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Abstract

It is a challenge today for medical practitioners and manufacturers to improve ultrasound

image quality as the technology has reached its physical limits. Ultrasound images are a

great help for non-invasive diagnostics but suffer from a wide variety of artifacts such as

shadowing, limited field of view, and speckle noise. The main focus of this thesis is on the

application of a new non-linear image processing technique in cardiac ultrasound imaging

and more specifically on various methods to reduce multiplicative speckle noise. Various

filtering techniques for speckle noise reduction have been proposed in the past; however,

their performances are still limited as a compromise between speckle noise reduction and

image features preservation is difficult to reach.

In this thesis, an anisotropic geodesic filtering algorithm is proposed to reduce the mul-

tiplicative noise in cardiac ultrasound images. The algorithm is based on a scale-space

filtering technique comparable to Gaussian filtering but with the difference that the Gaus-

sian weights are automatically modified using a non-linear geodesic distance calculation

between the pixels which is capable of automatically preserving edges. In the thesis, the

proposed anisotropic geodesic filter is compared to various existing filters such as Gaussian

filter, median filter, and other types of non-linear filters based on gradient-based anisotropic

diffusion. We demonstrate that the proposed anisotropic geodesic filter performs best in

terms of preserving features and at the same time can provide improvements to the signal-

to-noise-ratio of real-time 2D and 3D echo-cardiographs. The proposed algorithm is vali-

dated on real-world ultrasound images comparing signal-to-noise-ratio (SNR), root-mean-

square-error (RMSE), peak-signal-to-noise-ratio (PSNR), contrast and contrast-to-noise-

ratio (CNR).
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Chapter 1

INTRODUCTION

In medical image processing, noise reduction still remains a challenge for researchers and

clinicians. Reliable image processing methods for magnetic resonance imaging (MRI), X-

rays tomography (CT), x-ray, and ultrasound (US) are essential to improve the diagnostic

analysis and compensate for instrumental artifacts. The quality of medical images is deter-

mined by a number of factors which originates from the physical phenomenon measured

by the sensors and by the reconstruction algorithms. The main challenge for developing

different noise reduction techniques is to improve signal-to-noise ratio without losing im-

portant clinical features in the image. Over the past decades, several image processing tech-

niques focusing on reducing multiplicative ‘speckle’ noise prevalent in ultrasound imaging

has been proposed. A number of advances in data acquisition and sensors (See Figure

1.1) have improved the image quality of ultrasound but many of these advances have now

reached their theoretical physical limits and most of the new image quality improvement is

now coming from image post-processing. Image post-processing techniques do not require

any sort of hardware modifications and can be applied to both old and new image data

sets. The compromise between the need to reduce multiplicative and additive noises

in ultrasound images and the preservation of important image features represents a

great challenge, which we will attempt to address in this thesis. Several techniques for

reducing ultrasound multiplicative and additive noises have been developed in the past and

a majority of these filtering techniques fall in one of the three categories - local algorithms,

anisotropic based techniques, and wavelet-based methods. We will discuss in detail each

technique in the literature review.

In this thesis, a new approach using a non-linear anisotropic geodesic filtering technique
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non-invasive nature, speed, low-cost, safety, scanner portability, etc. On the other hand, ul-

trasound images are often low-contrast; they contain a lot of artifacts and noise. In addition,

the noise in ultrasound images is difficult to reduce because of a combination of additive

noise and speckle noise which is multiplicative in nature and is much more complicated to

reduce than the typical Gaussian additive noise.

Noise reduction in medical ultrasound imaging is one of the most important post-

processing steps in clinical settings in order to increase the signal to noise ratio and con-

trast. Various filtering techniques for speckle noise reduction have been proposed in the

past; however, their performances are still limited as a compromise between speckle noise

reduction and the preservation image features. A review of these methods will be presented

in Chapter 2.

A good ultrasound image filter must have the following properties:

1. Must be able to deal with multiplicative noise such as speckle as well as additive

noise;

2. Must be able to represent images at multi-scale without loosing the localization of

important features;

3. Must be computationally efficient.

1.2 Ultrasound Noise Model

It is not an easy task to filter volumetric ultrasound data since it is contaminated by additive

and multiplicative noises at the same time. Speckle is basically a form of multiplicative

noise that displays a granular pattern caused by the transducer. The distribution of speckle

noise in ultrasound images has been largely studied in the literature and many models have

been proposed. In this thesis, we use the noise model proposed by Loupas et al. [4] which

is the most widely accepted and has been successfully used in many studies. The noise

model is the following:

f(x, y, z) = g(x, y, z)× η(x, y, z) + β(x, y, z),

3



where f(x,y,z) is a noisy ultrasound volumetric image, g(x,y,z) is the noise-free ultrasound

volumetric image, η(x, y, z) and β(x, y, z) are the multiplicative and additive noise re-

spectively. The additive noise β(x, y, z) is assumed to follow a Gaussian distribution with

variance σ̂(x, y, z) and an expected value E(β(x, y, z)) = 0 in all directions. In this frame-

work, the expected value E() of the difference between the measured volumetric image and

the contribution from the multiplicative noise is equal to the expected value of the additive

noise and is assumed to be equal to zero:

E(f(x, y, z)− g(x, y, z)× η(x, y, z)) = E(β(x, y, z)) = 0.

Therefore, it seems logical to transform the original measured ultrasound images with

a logarithmic function, where the multiplicative speckle noise becomes additive:

log[f(x, y, z)] = log[g(x, y, z)] + log[η(x, y, z)].

In order to respect this condition one must first filter f(x, y, z) using some non-linear fil-

ter capable of preserving key features and reducing the effect of additive noise and then

perform a logarithm transform of the resulting image which is then filtered again with a

similar filter to reduce multiplicative noise. An inverse log-function is then applied to the

image produced by this second filter. One can see in Figure 1.2 the block diagram of the

proposed filtering approach.

Figure 1.2: Block diagram of the proposed filtering approach

4



1.3 Thesis Contributions

The main contributions of the thesis are:

1. The development of a novel filter capable of reducing additive and speckle (multi-

plicative) noises in 2D and 3D ultrasound images without losing the localization of

important features;

2. A new application of geodesic filters filtering technique to ultrasound image process-

ing;

3. The ability to create a new multi-resolution scale space where edge localization is

preserved;

4. An efficient algorithm to compute geodesic distances;

5. A quantitative comparison of the performance of the geodesic filter with three of the

most popular filters found in the literature namely: Gaussian, median, and anisotropic

diffusion filters.

1.4 Thesis Organization

The thesis is organized as follows. Chapter 2 reviews the history of ultrasound imaging as

well as the physics of ultrasound image formation and the various type of noises found in

those images. Another section in this chapter focuses on describing techniques to reduce

speckle noise and also gives an overview of various filters used in our comparative anal-

ysis namely: Gaussian filter, median filter, and anisotropic diffusion gradient based filter.

Chapter 3 describes the concept of geodesic filtering along with its properties and imple-

mentation. Chapters 4 discusses the qualitative and quantitative comparison with three of

the most popular filters found in the literature. In Chapter 5, we conclude the thesis with

the analysis of the pros and cons of the geodesic filter to perform speckle reduction in

ultrasound images and discuss some possible future works and improvements.
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Chapter 2

LITERATURE REVIEW

This chapter presents a brief history of ultrasound imaging and discusses the different

noises associated with this modality as well as various techniques used to reduce its ef-

fect. Out of the numerous filters one can find in the literature, we will review the filters that

will be used for the comparison with the proposed geodesic filter.

