

Capstone Project Report Title:

OpenStack- Elastic Cloud Service Orchestration with

Openstack

Orchestrate Elastic Cloud Orchestration for Compute/Storage

Submitted By:

Fahaam Alam Hashmi

Under Supervision of:

Muhammad Durrani

Duration:

September 2016 - March 2017

ACKNOWLEDGEMENT

This final year project was possible because of the will and wish of Almighty ALLAH and we are grateful to Him. I express our sincere thanks to our supervisor Mr Mouhammad Durrani, for his encouraging comments and useful suggestions, which helped me in completing the project work, in time. I also feel great pleasure in acknowledging our heartiest gratitude to Mr Shah Nawaz Mir. This work could never have been completed without his perspicuous instruction, consistent help and invaluable support.

<u>Abstract</u>

There is undoubtedly no mendacity in the fact that the benefits of Cloud Computing has earned great attention of IT Industry today. Capability of providing on demand resources, contrast with elasticity and metered services in shared pool of hardware and software are some of the appealing characteristics of Cloud Computing. The technology become more advantageous, when it is not only open source, but also with global collaboration. Openstack is the service that is playing this role, with being open source. Openstacks increasing versatilities allures the organizations to build their own public and private cloud with openstack. Furthermore the provision of metering over cloud services known as ceilometer plays a fundamental role to support applications like ecommerce over cloud computing services. In this project we have two parts after implementation of openstack cloud. In the first part we used openstack ceilometer service, for the purpose of knowing the usage of resources being used by different tenants (users), by metering different instances in different period intervals. Provided records of multiple tenants, with monitoring different parameters. In the second part of the project elastic cloud computing service to tenant is provided through openstack heat services. Defining different policies in such a way to assure availability of resources provided to tenant, during peak usage time of resources.

TABLE OF CONTENTS

Topics

1 **OpenStack Introduction**

- 1.1 Introduction to OpenStack
- 1.2 OpenStack History
- 1.3 Involvement of Companies in Openstack
- 1.4 Compatibility of OpenStack with other Cloud Computing

2 **OpenStack Architecture**

2.1 How OpenStack Works

- 2.1.1 Horizon
- 2.1.2 Keystone
- 2.1.3 Nova
- 2.1.4 Swift
- 2.1.5 Glance
- 2.1.6 Cinder
- 2.1.7 Neutron
- 2.1.8 Ceilometer
- 2.1.9 Heat

1-4

5-9

3	Basic Implementation of OpenStack	11-22
	3.1 Basic Installation	
	3.2 Implantation Projects and Other services	
	3.3 Networks and Router	
4	Ceilometer Services	23-35
	4.1 Implementation of Ceilometer	
	4.2 Expected outputs of Ceilometer	
5	Heat Orchestration	36-48
	5.1 Brief Details of Heat	
	5.2 Auto Scaling	
	5.3 Deployment of Heat Orchestration	
	5.3.1 Environmental Template	
	5.3.2 Heat Template	
	5.3.3 Running The Stack	
	5.3.4 Scale Down	
6	Conclusion	49
7	References	50

FIGURES	PAGE
Fig.1.1 (Openstack releases)	3
FIG 2.1 (Openstack Architecture)	5
FIG.3.1 (Answer File with services)	12
FIG.3.2 (Answer File with heat services enabled)	12
FIG.3.3(Answer File with all IP address)	13
FIG.3.4(Run Answer File over pack stack)	13
FIG.3.5 (User Authentication by open stack (Keystone))	14
FIG.3.6 (Different projects of openstack)	15
FIG.3.7 (Project Members)	15
FIG.3.8 (Openstack Volumes attach to different users)	16
FIG.3.9 (Openstack Glance service)	17
FIG.3.10 (Openstack Network)	18
FIG.3.11 (Openstack Network)	19
FIG.3.12 (Openstack Router)	19
FIG.3.13 (Openstack Router)	20
FIG.3.14 (Openstack Router)	21
FIG.3.15 (Floating IP addresses)	22
FIG.3.16 (Floating IP addresses)	22
FIG.4.1 (Instance ID)	23
FIG.4.2 (Period of interval)	24
FIG.4.3 (CPU utilization statistics for Cirros Test)	25
FIG.4.4 (CPU utilization statistics for Test-1)	26
FIG.4.5 (CPU utilization statistics for Test-2)	26
FIG.4.6 (CPU utilization statistics for Test-3)	27
FIG.4.7 (CPU utilization sample-list for Cirros Test)	28
FIG.4.8 (CPU utilization sample-list for Test-1)	29
FIG.4.9 (CPU utilization sample-list for Test-2)	29
FIG.4.10 (CPU utilization sample-list for Test-3)	29
FIG.4.11 (CPU sample-list for Cirros Test)	30
FIG.4.12(CPU sample-list for Test-1)	30
FIG.4.13 (CPU sample-list for Test-2)	31

FIG.4.14 (CPU sample-list for Test-3)	31
FIG.4.15 (Memory sample-list for Cirros Test)	32
FIG.4.16 (Memory sample-list for Test-1)	32
FIG.4.17(Memory sample-list for Test-2)	33
FIG.4.18(Memory sample-list for Test-3)	33
FIG.4.19(Instance sample-list for Cirros Test)	34
FIG.4.20(Instance sample-list for Test-1)	34
FIG.4.21(Instance sample-list for Test-2)	34
FIG.4.22(Instance sample-list for Test-3)	35
Fig.5.1(Heat Template version)	38
Fig.5.2(Description of heat template)	38
FIG.5.3 (Heat Template Resources)	39
FIG.5.4(Behavior Of Stack)	41
FIG5.5 (Heat stack status)	42
FIG 5.6 (Heat Stack Topology)	43
FIG 5.7 (Heat Stack Resources)	44
FIG 5.8 (Heat Stack Events)	45
FIG 5.9 (Heat Stack Instance)	45
FIG 5.10 (Heat AutoScaling)	46
FIG 5.11 (Two Instance base on policy)	46
FIG.5.12 (Volumes that heat created based on defined policy)	47
FIG 5.13 (Heat Topology after 2 instances)	48

CHAPTER 1 OPENSTACK INTRODUCTION

1.1 Introduction to OpenStack

OpenStack provides Infrastructure as a Service solution. IaaS (Infrastructure as a Service solution) is the basic cloud computing service model, where virtual machines, load balancers, raw block storage, firewalls and networking services are provided on one platform, where everything interrelated. It provides control to compute, storage and network for a large pool. Compute Networking and Storage are the three major parts open stack is divided into. A collaboration of cloud computing service and developer private or public cloud computing, which is totally open source. Help's to manage large pools of public or private cloud data center on one screen in faster and cost effective way.

Open stack is the cloud computing self-service, this means it is a computing capability that provides Compute, network and servers services without any human interaction, which used to be achieved through large servers to install in data center, not only requires lots of space and power, but also requires more ram and space as increase in users. In cloud computing these services can are provided without any hardware setup. Furthermore, these resources are provided with the failover not only at the hardware level but are also provided on the application level. These services can be accessed through standard platforms. Multi-consumers are pooled through multi-tenant model by computing resources. The consumer has no idea where these resources are coming from, though these resources have elasticity can be scaled out or scale in. Moreover, they can be controlled or accessed worldwide anywhere on the internet. It has multi-tenant sharing, that is multiple tenants will be using one hardware as resources without any interfering each other. Telemetry is also one the characteristics of OpenStack that is used for monitoring and metering purposes not only by the service provider but also by the consumer.

Open stack software manages the large pool of resources such as compute, storage and network, everything through one dashboard. This is made possible through OpenStack API. It is the best

way to reduce the cost. Buying storage devices, building up networks for those devices not only need a large place to set up the system but requires a large capital in contrast with. Open stack solves the whole of the problem, not only ease the way to setup everything but also provides the solution with less effort and no infrastructure.

OpenStack is open source infrastructure that is available for everyone for free. The software consists of all components interrelated with each other as a whole data center. These components can be managed through graphical user interface (dashboard) or through the command line or through a RESTful API.

1.2 OpenStack History

OpenStack idea was built by the idea of AMAZON EC2 services though it was a cloud marketing that is developed for hosting, charging on an hourly basis. The idea behind this cloud infrastructure was work with applications that avoid hardware failure. In 2010 open stack the goal was the same as Amazon, but it was 2016 the idea gone far beyond. Clients were getting the same sort of performance as they built their own compute without any hardware setup.

The main aim of the OpenStack was to make huge Open Source Cloud Computing platform that will fulfill the needs of public and private cloud regardless of the size.

OpenStack project that was started in 2010 by Rackspace Hosting and NASA together, when NASA wanted to create their own cloud known as Nebula. The reason to create Nebula is to provide compute services to different departments with one location under one IT department. On other hands, Rackspace and Slice Host made open source cloud service to keep cloud files. The idea behind this is to combine all the technology and work together. Therefore NASA and Rackspace created a platform known as OpenStack. They took the Storage part from Rackspace and Nova Compute part from NASA, as the code for Nova Compute can scale way larger. Then furthermore companies such as HP, Dell, Redhat, AT&T and Intel also get into contributed further for investment. OpenStack every 6month releases the new version of the previous versions are stated in the following fig.1.1

Series	Status	Initial Release Date	EOL Date
<u>Queens</u>	Future	TBD	TBD
<u>Pike</u>	Future	TBD	TBD
<u>Ocata</u>	Under Development	2017-02-22 (planned)	TBD
<u>Newton</u>	Phase I – Latest release	2016-10-06	TBD
<u>Mitaka</u>	Phase III – Legacy release	2016-04-07	2017-04-10
<u>Liberty</u>	EOL	2015-10-15	2016-11-17
Kilo	EOL	2015-04-30	2016-05-02
<u>Juno</u>	EOL	2014-10-16	2015-12-07
Icehouse	EOL	2014-04-17	2015-07-02
<u>Havana</u>	EOL	2013-10-17	2014-09-30
<u>Grizzly</u>	EOL	2013-04-04	2014-03-29
<u>Folsom</u>	EOL	2012-09-27	2013-11-19
<u>Essex</u>	EOL	2012-04-05	2013-05-06
<u>Diablo</u>	EOL	2011-09-22	2013-05-06
<u>Cactus</u>	Deprecated	2011-04-15	
<u>Bexar</u>	Deprecated	2011-02-03	
Austin	Deprecated	2010-10-21	

Fig.1.1 (OpenStack releases)

OpenStack provides multiple services such as Nova, Swift, Glance, Keystone, Horizon Neutron, Cinder, Ceilometer and Heat are some of the main services that are provided by OpenStack.

1.3 Involvement of Companies in OpenStack

OpenStack is one of the most recognized technology in IT world today. About 8 huge names of industries such as AT&T, Ubuntu, HP, IBM, Intel, Rackspace, Redhat and Suse are platinum members in open stack project. These companies are sponsoring for empowering and promoting OpenStack community and software. Furthermore, there are about 24 gold members who are gold members of in OpenStack project who also take part in the funding of open stack project. As well as provide strategic alignment to the project. Infrastructure donors are also the developers of

OpenStack, they provided resources such as cloud for OpenStack. Corporate Sponsors are the additional support to this project that also helps in sponsoring, empowering and promotions. It was the interest of the companies that open stack was able to release five software in less than two years, with hundreds of contributors. The community meets every six months. During development phase the community collects the OpenStack designs, in order to provide facility to developers in assembling and to work on.

1.4 Compatibility of OpenStack with other Cloud Computing

The open stack was not compatible with every cloud computing APIs. There is some compatibility that is driven by the members of the project. EC2 API that provides compatibility with Amazon EC2 and GCE API project that provides compatibility with GOOGLE Compute service. Amazon EC2 helped users to have their own virtual system to run different other application or web services, whereas GCE API is a part of Google Cloud Platform that helps in running Google search engine and other services by Google. Compatibility with other compute services is one of the plus points of OpenStack.

In Amazon EC2, Google Cloud and Microsoft Azure. OpenStack is one of the more supportive services to work on. Since OpenStack is a platform where all companies are working together, with collaboration. Everything is available and open source. OpenStack is more compatible with. As well as release every six months provides OpenStack improvement, growth and options to do better.

CHAPTER 2 OPENSTACK ARCHITECTURE

2.1 How OpenStack Works

OpenStack provides multiple services such as Nova, Swift, Glance, Keystone, Horizon Neutron, Cinder, Ceilometer and Heat services. These are some of the main services of OpenStack. All these services are interconnected through APIs and play their role accordingly.

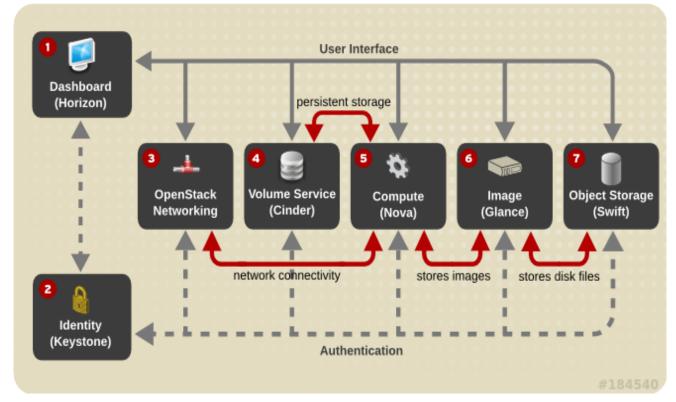


FIG 2.1 (OpenStack Architecture)

2.1.1 *Horizon* is the user interface or dashboard that is used to control every other service. It is the web interface. User access OpenStack services through the web interface. All OpenStack services meet up at the horizon. Every user gets the services according to their authentication. It also keeps information in cache until the service is running. It is the service that interacts all open stack services to other services

2.1.2 *Keystone* is the authentication part, known as identity service as well. It is the username and password that is given to every user, when this authentication is done the keystone provides the token to the user that consist of the services that are been allowed to the user to access, such as Glance, Keystone, and Swift. These all are connected through rest APIs. After passing through Keystone.

