and θ is a location

parameter, then

|E (θ|y) | ≤ |y|+ |λ|,

where λ = E (Y ). By assumption (B1), (B3) and the law of large numbers, we

have

t̃n (y)
p→ E (θ|y) .
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Let

hn (y, θ) := (|y|+ |ȳn|)2 + 2|θ| (|y|+ |ȳn|) + θ2,

then

L
(
θ, t̃n

)
=
(
t̃n (y)− θ

)2 ≤ hn (y, θ) .

Now

hn (y, θ)
p→ (|y|+ |λ|)2 + 2|θ| (|y|+ |λ|) + θ2

and

Eµ,F (hn (y, θ)) = E
(
Y 2
)
+ 2E (|Y |)E

(
Ȳn
)
+ E

(
Ȳ 2
n

)
+2E (|Y ||θ|) + 2E

(
|Ȳn|

)
E (|θ|) + E

(
θ2
)
.

Under assumption (B2),

lim
n→∞

Eµ,F (hn (y, θ)) = Eµ,F
(
lim
n→∞

hn (y, θ)
)
<∞.

Finally, by the generalized Lebesgue dominated convergence theorem, the re-

sult follows.

3.1.2 Estimators Based on Kiefer-Wolfowitz MLE

We turn now to Kiefer-Wolfowitz MLE based estimators, that is, tn (y) :=

tFn (y), where Fn is the Kiefer-Wolfowitz MLE. Suppose all the regularity con-

ditions in Kiefer and Wolfowitz (1956) hold, we have Fn ⇒ F . Unfortunately

weak convergence in general does not guarantee the consistency of tn (y). How-

ever, for certain types of loss functions, weak convergence is sufficient to give

the consistency. In those cases, the consistency assumption can be replaced
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by the list of regularity conditions in Kiefer and Wolfowitz (1956).

Theorem 3.9. (Squared loss) For the squared loss function L (θ, a) = (θ − a)2

and y|θ ∼ N (θ, 1), if all the regularity conditions in Kiefer and Wolfowitz

(1956) hold, then the estimated Bayes rule tn (y) = EFn (θ|y) is a consistent

estimator of tF (y).

Proof. Under the squared loss, the Bayes estimator has the form

EFn (θ|y) =

(ˆ
R
θϕ (y − θ) dFn (θ)

)
/f (y) .

By L’Hôpital’s rule, we have limθ→∞ θϕ (y − θ) = limθ→−∞ θϕ (y − θ) = 0 and

then θϕ (y − θ) is continuous and bounded function of θ. From the definition

of weak convergence, the result follows.

For convex loss functions with bounded derivatives, Kiefer-Wolfowitz MLE

based estimator tn (y) is consistent.

Theorem 3.10. (Huber, 2011, page 54) Let γ (a; θ) = ∂L (θ, a) /∂a be a mono-

tone increasing, but not necessarily continuous, function in a that takes values

of both signs and F the true prior distribution function. Then the estimator

T of location, defined by

ˆ
R
γ
(
θ − T

(
F̃
))

dF̃ (θ) = 0,

is weakly continuous at F if and only if γ is bounded and T (F ) is unique.

Theorem 3.11. (Consistency) For convex loss functions with bounded deriva-

tives, if all the regularity conditions in Kiefer and Wolfowitz (1956) hold, then
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the Kiefer-Wolfowitz MLE based estimator tn (y) is a consistent estimator of

tF (y).

Proof. The second derivative of a convex function is always nonnegative, so

its first derivative is an increasing function. The result is a consequence of

Theorem 3.10.

For Kiefer-Wolfowitz MLE based estimator, the assumption (A2) can be

replaced by:

(A2′) ∂L (θ, a) /∂a is bounded.

Theorem 3.12. (Asymptotic optimality) Under the assumptions (A1), (A2′),

(A3) and (A4), the modified Kiefer-Wolfowitz MLE based estimator t̃n (y) is

asymptotically optimal.

Proof. A consequence of Theorem 3.4 and 3.11.

3.2 Consistency of Expected Posterior Loss and

Minimizers

In this section, we study large sample theories for the expected posterior

loss and the minimizers. More importantly, one result below tells us when the

decision rule is an empirical Bayes procedure, which is a key assumption of

Theorem 3.4 in the previous section.

Let Fn be a consistent MLE, that is, Fn converge weakly to the true prior

distribution F . For each observed y, the decision rule induced by Fn is

tn (y) = argmin
t

ˆ
Θ

ˆ
Y
L (θ, t) f (y|θ) dµ (y) dFn (θ)
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= argmin
t

´
Θ
L (θ, t) f (y|θ) dFn (θ)´

Θ
f (y|θ) dFn (θ)

.

For convenience, let us write

g (t;Fn) =

´
Θ
L (θ, t) f (y|θ) dFn (θ)´

Θ
f (y|θ) dFn (θ)

and

g (t;F ) =

´
Θ
L (θ, t) f (y|θ) dF (θ)´

Θ
f (y|θ) dF (θ)

.

We want to show for each observed y, the estimated expected posterior loss

converge to the true one:

g (tn;Fn)→ g (t;F ) , as n→∞.

We make the following assumptions:

(A1) The integrand L (θ, a) f (y|θ) is continuous and bounded in θ,

(A2)
´
Θ
f (y|θ) dF (θ) > 0 for all y ∈ Y ,

(A3) L (θ, a) is convex in a.

Theorem 3.13. (Consistency of the expected posterior loss) Under the as-

sumptions (A1)-(A2), we have

g (tn;Fn)
a.s.→ g (t;F ) .

Proof. A consequence of the definition of weak convergence of measures.

Theorem 3.14. (Consistency of the minimizers) Under the assumptions (A1)-
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(A3), for each observed y, the decision tn is an empirical Bayes procedure, i.e.

tn (y)
a.s.→ tF (y) .

Proof. Under the assumption (A3), the estimated expected posterior loss g (t;Fn)

is convex in t. As a consequence of the convexity lemma (See, e.g. Rockafellar

(1970, page 266) and Pollard (1991)), the pointwise convergence of the objec-

tive functions is sufficient to give the consistency of minimizers. Under the

assumptions (A1)-(A2), g (t;Fn)
a.s.→ g (t;F ) and the result follows.

We will see when f (y|θ) is a member of one parameter exponential family,

the assumption (A1) is usually true. In the examples below, we consider real-

valued parameters and the k-th power absolute distance loss, i.e. L (θ, a) =

|θ − a|k, where k ≥ 1. Then the assumption (A3) automatically holds.

Example 3.15. (Binomial distribution) Consider y|θ ∼ Bin(n, θ). The pa-

rameter space Θ = [0, 1] is compact. Then the assumption (A1) is trivially

true.

Example 3.16. (Normal distribution with a known variance) Consider y|θ ∼

N (θ, 1) and the parameter space Θ = R. The assumption (A2) clearly

hold. Furthermore, the integrand I (θ) := L (θ, a) f (y|θ) is the product of

two continuous functions, hence, it is continuous. For the boundedness, using

L’Hôpital’s rule, we have limθ→∞ I (θ) = limθ→−∞ I (θ) = 0. Therefore, the

assumption (A1) is true.

Remark 3.17. Using the same arguments above, we are able to show the as-

sumption (A1) holds for Poisson distribution, exponential distribution, Gamma
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distribution with known shape parameter and Weibull distribution with known

shape parameter as well.

Remark 3.18. For Gamma and Weibull distributions, there are more than one

way of parametrizations. Specifically, for Gamma distribution with a known

the shape parameter α, we choose

f (y|θ) = θα

Γ (α)
yα−1e−θy.

For Weibull distribution, we use

f (y|θ) = θα (θy)α−1 e−(θy)α ,

where the shape parameter α is known. If a different parametrization is used,

the assumption (A1) may not hold: For example, consider a Gamma distribu-

tion with the shape parameter 1 can also be parametrized as

f
(
y|θ̃
)
=

1

θ̃
e−

y

θ̃ .

Then the integrand I
(
θ̃
)
goes to infinity as θ̃ →∞.
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Chapter 4

Algorithms for Kiefer-Wolfowitz

Dual Problem

As we already discussed in Chapter 2, the Kiefer-Wolfowitz maximum like-

lihood estimation problem can be formulated as a convex optimization problem

in function space. When the dimension of parameter space is one, we can use

the discretization based method proposed by Koenker and Mizera (2014) by

restricting the prior F on a fine grid and then applying interior-point meth-

ods. Such an approach reduces the computational effort by “several orders

of magnitude” by comparison to prior EM-based methods. The number of

grid points required in the discretization method is about the square root of

the sample size (Dicker and Zhao, 2014) but it grows exponentially fast as

the dimension of the parameter space increases and the problem quickly be-

comes computationally intractable. Possible cure comes out of an insight that

although the primal formulation of the maximum likelihood estimation prob-

lem is infinite-dimensional, the objective function of the dual formulation is

finite dimensional. For this reason, in this chapter we focus on solving the
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Kiefer-Wolfowitz dual problem and we propose four alternative algorithms for

the dual problem which aim for solving the maximum likelihood estimation

problem when the dimension of parameter space is relatively high.

In Section 4.1, we study the primal and dual formulations for the maxi-

mum likelihood estimation problem. In Section 4.2, we explore the geometric

properties of the maximum likelihood estimation problem which play impor-

tant roles when we develop optimization algorithms. In Section 4.3, we find

out the dual problem is equivalent to a stochastic programming problem and

develop a new projected stochastic gradient method to solve it. In Section 4.4

and 4.5, the stochastic problem is solved by using sampling based methods: the

sample average approximation and a bootstrap aggregating like algorithm. In

Section 4.6, we describe a cutting-plane method for solving the dual problem.

4.1 Primal and Dual Formulations of Kiefer-

Wolfowitz Problem

In this section, we study the primal and dual formulations for Kiefer-

Wolfowitz maximum likelihood estimation problem.

Recall that the Kiefer-Wolfowitz primal problem has the form

min
F∈F
−

n∑
i=1

log

ˆ
Rp

f (yi|θ) dF (θ), (4.1)

where F is the class of all probability distribution functions on R. The fol-

lowing result characterizes the relationship between the primal (2.2) and the

dual formulation.

Theorem 4.1. (Koenker and Mizera, 2014) The solution F̂n of the primal
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problem exists and is an atomic probability measure with no more than n atoms.

The locations θ̂j and the masses f̂j at these locations can be found via the dual

characterization: the solution v̂ of

max
v∈Rn

+

n∑
i=1

log vi

subject to
n∑
i=1

vif (yi|θ) ≤ n, for all θ ∈ Rp

satisfies the extremal equations

∑
j

f
(
yi|θ̂j

)
f̂j =

1

v̂i
, i = 1, ..., n

and θ̂j are exactly those θ where the dual constraint is active.

Although the primal formulation of the Kiefer-Wolfowitz maximum likeli-

hood estimation problem is infinite-dimensional, if we are working on its dual

problem, we are back to n−dimensional Euclidean space (with infinitely many

constraints). This result gives potential to develop efficient algorithms for the

problem with large p.

4.2 Geometric Properties of Kiefer-Wolfowitz

Maximum Likelihood Estimation Problem

Before proceeding to any concrete algorithms, we study the location of

support set supp(F̂ ) in the primal problem and the location of v̂ in the dual

problem, which play important roles when we develop optimization algorithms.

In this section, we give a proof that for p ≥ 1 all the support points of Kiefer-
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Wolfowitz MLE lie in the convex hull of the observed points. Also, we provide

an alternative proof that the solution of the dual problem lies on the boundary

of the feasible set. In contrast to the previous proof of Lindsay (1983) based

on the results of convex geometry, we establish the result by using the KKT

conditions in semi-infinite programming.

The following result is first mentioned in Lindsay (1981) with no proof.

To establish the result, we need to introduce some notation from Lindsay

(1983). Let fF (y) =
´
Θ
f (y|θ) dF (θ), fθ = (f (y1|θ) , ..., f (yn|θ)), fF =

(fF (y1) , ..., fF (yn)). We write φ (x) =
∑n

i=1 log xi and define the gradient

function of φ at fF0 towards fF1to be

Φ (fF1 ; fF0) = lim
ϵ→0

ϵ−1 {φ ((1− ϵ) fF0 + ϵfF1)− φ (fF0)} (4.2)

=
n∑
i=1

{fF1 (yi)− fF0 (yi)} /fF0 (yi) ,

where ϵ ∈ (0, 1). We write

D(θ;F ) := Φ (fθ; fF ) =
n∑
i=1

Li (θ)

Li (F )
− n,

where Li (θ) = f (yi|θ) and Li (F ) = fF (yi).

Definition 4.2. (Convex hull) The convex hull of a set C, denoted conv (C),

is the set of all convex combinations of points x1, ..., xn in C:

conv (C) =

{
n∑
i=1

αixi : xi ∈ C, αi ≥ 0, i = 1, ..., n,
n∑
i=1

αi = 1

}
.

When we study the convergence of the algorithms, we fix the sample size n

and let the number of iterations tend to infinity. For convenience, we usually
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denote Kiefer-Wolfowitz MLE F̂n as F̂ .

Theorem 4.3. For p ≥ 1, if yi|θi
ind∼ Np (θi,Σ), then all the support points of

Kiefer-Wolfowitz MLE F̂ lie in the convex hull of the observed points {yi; 1 ≤ i ≤ n}.

Proof. Let θ∗ := θ∗(F̂ ) ∈ Rp be a mode of the gradient function D(θ; F̂ ). By

Theorem 19 in Lindsay (1995), the support points of F̂ are necessarily modes.

