
Capstone Project Report Title:

OpenStack- Elastic Cloud Service

Orchestration with

Openstack

Orchestrate Elastic Cloud Orchestration

for Compute/Storage

Submitted By:

Fahaam Alam Hashmi

Under Supervision of:

Muhammad Durrani

Duration:

September 2016 - March 2017

ACKNOWLEDGEMENT

This final year project was possible because of the will and wish of

Almighty ALLAH and we are grateful to Him. I express our sincere

thanks to our supervisor Mr Mouhammad Durrani, for his encouraging

comments and useful suggestions, which helped me in completing the

project work, in time. I also feel great pleasure in acknowledging our

heartiest gratitude to Mr Shah Nawaz Mir. This work could never have

been completed without his perspicuous instruction, consistent help and

invaluable support.

Abstract

There is undoubtedly no mendacity in the fact that the benefits of Cloud Computing has earned

great attention of IT Industry today. Capability of providing on demand resources, contrast with

elasticity and metered services in shared pool of hardware and software are some of the

appealing characteristics of Cloud Computing. The technology become more advantageous,

when it is not only open source, but also with global collaboration. Openstack is the service that

is playing this role, with being open source. Openstacks increasing versatilities allures the

organizations to build their own public and private cloud with openstack. Furthermore the

provision of metering over cloud services known as ceilometer plays a fundamental role to

support applications like ecommerce over cloud computing services. In this project we have two

parts after implementation of openstack cloud. In the first part we used openstack ceilometer

service, for the purpose of knowing the usage of resources being used by different tenants

(users), by metering different instances in different period intervals. Provided records of multiple

tenants, with monitoring different parameters. In the second part of the project elastic cloud

computing service to tenant is provided through openstack heat services. Defining different

policies in such a way to assure availability of resources provided to tenant, during peak usage

time of resources.

TABLE OF CONTENTS

Topics Page No

1 OpenStack Introduction 1-4

1.1 Introduction to OpenStack

1.2 OpenStack History

1.3 Involvement of Companies in Openstack

1.4 Compatibility of OpenStack with other Cloud Computing

2 OpenStack Architecture 5-9

2.1 How OpenStack Works

2.1.1 Horizon

2.1.2 Keystone

2.1.3 Nova

2.1.4 Swift

2.1.5 Glance

2.1.6 Cinder

2.1.7 Neutron

2.1.8 Ceilometer

2.1.9 Heat

3 Basic Implementation of OpenStack 11-22

3.1 Basic Installation

3.2 Implantation Projects and Other services

3.3 Networks and Router

4 Ceilometer Services 23-35

4.1 Implementation of Ceilometer

4.2 Expected outputs of Ceilometer

5 Heat Orchestration 36-48

5.1 Brief Details of Heat

5.2 Auto Scaling

5.3 Deployment of Heat Orchestration

5.3.1 Environmental Template

 5.3.2 Heat Template

 5.3.3 Running The Stack

 5.3.4 Scale Down

6 Conclusion 49

7 References 50

FIGURES PAGE

Fig.1.1 (Openstack releases) 3

FIG 2.1 (Openstack Architecture) 5

FIG.3.1 (Answer File with services) 12

FIG.3.2 (Answer File with heat services enabled) 12

FIG.3.3(Answer File with all IP address) 13

FIG.3.4(Run Answer File over pack stack) 13

FIG.3.5 (User Authentication by open stack (Keystone)) 14

FIG.3.6 (Different projects of openstack) 15

FIG.3.7 (Project Members) 15

FIG.3.8 (Openstack Volumes attach to different users) 16

FIG.3.9 (Openstack Glance service) 17

FIG.3.10 (Openstack Network) 18

FIG.3.11 (Openstack Network) 19

FIG.3.12 (Openstack Router) 19

FIG.3.13 (Openstack Router) 20

FIG.3.14 (Openstack Router) 21

FIG.3.15 (Floating IP addresses) 22

FIG.3.16 (Floating IP addresses) 22

FIG.4.1 (Instance ID) 23

FIG.4.2 (Period of interval) 24

FIG.4.3 (CPU utilization statistics for Cirros Test) 25

FIG.4.4 (CPU utilization statistics for Test-1) 26

FIG.4.5 (CPU utilization statistics for Test-2) 26

FIG.4.6 (CPU utilization statistics for Test-3) 27

FIG.4.7 (CPU utilization sample-list for Cirros Test) 28

FIG.4.8 (CPU utilization sample-list for Test-1) 29

FIG.4.9 (CPU utilization sample-list for Test-2) 29

FIG.4.10 (CPU utilization sample-list for Test-3) 29

FIG.4.11 (CPU sample-list for Cirros Test) 30

FIG.4.12(CPU sample-list for Test-1) 30

FIG.4.13 (CPU sample-list for Test-2) 31

FIG.4.14 (CPU sample-list for Test-3) 31

FIG.4.15 (Memory sample-list for Cirros Test) 32

FIG.4.16 (Memory sample-list for Test-1) 32

FIG.4.17(Memory sample-list for Test-2) 33

FIG.4.18(Memory sample-list for Test-3) 33

FIG.4.19(Instance sample-list for Cirros Test) 34

FIG.4.20(Instance sample-list for Test-1) 34

FIG.4.21(Instance sample-list for Test-2) 34

FIG.4.22(Instance sample-list for Test-3) 35

Fig.5.1(Heat Template version) 38

Fig.5.2(Description of heat template) 38

FIG.5.3 (Heat Template Resources) 39

FIG.5.4(Behavior Of Stack) 41

FIG5.5 (Heat stack status) 42

FIG 5.6 (Heat Stack Topology) 43

FIG 5.7 (Heat Stack Resources) 44

FIG 5.8 (Heat Stack Events) 45

FIG 5.9 (Heat Stack Instance) 45

FIG 5.10 (Heat AutoScaling) 46

FIG 5.11 (Two Instance base on policy) 46

FIG.5.12 (Volumes that heat created based on defined policy) 47

FIG 5.13 (Heat Topology after 2 instances) 48

Elastic Cloud Service Orchestration with Openstack

1 | P a g e

CHAPTER 1 OPENSTACK INTRODUCTION

1.1 Introduction to OpenStack

OpenStack provides Infrastructure as a Service solution. IaaS (Infrastructure as a Service solution)

is the basic cloud computing service model, where virtual machines, load balancers, raw block

storage, firewalls and networking services are provided on one platform, where everything

interrelated. It provides control to compute, storage and network for a large pool. Compute

Networking and Storage are the three major parts open stack is divided into. A collaboration of

cloud computing service and developer private or public cloud computing, which is totally open

source. Help’s to manage large pools of public or private cloud data center on one screen in faster

and cost effective way.