2.1.3 *Nova* responds user request into the virtual machine. Nova interacts with many other OpenStack services such as keystone for authentication, for web interfaces it communicates with the horizon and for image glance is there. Nova consists of different layers. Nova API accepts the user request and responds accordingly. It supports Open Stack API, EC-2 API and admin API for privilege administration work. Also initiates orchestration activities, running instance through hypervisor API is one of it. Nova Compute API converts the user request into the virtual machine. It accepts the request from the queue and perform actions accordingly and updating its database, with that there is nova-volume that manages creating, attaching and de-attaching of volumes. Nova network is used for networking task, it accepts the networking tasks such as changing bridging table or changing IP rules this service is replaced by the neutron. Nova scheduler decides what instances should run on which host, after accepting from the queue. A queue is a central place of communication, for all nova services. It works over rabbit MQ functionality. Nova database is used to store built time or runtime state for cloud infrastructure, these can be instance type that can be used and instance type that is used and network types in the projects.

2.1.4 *Swift* is a block storage service by OpenStack. This service is dominated by Rackspace in OpenStack, though this service is little changed due to the emergence of mobile web application and due to the emergence of software define storage, where huge storage are built with the involvement of hardware. Swift is the object storage system, with the combination of redundancy, availability, throughput and capacity. Swift has no delays with the fast transition of data, a large number of reads of storage data with the simultaneous transaction at the same time and can scale up to extremely large scale. Swift does not need high-level hardware. It can be deployed on

commodity hardware and gain high performance. Swift is a distributed system that can easily be scale out, with the contrast of failover without compromising data information. As Nova, it has also consisted of different components. The swift proxy server accepts the received request through OpenStack object API. It accepts the modification, creation or uploads the file request. It also provides files or container listing to the web browser. The proxy server consists of accounting service that is the accounts defined for storage service. The container service is used for mapping of files and folder to the object storage, they have basically defined nodes to where data should go. The object storage manages the object storage that manages actual data files. Moreover for large data it also it runs housekeeping tests as well that can be replication service that can assure the availability, redundancy of the storage service. The proxy is the only part of the swift that deals with the external client as it accepts the requests. Furthermore, it also does external actions such as restore data to the website, data while online game or data retrieving from the backup. These all comes in a form of incoming request, where swifts check the origin of the request. Then responds the request according to the required action allowed for the user. These all request are based on HTTP request where Get, Put, Post, Delete and Head are the main requests in swift storage.

2.1.5 *Glance* is also storage service in OpenStack, but it keeps the images of the virtual disk's storage. It is image service, the main function of the glance is to provide discovery, registration and delivery service to server or disk image. The images those are stored in the service are used as the template, a number of backups can be made from these stored images. These images can be streamed for further more compute instances for the users. Users can create their own image by modifying the existing image. Furthermore this snapshot storage in glance use for quick backup restarting the virtual machine. Glance provide multiple of services such as image uploading, retrieving disk images. Not only this listing and querying virtual disk images and set virtual disks permissions are also included. The Glance service consists of three things glance API, glance registry, and glance database.

The image retrieval and discovery call for image API, all are accepted by glance API. Glanceregistry is to store processes and retrieve metadata about the type or size of the images. Glance database store the metadata images or it can also store in swift storage.

2.1.6 *Cinder* services provide persistence block storage in OpenStack to compute instance. It is responsible for server attaching and de-attaching with block devices. They are logical the volumes, converted from raw volume, mounted on the virtual machines. They are the volumes or snapshot of volumes that can be created or deleted. Clones can be form from these volumes. Computer instances can be attached or detached, but only one instance can be attached at one time. This also works with the glance where we can copy images to the volume. Cinder also allows viewing the statistics of the volume.

2.1.7 Neutron is the network service in open stack. It provides networking between the interface devices managed by other OpenStack services such as nova. It permits the user to get connected to the server. It is very advantageous to the user to get commodity gear or vendor supported equipment through pluggable backend architecture. The extension allows additional network services, software or hardware to be integrated. Routers virtual switches and software defined networking controller are some of the features of the neutron, where router provides the gateway and virtual switches refer to the ports. These are instances or network services connected to the network consisting of mac address and IP address of interfaces plugged into them. Furthermore private and floating IP addresses are the address those are assigned to the instance. The private network that is dedicated to the tenant can only get private IP addresses. This isolates one tenant from another tenant. Neutron services also provide services from layer 1 to layer 3.As well as the load balancer. Neutron consist of the several services, the quantum server accepts API request and then route to the appropriate plugin. Quantum agents are used for plugging in and plugging out the ports. Queuing database helps to keep the record the status of the ports that are plugged in. Neutron manages the network and IP addresses. It makes sure that will not be the bottleneck in the cloud deployment.

2.1.8 *Ceilometer* is the monitoring service that is used to monitor other services that keep's the record of the usage or utilization. Ceilometer can be used for billing as well as alarm purposes both for the service provider as well as for the user. It collects the data by notifications from the services.

It is a part of billing model that consist of metering, rating, and billing.

Metering consist of continuous monitoring threshold, warnings and rate of collection, the central location of the data, and tenant details.

Rating is a process after the monitoring is done and utilization of data and values are achieved. It is a decision how billing is to done, prepaid, postpaid, discount, rate plan everything related with the result of output by monitoring and rating according to what is been monitored.

Billing is the final part where the transaction is decided and is decided how it will be charged with the contrast of service level agreement.

Ceilometer is just a part of the metering model, but it is the most important part. It finds the right query in Ceilometer API to extract the right information you need from monitoring. Metering is the process of gathering information about how much and what can be billed. It aims a point of the billing system to get all measurements they need to establish in customer billing. It not only provides the efficient collection of metering data in terms of CPU and Network but also helps in alarming processes. It allows to meter components directly or changing some of the components. Data can be gathered by monitoring components and service or by pulling infrastructure.

Monitoring is done through three particular aspects of resource usage Cumulative, Delta, and Gauge. Cumulative is monotonically increasing, whereas delta in interpreted as change from previous value and gauge standalone value relating only to the current duration

2.1.9 *Heat* is the main orchestration project. Orchestration engine launches multiple cloud applications and that orchestration engine is implemented by Heat. This application acts as code in text files. Heat provides native rest API as well and clouds information compatible query API. The orchestration is for infrastructure. Heat also provides compatibility with AWS API in template

format. The orchestration is for infrastructure essentially what configuration management is for the software application. Heat is a declarative model that represents the infrastructure sources and relationship between them directly. Heat then perform a sequence of action to bring reality in line with your model. The model takes the form of heat template and the resulting template of infrastructure template is known as the stack. Orchestration allows you to allow you infrastructure as code. Therefore you can save your templates as version controlled system such as get to track changes, you update the stack with new template changes and then heat performs the necessary actions. Heat actually sits between the user and core API services. We can also interact with heat through the dashboard. The heat template describes the structure in the text file for the cloud. It is a readable and writable file. The infrastructure resources that can be described include servers, floating IPs, volumes, security groups, and users.

Heat is also integrated with ceilometer for auto-scaling services. Relationships between resources specify templates. This lets heat to interact with OpenStack API. Heat manages whole application processes. Changing the template and updating it on the stack, heat knows how to manage those changes. It also deletes all the resources when you are finished with the application.

Chapter 3 Basic Implementation of OpenStack

3.1 Basic Installation

In this project Open stack was installed through pack stack that is a repository module, help to implement various parts of OpenStack. It represents a utility which facilitates the deployment on multiple nodes for different components of **OpenStack** via **SSH**. This requires multiple preinstalled servers. In our case it is CentOS. There are two ways to work with packsack. As follows. **Packstack Interactively:** Interactive way is the user commands are run at same time as he gives the command. The user enters the command

Packstack Non-Interactively: the Non-Interactive way is the way when the user updates the file known as answer file. Enables and customize the options in the answer file, that customize file is run for OpenStack.

In this project, Non interactive is used to install pack stack. Answer file will be applied on our controller node, as all service will work in controller node. The answer file is a file that pack stack takes in order to take decisions that we put in the script that we want to setup in OpenStack. Services will be enabled such as Glance, Cinder, Nova, Horizon, Swift, Ceilometer, and Heat as shown in FIG 3.1 and FIG 3.2

Specify 'y' to install OpenStack Image Service (glance). ['y', 'n'] CONFIG GLANCE INSTALL=Y # Specify 'y' to install OpenStack Block Storage (cinder). ['y', 'n'] CONFIG_CINDER_INSTALL=y # Specify 'y' to install OpenStack Shared File System (manila). ['y', 'n'] CONFIG MANILA INSTALL=n # Specify 'y' to install OpenStack Compute (nova). ['y', 'n'] CONFIG_NOVA_INSTALL=y # Specify 'y' to install OpenStack Networking (neutron); otherwise, # Compute Networking (nova) will be used. ['y', 'n'] CONFIG NEUTRON INSTALL=Y # Specify 'y' to install OpenStack Dashboard (horizon). ['y', 'n'] CONFIG HORIZON INSTALL=y # Specify 'y' to install OpenStack Object Storage (swift). ['y', 'n'] CONFIG_SWIFT_INSTALL=Y # Specify 'y' to install OpenStack Metering (ceilometer). ['y', 'n'] CONFIG_CEILOMETER_INSTALL=Y

FIG.3.1 (Answer File with services)

CONFIG_SAHARA_INSTALL=y # Specify 'y' to install OpenStack Orchestration (heat). ['y', 'n'] CONFIG_HEAT_INSTALL=y

FIG.3.2 (Answer File with heat services enabled)

Answer file also consists of IP addresses of the three main nodes, Compute, Controller, and Neutron. Compute node, in this project the three nodes are on one single node as shown in FIG.3.3. All these nodes should be interconnected.

Server on which to install OpenStack services specific to the # controller role (for example, API servers or dashboard). CONFIG_CONTROLLER_HOST=10.3.34.175 # List the servers on which to install the Compute service. CONFIG_COMPUTE_HOSTS=10.3.34.175 # List of servers on which to install the network service such as # Compute networking (nova network) or OpenStack Networking (neutron). CONFIG_NETWORK_HOSTS=10.3.34.175 # Specify 'y' if you want to use VMware vCenter as hypervisor and # storage; otherwise, specify 'n'. ['y', 'n']

FIG.3.3(Answer File with all IP address)

Moreover, the answer file also consists of keystone authentication user and password in plain text as well as the token that is discussed in the previous chapter as well. This token allows the user to the services that user is allowed to get access.

After Answer file is modified the file is run through pack stack through the following in FIG3.4

[root@devstack1 ~]# packstack --answer-file=answer.txt

FIG.3.4 (Run Answer File over pack stack)

Then access the dashboard through GUI as it is successfully installed after as shown in FIG 3.5

	Openstack DASHBOARD	
Log in		
User Name		
admin		
Password		
•••••		
		۲
		Connect

FIG.3.5 (User Authentication by open stack (Keystone))

As discussed before keystone plays the authentication role, known as identity service as well. It ask for username and password when this authentication is done the keystone provides the token to the user that consist of the services that are been allowed to the user to access

3.2 Implantation Projects and Other services

\leftrightarrow \rightarrow C \bigcirc 10).3.34.175/dash	board/i	dentity/						☆ ()
🧧 openstack	🔳 admin 🔻								🛓 admin
Project	>	Ider	ntity / Projects						
Admin	>	1401	mj						
Identity	•	Pr	ojects						
	Projects				Derivet Name and		F :H-+	A Crusta Davis	at Andrea Datat
	Users				Project Name = •		Filter	+ Create Proje	t Delete Projects
	Groups		Name	Descri	iption	Project ID	Domai Name	in Enabled	Actions
	Roles	0	6e409f0c705c45b097c463ba01e596a9-a68fad41-5cc6-4a24- 816e-8bc4e62	Heat s	tack user project	46ea51e7be8c4c83b0a03e635acfe5c	3 -	Yes	Manage Members 🔻
		0	admin	admin	tenant	6e409f0c705c45b097c463ba01e596a	9 Default	t Yes	Manage Members 🔹
		٥	demo	default	t tenant	7f38679f6b7f417c8ba4d6ae5b3430de	Default	t Yes	Manage Members 🗸
		0	services	Tenant service	t for the openstack es	b84a748e225a49b0ad0c916611b1c72	7 Default	t Yes	Manage Members 🔻
		Disp	laying 4 items						

FIG.3.6 (Different projects of OpenStack)

After getting access we can see different projects. OpenStack can deal with different project at a time. Every project has different members as shown is FIG 3.7.A member can be a part of two

different projects.

