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Abstract 

A widely held, stereotyped belief is that students with autism tend to be mathematically gifted. 

This stereotype has some support in the annals of autism research, but more recently, 

researchers have revealed that the rates of both math giftedness and math weakness and/or 

disability among students with autism are higher than we would expect in a typical population 

(Chiang & Lin, 2007; Mayes & Calhoun, 2006; Oswald et al., 2015). More research is needed to 

determine how students who share a common diagnosis can have such disparate outcomes in 

the same area of academic performance. In the present study, I examine the role that restricted, 

repetitive behaviours and interests (RRBIs) have in predicting the math abilities of students with 

autism. I hypothesize that students’ consistent, systematic, and uniquely autistic engagement 

with RRBIs, such as special interests, leads to improved math reasoning abilities. Forty-nine 

students with autism completed standardized assessments of IQ and language. Scores from the 

Social Responsiveness Scale, Second Edition Restricted Interests and Repetitive Behaviours 

subscale were used as a measure of students’ RRBI symptomology. A standardized measure of 

foundational math ability was administered as the outcome measure. I present the results from 

a hierarchical regression analysis, which revealed that RRBIs did not account for a significant 

amount of the variance in participants’ math ability scores above and beyond IQ and language. I 

discuss the limitations of the measures used in this study as well as the value of these 

nonsignificant results, which may help to dismantle stereotypes and shape future research to 

better understand the academic achievement of students with autism.  
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Introduction 

Hollywood has partly shaped the stereotype of math giftedness in people with autism 

spectrum disorder (autism). The portrayal of mathematical savants—such as Raymond in the 

movie Rain Man—perpetuates a stereotype that autistic individuals are typically mathematically 

gifted. The stereotype of math giftedness could negatively impact students with autism if 

expectations for their math performance are inaccurately inflated (Draaisma, 2009). While there 

is some support for this stereotype in the extant literature (e.g., Baron-Cohen et al., 2007), what 

seems to be more accurate is that while some students with autism are indeed mathematically 

gifted, the majority have average to below-average math abilities (e.g. Chiang & Lin, 2007; 

Mayes & Calhoun, 2006; Oswald et al., 2015). Researchers have attempted to understand how 

students who share a diagnosis of autism can have widely different math abilities. Two existing 

studies examined the role that autism symptomology itself may play in math ability development 

(Miller et al., 2017; Oswald et al., 2015). Both studies suggest that a diagnosis of autism 

predicted poorer math skills, but the amount of unique variance in math scores explained by a 

diagnosis was either small (Oswald et al., 2015) or subsumed by other predictors (Miller et al., 

2017). However, when examining the relationship between autism symptoms and math abilities, 

neither study partitioned the two core symptoms of autism: (a) social communication; and (b) 

restricted, repetitive behaviours and interests (RRBIs). 

Although it has been suggested that social communication deficits inhibit math learning 

(Miller et al., 2017), students’ engagement in RRBIs may play an important role in supporting 

math learning for two reasons. First, RRBI behaviours, such as special interests, tend to involve 

gathering and sorting large amounts of data (Klin et al., 2007) and may be regarded as a form of 

naturalistic learning, requiring students to constantly engage in categorizing and systemizing 

processes (Atwood, 2003). These processes engage the same thinking as the logical reasoning 

required to master foundational math concepts (Schwank & Schwank, 2015). Second, 

experiential learning theory (Kolb et al., 2001) posits that students’ experiences are a core 
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component of acquiring new skills. Therefore, autistic students’ intense engagement in RRBIs 

may provide them with more experience categorizing and systemizing, skills that support math 

reasoning, whereas students who engage in these behaviours less frequently may have fewer 

opportunities to practice this type of thinking. The purpose of the present quantitative study is to 

explore the relationship between (a) students’ RRBIs and (b) math abilities in a sample of 

autistic students by asking the following research question: in a sample of students with autism, 

how much of the variance in math ability can be explained by the severity of students’ RRBI 

symptomology? 

Autism 

Definition & Prevalence 

Autism spectrum disorder was first conceptualized by psychiatrist Leo Kanner in 1943. 

Presented as a collection of case studies, Kanner’s 1943 publication described several children 

who shared the same inborn autistic disturbances of affect, defined as an “inability to form the 

usual, biologically provided affective contact with people” (p. 250). The clinical definition of 

autism has evolved and changed considerably since that time. Currently, autism spectrum 

disorder is a neurodevelopmental disorder listed in the Diagnostic and Statistical Manual of 

Mental Disorders, Fifth Edition (DSM-5; American Psychiatric Association [APA], 2013). Today, 

the diagnostic criteria for autism spectrum disorder includes a set of symptoms in two core 

domains—social communication and restricted, repetitive behaviours and interests (RRBIs; 

APA, 2013). Individuals must meet both criteria in order to receive a diagnosis. 

Research on the topic of autism spectrum disorder has grown considerably as global 

awareness increases. This growth in literature may be related to the disorder’s rising 

prevalence. The most up to date prevalence estimates among Canadian youth aged 5–17 years 

indicate that 1 in 66 students in Canada lives with an autism spectrum disorder (Ofner et al., 
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2018). As researchers have worked to understand the disorder, advocates have worked to 

dismantle stereotypes and harmful stigma that can accompany this diagnosis. 

Neurodiversity & Supporting People with Autism 

A recent open-access publication documents the experiences of autistic people in light 

of the neurodiversity movement, a social activism movement that aims to integrate the social 

and medical models of disability to support the autonomy of individuals with autism (Kapp, 

2020). Proponents of the neurodiversity movement recognize autism as a neurological 

divergence from what is considered typical social communication and behaviour, as opposed to 

a pathologized disorder. To honour and respect this perspective, the remainder of this thesis will 

refer only to “autism” as a broad category of identity encompassing many specific diagnoses, 

symptoms, and strengths. Similarly, it should be noted that this thesis intersperses both person-

first (e.g. “student with autism”) and identity-first (e.g. “autistic student”) language to respect that 

individuals who identify as autistic can have preferences for adopting either type of language 

(see Callahan, 2018, for a discussion). 

Despite the preference to abandon deficit-based perspectives on autism, advocates 

have acknowledged the utility of interventions that support autistic people’s functioning in 

society, so long as those interventions are not framed “in unnecessarily medical or clinical ways” 

(Kapp, 2020, p. 8). This shift in thinking—from disorder to divergence—has taken place over 

many years and is still in progress, especially given the reality that current societal structures 

are not tailored to the needs of people with autism. Similarly, existing stereotypes of autism 

have made it difficult for autistic people to be accepted and understood. 