Then for the mode θ∗, we have

∇D(θ∗; F̂ ) = 0. (4.3)

Since

∇Li (θ) /Li (θ) = −Σ−1 (yi − θ) , for each i,

equation (4.3) can be rewritten as

n∑
i=1

∇Li (θ∗)
Li(F̂ )

=
n∑
i=1

−Σ−1 (yi − θ∗)Li (θ∗)
Li(F̂ )

= 0. (4.4)

By Theorem 19 in Lindsay (1995), we should have

n∑
i=1

Li (θ
∗)

Li(F̂ )
= n. (4.5)

Combining (4.4) and (4.5), we obtain

θ∗ =
n∑
i=1

αiyi,

where αi := αi(θ
∗(F̂ ), F̂ ) = Li (θ

∗) /(nLi(F̂ )) and
∑n

i=1 αi = 1. Solving this

equation for θ∗ gives the result.

Remark 4.4. As a consequence of Theorem 4.3, for p = 1, all the support
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points of F̂ lie in the interval

[min {yi; 1 ≤ i ≤ n} ,max {yi; 1 ≤ i ≤ n}] .

Theorem 4.5. (Reduced dual problem) For p ≥ 1, if yi|θi
ind∼ Np (θi,Σ), then

Kiefer-Wolfowitz dual problem is equivalent to the reduced problem

min
v∈Q
−

n∑
i=1

log vi subject to
n∑
i=1

viLi (θ) ≤ n, for all θ ∈ conv (y) , (4.6)

where Q is a n-dimensional box [0, u1]× ...× [0, un] with

ui = 1/ inf
θ∈conv(y)

Li (θ) .

Proof. First we show that the feasible set of the reduced problem

min
v∈Rn

+

−
n∑
i=1

log vi subject to
n∑
i=1

viLi (θ) ≤ n, for all θ ∈ conv (y)

contains the feasible set of the original dual problem. One direction is clear: If

v∗ is the the solution of Kiefer-Wolfowitz dual problem, then it is the solution

of the reduced problem. Consider the other direction: If v∗ is the the solution

of the reduced problem, the extremal equations

∑
j

Li
(
θ∗j
)
f ∗
j =

1

v∗i
, i = 1, ..., n

indicate that for each i, v∗i does not depend on the θ out of supp(F̂ ), hence it

does not depend on the θ out of conv (y) by Theorem 4.3.
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From the extremal equations and the discussion above, we observe that

∑
j

Li
(
θ∗j
)
f ∗
j ≥ min

j
Li
(
θ∗j
)
≥ inf

θ∈conv(y)
Li (θ)

and then

v∗i ≤ 1/ inf
θ∈conv(y)

Li (θ) , i = 1, ..., n.

Next we provide a novel proof to show that the solution of the dual prob-

lem v̂ lies on the boundary of the feasible set. This approach uses standard

KKT arguments in semi-infinite programming, which is different from Lind-

say (1983). A short overview of semi-infinite programming is provided first.

Some references are Hettich and Kortanek (1993), López and Still (2007) and

Shapiro (2009).

Semi-infinite programming is an optimization problem in finitely many

variable x = (x1, ..., xn) ∈ Rn on a feasible set described by infinitely many

constraints:

min
x∈Rn

f (x) subject to g (x, t) ≤ 0, ∀t ∈ T,

where T is an infinite index set. The semi-infinite programming is called

convex if the objective function f (x) is convex and, for every index t ∈ T ,

the constraint function g (·, t) is convex. For a feasible x̄, denote the active

index set as

Ta (x̄) = {t ∈ T : g (x̄, t) = 0} .

Assume the objective function f (x) is continuously differentiable on Rn and

the index set T is compact. As in finite convex programming, the KKT con-
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ditions are necessary and sufficient for optimality López and Still (2007).

Remark 4.6. The requirement of compactness of T is satisfied by Theorem 4.5.

Theorem 4.7. The solution of the dual problem lies on the boundary of the

feasible set.

Proof. For convenience, let us write Li (θ) = f (yi|θ) and L (θ) = (L1 (θ) , ..., Ln (θ)).

First, we show Slater’s condition holds: Let vi = 1/ (2Li (θ)) , then L (θ)T v =

n/2 < n for all θ ∈ conv (y). Now let v∗ be the minimizer of Problem 4.6. By

Lemma 4 and Theorem 2(b) of López and Still (2007), there exist multipliers

α∗
1, ..., α

∗
k, β

∗ ≥ 0 and indices θ1, ..., θk ∈ Ta (v∗) with k ≤ n such that

− 1

v∗i
− β∗

i +
k∑
j=1

α∗
jLi (θj) = 0, i = 1, ..., n.

The KKT conditions are:

L (θ)T v∗ ≤ n, ∀θ ∈ conv (y)

−v∗ ≤ 0,

α∗
j ≥ 0, j = 1, ..., k

β∗ ≥ 0,

α∗
j

(
L (θj)

T v∗ − n
)
= 0, j = 1, ..., k (4.7)

β∗
i v

∗
i = 0, i = 1, ..., n

− 1

v∗i
− β∗

i +
k∑
j=1

α∗
jLi (θj) = 0, i = 1, ..., n. (4.8)

Since v∗i ̸= 0, the equality β∗
i v

∗
i = 0 implies β∗

i = 0 for all i. Then from
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(4.8) we have
∑k

j=1 α
∗
jLi (θj) = 1/v∗i for all i. This suggests there is at least

one α∗
j ̸= 0. The condition of complementary slackness (4.7) therefore implies

L (θj)
T v∗ − n = 0 for some θj. That is, the solution lies on at least one

constraint line.

4.3 Projected Stochastic Gradient Methods

In this section, we study a novel projected stochastic gradient method and

apply it to solve Kiefer-Wolfowitz dual problems. The main appeal of this

algorithm is that in each iteration, the random direction one moves towards

only depends on finitely many randomly selected constraints, which makes it

useful for large scale programming problems. More importantly, we establish

a connection between semi-infinite and stochastic programming based on the

work of Tadić, Meyn, and Tempo (2006) so that an optimization problem with

infinitely many constraints can be reformulated as a problem with one stochas-

tic constraint. In Sections 4.4 and 4.5, we shall see that some of the results in

this section contribute in the development of various sampling methods.

Tadić et al. (2006) establish a result that a large class of semi-infinite

programming problem can be reformulated as a constrained stochastic pro-

gramming problem by introducing a penalty function. Let Bp denote the class

of Borel-measurable sets on Rp and µ a probability measure on Bp satisfying

µ (A) > 0 for any non-empty open set A ⊂ Rp. A continuous and differentiable

function h : R→ R+ with positive support:

h (t) =

⎧⎪⎪⎨⎪⎪⎩
0 for all t ∈ (−∞, 0]

> 0 for all t ∈ (0,∞) .

50



To make the problem convex, we further require h to be convex and non-

decreasing. Let Θ be an Rp-valued random variable on a probability space

(Ω,F , P ) whose probability measure is µ:

P (Θ ∈ B) = µ (B) , B ∈ Bp.

Theorem 4.8. (Tadić et al., 2006, Corollary 2) Let g : Rn × Rp → R be a

Borel-measurable function such that

g (v, ·) is continuous on Rp for each v ∈ Rn.

Under the assumptions above, for a continuous objective function f : Rn → R,

the semi-infinite programming

min
v∈Rn

f (v)

subject to g (v, ξ) ≤ 0, ∀ξ ∈ Rp

is equivalent to the constrained stochastic optimization problem

min
v∈Rn

f (v)

subject to E (h (g (v,Θ))) ≤ 0.

We apply the result of Tadić et al. (2006) on the dual problem. Recall from

Theorem 4.5 that Q is a n-dimensional box

[0, u1]× ...× [0, un] ,
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where

ui = 1/ inf
θ∈conv(y)

Li (θ) .

Theorem 4.9. Kiefer-Wolfowitz dual problem is equivalent to a stochastic

programming problem

min
v∈Q
−

n∑
i=1

log (vi) (4.9)

subject to ψ (v) = E (h (g (v,Θ))) = 0,

where g (v, θ) = L (θ)T v − n.

Proof. The function g (v, ·) is continuous on Rp for each v. Then the result is

a consequence of Theorem 4.5 and Theorem 4.8.

Let ΠQ (x) denote projection of a point x ∈ Rn onto the set Q. The

stochastic programming problem (4.9) could be then solved using a projected

stochastic gradient method:

v(k+1) = ΠQ(v
(k) − γ(k+1)∇(−

n∑
i=1

log(v
(k)
i ) + δ(k+1)ψ(v(k))), k ≥ 0 (4.10)

where
{
δ(k)
}
k≥1

is an increasing sequence of positive reals such that limk→∞ δ(k) =

∞,
{
γ(k)
}
k≥1

is sequence of positive reals. By Lebesgue’s dominated conver-

gence theorem, we have

∇ψ (v) = ∇E (h (g (v,Θ))) = E (h′ (g (v,Θ))∇vg (v,Θ)) .

For many problems, the gradient ∇ψ can not be computed explicitly. This

motivate us thinking of Monte-Carlo sampling methods and approximating
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the expectation by its sample average.

The idea, known as stochastic gradient method, has already been explored

in Subsection 2.4.2.1. Let ξ
(k)
1 , ..., ξ

(k)
N be a sequence of i.i.d. uniform random

variables on conv (y) in kth iteration. The update step in projected stochastic

gradient method has the form

v(k) = ΠQ(v
(k) − γ(k+1)(− 1

v(k)
+
δ(k+1)

N

N∑
i=1

h′(g(v(k), ξ
(k)
i ))L(ξ

(k)
i ))),

where k ≥ 0.

With a carefully chosen penalty function h and step sizes γ, δ and other

mild conditions, we prove the algorithm eventually converges to the optimal

solution. A general convergence result is provided below.

4.3.0.1 Convergence Analysis

The convergence of the previously mentioned projected stochastic gradient

method is studied here. First we provide a convergence result in a general

setup.

Suppose a continuous function h : R→ R+has support (0,∞):

h (t) =

⎧⎪⎪⎨⎪⎪⎩
0 for all t ∈ (−∞, 0]

> 0 for all t ∈ (0,∞)

and h is differentiable. Suppose g (·, y) is differentiable and convex for each

y ∈ Rp. Assume a predetermined set Q ⊂ Rn is compact and convex.
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Consider a semi-infinite programming problem

min
x∈Q

f (x)

subject to g (x, y) ≤ 0, ∀y ∈ Rp

or equivalently a stochastic programming problem

min
x∈Q

f (x)

subject to ψ (x) = E (h (g (x, Y ))) = 0.

Denote the standard Euclidean norm as ∥·∥. For an integer n ≥ 1 and z ∈ Rn,

ρ > 0, the associated closed balls are defined as

Bn
ρ (z) = {z′ ∈ Rn : ∥z − z′∥ ≤ ρ} .

LetD be the feasible setD = {x ∈ Rn : g (x, y) ≤ 0,∀y ∈ Rp} and
{
δ(k)
}
k≥1

an

increasing sequence of positive reals satisfying limk→∞ δ(k) =∞. The projected

stochastic gradient method generates iteratively the sequence
{
X(k)

}
k≥0

via

X(k+1) = ΠQ(X
(k) − γ(k+1)(∇f

(
X(k)

)
(4.11)

+δ(k+1)h′
(
g
(
X(k), Y (k+1)

))
∇xg

(
X(k), Y (k+1)

)
)),

where k ≥ 0.

Definition 4.10. (Lipschitz continuity) A real-valued function f (x) is called

Lipschitz continuous if there exists a real constant K ≥ 0 such that, for all x
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and y in the domain, |f (x)− f (y) | ≤ K∥x− y∥. A real-valued function f (x)

is called locally Lipschitz continuous if for every x in the domain there exists

a neighborhood U of x such that f restricted to U is Lipschitz continuous.

The following assumptions are required in the analysis of the algorithm:

Assumption 1. γ(k), δ(k) > 0 for k ≥ 1,
∑∞

k=1 γ
(k) = ∞,

∑∞
k=1

(
γ(k)
)2
< ∞,∑∞

k=1 γ
(k)δ(k) =∞ and

∑∞
k=1

(
γ(k)δ(k)

)2
<∞.

Assumption 2. f is convex and ∇f is locally Lipschitz continuous.

Assumption 3. h is convex and nondecreasing; g (·, y) is convex for each

y ∈ Rp. For all ρ ∈ [1,∞), there exists a Borel-measurable function φρ : Rp →

[1,∞) and such that ˆ
φ4
ρ (y)µ (dy) <∞,

and for all x, x′, x′′ ∈ Bn
ρ , y ∈ Rp,

max {|h (g (x, y)) |, |h′ (g (x, y)) |, ∥∇xg (x, y) ∥} ≤ φρ (y) ,

|h′ (g (x′, y))− h′ (g (x′′, y)) | ≤ φρ (y) ∥x′ − x′′∥,

∥∇xg (x
′, y)−∇xg (x

′′, y) ∥ ≤ φρ (y) ∥x′ − x′′∥.

Assumption 4. D ∩ Q ̸= ∅, η∗ := infx∈D∩Q f (x) > −∞ and the set of

optimizers D∗ := {x ∈ D : f (x) = η∗} is non-empty.

Assumption 1 holds when the step sizes γ, δ are carefully chosen. Assump-

tion 2 corresponds to the properties of the objective function f . Assumption

3 holds when the penalty function h is carefully selected; the function ψ is

well-defined, finite and differentiable and ∇ψ is locally Lipschitz continuous.

Assumption 4 ensures the optimization problem is well-defined and it has non-

trivial solutions.
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Using the method of Tadić et al. (2006), we are able to establish the con-

vergence result of the algorithm.

Let fk (x) = f (x) + δk+1ψ (x) for x ∈ Rn, k ≥ 1. Denote

κk+1 = γk+1δk+1 (∇ψ (Xk)− h′ (g (Xk, Yk+1))∇xg (Xk, Yk+1))

ϵ1,k+1 = 2 (Xk − ΠD∗ (Xk))
T κk+1

ϵ2,k+1 = ∥Zk+1 −Xk∥2

ϵk+1 = ϵ1,k+1 + ϵ2,k+1

Zk+1 = Xk − γk+1 (∇f (Xk) + δk+1h
′ (g (Xk, Yk+1))∇xg (Xk, Yk+1)) .