Project Information *	Project Members	Project	t Groups Quota *			- 1
All Users	Filter	Q	Project Members	Filter	a	Л
admin		+	neutron	admin 🛩	-	^
demo		+	heat	admin 🗸	-	
			gnocchi	admin 🚽	-	
			aodh	admin 🚽	-	
			nova	admin 👻	-	11
			glance	admin 🚽	-	
			trove	admin 👻	-	
				Cancel		ve

FIG.3.7 (Project Members)

The cinder volume is the block storage that is provided to the user related to different projects. This is a logical storage to every user that can be attached or detached to the user. This memory can be reused for another user as user finished his work and memory is deleted. The user can be given different memory chunk according to the use.

Vol	umes	Volume Types Volum	e Snapshots							
				Volume N	lame = 🔻			Filter	+ Manage V	olume 👔 Delete Volumes
	Project	Host	Name	Size	Status	Туре	Attached To	Bootable	Encrypted	Actions
	admin	devstack1.lab@lvm#lvm	e827291c-e9e6-4c7d-8ba7 b6f2a80132	-2b 1Gie	In-use	iscsi	Attached to test-3 on /d ev/vda	Yes	No	Update Volume Status 🔻
	admin	devstack1.lab@lvm#lvm	1cc9b1a9-bc40-46bf-a6fe-e d29fea525	e ^{9b} 1GiE	In-use	iscsi	Attached to test-2 on /d ev/vda	Yes	No	Update Volume Status 💌
	admin	devstack1.lab@lvm#lvm	cba3db13-ddd0-479a-8228 d689cdfe8f	- <mark>1c</mark> 1GiE	In-use	iscsi	Attached to test1 on /d ev/vda	Yes	No	Update Volume Status 💌
	admin	devstack1.lab@lvm#lvm	bc6a66a9-b436-48b7-b19b 815d829f0c	- ^{9a} 1GiE	Available	e iscsi		Yes	No	Delete Volume
	admin	devstack1.lab@lvm#lvm	ed9114ec-fb34-42cc-8f92-4 c772609ca	139 1Gie	Available	e iscsi		Yes	No	Delete Volume
	admin	devstack1.lab@lvm#lvm	bf4851b2-854b-4a7b-807e- e4a8a6d21	ac 5 1GiE	Available	e iscsi		Yes	No	Delete Volume
	admin	devstack1.lab@lvm#lvm	41ea177f-4bdb-4cc1-b41e- 42333d5ce	fce 1GiE	In-use	iscsi	Attached to cirros-test on /dev/vda	Yes	No	Update Volume Status 💌

FIG.3.8 (OpenStack Volumes attached to different users)

As in FIG.3.8 different volumes are attached to different users for the project "admin", their IDs are showing as their name with size of their volume, with the contrast of their instances those are attached to.

The next service will be glance service in OpenStack picture. Glance is the storage service that is responsible for keeping images for different instances. All the instances will run through the image file that will be stored in Glance. There can be more than one image but in our scenario its just one image as shown in FIG.3.9

Images

Q	Click here for filter	rs.					×	+ Create Image	î Delete Images
	Owner	Name 📤	Туре	Status	Visibility	Protected	Disk Format	Size	
	> services	cirros	Image	Active	Public	No	QCOW2	12.67 MB	Launch 💌

Displaving 1 item

FIG.3.9 (Openstack Glance service)

3.3 Networks and Router

The network is the neutron service of the OpenStack that provides the interfaces for different user and services to connect with each other. Since OpenStack deals with cloud computing with private and public cloud, therefore there will be a big role to play for NATing. As shown in FIG 3.10. OpenStack not only provides compute and data storage service but also understands the role of networks to connect these services. In the following FIG it clearly shows the instances those are connected to a private cloud, on one side of the router with all private IP addresses, will be nated on the other side of the router through public cloud.

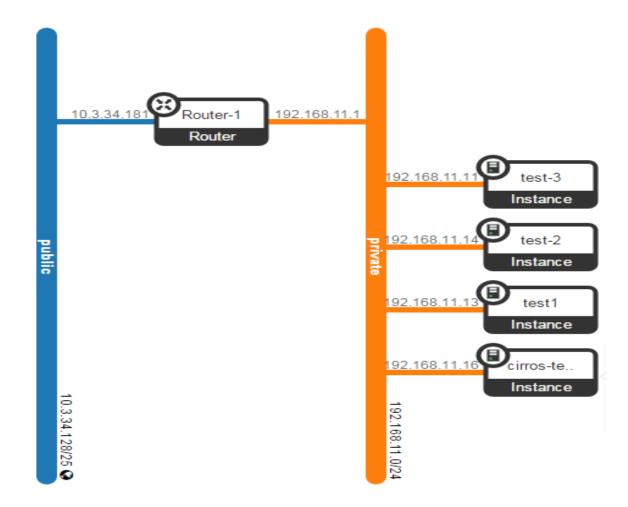


FIG.3.10 (OpenStack Network)

In other words, these private instances can also be accessed through external network. In this unit, this will be explained further.

Networks

			Project = 🔻			Filter	+ Create Network	💼 Delete Networks
Project	Network Name	Subnets Associated	DHCP Agents	Shared	External	Status	Admin State	Actions
admin	public	• public_subnet 10.3.34.128/25	1	Yes	Yes	Active	UP	Edit Network 💌
admin	private	• private-subnet 192.168.11.0/24	1	No	No	Active	UP	Edit Network 💌

Displaying 2 items

FIG.3.11 (OpenStack Network)

As shown in FIG.3.11 private and public IP addresses are shown that will be used for nating. Furthermore, router is also available is OpenStack networking services that not only help in nating but also manages the external and internal networks of OpenStack services.

🗆 Name	Status	External Network	Admin State	Project	Actions
Router-1	Active	public	UP	admin	Edit Router 🔻

Displaying 1 item

FIG.3.12 (Openstack Router)

Unlike other vendor routers, it does not need so much of command configuration, which is the best part of OpenStack router. It is capable of doing all basic required routing functions. These all capabilities plays great role in OpenStack. As shown in FIG.3.13, FIG.3.14 and FIG.3.15 some of the routing capabilities.

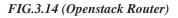

Route	er-1						Edit Router 💌
Overview	Interfaces	Static Routes				+ Add Interface	Delete Interfaces
Name		Fixed IPs	Status	Туре	Admin		Actions
C (76ebf	41d-b22a)	• 192.168.11.1	Active	Internal Interface	UP		Delete Interface
C (8bdb)	1406-c751)	• 10.3.34.181	Build	External Gateway	UP		Delete Interface
Displaying 2	items						

FIG.3.13 (Openstack Router)

In the FIG.3.13 you can easily identify the router ports, where the ports are assigned with the IP addresses, these are the IP addresses from the private and public cloud as shown in FIG.3.4. Moreover, this clarifies that NATing has done by the router, where one port is towards external gateway of the network. This is towards the internet in our scenario. The port is defined on internal or private network.

Router-1

Overview	Interfaces	Static Routes	
	Name	Router-1	
	ID	b84ba150-7e2a-47bf-b59c-c46d21	6e2fcc
	Description		
	Project ID	6e409f0c705c45b097c463ba01e5	96a9
	Status	Active	
	Admin State	UP	
	L3 Agent	Host	ID
		devstack1.lab	0f6e1505-cc36-4607-8829-dc6856b80057
Availa	bility Zones	• nova	
External Ga	ateway		
	etwork Name Network ID aal Fixed IPs SNAT	public 5a52f368-e1c9-4302-be62-3672ec • Subnet ID c4f70175-8d42- • IP Address 10.3.34.181 Enabled	

Public IP addresses are defined as floating IP for the project that needs to be accessed from external network. In the given FIG 3.15 following floating public IP addresses are shown that are for the admin projects, where instances are also defined with their tagged names, as well as their status.

				Filter	Q % Allo	cate IP To Project	S Release Floating IPs
	Project	IP Address	Mapped Fixed IP Address		Pool	Status	Actions
0	admin	10.3.34.186	test1 192.168.11.13		public	Active	Disassociate 💌
	admin	10.3.34.183	test-3 192.168.11.11		public	Active	Disassociate 💌
D	admin	10.3.34.182	cirros-test 192.168.11.16		public	Active	Disassociate 💌
	admin	10.3.34.184	test-2 192.168.11.14		public	Active	Disassociate 💌
Displ	aying 4 items						

Floating IPs

FIG.3.15 (Floating IP addresses)

For any network it very important to have systematic way of deployments and organize the way of understanding the deployment of any network. This cannot be possible without a graphical representation of network topology diagram as shown in FIG.3.16, as well as in FIG.3.10 in the beginning.

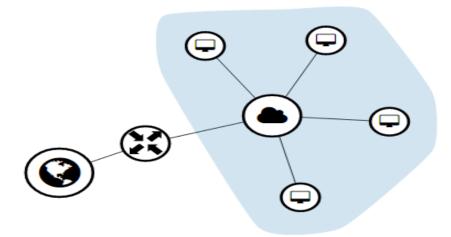


FIG.3.16 (Floating IP addresses)

Chapter 4 Ceilometer Services

4.1 Implementation of Ceilometer

Ceilometer it the service by OpenStack is used to monitor different parameters for different instances, this monitoring can be for metering purposes as well as for alarm purpose as well. The given outputs are the monitoring result for four different tenants created on OpenStack network. The reason behind these outputs is to measure different parameters such as the volume, memory size and number if instances used by the tenant in one project. As mentioned before as in FIG 3.11 in the previous chapter there are 3 instances, outputs are taken for every single instance. Ceilometer monitors and displays every detail separately. Every instance has separate ID and name with their status as shown in FIG 4.1, through which it is identified and is metered accordingly through ceilometer process.

+				+
	ID		Name	
+		+ -		+
1	8456545d-2a14-44d0-b7bf-5a4717a1e852		cirros-test	
	5dd090d0-bffe-4988-8dfe-b9d8105122fe		test-2	
	9b02fbea-ca5b-4abf-bdbb-aae779f78c35		test-3	
	40868588-d52a-4833-956d-fe469a1b31f3	l	test1	

In the metering process, there are four separate outputs for four different instances. Every data is taken out for 60 min of the time period in a duration that is starting period to end the period in

FIG.4.1 (Instance ID)

duration that is shown in the output which is defined in pipeline file known as pipeline.yaml file.

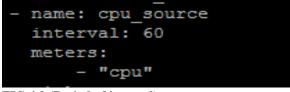


FIG.4.2 (Period of interval)

4.2 Expected outputs of Ceilometer

The data will be drawn for an hour and then statistics are taken out. The count tells how many times it is attempted to collect data during this time period. As shown in the output in FIG 4.3, FIG 4.4 and FIG 4.5 and FIG.4.6 the count were 3 in the first hour period. In the next hour period, the count is increased to 53 and later increased at 66 and become stable with 66.It also shows the maximum, minimum and average CPU utilization during that period of time.As shown in the output it is also showing the duration, which is in hour that means period and duration both are the same.

₽ root@devstack1:~	-		_		
Briteria					-
+	•	·+			
Period Period S				I Ma	~
Min		I Sum	L Count	Duration	Duration
	Duration End		1	barabron	Daraoron
++				+	
+	+	+	+	-++	
	- 		-+		
3600 2017-02-	14T03:33:09.6700	00 2017-02	-14T04:33:0	9.670000 5.	506315373
42 5.18264475851	5.31534937889	15.9460481	367 3	1200.032	2017-02-
14T04:07:11.881000					
3600 2017-02-3	17T05:33:09.6700	000 2017-02	-17T06:33:0	9.670000 23	.50124805
01 4.73319112232	5.44715209878	288.699061	236 53	2820.066	2017-02-
17T05:45:19.601000	2017-02-17T06:	32:19.667000			
3600 2017-02-3	17T06:33:09.6700	000 2017-02	-17T07:33:0	9.670000 5.	625040852
49 4.68289477308	5.0847980642	335.596672	237 66	3540.288	2017-02-
17T06:33:19.660000	2017-02-17T07:	32:19.948000			
3600 2017-02-3					
16 4.73974985716	5.14717678179	339.713667	598 66	3540.792	2017-02-
17T07:33:19.942000					
3600 2017-02-3					
02 4.76620648943				3540.566	2017-02-
17T08:33:20.256000					
3600 2017-02-					
87 4.74825185194				3540.154	2017-02-
17T09:33:20.924000					
3600 2017-02-					
27 4.70568077626				3540.197	2017-02-
17T10:33:20.992000				0 670000 1 5	C00C0010C
3600 2017-02-: 8 4.7751316468					
17T11:33:21.266000				3540.226	2017-02-
3600 2017-02-				9 670000 1 5	636979911
24 4.74216665202					
17T12:33:21.393000				1 00101012	2017 02
3600 2017-02-3				9.670000 1 5.	640755721
75 4.74359069743					
17T13:33:21.890000					
3600 2017-02-3				9.670000 5.	670420458
		, 101, 01			0100