2.1 Ultrasound Imaging

Ultrasound is non-invasive imaging modality and one of the most inexpensive tools used

for qualitative and quantitative assessments of patient’s conditions. Ultrasound imaging

technology is constantly and rapidly changing, ranging from cardiac imaging to pre-natal

assessment. The use of ultrasound for medical imaging application is advantageous because

it is safe to use, non-invasive in most applications and the image acquisition is real-time.

Ultrasound imaging uses ultrasound waves produced from piezoelectric transducers that

travel through the body tissues and/or organs which are then reflected back to receptors

which turns ultrasound vibrations into electrical pulses where they are processed to com-

pute the location of the reflected wave using time-of-flight. These transducers arrays are

organized as 1D arrays or 2D arrays which produce respectively 2D or 3D images (see

Figure 2.1). In general, the resolution of an ultrasound image varies with the number of

elements in the transducer array and with the frequency of the ultrasound transducer used.

In general, higher time resolution can be achieved when higher ultrasound frequencies are

used but higher frequencies attenuate or are absorbed, faster than lower frequencies lim-

iting the ability to observe deeper anatomical structures. Hence, there is a fundamental
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physical limit between time resolution and depth penetration. In addition, other artifacts

can be created by the loss of proper contact or a gap between the transducer probe and the

body. This can be solved by using impedance adaptive gel that reduces the reflection of the

ultrasound from the contact between air and skin.

Ultrasound images are degraded by an intrinsic artifact called “speckle”. Speckle is

due to the fact that most surfaces are extremely rough on the scale of the wavelength which

create interference of the returning wave at the transducer aperture. These scattered sig-

nals add coherently; that is, they add constructively and destructively depending on the

relative phases of each scattered waveform. Speckle noise results from these patterns of

constructive and destructive interference produce bright and dark dots in the image.

Figure 2.1: Ultrasound tech-

nique for image acquisition
Figure 2.2: 2D ultrasound

image

2.1.1 Types of Noise

There are different types of noise in digital images. These are impulse noise, additive noise,

frequency noise, and multiplicative noise. Impulse noise can appear when one of the sensor

element is saturated and or when the signal is lost. In this case, the image has too high or too

low pixel value that creates outliers. Wide-band additive noise comes from many natural

sources, such as the thermal vibrations of atoms in conductors, shot noise, black body, and

amplifier gain variations. Additive noise follows simple statistical models such as Gaussian

or normal distributions, and its effect can be reduced with linear filters. Frequency noise

is characterized by the interference of a signal at specific frequencies, for example, 60 Hz

noise created by the interference of a house electrical system with an instrument. Lastly,
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multiplicative noise refers to an unwanted random signal that gets multiplied to a signal.

For ultrasound imaging, speckle noise is multiplicative. In most ultrasound images, we

have a combination of additive and multiplicative noises.

2.1.2 Reduction of Speckle Noise

Speckle degrades the quality of ultrasound images and hence reduce the ability of a human

observer to discriminate the fine details of diagnostic examination. Speckle is not a noise

in an image but noise like variation in contrast. As mentioned previously, speckle noise is

basically a form of multiplicative noise, which occurs when a sound wave pulse randomly

interferes with the small particles or objects on a scale comparable to the sound wavelength.

Speckle noise is defined as multiplicative noise, having a granular pattern it is an inherent

property of an ultrasound image. Speckle is the result of the diffuse scattering, which oc-

curs when an ultrasound pulse randomly interferes with the small particles or objects on a

scale comparable to the sound wavelength.

Speckle reduction algorithms try to remove the speckle without destroying the important

fine image features. Most of the past approaches for de-noising ultrasound images are

based on non-adaptive and adaptive filtering techniques that will be discussed in the next

section. However, it is well known that standard noise filtering methods often result in

blurred image features. Images with speckle noise will result in reducing the contrast of

an image and make it difficult to perform image processing operations like edge detection,

segmentation, etc.

The problem of image smoothing is to reduce undesirable distortion due to the presence

of noise or the poor image acquisition process that negatively affects image analysis and

interpretation process, while preserving important features such as homogeneous regions,

discontinuities, edges, and textures [5].

Speckle reducing filters are originated from the synthetic aperture radar (SAR) commu-

nity [6]. Later, these filters were applied to ultrasound imaging since the early 1980s. The

work of reducing or suppressing speckle noise in ultrasound going on for a long time now.
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There are two major classifications of speckle reduction filters, namely single scale spa-

tial filters and transform domain multi-scale filters. The spatial filter acts on an image by

smoothing it; that is, it reduces the intensity variation between adjacent pixels. The sim-

ple sliding window spatial filter replaces the center value in the window with the average

of all the neighboring pixel values including itself. By doing this, it replaces pixels, that

are unrepresentative of their surroundings. It is usually implemented with a convolution

mask which compute a new value for the central pixel as a weighted sum of the values of a

pixel and its neighbors. If the coefficients of the mask normalized to one, then the average

brightness of the image will not changed.

Several methods are used to eliminate speckle noise, based upon different mathematical

models [4]. One method, for example, employs multiple-look processing, averaging out the

speckle noise by taking several ”view” at a target in a single ultrasound sweep [2][3]. The

average is the incoherent average of the views [3].

A second method involves using adaptive and non-adaptive filters on the signal (where

adaptive filters modify their weights across the image to the speckle level, and non-adaptive

filters apply the same weights uniformly across the entire image). Such filtering also elim-

inates actual image information as well, in particular, high-frequency information such

as fine anatomical features. Adaptive speckle filtering is better at preserving edges and

detail in high-texture areas. Non-adaptive filtering is simpler to implement, and requires

less computational power but unfortunately eliminate many of the important fine structures

[2][3].

There are two forms of non-adaptive speckle filtering: one based on moving averages

and one based upon the median (within a given rectangular window centered at a pixel).

Median filter is better at preserving edges whilst eliminating noise spikes, than moving

average filter such as the Gaussian filter. There are many forms of adaptive speckle filtering,

including the Lee filter, the Frost filter, and the Refined Gamma Maximum-A-Posteriori

(RGMAP) filter. They all rely upon three fundamental assumptions in their mathematical

models[2]:

• Speckle noise is a multiplicative noise and is directly proportional to the local grey

level in any area;
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• The signal and the noise are statistically independent from each other;

• The sample mean and variance of a single pixel are equal to the mean and variance

of the local area that is centred on that pixel;

In the following sections, we will review briefly some of the filtering algorithms proposed

in the literature.

Wavelet Filter

Recently, the use of wavelet transform has led to significant advances in filtering ultrasound

images. The main reason for the use of multi-scale processing is the fact that many natural

signals, when decomposed into wavelet bases are significantly simplified and can be mod-

eled by known distributions. Besides, wavelet decomposition is able to separate noise and

signal at different scales and orientations. Therefore, the original signal at any scale and

direction can be recovered and useful details are not lost.

The first multi-scale wavelet speckle reduction methods were based on the thresholding

of detail sub-band coefficients [8]. These algorithms are based on the observation that

wavelet coefficients in each spectral band (the so-called VW, WV and WW blocks) can

be modeled as a bi-Normal distribution of mean (Vx; Vy ) (nearly zero) and covariance

matrix R which is in general not diagonal (real and imaginary parts are correlated). In

addition, the distributions are usually oriented differently in each block. Based on this fact,

an algorithm that performs wavelet coefficients thresholding with respect to the principal

axes of the 2-D distributions. [8] [7].

Unfortunately, wavelet algorithms suffer from many limitations which makes their use

in ultrasound image processing difficult.