Stereotypes of Autism 

Plenty of stereotypes exist in media and literature that lead to the inaccurate description 

of autistic people as highly homogenous—all persons with autism are supposed to have the 

same quirks, characteristics, and personality traits. What is perhaps most harmful is the 
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portrayal of autistic characters as belonging only to the very extremes of society. In his review of 

the stereotypes of autism in the media, Draaisma (2009) provides the following observation 

regarding the typical roles for an autistic character to occupy in movies and television: 

There are two options for an autistic person: either he [sic] is mentally handicapped, an 

egghead reading geek magazines, or he [sic] is a savant with mental powers exceeding 

those of two Cray supercomputers spinning numbers 24 hours a day. It is either 

diminished capacity or superhuman capacity, but nothing in between. (p. 1477) 

This statement highlights the disparity in how autistic characters can be portrayed. More 

importantly, however, it also alludes to the harm that could arise from these stereotypes creating 

inaccurate expectations of people with autism. These stereotypes may result in people with 

autism not being expected to achieve much at all, or being expected to possess expert savant 

abilities (Draaisma, 2009). Evidence from the research suggests that teachers have also 

adopted misconceptions about students with autism. While most studies examine teacher’s 

perceptions of the behavioural problems of students with autism, one study revealed that 

teachers of autistic students feel ill-prepared to understand the academic abilities of students 

with autism in the general education classroom (Soto et al., 2012), and this lack of 

understanding may have negative consequences for teaching and learning. Thus, it is important 

to present accurate information about the range of academic abilities among students with 

autism. Breaking down stereotypes may help students with autism get the support they need in 

the classroom based on their individual areas of strength and weakness, which in turn supports 

optimal outcomes later in life. 

Outcomes for Autistic People 

As scholars work to dismantle stereotypes, research is also being conducted to 

determine how best to support the well-being of autistic people in the world today considering 

the challenges this population faces throughout the lifespan. Explorations of the outcomes for 

people living with an autism diagnosis reveal a troubling pattern of difficulties. Adults with autism 
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continue to be severely disadvantaged in the job market; this includes documented difficulties 

finding permanent employment, consistently earning lower wages than their neurotypical peers, 

and experiencing instability and unpredictability with respect to securing employment 

opportunities (Dudley et al., 2015; Howlin et al., 2004). Baldwin and colleagues (2014) 

presented a particularly sobering statistic, finding that 46% of their sample of adults with autism 

were considered underemployed. While these outcomes are at least partly the result of the 

social pressures and stigmatization this population faces (Kapp, 2020), it is important to ensure 

that these difficulties are not compounded by other challenges this population may face. For 

example, supporting young students with autism in the classroom to ensure they experience 

academic success may enhance their employability. 

Math abilities and numeracy appear to be particularly important to support, given that 

poor numeracy and low math ability has been linked to life difficulties, poorer mental health, 

earning lower wages as an adult, and lower rates of full-time employment (Butterworth, 2008; 

Bynner & Parsons, 1997; Gillum, 2014). Furthermore, the argument has been made that 

children of all demographics have a right to access education that supports the development of 

math abilities specifically (Munn, 2005). Thus, it is important to establish whether autistic 

students’ numeracy and math abilities are as developed as their peers. This endeavour is 

especially important given the perpetuated stereotype of increased mathematical prowess 

among students with autism, which has been upheld in media and some research studies. 

Math Abilities & Autism 

Rates of Math Giftedness & Math Learning Disorders 

To discuss the math abilities of students with autism, it is important to first review the 

math achievement profiles of the general population. Accurate prevalence rates for math 

giftedness are difficult to find, given the controversy among scholars about how giftedness itself 

ought to be defined (Bicknell, 2009). For example, Bélanger and Gagné (2006) demonstrated 
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that the various available definitions of “giftedness,” ranging from more conservative to more 

liberal, make it nearly impossible to calculate the rate of giftedness in the general population. 

Structural equation modelling used by Bélanger and Gagné (2006) demonstrated how severely 

under- or over-reported rates of giftedness could be, with estimates ranging from as low as 0% 

to as high as 74% depending on the giftedness classification criteria used. Without a clear 

operationalization of giftedness, it is difficult to say how many students are typically identified as 

mathematically gifted. From a psychometric perspective, between 2%–5% of the population 

would score in the top percentiles on any skill or ability assessment, and thus this range is often 

reported as an estimate for the rate of giftedness among school-age students (e.g., Hutchinson 

& Specht, 2020, Chapter 3; Winzer, 2008, Chapter 9). 

As is the case with identifying math giftedness, the variety of methods that may be used 

when identifying learning disorders (LDs) makes it difficult to pinpoint how common these 

disorders are in the general population. Rates of math LDs among school-age students in the 

United States have been estimated to fall in the range of 5.9%–13.8%, depending on the 

method used to classify students with a math LD (Barbaresi et al., 2005).  

Autism & Math Giftedness 

Some previous research has concluded that autism is indeed linked to increased 

mathematical talent. For example, Baron-Cohen et al. (2007) suggested a relationship between 

having an autism diagnosis and being more likely to enrol in a math-based post-secondary 

program. However, this study did not include a direct measure of students’ math abilities, 

instead relying on the assumption that students enrolled in math-based programs would perform 

better on math assessments. Other research published by Baron-Cohen and colleagues have 

proposed a link between mathematical prowess and autistic traits (Baron-Cohen et al., 1998, 

2001). More recently, Wei and colleagues (2015) reported on the rates of hypercalculia among 

students with autism, which was defined as having a math calculation score at least 1 SD higher 

than scores in any other academic achievement area. In their sample, 20% of students with 
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autism fit the profile of hypercalculia (Wei et al., 2015). Jones et al. (2009) categorized students 

with autism based on their achievement profiles, noting that a large portion of their sample 

(16.2%) had above average math achievement, while the smallest category (6.1%) had 

unexpectedly low math achievement. While these studies provide some compelling evidence for 

the claim that heightened math abilities are linked to having an autism diagnosis, further 

evidence suggests that this does not accurately capture the spectrum of math achievement 

among students in this population. 

Autism & Math LD 

Several researchers have reported high rates of math weakness among students with 

autism. Oswald and colleagues (2015) identified math LD in 22% of a predominantly-male 

sample of 27 adolescents with autism. Furthermore, only 4% of their sample was identified as 

having math giftedness (Oswald et al., 2015). Mayes and Calhoun (2006) identified the rate of 

math LDs in several clinical populations, including a sample of 124 students with autism aged 

6–16 years, and found that 23% of these students would meet criteria for a math LD based on 

the discrepancy between their cognitive ability and math ability. Other researchers have 

conversely looked at the rates of autism among students with math LDs. Morsanyi and 

colleagues (2018) sampled 139 elementary school students with a math LD and determined that 

these students were 4.48 times more likely to also have a co-occurring autism diagnosis than 

students without a math LD. Taken together, the results from these studies indicate that the rate 

of math LD among students with autism is likely higher than the 5.9–13.8% estimate of math 

LDs among the general population. A review conducted by Chiang and Lin in 2007 examined 18 

studies on the math abilities of students with autism, concluding that autistic students did tend to 

have a weakness in math relative to other areas of academic achievement. However, Chiang 

and Lin (2007) also acknowledged that reported ranges of math ability scores included scores 

above the 99th percentile, indicating that at least some participants in these samples were 

mathematically gifted autistic students. Several studies include similar observations of highly 
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variable math scores, as evidenced by wide ranges and large SDs in the math scores of their 

autistic samples (e.g. Griswold et al., 2002; Titeca et al., 2015).  