FIG.4.3 (CPU utilization statistics for Cirros Test)

root@devs	tack1:~							-	
root@devs	stack1 ~(keystone_admin)]# cei	lometer statistics -m cpu_ut:	il -p 3600 -q re:	source_id=408685	88-d52a-4833-956	d-fe469a1b31f3			
			+		+	+	+	+	
Period	Period Start	Period End	Max	Min	Avg	Sum	Count	Duration	Duration Star
	Duration End								
			+	+		+		++	
3600 1	2017-02-20T21:33:09.670000	-+ 2017-02-20T22:33:09 670000	41 5675839622	4 30002023447	1 7 87774185623	1 110 288385987	1 14	1 720 023	2017-02-20T22
	2017-02-20121:33:05:070000		11.00/0000022	1.0000202011/	1 1.0///1103023	1 110.200303507	1 - 1	1 /20.020	2017 02 20122
	2017-02-20T22:33:09.670000		5.78311906877	5.04361041808	5.48322993972	361.893176022	66	3540.076	2017-02-20T22
	0 2017-02-20T23:32:45.667000								
	2017-02-20T23:33:09.670000		5.6727170325	5.21826593109	5.43955930969	359.01091444	66	3540.091	2017-02-20T23
	2017-02-21T00:32:45.774000 2017-02-21T00:33:09.670000			4 00000411001				1 2540 114	2017-02-21T00
	2017-02-21100:33:09.670000 0 2017-02-21T01:32:45.881000		5.2012/290210	4.90020411091	5.3942025311	356.01/36/052	1 00	3540.114	2017-02-21100
	2017-02-21T01:33:09.670000		5.64933034146	5.19337308283	5.44010977597	359.047245214	1 66	3540.086	2017-02-21T01
	0 2017-02-21T02:32:46.051000								
3600	2017-02-21T02:33:09.670000	2017-02-21T03:33:09.670000	5.73341704122	4.96504353796	5.40542744659	356.758211475	66	3540.061	2017-02-21T02
	0 2017-02-21T03:32:46.012000								
	2017-02-21T03:33:09.670000		5.58369310929	5.07330409738	5.38698253832	355.540847529	66	3539.794	2017-02-21T03
	2017-02-21T04:32:46.168000 2017-02-21T04:33:09.670000		5 66612979006	4 66786431423	1 5 4067231057	1 356 843724976	66	1 3540 17	2017-02-21T04
	2017-02-21T05:32:46.324000		0.000120/0000	1.00/00131123	1 3.100/23103/	000.010/210/0	1 00	1 3310.17	2017 02 21101
	2017-02-21T05:33:09.670000		5.65826565105	5.22519422247	5.45665526725	360.139247639	66	3540.409	2017-02-21T05
6.228000	0 2017-02-21T06:32:46.637000								
	2017-02-21T06:33:09.670000		5.5835574201	5.15956926147	5.40355159381	356.634405191	66	3540.077	2017-02-21T06
	0 2017-02-21T07:32:46.376000								
	2017-02-21T07:33:09.670000 0 2017-02-21T08:32:46.446000		5.66600997611	5.08990335448	5.38708537381	355.547634671	66	3539.971	2017-02-21T0
	2017-02-21108:32:46.446000		1 5 55728797091	5 118454566	1 5 38917653467	1 355 685651288	1 66	1 3540 731	2017-02-21T08
) 2017-02-21T09:32:47.175000		0.00120101001	0.1101010000	1 010001/00010/	1 333.003031200	1 00	0010.701	2017 02 21100
	2017-02-21T09:33:09.670000		5.65028053643	4.8413131033	5.37638132817	354.841167659	66	3540.086	2017-02-21T0
6.524000	0 2017-02-21T10:32:46.610000								
	2017-02-21T10:33:09.670000		5.64157802949	4.90249136185	5.40719998064	356.875198722	66	3540.058	2017-02-21T10
	0 2017-02-21T11:32:46.673000								
	2017-02-21T11:33:09.670000 2017-02-21T12:32:46.861000		5.77598930594	5.0912372512	5.44143899303	359.1349/354	00	3540.18	2017-02-21T1
	2017-02-21T12:33:09.670000		5.56022320201	5.06226237568	1 5.40463696711	1 356.70603983	1 66	1 3540,124	2017-02-21T12
	0 2017-02-21T13:32:46.898000			0000					
3600	2017-02-21T13:33:09.670000	2017-02-21T14:33:09.670000	5.8392405181	5.16759399449	5.40217464741	356.543526729	66	3540.052	2017-02-21T13
	0 2017-02-21T14:32:46.965000								
	2017-02-21T14:33:09.670000		5.64407847051	5.07667348311	5.35009353911	353.106173581	66	3540.087	2017-02-21T14
	0 2017-02-21T15:32:47.070000		C 50707545495	4 00140024702	L E 41020422765	1 257 672762225	1.66	1 2540 000	2017 02 2171
0000	2017-02-21T15:33:09.670000	2017-02-21116:33:09.670000	0.50/0/545435	4.90148024703	3.41928427765	357.672762325	1 00	3540.099	2017-02-21T15

FIG.4.4 (CPU utilization statistics for Test-1)

- 0 X

FIG.4.6 (CPU utilization statistics for Test-3)

ot@devstack1:~		-			-		_	
								+[
riod Period Start	Period End	Max	Min	Avg	Sum	Count	Duration	Duration Start
Duration End								
+	++							+
0 2017-02-20T21:33:09	.670000 2017-02-20T22:33:09.0	70000 24.399607573	4.95918230303	1 7.06260079822	1 77.6886087804	11	1 539.286	2017-02-20T22:23
64000 2017-02-20T22:32:								
0 2017-02-20T22:33:09	.670000 2017-02-20T23:33:09.0	70000 5.83771471513	5.06213062266	5.45030571439	359.72017715	66	3540.076	2017-02-20T22:33
91000 2017-02-20T23:32	45.667000							
	.670000 2017-02-21T00:33:09.0	70000 5.64637544751	5.02489801072	5.42553766486	358.085485881	66	3540.091	2017-02-20T23:33
83000 2017-02-21T00:32								
	.670000 2017-02-21T01:33:09.6	70000 5.6138629164	5.06709744558	5.37975230273	355.06365198	66	3540.114	2017-02-21T00:33
67000 2017-02-21T01:32	.670000 2017-02-21T02:33:09.6	70000 1 5 57725638928	1 5 04911271942	1 5 40503862436	1 356 732549208	1 66	1 3540 086	2017-02-21T01:33
65000 2017-02-21T02:32		10000 3.3/123030320	1 0.010112/1012	1 3.10303002130	1 330.732313200		1 3310.000	2017-02-21101.00
	.670000 2017-02-21T03:33:09.6	70000 5.65908462286	1 5.19017216368	1 5.40576907657	1 356.780759054	1 66	3540.061	2017-02-21T02:33
51000 2017-02-21T03:32								
0 2017-02-21T03:33:09	.670000 2017-02-21T04:33:09.6	70000 5.56719212658	5.13520970472	5.38706343222	355.546186527	66	3539.794	2017-02-21T03:33
74000 2017-02-21T04:32	46.168000							
0 2017-02-21T04:33:09	.670000 2017-02-21T05:33:09.6	70000 5.6747799942	4.74079969414	5.36596798536	354.153887034	66	3540.17	2017-02-21T04:33
54000 2017-02-21T05:32								
	.670000 2017-02-21T06:33:09.6	70000 5.63230402977	5.16435333148	5.42756231226	358.219112609	66	3540.409	2017-02-21T05:33
228000 2017-02-21T06:32								
99000 2017-02-21106:33:05	.670000 2017-02-21T07:33:09.6	5/0000 5.62436501628	4.95/60193212	5.36958323288	354.39249337	00	3540.077	2017-02-21T06:33
	.670000 2017-02-21T08:33:09.6	70000 1 5 65574732896	1 5 00216038022	1 5 36373579281	1 354 006562326	1 66	1 3530 071	2017-02-21T07:33
75000 2017-02-21T08:32		100000 0100011102050	0.05210500522	1 01000/00/0201	1 0011000002020		00001071	1 201/ 02 2110/100
	.670000 2017-02-21T09:33:09.6	70000 5.56669737628	I 5.15740663763	1 5.37636697832	1 354.840220569	1 66	3540.731	2017-02-21T08:33
44000 2017-02-21T09:32								
0 2017-02-21T09:33:09	.670000 2017-02-21T10:33:09.0	70000 5.61694554801	4.8413131033	5.36405577326	354.027681035	66	3540.086	2017-02-21T09:33
24000 2017-02-21T10:32	46.610000							
	.670000 2017-02-21T11:33:09.0	70000 5.59299116221	4.96339155112	5.38660300194	355.515798128	66	3540.058	2017-02-21T10:33
15000 2017-02-21T11:32								
	.670000 2017-02-21T12:33:09.6	70000 5.66768089816	5.19924359671	5.41778678919	357.573928087	66	3540.18	2017-02-21T11:33
B1000 2017-02-21T12:32		20000 1 5 50200010214	1 5 10074140710	1 5 2001501 0012	1 255 610420162		1 2540 124	
74000 2017-02-21112:33:09	46 898000 2017-02-21T13:33:09.0	10000 5.50/00812/14	1 3.130/4142/19	1 3:30013010912	1 333.010439162	00	1 3340.124	2017-02-21T12:33
	.670000 2017-02-21T14:33:09.0	70000 L 5.68474220194	I 4.89132320534	1 5.37591526056	1 354,810407197	1 66	1 3540.052	2017-02-21T13:33
13000 2017-02-21T14:32		0100111220194		,	, 101101010/10/		, 00101002	,, of fire
	.670000 2017-02-21T15:33:09.6	70000 5.57452544682	5.03342691186	5.33050876092	351.81357822	66	3540.087	2017-02-21T14:33
83000 2017-02-21T15:32								
0 2017-02-21T15:33:09	.670000 2017-02-21T16:33:09.0	70000 6.33985522334	4.82517345915	5.38050777274	355.113513001	66	3540.099	2017-02-21T15:33
62000 2017-02-21T16:32	47.161000							

2017-02-20T23:32:45.667000							
2017-02-20T23:33:09.670000	2017-02-21T00:33:09.670000	5.64637544751	5.02489801072	5.42553766486	358.085485881 66	3540.091	2017-02-20T23:33
2017-02-21T00:32:45.774000							
2017-02-21T00:33:09.670000	2017-02-21T01:33:09.670000	5.6138629164	5.06709744558	5.37975230273	355.06365198 66	3540.114	2017-02-21T00:33
2017-02-21T01:32:45.881000							
2017-02-21T01:33:09.670000	2017-02-21T02:33:09.670000	5.57725638928	5.04911271942	5.40503862436	356.732549208 66	3540.086	2017-02-21T01:33
2017-02-21T02:32:46.051000							
2017-02-21T02:33:09.670000	2017-02-21T03:33:09.670000	5.65908462286	5.19017216368	5.40576907657	356.780759054 66	3540.061	2017-02-21T02:33
2017-02-21T03:32:46.012000							
2017-02-21T03:33:09.670000	2017-02-21T04:33:09.670000	5.56719212658	5.13520970472	5.38706343222	355.546186527 66	3539.794	2017-02-21T03:33
2017-02-21T04:32:46.168000							
2017-02-21T04:33:09.670000	2017-02-21T05:33:09.670000	5.6747799942	4.74079969414	5.36596798536	354.153887034 66	3540.17	2017-02-21T04:33
2017-02-21T05:32:46.324000							
2017-02-21T05:33:09.670000	2017-02-21T06:33:09.670000	5.63230402977	5.16435333148	5.42756231226	358.219112609 66	3540.409	2017-02-21T05:33
	2017-02-20T23:33:09.670000 2017-02-21T00:33:45.774000 2017-02-21T00:33:09.670000 2017-02-21T01:32:45.881000 2017-02-21T01:32:45.881000 2017-02-21T02:32:46.051000 2017-02-21T02:33:09.670000 2017-02-21T03:33:09.670000 2017-02-21T04:33:09.670000 2017-02-21T04:33:09.670000 2017-02-21T04:33:09.670000 2017-02-21T05:32:46.324000	2017-02-21T00:32:45.774000 2017-02-21T00:33:09.670000 2017-02-21T01:33:09.670000 2017-02-21T01:32:45.881000 2017-02-21T01:33:09.670000 2017-02-21T02:33:09.670000 2017-02-21T02:33:09.670000 2017-02-21T03:33:09.670000 2017-02-21T03:33:09.670000 2017-02-21T04:33:09.670000 2017-02-21T04:33:09.670000 2017-02-21T04:33:09.670000 2017-02-21T04:33:09.670000 2017-02-21T05:33:09.670000 2017-02-21T04:33:09.670000 2017-02-21T05:33:09.670000 2017-02-21T04:33:09.670000 2017-02-21T05:33:09.670000 2017-02-21T05:32:46.324000	2017-02-20T23:33:09.670000 2017-02-21T00:33:09.670000 5.64637544751 2017-02-21T00:32:45.774000 2017-02-21T00:33:09.670000 2017-02-21T01:33:09.670000 5.6138629164 2017-02-21T01:32:45.881000 2017-02-21T01:33:09.670000 2017-02-21T02:33:09.670000 5.57725638928 2017-02-21T02:32:46.051000 2017-02-21T02:33:09.670000 2017-02-21T03:33:09.670000 5.65908462286 2017-02-21T03:33:09.670000 2017-02-21T03:33:09.670000 5.65908462286 2017-02-21T03:33:09.670000 2017-02-21T04:33:09.670000 5.56719212658 2017-02-21T04:33:09.670000 2017-02-21T04:33:09.670000 5.56719212658 2017-02-21T04:33:09.670000 2017-02-21T05:33:09.670000 5.6747799942 2017-02-21T05:32:46.324000	2017-02-20T23:33:09.670000 2017-02-21T00:33:09.670000 5.64637544751 5.02489801072 2017-02-21T00:32:45.774000 2017-02-21T00:33:09.670000 2017-02-21T01:33:09.670000 5.6138629164 5.06709744558 2017-02-21T01:33:09.670000 2017-02-21T02:33:09.670000 5.57725638928 5.04911271942 2017-02-21T02:33:09.670000 2017-02-21T03:33:09.670000 5.65908462286 5.19017216368 2017-02-21T02:33:46.012000 2017-02-21T03:33:09.670000 2017-02-21T04:33:09.670000 5.56719212658 5.13520970472 2017-02-21T04:33:09.670000 2017-02-21T05:33:09.670000 5.6747799942 4.74079969414 2017-02-21T05:32:46.324000	2017-02-20123:33:09.670000 2017-02-21T00:33:09.670000 5.64637544751 5.02489801072 5.42553766486 2017-02-21T00:32:45.774000 2017-02-21T00:33:09.670000 2017-02-21T01:33:09.670000 5.6138629164 5.06709744558 5.37975230273 2017-02-21T01:32:45.881000 2017-02-21T01:32:45.881000 2017-02-21T02:33:09.670000 5.57725638928 5.04911271942 5.40503862436 2017-02-21T02:32:46.051000 2017-02-21T02:32:46.051000 2017-02-21T03:33:09.670000 5.65908462286 5.19017216368 5.40576907657 2017-02-21T03:32:46.012000 2017-02-21T03:33:09.670000 2017-02-21T04:33:09.670000 5.56719212658 5.13520970472 5.38706343222 2017-02-21T04:33:09.670000 2017-02-21T05:33:09.670000 5.6747799942 4.74079969414 5.36596798536 2017-02-21T05:32:46.324000	2017-02-20123:33:09.670000 2017-02-21T00:33:09.670000 5.64637544751 5.02489801072 5.42553766486 358.085485881 66 2017-02-21T00:32:45.774000 2017-02-21T00:33:09.670000 2017-02-21T01:33:09.670000 5.6138629164 5.06709744558 5.37975230273 355.06365198 66 2017-02-21T01:32:45.881000 2017-02-21T01:33:09.670000 2017-02-21T02:33:09.670000 5.57725638928 5.04911271942 5.40503862436 356.732549208 66 2017-02-21T02:33:09.670000 2017-02-21T02:33:09.670000 5.57725638928 5.04911271942 5.40503862436 356.732549208 66 2017-02-21T02:33:09.670000 2017-02-21T03:33:09.670000 5.65908462286 5.19017216368 5.40576907657 356.780759054 66 2017-02-21T03:33:09.670000 2017-02-21T03:33:09.670000 5.56719212658 5.13520970472 5.38706343222 355.546186527 66 2017-02-21T04:33:09.670000 2017-02-21T05:33:09.670000 5.6747799942 4.74079969414 5.36596798536 354.153887034 66	2017-02-20723:33:09.670000 2017-02-21T00:33:09.670000 5.64637544751 5.02489801072 5.42553766486 358.085485881 66 3540.091 2017-02-21T00:32:45.774000 2017-02-21T00:33:09.670000 2017-02-21T01:33:09.670000 5.6138629164 5.06709744558 5.37975230273 355.06365198 66 3540.114 2017-02-21T01:32:45.881000 2017-02-21T01:33:09.670000 2017-02-21T02:33:09.670000 5.57725638928 5.04911271942 5.40503862436 356.732549208 66 3540.086 2017-02-21T02:32:46.051000 2017-02-21T03:33:09.670000 5.65908462286 5.19017216368 5.40576907657 356.780759054 66 3540.061 2017-02-21T03:33:09.670000 2017-02-21T03:33:09.670000 5.56719212658 5.19520970472 5.38706343222 355.546186527 66 3539.794 2017-02-21T04:33:09.670000 2017-02-21T04:33:09.670000 5.6747799942 4.74079969414 5.36596798536 354.153887034 66 3540.17 2017-02-21T04:33:46.324000