So we have

Zk+1 = Xk − γk+1∇fk (Xk) + κk+1 (4.12)

and

Xk+1 = ΠQ (Zk+1) .

Definition 4.11. (Nonexpansive) Let B be a Banach space and C a nonempty

bounded closed and convex subset of B. A mapping T : C → B is said to be

nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, x, y ∈ C.

Since fk (x) is convex and ΠD∗ (·), ΠQ (·) are nonexpansive, for any ω we

have

(Xk − ΠD∗ (Xk))
T ∇fk (Xk) ≥ fk (Xk)− fk (ΠD∗ (Xk))

= fk (Xk)− η∗ (4.13)
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and

∥Xk+1 − ΠD∗ (Xk+1) ∥ ≤ ∥Xk+1 − ΠD∗ (Xk) ∥

= ∥ΠQ (Zk+1)− ΠQ (ΠD∗ (Xk)) ∥

≤ ∥Zk+1 − ΠD∗ (Xk) ∥, k ≥ 0. (4.14)

Then for any ω and all k ≥ 0, (4.14) yields

∥Xk+1 − ΠD∗ (Xk+1) ∥2 ≤ ∥Zk+1 − ΠD∗ (Xk) ∥2

= ∥ (Xk − ΠD∗ (Xk)) + (Zk+1 −Xk) ∥2

= ∥Xk − ΠD∗ (Xk) ∥2

+2 (Xk − ΠD∗ (Xk))
T (Zk+1 −Xk) + ∥Zk+1 −Xk∥2

= ∥Xk − ΠD∗ (Xk) ∥2 − 2γk+1 (Xk − ΠD∗ (Xk))
T ∇fk (Xk)

+ϵk+1.

Lemma 4.12. Suppose Assumptions 1-3 hold. Then limk→∞ ∥Zk+1−Xk∥ = 0

and limk→∞ ∥Xk+1−Xk∥ = 0 almost surely on the event
{
supk≥0 ∥Xk∥ <∞

}
.

Proof. Let ρ ∈ [1,∞) and Kρ ∈ [ρ,∞) denotes an upper bound of ∥ΠD∗ (·) ∥,

∥∇ψ∥ and ∥∇f∥ on the set Q. From Assumption 3,

∥κk+1∥ 1{∥Xk∥≤ρ} ≤ 2Kργk+1δk+1φ
2
ρ (Yk+1) ,

|ϵ1,k+1|1{∥Xk∥≤ρ} ≤ 4Kρ∥κk+1∥1{∥Xk∥≤ρ},

|ϵ2,k+1|1{∥Xk∥≤ρ} ≤ 2K2
ργ

2
k+1 + 2∥κk+1∥21{∥Xk∥≤ρ}
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for k ≥ 0. This implies that

E

(
∞∑
k=1

∥κk∥21{∥Xk∥≤ρ}

)
≤ 4K2

ρ

∞∑
k=1

γ2kδ
2
kE
(
φ2
ρ (Yk)

)
<∞,

E

(
∞∑
k=1

|ϵ1,k|21{∥Xk∥≤ρ}

)
≤ 16K2

ρE

(
∞∑
k=1

∥κk∥21{∥Xk∥≤ρ}

)
<∞,

E

(
∞∑
k=1

|ϵ2,k|21{∥Xk∥≤ρ}

)
≤ 2E

(
∞∑
k=1

∥κk∥21{∥Xk∥≤ρ}

)

+4K2
ρ

∞∑
k=1

γ2k+1

(
1 + δ2k+1

)
<∞.

Note that

Zk+1 −Xk = −γk+1 (∇f (Xk) + δk+1∇ψ (Xk)) + κk+1.

From Assumptions 2 and 3, we have

∥Zk+1 −Xk∥ ≤ Kργk+1 (1 + δk+1) + ∥κk+1∥, ∀ω. (4.15)

Owing to Assumption 1 and (4.15), we obtain

lim
k→∞
∥Zk+1 −Xk∥ = 0, w.p.1. (4.16)

For arbitrary sample ω,

∥Xk+1 −Xk∥ = ∥ΠQ (Zk+1)−Xk∥

≤ ∥Zk+1 −Xk∥.

Using (4.16), we have the desired result.
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Let d(x, S) denote the distance of a point x from set S, defined by

d(x, S) = inf {d(x, s) : s ∈ S} .

Theorem 4.13. Let
{
X(k)

}
k≥0

be generated by (4.11), and assume assump-

tions 1-4 hold. Then

P
(
lim
k→∞

d
(
X(k), D∗) = 0

)
= 1.

Proof. By Lemma 4.12 and the similar arguments in Theorem 4 of Tadić et al.

(2006), we have the result.

Next we show the general projected stochastic gradient algorithm can be

applied to our problem.

Theorem 4.14. For Kiefer-Wolfowitz dual problem, let
{
X(k)

}
k≥0

be gener-

ated by (4.11). Let h (t) = (max {0, t})2 and γ, δ satisfy the assumption 1,

then v(k) converge to the optimal solution v∗ almost surely as k →∞.

Proof. To apply Theorem 4.13, we need to justify the assumptions 1-4. As-

sumption 1 and 4 immediately hold. Assumption 2 is true due to the fact

that any continuously differentiable function is locally Lipschitz. Assumption

3 follows the comments in Tadić et al. (2006, page 7-8), since h is chosen to

be piecewise quadratic and g (·, y) is linear for any y.

4.3.0.2 Stopping Criteria

Following the suggestion of Ermoliev (1983), for an objective function f0,

we terminate the algorithm if there is no improvement in the objective function
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after M iterations

⏐⏐⏐⏐f0 (v(k))− 1

M + 1

k∑
j=k−M

f0
(
v(j)
)⏐⏐⏐⏐ ≤ ϵ,

where M is a relatively large prespecified integer and ϵ is a predetermined

threshold.

4.3.0.3 Numerical Experiment

We compute the MLE via the projected stochastic gradient method for

p = 2 and n = 100. Suppose yi|θi
ind∼ Np (θi,Σ) and θi

iid∼ N (101p, S), where

i = 1, ..., n, Σjk = 0.9|j−k|, 1p = (1, ..., 1) ∈ Rp, Sjk = 0.8|j−k| and j, k ∈ {1, 2}.

For the penalty function and step sizes, we choose h (t) = (max {0, t})2, γ(k) =

k−1/2 and δ(k) = 1.

In Figure 1, we observe that the convergence of the algorithm can be very

slow: When the algorithm starts, a lot of time it moves to the wrong direc-

tions so that the objective value can increase. After hundreds of iterations,

it gradually converges. When it gets close to the true value, the convergence

slows down.

4.4 Sample Average Approximation

In this section, we apply sample average approximation methods to solve

KW dual problems and establish the convergence result. From the previous

discussion, we already see that the Kiefer-Wolfowitz dual problem is equiv-

alent to a stochastic programming problem: Infinitely many constraints can

be summarized as one stochastic constraint. The underlying distribution µ
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Figure 1: Convergence of the objective values using the projected stochastic gradient
method. The red horizontal line corresponds to the objective value using the interior-
point method with a fine grid.

is chosen by us and therefore it is known. The evaluation of the integration

is rather difficult. It is possible to conduct some sampling schemes from the

distribution µ and solve the corresponding deterministic problem. The supe-

riority of this approach is that (1) The approximated problem only involves

finitely many constraints and it is implementable; (2) It preserves the convex-

ity of the problem: If the stochastic problem is convex, then its corresponding

sample average approximation problem is convex as well. Therefore, sample

average approximation problem can be then efficiently solved by deterministic

convex algorithms.

Recall that the dual problem can be reformulated as a stochastic program-

ming problem

min
v∈Q
−

n∑
i=1

log (vi)

subject to E (h (g (v,Θ))) = 0. (4.17)
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Suppose we have a random sample ξ1, ..., ξN of N realizations of random vari-

able Θ. The equality constraint (4.17) can be approximated by
∑N

i=1 h (g (v, ξi)) /N =

0. Since the penalty function is always nonnegative, we replace the equality

in the original sample average approximation problem by inequality and make

the problem convex. The sample average approximation of Kiefer-Wolfowitz

dual problem then has the form

min
v∈Q
−

n∑
i=1

log (vi) (4.18)

subject to
1

N

N∑
i=1

h (g (v, ξi)) ≤ 0.

The following results further simplify the problem and show that the opti-

mal solution of the sample average approximation problem v̂N can be obtained

by solving Kiefer-Wolfowitz dual problem with randomly chosenN constraints.

Theorem 4.15. The sample average approximation problem (4.18) is equiva-

lent to

min
v∈Q
−

n∑
i=1

log (vi)

subject to g (v, ξi) ≤ 0, i = 1, ..., N.

Proof. Note that for a given random sample ξ1, ..., ξN , the two sets

AN =

{
v ∈ Rn

+ :
N∑
i=1

h (g (v, ξi)) /N ≤ 0

}

and

BN =
{
v ∈ Rn

+ : g (v, ξi) ≤ 0, i = 1, ..., N
}

are equivalent. The result follows.
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4.4.0.1 Asymptotic Properties

Consistency results are provided here. It should be pointed out that when

the convergence of the sample average approximation algorithms is studied,

the size of randomly selected constraints N goes to infinity but the sample size

of data n is kept fixed.

Let f ∗ and v∗ denote the optimal value and the optimal solution of Kiefer-

Wolfowitz dual problem; f̂N and v̂N the optimal value and the optimal solution

of the sample average approximation problem (4.18).

Consider a general convex stochastic problem taking the form

min
v∈Q

f (v) = EF (v,Θ) ,

subject to u (v) = EG (v,Θ) ≤ 0,

where Q is a nonempty closed subset of Rn; F (·, ξ) and G (·, ξ) are convex.

Its sample average approximation problem has the form

min
v∈Q

1

N

N∑
i=1

F (v, ξi) ,

subject to uN (v) =
1

N

N∑
i=1

G (v, ξi) ≤ 0.

Denote the feasible sets for the stochastic problem and its sample average

approximation problem by

V = {v ∈ Q : u (v) ≤ 0}
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and

VN = {v ∈ Q : uN (v) ≤ 0} .

Write the deviation of the set A from the set B as

D (A,B) := sup
x∈A

dist (x,B) ,

where dist (x,B) := infx′∈B ∥x− x′∥.

Definition 4.16. (Semi-continuity) Suppose X is a topological space, x0 is a

point in X and f : X → R is an extended real-valued function. We say that f

is upper semi-continuous at x0 if for every ϵ > 0 there exists a neighborhood

U of x0 such that f (x) ≤ f (x0) + ϵ for all x ∈ U when f (x0) > −∞, and

f (x) tends to −∞ as x tends towards x0 when f (x0) = −∞. We say f is

lower semi-continuous at x0 if for every ϵ > 0 there exists a neighborhood U

of x0 such that f (x) ≥ f (x0) − ϵ for all x in U when f (x0) < ∞, and f (x)

tends to ∞ as x tends towards x0 when f (x0) =∞.

Remark 4.17. A function is continuous at x0 if and only if it is upper and lower

semi-continuous there.

The consistency of the algorithm for Kiefer-Wolfowitz dual problem is a

consequence of the following result.

Theorem 4.18. (Shapiro et al., 2009, Theorem 5.5) Suppose that: (i) the

function F is random lower semicontinuous, (ii) for almost every ξ the func-

tion F (·, ξ) is convex, (iii) the set V is closed and convex, (iv) the expected

value function u is lower semicontinuous and there exists a point v̄ ∈ V such

that f (v) < ∞ for all v in a neighborhood of v̄, (v) the set S of optimal

solutions of the true problem is nonempty and bounded, and (vi) the law of
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large numbers holds pointwise. In addition, we assume (a) If vN ∈ VN and

vN converge w.p. 1 to a point v, then v ∈ V , (b) For some point v ∈ S there

exists a sequence vN ∈ VN such that vN → v w.p. 1. Then f̂N → f ∗ and

D
(
ŜN , S

)
→ 0 w.p. 1 as N →∞.

Corollary 4.19. (Consistency of Dual) For Kiefer-Wolfowitz dual problem,

f̂N → f ∗ and v̂N → v∗ almost surely.

Proof. The result is a consequence of Theorem 4.18. The conditions (i) , (ii),

(iii), (v) and (vi) in Theorem 4.18 can be verified directly. The second part

of the condition (iv) is also straight. We only need to justify the first part of

the condition (iv): the expected value function U (v) := Eh (g (v,Θ)) is lower

semicontinuous. In fact, U is continuous on Q. Let {vt} be a sequence such

that vt → v0. Now we consider the sequence of measurable functions ft (θ) =

h (g (vt, θ)). From the construction, the function h (g (·, θ)) is continuous for

every θ. Now

lim
t→∞

U (vt) = lim
t→∞

ˆ
conv(y)

ft (θ)µd (θ)

is bounded above by some constant by the extreme value theorem. By Lebesgue’s

dominated convergence theorem, we have

lim
t→∞

ˆ
conv(y)

ft (θ)µd (θ) =

ˆ
conv(y)

lim
t→∞

ft (θ)µd (θ)

=

ˆ
conv(y)

h (g (v0, θ))µd (θ)

= U (v0) .

Thus

lim
t→∞

U (vt) = U (v0) ,
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which means U is continuous. The condition (a) in Theorem 4.18 is a conse-

quence of Theorem 2 in Jennrich (1969). For the condition (b), chose vN = v∗

for all N and the result follows.

Before we give a consistency result for the primal problems, we introduce

some concepts and notation on the weak topology.