Open stack is the cloud computing self-service, this means it is a computing capability that

provides Compute, network and servers services without any human interaction, which used to be

achieved through large servers to install in data center, not only requires lots of space and power,

but also requires more ram and space as increase in users. In cloud computing these services can

are provided without any hardware setup. Furthermore, these resources are provided with the

failover not only at the hardware level but are also provided on the application level. These services

can be accessed through standard platforms. Multi-consumers are pooled through multi-tenant

model by computing resources. The consumer has no idea where these resources are coming from,

though these resources have elasticity can be scaled out or scale in. Moreover, they can be

controlled or accessed worldwide anywhere on the internet. It has multi-tenant sharing, that is

multiple tenants will be using one hardware as resources without any interfering each other.

Telemetry is also one the characteristics of OpenStack that is used for monitoring and metering

purposes not only by the service provider but also by the consumer.

Open stack software manages the large pool of resources such as compute, storage and network,

everything through one dashboard. This is made possible through OpenStack API. It is the best

Elastic Cloud Service Orchestration with Openstack

2 | P a g e

way to reduce the cost. Buying storage devices, building up networks for those devices not only

need a large place to set up the system but requires a large capital in contrast with. Open stack

solves the whole of the problem, not only ease the way to setup everything but also provides the

solution with less effort and no infrastructure.

OpenStack is open source infrastructure that is available for everyone for free. The software

consists of all components interrelated with each other as a whole data center. These components

can be managed through graphical user interface (dashboard) or through the command line or

through a RESTful API.

1.2 OpenStack History

OpenStack idea was built by the idea of AMAZON EC2 services though it was a cloud marketing

that is developed for hosting, charging on an hourly basis. The idea behind this cloud infrastructure

was work with applications that avoid hardware failure. In 2010 open stack the goal was the same

as Amazon, but it was 2016 the idea gone far beyond. Clients were getting the same sort of

performance as they built their own compute without any hardware setup.

The main aim of the OpenStack was to make huge Open Source Cloud Computing platform that

will fulfill the needs of public and private cloud regardless of the size.

OpenStack project that was started in 2010 by Rackspace Hosting and NASA together, when

NASA wanted to create their own cloud known as Nebula. The reason to create Nebula is to

provide compute services to different departments with one location under one IT department. On

other hands, Rackspace and Slice Host made open source cloud service to keep cloud files. The

idea behind this is to combine all the technology and work together. Therefore NASA and

Rackspace created a platform known as OpenStack. They took the Storage part from Rackspace

and Nova Compute part from NASA, as the code for Nova Compute can scale way larger. Then

furthermore companies such as HP, Dell, Redhat, AT&T and Intel also get into contributed further

for investment. OpenStack every 6month releases the new version of the previous versions are

stated in the following fig.1.1

https://en.wikipedia.org/wiki/RESTful
https://en.wikipedia.org/wiki/API

Elastic Cloud Service Orchestration with Openstack

3 | P a g e

Fig.1.1 (OpenStack releases)

OpenStack provides multiple services such as Nova, Swift, Glance, Keystone, Horizon Neutron,

Cinder, Ceilometer and Heat are some of the main services that are provided by OpenStack.

1.3 Involvement of Companies in OpenStack

OpenStack is one of the most recognized technology in IT world today. About 8 huge names of

industries such as AT&T, Ubuntu, HP, IBM, Intel, Rackspace, Redhat and Suse are platinum

members in open stack project. These companies are sponsoring for empowering and promoting

OpenStack community and software. Furthermore, there are about 24 gold members who are gold

members of in OpenStack project who also take part in the funding of open stack project. As well

as provide strategic alignment to the project. Infrastructure donors are also the developers of

Elastic Cloud Service Orchestration with Openstack

4 | P a g e

OpenStack, they provided resources such as cloud for OpenStack. Corporate Sponsors are the

additional support to this project that also helps in sponsoring, empowering and promotions. It was

the interest of the companies that open stack was able to release five software in less than two

years, with hundreds of contributors. The community meets every six months. During development

phase the community collects the OpenStack designs, in order to provide facility to developers in

assembling and to work on.

1.4 Compatibility of OpenStack with other Cloud Computing

The open stack was not compatible with every cloud computing APIs. There is some compatibility

that is driven by the members of the project. EC2 API that provides compatibility with Amazon

EC2 and GCE API project that provides compatibility with GOOGLE Compute service. Amazon

EC2 helped users to have their own virtual system to run different other application or web

services, whereas GCE API is a part of Google Cloud Platform that helps in running Google search

engine and other services by Google. Compatibility with other compute services is one of the plus

points of OpenStack.

In Amazon EC2, Google Cloud and Microsoft Azure. OpenStack is one of the more supportive

services to work on. Since OpenStack is a platform where all companies are working together,

with collaboration. Everything is available and open source. OpenStack is more compatible with.

As well as release every six months provides OpenStack improvement, growth and options to do

better.