Towards an Understanding of Divergent Math Profiles 

This review of the research reveals that although math giftedness is present—and may 

be more common—among students with autism than in the general population, concurrently, 

math LDs also appear to be more common. It remains unclear how a shared diagnosis can lead 

to such distinctive math ability profiles that differ so greatly from the expected normal distribution 

of math achievement; as discussed, estimated rates of math giftedness and math LD in the 

general population more closely resemble the tail ends of a normal distribution (~5%). It is 

important to clarify the underlying factors contributing to elevated rates of math giftedness and 

math weakness to identify potential targets for intervention for the groups that require the most 

support. It is also important to dismantle stereotypes that suggest 

• all autistic students are mathematically gifted, 

• all autistic students are math learning disabled, or 

• all autistic students are no different than their peers—which researchers 

suggested ought to comfort parents “to know that no additional concerns should 

be raised” about their academic abilities (Titeca et al., 2017, p. 287). 

These inaccurate assumptions may make accessing necessary supports more difficult for 

students and families. 

The literature on predictors of math ability in the general population is extensive (see 

Bull et al., 2008; Byrnes & Miller, 2007; Garon-Carrier et al., 2018; Lefevre et al., 2010; Weber 

et al., 2013, for examples). However, the key predictors of math ability in the general population 

do not explain the same amount of variance when applied to autistic samples (cf. Bae et al., 

2015; Oswald et al., 2015). To date, few researchers have tried to understand the specific 

factors that contribute to the development of such varied math abilities in this unique population. 
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Predictors of Math Abilities in Autism 

Oswald et al. (2015) 

Oswald and colleagues (2015) examined several predictors of math abilities in a sample 

of adolescents with autism. This study included cognitive predictors—perceptual reasoning, 

working memory, and verbal ability—as well as a single clinical predictor measure of test 

anxiety. Oswald and colleagues (2015) used the term clinical predictor to define psychological 

variables outside of the domain of cognitive predictors. Perceptual reasoning and verbal ability, 

two cognitive predictors, were named as the strongest predictors of math problem solving 

abilities among teen learners with autism. However, test anxiety also accounted for unique 

variance in math problem solving abilities in this sample; this is noteworthy because no research 

had previously examined clinical predictors of the math abilities of students with autism. Overall, 

Oswald and colleagues (2015) highlighted the value of understanding a clinical predictor for its 

potential to be targeted in treatment. In this case, Oswald et al. (2015) argued that treating 

students’ test anxiety would not only reduce an unpleasant and stressful experience, but could 

also support their math abilities. 

Miller et al. (2017) 

Miller et al. (2017) also studied predictors of math ability in a younger, school-aged 

sample of students with autism. Like Oswald et al. (2015), Miller and colleagues (2017) found IQ 

explained the most variance in the math scores of their autistic sample. When other predictors 

were added to the model, including motor abilities and verbal abilities, IQ continued to be the 

strongest predictor. Miller and colleagues (2017) maintained that although the other predictors 

were largely subsumed by participants’ IQ scores, motor and verbal abilities still had a key role 

to play in the development of students’ math abilities. 
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Changing the Lens: Clinical Predictors of Math Abilities in Autism 

Autism Symptomology 

Given that having an autism diagnosis seems to increase the likelihood of both math 

giftedness and math LD, the core symptoms of autism may play a role in explaining autistic 

students’ math abilities. The studies conducted by Oswald and colleagues (2015) and Miller et 

al. (2017) used different approaches to explore whether autism could be a clinical predictor of 

math ability. Oswald et al. (2015) included a dichotomous predictor to denote “having” or “not 

having” a diagnosis of autism and included this predictor in their regression model. A diagnosis 

of autism was a significant predictor of lower math problem solving scores, but this predictor 

accounted for the smallest amount of variance in the model. Additionally, Oswald and 

colleagues (2015) made no attempt to interpret this finding aside from suggesting a possible 

relationship between autism and inattention, although the authors acknowledged that inattention 

was not explicitly measured. 

 On the other hand, Miller et al. (2017) included a measure of autism symptomology that 

generated a continuous variable, which allowed the authors to “quantify ASD severity” (p. 389). 

Overall, Miller and colleagues (2017) initially found that participants who were rated as having 

more severe autistic symptoms had lower math scores. Much like the other predictors included 

in their study, Miller and colleagues (2017) found that the relationship between autism 

symptomology and math scores was subsumed by IQ, meaning that when IQ was added to their 

models, autism symptomology was no longer predicting any unique variance in participants’ 

math scores. However, Miller et al.’s (2017) study used a measure that included autism 

symptomology across both core symptom domains. Neither of the studies broke down the 

symptoms of autism to separate out those related to social communication versus RRBIs. The 

consolidation of both sets of symptoms may be masking the unique influence that these 

individual symptoms have on autistic students’ math ability, which may in turn affect the 

regression results. Although it has been suggested that social communication deficits can be 
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disruptive to math learning (Miller et al., 2017), it is unclear whether increased engagement in 

RRBIs positively or negatively affects math learning. Nevertheless, RRBIs could be an important 

predictor of math abilities in students with autism. 

RRBIs  

According to the DSM-5, RRBIs cover a wide range of behaviours including repetitive 

motor movements, difficulty with transitions, rigid thinking, “excessively” perseverative interests, 

and hypersensitivity to sights, sounds, and other stimuli (APA, 2013). RRBIs are often seen as 

highly negative and impairing, and are often characterized in terms of their relationship to poor 

outcomes (e.g. Anthony et al., 2013; Troyb et al., 2016). Furthermore, this pathologizing 

perspective posits RRBIs as harmful experiences requiring treatment (Lin et al., 2018). 

On the other hand, a more neurodivergent perspective suggests that RRBIs, particularly 

special interests, are areas of strength for people with autism. Many autistic children view their 

special interests as core to who they are; they acknowledge that although the intensity of their 

engagement in these behaviours is different from that of their peers, it is a vital part of how they 

define themselves (Winter-Messiers, 2007). As students with autism spend time engaging in 

their special interests, they not only grow their sense of identity, but they are also engaging in 

more enriching learning experiences than we might expect. Klin and colleagues (2007) detailed 

the numerous ways that autistics engage with a restricted set of interests, including collecting 

information and developing expert knowledge in a wide array of topics. Atwood (2003) also 

explained that special interests involve constantly engaging in processes of categorization and 

calculation, such as collecting sports statistics. In this sense, special interests may be a facet of 

RRBIs that provide autistic children with enriching math learning experiences. 

Two theoretical perspectives of how children acquire fundamental math skills may 

explain how RRBIs could provide more opportunities for math learning for students with autism. 

First, Schwank and Schwank (2015) found predictive-logical reasoning to be an underlying 

principle that contributes to the development of math reasoning. Math competencies can 
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develop when students are engaged in predictive-logical reasoning, which is “a type of 

inferential logical thinking that establishes relations by focusing on similar or identical 

components of objects” (Schwank & Schwank, 2015, p. 773). Namely, the ability to determine 

patterns in objects and categorize shapes as belonging or not belonging together is foundational 

to the development of math reasoning. Students who are intensely engaged in a special interest 

are regularly engaging in processes of categorization and systemizing—processes which may 

mimic predictive-logical reasoning tasks. This regular engagement presents many opportunities 

for practicing these reasoning skills, which may further support autistic students’ math ability 

development. 