Let Ω be an arbitrary metric space, let B be the Borel-σ-algebra and con-

sider probability measures Fn and F defined on B. Let R be the space of all

probability measures on (Ω,B).

Definition 4.20. (Weak convergence) We say Fn converge weakly to F if
´
ψdFn →

´
ψdF for all bounded and continuous functions ψ and we write

Fn ⇒ F .

The weak(-star) topology in R is the weakest topology such that, for every

bounded continuous function ψ, the map

F →
ˆ
ψdF

from R into R is continuous.

Lemma 4.21. (Huber, 2011, Lemma 2.1) A linear functional T is weakly

continuous on R if and only if it can be represented in the form

T (F ) =

ˆ
ψ (θ) dF (θ)

for some bounded and continuous function ψ.

Let F ∗ denote the optimal solution of Kiefer-Wolfowitz primal problem;

FN the optimal solution of the primal problem restricted on the randomly
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generated grid {ξ1, ..., ξN}. Without loss of generality, we take n = 1 and

define a linear functional by

T (F ) =

ˆ
Rp

f (y|θ) dF (θ) .

We further assume f (y|θ) is a member of exponential family so that f (y|·) is

continuous and bounded.

Theorem 4.22. (Consistency of Primal) If T is one-to-one, then FN converge

weakly to F ∗ almost surely:

P
({
ω : lim

N→∞
FN (·) (ω)⇒ F ∗

})
= 1.

Proof. By Lemma 4.21, the linear functional T is weakly continuous at F ∗.

By Theorem 4.19, v̂N → v∗ almost surely. From one of the KKT conditions,

we have

T (FN) = 1/v̂N .

Then T (FN)→ T (F ∗) almost surely. Under the assumption, the result follows

by applying continuous mapping theorem.

Theorem 4.23. (Consistency of Decision Rules) Consider a problem of mul-

tiple prediction discussed in Chapter 2. Let the loss function ρ : (θ, q) ↦→

ρ (θ, q) ∈ R defined for θ ∈ Rp and q ∈ Q, where Q is a nonempty subset of

Rp. Let ρ (·, q) be a closed proper convex function which attains its infimum at

an unique point and let q̂N := q(F̂N) be Bayes decision rule of θ with a sample

average approximation estimator F̂N of Kiefer-Wolfowitz MLE. Assume the

condition of Theorem 4.22 holds. Then q̂N → q∗ almost surely.
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Proof. By Theorem 4.22, we have FN ⇒ F almost surely. Denote

dQ := f (y|θ) /f (y) dF

and

dQN := f (y|θ) /f (y) dFN .

Then QN ⇒ Q almost surely. Recall that the Bayes decision problem in the

setting of Kiefer-Wolfowitz maximum likelihood procedure is to solve

min
q∈Q

ˆ
conv(y)

ρ (θ, q) dQN (θ) .

By Corollary 27.2.2. of Rockafellar (1970, page 266), it is sufficient to show

the pointwise convergence of
´
conv(y) ρ (θ, q) dQN (θ). By continuity of convex

functions and the definition of weak convergence, the result follows.

4.4.0.2 Theoretical Sample Size Estimation

Now we try to answer the question that how many random constraints

N are required to obtain a good solution for sample average approximation

problems. We show that the probability that an optimal solution to sample

average approximation is an ϵ-optimal solution to the original problem goes to

1 exponentially fast as the size of randomly selected constraintsN increases. In

this subsection, we choose the sampling distribution to be multivariate normal,

but the method can deal with the general sampling distributions.

To formulate the result, we need to introduce some notation. Given ϵ > 0,
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define the relaxed feasible region as

Sϵ := {v ∈ Q : E (h (g (v,Θ))) ≤ ϵ} .

Then S0 represents the feasible region of Kiefer-Wolfowitz dual problem. Let

ξ1, ..., ξN be a sample of size N of Θ. Correspondingly we define

SϵN :=

{
v ∈ Q :

1

N

N∑
i=1

h (g (v, ξi)) ≤ ϵ

}
.

Wang and Ahmed (2008) show that, under proper conditions, the probability

that the feasible set of the sample average approximation problem is “sand-

wiched” between S−ϵ and Sϵ goes to one exponentially fast:

P
(
S−ϵ ⊂ S0

N ⊂ Sϵ
)
≥ 1−Me−βϵ

2N ,

for some constants M,β > 0.

In the dual problem, given any sample ξ1, ..., ξN , we always have S
−ϵ ⊂ S0

N ,

so we are more interested to evaluate the probability P (S0
N ⊂ Sϵ). A similar

result can be obtained from the work of Wang and Ahmed (2008).

Let D be the diameter of the set Q, i.e., D = maxv1,v2∈Q ∥v1 − v2∥ and

Φp =
(
max
v∈Q

h′((2π)−
p
2

n∑
i=1

vi − n)
)(

n1/2 (2π)−p/2
)
.

Define

ν (ϵ, p) := (4Φp/ϵ+ 1)−1
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and

β (ϵ, p) := min
v∈Q

(ϵ− 2Φpν (ϵ, p))
2

2Var (h (g (v,Θ)))
.

We want to establish an analogue result of Proposition 2 of Wang and

Ahmed (2008). It is straight to verify that the assumptions (C1) to (C3)

and (C5) in Wang and Ahmed (2008) hold. For (C4), it suffices to show the

derivative of h (g (·, ξ)) is bounded for any v ∈ Q. Especially, if this upper

bound is independent of ξ, then we are done.

Lemma 4.24. For any ξ ∈ Ω, we have

⏐⏐⏐h (g (v1, ξ))− h (g (v2, ξ))⏐⏐⏐ ≤ Φp∥v1 − v2∥, ∀v1, v2 ∈ Q

where Φp =
(
maxv∈Q h

′
(
(2π)−

p
2
∑n

i=1 vi − n
))(

n1/2 (2π)−p/2
)
.

Proof. Note that

max
v∈Q

 ∂
∂v
h (g (v, ξ))

 = max
v∈Q

h′ (g (v, ξ)) ∥L (ξ) ∥

≤ max
v∈Q

h′ (g (v, ξ))
(
n1/2 (2π)−p/2

)
.

Under the assumptions, h′ is a non-decreasing function and then

h′ (g (v, ξ)) = h′
(
L (ξ)T v − n

)
≤ h′

(
(2π)−

p
2

n∑
i=1

vi − n
)
.

Choosing Φp =
(
maxv∈Q h

′
(
(2π)−

p
2
∑n

i=1 vi − n
))(

n1/2 (2π)−p/2
)
, we have

the result.

Next we give the result of convergence rate and sample size determination
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for Kiefer-Wolfowitz dual problem. Given ν > 0, define a finite subset of Qν of

Q such that for any v ∈ Q, there exists v′ ∈ Qνsatisfying ∥v − v′∥ ≤ ν. Then

|Qν | ≤ (D/ν)n. Define

ν (ϵ, p) := (4Φp/ϵ+ 1)−1

and

β (ϵ, p) := min
v∈Q

(ϵ− 2Φpν (ϵ, p))
2

2Var (h (g (v,Θ)))
.

Theorem 4.25. For Kiefer-Wolfowitz dual problem, given ϵ > 0, we have

(1) convergence rates:

P
(
S0
N ⊂ Sϵ

)
≥ 1−

(
D

ν (ϵ, p)

)n
e−Nβ(ϵ,p);

(2) estimate of the sample size for P (S0
N ⊂ Sϵ) ≥ 1− α to hold:

N ≥ 1

β (ϵ, p)
log

(
1

α

(
D

ν (ϵ, p)

)n)
.

Proof. For convenience, let us write g̃ (v) = E (h (g (v,Θ))) and g̃N (v) =∑N
i=1 h (g (v, ξi)) /N . Denote the large deviations rate function as

I (u) := sup
s∈R

{
su− logE

(
esZ
)}
.

Note that

P
(
S0
N ⊂ Sϵ

)
≥ 1− P (∃v ∈ Q s.t. g̃N (v)− g̃ (v) > ϵ)

≥ 1− P (∃v ∈ Qν s.t. g̃N (v)− g̃ (v) > ϵ− 2Φpν (ϵ, p))
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≥ 1−
∑

v∈Qν(ϵ,p)

e−NIv(ϵ−2Φpν(ϵ,p))

≥ 1− |Qν(ϵ,p)|e−Nb(ϵ,p)

≥ 1−
(

D

ν (ϵ, p)

)n
e−Nb(ϵ,p),

where b (ϵ, p) := minv∈Q Iv (ϵ− 2Φpν (ϵ, p)). By Assumptions (C3) and (C5),

b (ϵ, p) ≥ min
v∈Q

(ϵ− 2Φpν (ϵ, p))
2

2Var (h (g (v,Θ)))

To get P (S0
N ⊂ Sϵ) ≥ 1− α, it is sufficient to set

(
D

ν (ϵ, p)

)n
e−Nβ(ϵ) ≤ α

and the result follows.

Definition 4.26. (ϵ-optimality) A feasible point v̄ is called ϵ-optimal of the

problem, if for any feasible point v and an objective function f0,

f0 (v) ≥ f0 (v̄)− ϵ for some ϵ ≥ 0.

The above result reveals that: (1) The probability that an optimal solution

to sample average approximation is an ϵ-optimal solution to the original prob-

lem goes to 1 exponentially fast as the size of randomly selected constraints

N increases; (2) Even with exponential convergence, if β (ϵ, p) is small, the

convergence can be slow and the estimated sample size can be large.

Remark 4.27. For certain cases, the parameters D, Φp and ν (ϵ, p) are easy

to evaluate. According to Theorem 4.5, the set Q can be chosen as a n-
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dimensional box [0, u1]× ...× [0, un], where

ui = 1/ inf
θ∈conv(y)

Li (θ) .

If the penalty function is h (t) = (max {0, t})2, then we obtain D = ∥u∥2 and

Φp = 2
(
(2π)−

p
2

n∑
i=1

ui − n
)(

n1/2 (2π)−p/2
)
.

4.4.0.3 Variance Reduction Method

The sample average approximation estimator f̂N can be viewed a sam-

ple statistic based on ξ1, ..., ξN . The risk of f̂N comes from two parts: bias

E
(
f̂N

)
−f ∗ and variance. Due to the results in Theorem 4.19, for large sample

size N , the bias of f̂N is negligible. Now the only concern is its variance. One

possible way of reducing the variance is to solve sample average approxima-

tion problem M times on the different samples and take the average of their

solutions. This is known as batch means method in numerical optimization,

e.g. Norkin, Pflug, and Ruszczyński (1998), Mak, Morton, and Wood (1999)

and Linderoth, Shapiro, and Wright (2006).

Let f̂ 1
N , ..., f̂

M
N and v̂1N , ..., v̂

M
N be the computed optimal values and the op-

timal solutions of sample average approximation problems. Now consider the

average of those sample average approximation estimators

f̂N,M =
1

M

M∑
m=1

f̂mN

and

v̂N,M =
1

M

M∑
m=1

v̂mN .
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Theorem 4.28. (Consistency) For Kiefer-Wolfowitz dual problem and a fixed

M , f̂N,M − f ∗ → 0 almost surely, as N →∞.

Proof. By the triangule inequality,

f̂N,M − f ∗ =
⏐⏐⏐f̂N,M − f ∗

⏐⏐⏐ ≤ 1

M

M∑
m=1

⏐⏐⏐f̂mN − f ∗
⏐⏐⏐ = 1

M

M∑
m=1

(
f̂mN − f ∗

)
.

The result follows from Corollary 4.19 for each m.

Theorem 4.29. For fixed N andM , when theM batches
{
ξ1,m, ξ2,m, ..., ξN,m

}M
m=1

are

i.i.d., f̂N,M and v̂N,M has smaller risk than f̂N and v̂N .

Proof. Under the assumption, f̂ 1
N , ..., f̂

M
N are independent and have the same

distribution. Observe that

E
[(
f̂N,M − f ∗

)2]
=

(
E
(
f̂N,M

)
− f ∗

)2
+Var

(
f̂N,M

)
=

(
E
(
f̂N

)
− f ∗

)2
+

1

M
Var

(
f̂N

)
≤ E

[(
f̂N − f ∗

)2]
.

Applying the same arguments on v̂N,M , we prove the second part.

4.4.0.4 Testing for Optimality

Recall that from Chapter 2, Kiefer-Wolfowitz primal problem has unique

solution F̂n that are supported on at most n points. Hence, for finite sample

size N , sample average approximation estimator v̂N is infeasible almost surely,

so is v̂N,M . If v̂N,M is close to the boundary of the feasible set: E (h (g (v̂N,M ,Θ))) ≤

ϵ for some prespecified threshold ϵ > 0, then we conclude that v̂N,M is close to
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v∗. In practice, given a sample ξ1, ..., ξN ′ , it suffices to check

1

N ′

N ′∑
i=1

h (g (v̂N,M , ξi)) ≤ ϵ.

4.5 Constraints Resampling

Inspired by Breiman (1996), we propose a bagging-like algorithm to ap-

proximate Kiefer-Wolfowitz MLE. In contrast to Breiman’s algorithm, the

repeated samples are taken from the constraints of the optimization problem

instead of the training data set. Like sample average approximation methods,

our algorithm preserves the convexity of the problem as well.

Breiman’s bagging algorithm is briefly review first. Consider a regression

problem. Suppose we make prediction f̂ (x) at input x on the training data

{(xi, yi) ; 1 ≤ i ≤ n}. In the same spirit of the variance reduction method in

sample average approximation, Bagging averages the prediction over a collec-

tion of bootstrap samples, so that its variance is reduced. For each bootstrap

sample from the training data set, we fit a regression model f̂ ∗b (x). The

bagging estimate is defined by

f̂bag (x) =
1

B

B∑
b=1

f̂ ∗b (x) ,

where B is a prespecified positive integer, which represents the number of

bootstrap samples used. It can be showed that for any model or estimator f̂ ,

the bagging version always has a lower mean-squared error than f̂ .