Elastic Cloud Service Orchestration with Openstack

5 | P a g e

CHAPTER 2 OPENSTACK ARCHITECTURE

2.1 How OpenStack Works

OpenStack provides multiple services such as Nova, Swift, Glance, Keystone, Horizon Neutron,

Cinder, Ceilometer and Heat services. These are some of the main services of OpenStack. All these

services are interconnected through APIs and play their role accordingly.

FIG 2.1 (OpenStack Architecture)

2.1.1 Horizon is the user interface or dashboard that is used to control every other service. It

is the web interface. User access OpenStack services through the web interface. All OpenStack

services meet up at the horizon. Every user gets the services according to their authentication. It

also keeps information in cache until the service is running. It is the service that interacts all open

stack services to other services

Elastic Cloud Service Orchestration with Openstack

6 | P a g e

2.1.2 Keystone is the authentication part, known as identity service as well. It is the username

and password that is given to every user, when this authentication is done the keystone provides

the token to the user that consist of the services that are been allowed to the user to access, such as

Glance, Keystone, and Swift. These all are connected through rest APIs. After passing through

Keystone.

2.1.3 Nova responds user request into the virtual machine. Nova interacts with many other

OpenStack services such as keystone for authentication, for web interfaces it communicates with

the horizon and for image glance is there. Nova consists of different layers. Nova API accepts the

user request and responds accordingly. It supports Open Stack API, EC-2 API and admin API for

privilege administration work. Also initiates orchestration activities, running instance through

hypervisor API is one of it. Nova Compute API converts the user request into the virtual machine.

It accepts the request from the queue and perform actions accordingly and updating its database,

with that there is nova-volume that manages creating, attaching and de-attaching of volumes. Nova

network is used for networking task, it accepts the networking tasks such as changing bridging

table or changing IP rules this service is replaced by the neutron. Nova scheduler decides what

instances should run on which host, after accepting from the queue. A queue is a central place of

communication, for all nova services. It works over rabbit MQ functionality. Nova database is

used to store built time or runtime state for cloud infrastructure, these can be instance type that can

be used and instance type that is used and network types in the projects.

2.1.4 Swift is a block storage service by OpenStack. This service is dominated by Rackspace

in OpenStack, though this service is little changed due to the emergence of mobile web application

and due to the emergence of software define storage, where huge storage are built with the

involvement of hardware. Swift is the object storage system, with the combination of redundancy,

availability, throughput and capacity. Swift has no delays with the fast transition of data, a large

number of reads of storage data with the simultaneous transaction at the same time and can scale

up to extremely large scale. Swift does not need high-level hardware. It can be deployed on

Elastic Cloud Service Orchestration with Openstack

7 | P a g e

commodity hardware and gain high performance. Swift is a distributed system that can easily be

scale out, with the contrast of failover without compromising data information. As Nova, it has

also consisted of different components. The swift proxy server accepts the received request

through OpenStack object API. It accepts the modification, creation or uploads the file request. It

also provides files or container listing to the web browser. The proxy server consists of accounting

service that is the accounts defined for storage service. The container service is used for mapping

of files and folder to the object storage, they have basically defined nodes to where data should go.

The object storage manages the object storage that manages actual data files. Moreover for large

data it also it runs housekeeping tests as well that can be replication service that can assure the

availability, redundancy of the storage service. The proxy is the only part of the swift that deals

with the external client as it accepts the requests. Furthermore, it also does external actions such

as restore data to the website, data while online game or data retrieving from the backup. These all

comes in a form of incoming request, where swifts check the origin of the request. Then responds

the request according to the required action allowed for the user. These all request are based on

HTTP request where Get, Put, Post, Delete and Head are the main requests in swift storage.

2.1.5 Glance is also storage service in OpenStack, but it keeps the images of the virtual disk's

storage. It is image service, the main function of the glance is to provide discovery, registration

and delivery service to server or disk image. The images those are stored in the service are used as

the template, a number of backups can be made from these stored images. These images can be

streamed for further more compute instances for the users. Users can create their own image by

modifying the existing image. Furthermore this snapshot storage in glance use for quick backup

restarting the virtual machine. Glance provide multiple of services such as image uploading,

retrieving disk images. Not only this listing and querying virtual disk images and set virtual disks

permissions are also included. The Glance service consists of three things glance API, glance

registry, and glance database.

The image retrieval and discovery call for image API, all are accepted by glance API. Glance-

registry is to store processes and retrieve metadata about the type or size of the images. Glance

database store the metadata images or it can also store in swift storage.

Elastic Cloud Service Orchestration with Openstack

8 | P a g e

2.1.6 Cinder services provide persistence block storage in OpenStack to compute instance. It

is responsible for server attaching and de-attaching with block devices. They are logical the

volumes, converted from raw volume, mounted on the virtual machines. They are the volumes or

snapshot of volumes that can be created or deleted. Clones can be form from these volumes.

Computer instances can be attached or detached, but only one instance can be attached at one time.

This also works with the glance where we can copy images to the volume. Cinder also allows

viewing the statistics of the volume.

2.1.7 Neutron is the network service in open stack. It provides networking between the

interface devices managed by other OpenStack services such as nova. It permits the user to get

connected to the server. It is very advantageous to the user to get commodity gear or vendor

supported equipment through pluggable backend architecture. The extension allows additional

network services, software or hardware to be integrated. Routers virtual switches and software

defined networking controller are some of the features of the neutron, where router provides the

gateway and virtual switches refer to the ports. These are instances or network services connected

to the network consisting of mac address and IP address of interfaces plugged into them.

Furthermore private and floating IP addresses are the address those are assigned to the instance.

The private network that is dedicated to the tenant can only get private IP addresses. This isolates

one tenant from another tenant. Neutron services also provide services from layer 1 to layer 3.As

well as the load balancer. Neutron consist of the several services, the quantum server accepts API

request and then route to the appropriate plugin. Quantum agents are used for plugging in and

plugging out the ports. Queuing database helps to keep the record the status of the ports that are

plugged in. Neutron manages the network and IP addresses. It makes sure that will not be the

bottleneck in the cloud deployment.