• The choice of threshold is made in an ad hoc manner, supposing that signal and noise

components obey their known distributions, irrespective of their scale and orienta-

tions;

• The thresholding procedure generally results in some artifacts in the de-noised image;

• To address these issues, non-linear estimators, based on Bayes theory have been

developed;
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Kuan Filter

The Kuan filter [8] is based on a Minimum Mean Square Error (MMSE) criterion. A

MMSE estimate is first developed for an additive noise model y = x + n. The multi-

plicative noise model is then considered under the form y = x + (n − 1)x from which a

corresponding linear filter is deduced. The Kuan filter is optimal when both the scene and

the detected intensities can be represented by a Gaussian distribution. Under the unit-mean

noise assumption, the pixel value estimate x̂ is given by:

x̂ = ȳ +
σ2
x(y − ȳ)

σ2
x + (ȳ2 + σ2

x)/L
(2.1)

σ2
x =

Lσ2
y − bary2

L+ 1
, (2.2)

where ȳ is the mean of the neighbourhood, y is the measured pixel, σx the variance of x

and L is defined as:

( mean

standard deviation

)2

. (2.3)

Lee Filter

The Lee filter [9] converts the multiplicative model into an additive one, thereby reducing

the problem of dealing with speckle noise to a known tractable additive noise problem. This

filter is a particular case of the Kuan filter when the term σ2
x/L is removed from Eq.2.1.

Gamma Filter

The Gamma filter [10] is a Maximum A Posteriori (MAP) filter based on a Bayesian anal-

ysis of the image statistics. It assumes that both the scene reflectivity and the speckle

noise follow a Gamma distribution. The ”superposition” of these distributions yields a K-

distribution which is recognized to match a large variety of radar return distributions. The

estimate x̂ is given by:

x̂ =
(α− L− 1)ȳ +

√

ȳ2(α− L− 1)2 + 4αLyȳ

2α
(2.4)

α =
L+ 1

L(σy/ȳ)2 − 1
(2.5)
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Forst Filter

The Frost filter [11] is an adaptive Wiener filter which convolves the pixel values within a

fixed size window with an exponential impulse response m given by:

m = exp [−KCy(t0)|t|] Cy = σy/ȳ (2.6)

where K is the filter parameter, t0 represents the location of the processed pixel and |t| is the

distance measured from pixel t0. This response results from an autoregressive exponential

model assumed for the scene reflectivity x.

Kalman Filter

A 2D Kalman filter [12] has been implemented on a causal prediction window, the so-called

Non-Symmetric Half Plane (NSHP). In this filter, the image is assumed to be represented

by a Markov Field which satisfies the causal autoregressive (AR) model

x(m,n) =
∑

(p,q)∈W

apqx(m− p, n− q) + u(m,n) (2.7)

where x(m,n) represents the pixel value at location (m,n), u(m,n) is a noise sequence

(this is not the speckle noise) which drives the Markov process and apq are the reflection

coefficients of the autoregressive model. The parameters apq are evaluated based upon the

global estimates of the autocorrelation sequence of the image over the finite window W.

From these parameters, the AR model can be arranged into a 2D block recursive form

for the Kalman filter equations. Implementation of this filter is very much involved and

we refer to [12] for more details about the 2D kinematic model (limited here to speckle

modelling only) and the Kalman filter equation.

Geometric Filter

The geometric filter [13] is a nonlinear morphological filter that uses the concept of im-

age graph. The image graph is obtained by transforming the original image into a 3-

dimensional diagram where the pixel coordinates specify the position of the pixel on a

plane and the pixel value specifies the elevation of the pixel with respect to that plane. The

filtering process itself is performed first on row slices of the image graph using a 8-hulling
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algorithm. Slice pixels are set to 1 if the pixel is on or below the image graph surface,

while pixels above the image graph surface are set to 0. The filtering algorithm searches

for 4 different configurations ((3× 3) binary morphological masks) and when it finds one,

the graph pixel corresponding to the central pixel of the mask is set to 0. The procedure

is repeated for the complementary graphs and masks except that the central pixel is now

incremented by 1. The whole procedure is repeated on column and diagonal slices. This

completes one iterative step of the geometric filter. A filtering is achieved because speckle

appears as narrow walls and valleys on the binary slice images and because the geometric

filter, through iterative repetition, gradually tears down and fills up these features.

Oddy Filter

The Oddy filter [14] can be considered as a mean filter whose window shape varies accord-

ing to the local statistics. This filter is the closest to the one proposed in this thesis. The

estimate x̂ is given by:

x̂ = ȳ if m < αȳ x̂ =

∑

k

∑

l Wkly(k, l)
∑

k

∑

l Wkl

if m > αȳ

Wkl = 1 if |y(k, l)− y| < m Wkl = 0 othewise, (2.8)

where x̂ is evaluated locally over a 3 × 3 window, m = 1/8
∑

k

∑

l |y(k, l) − y| and α is

the filter parameter. W plays the role of an adaptive binary mask that is applied over the

window.

AFS Filter

AFS filter [15] stands for Adaptive Filter on Surfaces. It is another adaptive mask filter

that uses the concept of “local emerging surface” (l.e.s.) value. The l.e.s. is the area of

the image graph surface defined over the window. The l.e.s. is calculated for the 9 binary

masks. The mask whose l.e.s. is a minimum is selected and a mean filtering is performed

over the mask pixels. The mean value is assigned to the central pixel of the 5× 5 window.

2.1.3 Homomorphic Filtering:

Speckle noise present in ultrasound images is considered multiplicative noise. This fact

creates gaps in the previous methods since they are created, mainly, to eliminate random
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Figure 2.3: Homomorphic filtering on a 2D phantom cardiac ultrasound image

noise which occurs additively. Therefore, it seems logical to carry out a logarithmic trans-

form on the original image, wherefore speckle noise becomes additive as is shown in the

following equality:

log[f(x, y, z)] = log[g(x, y, z)] + log[η(x, y, z)]

We now have an image without multiplicative noise which can be processed by tradi-

tional methods. At this point, we can choose from several options, one of the most common

being the application of various convolution filters. In order to compare the proposed al-

gorithm to the most common filters in the homomorphic context we will review: Gaussian

filter, median filter, and Anisotropic Diffusion - Gradient based Filter. A description of

each filters follows.

2.1.4 Filters used for Comparison

Gaussian Filter:

Gaussian filter is a filter whose impulse response is a Gaussian function (or an approxima-

tion to it). The Gaussian has the unique ability not to create new edges as it scale (standard

deviation) is increased. This property enables the extraction of edges that represent differ-

ent levels of details in an image. As the scale is increased, the number of extracted weak
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and false edges are reduced. However, this results in edges shifting from their real or true

positions and the amount of shift an edge makes not only depends upon the scale of the

Gaussian filter but also the intensity distributions underlying the image. Mathematically,

Gaussian filters modifies the input signal by convolution with a Gaussian function(the ker-

nel is based on the Normal distribution curve), which tends to produces good results in

reducing the noise and smoothing out the image. The 2-D version of the Gaussian distribu-

tion, with standard deviation σ for image I(x, y) is given by

Gauss[I(x, y)] =
1

σ
√
2π

exp− (x2+y2)
2σ2

Median Filter:

A median filter is a powerful non-linear filter. It is mainly used in the photographic appli-

cation, which changes the image intensity mean value if the spatial noise distribution in the

image is not symmetrical within the window and also removes the pulse or spike noise[5].