Now we return to the estimation problem of Kiefer-Wolfowitz MLE. Re-

call that from Section 4.4, by introducing the penalty function h, a Kiefer-
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Wolfowitz dual problem can be reformulated as a stochastic programming

problem

min
v∈Q
−

n∑
i=1

log (vi)

subject to E (h (g (v,Θ))) ≤ 0.

Let
{
ξ1,m, ..., ξN,m

}
be a batch that independently drawn from a probability

distribution P and ξi,m
iid∼ µ (·) for any m. Let FN be nonparametric empirical

Bayes estimator based on a batch with size N . Under the squared loss, the

Bayes decision rule is denoted as

d (y;FN) = EFN
(θ|y) .

In below, we use superscript m to emphasize the dependence of decision rule

and batch sample. Our aggregated estimator is then defined as

dA (y) = EP (d (y;FN))

and its empirical estimate

d̂A (y) =
1

M

M∑
m=1

dm (y;FN) .

The average error e in d (y;FN) is

e = EPEY,θ∥θ − d (Y ;FN) ∥2.
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Define the error in the aggregated decision rule dA to be

eA = EY,θ∥θ − dA (Y ) ∥2.

The following result is an analogue to Breiman (1996). It shows that making

predictions on multiple samples has smaller risk than do it once.

Theorem 4.30. eA ≤ e.

Proof. Using the inequality (EX)2 ≤ EX2 gives

e = E∥θ∥2 − 2E (θdA (Y )) + EY,θEP∥d (Y ;FN) ∥2

≥ EY,θ∥θ − dA (Y ) ∥2 = eA.

Remark 4.31. If the number of repeated samples is one, our constraints re-

sampling algorithm is equivalent to sample average approximation (without

variance reduction).

Remark 4.32. Sampling without replacement is used in our algorithm. The

classical bagging algorithm involves sampling with replacement. If we sample

N constraints with replacement and use them for our optimization problem

where only u of them are unique, then it is equivalent to simply using u unique

constraints. Hence, sampling without replacement is sufficient.

4.6 Cutting-Plane Methods

In this section we discuss how to apply Kelley’s cutting-plane method to

solve Kiefer-Wolfowitz dual problems. Recall that in Kelley’s method, the
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query point is chosen to be the optimal solution to the current polyhedron

approximation. If the optimal point of the current polyhedral approximation

of the problem is optimal for the original problem then Kelley’s algorithm

terminates. This is indeed the case for the dual problem, since the solution

of Kiefer-Wolfowitz dual problem lies on the boundary of the feasible set.

Therefore, Kelley’s method can be an efficient alternative algorithm for the

dual problems.

The appropriate choice of the target set is crucial to the success of the

cutting-plane methods. From the convergence analysis in Theorem 4.34, the

number of iterations is controlled by the ratio of the sizes of initial polyhedron

and target set. Quite often the set of the optimal solutions is chosen to be the

target set (Boyd and Vandenberghe, 2007). If that is the case, the target set

is just a singleton, since the dual problem is strictly convex. We can expect

using a sequence of polyhedrons outer-approximate to a point (In practice,

this can be a ball centered at the dual solution with a small radius.) can take

very long. On the other hand, if the feasible set is selected to be the target

set, the sizes of initial polyhedron and target set can not be very different.

We choose the target set based on the following simple result. Denote the

feasible set of Kiefer-Wolfowitz dual problem

A =
⋂

θ∈conv(y)

{
v ∈ Rn

≥0 :
n∑
i=1

viLi (θ)− n ≤ 0

}

and a simpler set with finitely many constraints

B =
⋂
θ∈O

{
v ∈ Rn

≥0 :
n∑
i=1

viLi (θ)− n ≤ 0

}
,
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where |O| < ∞. From the construction, A ⊂ B. For convenience, we name

the minimization problems

min
v∈Rn

≥0

−
n∑
i=1

log vi

over the set A and B as Problem A and Problem B respectively. Let p∗A and

p∗B be the optimal values to Problems A and B.

Fact 4.33. If v∗B ∈ A, then Problems A and B are equivalent.

Proof. It is clear that p∗B ≤ p∗A. If the optimal point v∗B ∈ A, then the two

problems have the same optimal point and the optimal value, therefore Prob-

lems A and B are equivalent.

From this simple observation, we take the set A as the target set: If the

algorithm does not stop in k step, then all the query points are infeasible points

and we can always construct cutting-planes. Otherwise, the query point need

to be on the boundary of A and it is the optimal point to Problem A.

Next we discuss how to construct cutting-planes. Let O0 be the initial set

of grid points and define a polyhedron as

P0 =
⋂
θ ∈O0

{
v ∈ Rn

≥0 :
n∑
i=1

viLi (θ)− n ≤ 0

}
.

Certainly, we have the target set A is contained in P0. For convenience, we

write the constraint function g : Rn × Rp → R as

g (v, θ) =
n∑
i=1

Li (θ) vi − n.

If the algorithm does not stop in k step, the query point is selected to be the
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Figure 2: Plot of the constraint function g̃ (θ) := L (θ)T v when the dimension of
parameter space is one. Blue curve represents the constraint function using interior-
point method with an equally spaced fine grid, indicated as IP; the other curves corre-
spond the constraint function using the cutting-plane method in different iterations,
indicated as Iteri CPM.

minimizer of the problem restricted on Pk:

v(k) = arg min
v∈Pk

−
n∑
i=1

log vi, k = 0, 1, 2, ...

This problem is a finite convex programming which can be efficiently solved

by standard techniques in convex programming, for example, interior-point

methods. Also, the query point v(k) must be infeasible, otherwise the algorithm

stops. Then there exists at least one violated constraint

g
(
v(k), θ

)
> 0, for θ ∈ conv (y) .

To locate those violated constraints, we chose Ok to be the set of local maxima

of g
(
v(k), ·

)
such that g

(
v(k), θ

)
> 0. In such a way, we made a compromise

between convergence speed and computational cost: If only slightly violated
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constraints are added, the algorithm can be slow. If too many constraints

are added, the localization polyhedrons become complicated and the compu-

tational cost of obtaining query points increases. At last, we construct cuts

g
(
v(k), θ

)
+ L (θ)T

(
v − v(k)

)
≤ 0, θ ∈ Ok

which can be further reduced to

L (θ)T v − n ≤ 0, θ ∈ Ok. (4.19)

Algorithm 2 Kelley’s cutting-plane method for Kiefer-Wolfowitz dual prob-
lem

Ensure: Initial polyhedron P0 that constraints the feasible set A
1: k ← 0
2: while not converged do
3: Obtain query point v(k) ∈ Pk:

v(k) = arg min
v∈Pk

−
n∑
i=1

log vi

4: Collect the set of violated constraints Ik
5: Construct cutting-planes L (θj)

T v − n ≤ 0, j ∈ Ik
6: Update localization polyhedron

Pk+1 ← Pk ∩
{
v : L (θj)

T v − n ≤ 0, j ∈ Ik
}

7: k ← k + 1
8: end while

A convergence analysis of the cutting-plane method is provided below.

Assume the target set A contains a ball Br with radius r and P0 is contained

in a ball BR with radius R. At each step of the cutting-plane method the

volume of Pk is reduced at least by a factor γ < 1.
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Theorem 4.34. The cutting-plane algorithm terminates at finite steps.

Proof. Suppose the algorithm does not stop in k steps. Then

vol (Br) ≤ vol (Pk) ≤ γkvol (P0) ≤ γkvol (BR) ,

where the function voln (BR) computes the volume of a Euclidean ball of radius

R in n−dimensional Euclidean space

voln (BR) =
πn/2

Γ (n/2 + 1)
Rn

and Γ is Euler’s gamma function. Solving this inequality, we obtain

k ≤ n log (R/r)

log (1/γ)
.

4.6.0.1 Cuts Adding

One of the challenging of using cutting-plane methods here is adding cuts.

In finite programming, this will not be an issue: Because the number of con-

straints is finite, given an infeasible query point v(k), we can simply compute

L (θi)
T v − n for finitely many i and select those violated constraints. If the

number of constraints is infinite, adding cuts eventually becomes a highly non-

convex programming problem:

max
θ∈conv(y)

L (θ)T v(k). (4.20)
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The objective function is a linear combination of Gaussian densities centered

at observed data. General nonconvex problems are very difficult to solve glob-

ally: We either use some heuristic optimization methods, which are fast but do

not guarantee a global solution or choose some global optimization methods

often slow. For small p, the divide and conquer algorithms, such as branch and

bound algorithms, can be used and they guarantee to find a global solution.

For relatively large p, we need some heuristic approaches, for example, con-

ducting gradient methods multiple times from different initial starting points.

4.6.0.2 Stopping Criteria

From the design of the algorithm, if a query point v(k) is feasible, then it

must be the minimizer and the algorithm stops. However, such a feasibility

test in semi-infinite programming is equivalent to solving a nonconvex pro-

gramming problem and it is very difficult in general (López and Still, 2007).

One of the possibilities is to reformulate the dual problem as a stochastic pro-

gramming problem and justify the boundary condition. The details of the

reformulation is given in Section 4.3.

Fact 4.35. Suppose a continuous function h : R→ R+ has support (0,∞):

h (t) =

⎧⎪⎪⎨⎪⎪⎩
0 for all t ∈ (−∞, 0]

> 0 for all t ∈ (0,∞)

and h is differentiable. Let ξ1, ..., ξN be a sequence of i.i.d. random variables

defined in Section 4.4 and ṽ any point on the boundary of the feasible set for
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Kiefer-Wolfowitz dual problem. Then

1

N

N∑
i=1

h (g (ṽ, ξi))→ 0 almost surely.

Proof. A consequence of Theorem 4.9 and the law of large numbers.

Remark 4.36. The algorithm terminates if the query point v(k) lies on the

boundary of the feasible set. Since all the query points are infeasible, if v(k) is

on the boundary, then it is the minimizer.

4.7 Computational Concerns

4.7.1 Minimum Volume Ellipsoid

In the stochastic approaches, we use random samples from a probability

distribution defined on the convex hull conv (y) in Rp. However, for p > 3,

computing the convex hull of a finite set can be difficult: Even if the vertices

of a convex polytope are given, construction of its faces is a non-trivial task

(Avis, Bremner, and Seidel, 1997).

Instead, we may consider enlarge our search space by computing a min-

imum volume ellipsoid covering the finite set {y1, ..., yn}, which can be for-

mulated as a convex programming problem (Vandenberghe and Boyd, 1998).

Once the ellipsoid is found, sampling can be efficiently done: For example, if

uniform sampling is considered, we can first generate points within the unit

hypersphere and then rescale the points to the ellipsoid.
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Figure 3: The left panel indicates the observed data and the corresponding minimum
volume ellipsoid; the right panel shows a randomly generated dense grid within the
ellipsoid.

4.7.2 Curse of Dimensionality

4.7.2.1 Gigantic Norm

Due to the nature of the statistical model and Kiefer-Wolfowitz MLE prob-

lem, we show that without extra assumptions, it is very difficult for any opti-

mization algorithm handling the problems with large p. To illustrate the idea,

we assume the Gaussian noise has mean zero and covariance σ2Ip.

Fact 4.37. Let v∗ be the optimal solution of Kiefer-Wolfowitz dual problem,

then ∥v∗∥ ≥ n1/2 (2π)−p/4 σp/2.

Proof. We know v∗ lies on the boundary of the dual feasible set. Let r (θ)

denote the distance from the origin to the hyperplane L (θ)T v − n = 0. Then
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∥v∗∥ should be greater than infθ r (θ). Observe that

r (θ) =
n

∥L (θ) ∥
≥ n1/2 (2π)p/2 σp, ∀θ ∈ Rp,

since each Li (θ) is bounded above by (2π)−p/2 σ−p. The result follows.

For fixed n, if p increases and σ is relatively large, then the optimal point v∗

moves away from the origin exponentially fast. For example, n = 100, σ2 = 3

and p = 20, then ∥v∗∥ is at least 5.66× 1013.

4.7.2.2 Objective Function

The objective function of Kiefer-Wolfowitz dual problem has the form

−
n∑
i=1

log vi.

From the discussion in the previous section, we know that for fixed n and rela-

tively large σ, the norm of the optimal solution can be very large and this leads

to a so-called vanishing gradient problem for any gradient based algorithms:

The gradient − (1/v1, ..., 1/vn) will be so small that the product of step size

and the gradient stops changing its value in the update. In experiments, if the

logarithm objective function is used and p goes beyond 10, the solutions found

by gradient based algorithms are interior points of the dual feasible set but

not on the boundary. A simple way to fix this problem is to apply a monotone

transformation on the objective function. If an exponential function is applied,

we will have the geometric mean objective function

− exp

(
1

n

n∑
i=1

log vi

)
= − (Πn

i=1vi)
1/n .
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Previously, with (Σnoise)ij = 3 × 0.8|i−j|, the algorithm can only work up

to p = 8. This simple change can make the algorithms able to deal the cases

p up to 11 with the same covariance matrix. Certainly, if the magnitude

of covariance gets smaller, the algorithm can handle higher value of p. For

example, with (Σnoise)ij = 0.8|i−j| and the modified objective function, the

algorithm are able to handle the cases p up to 15.

4.8 Simulations

In this section, we study the performance of our proposed methods through

numerical experiments. To evaluate the performance, we calculate MSE for

each method

1

n

n∑
i=1

∥θi − θ̂i∥22.

The tables below report MSE of the cutting-plane method denoted CPM,

sample average approximation estimator using variance reduction techniques

denoted SAA, constraints resampling method denoted CR compared to the

näıve Bayes methods proposed by Dicker and Zhao (2014) denoted naiveBayes

and the näıve estimator, d (yi) = yi for all i, denoted naive. As a reference,

we also provide the performance of some oracle Bayes estimators: The Bayes

estimator with a known prior denoted as Oracle and one with the marginal of

the true prior denoted as OM.