| 3600 | 2017-02-20T21:33:09.670000 | 2017-02-20T22:33:09.670000 | 24.399607573 | 4.95918230303 | 7.06260079822 | 77.6886087804 | 11 | 539.286 | 2017-02-20T22:23 :46.264000 | 2017-02-20T22:32:45.550000 |

| Avg

FIG.4.5 (CPU utilization statistics for Test-2)

🖗 root@devstack1:~

| Duration End

A sample list is also one of the ways to get the information about a different instance in ceilometer. The statistics show us the time period and time duration of the instance with the contrast of max, min, and an average of any perimeter. It also includes the number of the counts attempted to get the information. On other page sample list also tells about the total usage of the resource that is been used, as well as the type of metering the perimeter is, that can be Cumulative, Delta and Gauge as discussed before. Moreover, it also manages to give the system Id of the instance and the time stamp. These are some of the obvious fields that are shown in sample-list. The monitoring parameters may get change, with their units. These are defined by ceilometer in sample-list command. As shown in Fig.4.7, Fig.4.8, Fig.4.9 and Fig.4.10.

In the first group of outputs, CPU utilization is shown in form of percentage. The metering type is gauge that is discrete values and may change

+	+ Name	+	Volume	+ Unit	++ Timestamp
+	+	+		+	++
40868588-d52a-4833-956d-fe469a1b31f3	cpu util	gauge	5.76641803794	8	2017-02-25T21:12:57.236000
40868588-d52a-4833-956d-fe469a1b31f3	cpu util	gauge	5.75990550149	8	2017-02-25T21:11:57.233000
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.80654643688	8	2017-02-25T21:10:57.337000
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.50030214993	8	2017-02-25T21:09:57.232000
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.78307627559	8	2017-02-25T21:08:57.235000
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.69540372199	8	2017-02-25T21:07:57.233000
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.51661525707	8	2017-02-25T21:07:01.047000
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.80619833592	8	2017-02-25T21:06:57.240000
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.77604711767	8	2017-02-25T21:05:57.477000
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.53447140514	8	2017-02-25T21:04:57.228000
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.78197615912	8	2017-02-25T21:03:57.240000
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.88235245382	8	2017-02-25T21:02:57.572000
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.7594655857	8	2017-02-25T21:01:57.222000
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.75758628138	8	2017-02-25T21:00:57.321000
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.61606237835	8	2017-02-25T20:59:57.226000
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.80057628725	8	2017-02-25T20:58:57.219000
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.82217128127	8	2017-02-25T20:57:57.225000
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	4.87207088233	8	2017-02-25T20:57:00.717000
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.84271546845	8	2017-02-25T20:56:57.228000
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.85654879536	8	2017-02-25T20:55:57.324000
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.80012808616	8	2017-02-25T20:54:57.221000
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.76715706726	8	2017-02-25T20:53:57.222000
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.78203960197	8	2017-02-25T20:52:57.227000

FIG.4.7 (CPU utilization sample list for Cirros Test)

Resource ID	Name	Type	Volume	Unit	Timestamp
8456545d-2a14-44d0-b7bf-5a4717a1e852	+	+	5.80735217513	+ %	2017-02-25T21:17:57.245000
8456545d-2a14-44d0-b7bf-5a4717a1e852	cpu util	gauge	4.85141126127	%	2017-02-25T21:17:00.765000
8456545d-2a14-44d0-b7bf-5a4717a1e852	cpu util	gauge	5.55681395049	8	2017-02-25T21:16:57.261000
8456545d-2a14-44d0-b7bf-5a4717a1e852	cpu_util	gauge	5.60756558772	8	2017-02-25T21:15:57.334000
8456545d-2a14-44d0-b7bf-5a4717a1e852	cpu_util	gauge	5.7003476262	8	2017-02-25T21:14:57.237000
8456545d-2a14-44d0-b7bf-5a4717a1e852	cpu util	gauge	5.63292006476	8	2017-02-25T21:13:57.240000
8456545d-2a14-44d0-b7bf-5a4717a1e852	cpu_util	gauge	5.58309260899	8	2017-02-25T21:12:57.236000
8456545d-2a14-44d0-b7bf-5a4717a1e852	cpu_util	gauge	5.54286558404	8	2017-02-25T21:11:57.233000
8456545d-2a14-44d0-b7bf-5a4717a1e852	cpu_util	gauge	5.64016974815	8	2017-02-25T21:10:57.337000
8456545d-2a14-44d0-b7bf-5a4717a1e852	cpu_util	gauge	5.55030489675	8	2017-02-25T21:09:57.232000
8456545d-2a14-44d0-b7bf-5a4717a1e852	cpu_util	gauge	5.6330829428	8	2017-02-25T21:08:57.235000
8456545d-2a14-44d0-b7bf-5a4717a1e852	cpu util	gauge	5.5352204923	8	2017-02-25T21:07:57.233000

FIG.4.8 (CPU utilization sample list for Test-1)

[root@devstack1 ~(keystone_admin)]# cei]	lometer samp	le-list	-m cpu_util -q :	resourc	id=40868588-d52a-4833-956d	-fe469a1b31f3
Resource ID	Name	Туре	Volume	Unit	Timestamp	
40868588-d52a-4833-956d-fe469a1b31f3	cpu util	gauge	5.71882546515	 %	2017-02-25T21:17:57.245000	1
40868588-d52a-4833-956d-fe469a1b31f3	cpu util	gauge	5.4221655273	8	2017-02-25T21:17:00.765000	
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.70699811132	8	2017-02-25T21:16:57.261000	
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.64084490871	- %	2017-02-25T21:15:57.334000	
40868588-d52a-4833-956d-fe469a1b31f3	cpu util	gauge	5.71701530932	8	2017-02-25T21:14:57.237000	
40868588-d52a-4833-956d-fe469a1b31f3	cpu util	gauge	5.74957817261	8	2017-02-25T21:13:57.240000	
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.76641803794	8	2017-02-25T21:12:57.236000	
40868588-d52a-4833-956d-fe469a1b31f3	cpu util	gauge	5.75990550149	8	2017-02-25T21:11:57.233000	
40868588-d52a-4833-956d-fe469a1b31f3	cpu util	gauge	5.80654643688	8	2017-02-25T21:10:57.337000	
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.50030214993	8	2017-02-25T21:09:57.232000	
40868588-d52a-4833-956d-fe469a1b31f3	cpu util	gauge	5.78307627559	8	2017-02-25T21:08:57.235000	
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.69540372199	8	2017-02-25T21:07:57.233000	
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.51661525707	8	2017-02-25T21:07:01.047000	
40868588-d52a-4833-956d-fe469a1b31f3	cpu util	gauge	5.80619833592	8	2017-02-25T21:06:57.240000	
40868588-d52a-4833-956d-fe469a1b31f3	cpu_util	gauge	5.77604711767	%	2017-02-25T21:05:57.477000	

FIG.4.9 (CPU utilization sample list for Test-2)

<pre>[root@devstack1 ~(keystone_admin)]# cei; </pre>	' lometer samp)le-list	-m cpu_util -q :	resource	e_id=9b02fbea-ca5b-4abf-bdbb	-aae779f78c3
+ Resource ID	Name	Туре	Volume	Unit	Timestamp	1
<pre>+</pre>	+ cpu_util	gauge	5.62381661712	+: %	2017-02-25T21:20:57.345000	-+
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	cpu_util	gauge	5.43420751618	8	2017-02-25T21:19:57.243000	I.
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	cpu_util	gauge	5.58258061538	8	2017-02-25T21:18:57.253000	1
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	cpu_util	gauge	5.52406670318	8	2017-02-25T21:17:57.245000	I.
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	cpu_util	gauge	5.4221655273	8	2017-02-25T21:17:00.765000	1
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	cpu_util	gauge	5.57350107947	8	2017-02-25T21:16:57.261000	1
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	cpu_util	gauge	5.55764660622	8	2017-02-25T21:15:57.334000	I.
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	cpu_util	gauge	5.55033847814	8	2017-02-25T21:14:57.237000	1
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	cpu_util	gauge	5.48293106896	8	2017-02-25T21:13:57.240000	1
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	cpu_util	gauge	5.61642450516	8	2017-02-25T21:12:57.236000	

FIG.4.10 (CPU utilization sample list for Test-3)

In next set of outputs in FIG.4.11, FIG.4.12, FIG.4.13 and FIG.4.14 the parameter remains the same, with a contrast of different unit. This shows multiple ways that ceilometer monitors different

parameters and show them in a presentable format. The Percentage is now changed to nS, hence metering type is changed to cumulative, now it is showing the volume in the units of Nanoseconds.