Median filter is similar to the averaging filter except that the center pixel is replaced by

the median value of all pixels in the window neighbourhood. Due to one of it property it is

used to reduce impulse noise. Its main advantage is it preserves edges localization. Its main

disadvantage is that extra time is needed for computation of the median value by sorting N

pixel in the window. Its computational complexity is O(NlogN).

Anisotropic Diffusion - Gradient Based Filter:

The anisotropic filter starts with a generalized non-homogeneous partial difference equa-

tion simulating the physics of a diffusion process[2,30]

∂f

∂t
= ∇ . (D (|∇f |)∇f) + α S

where f = f(x, y, z, t) is the image at a time t in the diffusion process with the initial

condition, f(x, y, z, 0) representing the original noisy image, S = s(x, y, z, t) is a source

term added to generalize the original diffusion equation and alpha is simply a weighting

factor.

S is usually derived from f . ∇ is the gradient operator with respect to spatial coordinates

(x, y, z). D() is a diffusion constant dependent on the local gradient.

At a steady state of the process, the functions (i.e., the solution of this equation with the
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initial state being the noisy image) represents the smoothed image. The diffusion process

can be controlled via the diffusion constant. The process will be isotopic when D() is a

constant, i.e., diffusion occurs in all radial directions in the same rate. For speckle reduction

in ultrasound, we use anisotropic diffusion where D() is a function of the gradient. In this

way, the diffusion is dependent on whether there is an edge or not. D() define both the

smoothing and the edge preserving aspects of the process. Common functions of D() are

given below (k being constant).

∂f

∂t
= ∇ . (D (|∇f |)∇f) + α S

For practical implementation, the diffusion equation needs to be discretized. This results

in an iterative filtering operation. Based on a suitable criterion, the final filtered image

is obtained after a number of iterations. Anisotropic filtering can also be combined with

multi-scale decomposition (for example wavelet decomposition)[30]. This provides the ad-

ditional ability to choose the diffusion process through scale dependent choice of D().

Pre- or post- Processing Usually, medical ultrasound images are affected by the mixed

noise, which is the combination of speckle noise and Gaussian noise. There are two factors

that influence the usefulness of a smoothing filter. The first reduces the range of resolu-

tions over which variations in the output appear by the filter variation w, in the frequency

domain be small and second is increase in spatial localization by a small spatial variance x.

So Gaussian filters are widely used in image filtering for removal of additive noise in the

image before removal of speckle noise

2.2 Conclusion

Many filters have been proposed in literature for general image de-noising or image pro-

cessing. Ultrasound images are corrupted by speckle, a specific noise which is associated

with coherent imaging systems. Many algorithms have been proposed in the past decades

to develop methods which are specific to ultrasound images.

Several authors have proposed different methods to solve this problem in the literature.
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One of these methods consists of convolving image signals with Gaussian kernels of in-

creasing size (scale) and then analyzing the evolving of signal features along the scale

dimension. Adaptive smoothing, instead of Gaussian smoothing has been proposed to ease

the interpretation of scale-space representations. The general idea behind adaptive smooth-

ing is to apply variable convolution kernels, whose supports and shapes vary with the local

properties of the signal to be smoothed. An overview of the adaptive filters can be found in

[16, 17].

As reviewed in this chapter there are several adaptive filters in literature which are pro-

posed to achieve a better result by varying window size and also preserve the feature like

edges. Filters that have adaptive nature include Lee, Frost, Kuan, Enhanced Frost [18],

and Enhanced Lee filter [18]. One of major problems in applying all of these algorithms

to ultrasound image analysis is that the weight used to compute the pixel similarities in

a neighbourhood are all based on ad-hoc functions. As a consequence, linear methods,

which use fixed weights in the convolution kernel, are not suitable because it assumes that

the neighbouring pixels come from a smooth distribution where only geometric distance

from the central pixel is important. What is needed is a convolution kernel whose coef-

ficients are locally established as a function of a non-linear geodesic distance transform

that measure the true distance between the central pixel with its neighbours in space and in

intensity, which is the basis of this thesis.
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Chapter 3

ANISOTROPIC GEODESIC

FILTERING

This thesis proposes a new approach to perform noise filtering for speckle reduction on

2D and 3D ultrasound images using an anisotropic geodesic filter. Anisotropic geodesic

filtering is a Gaussian like filter, where as opposed to standard Gaussian filtering with fixed

weight values are used, the weights are determined by the local geodesic distances com-

puted from the cumulative spatial and intensity distances of the neighboring pixels with

the center pixel inside a convolution window. In this scheme each convolution window

is different and can adapt to local intensity and geometry variations. As will be demon-

strated, this category of filter can preserve the localization of fine structures automatically

without prior knowledge of the locations of intensity discontinuities and without the need

to compute gradients like in Perona’s algorithm [2]. The filter is a new application of an

older concept developed during Boulanger’s PhD thesis [1] where he used a similar filter

to perform multi-scale analysis of range image using Gaussian and mean curvatures.

3.1 Geodesic Filter Algorithm

As mentioned previously the proposed algorithm is similar to Gaussian filtering but can

adapt to local intensity and geometry variations. Similar to standard Gaussian filtering

the filter can produce a multi-resolution scale-space representation with very interesting

properties such as edge or boundary preservation. Let us now discuss in more details the

geodesic filter.
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In the original concept [1] range images were a sampled set of 3-D measurements cor-

responding to a surface observed from a particular sensor viewpoint. In this case, the

range data ~r is represented by a manifold function ~r = ~f(u, v) where ~r = (x, y, z)T

is the coordinates of the range data relative to the sensor pre-defined coordinate system.

In a similar way one can define an ultrasound image as a 4-D manifold defined by s =

(x(u, v), y(u, v), z(u, v), I(u, v))T where s(u, v) is the intensity and location of reflected

sound wave which we will name geometry-intensity manifold.

In the algorithm proposed for this thesis, a distance measurement between a reference point

p and a neighbor point q on a the 4-D manifold s(u, v) must be calculated. Using this dis-

tance one can define a new filter:

Gσ ∗ I(u, v) =
1

Nσ

∫

∞

−∞

∫

∞

−∞

exp

(

−d2s(p,q)

2σ2

)

I(u− τ, v − ξ)dτdξ (3.1)

where ds represents the geodesic surface distance between two points on the 4-D manifold

with parametric coordinates p = s(u, v) and q = s(u − τ, v − ξ) respectively, and Nσ is a

normalization factor defined by:

Nσ =

∫

∞

−∞

∫

∞

−∞

exp

(

−d2s(p,q)

2σ2

)

dτdξ. (3.2)

The parameter σ, as with a standard Gaussian filter, controls the size of the filtering

operator. The following properties make such an filtering operator attractive:

• Its effect on a 4-D manifold is independent of the measurement orientation;

• It behaves as an anisotropic filter that performs adaptive smoothing on the manifold

but does not require prior determination of discontinuities.

To explain this filter in detail, we will first explain the definition of geodesic distance or

geodesic trajectories and then present how to compute the geodesic distance using a single

source shortest path algorithm that was developed for the purpose of this thesis.

3.1.1 Geodesic Distances or Geodesic Trajectories

An interesting geodesic metric is defined by considering the actual length of the minimal

paths defined on the 4-D manifold. The generalized geodesic distance ds(p,q) between
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two points p and q on the geometry-intensity manifold is defined as the shortest length Ls

of all the paths linking p to q on the manifold. These geodesics trajectories maybe called

minimal paths since the sum of the grey-levels and the spatial distances along these paths

is minimum. Let us now discuss how to compute these geodesic trajectories and distances.