.

Elastic Cloud Service Orchestration with Openstack

9 | P a g e

2.1.8 Ceilometer is the monitoring service that is used to monitor other services that keep’s

the record of the usage or utilization. Ceilometer can be used for billing as well as alarm purposes

both for the service provider as well as for the user. It collects the data by notifications from the

services.

It is a part of billing model that consist of metering, rating, and billing.

Metering consist of continuous monitoring threshold, warnings and rate of collection, the central

location of the data, and tenant details.

Rating is a process after the monitoring is done and utilization of data and values are achieved. It

is a decision how billing is to done, prepaid , postpaid, discount , rate plan everything related with

the result of output by monitoring and rating according to what is been monitored.

 Billing is the final part where the transaction is decided and is decided how it will be charged

with the contrast of service level agreement.

Ceilometer is just a part of the metering model, but it is the most important part. It finds the right

query in Ceilometer API to extract the right information you need from monitoring. Metering is

the process of gathering information about how much and what can be billed. It aims a point of

the billing system to get all measurements they need to establish in customer billing. It not only

provides the efficient collection of metering data in terms of CPU and Network but also helps in

alarming processes. It allows to meter components directly or changing some of the components.

Data can be gathered by monitoring components and service or by pulling infrastructure.

Monitoring is done through three particular aspects of resource usage Cumulative, Delta, and

Gauge. Cumulative is monotonically increasing, whereas delta in interpreted as change from

previous value and gauge standalone value relating only to the current duration

2.1.9 Heat is the main orchestration project. Orchestration engine launches multiple cloud

applications and that orchestration engine is implemented by Heat. This application acts as code

in text files. Heat provides native rest API as well and clouds information compatible query API.

The orchestration is for infrastructure. Heat also provides compatibility with AWS API in template

Elastic Cloud Service Orchestration with Openstack

10 | P a g e

format. The orchestration is for infrastructure essentially what configuration management is for

the software application. Heat is a declarative model that represents the infrastructure sources and

relationship between them directly. Heat then perform a sequence of action to bring reality in line

with your model. The model takes the form of heat template and the resulting template of

infrastructure template is known as the stack. Orchestration allows you to allow you infrastructure

as code. Therefore you can save your templates as version controlled system such as get to track

changes, you update the stack with new template changes and then heat performs the necessary

actions. Heat actually sits between the user and core API services. We can also interact with heat

through the dashboard. The heat template describes the structure in the text file for the cloud. It is

a readable and writable file. The infrastructure resources that can be described include servers,

floating IPs, volumes, security groups, and users.

Heat is also integrated with ceilometer for auto-scaling services. Relationships between resources

specify templates. This lets heat to interact with OpenStack API. Heat manages whole application

processes. Changing the template and updating it on the stack, heat knows how to manage those

changes. It also deletes all the resources when you are finished with the application.

Elastic Cloud Service Orchestration with Openstack

11 | P a g e

Chapter 3 Basic Implementation of OpenStack

3.1 Basic Installation

In this project Open stack was installed through pack stack that is a repository module, help to

implement various parts of OpenStack. It represents a utility which facilitates the deployment on

multiple nodes for different components of OpenStack via SSH. This requires multiple pre-

installed servers. In our case it is CentOS. There are two ways to work with packsack. As follows.

Packstack Interactively: Interactive way is the user commands are run at same time as he gives

the command. The user enters the command

Packstack Non-Interactively: the Non-Interactive way is the way when the user updates the file

known as answer file. Enables and customize the options in the answer file, that customize file is

run for OpenStack.

 In this project, Non interactive is used to install pack stack. Answer file will be applied on our

controller node, as all service will work in controller node. The answer file is a file that pack stack

takes in order to take decisions that we put in the script that we want to setup in OpenStack.

Services will be enabled such as Glance, Cinder, Nova, Horizon, Swift, Ceilometer, and Heat as

shown in FIG 3.1 and FIG 3.2

Elastic Cloud Service Orchestration with Openstack

12 | P a g e

FIG.3.1 (Answer File with services)

FIG.3.2 (Answer File with heat services enabled)

Answer file also consists of IP addresses of the three main nodes, Compute, Controller, and

Neutron. Compute node, in this project the three nodes are on one single node as shown in FIG.3.3.

All these nodes should be interconnected.

Elastic Cloud Service Orchestration with Openstack

13 | P a g e

FIG.3.3(Answer File with all IP address)

Moreover, the answer file also consists of keystone authentication user and password in plain text

as well as the token that is discussed in the previous chapter as well. This token allows the user to

the services that user is allowed to get access.

After Answer file is modified the file is run through pack stack through the following in FIG3.4

.

FIG.3.4 (Run Answer File over pack stack)

Elastic Cloud Service Orchestration with Openstack

14 | P a g e

Then access the dashboard through GUI as it is successfully installed after as shown in FIG 3.5

FIG.3.5 (User Authentication by open stack (Keystone))

As discussed before keystone plays the authentication role, known as identity service as well. It

ask for username and password when this authentication is done the keystone provides the token

to the user that consist of the services that are been allowed to the user to access

Elastic Cloud Service Orchestration with Openstack

15 | P a g e

3.2 Implantation Projects and Other services

FIG.3.6 (Different projects of OpenStack)

After getting access we can see different projects. OpenStack can deal with different project at a

time. Every project has different members as shown is FIG 3.7.A member can be a part of two

Elastic Cloud Service Orchestration with Openstack

16 | P a g e

different projects.

FIG.3.7 (Project Members)

The cinder volume is the block storage that is provided to the user related to different projects.

This is a logical storage to every user that can be attached or detached to the user. This memory

can be reused for another user as user finished his work and memory is deleted. The user can be

given different memory chunk according to the use.

FIG.3.8 (OpenStack Volumes attached to different users)

Elastic Cloud Service Orchestration with Openstack

17 | P a g e

As in FIG.3.8 different volumes are attached to different users for the project “admin”, their IDs

are showing as their name with size of their volume, with the contrast of their instances those are

attached to.