<pre>[root@devstack1 ~(keystone_admin)]# cei </pre>	lometer		-m cpu -q resou			17a1e852
Resource ID	Name	 Туре	Volume		 Timestamp	1
<pre>+</pre>	cpu cpu	<pre>cumulative cumulative cumulative</pre>	<pre>+</pre>	ns ns ns ns ns ns ns ns	<pre> 2017-02-25T06:49:56.408000 2017-02-25T06:48:55.914000 2017-02-25T06:47:55.896000 2017-02-25T06:47:00.704000 2017-02-25T06:46:55.891000 2017-02-25T06:44:56.015000 2017-02-25T06:43:55.892000 2017-02-25T06:42:55.907000 2017-02-25T06:41:55.890000 2017-02-25T06:41:55.890000 2017-02-25T06:40:55.886000 2017-02-25T06:40:5500000 2017-02-25T06:40:5000000 2017-02-25000000000</pre>	
8456545d-2a14-44d0-b7bf-5a4717a1e852 8456545d-2a14-44d0-b7bf-5a4717a1e852 8456545d-2a14-44d0-b7bf-5a4717a1e852 8456545d-2a14-44d0-b7bf-5a4717a1e852	cpu cpu cpu cpu	cumulative cumulative	3.545079e+13 3.544739e+13 3.544396e+13 3.544071e+13	ns ns ns ns	2017-02-25T06:39:55.988000 2017-02-25T06:38:55.881000 2017-02-25T06:37:55.895000 2017-02-25T06:37:00.784000	

FIG.4.11 (CPU sample list for Cirros Test)

Resource ID	Name +	Type +	Volume +	Unit 	Timestamp +
40868588-d52a-4833-956d-fe469a1b31f3	cpu	cumulative	2.036539e+13	ns	2017-02-25T06:51:55.90500
40868588-d52a-4833-956d-fe469a1b31f3	cpu	cumulative	2.036189e+13	ns	2017-02-25T06:50:56.24000
10868588-d52a-4833-956d-fe469a1b31f3	cpu	cumulative	2.035849e+13	ns	2017-02-25T06:49:56.40800
0868588-d52a-4833-956d-fe469a1b31f3	cpu	cumulative	2.0355e+13	ns	2017-02-25T06:48:55.91400
0868588-d52a-4833-956d-fe469a1b31f3	cpu	cumulative	2.035153e+13	ns	2017-02-25T06:47:55.89600
0868588-d52a-4833-956d-fe469a1b31f3	cpu	cumulative	2.034828e+13	ns	2017-02-25T06:47:00.70400
0868588-d52a-4833-956d-fe469a1b31f3	cpu	cumulative	2.034803e+13	ns	2017-02-25T06:46:55.89100
0868588-d52a-4833-956d-fe469a1b31f3	cpu	cumulative	2.034453e+13	ns	2017-02-25T06:45:55.8940
10868588-d52a-4833-956d-fe469a1b31f3	cpu	cumulative	2.034113e+13	ns	2017-02-25T06:44:56.01500
40868588-d52a-4833-956d-fe469a1b31f3	cpu	cumulative	2.033775e+13	ns	2017-02-25T06:43:55.89200
40868588-d52a-4833-956d-fe469a1b31f3	cpu	L cumulative	2.033414e+13	lns	2017-02-25T06:42:55.90700

FIG.4.12 (CPU sample list for Test-1)

[root@devstack1 ~(keystone_admin)]# cei	.lometer	sample-list	-m cpu -q resou	rce_id=	, 5dd090d0-bffe-4988-8dfe-b9d8	105
Resource ID	Name	 Туре	Volume	Unit	Timestamp	i
<pre></pre>	l cpu	 cumulative	 1 2.029656e+13	 ns		
<pre>5dd090d0-bffe-4988-8dfe-b9d8105122fe</pre>	cpu	cumulative	2.029632e+13	ns	2017-02-25T06:56:55.909000	i
5dd090d0-bffe-4988-8dfe-b9d8105122fe	cpu	cumulative	2.029289e+13	ns	2017-02-25T06:55:55.999000	i
<pre>5dd090d0-bffe-4988-8dfe-b9d8105122fe</pre>	cpu	cumulative	2.028941e+13	ns	2017-02-25T06:54:55.922000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	cpu	cumulative	2.028608e+13	ns	2017-02-25T06:53:55.904000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	cpu	cumulative	2.028257e+13	ns	2017-02-25T06:52:55.904000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	cpu	cumulative	2.027908e+13	ns	2017-02-25T06:51:55.905000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	cpu	cumulative	2.02756e+13	ns	2017-02-25T06:50:56.240000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	cpu	cumulative	2.027224e+13	ns	2017-02-25T06:49:56.408000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	cpu	cumulative	2.026879e+13	ns	2017-02-25T06:48:55.914000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	cpu	cumulative	2.02653e+13	ns	2017-02-25T06:47:55.896000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	cpu	cumulative	2.026207e+13	ns	2017-02-25T06:47:00.704000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	cpu	cumulative	2.026182e+13	ns	2017-02-25T06:46:55.891000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	cpu	cumulative	2.025833e+13	ns	2017-02-25T06:45:55.894000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	cpu	cumulative	2.025491e+13	ns	2017-02-25T06:44:56.015000	

FIG.4.13 (CPU sample list for Test-2)

[root@devstack1 ~ (keystone_admin)]# cei	lometer	sample-list	-m cpu -q resou	rce_id=	9b02fbea-ca5b-4abf-bdbb-aae779f78c35
Resource ID	Name	Type	Volume	Unit	Timestamp
<pre>+ 9b02fbea-ca5b-4abf-bdbb-aae779f78c35</pre>	+ cpu	<pre> cumulative</pre>	2.010548e+13	+ ns	2017-02-25T06:47:55.896000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	cpu	cumulative	2.010229e+13	ns	2017-02-25T06:47:00.704000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	cpu	cumulative	2.010203e+13	ns	2017-02-25T06:46:55.891000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	cpu	cumulative	2.009857e+13	ns	2017-02-25T06:45:55.894000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	cpu	cumulative	2.009508e+13	ns	2017-02-25T06:44:56.015000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	cpu	cumulative		ns	
<pre> 9b02fbea-ca5b-4abf-bdbb-aae779f78c35 9b02fbea-ca5b-4abf-bdbb-aae779f78c35</pre>	cpu cpu	cumulative cumulative	2.008822e+13 2.008472e+13	ns ns	2017-02-25T06:42:55.907000 2017-02-25T06:41:55.899000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	l cpu	cumulative	2.008129e+13	115 ns	2017-02-25T06:40:55.886000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	cpu	cumulative	2.007784e+13	ns	2017-02-25T06:39:55.988000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	cpu	cumulative		ns	2017-02-25T06:38:55.881000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	cpu	cumulative	2.007103e+13	ns	2017-02-25T06:37:55.895000

FIG.4.14 (CPU sample list for Test-3)

Further outputs are the sample list of the memory usage in the FIG 4.15, FIG 4.16, FIG 4.17 and FIG 4.18 of each instance monitored and metered by ceilometer to get the memory from every instance that is defined in Megabytes. This is the memory usage done by different instances. The metering type is gauge since it is discrete. As shown in the outputs is memory usage for all instances are the same as all the instances are using the same flavor that ends up with same memory usage.

root@devstack1 ~(keystone_admin)]# cei	, lometer sa	ample-lis	st -m mem	ory -q	resource_id=8456545d-2a14-44d0-b7bf-5a4717a1e8
Resource ID	Name	Type	Volume	+ Unit	++ Timestamp
8456545d-2a14-44d0-b7bf-5a4717a1e852	+ memory	gauge	 512.0	+ MB	++ 2017-02-25T21:00:49.907000
8456545d-2a14-44d0-b7bf-5a4717a1e852	memory	gauge	512.0	MB	2017-02-25T20:00:53.914000
8456545d-2a14-44d0-b7bf-5a4717a1e852	memory	gauge	512.0	MB	2017-02-25T19:00:47.905000
8456545d-2a14-44d0-b7bf-5a4717a1e852	memory	gauge	512.0	MB	2017-02-25T18:00:37.914000
8456545d-2a14-44d0-b7bf-5a4717a1e852	memory	gauge	512.0	MB	2017-02-25T17:00:46.909000
8456545d-2a14-44d0-b7bf-5a4717a1e852	memory	gauge	512.0	MB	2017-02-25T16:00:52.902000
8456545d-2a14-44d0-b7bf-5a4717a1e852	memory	gauge	512.0	MB	2017-02-25T15:00:41.915000
8456545d-2a14-44d0-b7bf-5a4717a1e852	memory	gauge	512.0	MB	2017-02-25T14:00:50.907000
8456545d-2a14-44d0-b7bf-5a4717a1e852	memory	gauge	512.0	MB	2017-02-25T13:00:45.919000
8456545d-2a14-44d0-b7bf-5a4717a1e852	memory	gauge	512.0	MB	2017-02-25T12:00:54.914000
8456545d-2a14-44d0-b7bf-5a4717a1e852	memory	gauge	512.0	MB	2017-02-25T11:00:04.908000

FIG.4.15 (Memory sample list for Cirros Test)

[root@devstack1 ~(keystone_admin)]# cei	lometer s	ample-li:			resource_id=40868588-d52a-4833-956d-fe469a1b31f3
Resource ID	+ Name	Type			Timestamp
+ 40868588-d52a-4833-956d-fe469a1b31f3	memory	+ gauge	512.0	+ MB	/ 2017-02-25T21:00:49.947000
40868588-d52a-4833-956d-fe469a1b31f3	memory	gauge	512.0	MB	2017-02-25T20:00:53.947000
40868588-d52a-4833-956d-fe469a1b31f3	memory	gauge	512.0	MB	2017-02-25T19:00:47.934000
40868588-d52a-4833-956d-fe469a1b31f3	memory	gauge	512.0	MB	2017-02-25T18:00:37.943000
40868588-d52a-4833-956d-fe469a1b31f3	memory	gauge	512.0	MB	2017-02-25T17:00:46.938000
40868588-d52a-4833-956d-fe469a1b31f3	memory	gauge	512.0	MB	2017-02-25T16:00:52.933000
40868588-d52a-4833-956d-fe469a1b31f3	memory	gauge	512.0	MB	2017-02-25T15:00:41.949000
40868588-d52a-4833-956d-fe469a1b31f3	memory	gauge	512.0	MB	2017-02-25T14:00:50.936000
40868588-d52a-4833-956d-fe469a1b31f3	memory	gauge	512.0	MB	2017-02-25T13:00:45.946000
40868588-d52a-4833-956d-fe469a1b31f3	memory	gauge	512.0	MB	2017-02-25T12:00:54.944000
40868588-d52a-4833-956d-fe469a1b31f3	memory	gauge	512.0	MB	2017-02-25T11:00:04.936000

FIG.4.16 (Memory sample-list for Test-1)

Resource ID	Name	Туре	Volume	Unit	Timestamp	
	+ memory	 gauge	512.0	+ MB	2017-02-25T21:00:49.9800	0
5dd090d0-bffe-4988-8dfe-b9d8105122fe	memory	gauge	512.0	MB	2017-02-25T20:00:53.97600	0
5dd090d0-bffe-4988-8dfe-b9d8105122fe	memory	gauge	512.0	MB	2017-02-25T19:00:47.96500	0
5dd090d0-bffe-4988-8dfe-b9d8105122fe	memory	gauge	512.0	MB	2017-02-25T18:00:37.97100	0
5dd090d0-bffe-4988-8dfe-b9d8105122fe	memory	gauge	512.0	MB	2017-02-25T17:00:46.96800	0
5dd090d0-bffe-4988-8dfe-b9d8105122fe	memory	gauge	512.0	MB	2017-02-25T16:00:52.96400	0
5dd090d0-bffe-4988-8dfe-b9d8105122fe	memory	gauge	512.0	MB	2017-02-25T15:00:41.98500	0
5dd090d0-bffe-4988-8dfe-b9d8105122fe	memory	gauge	512.0	MB	2017-02-25T14:00:50.96800	0
5dd090d0-bffe-4988-8dfe-b9d8105122fe	memory	gauge	512.0	MB	2017-02-25T13:00:45.98100	0
5dd090d0-bffe-4988-8dfe-b9d8105122fe	memory	gauge	512.0	MB	2017-02-25T12:00:54.97600	0
5dd090d0-bffe-4988-8dfe-b9d8105122fe	memory	gauge	512.0	MB	2017-02-25T11:00:04.96700	0

FIG.4.17 (Memory sample-list for Test-2)

	ometer sa	ample-li:	st -m mem	ory -q	resource_id=9b02fbea-ca5b-4abf-bdbb-aae779f78c35
Resource ID	Name	Туре			Timestamp
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	memory	gauge	512.0	MB	2017-02-25T21:00:50.009000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	memory	gauge	512.0	MB	2017-02-25T20:00:54.004000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	memory	gauge	512.0	MB	2017-02-25T19:00:48.003000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	memory	gauge	512.0	MB	2017-02-25T18:00:38.001000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	memory	gauge	512.0	MB	2017-02-25T17:00:46.998000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	memory	gauge	512.0	MB	2017-02-25T16:00:52.994000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	memory	gauge	512.0	MB	2017-02-25T15:00:42.020000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	memory	gauge	512.0	MB	2017-02-25T14:00:51.001000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	memory	gauge	512.0	MB	2017-02-25T13:00:46.017000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	memory	gauge	512.0	MB	2017-02-25T12:00:55.010000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	memory	gauge	512.0	MB	2017-02-25T11:00:04.994000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	memory	gauge	512.0	MB	2017-02-25T10:00:16.047000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	memory	gauge	512.0	MB	2017-02-25T09:00:26.005000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	memory	gauge	512.0	MB	2017-02-25T08:00:24.998000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	memory	gauge	512.0	MB	2017-02-25T07:00:26.036000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	memory	gauge	512.0	MB	2017-02-25T06:00:29.137000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	memory	gauge	512.0	MB	2017-02-25T05:00:32.197000

FIG.4.18 (Memory sample-list for Test-3)