Due to the slow convergence, stochastic gradient methods are not imple-

mented here. Although in practice, heuristic choice of step-size and early

stopping criteria can speed the algorithms up.

In all the experiments, we choose p ∈ {5, 10} and n = 100. For sample
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average approximation and constraints resampling, we choose the sample size

around
√
np and the ensemble size 10. The results are based on 30 replications.

4.8.1 Experiment 1

We study a simple setup in favor of the näıve Bayes method. Assume the

Gaussian noises ϵi have mean zero and covariance Ip. Three types of priors

are considered:

Case 1: (Normal prior) We let θi
iid∼ Np (µs,Σs) with µs = (10, ..., 10) and

(Σs)ij = 0.9|i−j|, where i, j ∈ {1, ..., n}.

Case 2: (Two-point uniform prior) We generate θi from two-point uniform

distribution with support {5× 1p, 10× 1p}.

Case 3: (Multivariate t prior) We generate ti from multivariate t distribution

with mean µt = (10, ..., 10), correlation matrix (Σt) = 0.9|i−j| and df = 3. To

have the similar signal-to-noise ratio compared to the previous experiments,

we scale ti by 1/
√
3 and shift them by 10 units in every dimension

θi ← (10, ..., 10) + 1/
√
3 · ti, ti

iid∼ tdf (µt,Σt) .

p Case Oracle OM CPM SAA CR naiveBayes naive

5 1 1.44 2.72 3.69 2.64 2.16 2.74 4.98

2 0.00 0.65 1.00 2.06 1.30 0.93 4.99

3 1.06 2.27 2.30 2.64 2.08 2.31 4.99

10 1 4.51 5.38 9.95 8.54 6.29 5.52 10.52

2 0.56 1.53 5.75 6.66 4.32 2.15 10.12

3 2.97 5.45 10.87 11.45 6.49 4.74 10.07

Table 1: MSE of various methods in Experiment 1
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4.8.2 Experiment 2

We let the Gaussian noises ϵi have mean zero and covariance Σnoise =

3 × 0.8|i−j|. The three types of signals are generated in the same ways as in

Experiment 1.

p Case Oracle OM CPM SAA CR naiveBayes naive

5 1 3.90 3.98 5.97 5.90 5.21 9.17 14.68

2 4.07 7.16 7.92 8.46 7.61 11.11 14.64

3 4.00 5.00 5.28 6.25 5.26 9.13 15.06

10 1 8.07 8.12 22.99 23.28 13.90 18.97 30.16

2 7.75 13.65 22.79 25.16 17.72 22.08 29.57

3 6.23 8.99 20.89 21.62 12.65 17.44 29.26

Table 2: MSE of various methods in Experiment 2

From the experiments above, we observe that (1) If the magnitudes in the

covariance matrix of the signals are relatively small so that the independence

assumption in the näıve Bayes method likely holds and the näıve Bayes method

is likely to have good performance. If the magnitudes in the covariance matrix

of the signals are large, then the constraints resampling method outperforms

the other methods. (2) It is interesting to see in Experiment 1: For p = 5,

even in a setup in favor of the näıve Bayes method, our proposed methods

are very competitive with the näıve Bayes method if not better. (3) For

small p, the cutting-plane method is competitive with constraints resampling;

for relatively large p, due to the difficulty of finding the global solutions of

nonconvex problems, the performance of the cutting-plane method drops down

quickly.

To sum up the strategy of choosing algorithms, if p ≥ 20 and the magnitude

of covariance is relatively large, the näıve Bayes method needs to be used; if
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p ≥ 20 and the magnitude of covariance is small, both näıve Bayes method

and constraints resampling can be tried; if p < 20, constraints resampling is

recommended.
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Chapter 5

Nonparametric Empirical Bayes

Regression

In this chapter we propose a new regression model, called the nonparamet-

ric empirical Bayes regression, so that it incorporates nonparametric empirical

Bayes methods in the presence of explanatory variables.

In the past, various approaches have been tried to generalize the empirical

Bayes framework to regression problems, e.g. Cohen et al. (2013), Fay III and

Herriot (1979), Jiang and Zhang (2010), and Koenker (2015). In contrast to

some of the previous approaches, our new model has a very simple form and

inherits most of theoretical properties of nonparametric empirical Bayes pro-

cedure. Furthermore, unlike the methods based on the partial linear model,

the parameter estimation procedure in our proposed regression model is equiv-

alent to solving a convex optimization problem in function space and it can

be efficiently solved by optimization techniques proposed in Chapter 4.

In Section 5.1, an introduction of Bayes linear regression is given. In Section

5.2, we describe nonparametric empirical Bayes regression and its theoretical
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properties. In Section 5.3, the famous baseball data set is analyzed using our

proposed method.

5.1 Bayes Linear Regression

Bayes linear regression model was first proposed in the landmark paper by

Lindley and Smith (1972). In this approach, regression coefficients are viewed

as a random variable following a prior distribution. To be precise, we consider

a regression problem with the input pairs (x1, y1) , ..., (xn, yn), where xi ∈ Rp

and yi ∈ R. Moreover, we assume

y|θ ∼ N (Xθ,Σ) and θ ∼ N (µ0, S0) ,

where X is a n× p fixed design matrix and Σ is known. The posterior distri-

bution of θ is

θ|y ∼ N (Dd,D) ,

where

D = XTΣ−1X + S−1
0

and

d = XTΣ−1y + S−1
0 µ0.

Thus, under the squared loss, the Bayes decision rule for θ is E (θ|y) = Dd

and the estimated model has the form

XE (θ|d) = X (Dd) .
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5.2 Nonparametric Empirical Bayes Regres-

sion

The assumption of a known prior in Bayes linear regression can be relaxed

by using nonparametric empirical Bayes procedure. This can be viewed as a

generalization of nonparametric empirical Bayes model that handles explana-

tory variables.

To illustrate the idea, let us consider the regression problem in Section

5.1 without specifying the prior distribution. Suppose the input pairs are

(x1, y1) , ..., (xn, yn), where xi ∈ Rp and yi ∈ R. Furthermore, we assume

yi|θi
ind∼ N

(
xTi θi, 1

)
and θi

iid∼ F (·), where X is a n × p design matrix with

ith row equal xi. The prior distribution function F can be estimated via

Kiefer-Wolfowitz maximum likelihood procedure:

F̃ := F̃n = argmin
F∈F
−

n∑
i=1

ˆ
R
ϕ
(
yi − xTi θ

)
dF (θ) , (5.1)

where F is the class of all probability distributions and ϕ is the standard

normal density function. The problem (5.1) is again strictly convex, so the

solution F̃n exists and it is unique. The corresponding dual problem has the

form:

min
v∈Rn

+

−
n∑
i=1

log vi (5.2)

subject to
n∑
i=1

ϕ
(
yi − xTi θ

)
vi ≤ n for all θ ∈ Rp.
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5.2.1 Theoretical Properties

The primal and the dual problems here possess similar forms to their coun-

terparts in Kiefer and Wolfowitz’s nonparametric maximum likelihood prob-

lem, so we expect the MLE F̃ enjoys most of the properties that F̂ has. In

fact, most of the results in this section can be proved in similar ways.

To list the results, we use similar notation in Chapter 4. Let

fF (y, x) =

ˆ
R
ϕ
(
y − xT θ

)
dF (θ) ,

fθ =
(
ϕ
(
y1 − xT1 θ

)
, ..., ϕ

(
yn − xTnθ

))
and

fF = (fF (y1, x1) , ..., fF (yn, xn)) .

We can write the gradient function defined in (4.2) as

D(θ;F ) =
n∑
i=1

Li (θ)

Li(F )
− n,

where Li (θ) = ϕ
(
yi − xTi θ

)
and Li (F ) =

´
R ϕ
(
yi − xTi θ

)
dF (θ). We further

write L(F ) = (L1(F ), ...,Ln(F )).

Theorem 5.1. Under the regularity conditions in Kiefer and Wolfowitz (1956),

F̃n ⇒ F .

Proof. See Kiefer and Wolfowitz (1956).

Theorem 5.2. The following three statements are equivalent:

1. F̃ maximizes L(F ).

2. F̃ minimizes supθD(θ;F ).
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3. supθD(θ; F̃ ) = 0.

Proof. See the proof of Theorem 19 in Lindsay (1995).

Theorem 5.3. The MLE F̃n has no more than n points of support.

Proof. See the proof of Theorem 4.1.

Theorem 5.4. The solution of the dual problem (5.2) lies on the boundary of

the feasible set.

Proof. See the proof of Theorem 4.7.

Let θ∗ := θ∗(F̃ ) ∈ Rp be a mode of the gradient function D(θ; F̃ ). Then

θ∗ ∈ supp(F̃ ). Let Λ := Λ(θ∗(F̃ ), F̃ ) be a p × p diagonal matrix with (Λ)ii =

Li (θ
∗) /Li(F̃ ).

Theorem 5.5. If XTΛX is invertible, then θ∗ is equivalent to a weighted least

squares estimator.

Proof. By Theorem 5.2, the support points of F̃ are necessarily modes. Then

for the mode θ∗, we have

∇D(θ∗; F̃ ) = 0. (5.3)

Since

∇Li (θ) /Li (θ) =
(
yi − xTi θ

)
xTi , for each i,

the equation (5.3) can be rewritten as

n∑
i=1

∇Li (θ∗)
Li(F̃ )

=
n∑
i=1

Li (θ
∗)

Li(F̃ )
(
yi − xTi θ∗

)
xTi = 0. (5.4)

Under the assumption, we obtain

θ∗ =
(
XTΛX

)−1
XTΛy.
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5.2.2 Nonparametric Empirical Bayes Personalized Re-

gression

One natural generalization of the ideas of Bayes linear regression in non-

parametric empirical Bayes setting is to fit the model:

xiEF̃ (θ| {xi, yi; 1 ≤ i ≤ n}) = xi

´
R θΠ

n
i=1ϕ

(
yi − xTi θ

)
dF̃ (θ)´

R Π
n
i=1ϕ (yi − xTi θ) dF̃ (θ)

, i = 1, ..., n.

In the spirit of nonparametric empirical Bayes methods, we can enhance the

flexibility of this model by fitting one regression line for one subject. The

regression coefficients for each subject is jointly determined by all the training

data via the maximum likelihood procedure. We call this type of models as

nonparametric empirical Bayes personalized regression.

Let the decision rule d (y) be separable: d (y) = (d1 (y1) , ..., dn (yn)). It is

sufficient to consider univariate Bayes estimators. Under the squared loss, the

Bayes rule d is the posterior mean. Hence, the model for any subject has the

form

xEF̃ (θ|x, y) = x

´
R θϕ

(
y − xT θ

)
dF̃ (θ)´

R ϕ (y − xT θ) dF̃ (θ)
. (5.5)

The other way of viewing it is to rewrite the regression model (5.5) as

J∑
j=1

wjxθj,

where θj ∈ supp(F̃ ), J = |supp(F̃ )|, {f̃j; 1 ≤ j ≤ J} are the corresponding
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mass of F̃ and

wj =
ϕ
(
y − xT θj

)
f̃j∑J

j=1 ϕ (y − xT θj) f̃j
,

J∑
j=1

wj = 1.

By Theorem 5.5, any element in supp(F̃ ) is equivalent to a weighted least

squares estimator and the model (5.5) can be understood as a convex combi-

nation of weighted least squares regressions.

5.2.3 Implementation

The maximum likelihood procedure (5.1) is equivalent to solving a convex

optimization problem in the space of probability distribution functions on Rp.

All the methods developed in Chapter 4 can be directly applied.

5.2.3.1 Maximum Volume Inscribed Ellipsoid

If the stochastic methods in Chapter 4 are considered, some sampling

schemes need to be developed. For Kiefer-Wolfowitz MLE problem, the sup-

port of F̂ is located within the convex hull of the observed data. So we can

define a probability distribution on a set that contains the convex hull. How-

ever, we do not have this property in the regression setting. Instead, we can

impose a requirement that all the predicted values are between l = min {yi}

and u = max {yi}:

l1n ≤ Xθ ≤ u1n

and define the probability distribution on the polytope described by a set of

linear inequalities. It is known that sampling from a convex polytope is difficult

(Kannan, Lovász, and Simonovits, 1997), especially when the dimension p is
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Figure 4: The maximum volume inscribed ellipsoid (solid) that lies inside the convex
polytope and the corresponding enlarged ellipsoid (dashed). The solid black lines
represent the constraints l ≤ xTi θ ≤ u for i = 1, ..., n.

large. On the other hand, sampling from an ellipsoid can be done efficiently, so

we turn to an alternative problem of finding the ellipsoid with the maximum

volume that lies inside the convex polytope. This problem can be formulated as

a convex programming problem (Vandenberghe and Boyd, 1998) and efficiently

solved.

However, the maximum volume inscribed ellipsoid is only a subset of the

convex polytope and it does not necessarily contain all the support points of F̂ .

To fix this problem, we can enlarge the ellipsoid and obtain a dilated one with

the same center: Suppose the maximum volume inscribed ellipsoid has the

form θTAθ = 1 and the enlarged and dilated ellipsoid is θT (δA) θ = 1, where

0 < δ < 1. Choosing δ = 1/2 provides us satisfied results in our experiments.
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5.3 Baseball Batting Average Prediction

In this section, we study the Baseball data, originally analyzed by Brown

(2008); Cohen et al. (2013); Jiang and Zhang (2010) and Koenker and Miz-

era (2014) and apply our proposed nonparametric empirical Bayes regression

model to predict the batting average in the second half season.

The data consists of batting records of each major league player in 2005.