Algorithm to Compute Geodesics Trajectory using Single-Source Shortest Path Algo-

rithm

To obtain geodesic distances from the center point of a convolution window to its neighbor-

ing points, one needs to find a minimum trajectories from the center point to all other points

in the window. We know from [1] that the manifold distance ds, namely the minimum dis-

tance among all trajectories d(u(α), v(α)) joining the two points p(u, v) and q(u−τ, v−ξ)

is defined by:

ds(p,q) = minα sα(p,q) (3.3)

where sα(p,q) is the cumulative arc-length between the two points for a trajectory α join-

ing them on the manifold.

Note that the value of ds will be large if the minimum trajectory goes across for example

an intensity discontinuity. From the above equation, one can design an efficient algorithm

to compute the geodesic distances by using the Single-Source Shortest Paths Algorithm for

weighted graphs [19].

The vertices of the graph correspond to the points in the convolution window and the edges

represent neighboring connections of points. For example, the discrete arc length of the

edges between points p(ui, vj) and q(ui+1, vj) is given by:

√

‖d(ui, vj)− d(ui+1, vj)‖2. (3.4)

The algorithm to find the minimum distances is given as follows:

Input: G = (V,E) (a weighted graph) and v (the source vertex corresponding to the cen-

ter point)

Output: for each vertex w, w.sp is the length of the shortest path from v to w and corre-

sponding minimum trajectories w.tr
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begin

for all vertices w do

/*w.mark indicates if the vertex distance is determined*/

w.mark := false;

w.sp := ∞;

v.sp := 0;

v.tr := 0;

while there exists and unmarked vertex do

let w be an unmarked vertex such that w.sp is minimum;

w.mark := true;

for all neighboring edges (w,x) such that x is unmarked do

if w.sp + length(w,x) ¡ x.sp then

x.sp := w.sp + length(w,x);

x.tr := w;

end

In this algorithm, you need to find the minimum distances among a set of path lengths

and to update the path lengths frequently. One can implement this efficiently by using a

heap structure. All unmarked vertices are kept in a heap with their current known shortest

path lengths from the center point v as their keys. To find an unmarked vertex w such that

the path length w.sp is minimum, one can simply take it from the top of the heap. All the

edges connected to the vertex w can be checked and the path lengths can be updated without

difficulty. Since the elements of the heap are the vertices of the graph, the space requirement

is only O(|V |), where|V | denotes the number of vertices. The algorithm complexity is

O((|E|+ |V |)log|V |), where |E| denotes the number of edges.

3.2 Filtering a 3D and 2D Ultrasound Images

For a 3-D ultrasound represented by a voxel space V (i, j,m) each slice located at position

zm is represented by a 4-D manifold rm(i, j) = (xm(i, j), ym(i, j), zm(i, j), lnV (i, j,m)).
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Equation 3.1 is reduced for each slice zm to:

V̂ (i, j,m) = exp

















k=W/2
∑

k=−W/2

l=W/2
∑

l=−W/2

ln(V (i+ k, j + l,m)) exp
(

−d2(rm(i+ k, j + l), rm(i, j))/(2σ
2)
)

k=W/2
∑

k=−W/2

l=W/2
∑

l=−W/2

exp
(

−d2(rm(i+ k, j + l), rm(i, j)
)

/(2σ2)

















(3.5)

where the logarithmic transformation for the multiplicative noise case is included. For the

2D case, Equation 3.5 is simply when m = 1.

3.3 Conclusion

In this chapter, a novel filtering method to reduce speckle noise, based on geodesic calcula-

tion for two-dimensional and three-dimensional cardiac ultrasound is proposed. In the next

chapter, we will demonstrate that the proposed filter can reduce speckle noise better than

the three filters mentioned in literature review. We will demonstrate that it is a good choice

to filter curves and edges in an ultrasound image as it preserves these features localization

automatically. In the literature, the authors [33,41,45] have considered ultrasound images

(natural/synthetic) with artificially added speckle noise content and have proposed methods

for suppressing this speckle noise in such images. However, in this thesis, we use images

measured by real ultrasound equipment which contain inherent speckle noise.
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Chapter 4

RESULTS AND ANALYSIS

In order to demonstrate the performance of the new intrinsic filter, we performed a sys-

tematic comparison with the three well-known filter found in the literature: Gaussian filter,

median filter, and Perona and Malik anisotropic filter. This comparison was achieved by

measuring traditional distortion measures such as contrast-to-noise-ratio (CNR), signal-

to-noise-ratio (SNR), mean-square error (MSE), peak signal-to-noise-ratio (PSNR), and

correlation coefficients between reference images.

4.1 Image Data Set

For the purpose of this comparison, echocardiography scans from a cardiac ultrasound

phantom with known dimension as well as six human volunteers were acquired using the

Siemens ACUSON SC2000 ultrasound scanner by an expert sonographer. The protocol

was approved by the Health Research Ethics Board of the University of Alberta and in-

formed consent was obtained from all human volunteers included in the study. The first

data set had a volume of 196 x 187 x 172 voxels with a voxel size of (0.85 mm x 0.85

mm x 0.73 mm) and the second data set was measured from six healthy volunteers which

included parasternal and apical views of their heart. The number of volume data frames

were 7 - 34 per cardiac cycle with a volumes size of 137 x 131 x 120 voxels with a voxel

size of (0.74 mm x 0.74 mm x 0.63 mm). In order to reduce the presence of additive noise

each volume slices were first filtered by a Gaussian filter of size 5× 5 with σ = 0.5.
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4.2 2D Ultrasound Filtering Results

Let us look first visually at the evolution of a slice in both data sets as a function of each

filter parameters. One can see at Figure 4.1 and 4.2 the evolution of the ultrasound slice

images as a function of the parameter σ for the Gaussian filter and at Figure 4.3 and 4.4

the evolution of the same ultrasound slice images with median filters with window sizes

from 3× 3, 5× 5, and 7× 7. As expected the Gaussian filter can reduce the speckle but at

the expense of losing important features. On the other hand the median filter is capable of

filtering the speckle without the loss of small feature when the window size is small but as

the window increase the median filter loses fine image features like Gaussian filter. Figure

4.5 and 4.6 illustrate the evolution of the anisotropic diffusion filter with various diffusion

time T . For this filter, one can see that the image get smoother with longer diffusion time

without too much loss of small features. In Figure 4.7 and 4.8 one can see the result of the

proposed geodesic filter. One can see that not only does the proposed filter reduce speckle

noise as a function of σ but also preserves boundaries and fine features.

Figure 4.1: Gaussian filter with varying sigma for phantom cardiac ultrasound image
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Figure 4.2: Gaussian filter with varying sigma for volunteer cardiac ultrasound image

Figure 4.3: Median filter with varying window size for phantom cardiac ultrasound image
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Figure 4.4: Median filter with varying window size for volunteer cardiac ultrasound image

Figure 4.5: PAMD with varying parameter for phantom cardiac ultrasound image
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Figure 4.6: PAMD with varying parameter for volunteer cardiac ultrasound image

Figure 4.7: Proposed filter with varying sigma for phantom cardiac ultrasound image
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Figure 4.8: Proposed filter with varying sigma for volunteer cardiac ultrasound image

Figure 4.9: Proposed filter with varying window size for volunteer cardiac ultrasound im-

age
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4.3 3D Ultrasound Filtering Results

Before systematically comparing the results with the other filters, we would like to show

for the different data sets results for the geodesic filter only. The 2D implementation of

the geodesic anisotropic diffusion is extended to 3D as described in Chapter 3. The imple-

mentation of the filter was done in MATLAB and the vis3D function was used to display

the 3D data set. One can see in the Figure 4.9 the original cardiac phantom data set in

the YX-plane, YZ-plane, and XZ-plane as well as a combined 3D rendering. One can see

in Figure 4.10 the filtered volume for σ = 5. One can see in the Figure 4.11 the original

cardiac patient data. One can see in Figure 4.11 the filtered volume for σ = 5.