Second, Byrnes and Miller’s (2007) study on the predictors of high school math 

achievement was based on the opportunity-propensity model. The opportunity-propensity model 

includes predictors related to both opportunities for learning and an individual’s propensity for 

learning that skill. Given that up to 95% of students with autism engage with a special interest 

(Turner-Brown et al., 2011), RRBIs may help to explain the discrepant math ability profiles in 

populations of students with autism. Namely, the frequency and intensity with which students 

engage with their special interest may play a role in the development of their math ability. 

Students engaging in special interests more frequently and intensely are encountering more 

experience with categorization and systemizing, two tasks that enhance one’s predictive-logical 

reasoning. Additionally, one might argue that these students also have the propensity to learn 

math more readily due to the intensity of their special interest, which involves processes so 

similar to math reasoning. Thus, it was critical to explore whether or not RRBI symptomology 

plays a role in the development of math ability for students with autism.  

Current Study 

As discussed, students with autism have both well documented variability in math skills, 

and a shared clinical characteristic that varies in its presentation and intensity—RRBIs. A 

hierarchical multiple regression analysis is used to determine the amount of unique variance in 
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math abilities that can be predicted by the severity and frequency of students’ RRBIs after 

including predictors of IQ and language, which have already been established as predictors of 

math ability (e.g. Miller et al., 2017; Oswald et al., 2015). Potential links between the RRBIs of 

autistic students and their math abilities are examined here for the first time to address the 

following research question: in a sample of students with autism, how much of the variance in 

math ability can be explained by the severity of students’ RRBI symptomology? The current 

study contributes to the literature by further exploring the underlying factors that explain the 

variable math abilities of students with autism. 

Method 

Participants & Procedures 

The sample used in this study was drawn from a larger study aimed at developing a 

model of math ability in students with autism. For recruitment, a cluster sampling method was 

used. First, the research team identified local organizations in Edmonton, Alberta that service 

populations of students with autism, including the Centre for Autism Services Alberta, the 

Autism Research Centre, the Glenrose Rehabilitation Hospital, and social media groups for 

parents of students with autism. Next, families within these organizations who have children with 

autism aged 4–18 years were invited to participate in the study via an advertisement shared to 

social media and organization websites. Thus, participants in this sample were self-selected. 

Participants were offered $10 gift cards for each 60-minute research session completed, as 

indicated in the recruitment advertisement. 

Information about participants’ specific diagnoses were based on parents’ or caregivers’ 

recollection of diagnostic information, including the source of their child’s diagnosis. Diagnostic 

information and other demographic characteristics of the sample are presented in Table 1. 

Diagnoses were not independently confirmed by the research team; instead, participant 

eligibility was determined by scores on the Social Responsiveness Scale, Second Edition (SRS-

2; Constantino & Gruber, 2012). The SRS-2 is a 65-item parent-report questionnaire used to 
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identify the presence of social and behavioural symptoms most associated with autism. Prior to 

study enrolment, parents or caregivers of potential participants completed the SRS-2 School-

Age Form, which is suitable for use with students aged 4–18 years. A total SRS-2 T score of 60 

or greater was required for inclusion in the study, in accordance with the SRS-2’s cutoff score 

for social impairments consistent with a diagnosis of autism spectrum disorder (Constantino & 

Gruber, 2012). 

In addition to meeting the SRS-2 cutoff criteria for inclusion, participants were also 

required to speak fluent English to provide responses to the research team. Similarly, although 

there were no minimum IQ or language criteria, students had to be able to supply responses to 

the standardized measures used in this assessment. If students were recruited and could not 

provide the verbal or gestured responses needed for each respective measure, their data were 

excluded from the study. Based on this inclusion criteria, 49 participants (4 female) aged 5–16 

years (M = 9.97, SD = 3.34) participated in the sample presented in this thesis. 
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Table 1 

Demographic Characteristics of Participants 

Characteristic n % of total sample 

Gender   

Male 45 92 

Female 4 8 

Diagnosisa   

ASD 19 39 

Autism 21 43 

High-functioning autism/Asperger’s 6 12 

Source of diagnosisa   

Multidisciplinary team or clinic 34 69 

Neuropsychologist 1 2 

Pediatrician 4 8 

Psychiatrist 6 12 

Psychologist 1 2 

Comorbid diagnosesb   

None 24 49 

Attention-deficit hyperactivity disorder 

(ADHD) 
12 25 

Anxiety disorder 1 2 

Communication/language disorder 1 2 

Mood disorder 1 2 

>1 comorbid disorderc 8 16 

Note. All information is self-reported according to participants’ parent(s)/caregiver(s). Where 

possible, specific verbiage was retained to create the categories reported in this table (i.e. care 

was taken to respect use of either “ASD” or “Autism”). 

a Missing responses n = 3 

b Missing responses n = 2 

c Among the eight total participants, reported comorbid disorders included ADHD (n = 6), anxiety 

(n = 4), communication/language disorder (n = 1), math learning disorder (n = 1), other learning 

disorder (n = 2), obsessive compulsive disorder (n = 2), sensory processing disorder (n = 2), 

and Tourette syndrome (n = 2). 
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A power analysis was conducted a priori using G*Power (Version 3.1.9.3; Faul et al., 

2009) to determine the minimum number of participants needed for the intended analysis. 

Oswald et al. (2015) were able to detect an effect size classified by Cohen (1988) as moderate 

to large (ES = .29) in their analysis of test anxiety as a predictor of math problem solving 

abilities. To detect a similar effect size, this study required a sample size of 48 participants 

according to G*Power. Thus, the sample of 49 students recruited for this study was considered 

adequate for the purpose of the planned analysis. 

Sampling was conducted cross-sectionally. All variables were intended to be measured 

at a single point in time, from one sample of participants, during an in-person administration of 

the measures. To ensure participants felt comfortable engaging with the research team, the 

research team offered participants the option to complete sessions at the team’s research lab at 

the University of Alberta campus, or in the participant’s own home. Data collection often 

occurred over a series of dates for each participant due to: (a) the number of variables 

measured as part of the larger study, bearing in mind the time required to administer each 

standardized test; (b) the availability of materials; and (c) the ethical obligation to minimize 

psychological fatigue for students, which was achieved by limiting each session to a maximum 

length of 60 minutes. Every reasonable effort was made to schedule subsequent required 

sessions as soon as possible following a completed session. This research design, including the 

sampling parameters described above, was approved by the University of Alberta’s internal 

research ethics board prior to the start of data collection. 

Predictor Measures 

IQ 

The inclusion of IQ as a predictor of math ability was considered necessary based on 

previous studies of math abilities (e.g., Miller et al., 2017; Oswald et al., 2015) and aligns with 

Byrnes and Miller’s (2007) proposition for comprehensive studies of the predictors of math 
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ability. Unlike previous studies (e.g. Bae et al.,2015; Oswald et al., 2015), IQ cutoff scores were 

not used to exclude any participants; instead, all participants who were able to comprehend and 

complete the standardized measures in this sample were chosen for inclusion to ensure that 

students of all ability levels were represented in this sample. Participants completed one of 

three potential IQ measures: Raven’s Educational Coloured Progressive Matrices (Raven’s 

CPM; Rust & Raven, 2008a), Raven’s Educational Standard Progressive Matrices-Plus 

(Raven’s SPM+; Rust & Raven, 2008b), or the Leiter International Performance Scale, Third 

Edition (Leiter-3; Roid et al., 2013). All three measures produce IQ composite scores with a 

mean of 100 and a standard deviation of 15. 