For each player, we are given the number of at bats N1i and the number of hits

H1i in the first half of season. In addition, for every player it is known whether

he is a pitcher or a batter. The goal is to use midseason batting averages

R1i = H1i/N1i for i = 1, ..., n1 to predict second half averages R2i = H2i/N2i

for i = 1, ..., n2. Let S1 and S2 denote the set of players in the first half

of season and the second half of season respectively. All n1 = |S1| = 567

players with more than ten bats in the the first half season are used to predict

performance of n2 = |S1 ∩ S2| = 499 players who also has more than ten bats

in the second half season.

A reasonable model for the data is Hti ∼ Bin (Nti, pi) conditional on Nti,

where t = 1, 2, i = 1, ..., nt, and pi is the batting probability of the ith player.

Brown (2008) suggested a transformation to induce approximate normality

Yti = arcsin

(√
Hti + 1/4

Nti + 1/2

)
≈ N

(
θi, σ

2
ti

)
,

where θi = arcsin
√
pi and σ

2
ti = 1/4Nti.

For the evaluation, the näıve estimator Ỹ2i = Y1i is used as a benchmark.

Adopting the notation in Brown (2008), we compute the normalized total sum
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of prediction errors

TSE =

∑n2

i=1

[(
Y2i − Ŷ2i

)2
− σ2

2i

]
∑n2

i=1

[(
Y2i − Ỹ2i

)2
− σ2

2i

] , (5.6)

where Ŷ2i denotes the predictions for the second half of season using various

methods. Let zi denote a vector of covariates which consists of an indicator

variable of whether the player is a pitcher and the number of at bats and their

interaction. We consider a linear regression model

Yi = zTi θi + ϵi, where ϵi ∼ N
(
0, σ2

i

)
, θi

iid∼ F (·) .

The table below reports TSE (5.6) of nonparametric empirical Bayes re-

gression denoted NPEBReg, compared to seven procedures considered in Jiang

and Zhang (2010) and Koenker and Mizera (2014). The first two of them

LSE and WLSE are regression based methods; the third estimator EBJS is a

James-Stein version of WLSE; the fourth and the fifth estimators are the EM

implementations of the GMLEB estimator proposed by Jiang and Zhang; the

remaining two are the interior-point implementations of the GMLEB estimator

proposed by Koenker and Mizera.

The result of NPEBReg is slightly inferior to EBJS and WGMLEBEM

but its performance is better than the other five methods. Possibly this is

because the true prior has an approximate normal shape. In contrast to the

GMLEB based methods, the parameter estimation for NPEBReg is equivalent

to solving a convex problem and this can be done efficiently with the methods

discussed in Chapter 4.
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LSE WLSE EBJS GMLEBEM WGMLEBEM GMLEBIP WGMLEBIP NPEBReg

0.240 0.204 0.171 0.178 0.177 0.194 0.206 0.178

Table 3: TSE in baseball batting average prediction
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Chapter 6

Nonparametric Empirical Bayes

Prediction under Quantile Loss

Inspired by Mukherjee et al. (2015), in this chapter we provide a case

study for the problem of multiple prediction with the absolute loss. We show

our Kiefer-Wolfowitz MLE based method outperforms their method in the

experiments and a real data example.

Today there are many decision problems involving alternative loss functions

other than the squared loss. For example, in robust regression, check loss

and Huber’s loss are widely used to avoid the dangers posed by outliers. In

certain applications, alternative loss functions are selected simply because they

have real-world interpretations. This choice of alternative loss functions can

immediately make some empirical Bayes methods not applicable. For example,

when the regular squared loss is chosen and the sampling distribution is a

member of exponential family, the Tweedie’s formula expresses Bayes rule in

terms of the marginal distribution. However, such functional relations between

the quantity of interest and the marginal distribution are quite rare and for
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many widely used loss functions the expressions do not exist. There is no

such a limitation for Kiefer-Wolfowitz MLE based empirical Bayes method,

since the estimated prior distribution is obtained from maximum likelihood

procedure and independent from the loss function.

In Section 6.1, we introduce notation and setup of the problem. In Sec-

tion 6.2, we describe an approach using Kiefer-Wolfowitz MLE based empirical

Bayes method and prove consistency and asymptotic optimality of the non-

parametric empirical Bayes estimators. In Section 6.3, we repeat the experi-

ments designed by Mukherjee et al. (2015). A real data example is provided

in Section 6.4, we use the proposed nonparametric empirical Bayes method to

predict the monthly demand for a manufacturing company.

6.1 Basic Setup

Motivated by Mukherjee et al. (2015), we consider the following prediction

problem: Suppose we have n products indexed by i, and for each i, the observed

historical demand Xi and the unobserved future demand Yi are distributed

according to a normal distribution with an unknown mean θi,

Xi = θi +
√
νp,iϵ1,i for i = 1, 2, ..., n

Yi = θi +
√
νf,iϵ2,i for i = 1, 2, ..., n,

where the noise {ϵj,i : j = 1, 2; i = 1, ..., n} are i.i.d. from a standard normal

distribution, and the past and future variances νp,i, νf,i are known for all i.

These can also be written as X|θ ∼ N (θ,Σp) and Y |θ ∼ N (θ,Σf ) where

Σp and Σf are n dimensional diagonal matrices with ith entries νp,i and νf,i
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respectively. The objective is to compute an estimate or decision rule q̂ =

{q̂i (X) : 1 ≤ i ≤ n} based on the past data X such that q̂ optimally predicts

Y under the loss

1

n

n∑
i=1

li (θi, qi) ,

where for each X = x, the associated predictive loss is given by

li (θi, qi (x)) = EYi
[
bi (Yi − qi (x))+ + hi (qi (x)− Yi)+

]
(6.1)

with bi, hi > 0 for all i, where the notation ()+ is defined as

(x)+ := max {x, 0} .

Remark 6.1. If bi + hi = 1, the loss function (6.1) corresponds to the regular

check function.

6.1.1 The Newsvendor Problem

One motivation for this piecewise linear loss function is the newsvendor

problem in the inventory management. The problem considers a vendor who

sells a large amount of products. Based on the observed demand X in the

previous period, the vendor needs to determine the stocking quantity q̂i of each

product in the next period. There is an obvious tradeoff between ordering too

much and inventory is left over at the end of the period versus ordering too

little and sales are lost. Suppose each unit of inventory incurs a holding cost

hi > 0 and each unit of lost sale incurs a cost of bi > 0, the vendor’s loss

function is given by (6.1). Usually the lost sales cost is much higher than the

inventory cost, which leads to a highly asymmetric loss function. This problem
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Figure 5: Piecewise linear loss with b = 10 and h = 1

of determining optimal stock level can be traced back to Edgeworth (1888)

who applied the central limit theorem to determine the optimal cash reserves

to satisfy random withdrawals from depositors and the modern formulation

relates to the work of Arrow, Harris, and Marschak (1951).

To have some understanding of the asymmetric piecewise linear loss, we

write the residual as r = y − q and consider the following function of r

f (r) = br+ + h (−r)+ .

Suppose the lost sales cost of this product is b = $10 per unit and its holding

cost is h = $1 per unit. Let us consider two scenarios: If the vendor orders

too little and holds 3 units of potentially unsold product in one period, the

cost that he possibly incurs is $30. If he orders too much and holds 3 units of

unsold product, then he will lose $3.

It is worth noting that the original newsvendor problem does not belong
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to any typical prediction type of problems because of lacking independent

variables, therefore, regression and supervised learning techniques can not be

applied here. Traditionally, the problem is solved using Bayes approach: the

mean θ is treated as a random variable following a known prior distribution.

For computational easiness, conjugate priors are usually chosen.

6.2 Nonparametric Empirical Bayes Method-

ology

In the standard Bayesian approach, a good prior is not always easy to

obtain: For example, historical data is not available or expensive to obtain.

To avoid this problem, Mukherjee et al. (2015) recently propose a parametric

empirical Bayes method by studying normal priors and estimating hyperpa-

rameters using shrinkage methods. However, if there is no extra information,

employing normal priors may not always be appropriate. Here we propose a

nonparametric empirical Bayes approach which does not assume any explicit

form of prior distribution. Moreover, our proposed method does not involve

tuning parameters and the main part can be reformulated as a convex problem

due to the work of Koenker and Mizera (2014). It reduces the computational

effort by several order of magnitude by comparison to the method of Mukherjee

et al. (2015).

Our nonparametric empirical Bayes method can be thought as a two-step

process: We need to first derive the Bayes decision rule under the check loss

function for a general prior and then compute an estimate of the prior. Once

the estimated prior is obtained, we plug it into the Bayes decision rule and
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obtain the predictions.

6.2.1 Univariate Bayes Estimator and Consistency Re-

sults

In this subsection, Bayes decision rule under the check loss for a general

prior and some consistency results will be studied.

Again we require the decision rule d (x) to be separable: d (x) = (d1 (x1) , ..., dn (xn)).

Then it is sufficient to consider the univariate prediction problem: Suppose the

past sales X|θ ∼ N(θ, νp), the future demand Y |θ ∼ N(θ, νf ) and θ ∼ F (·).

In the following, we assume all the regularity conditions in Kiefer and

Wolfowitz (1956) hold. As a consequence, we have Kiefer-Wolfowitz MLE Fn

converge weakly to the true prior distribution F : Fn ⇒ F . Let Q and Qn be

the posterior distributions depending on F and Fn respectively. Then

dQ (θ) = ν−1/2
p ϕ

(
ν−1/2
p (x− θ)

)
/fX (x) dF (θ)

and

dQn (θ) = ν−1/2
p ϕ

(
ν−1/2
p (x− θ)

)
/fX (x) dFn (θ) .

Since ϕ
(
ν
−1/2
p (x− θ)

)
is continuous and bounded in θ, we have Qn ⇒ Q.

Denote the marginals as

g (z) = ν
−1/2
f

ˆ
R
ϕ
(
ν
−1/2
f (z − θ)

)
dQ (θ)

and

gn (z) = ν
−1/2
f

ˆ
R
ϕ
(
ν
−1/2
f (z − θ)

)
dQn (θ) .
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Denote the marginal distributions as G (z) and Gn (z).

Lemma 6.2. Gn ⇒ G.

Proof. Since Qn ⇒ Q, we have the estimated densities gn pointwise converge

to g with respect to Lebesgue measure. By Scheffé’s theorem (Billingsley,

1986), the result follows.

With the notation above, the expected posterior loss can be written as

ˆ
R
b (z − q)+ + h (q − z)+ dG (z) .

Theorem 6.3. Consider the univariate prediction problem that the past X|θ ∼

N (θ, νp), the future Y |θ ∼ N (θ, νf ) and θ ∼ F (·). Under the check loss

EY |θ
[
b (Y − q)+ + h (q − Y )+

]
,

the Bayes decision rule for x is the b/ (b+ h)th quantile of Z

q = inf {z : G (z) ≥ b/ (b+ h)} .

Proof. The proof is analogue to the standard Bayes estimation under the ab-

solute loss. Therefore, it is removed.

Remark 6.4. From Theorem 6.3, the ratio b/h is essential for the prediction.

Remark 6.5. Note that the estimated density gn (z) is continuous. Then its

distribution function Gn is strictly increasing and the inverse G−1
n exists. As

a consequence, Kiefer-Wolfowitz MLE based estimator has the form

q̂n = G−1
n (b/ (b+ h)) .
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The following results are the direct consequences of Chapter 3.

Theorem 6.6. (Consistency) For the newsvendor problem, Kiefer-Wolfowitz

MLE based estimator q̂n converge to the true Bayes estimator q̂ almost surely.

Proof. By Lemma 6.2, we have Gn ⇒ G. For the newsvendor problem, the

loss function is convex and it has monotone bounded derivative. By Theorem

3.11, the result follows.

Theorem 6.7. (Asymptotic optimality) For the newsvendor problem, assume

(1) supx q (x) < ∞ and (2) EF |θ| < ∞, then the modified Bayes rule q̃n as

defined in Chapter 3 is asymptotically optimal.

Proof. A consequence of Theorem 3.12.

6.2.2 Implementation

Computing the Kiefer-Wolfowitz MLE can be reformulated as a convex

problem and therefore be efficiently solved by modern interior-point methods

(Koenker and Mizera, 2014). To obtain the predictions, we need to compute

the b/ (b+ h)th quantile for Gn for every x. Note that Gn has a finite mix-

ture Gaussian density and its quantiles can be efficiently found by solving the

equation

Gn (z)− b/ (b+ h) = 0 (6.2)

using any one-dimensional root finding algorithm. In implementation, we set

the searching interval as
[
minx− 3max

√
νf ,maxx+ 3max

√
νf
]
. Moreover,

as we discussed in Remark 6.5, the solution to (6.2) is unique, so the result

returned by the algorithm is the b/ (b+ h)th quantile for Gn.
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6.3 Simulations

We repeat the experiments in Mukherjee et al. (2015) and set νf,i = 1 and

bi+hi = 1 for all i = 1, ..., n. To evaluate the performance, for each replication

we calculate the empirical risk

1

n

n∑
i=1

[
bi (yi − qi (xi))+ + hi (qi (xi)− yi)+

]
. (6.3)

Experiment 1. (Two-point support) We study a homoskedastic model

with νp,i = 1/3 for all i = 1, ..., n. We consider two different values for θi:

1/
√
3 and −3

√
3. The loss is defined as: when θi = 1/

√
3, bi = 0.51 and when

θi = −3
√
3, bi = 0.99. We consider two different choices of n: when n = 20,

there are 18 replicates of the (θi, bi) pair of
(
1/
√
3, 0, 51

)
and 2 replicates

of
(
−3
√
3, 0.99

)
. For n = 100, there are 90 replicates of the (θi, bi) pair of(

1/
√
3, 0, 51

)
and 10 replicates of the latter. The results are based on 50

replications.