Figure 4.10: Original cardiac phantom ultrasound.
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Figure 4.11: Proposed 3D filter for the cardiac phantom ultrasound σ = 5

Figure 4.12: Original volunteer cardiac ultrasound
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Figure 4.19: Median filter - volunteer cardiac ultrasound image for a window size of 5× 5

Figure 4.20: PAMD - volunteer cardiac ultrasound image for diffusion time T = 0.09
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4.3.1 Quantitative Analysis

This section describes a number of quantitative validation measures used to assess the qual-

ity of ultrasound images filtering using well known metrics such as: image contrast (IC),

CNR, SNR, and PSNR. Lets first define those metrics mathematically and then study how

the four filters compare to each other.

4.3.2 Signal-to-Noise-Ratio

For quantitative comparison, the SNR represents the ratio between the mean and the stan-

dard deviation values of the image pixel values within a region of interest, that is, the

percentage of change in SNR, ∆ SNR, caused by filtering is defined as :

∆SNR =
∆(SNR)my +∆(SNR)bp

2
, (4.1)

where ∆SNRmy and ∆SNRbp denote the percentage of change in the SNR in the my-

ocardial and blood-pool regions, respectively. The percentage of change in SNR in the

myocardial region, ∆SNRmy, is computed as:

∆(SNRmy) =







µmy
f

σmy
f

1
N

∑N
i=1(

µmy
i

σmy
i

)
− 1






∗ 100, (4.2)

The percentage of change in SNR in the blood-pool region, ∆SNRbp, is computed in a

similar way to ∆SNRmy.

SNR is a good measure of speckle strength. The higher the SNR is , the less the speckle

noise and the better the speckle reduction effect is. When SNR is measured it is taken as

the average between the myocardial and blood-pool regions.

4.3.3 Root-Mean-Square-Error:

The MSE for our practical purposes allows us to compare the “true” pixel values of our

original image to our degraded image version. The MSE represents the average of the

squares of the “errors” between our actual image and the noisy image. The error is the
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amount by which the values of the original image differ from the degraded image. Mean

square error is given by:

MSE =

∑N
(i,j) [f(i, j)− F (i, j)]2

N 2
RMSE =

√
MSE (4.3)

where f is the original image and F is the de-noised image and N is the size in pixel of the

image.

4.3.4 Peak-Signal-to-Noise-Ratio

The PSNR gives the ratio between possible power of a signal and the power of corrupting

noise present in the image. The term peak signal-to-noise ratio is an expression for the

ratio between the maximum possible value (power) of a signal and the power of distorting

noise that affects the quality of its representation. Because many signals have a very wide

dynamic range, (Ratio between the largest and smallest possible values of a changeable

quantity) the PSNR is usually expressed in terms of the logarithmic decibel scale. The

dimensions of the correct image matrix and the dimensions of the degraded image matrix

must be identical. PSNR is defined as:

PSNR = 20 log10
(

(MAX)2/MSE
)

, (4.4)

where MAX represents the maximum signal value that exists in our original image. The

higher the PSNR is the lower the noise in the image is, which implies a higher image quality

image.

4.3.5 Image Contrast Changes

Image contrast is the percentage of intensity changes in global image contrast, ∆C. Con-

tract changes caused by filtering is defined as: the difference in mean intensity between the

myocardial and blood pool regions, which is calculated as follows:

∆C =

[

µmy
f − µbp

f

1
N

∑N
i=1(µ

my
i − µbp

i )
− 1

]

∗ 100, (4.5)
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where µmy
f and µbp

f denote the mean intensity value in the manually selected myocardial

and blood-pool regions after filtering respectively; µmy
i and µbp

i denote the mean intensity

before filtering, the value N represents the total number of source single-view images; m

represents the ith image and f denotes the filtered image.

4.3.6 Contrast-to-Noise-Ratio:

The percentage change in CNR, ∆ CNR, caused by filtering is defined as:

∆CNR =

[

CNRf

1
N

∑N
m=1 CNRi

− 1

]

∗ 100, (4.6)

whereas the CNR for the filtered image (f) or the mth single-view image is computed as:

CNR =
µmy − µbp

√

(σmy)2 + (σmy)2
, (4.7)

where σ denotes the standard deviation in the image region.

4.4 Comparison Between the Four Algorithms

We will now take a look at the results of the variation of these metrics for the four filters

presented in this thesis. For the purpose of performance evaluation, we only consider a

region of interest of size 6x5 in both the myocardial and blood pool region for the SNR,

Contrast changes, and CNR values as shown in the Figure 4.15. One can see in Table 4.1

the estimated RMSE, PSNR, SNR, Contrast, and CNR of the region of interest without

filtering. Table 4.3 and Table 4.4 show the same metrics for the Gaussian filter and the

median filters for various σ and window size values. As expected most metrics deteriorate

as a function of σ for the Gaussian filter case and as a function of window size for the

median filter case. This is due to the fact that the filters cannot adapt to local variation

common when speckle noise is present.

Contrary to those two simpler filters, the anisotropic filters: diffusion-gradient based

filter and the geodesic filter both have much better performance. One can see in Table 4.5

and Table 4.6 the evolution of the various metrics as a function of the filter parameters.

One key observation in both cases is that the SNR increases significantly with those two

filters. The SNR almost double in both cases which is an indication that speckle noise is
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indeed reduced. The PSNR remains constant relative to the original image for the geodesic

filter and is slightly higher for the diffusion-gradient filter for large Kappa values. The key

differentiator between the two filtering algorithms is that the contrasts and the RMSE values

are improved continuously with σ in the case of the geodesic filter, starting from 34.7 for

the original image to 37.7, for σ = 7. The results indicate an excellent increase in contrast

and a good reduction of the speckle noise level which is what we were trying to solve.

Overall, the geodesic filter behave in a similar way as the well known diffusion-gradient

filter but with slightly better results for contrast and the reduction of speckle noise. We

also consider a comparison of Gaussian and Geodesic filter approaches for a window size

= 11x11, as seen in Table 4.3 and Table 4.7, we notice that as the window size increases,

there is a decline in the reduction of speckle noise and the filters perform poorly in these

cases.

Figure 4.21: Image showing region of interest for performing quantitative measurement

analysis.

38



Table 4.1: Metrics values for noisy image

RMSE PSNR SNR Contrast CNR

34.7870 17.3025 2.0917 1.771 0.0047

Table 4.2: Metrics values for Gaussian filtering with variable sigma; window size = 3x3

Parameter - Sigma RMSE PSNR SNR Contrast CNR

σ = 1.5 36.1661 16.9648 1.4149 2.0682 0.0035

σ = 2 37.5478 16.6391 1.1567 2.1555 0.0030

σ = 2.5 38.5541 16.4097 0.9680 2.2595 0.0027

σ = 3 39.5957 16.1778 0.8944 2.4290 0.0024

σ = 5 43.3435 15.3923 0.4351 3.1615 0.0013

Table 4.3: Metrics values for Gaussian filtering with variable sigma; window size = 11x11

Parameter - Sigma RMSE PSNR SNR Contrast CNR

σ = 1.5 41.9413 15.6780 0.0074 0.0197 1.1704e-05

σ = 2 41.9489 15.6764 0.0100 0.0213 1.2392e-05

σ = 2.5 41.9665 15.6728 0.0119 0.0219 1.2953e-05

σ = 3 41.9644 15.6732 0.0138 0.0226 1.3176e-05

σ = 5 41.9916 15.6676 0.0162 0.0236 1.3311e-05

Table 4.4: Metrics values for Median filtering with variable window size.