The next service will be glance service in OpenStack picture. Glance is the storage service that is

responsible for keeping images for different instances. All the instances will run through the image

file that will be stored in Glance. There can be more than one image but in our scenario its just one

image as shown in FIG.3.9

FIG.3.9 (Openstack Glance service)

3.3 Networks and Router

The network is the neutron service of the OpenStack that provides the interfaces for different user

and services to connect with each other. Since OpenStack deals with cloud computing with private

and public cloud, therefore there will be a big role to play for NATing. As shown in FIG 3.10.

OpenStack not only provides compute and data storage service but also understands the role of

networks to connect these services. In the following FIG it clearly shows the instances those are

connected to a private cloud, on one side of the router with all private IP addresses, will be nated

on the other side of the router through public cloud.

Elastic Cloud Service Orchestration with Openstack

18 | P a g e

FIG.3.10 (OpenStack Network)

In other words, these private instances can also be accessed through external network. In this unit,

this will be explained further.

Elastic Cloud Service Orchestration with Openstack

19 | P a g e

FIG.3.11 (OpenStack Network)

As shown in FIG.3.11 private and public IP addresses are shown that will be used for nating.

Furthermore, router is also available is OpenStack networking services that not only help in nating

but also manages the external and internal networks of OpenStack services.

FIG.3.12 (Openstack Router)

Unlike other vendor routers, it does not need so much of command configuration, which is the best

part of OpenStack router. It is capable of doing all basic required routing functions. These all

capabilities plays great role in OpenStack. As shown in FIG.3.13, FIG.3.14 and FIG.3.15 some of

the routing capabilities.

Elastic Cloud Service Orchestration with Openstack

20 | P a g e

FIG.3.13 (Openstack Router)

In the FIG.3.13 you can easily identify the router ports, where the ports are assigned with the IP

addresses, these are the IP addresses from the private and public cloud as shown in FIG.3.4.

Moreover, this clarifies that NATing has done by the router, where one port is towards external

gateway of the network. This is towards the internet in our scenario. The port is defined on internal

or private network.

Elastic Cloud Service Orchestration with Openstack

21 | P a g e

FIG.3.14 (Openstack Router)

Public IP addresses are defined as floating IP for the project that needs to be accessed from external

network. In the given FIG 3.15 following floating public IP addresses are shown that are for the

admin projects, where instances are also defined with their tagged names, as well as their status.

Elastic Cloud Service Orchestration with Openstack

22 | P a g e

FIG.3.15 (Floating IP addresses)

For any network it very important to have systematic way of deployments and organize the way

of understanding the deployment of any network. This cannot be possible without a graphical

representation of network topology diagram as shown in FIG.3.16, as well as in FIG.3.10 in the

beginning.

FIG.3.16 (Floating IP addresses)

Elastic Cloud Service Orchestration with Openstack

23 | P a g e

Chapter 4 Ceilometer Services

4.1 Implementation of Ceilometer

Ceilometer it the service by OpenStack is used to monitor different parameters for different

instances, this monitoring can be for metering purposes as well as for alarm purpose as well. The

given outputs are the monitoring result for four different tenants created on OpenStack network.

The reason behind these outputs is to measure different parameters such as the volume, memory

size and number if instances used by the tenant in one project. As mentioned before as in FIG 3.11

in the previous chapter there are 3 instances, outputs are taken for every single instance. Ceilometer

monitors and displays every detail separately. Every instance has separate ID and name with their

status as shown in FIG 4.1, through which it is identified and is metered accordingly through

ceilometer process.

FIG.4.1 (Instance ID)

In the metering process, there are four separate outputs for four different instances. Every data is

taken out for 60 min of the time period in a duration that is starting period to end the period in

Elastic Cloud Service Orchestration with Openstack

24 | P a g e

duration that is shown in the output which is defined in pipeline file known as pipeline.yaml file.

FIG.4.2 (Period of interval)

4.2 Expected outputs of Ceilometer

The data will be drawn for an hour and then statistics are taken out. The count tells how many

times it is attempted to collect data during this time period. As shown in the output in FIG 4.3, FIG

4.4 and FIG 4.5 and FIG.4.6 the count were 3 in the first hour period. In the next hour period, the

count is increased to 53 and later increased at 66 and become stable with 66.It also shows the

maximum, minimum and average CPU utilization during that period of time.As shown in the

output it is also showing the duration, which is in hour that means period and duration both are the

same.

Elastic Cloud Service Orchestration with Openstack

25 | P a g e

FIG.4.3 (CPU utilization statistics for Cirros Test)

Elastic Cloud Service Orchestration with Openstack

26 | P a g e

FIG.4.4 (CPU utilization statistics for Test-1)

Elastic Cloud Service Orchestration with Openstack

27 | P a g e

FIG.4.5 (CPU utilization statistics for Test-2)

FIG.4.6 (CPU utilization statistics for Test-3)

Elastic Cloud Service Orchestration with Openstack

28 | P a g e

A sample list is also one of the ways to get the information about a different instance in ceilometer.

The statistics show us the time period and time duration of the instance with the contrast of max,

min, and an average of any perimeter. It also includes the number of the counts attempted to get

the information. On other page sample list also tells about the total usage of the resource that is

been used, as well as the type of metering the perimeter is, that can be Cumulative, Delta and

Gauge as discussed before. Moreover, it also manages to give the system Id of the instance and

the time stamp. These are some of the obvious fields that are shown in sample-list. The monitoring

parameters may get change, with their units. These are defined by ceilometer in sample-list

command. As shown in Fig.4.7, Fig.4.8, Fig.4.9 and Fig.4.10.