Experiment 2. (Standard normal) We consider a homoskedastic model

with νp,i = νp for all i = 1, ..., n. We vary p to numerically test the performance

of the methods. We let θi i.i.d. from N (0, 1) and bi i.i.d. from uniform

[0.51, 0.99]. The results are based on 20 replications.

Experiment 3. (Heteroskedastic Models) Several heteroskedastic models

are also studied here and the results are based on 20 replications.

Case 1: θ are i.i.d. from Uniform (0, 1) and νp,i are i.i.d. from Uniform (0.1, 1/3).

Case 2: θ are i.i.d. from N (0, 1) and νp,i are i.i.d. from Uniform (0.1, 1/3).

Case 3: We consider the dependence between νp,i and θ: νp,i are i.i.d. from

Uniform (0.1, 1/3) and θi = 5νp,i.
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Case 4: The uniform distribution in Case 3 is replaces by Inv-χ2 (0.1, 1/3)

and θi = 5νp,i.

Case 5: νp,i are i.i.d. from the 2-point distribution 2−1 (δ0.1 + δ0.5) and the

θi are drawn conditioned on the past variances:

(θi|νp,i = 0.1) ∼ N (0, 0.1) and (θi|νp,i = 0.5) ∼ N (0, 0.5) .

There are two groups in the data.

Case 6: We assess the sensitivity in the performance of the estimators

to the Gaussian noise assumption. νp,i are i.i.d. from Uniform (0.1, 1/3) and

θi = 5νp,i. The past observations are generated independently from

Xi ∼ Uniform
(
θi −

√
3νp,i, θi +

√
3νp,i

)
for i = 1, ..., n.

The tables below report the empirical risk , its standard deviation (in round

brackets) and CPU time (in squared brackets) of nonparametric empirical

Bayes estimator denoted NPEB, compared to the shrinkage methods proposed

by Mukherjee et al. (2015) denoted Zero and GrandMean. As a reference,

we also provide the performance of the Bayes decision rule when the prior

distribution is completely known denoted as Oracle.

We observe that (1) In all the three experiments, NPEB performs better

than the shrinkage methods and several orders of magnitude faster; (2) It is

a surprise that in Experiment 2, when the prior is standard normal which is

a setup favoring the shrinkage methods, NPEB still has lower empirical risk.

This is possibly because NPEB methods has a faster convergence rate respect

to the sample size; (3) Zero and GrandMean methods tend to have very similar
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performance, because both methods try to shrink the estimators to the centers

of priors, which are zeros by design.

n=20 n = 100

Oracle 0.356(0.02)[0.06] 0.360(0.02)[0.03]

NPEB 0.360(0.06)[0.15] 0.362(0.02)[0.60]

Zero 0.395(0.06)[1144] 0.409(0.03)[5779]

GrandMean 0.396(0.06)[1144] 0.409(0.03)[5779]

Table 4: Empirical risk of NPEB estimator compared to the shrinkage methods in
Experiment 1

n νp/νf Oracle NPEB Zero GrandMean

20 1/1 0.36(0.06)[0.11] 0.38(0.08)[0.27] 0.46(0.10)[1192] 0.46(0.10)[1192]

1/2 0.33(0.08)[0.11] 0.34(0.08)[0.24] 0.37(0.10)[984] 0.37(0.10)[984]

1/3 0.32(0.07)[0.10] 0.32(0.09)[0.23] 0.34(0.08)[856] 0.34(0.08)[856]

1/4 0.30(0.07)[0.09] 0.30(0.08)[0.17] 0.33(0.06)[541] 0.33(0.06)[541]

1/5 0.30(0.08)[0.08] 0.31(0.08)[0.17] 0.34(0.10)[533] 0.34(0.10)[533]

1/6 0.32(0.06)[0.08] 0.32(0.07)[0.17] 0.35(0.06)[490] 0.35(0.06)[490]

100 1/1 0.35(0.02)[0.36] 0.36(0.02)[0.78] 0.43(0.04)[6062] 0.43(0.04)[6062]

1/2 0.33(0.02)[0.35] 0.34(0.03)[0.74] 0.38(0.03)[5433] 0.38(0.03)[5433]

1/3 0.32(0.02)[0.33] 0.32(0.02)[0.65] 0.37(0.02)[4302] 0.37(0.02)[4302]

1/4 0.30(0.03)[0.26] 0.30(0.03)[0.55] 0.34(0.03)[3038] 0.34(0.03)[3038]

1/5 0.29(0.03)[0.27] 0.30(0.03)[0.53] 0.32(0.03)[2762] 0.32(0.03)[2762]

1/6 0.30(0.03)[0.27] 0.30(0.03)[0.53] 0.33(0.03)[2615] 0.33(0.03)[2615]

Table 5: Empirical risk of NPEB estimator compared to the shrinkage methods in
Experiment 2

6.4 Forecasts for Product Demand

In this section, we conduct numerical experiments based on demand data

from a manufacturing company (Zhao, 2017). We apply our proposed non-
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n Case Oracle NPEB Zero GrandMean

20 1 0.31(0.07)[0.11] 0.31(0.07)[0.72] 0.35(0.09)[945] 0.35(0.09)[945]

2 0.30(0.07)[0.11] 0.30(0.07)[0.72] 0.33(0.07)[803] 0.33(0.07)[803]

3 0.28(0.05)[0.11] 0.28(0.05)[0.68] 0.32(0.08)[1035] 0.32(0.08)[1035]

4 0.31(0.07)[0.08] 0.31(0.07)[0.52] 0.35(0.07)[617] 0.35(0.07)[617]

5 0.28(0.04)[0.07] 0.29(0.05)[0.51] 0.35(0.06)[539] 0.35(0.06)[539]

6 0.30(0.04)[0.08] 0.31(0.04)[0.50] 0.35(0.05)[680] 0.35(0.05)[680]

100 1 0.29(0.02)[0.32] 0.29(0.02)[2.05] 0.34(0.03)[5063] 0.34(0.03)[5063]

2 0.32(0.03)[0.34] 0.32(0.03)[2.26] 0.36(0.03)[4285] 0.36(0.03)[4285]

3 0.29(0.03)[0.31] 0.29(0.03)[2.05] 0.34(0.03)[5252] 0.34(0.03)[5252]

4 0.29(0.03)[0.25] 0.29(0.03)[1.49] 0.33(0.04)[2974] 0.33(0.04)[2974]

5 0.30(0.02)[0.26] 0.31(0.02)[1.52] 0.36(0.03)[3015] 0.36(0.03)[3015]

6 0.30(0.02)[0.24] 0.30(0.02)[1.48] 0.35(0.03)[3592] 0.35(0.03)[3592]

Table 6: Empirical risk of NPEB estimator compared to the shrinkage methods in
Experiment 3

parametric empirical Bayes method to predict the monthly demand for each

product.

In 2016, the company provides 1578 products within 26 product categories.

To simplify our analysis, we will look at the category having the highest trans-

action times and make predictions for the products having at least 104 demand

in a given month. Assume the variances νp,i and νf,i for each product are given

and they can be estimated using the monthly data from the year 2012 - 2015.

The lost sales cost bi and the inventory cost hi are not available in this data

set. Typically, the lost sales cost is much higher than the inventory cost. Re-

call the fact 6.4 that only the ratio bi/hi matters in the predictions and we

assume bi = 1 and hi = 0.1 for all i.

For the evaluation, we take the näıve estimator qnaive,i (xi) = xi as a bench-

mark and compute the ratio of the sum of prediction errors under the check
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loss

RSPE (q) =
SPE (q)

SPE (qnaive)
,

where

SPE (q) =
n∑
i=1

[
bi (yi − qi (xi))+ + hi (qi (xi)− yi)+

]
.

Given the demands in the month m of 2016, we make prediction for each

of products for the month (m+ 1), where m = 1, ..., 11. The table reports

the average of the ratio of the sum of the prediction errors RSPE and its

standard deviation (in brackets) of nonparametric empirical Bayes estimator

denoted NPEB, compared to the shrinkage method governed by grand mean

centric priors proposed by Mukherjee et al. (2015) denoted MBR, the James-

Stein estimator denoted JS and a näıve grand mean estimator qmean,i (xi) = x̄

denoted MEAN.

We find NPEB outperforms the other methods in this data. This is possibly

because the method does not put shape constraint on the prior distribution

compared to MBR and JS so that it is more flexible.

NPEB MBR JS MEAN

0.63(0.16) 1.47(0.42) 0.96(0.03) 3.88(0.76)

Table 7: The ratio of the sum of prediction errors RSPE in product demand forecasts
for NPEB, compared to MBR, JS and MEAN
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Chapter 7

Conclusions and Future Work

This thesis studies the mixture models, in particular the estimation of mix-

ing distributions and their applications to empirical Bayes prediction. In this

thesis, we establish the asymptotic optimality for the empirical Bayes estima-

tors; the results apply not only for the squared loss, but for a large class of

convex loss functions. A consistency result of Bayes estimators for mixture

models for a large class of convex loss functions is provided under mild con-

ditions. In the case study of the newsvendor problem involving quantile loss,

our experiments support that our proposed nonparametric empirical Bayes

estimator outperforms the shrinkage methods proposed by Mukherjee et al.

(2015). Additionally, the proposed nonparametric empirical Bayes estimator

is several orders of magnitude faster. In particular, when the prior is standard

normal, a setup favoring the shrinkage methods, our method still has lower

empirical risk.

The second part of the thesis is devoted to the estimation of mixing dis-

tribution in mixture models. We propose four estimation methods/algorithms

for computing or approximating the Kiefer-Wolfowitz MLE which are capable
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of working in higher dimensions parameter space. Projected Stochastic Gra-

dient is capable of working in higher dimensions but its convergence may be

slow. Stochastic Average Approximation is generally much faster but in some

versions, its estimation target differs from that of Kiefer-Wolfowitz nonpara-

metric maximum likelihood estimator. This is even more true for Constraint

Resampling, which is in fact an autonomous and novel estimation method; its

properties, as well as those of other proposed methods are assessed via simu-

lations and theoretical results. Cutting-Plane Method, an algorithm can work

with problems a very large number of constraints, is considered at last. The

experiments show that Constraint Resampling performs in general well and

able to solve the problem with the dimension of the parameter space at lest

ten.

The penultimate chapter is devoted to facilitate the multivariate data-

analytical applications of the developed algorithms. Nonparametric empirical

Bayes methods are studied in the presence of explanatory variables. A non-

parametric empirical Bayes regression model is later proposed. In contrast to

some of the previous approaches, such a regression model has a very simple

form and inherits most of theoretical properties of nonparametric empirical

Bayes procedures. Unlike methods based on the partial linear model, the pa-

rameter estimation procedure is equivalent to solving a convex optimization

problem in function space and can be eciently solved by the proposed algo-

rithms.

Regarding the future work of nonparametric empirical Bayes methods,

there are several aspects to be mentioned. One drawback of nonparamet-

ric empirical Bayes methods in applied data analysis is that the decision rule

is defined only at the ith training data point. In many applications, such as

116



supervised learning problems, the ultimate goal is to generalized the decision

rule to new data not represented in the training set. A possible solution is

to induce a regression tree whose predictions are as close as possible to the

decision rules.

One can also think backward and apply nonparametric empirical Bayes

methods to regression tree based models. Let us start with a regression tree

model. Given a split node, we find the prediction by minimizing the sum of

squares over each region and the prediction is simply the average of the data

falling into this region. For the response variables in each region, we can think

them are the summations of signals from a certain unknown distribution and

Gaussian noises (with a known variance, which can be estimated via cross-

validation). Then nonparametric empirical Bayes methods can be applied.

Now for each split, instead of the simple averages, we solve a sequence of

convex optimization problems which are independent from each other. This

can be done efficiently via parallel programming. This approach can then

be extended to more sophisticated tree models, such as random forest and

boosting.

The other direction is to apply nonparametric empirical Bayes methods

on ensemble methods, such as stacking. Given M fitted candidate models,

stacking method chooses to find the optimal weights by minimizing the cross-

validation error. If we want to apply nonparametric empirical Bayes methods,

we can think the candidate models are randomly generated. The estimated

weights can be found by solving Kiefer-Wolfowitz maximum likelihood esti-

mation problem restricting on the class of distribution functions with no more

than M support points.
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bound method for stochastic global optimization. Mathematical Program-

ming 83 (1-3), 425–450.

Pearson, K. (1894). Contributions to the mathematical theory of evolution.

Philosophical Transactions of the Royal Society of London. A 185, 71–110.

Pfanzagl, J. (1988). Consistency of maximum likelihood estimators for cer-

tain nonparametric families, in particular: mixtures. Journal of Statistical

Planning and Inference 19 (2), 137–158.

Pollard, D. (1991). Asymptotics for least absolute deviation regression esti-

mators. Econometric Theory 7 (2), 186–199.

Robbins, H. (1956). An empirical Bayes approach to statistics. Proceedings of

the Third Berkeley Symposium on Mathematical Statistics and Probability 1,

157–163.

Robbins, H. (1964). The empirical Bayes approach to statistical decision prob-

lems. The Annals of Mathematical Statistics 35 (1), 1–20.

Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press.

123



Rockafellar, R. T. (1993). Lagrange multipliers and optimality. SIAM Re-

view 35 (2), 183–238.

Rutherford, J. and R. Krutchkoff (1969). Some empirical Bayes techniques in

point estimation. Biometrika 56 (1), 133–137.

Shapiro, A. (2009). Semi-infinite programming, duality, discretization and

optimality conditions. Optimization 58 (2), 133–161.

Shapiro, A. (2010). Computational complexity of stochastic programming:

Monte Carlo sampling approach. In Proceedings of the International

Congress of Mathematicians, pp. 2979–2995.

Shapiro, A., D. Dentcheva, and A. Ruszczyński (2009). Lectures on stochastic
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