Parameter - Window RMSE PSNR SNR Contrast CNR

3x3 25.7879 19.9025 1.6491 1.9239 0.0040

5x5 26.0949 19.7997 1.3072 2.0867 0.0033

7x7 26.6714 19.6099 1.1437 2.2495 0.0029

9x9 27.0229 19.4962 0.9793 2.3686 0.0026

11x11 29.3685 18.7732 0.8203 2.4483 0.0023

Table 4.5: Metrics values for Anisotropic Diffusion - gradient based with variable param-

eters.
Parameter RMSE PSNR SNR Contrast CNR

delta t = 0.04 33.2431 17.6968 4.5346 1.8828 0.0064

delta t = 0.09 33.4483 17.6433 4.4778 1.9642 0.0062

delta t = 0.12 33.1332 17.7255 3.9847 2.0305 0.0057

Kappa = 20 31.9181 18.0501 3.9847 2.0305 0.0057

Kappa = 40 31.9181 18.0589 3.9847 2.0305 0.0057

Kappa = 60 31.9997 18.0279 3.9847 2.0305 0.0057
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Table 4.6: Metrics values for Anisotropic Geodesic with variable sigma; window size =

3x3
Parameter RMSE PSNR SNR Contrast CNR

σ = 1.5 35.5443 17.1154 4.4659 2.0808 0.0059

σ = 2 36.5636 16.8698 3.9210 2.2084 0.0054

σ = 3 37.0061 16.7653 3.7597 2.3980 0.0049

σ = 5 37.4865 16.6533 3.6804 2.4517 0.0047

σ = 7 37.7554 16.5912 3.3045 2.4903 0.0044

Table 4.7: Metrics values for Anisotropic Geodesic with variable sigma; window size

=11x11
Parameter - Sigma RMSE PSNR SNR Contrast CNR

σ = 1.5 69.6933 11.2670 0.0709 0.0197 2.9030e-05

σ = 2 69.7071 11.2653 0.0826 0.256 2.9264e-05

σ = 3 69.7489 11.2591 0.0934 0.0351 2.3183e-05

σ = 5 69.8362 11.2123 01172 0.389 2.3353e-05

σ = 7 69.9421 11.1948 0.2321 0.4371 2.3721e-05
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Chapter 5

Conclusion and Future Work

In this thesis, we were able to demonstrate that by adapting a non-linear filter developed

to process range images, we were able to filter multiplicative noise in ultrasound images.

This new filter called anisotropic geodesic filter possess similar quality as the well-known

anisotropic gradient-based filter from Perona-Malik but do not require to compute image

gradients and is free of non-intuitive parameters like integration time and diffusion coeffi-

cient kappa. The filter can be easily generalized to any complex signals such as color range

images, MRI, CT etc. One of the key property of this algorithm is its ability to filter contin-

uous regions without the loss of localization of important features. This is a key property

for medical applications. The filter is akin to a Gaussian filter in continuous regions and

responds like an anisotropic filter in regions with sharp discontinuities. Experimental com-

parisons with three of the most well-known filters were able to demonstrate its superior

capability at filtering ultrasound images.

This filter has numerous potential applications in medical imaging and image process-

ing. Its applications are not just limited to medical and medicine field but can also be used

to suppress speckle noise from SAR images as well. In case of ultrasound, it can be used to

improve surgical guidance and robotic-assisted interventions which necessitate high quality

images where the filtering can be embedded directly in the ultrasound machine.

5.1 Future Work

The proposed filter is application specific and can be further generalized for different types

of imaging applications. For instance:
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• Instead of using a 2-D manifold immersed in an N-D space one could easily gener-

alized the approach to a 3-D or even 4-D manifold immersed in an N-D space. This

will allow to process volumetric not only at the slice level but truly at the voxel level

for the 3-D case and time varying voxels in the 4-D case;

• Using this framework, one could filter not only CT and MRI but also, with a 4-D

framework, real-time cardiac MR data;

• This would require to generalize our Single Source Shortest Path (SS-SP) algorithm

to the 3-D and 4-D cases;

• Real-time implementation of the SS-SP algorithm using GPU could be done in order

to achieve real-time performance;

• Other medical imaging modalities such as CT, MRI and multi-view ultrasound can

be incorporated by applying the filter as a preprocessing step to smooth out 2-D and

3-D images while preserving the fine features of the image such as edges;

• The method can be further extended to multi-spectral images.
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Appendix A

Matlab Code For 3D Geodesic Filter

%% ---------------------------------------------------------------

%% This function reads the 3D Volume - HDR Image and performs

Anisotropic Geodesic Filter on the 3D Volume

%% ---------------------------------------------------------------

function GeodesicUS3D()

clear all ; clc ; close all

% Get image(s) from the user

function [dim, sp] = read_hdr_header(fname)

% read the header information

fid = fopen(fname);

dim = sscanf(fgets(fid), ’%d’); % dimension of the 3D volume

sp = sscanf(fgets(fid), ’%f’); % spacing in x, y, z directions

fclose(fid);

end

function vol_data = read_binary_file(fname, dim)

% read binary image file

fileID = fopen(fname);

vol_data = reshape(fread(fileID, ’uint8’),dim’); % reshape the

array into 3D volume

fclose(fileID);

end

[fname, pathname, ˜] = uigetfile(’*.hdr’, ’Select an HDR

file’); % get the filename

fname = fullfile(pathname, fname); % fullpath to the header file

fbname = [fname(1:end-4) ’.img’]; % fullpath to the image file

[dim, sp] = read_hdr_header(fname); % read header file

information
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vol_data = read_binary_file(fbname, dim); % read corresponding

volume from binary image

size(vol_data)

% Visualize the 3D Volume

vis3d(vol_data,’’,’Original - 3D Volume’);

%% Applying Gaussian Filter to remove Additive Noise

volSmooth = imgaussfilt3(vol_data);

% Visualize the Gaussian Filtered 3D Volume

vis3d(volSmooth,’’,’Gaussian Filtered - 3D Volume’);

% Application of Geodesic Filter to an Ultrasound Image

% Perform Anisotropic Geodesic Filter

diff_vol = Geodesic3DFilter(volSmooth);

% Visualize Filtered Volume

vis3d(diff_vol,’’,’Filtered Volume’)

end

%% ---------------------------------------------------------------

function diff_vol = Geodesic3DFilter(vol_data)

% Design the Kernel

thr_z = 200;

nb_iter = 1;

sigma = 5;

sigma2 = sigma*sigma;

% Define the Window Size

WL = 3;

WC = WL;

WS = WL;

% Define x y z

size_vol = size(vol_data);

lines = size(vol_data,1);

columns = size(vol_data,2);

slices = size(vol_data,3);

[x, y, z] = meshgrid(1:columns, 1:lines, 1:slices);

M = (WL - 1)/ 2;
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N = (WC - 1)/ 2;

P = (WS - 1)/ 2;

%% ---------------------------------------------------------------

% Convert input volume to double.

vol_data = double(vol_data);

% Start the Convolution

for iter = 1:nb_iter

fprintf (’Iteration Number : %d\n’, iter)

fprintf(’Start Convolution... \n’)