In the first group of outputs, CPU utilization is shown in form of percentage. The metering type is

gauge that is discrete values and may change

FIG.4.7 (CPU utilization sample list for Cirros Test)

Elastic Cloud Service Orchestration with Openstack

29 | P a g e

FIG.4.8 (CPU utilization sample list for Test-1)

FIG.4.9 (CPU utilization sample list for Test-2)

FIG.4.10 (CPU utilization sample list for Test-3)

In next set of outputs in FIG.4.11, FIG.4.12, FIG.4.13 and FIG.4.14 the parameter remains the

same, with a contrast of different unit. This shows multiple ways that ceilometer monitors different

Elastic Cloud Service Orchestration with Openstack

30 | P a g e

parameters and show them in a presentable format. The Percentage is now changed to nS, hence

metering type is changed to cumulative, now it is showing the volume in the units of Nanoseconds.

FIG.4.11 (CPU sample list for Cirros Test)

FIG.4.12 (CPU sample list for Test-1)

Elastic Cloud Service Orchestration with Openstack

31 | P a g e

FIG.4.13 (CPU sample list for Test-2)

FIG.4.14 (CPU sample list for Test-3)

Further outputs are the sample list of the memory usage in the FIG 4.15, FIG 4.16, FIG 4.17 and

FIG 4.18 of each instance monitored and metered by ceilometer to get the memory from every

instance that is defined in Megabytes. This is the memory usage done by different instances. The

metering type is gauge since it is discrete. As shown in the outputs is memory usage for all

instances are the same as all the instances are using the same flavor that ends up with same memory

usage.

Elastic Cloud Service Orchestration with Openstack

32 | P a g e

FIG.4.15 (Memory sample list for Cirros Test)

FIG.4.16 (Memory sample-list for Test-1)

Elastic Cloud Service Orchestration with Openstack

33 | P a g e

FIG.4.17 (Memory sample-list for Test-2)

FIG.4.18 (Memory sample-list for Test-3)

Moreover, the next metering is for volume instances, the unit for this volume remains to be the

instance since instance will remain to be the instance and has no particular unit. The flowing FIG

4.15, FIG 4.16, FIG 4.17 and FIG 4.18 are the outputs

Elastic Cloud Service Orchestration with Openstack

34 | P a g e

FIG.4.19 (Instance sample-list for Cirros Test)

FIG.4.20 (Instance sample-list for Test-1)

FIG.4.21 (Instance sample-list for Test-2)

Elastic Cloud Service Orchestration with Openstack

35 | P a g e

FIG.4.22 (Instance sample-list for Test-3)

Elastic Cloud Service Orchestration with Openstack

36 | P a g e

Chapter 5 Heat Orchestration

5.1 Brief Details of Heat

Heat is the main project for orchestration part of OpenStack. Implementation of orchestration

engine for multiple composite cloud application. It is the sequence of lines code in text file format.

A native heat format can be evolving, but heat also endeavors to provide compatibility with AWS

cloud information template format so that many existing cloud formation template can be launch

on OpenStack. Heat provide both open stack rest API and cloud formation compatible query API.

The orchestration is essentially for the software application. To manage configuration. Instead of

manipulation of virtual infrastructure by hand or with the script

Heat focuses to work with the declarative model. Heat works out on the sequence of lines to

perform and to bring reality in to model. The model takes the heat template and the resulting

collective of infrastructure resources is known as the stack. Orchestration allows you to treat your

infrastructure like code. Therefore you can store your templates version control system, such as

GIT to track changes then you update the stack with the new template and heat do the rest of the

actions. The main interface of heat is the OpenStack native rest API. Heat actually is between the

user and the API of the core OpenStack services. In much the same way as the dashboard or the

horizon does. Heat can be access through the horizon or the dashboard. Heat template describes

the cloud application infrastructure in the code format that is changeable. The heat infrastructure

resources include servers, floating IP, volume, security groups, and users.

5.2 Auto Scaling

Heat also provides auto scaling that integrates with ceilometer. Ceilometer adds scaling group as

the resource within templates. Furthermore, the template, defines the relationship between two

Auto scaling by heat integrated with ceilometer that leads to add scaling group in template. The

templates defines the relationship between two resources. It also able heat to call OpenStack API

in order to make everything systematic. Openstack also manage the whole lifecycle of the

application. You need to do the modification in the code for existing stack and heat deals with the

rest in order to change something.

Elastic Cloud Service Orchestration with Openstack

37 | P a g e

Heat architecture components include:

Heat API It is used for processing API request to Heat engine via AMQP. It implements an

Open stack-native RESTful API

HEAT-api-cfn it is used API compatibility with AWS cloud formation.

HEAT ENGINE is main orchestration functionality.

Heat uses back-end database for maintaining state information as other OpenStack services. Both

communicate with heat engine via ANQ. The heat engine is the actual layer where actual

integration is implemented. Furthermore, for high availability, Auto scaling abstraction is also

done.

Auto Scaling Heat Templates

Heat and Ceilometer are the service that are used to scale CPU bound virtual machines. Heat stack

is the environment itself. Heat stack manages processes and logics defined in templates. Auto Scale

creation group and Ceilometer threshold is also defined in template. The environment template

explains how to create the stack itself, what image or volume to use, network configuration,

Software to install and everything an instance or instances need to properly function. All of these

things can be in Heat Stack template

5.3 Deployment of Heat Orchestration

5.3.1 ENVIRONMENT TEMPLATE

Below we will create an environment template for a cirros image. As shown in FIG.5.3. The Cirros

image will create the instance template, configure a cinder volume, add IP from the private

network, add floating IP from the public network, add the security group, private ssh-key and

generate 100% CPU load through user-data.

Hot is the new template format that to replace the Heat Cloud Formation-Compatible format as

native format supported by heat. They are written in YAML format and JSON. Hot templates

create

Elastic Cloud Service Orchestration with Openstack

38 | P a g e

Stack in Heat. Structure for Hot consist of Heat Template version, description, parameter groups,

parameters, resources, and outputs.