The Raven’s CPM and Raven’s SPM+ are two age-normed versions of a standardized, 

nonverbal fluid reasoning assessment, and each version is suitable for individuals of different 

ages. The Raven’s CPM is appropriate for assessing students aged 4–11 years, contains 36 

items, and takes approximately 30 minutes to complete (Rust & Raven, 2008a). On the other 

hand, the Raven’s SPM+ is used to assess students aged 7–18 years by having students 

complete 60 items in approximately 60–90 minutes (Rust & Raven, 2008b). An overlap in the 

intended age range of each measure meant that students aged 7–11 years could be assessed 

with either version. Following the advice of the publisher’s product guidelines (Pearson Clinical, 

n.d.), the research team determined the most suitable version for each participant aged 7–11 

years on a case-by-case basis. Each member of the research team used their best judgement 

to determine which version would be most appropriate to use based on: (a) the participant’s 

ability to sustain their attention for longer than 30 minutes, (b) the amount of time available for 

each session, and (c) the participant’s level of interest in the task. For both the Raven’s CPM 

and the Raven’s SPM+, students selected a response from several images, or “pieces,” in order 

to complete a pattern, or “puzzle,” arranged in a matrix as presented in a stimulus book. The 

language demands for this assessment are low; students completing either version of the 

Raven’s are required to understand a set of scripted verbal instructions, but these instructions 
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are also accompanied by pointing gestures to ensure students understand the tasks. The 

Raven’s CPM contained coloured items, while the Raven’s SPM+ contained only black-and-

white items. Evidence for the reliability of the Raven’s CPM, as presented in the technical 

manual (Rust & Raven, 2008a), includes a reported split-half reliability of .97 and a standard 

error of measurement of 2.62. The Raven’s SPM+ manual (Rust & Raven, 2008b) includes a 

reported split-half reliability of .94 and a standard error of measurement of 3.79. Evidence for 

the validity of each measure is demonstrated by a collection of factor analysis studies, as well 

as robust correlations between the current version and previous, validated versions of each 

measure (Rust & Raven, 2008a, 2008b). 

The Leiter-3 is another age-normed measurement of nonverbal cognitive abilities 

appropriate for administering to individuals aged 3–75+ years (Roid et al., 2013). The Leiter-3 

includes four subtests which contribute to an individual’s overall nonverbal IQ score. Like the 

Raven’s measures, the language demands for completing the Leiter-3 are low. Subtests are 

administered without any verbal instructions and require individuals to use manipulatives to 

indicate responses. Reliability evidence for the Leiter-3 includes reported internal consistency 

coefficients (α = .94 – .98) and test-retest reliability coefficients (α = .74 – .86). Roid and 

colleagues (2013) also provide evidence for the Leiter-3’s content, concurrent, and criterion 

validity. Content validity was established through expert reviews and item analysis during 

developing, including pilot testing of new items. Concurrent validity was evidenced by report 

correlations between a subsample of scores on the Leiter-3 and scores on other well-

established cognitive measures, including the Stanford-Binet Intelligence Scales, Fifth Edition (r 

= .77), the Wechsler Intelligence Scales for Children, Fourth Edition Perceptual Reasoning 

Index (r = .73), and the Woodcock-Johnson Tests of Cognitive Abilities Fluid Reasoning subtest 

(r = .74). Finally, evidence for the Leiter-3’s criterion validity includes a demonstration of the 

Leiter-3’s utility for correctly classifying individuals with intellectual disabilities. Overall, Roid and 
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colleagues (2013) present compelling evidence for the reliability and validity of the Leiter-3 as a 

measure of nonverbal cognitive abilities. 

Like the Raven’s assessments, the Leiter-3 was used to determine each student’s 

nonverbal fluid reasoning. Given the number of materials needed to administer, use of the 

Leiter-3 in this study was limited to the availability of the test materials and the ability of each 

member of the research team to transport the materials needed for each session. For some 

participants (n = 28), time permitted the administration of both a Raven’s measure and the 

Leiter-3, which allowed me to determine that the correlation between the composite IQ scores 

produced by each measure was strong (r = .75; see Dancey & Reidy, 2007). Thus, IQ scores 

are included for participants who completed either the Raven’s CPM, the Raven’s SPM+, or 

Leiter-3. This decision allowed for more data points to be included in the regression model. In 

cases where participants completed both a Raven’s measure and the Leiter-3, a participant’s 

Raven’s score was selected for inclusion in this analysis. This decision was made based on the 

clarity and simplicity of the administration instructions provided in the Raven’s technical manuals 

(Rust & Raven, 2008a, 2008b). In contrast, the Leiter-3 may have been more prone to 

administrator error given: (a) the requirement to manage several manipulatives, (b) the potential 

variability in administrators’ style of pantomime instruction delivery, and (c) the need for 

“considerable familiarity with the instructions” prior to administration (Drevon et al., 2017). As 

previously mentioned, scores from any of the three measures were considered appropriate to 

use as a measure of each participant’s math score due to their high correlation and their 

similarly nonverbal nature. I present a comprehensive breakdown of the IQ measures included 

in this analysis in Table 2. 
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Table 2 

Descriptive Table of IQ Measures Included for Analysis 

IQ measure n % 

Raven’s CPM 23 47 

Raven’s SPM+ 18 37 

Leiter-3 6 12 

Note. n = 2 participants (4% of sample) did not complete any IQ measure. 

 

Language Ability 

The inclusion of language as a predictor measure also aligns with Byrnes and Miller’s 

(2007) proposition for comprehensive predictor models when examining math abilities. 

Additionally, language has been established as a predictor of math abilities in previous studies 

of students with and without autism (e.g., LeFevre et al., 2010; Oswald et al., 2015; Taub et al., 

2008). Participants in this study completed subtests of the Clinical Evaluation of Language 

Fundamentals, Fifth Edition (CELF-5; Wiig et al., 2013), a standardized, norm-referenced 

assessment of core language abilities. The CELF-5 is suitable for use with individuals aged 5 

years to 21 years, 11 months. Subtests within the CELF-5 are reported as scaled scores with a 

mean of 10 and a standard deviation of 3. Scores on the CELF-5 subtests can also be used to 

calculate several language composites, including expressive and receptive language. However, 

to keep administration time within a reasonable limit, the decision was made to only administer 

a select few subtests. One of those subtests, the Formulated Sentences (FS) subtest, 

measured each participant’s ability to construct sentences using a given word within the context 

of a presented illustration. Participants’ responses on this subtest are provided verbally, which 

allowed for language to be measured without any potential impact due to students’ fine motor 

skills. Among the 16 available subtests available in the CELF-5 test battery, FS was chosen for 

this analysis for two reasons. First, most participants completed FS, which allowed me to 
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include more data points in the analysis. Second, FS is a comprehensive, stand-alone measure 

of a student’s ability to integrate multiple features of expressive language, including semantics, 

syntax, and pragmatics (Wiig et al., 2013). Intercorrelations between CELF-5 subtests and 

available composites also revealed FS to have some of the strongest relationships to the 

broader language composites (r = .56–.70), further supporting its use as a valid measure of 

participants’ language ability. The reliability of the FS subtest is supported by a strong average 

internal consistency coefficient (r = .86) as well as good inter-scorer agreement (r = .95). 