Moreover, the next metering is for volume instances, the unit for this volume remains to be the instance since instance will remain to be the instance and has no particular unit. The flowing FIG 4.15, FIG 4.16, FIG 4.17 and FIG 4.18 are the outputs

root@devstack1 ~(keystone_admin)]# ceil	lometer samp			nce -q reso	urce_id=8456545d-2a14-44d0-b7
Resource ID	Name	Type	Volume	Unit	' Timestamp
8456545d-2a14-44d0-b7bf-5a4717a1e852	instance	gauge	1.0	instance	2017-02-25T21:37:00.820000
8456545d-2a14-44d0-b7bf-5a4717a1e852	instance	gauge	1.0	instance	2017-02-25T21:27:00.804000
8456545d-2a14-44d0-b7bf-5a4717a1e852	instance	gauge	1.0	instance	2017-02-25T21:17:00.793000
8456545d-2a14-44d0-b7bf-5a4717a1e852	instance	gauge	1.0	instance	2017-02-25T21:07:01.065000
8456545d-2a14-44d0-b7bf-5a4717a1e852	instance	gauge	1.0	instance	2017-02-25T20:57:00.734000
8456545d-2a14-44d0-b7bf-5a4717a1e852	instance	gauge	1.0	instance	2017-02-25T20:47:00.773000
8456545d-2a14-44d0-b7bf-5a4717a1e852	instance	gauge	1.0	instance	2017-02-25T20:37:00.740000
8456545d-2a14-44d0-b7bf-5a4717a1e852	instance	gauge	1.0	instance	2017-02-25T20:27:00.741000
8456545d-2a14-44d0-b7bf-5a4717a1e852	instance	gauge	1.0	instance	2017-02-25T20:17:00.833000
8456545d-2a14-44d0-b7bf-5a4717a1e852	instance	gauge	1.0	instance	2017-02-25T20:07:00.807000
8456545d-2a14-44d0-b7bf-5a4717a1e852	instance	gauge	1.0	instance	2017-02-25T19:57:00.761000
8456545d-2a14-44d0-b7bf-5a4717a1e852	instance	gauge	1.0	instance	2017-02-25T19:47:00.732000
8456545d-2a14-44d0-b7bf-5a4717a1e852	instance	gauge	1.0	instance	2017-02-25T19:37:00.761000

FIG.4.19 (Instance sample-list for Cirros Test)

+[root@devstack1 ~(keystone_admin)]# cei.	+ lometer sam	+ ple-list	+ -m insta	nce -q resou	id=40868588-d52a-4833-95
Resource ID	Name	Type	Volume	Unit	 Timestamp
40868588-d52a-4833-956d-fe469a1b31f3	instance	+ gauge	+ 1.0	instance	2017-02-25T21:37:00.820000
40868588-d52a-4833-956d-fe469a1b31f3	instance	gauge	1.0	instance	2017-02-25T21:27:00.804000
40868588-d52a-4833-956d-fe469a1b31f3	instance	gauge	1.0	instance	2017-02-25T21:17:00.793000
40868588-d52a-4833-956d-fe469a1b31f3	instance	gauge	1.0	instance	2017-02-25T21:07:01.065000
40868588-d52a-4833-956d-fe469a1b31f3	instance	gauge	1.0	instance	2017-02-25T20:57:00.734000
40868588-d52a-4833-956d-fe469a1b31f3	instance	gauge	1.0	instance	2017-02-25T20:47:00.773000
40868588-d52a-4833-956d-fe469a1b31f3	instance	gauge	1.0	instance	2017-02-25T20:37:00.740000
40868588-d52a-4833-956d-fe469a1b31f3	instance	gauge	1.0	instance	2017-02-25T20:27:00.741000
40868588-d52a-4833-956d-fe469a1b31f3	instance	gauge	1.0	instance	2017-02-25T20:17:00.833000
40868588-d52a-4833-956d-fe469a1b31f3	instance	gauge	1.0	instance	2017-02-25T20:07:00.807000
40868588-d52a-4833-956d-fe469a1b31f3	instance	gauge	1.0	instance	2017-02-25T19:57:00.761000
40868588-d52a-4833-956d-fe469a1b31f3	instance	gauge	1.0	instance	2017-02-25T19:47:00.732000
40868588-d52a-4833-956d-fe469a1b31f3	instance	gauge	1.0	instance	2017-02-25T19:37:00.761000
40868588-d52a-4833-956d-fe469a1b31f3	instance	gauge	1.0	instance	2017-02-25T19:27:00.759000
40868588-d52a-4833-956d-fe469a1b31f3	instance	gauge	1.0	instance	2017-02-25T19:17:00.723000
40868588-d52a-4833-956d-fe469a1b31f3	instance	gauge	1.0	instance	2017-02-25T19:07:00.825000

FIG.4.20 (Instance sample-list for Test-1)

[root@devstack1 ~(keystone_admin)]# cei:	lometer samp	ple-list	-m instar	nce -g reso	urce_id=5dd090d0-bffe-4988-80	lfe-b9d8105122fe
Resource ID	Name	Type	Volume	Unit		
	instance	 gauge	1.0	instance	2017-02-25T21:37:00.820000	1
5dd090d0-bffe-4988-8dfe-b9d8105122fe	instance	gauge	1.0	instance	2017-02-25T21:27:00.804000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	instance	gauge	1.0	instance	2017-02-25T21:17:00.793000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	instance	gauge	1.0	instance	2017-02-25T21:07:01.065000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	instance	gauge	1.0	instance	2017-02-25T20:57:00.734000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	instance	gauge	1.0	instance	2017-02-25T20:47:00.773000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	instance	gauge	1.0	instance	2017-02-25T20:37:00.740000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	instance	gauge	1.0	instance	2017-02-25T20:27:00.741000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	instance	gauge	1.0	instance	2017-02-25T20:17:00.833000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	instance	gauge	1.0	instance	2017-02-25T20:07:00.807000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	instance	gauge	1.0	instance	2017-02-25T19:57:00.761000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	instance	gauge	1.0	instance	2017-02-25T19:47:00.732000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	instance	gauge	1.0	instance	2017-02-25T19:37:00.761000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	instance	gauge	1.0	instance	2017-02-25T19:27:00.759000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	instance	gauge	1.0	instance	2017-02-25T19:17:00.723000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	instance	gauge	1.0	instance	2017-02-25T19:07:00.825000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	instance	gauge	1.0	instance	2017-02-25T18:57:01.119000	
5dd090d0-bffe-4988-8dfe-b9d8105122fe	instance	gauge	1.0	instance	2017-02-25T18:47:00.793000	

FIG.4.21 (Instance sample-list for Test-2)

Resource ID	Name	Type	Volume	Unit	Timestamp
	instance	gauge	+ 1.0	+ instance	+ 2017-02-25T21:37:00.820000
02fbea-ca5b-4abf-bdbb-aae779f78c35	instance	gauge	1.0	instance	2017-02-25T21:27:00.804000
b02fbea-ca5b-4abf-bdbb-aae779f78c35	instance	gauge	1.0	instance	2017-02-25T21:17:00.793000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	instance	gauge	1.0	instance	2017-02-25T21:07:01.065000
b02fbea-ca5b-4abf-bdbb-aae779f78c35	instance	gauge	1.0	instance	2017-02-25T20:57:00.734000
9b02fbea-ca5b-4abf-bdbb-aae779f78c35	instance	gauge	1.0	instance	2017-02-25T20:47:00.773000
b02fbea-ca5b-4abf-bdbb-aae779f78c35	instance	gauge	1.0	instance	2017-02-25T20:37:00.740000
b02fbea-ca5b-4abf-bdbb-aae779f78c35	instance	gauge	1.0	instance	2017-02-25T20:27:00.741000
b02fbea-ca5b-4abf-bdbb-aae779f78c35	instance	gauge	1.0	instance	2017-02-25T20:17:00.833000
					-

FIG.4.22 (Instance sample-list for Test-3)

Chapter 5 Heat Orchestration

5.1 Brief Details of Heat

Heat is the main project for orchestration part of OpenStack. Implementation of orchestration engine for multiple composite cloud application. It is the sequence of lines code in text file format. A native heat format can be evolving, but heat also endeavors to provide compatibility with AWS cloud information template format so that many existing cloud formation template can be launch on OpenStack. Heat provide both open stack rest API and cloud formation compatible query API. The orchestration is essentially for the software application. To manage configuration. Instead of manipulation of virtual infrastructure by hand or with the script

Heat focuses to work with the declarative model. Heat works out on the sequence of lines to perform and to bring reality in to model. The model takes the heat template and the resulting collective of infrastructure resources is known as the stack. Orchestration allows you to treat your infrastructure like code. Therefore you can store your templates version control system, such as GIT to track changes then you update the stack with the new template and heat do the rest of the actions. The main interface of heat is the OpenStack native rest API. Heat actually is between the user and the API of the core OpenStack services. In much the same way as the dashboard or the horizon does. Heat can be access through the horizon or the dashboard. Heat template describes the cloud application infrastructure in the code format that is changeable. The heat infrastructure resources include servers, floating IP, volume, security groups, and users.

5.2 Auto Scaling

Heat also provides auto scaling that integrates with ceilometer. Ceilometer adds scaling group as the resource within templates. Furthermore, the template, defines the relationship between two Auto scaling by heat integrated with ceilometer that leads to add scaling group in template. The templates defines the relationship between two resources. It also able heat to call OpenStack API in order to make everything systematic. Openstack also manage the whole lifecycle of the application. You need to do the modification in the code for existing stack and heat deals with the rest in order to change something.

Heat architecture components include:

Heat API It is used for processing API request to Heat engine via AMQP. It implements an Open stack-native RESTful API

HEAT-api-cfn it is used API compatibility with AWS cloud formation.

HEAT ENGINE is main orchestration functionality.

Heat uses back-end database for maintaining state information as other OpenStack services. Both communicate with heat engine via ANQ. The heat engine is the actual layer where actual integration is implemented. Furthermore, for high availability, Auto scaling abstraction is also done.

Auto Scaling Heat Templates

Heat and Ceilometer are the service that are used to scale CPU bound virtual machines. Heat stack is the environment itself. Heat stack manages processes and logics defined in templates. Auto Scale creation group and Ceilometer threshold is also defined in template. The environment template explains how to create the stack itself, what image or volume to use, network configuration, Software to install and everything an instance or instances need to properly function. All of these things can be in Heat Stack template

5.3 Deployment of Heat Orchestration

5.3.1 ENVIRONMENT TEMPLATE

Below we will create an environment template for a cirros image. As shown in FIG.5.3. The Cirros image will create the instance template, configure a cinder volume, add IP from the private network, add floating IP from the public network, add the security group, private ssh-key and generate 100% CPU load through user-data.

Hot is the new template format that to replace the Heat Cloud Formation-Compatible format as native format supported by heat. They are written in YAML format and JSON. Hot templates create

Stack in Heat. Structure for Hot consist of Heat Template version, description, parameter groups, parameters, resources, and outputs.

• Heat Template Version: Is just value with the key that indicates that the YAML document is a hot template of the specific version, if the date is 2013-05-23 or later date.Shown in FIG 5.1

```
[root@devstack1 ~(keystone_admin)]# vi /etc/heat/templates/cirros_base.yaml
heat_template_version: 2014-10-16
description: A base cirros server template
```

Fig.5.1 (Heat Template version)

• **Description:** It's an optional key allows for giving a description of the template.

```
description: A base cirros server template
```

Fig.5.2 (Description of heat template)

- **Parameters groups:** This section allows for specifying how the input parameters should be grouped and order to provide the parameter in. This option is also optional
- **Parameter**: This section allows for specifying input parameters that have to provide when instantiating the templates. This option is also optional as well
- **Outputs:** This part allows for specifying output parameters available to users once the template has been instantiated.
- **Resources**: It defines actual resources that are real stack from HOT template (instance for Compute, Network, and Storage Volume).Each resource is defined as a separate block in input parameters. As shown in FIG 5.3 there are five separate sections. Servers, port, volume, floating IP
 - **Resource ID**: must always be unique for every section
 - **Resource Types**: Must relate to the service that section of template define Such as the following

Nova:: Server

Neutron:: Port Neutron:: FloatingIP Neutron:: FloatingIPAssociation Cinder:: Volume

• **Properties**: It is a list of resource specific property defines via the function.

```
resources:
 server:
   type: OS::Nova::Server
   properties:
     block device mapping:
        - device name: vda
          delete on termination: true
          volume id: { get resource: volume }
      flavor: m1.tiny
     key name: test
     networks:
        - port: { get_resource: port }
 port:
   type: OS::Neutron::Port
   properties:
     network: private
     security_groups:
       - default
 floating ip:
    type: OS::Neutron::FloatingIP
   properties:
      floating_network: public
 floating ip assoc:
    type: OS::Neutron::FloatingIPAssociation
   properties:
      floatingip id: { get_resource: floating_ip }
     port id: { get resource: port }
 volume:
    type: OS::Cinder::Volume
   properties:
      image: 'cirros'
      <mark>s</mark>ize: 1
```

FIG.5.3 (Heat Template Resources)

Now that we have an environment template, we need to create a Heat resource type and link it above file /etc/heat/templates/cirros_base.yaml.

resource_registry:

"OS::Nova::Server::Cirros": file:///etc/heat/templates/cirros_base.yaml

5.3.2 Heat Template:

The below template in FIG.5.4 defines the behavior of the stack e.g. when and under what conditions the stack will scale up and scale down. cpu_alarm_high and cpu_alarm_low are used in the template to scale up and scale down our environment.

```
[root@devstack1 ~(keystone admin)]# vi heat autoscale.yaml
     resource:
       type: OS::Nova::Server::Cirros
 scaleup policy:
   type: OS::Heat::ScalingPolicy
   properties:
     adjustment type: change in capacity
     auto scaling group id: { get resource: scaleup group }
     cooldown: 60
     scaling adjustment: 1
 scaledown policy:
   type: OS::Heat::ScalingPolicy
   properties:
     adjustment_type: change_in_capacity
     auto_scaling_group_id: { get_resource: scaleup_group }
     cooldown: 60
     scaling adjustment: -1
 cpu alarm high:
   type: OS::Ceilometer::Alarm
   properties:
    meter name: cpu util
     statistic: avg
     period: 60
     evaluation_periods: 1
     threshold: 50
     alarm actions:
       - {get attr: [scaleup policy, alarm url]}
     comparison operator: gt
 cpu alarm low:
   type: OS::Ceilometer::Alarm
   properties:
    meter name: cpu util
     statistic: avg
     period: 60
     evaluation periods: 1
     threshold: 10
     alarm actions:
       - {get attr: [scaledown policy, alarm url]}
     comparison operator: lt
```

FIG.5.4 (Behavior Of Stack)

Update Ceilometer Collection Interval

By default, Ceilometer will collect CPU data from instances every 10 minutes. For this example, we want to change that to 60 seconds. Change the interval to 60 in the pipeline.YAML file and restart

OpenStack services.