 Heat Template Version: Is just value with the key that indicates that the YAML document

is a hot template of the specific version, if the date is 2013-05-23 or later date.Shown in

FIG 5.1

Fig.5.1 (Heat Template version)

 Description: It's an optional key allows for giving a description of the template.

Fig.5.2 (Description of heat template)

 Parameters groups: This section allows for specifying how the input parameters should

be grouped and order to provide the parameter in. This option is also optional

 Parameter: This section allows for specifying input parameters that have to provide when

instantiating the templates. This option is also optional as well

 Outputs: This part allows for specifying output parameters available to users once the

template has been instantiated.

 Resources: It defines actual resources that are real stack from HOT template (instance for

Compute, Network, and Storage Volume).Each resource is defined as a separate block in

input parameters. As shown in FIG 5.3 there are five separate sections. Servers, port,

volume, floating IP

 Resource ID: must always be unique for every section

 Resource Types: Must relate to the service that section of template define Such as

the following

Nova:: Server

Elastic Cloud Service Orchestration with Openstack

39 | P a g e

Neutron:: Port

Neutron:: FloatingIP

Neutron:: FloatingIPAssociation

Cinder:: Volume

 Properties: It is a list of resource specific property defines via the function.

Elastic Cloud Service Orchestration with Openstack

40 | P a g e

FIG.5.3 (Heat Template Resources)

Now that we have an environment template, we need to create a Heat resource type and link it

above file /etc/heat/templates/cirros_base.yaml.

resource_registry:

Elastic Cloud Service Orchestration with Openstack

41 | P a g e

"OS::Nova::Server::Cirros": file:///etc/heat/templates/cirros_base.yaml

5.3.2 Heat Template:
The below template in FIG.5.4 defines the behavior of the stack e.g. when and under what

conditions the stack will scale up and scale down. cpu_alarm_high and cpu_alarm_low are used

in the template to scale up and scale down our environment.

file:///C:/Users/fahaam/Downloads/etc/heat/templates/cirros_base.yaml

Elastic Cloud Service Orchestration with Openstack

42 | P a g e

FIG.5.4 (Behavior Of Stack)

Elastic Cloud Service Orchestration with Openstack

43 | P a g e

Update Ceilometer Collection Interval

By default, Ceilometer will collect CPU data from instances every 10 minutes. For this example,

we want to change that to 60 seconds. Change the interval to 60 in the pipeline.YAML file and

restart

OpenStack services.

Check the status of the stack in Horizon Dashboard:

Heat will create one instance as per defined policy:

5.3.3 RUNNING THE STACK:

Run the following command to run the stack:

[root@devstack1 ~ (keystone_admin)]# heat stack-create heat_autoscale -f

/root/heat_autoscale.YAML -e /root/environment.yaml

Check the status of the stack in Horizon Dashboard as in FIG 5.4:

FIG5.5 (Heat stack status)

Elastic Cloud Service Orchestration with Openstack

44 | P a g e

In FIG 5.5 and FIG 5.6 shows the heat stack topology and resources, Events are also shown in FIG

5.6

FIG 5.6 (Heat Stack Topology)

FIG 5.7 (Heat Stack Resources)

Elastic Cloud Service Orchestration with Openstack

45 | P a g e

FIG 5.8 (Heat Stack Events)

Heat will create one instance as per defined policy in FIG 5.7:

FIG 5.9 (Heat Stack Instance)

Automatic Scale UP:

Now we will increase the cpu utilization on one of the instances and will verify if heat autoscales

the environment or not. To do that run the following commands one the instance that heat created

from the stack. As shown in FIG 5.8.

Elastic Cloud Service Orchestration with Openstack

46 | P a g e

FIG 5.10 (Heat Autoscaling)

The heat created two more instances based defined policy in the orchestration template. This is

because the maximum scale up policy is 3 instances. As shown in FIG 5.8.

FIG 5.11 (Two Instance base on policy)

Elastic Cloud Service Orchestration with Openstack

47 | P a g e

List of volumes that heat created based on defined policy threshold as shown in FIG 5.9:

FIG.5.12 (Volumes that heat created based on defined policy)

Elastic Cloud Service Orchestration with Openstack

48 | P a g e

New Network Topology after adding instances to the private network in FIG 5.10

 FIG 5.13 (Heat Topology after 2 instances)

5.3.4 SCALE DOWN:

Scale down is the process in heat. Heat automatically scales down once the CPU utilization goes

down on the instances. As the load goes back to normal and CPU cools down. The extra instances

that were appeared to overcome the load will go back to one instance and all instances will be used

efficiently through this way. In our scenario instance “aw7blqnbabc2” is the original instance and

the rest instances are to overcome the load.

Elastic Cloud Service Orchestration with Openstack

49 | P a g e

Chapter 6 Conclusion

Cloud Computing is one of the most powerful technology today in the IT industry. It is one of the

greatest evolution in the industry. OpenStack is playing dominant role in cloud computing. The

growing interest of different vendors in OpenStack not only making it more attractive, but also

taking it to further stage of advancement. Openstack Elastic Cloud Service is also one of the most

spectacular services for IT industry, where it is possible to scale up the resources under the required

circumstances through heat services. Furthermore, it automatically scale down when CPU cools

down and load comes back to normal, without any extra effort to be done. On the other side of the

page ceilometer is helpful in metering and monitoring purpose. These both services with openstack

itself a quality makes itself visible in many of the selections in IT industry

Elastic Cloud Service Orchestration with Openstack

50 | P a g e

Chapter 7 Reference

1. https://en.wikipedia.org/wiki/OpenStack

2. linuxacademy.com/cp/modules/view/id/13(Module:Introduction to the Linux Academy)

3. https://linuxacademy.com/cp/modules/view/id/18(Module:OpenStack Essentials)

4. https://linuxacademy.com/cp/modules/view/id/61 (Modules:OpenStack Foundation

Certified OpenStack Administrator)