Evidence for the validity of the CELF-5 overall test includes confirmatory factor analysis data, as 

well as the FS subtest’s robust concurrent validity with the previous fourth edition (corrected r = 

.71; Wiig et al., 2013). 

RRBI Symptomology 

To gauge participants’ RRBI symptomology, parents or caregivers were asked to 

complete the SRS-2 (Constantino & Gruber, 2012). Among other scores, the SRS-2 produces 

two subscale T scores compatible with the DSM-5 criteria for autism, one of which is the 

Restricted Interests and Repetitive Behavior subscale (M = 50, SD = 10). Higher scores on this 

subscale represent more severe and frequently exhibited patterns of rigidity, rule-based 

insistence on sameness, and restricted interests. This score was used as a measure of 

students’ RRBI symptomology. Although reliability coefficients are not reported for subscales, 

reliability for the SRS-2 is evidenced by an overall internal consistency of .95 for the School-Age 

Form. The technical manual for the SRS-2 also offers a range of validity evidence, including 

confirmatory factor analysis which supported the two-factor model of the two DSM-5 symptom 

subscales, as well as expert review of the appropriateness of items based on what is known 

about children with autism (Constantino & Gruber, 2012). 
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Outcome Measure: Math Ability 

The KeyMath3 Diagnostic Assessment, Canadian Edition (KeyMath3 DACDN; Connolly, 

2008) assesses an individual’s understanding of basic math concepts, as well as an individual’s 

ability to apply their knowledge to solve math problems. This measure is appropriate for use 

with students aged 5 years to 17 years, 11 months, and covers three general math content 

areas including basic foundational concept knowledge, computation and operations, and 

problem solving (Connolly, 2008). The KeyMath3 DACDN is norm-referenced, and age norms 

were used for this analysis. Two parallel forms, Forms A and B, are available for this measure; 

all study participants completed Form A. All participants included in this analysis completed five 

subtests: (a) Numeration, (b) Algebra, (c) Geometry, (d) Measurement, and (e) Data Analysis 

and Probability. These five subtests make up the Basic Concepts composite (M = 100, SD = 

15).  Items from each of these subtests are delivered orally and are typically accompanied by 

supplemental visual stimuli. Unlike other standardized math measures—including other written 

subtests from the KeyMath3 DACDN—these subtests were intentionally chosen for their verbal 

response format; completing these items did not require students to have the fine motor abilities 

necessary to scribe their responses. This composite was also chosen for its comprehensive 

coverage of basic math abilities, as well as normative information indicating that this composite 

is highly correlated with KeyMath3 DACDN total test scores (r = .96–.97). The split-half reliability 

of the Basic Concepts composite reported in the technical manual includes reliability coefficients 

ranging from .83 to .97 across age bands. Test-retest reliability for the Basic Concepts 

composite is also established by reported reliability coefficients ranging from .81 to .93 across 

age bands. Validity evidence for the KeyMath3 DACDN includes comprehensive data on the 

test’s content and construct validity. Specifically, the technical manual includes a description of 

the expert review and consultation with the National Council of Teachers of Mathematics in 

support of the test’s development, as well as comparison studies between the KeyMath3 DACDN 
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and other validated measures of math ability. The Basic Concepts composite was used as the 

outcome measure of interest for this analysis to represent each participants’ math ability. 

Analysis 

A hierarchical multiple regression analysis was used to determine the amount of unique 

variance in math ability—as measured by the Keymath3 DACDN Basic Concepts composite 

score—accounted for by participants’ RRBI symptomology. This method of analysis is 

appropriate for examining the amount of unique variance in a continuous outcome variable that 

is explained by a set of continuous or dichotomous predictor variables. Given that the IQ 

composite scores, the CELF-5 FS scaled score, the RRBI symptomology T score derived from 

the SRS-2, and the KeyMath3 DACDN Basic Concepts composite score are all continuous 

variables, a hierarchical multiple regression was deemed appropriate to answer the stated 

research question.  Furthermore, this method was chosen to allow for known predictors to be 

held constant as the new variable of interest—RRBI symptomology—was added. Thus, IQ and 

language were added in the first model, given the existing empirical evidence for their capacity 

to predict math ability, whereas the second model examined the unique predictive power of 

students’ RRBI symptomology. The decision was made to use pairwise deletion to address 

missing data in order to retain the largest number of data points possible. As suggested by 

Tabachnick and Fidell (2013), I repeated the analysis with listwise deletion and produced 

equivalent results; thus, the outcome from the models using pairwise deletion was not spurious. 

All figures and statistical results were generated using IBM SPSS Statistics (Version 24). 

Results 

Addressing Assumptions of Multiple Regression 

Managing Outliers 

Potential outliers in the dataset were investigated in several ways. First, boxplots were 

generated in SPSS for each variable included in the analysis, none of which revealed any outlier 
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cases. Second, an analysis of the 5% trimmed mean was reviewed to determine the effect of 

removing any outliers on the mean scores. The 5% trimmed mean of each variable also 

indicated that potential outliers were unlikely and, if they did exist, did not have an influence on 

the mean scores (Table 3). Finally, no outliers were visible in the generated regression plots 

(Figures 1 & 2). Thus, the decision was made to confidently retain all cases in the analysis. 

 

Table 3 

Descriptive Statistics for Predictor and Outcome Variables 

Variable N M 

5% 

trimmed 

mean 

SD Min. Max. Skewnessb Kurtosisb 

IQ 47 99.55 99.87 22.89 55 147 0.30 -0.47 

Language ability 45 7.29 7.18 3.25 1 15 0.19 0.32 

RRBI 

symptomologya 
49 79.61 

80.64 
8.86 57 90 

1.66 0.98 

Math ability 49 92.12 91.88 27.21 55 145 1.18 1.05 

a SRS-2 total T score (to determine study eligibility) M = 78.69, SD = 7.79 

b Represents absolute Z-score (i.e. value / standard error) 
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Figure 1 

Normal P-P Plot of Standardized Residuals 

 

Note. Outcome variable: Math ability. 
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Figure 2 

Distribution of Standardized Residuals 

 

 
Note. Outcome variable: Math ability. 

 

Normally Distributed Errors 

As pictured in Figures 1 and 2, the residuals were normally distributed around the 

predicted dependent variable scores. Thus, the errors were determined to be normally 

distributed. 

Non-Zero Variance 

For the assumption of non-zero variance to be met, predictors must have some level of 

variance above zero. Descriptive statistics and a review of the range of scores (as described in 

Table 3) indicated that none of the score were constant and that there was variability in the 
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value of each predictor variable. Thus, the assumption of non-zero variance was met for this 

analysis. 

Linearity 

The relationship between math ability and the three predictor variables was assessed by 

generating scatter plots of the relationships between each predictor variable and the dependent 

variable of KeyMath3 DACDN Basic Concepts scores. The scatterplot matrix portrayed in Figure 

3 shows that while not all relationships were strong, all variables had linear relationships, 

providing evidence that this assumption of multiple regression was met. 