Check the status of the stack in Horizon Dashboard:

Heat will create one instance as per defined policy:

5.3.3 RUNNING THE STACK:

Run the following command to run the stack:

[root@devstack1 ~ (keystone_admin)]# heat stack-create heat_autoscale -f /root/heat_autoscale.YAML -e /root/environment.yaml

Check the status of the stack in Horizon Dashboard as in FIG 5.4:

Project / Orchestration / Stacks Stacks Filter Q + Launch Stack Preview Stack More Actions -Stack Name Updated Created Actions Status 2 minutes Create Complete Check Stack heat_autoscale Never •

Displaying 1 item

FIG5.5 (Heat stack status)

In FIG 5.5 and FIG 5.6 shows the heat stack topology and resources, Events are also shown in FIG 5.6

heat_autoscale

Topology	Overview	Resources	Events	Template		
_		opology)		(Check Stack 💌
Topology Ove	erview Resource	es Events Ter	nplate			
Stack Resource	Resource		5	Stack Resource Type	Date Updated Status	Status Reason
scaleup_policy	671623159ad5	470a92238db7654484c7	(DS::Heat::ScalingPolicy	29 minutes Create Complete	state changed
cpu_alarm_low	da162866-7713	3-4676-afc2-53afe23437b	0 0	DS::Ceilometer::Alarm	29 minutes Create Complete	state changed
scaledown_policy	7061d532d0f24	4d9b925096d785df7db4	(DS::Heat::ScalingPolicy	29 minutes Create Complete	state changed
scaleup_group	47f923f9-d59b-	49c3-9074-b6bf915ef33	5 (DS::Heat::AutoScalingGroup	29 minutes Create Complete	state changed
cpu_alarm_high	4b6afd74-7649	-47c8-8f6e-e313e4e9aa6	64 (DS::Ceilometer::Alarm	29 minutes Create Complete	state changed
Displaying 5 items						

FIG 5.7 (Heat Stack Resources)

heat_autoscale

Topology Over	view Resources Events Template					
Stack Resource	Resource	Time Since Event	Status	Status Reason		
heat_autoscale	a68fad41-5cc6-4a24-816e-8bc4e62f3f7f	28 minutes	Create Complete	Stack CREATE completed successfully		
cpu_alarm_high	4b6afd74-7649-47c8-8f6e-e313e4e9aa64	28 minutes	Create Complete	state changed		
cpu_alarm_low	da162866-7713-4676-afc2-53afe23437b0	28 minutes	Create Complete	state changed		
cpu_alarm_high	heat_autoscale-cpu_alarm_high-o5t327i42ptu	28 minutes	Create In Progress	state changed		
cpu_alarm_low	heat_autoscale-cpu_alarm_low-fqehy4u5f43y	28 minutes	Create In Progress	state changed		
scaledown_policy	7061d532d0f24d9b925096d785df7db4	28 minutes	Create Complete	state changed		
scaleup_policy	671623159ad5470a92238db7654484c7	28 minutes	Create Complete	state changed		
scaledown_policy	heat_autoscale-scaledown_policy-nbf2zk6dddwl	28 minutes	Create In Progress	state changed		
scaleup_policy	heat_autoscale-scaleup_policy-ntw3buectobq	28 minutes	Create In Progress	state changed		
scaleup_group	47f923f9-d59b-49c3-9074-b6bf915ef335	28 minutes	Create Complete	state changed		
scaleup_group	heat_autoscale-scaleup_group-7etpafui7atf	29 minutes	Create In Progress	state changed		
heat_autoscale	a68fad41-5cc6-4a24-816e-8bc4e62f3f7f	29 minutes	Create In Progress	Stack CREATE started		

Displaying 12 items

FIG 5.8 (Heat Stack Events)

Heat will create one instance as per defined policy in FIG 5.7:

		• 192.168.11.15									•
(ex-6f4-entzjsio5qb4-qc7wlwxbzbsn-server-aw7blqnba bc2	Floating IPs:	m1.tiny	test	Active	nova	None	Running	37 minutes	Create Snapshot	•
		• 10.3.34.183									

FIG 5.9 (Heat Stack Instance)

Automatic Scale UP:

Now we will increase the cpu utilization on one of the instances and will verify if heat autoscales the environment or not. To do that run the following commands one the instance that heat created from the stack. As shown in FIG 5.8.

Check Stack 👻

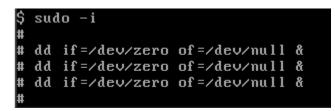


FIG 5.10 (Heat Autoscaling)

The heat created two more instances based defined policy in the orchestration template. This is because the maximum scale up policy is 3 instances. As shown in FIG 5.8.

Instances

			Instance Name = -					Filter	🛆 La	unch Instance	🖞 Delete Instance	es More Actions -
	Instance Name	lmage Name	IP Address	Size	Key Pair	Status	Availal Zone	bility	Task	Power State	Time since created	Actions
0	ex-6#4-wwy5xyxda66-xm5dnvjlp2pb-server-sf33zkuln axp	-	 192.168.11.19 Floating IPs: 10.3.34.185 	m1.tiny	test	Active	nova		None	Running	20 minutes	Create Snapshot
0	ex-6ff4-nyjlhgt3strt-7gjr5vpj6l6e-server-up5otmf7xndo	-	 192.168.11.18 Floating IPs: 10.3.34.186 	m1.tiny	test	Active	nova		None	Running	24 minutes	Create Snapshot 💌
0	ex-6#4-entzjsio5qb4-qc7wlwxbzbsn-server-aw7blqnba bc2	-	 192.168.11.15 Floating IPs: 10.3.34.183 	m1.tiny	test	Active	nova		None	Running	37 minutes	Create Snapshot 💌
	cirros-tes	-	 192.168.11.16 Floating IPs: 10.3.34.182 	m1.tiny	test	Shutof	nova		None	Shut Down	3 hours, 10 minutes	Start Instance 💌

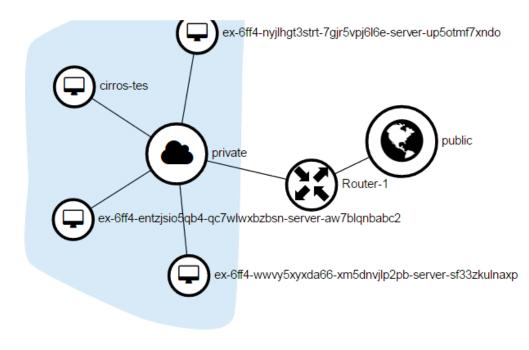

Displaving 4 items

FIG 5.11 (Two Instance base on policy)

COMPUTE	~	Valum												
	Overview	Volum	ies											
	Instances	Volumes	Volume Snapshots											
	Volumes	volumes	volume snapsnots					Filter Q	+ Cr	eate Volume	≓ Accep	t Transfer	💼 Delete Volu	mes
Access &	Images & Security	Name		Description	Size	Status	Туре	Attached To		Availability Zone	Bootable	Encrypted	Actions	
NETWORK	>		ole-scaleup_group-vdlwt33o6ff4-wwwy5xyxda66- ivjlp2pb-volume-gkmjcxpucxay	-	1GiB	In-use	iscsi	Attached to ex-6ff4-wwwy5xyxda66-xr vjlp2pb-server-sf33zkulnaxp on /dev		nova	Yes	No	Edit Volume	•
RCHESTRATIO	•		ole-scaleup_group-vdlwt33o6ff4-nyjlhgt3strt-7gjr 6e-volume-uzgkxsmpsfbw		1GiB	In-use	iscsi	Attached to ex-6ff4-nyjlhgt3strt-7gjr5v e-server-up5otmf7xndo on /dev/vda	vpj6l6	nova	Yes	No	Edit Volume	•
	>		ole-scaleup_group-vdlwt33o6ff4-entzjsio5qb4-q xbzbsn-volume-ed3hvjmsrypo	-	1GiB	In-use	iscsi	Attached to ex-6ff4-entzjsio5qb4-qc7 bzbsn-server-aw7blqnbabc2 on /dev		nova	Yes	No	Edit Volume	•
у	>	41ea1	77f-4bdb-4cc1-b41e-fce42333d5ce	-	1GiB	In-use	iscsi	Attached to cirros-tes on /dev/vda		nova	Yes	No	Edit Volume	•
		C c2394	fc0-bc36-4400-b1b0-a1a3dfba1124	-	1GiB	Available	iscsi			nova	Yes	No	Edit Volume	•
		aafadt	Ic7-1ca1-41c7-a4bb-f010fef2f61	-	1GiB	Available	iscsi			nova	Yes	No	Edit Volume	•
		Displaying 6	items											

List of volumes that heat created based on defined policy threshold as shown in FIG 5.9:

FIG.5.12 (Volumes that heat created based on defined policy)

New Network Topology after adding instances to the private network in FIG 5.10

FIG 5.13 (Heat Topology after 2 instances)

5.3.4 SCALE DOWN:

Scale down is the process in heat. Heat automatically scales down once the CPU utilization goes down on the instances. As the load goes back to normal and CPU cools down. The extra instances that were appeared to overcome the load will go back to one instance and all instances will be used efficiently through this way. In our scenario instance "aw7blqnbabc2" is the original instance and the rest instances are to overcome the load.

Chapter 6 Conclusion

Cloud Computing is one of the most powerful technology today in the IT industry. It is one of the greatest evolution in the industry. OpenStack is playing dominant role in cloud computing. The growing interest of different vendors in OpenStack not only making it more attractive, but also taking it to further stage of advancement. Openstack Elastic Cloud Service is also one of the most spectacular services for IT industry, where it is possible to scale up the resources under the required circumstances through heat services. Furthermore, it automatically scale down when CPU cools down and load comes back to normal, without any extra effort to be done. On the other side of the page ceilometer is helpful in metering and monitoring purpose. These both services with openstack itself a quality makes itself visible in many of the selections in IT industry

Chapter 7 Reference

- 1. https://en.wikipedia.org/wiki/OpenStack
- 2. linuxacademy.com/cp/modules/view/id/13(Module:Introduction to the Linux Academy)
- 3. https://linuxacademy.com/cp/modules/view/id/18(Module:OpenStack Essentials)
- 4. https://linuxacademy.com/cp/modules/view/id/61 (Modules:OpenStack Foundation Certified OpenStack Administrator)
- 5. https://linuxacademy.com/cp/modules/view/id/28(Module:Linux Academy Red Hat OpenStack Administrator Certification Prep Course)
- 6. https://docs.openstack.org/ops-guide/architecture.html
- 7. http://www.stratoscale.com/resources/campaigns/simplifyopenstack/?network=g&device=c&placement=&keyword=%2Bopen%20%2Bstack&utm _source=adwords&utm_medium=cpc&utm_campaign=sorezki&utm_source=adwords&u tm_medium=cpc&utm_campaign=mktg_envy_690915556&utm_term=%2Bopen%20%2 Bstack&utm_content=165527634601&gclid=CKKAve-Gw9ICFYa2wAodl_4DvQ
- 8. https://www.youtube.com/watch?v=J4BpqwMuIc8
- 9. docs.openstack.org/mitaka/install-guide-ubuntu/heat-install.html
- 10. https://wiki.openstack.org/wiki/Nova
- 11. https://wiki.openstack.org/wiki/Glance
- 12. https://docs.openstack.org/developer/glance/
- 13. Trainer.edu.mirantis.com/os100L2.0.0/ceilometer.html
- 14. youtube.com/watch?v=eOlIB323c8s
- 15. https://wiki.openstack.org/wiki/Heat
- 16. https://docs.openstack.org/developer/heat/template_guide/hot_guide.html
- 17. https://www.wired.com/insights/2012/04/openstack-histor
- 18. https://www.openstack.org/videos/vancouver-2015/public-or-private-cloud-amazon-web-services-or-openstack-what-and-039s-the-difference-and-can-i-use-both
- 19. http://redhatstackblog.redhat.com/2015/05/13/public-vs-private-amazon-compared-toopenstack
- 20. http://www.networkworld.com/article/3055195/cloud-computing/google-cozies-up-with-openstack.html
- 21. https://keithtenzer.com/2015/09/02/auto-scaling-instances-with-openstack/
- 22. http://docs.openstack.org/developer/heat/template_guide/hot_spec.html
- 23. https://es.scribd.com/document/312104113/Heat-Introduction