% Calculate the Geodesic 3D Filter - Filter Implementation

for i = 1+M : lines-M

for j = 1+N : columns-N

for k = 1+P : slices-P

%Extract the voxel window

for l = -M : M

for m = -N : N

for n = -P:P

wind(l+M+1, m+N+1, 1) = x(i+l, j+m, k+n);

wind(l+M+1, m+N+1, 2) = y(i+l, j+m, k+n);

wind(l+M+1, m+N+1, 3) = z(i+l, j+m, k+n);

end

end

end

%%

-------------------------------------------------------------------

% Compute Surface Distances

[dis,˜] = Surface_Dist3D(wind, WL, WC);

sum_weight = 0;

% Compute the convolution kernel

for l = 1 : WL

for m = 1 : WC

for n = 1 : WS

sigma = 1.5;

sigma2 = sigma*sigma;

weight(l,m,n) =

exp(-(dis(l,m).ˆ2)/(2.0*sigma2));

sum_weight = sum_weight + weight(l,m,n);

end

end

end

weighted_avg = zeros(i,j,k);
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% Do Weighted Average

for l = 1 : WL

for m = 1 : WC

for n = 1: WS

weighted_avg(i,j,k) = weighted_avg(i,j,k) +

weight(l,m,n)*wind(l,m,2);

end

end

end

%%

------------------------------------------------------------------

% Normalize the results

sx(i,j,k) = x(i,j,k);

sy(i,j,k) = y(i,j,k);

sz(i,j,k) = z(i,j,k);

weighted_avg(i,j,k) = weighted_avg(i,j,k)/sum_weight;

end

end

end

% Save the results back in x,y and z and compute the variation

with the

% original surface.

var = 0.;

nbv = 0;

diff_vol = zeros(size(vol_data));

for i = 1+M : lines-M

for j = 1+N : columns-N

for k = 1+P : slices-P

var = var + ((sx(i,j,k)-x(i,j,k)).ˆ2 +

(sy(i,j,k)-y(i,j,k)).ˆ2 +

(weighted_avg(i,j,k)-z(i,j,k)).ˆ2);

nbv = nbv+1;

x(i,j,k) = sx(i,j,k);

y(i,j,k) = sy(i,j,k);

z(i,j,k) = weighted_avg(i,j,k);

Temp = vol_data(i:i+M,j:j+N,k:k+P).*var;

diff_vol(i,j,k) = sum(Temp(:));

end

end

end

var = sqrt(var/(nbv-1));

% Iteration Terminated

fprintf (’Iteration Number : %d terminated\n’, iter)
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fprintf (’Variation between t and t+1 is : %f\n’, var)

end

%%

-------------------------------------------------------------------

% Compute Intrinsic Surface Distances within the given window by

% Using the Single-Source Shortest Path Algorithm

% INPUT

% Wind(WL,WC,3) : X,Y,Z components of the pixels in the window

% WL, WC : Size of the Window

% OUTPUT

% dis(WL,WC) : Intrinsic surface distances from the center pixel

% Prec(WL,WC,2) : Backward trajectory of geodesic

function [dis, Prec] = Surface_Dist3D(Wind, WL, WC)

Vmax = 1.0e30;

M = (WL-1)/2;

N = (WC-1)/2;

% Initialization of the Heap, SP

for i = -M:M

for j = -N:N

icode = iencode(i, j, M, N);

SP(icode) = Vmax;

LOC(icode) = icode;

ELM(icode) = icode;

MARK(icode) = 0;

end

end

SP(1) = 0;

icode = iencode(0, 0, M, N);

elm1 = ELM(1);

iloc = LOC(icode);

LOC(icode) = 1;

ELM(1) = icode;

ELM(iloc) = elm1;

LOC(elm1) = iloc;

Prec(M+1, N+1, 1) = 0;

Prec(M+1, N+1, 2) = 0;

for i = 1:(WL*WL-1)

nrest = WL*WL-i+1;

% Find the next shortest path

icodew = ELM(1);

spw = SP(1);
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[iw, jw] = idecode(icodew, M, N);

% Remove the first element from the heap SP

MARK(icodew) = 1;

sp1 = SP(1);

elm1 = ELM(1);

SP(1) = SP(nrest);

LOC(ELM(1)) = 1;

SP(nrest) = sp1;

ELM(nrest) = elm1;

LOC(elm1) = nrest;

% CALL SHIFT DOWN

shiftdown(SP,1,nrest-1,LOC,ELM);

% First Element is Removed

% Update the shortest distances in the heap, SP

dmin = Vmax;

for ii = -1:1

for jj = -1:1

iz = iw + ii;

jz = jw + jj;

if (-M <= iz <= M) && (-N <= jz <= M)

icodez = iencode(iz, jz, M, N);

elseif (MARK(icodez) == 0)

spz = SP(LOC(icodez));

dist = edge_length(iw+M+1, jw+N+1, iz+M+1, Wind);

elseif((spw + dist)< spz)

% The distance is less than the current distance,

% So update the heap

SP(LOC(icodez)) = spw + dist;

% CALLING SHIFTUP FUNCTION

shiftup(SP,LOC(icodez),nrest-1,LOC,ELM);

Prec(iz+M+1, jz+N+1, 1) = iw + M + 1;

Prec(iz+M+1, jz+N+1, 2) = jw+ N + 1;

end

end

end

% Output the current Distance

for ii = -M:M

for jj = -N:N

icode = iencode(ii, jj, M, N);

dis(ii+M+1, jj+N+1) = SP(LOC(icode));

end

end
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end

for i = -M:M

for j = -N:N

icode = iencode(i, j, M, N);

dis(i+M+1, j+N+1) = SP(LOC(icode));

end

end

return

end

%% Compute the distance between 2 points (iw,jw) and (iz,jz)

function distance = edge_length(iw, jw, iz, jz, Wind)

d = 0.0;

for i = 1:3

d = d + (Wind(iw, jw, i) - Wind(iz, jz, i)).ˆ2;

end

distance = sqrt(d);

end

%% Compute linear index of the window

function icode = iencode(I,J,MI,MJ)

icode = (2*MJ+1)*(I+MI)+J+MJ+1;

return

end

%% decode the linear code into index of window

function [I,J] = idecode(icode,MI,MJ)

I=(icode-1)/(2*MJ+1)-MI;

J=icode-(2*MJ+1)*(I+MI)-MJ-1;

return

end

%%

-------------------------------------------------------------------

function shiftdown(H,is,ie,LOC,ELM)

% Shiftdown procedure for heap update

% Heap: H(1) is min

%

i = is;

j = 2*i;

x = H(i);

p = ELM(i);

if (j < ie)

if (j < ie)

if (H(j) > H(j+1))
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j = j+1;

end

end

if (x < H(j))

H(i) = x;

H(i)=H(j);

pp=ELM(j);

ELM(i)=pp;

LOC(pp)=i;

i=j;

j=2*i;

end

H(i)=x;

LOC(p)=i;

ELM(i)=p;

end

return

end

%%

-------------------------------------------------------------------

function shiftup(H,is,ie,LOC,ELM)

% Shiftup procedure for heap update

% Heap: H(1) is min

%

i=is;

j=i/2;

x=H(i);

p=ELM(i);

if (j > 1)

if (H(j) < x)

H(i)=H(j);

pp=ELM(j);

ELM(i)=pp;

LOC(pp)=i;

i=j;

j=i/2;

end

H(i)=x;

ELM(i)=p;

LOC(p)=i;

end

return

end

end
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