 

Figure 3 

Scatterplot Matrix of Relationships Between Study Variables 

 

Note. Each scatterplot includes a fit line. 
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Independent Values 

Logically, all predictor values and values of math ability came from independent 

participants, given that all measures were administered to each participant and entered into the 

data sheet only once. Thus, the assumption of each value being generated by independent 

participants was met. 

Independent Errors 

The assumption of independent errors was tested by assessing the Durbin-Watson 

statistic. The value of the Durbin-Watson statistic for the final regression model was 1.63, 

indicating that there was no significant autocorrelation within the data and that the error terms 

are uncorrelated for this analysis.  

Homoscedasticity 

To test for the assumption of homoscedasticity, the scatterplot of the relationship 

between the standardized residual values and the predicted values was reviewed.  The 

scatterplot of the relationship between the standardized residuals and the predicted values from 

the model (Figure 4) revealed an even, horizontal distribution in the residuals, indicating that the 

error term was constant for each value of the predictor variables. Thus, the assumption of 

homoscedasticity was also met for this analysis. 
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Figure 4 

Scatterplot of Standardized Residuals and Standardized Predicted Values 

 

Note. Outcome variable: Math ability. 

 

Absence of Multicollinearity 

Several steps were taken to ensure that the variables entered into the regression model 

were not highly correlated. First, the correlation table (Table 4) revealed some strong 

correlations among the variables, with correlation coefficients ranging from -.11 to .80. However, 

additional reviews of collinearity statistics generated by SPSS revealed a sufficiently high 

Tolerance statistic (> .7) and a sufficiently low variance inflation factor (VIF; < 1.4). Taken 

together, these results suggest that although there were strong correlations among the 

variables, there was an absence of multicollinearity within this data set. 
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Table 4 

Correlation Coefficients 

Variable IQ Language 
RRBI 

symptomology 
Math ability 

IQ —    

Language ability .48** —   

RRBI symptomology -.11 -.27 —  

Math ability .80*** .63*** -.11 — 

* p < .05 ** p < .01 *** p < .001 

 

Distribution of Math Abilities 

Although the aim of this study was not to examine the distribution of math ability scores 

in this sample, especially given the relatively small sample size, it is worth mentioning that the 

distribution of math ability scores was not statistically different from normal, as evidenced by the 

skewness and kurtosis values of the math ability scores (see Table 3; Kim, 2013). However, an 

evaluation of the proportion of students with high math ability compared to low math ability 

provides evidence against the stereotype of math giftedness among autistic students, as well as 

support for the higher rates of math weakness in this population. Conservative cutoffs of ±2 SD 

above or below the KeyMath3 DACDN Basic Concepts mean score of 100 were applied to 

determine the number of students in the sample who had math giftedness and math weakness, 

respectively. Twice as many students were categorized as having a math weakness (24.5%) 

compared to the number of students categorized as having math giftedness (12.2%), as 

demonstrated in Figure 5. Altogether, results from this sample support previous findings (e.g., 

Mayes & Calhoun, 2006; Oswald et al., 2015) that a greater proportion of autistic students have 

below average math abilities rather than mathematical giftedness. While the distribution of math 

ability scores was not statistically different from normal, the proportions of both math giftedness 

and math weakness were much higher than expected. 
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Figure 5 

Distribution of Math Ability Scores Among Sample 

 

Note. Math weakness = Math ability score < 70; Average = Math ability score 70–130; Math 

giftedness = Math ability score > 130. 

 

Predictors of Math Ability 

Correlational analyses indicated that RRBI symptomology scores were not statistically 

significantly correlated with math ability scores (see Table 4). Results from the hierarchical 

multiple regression were used to assess the amount of unique variance in math ability scores 

that could be explained by students’ RRBI symptomology. The model summary is presented in 

Table 5. A review of the first model revealed that, together, IQ and language ability accounted 

for 72.4% of the variance in math ability scores (R2 = .724). After RRBI symptomology scores 
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were entered into model 2, the total amount of variance explained by the model increased to 

only 72.6% (R2 = .726), F(1, 40) = .359, p = .552. Thus, the ΔR2 after adding the RRBI 

symptomology predictor was .002, indicating that RRBI symptomology accounted for only .2% 

of the variance in math ability scores. Thus, RRBI symptomology does not significantly predict 

the math ability scores of students with autism (p > .05). Both IQ (β = .65, p < .001) and 

language ability (β = .34, p = .001) remained statistically significant positive predictors of math 

ability in the second model. 

 

Table 5 

Hierarchical Regression Coefficients Summary 

Variable B SE B β R2 ΔR2 

Model 1    .724 .724*** 

Constant -4.150 9.970    

IQ .769*** .111 .647   

Language ability 2.703** .783 .323   

Model 2    .726 .002 

Constant -17.449 26.005    

IQ .767*** .113 .644   

Language ability 2.824** .823 .336   

RRBI symptomology .158 .285 .035   

Note. Pairwise deletion used for analysis. RRBI symptomology was added as a predictor in 

Model 2. Dependent variable for both models: math ability.  

* p < .05 ** p < .01 *** p < .001 
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This means that students with better nonverbal fluid reasoning abilities and better 

language abilities had better overall math abilities as measured by the KeyMath3 DACDN Basic 

Concepts score. Variance in the math ability scores of students with autism was better 

explained by IQ and language ability, whereas RRBI symptomology did not significantly predict 

math abilities. Moreover, the correlation between RRBI symptomology and math ability was 

nonsignificant, which was surprising given the initial hypothesis that engaging in more rule-

based, repetitive behaviours supports autistic students’ proficiency in foundational math 

concepts.  

Discussion 

Overall, the findings of this study did not support the hypothesis that autistic students 

who had more frequent or more intense RRBI engagement would have higher math ability. The 

amount of variance in students’ math ability scores explained by RRBI frequency and intensity 

was not significant, as demonstrated by the results of the hierarchical multiple regression. 

However, these results did support earlier research on the significant role that IQ and language 

ability both play in predicting math ability in students with autism (Miller et al., 2017; Oswald et 

al., 2015). Additionally, an exploration of the distribution of math ability scores in this sample 

was congruent with earlier findings that math weakness is more common than math giftedness 

in autistic students (e.g. Chiang & Lin, 2007; Mayes & Calhoun, 2006; Oswald et al., 2015). 

Namely, 24.5% of students had a math weakness based on math ability scores ≤2 SD below the 

mean of the KeyMath3 DACDN. In contrast, only 12.2% of the sample had math ability scores ≥2 

SD above the mean of the KeyMath3 DACDN. Although applying formal criteria for math LD was 

outside the scope of this paper, the results from this study supply further evidence that 

stereotypes of math giftedness in autism are unwarranted and inaccurate. 

Limitations & Future Directions 

A major limitation of this study is that the SRS-2 scale used to measure RRBIs in this 

sample is not a highly specific measure, given that it includes every possible RRBI associated 
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with the DSM-5’s criteria for autism spectrum disorder. In other words, the SRS-2 Restricted 

Interest and Repetitive Behaviour subscale does not distinguish between items measuring 

“lower-order” versus “higher-order” RRBIs (Lin & Koegel, 2018). “Lower-order” RRBIs are 

limited to those in the domain of motor-sensory symptoms, such as self-injury and self-soothing 

rocking behaviours. On the other hand, “higher-order” RRBIs describe those that are more 

cognitive in nature, such as engaging in special interests and adhering to rule-based thinking. 