5. https://linuxacademy.com/cp/modules/view/id/28(Module:Linux Academy Red Hat

OpenStack Administrator Certification Prep Course)

6. https://docs.openstack.org/ops-guide/architecture.html

7. http://www.stratoscale.com/resources/campaigns/simplify-

openstack/?network=g&device=c&placement=&keyword=%2Bopen%20%2Bstack&utm

_source=adwords&utm_medium=cpc&utm_campaign=sorezki&utm_source=adwords&u

tm_medium=cpc&utm_campaign=mktg_envy_690915556&utm_term=%2Bopen%20%2

Bstack&utm_content=165527634601&gclid=CKKAve-Gw9ICFYa2wAodl_4DvQ

8. https://www.youtube.com/watch?v=J4BpqwMuIc8

9. docs.openstack.org/mitaka/install-guide-ubuntu/heat-install.html

10. https://wiki.openstack.org/wiki/Nova

11. https://wiki.openstack.org/wiki/Glance

12. https://docs.openstack.org/developer/glance/

13. Trainer.edu.mirantis.com/os100L2.0.0/ceilometer.html

14. youtube.com/watch?v=eOlIB323c8s

15. https://wiki.openstack.org/wiki/Heat

16. https://docs.openstack.org/developer/heat/template_guide/hot_guide.html

17. https://www.wired.com/insights/2012/04/openstack-histor

18. https://www.openstack.org/videos/vancouver-2015/public-or-private-cloud-amazon-web-

services-or-openstack-what-and-039s-the-difference-and-can-i-use-both

19. http://redhatstackblog.redhat.com/2015/05/13/public-vs-private-amazon-compared-to-

openstack

20. http://www.networkworld.com/article/3055195/cloud-computing/google-cozies-up-with-

openstack.html

21. https://keithtenzer.com/2015/09/02/auto-scaling-instances-with-openstack/

22. http://docs.openstack.org/developer/heat/template_guide/hot_spec.html

23. https://es.scribd.com/document/312104113/Heat-Introduction

http://www.stratoscale.com/resources/campaigns/simplify-openstack/?network=g&device=c&placement=&keyword=%2Bopen%20%2Bstack&utm_source=adwords&utm_medium=cpc&utm_campaign=sorezki&utm_source=adwords&utm_medium=cpc&utm_campaign=mktg_envy_690915556&utm_term=%2Bopen%20%2Bstack&utm_content=165527634601&gclid=CKKAve-Gw9ICFYa2wAodl_4DvQ
http://www.stratoscale.com/resources/campaigns/simplify-openstack/?network=g&device=c&placement=&keyword=%2Bopen%20%2Bstack&utm_source=adwords&utm_medium=cpc&utm_campaign=sorezki&utm_source=adwords&utm_medium=cpc&utm_campaign=mktg_envy_690915556&utm_term=%2Bopen%20%2Bstack&utm_content=165527634601&gclid=CKKAve-Gw9ICFYa2wAodl_4DvQ
http://www.stratoscale.com/resources/campaigns/simplify-openstack/?network=g&device=c&placement=&keyword=%2Bopen%20%2Bstack&utm_source=adwords&utm_medium=cpc&utm_campaign=sorezki&utm_source=adwords&utm_medium=cpc&utm_campaign=mktg_envy_690915556&utm_term=%2Bopen%20%2Bstack&utm_content=165527634601&gclid=CKKAve-Gw9ICFYa2wAodl_4DvQ
http://www.stratoscale.com/resources/campaigns/simplify-openstack/?network=g&device=c&placement=&keyword=%2Bopen%20%2Bstack&utm_source=adwords&utm_medium=cpc&utm_campaign=sorezki&utm_source=adwords&utm_medium=cpc&utm_campaign=mktg_envy_690915556&utm_term=%2Bopen%20%2Bstack&utm_content=165527634601&gclid=CKKAve-Gw9ICFYa2wAodl_4DvQ
http://www.stratoscale.com/resources/campaigns/simplify-openstack/?network=g&device=c&placement=&keyword=%2Bopen%20%2Bstack&utm_source=adwords&utm_medium=cpc&utm_campaign=sorezki&utm_source=adwords&utm_medium=cpc&utm_campaign=mktg_envy_690915556&utm_term=%2Bopen%20%2Bstack&utm_content=165527634601&gclid=CKKAve-Gw9ICFYa2wAodl_4DvQ
https://www.youtube.com/watch?v=J4BpqwMuIc8
https://wiki.openstack.org/wiki/Nova
https://wiki.openstack.org/wiki/Glance
https://docs.openstack.org/developer/glance/
http://trainer.edu.mirantis.com/os100L2.0.0/ceilometer.html
https://wiki.openstack.org/wiki/Heat
https://docs.openstack.org/developer/heat/template_guide/hot_guide.html
https://www.wired.com/insights/2012/04/openstack-histor
https://www.openstack.org/videos/vancouver-2015/public-or-private-cloud-amazon-web-services-or-openstack-what-and-039s-the-difference-and-can-i-use-both
https://www.openstack.org/videos/vancouver-2015/public-or-private-cloud-amazon-web-services-or-openstack-what-and-039s-the-difference-and-can-i-use-both
http://redhatstackblog.redhat.com/2015/05/13/public-vs-private-amazon-compared-to-openstack
http://redhatstackblog.redhat.com/2015/05/13/public-vs-private-amazon-compared-to-openstack
http://www.networkworld.com/article/3055195/cloud-computing/google-cozies-up-with-openstack.html
http://www.networkworld.com/article/3055195/cloud-computing/google-cozies-up-with-openstack.html
https://keithtenzer.com/2015/09/02/auto-scaling-instances-with-openstack/
http://docs.openstack.org/developer/heat/template_guide/hot_spec.html
https://es.scribd.com/document/312104113/Heat-Introduction

Elastic Cloud Service Orchestration with Openstack

51 | P a g e

Elastic Cloud Service Orchestration with Openstack

52 | P a g e