Further evidence for distinct RRBI subtypes has been published in the years since the creation 

of the SRS-2. Three total “subtypes” of RRBIs have been identified through exploratory factor 

analysis: (a) special interests, (b) insistence on sameness, and (c) repetitive motor behaviours 

(Lam et al., 2008).  

The SRS-2’s use of a single RRBI scale amalgamates all possible subtypes of RRBI to 

produce a single score. For example, ratings of one student’s frequent self-stimulatory 

behaviours in the absence of special interest engagement may produce a score equally as high 

as the rating of another student who displays intense engagement in a special interest. Thus, 

students’ RRBI symptomology scores in this sample may not differentiate RRBI engagement. 

As South and colleagues (2007) noted with respect to RRBI measurement, “[s]ome… behaviors 

are best measured in terms of frequency or duration, while others are better measured by the 

impairment they cause” (p. 447). This could also be framed more positively to propose that 

engagement in a higher-order RRBI like a special interest may be better measured by the 

method with which students engage with their special interest area (Klin et al., 2007). For 

example, it may be that a subset of students with autism are meaningfully and regularly 

engaged in organizing and systematizing information about their intense special interest—and 

as a result of having these consistent learning opportunities involving the same processes that 

support math learning (Schwank & Schwank, 2015), these students are mathematically gifted. 

To more clearly understand the relationship between special interest engagement and math 

ability development, researchers must first develop more specific measures focused exclusively 
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on special interest engagement. In this way, future studies can assess whether or not special 

interest engagement in particular contributes to math ability development, without confounding 

these cognitive-based RRBI behaviours with more physical, “lower-order” RRBI behaviours. 

It is also important to address several limitations related to the current study’s sample: 

1. The sample is quite small. This is not uncommon in research on a special population 

such as autism—however, having fewer participants reduced the number of predictors 

that could reasonably be added to the regression analysis without sacrificing statistical 

power. This made it difficult to further explore other potential cognitive or clinical 

predictors, as suggested by Byrnes and Miller (2007). Future studies should endeavour 

to recruit more participants so that a more varied set of predictors can be tested. 

2. The sample was predominantly male and required participants to engage with an 

English-speaking team of researchers, which greatly limits the generalizability of these 

findings to autistic females or people with autism who speak a language other than 

English. Future studies should include more female participants and more culturally 

diverse representation. 

3. This sample required students to be able to complete standardized tests; although 

measures were chosen which reduced demands for reading and writing, and participants 

with a wide range of IQ scores were included, it could be argued that the sample still 

fails to represent students with autism who are unable to participate in standardized 

testing, especially given that some items used in this study required verbal responses. 

Future studies should explore more inclusive measurement tools to assess participants 

of all ability levels who may be unable to adhere to standardized testing (e.g. 

incorporating gaze tracking software to gather responses that are less reliant on 

providing verbal responses). 

4. The generalizability and interpretability of these results may be limited based on the 

potential for participants’ diagnoses to be misrepresented. Parents’ and caregivers’ self-
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reports of their child’s diagnoses—including any comorbid conditions—may have been 

false or inaccurate, especially if the diagnosis occurred in the distant past. If students 

without autism were mistakenly included in this sample, the results would no longer be 

describing predictors of math ability unique to this population. Future studies should 

include independent confirmation of participants’ diagnosis by the research team, using 

an existing diagnostic measure of autism (e.g. the Autism Diagnostic Observation 

Schedule, Second Edition; Lord et al., 2012). 

5. The decision to include all participants regardless of comorbid diagnoses may have also 

impacted the generalizability and interpretability of these results. Namely, the possible 

inclusion of students with existing LD diagnoses may have inflated the reported rates of 

math weakness in the sample. Future studies should endeavour to recruit larger sample 

sizes so that potential comorbid diagnoses can be examined separately. 

6. Self-selection bias in this sample may have led to an inflated number of under- and over-

achieving math students (i.e. parents who were invested in learning more about their 

child’s known giftedness or weakness in math may have been more interested in 

participating in this math study). Future studies should employ more purposeful methods 

of sampling to ensure parents of children with average math abilities are not overlooked 

for participation in a study aimed at understanding math achievement. 

Contribution & Significance of Findings 

Despite the lack of support for the original hypothesis, this study still makes an important 

contribution to the literature on math abilities in autism. Although rarely acknowledged, the file 

drawer problem in research publications can lead to misleading biases. The file drawer problem 

refers to the concept that only statistically significant results are accepted for publication, 

resulting in numerous studies being tucked away in researchers’ “file drawers.” This is 

particularly problematic when conducting meta-analyses (Pautasso, 2010). While the current 

study did not find support for its original hypotheses, the statistical values reported in the 
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hierarchical regression models are important to acknowledge if future researchers were ever to 

publish a meta-analysis on the math abilities of students with autism. If nonsignificant results 

were never published, meta-analyses may draw false conclusions from published literature. 

 Results from this study also help to continue dismantling stereotypes of enhanced 

mathematical talent in students with autism. Findings from other researchers on the elevated 

rates of math weakness in autistic students were supported and replicated in the current 

sample. Although RRBIs were not found to significantly predict math ability in this sample, 

limitations of the RRBI measure used here were revealed. This discussion promotes a critical 

call to action for researchers to develop more focused RRBI assessment tools. If RRBIs more 

specifically predict math ability, interventions can be developed to promote special interest 

engagement. Commenting on the environments that best promote math learning, Gillum (2014) 

advocates that educators ought to “teach the skill in an accessible way.” Special interests may 

provide an accessible pathway to better math learning for students who struggle with math 

concepts. 

In that same spirit, this study helps to advocate for a more strengths-based approach to 

autism research. Although RRBIs can be considered impairing for some students, they can also 

enrich the lives of others. Students with autism should be supported to pursue interests that are 

meaningful and contribute to their self-image. While more concentrated research is needed to 

determine whether special interest engagement specifically predicts math ability, this study 

enriches the discussion of how RRBIs can be seen as a benefit and strength for autistic people. 

Conclusion 

Previous studies provide evidence for the divergent profiles of math abilities in students 

with autism (Chiang & Lin, 2007); however, the mechanisms underlying these differences are 

still unclear. Researchers have demonstrated that certain cognitive abilities are predictive of 

math abilities (LeFevre et al., 2010); however, these cognitive models have not been replicated 

in autistic samples (e.g. Bae et al., 2015; Oswald et al., 2015), and there is a paucity of 
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quantitative research exploring clinical predictors of math abilities (e.g., RRBIs). Although my 

results indicated that RRBIs were not significant predictors of math abilities, the results of this 

study refute the potentially harmful stereotype that autistic students are typically mathematically 

gifted. Rather, students with autism tend to have below average math abilities. This is important 

to acknowledge in our understanding of how math ability develops for students with autism—

students with autism who struggle with math have a right to access interventions that support 

their academic achievement. This study also includes a call to action for future researchers to 

develop tools to more accurately assess the multifaceted concept of RRBIs and to adopt a more 

strength-based approach when working with neurodivergent populations. 
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