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Learning without thought is labor lost; thought without learning is perilous.

-  Confucius 551 BC - 479 BC
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Abstract

In this thesis, we present our method for building a probabilistic camera sensor model for bearing- 

only visual SLAM. This is the first time that a probabilistic camera sensor model for bearing-only 

visual SLAM has been studied. Our focus is on modelling the uncertain component of a proba­

bilistic camera sensor model, measurement noise, which represents the inaccuracy of the estimated 

sensor measurements from the sensor model. We conclude that a camera sensor model with constant 

measurement noise variance is sufficient for both close and distant landmarks. Simulation results 

show that our model performs well in visual localization as measured by the accumulated error. 

However, in a noisy environment, an accurate model of the measurement noise is not critical for the 

performance of visual localization as long as proper landmark position uncertainty is used.
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Chapter 1

Introduction

1.1 Thesis Motivation

If an autonomous robot is sent to an unknown environment, such as the moon, how can we ensure 

that it knows where it is and where to go? Assuming that the robot is given a map of the moon, 

it would need to localize itself within this map. This problem is known as localization, where the 

robot’s coordinates are estimated relative to an external reference frame. Alternatively if the robot 

knows its position and orientation relative to a global coordinate frame, referred to as its pose, the 

problem then becomes one of constructing a map of the environment, which is known as mapping. 

However, in practice, the robot is typically not given a map of the environment, nor does it know 

its pose. Instead, all it can use are measurement readings about the state of the environment and its 

relative movement. The problem of constructing a map of the environment, while simultaneously 

localizing within that map, is called Simultaneous Localization and Mapping (SLAM). SLAM is 

a fundamental problem in robotics and provides a challenge for robot navigation in an unknown 

environment.

Placed in an unknown environment, a mobile robot collects sensor measurements and odometry 

data. The robot uses sensor measurements to obtain information about the state of the environment. 

For example, a robot might take an image using a camera or collect data using a laser range finder. 

Furthermore, the robot moves within the environment through control actions that cause the state of 

the robot to change. The odometry data, obtained from the robot’s wheel encoders, describes the 

robot’s movement. Motion induces a loss of knowledge due to noise in the odometry data, whereas 

measurement data increases the robot’s knowledge of its pose and the map.

SLAM requires that the robot estimate both the map of its environment and its pose within the 

map using sensor measurements and odometry data. A typical probabilistic approach to solving 

SLAM is shown in Figure 1.1. The approach is composed of a prediction step and an update step 

that are performed recursively to estimate both the map and the robot pose. In this work, the map of 

the environment is composed of a set of significant three-dimensional locations called landmarks. In 

the prediction step, the odometry data is used to predict both the robot pose and the map. However,

1
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the odometry data is often corrupted by noise that reduces the accuracy of both the predicted robot 

pose and the map. For this reason, measurements obtained from the robot’s sensors, referred to as 

sensor measurements, are used in the update step to correct both the predicted robot pose and the 

map. How can we effectively use the sensor measurements to improve the accuracy of both the 

predicted robot pose and the map?

Robot Pose 
and Map

Odometry

Measurements

Prediction

Update

Figure 1.1: The typical approach to solving SLAM is composed of a prediction step and an update 
step that are performed recursively to estimate both the robot pose and the map. In the prediction 
step, odometry data is used to predict the robot pose and the map. In the update step, measurements 
obtained from the sensors are used to update the prediction.

In this thesis, we use a single camera to collect image data of the environment to help solve 

the SLAM problem. This approach is known as bearing-only visual SLAM. The images contain 

actual sensor measurements, which are two-dimensional points in the image corresponding to three- 

dimensional landmarks in the environment. The generation of sensor measurements in the physical 

world is described by a camera sensor model. Unfortunately, the camera sensor model is subject to 

noise that limit the accuracy of the collected measurement information. The noise associated with 

the measurement data is referred to as the measurement noise, which is the difference between the 

actual sensor measurement and the estimated sensor measurement obtained from the camera sensor 

model. Assuming known landmark positions, the measurement noise comes from both the camera 

model and the algorithm used to locate the two-dimensional points in the image. The measurement 

noise is taken into consideration in a probabilistic SLAM algorithm. The probabilistic sensor model 

is a conditional probability distribution p(zk\xk),  where x/. is the system state, which includes the 

robot pose and the map of the environment, and Zk is the sensor measurement at time k. A typical 

representation of a probabilistic camera sensor model consists of a deterministic component, which 

can be modelled by a pinhole camera model, and an uncertain component, which models how ac­

curate the estimated sensor measurements are. Although we primarily address the development of a 

probabilistic camera sensor model within the context of the SLAM problem, it is also applicable to 

other types of visual robot navigation problems, such as visual localization.

To solve the SLAM problem, a probabilistic camera sensor model must account for uncertainty 

that exists in the real world. Typically, it is assumed that the accuracy of the SLAM algorithm

2
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increases with the accuracy of the camera sensor model. Extensive work has been done in modelling 

the deterministic component of a camera sensor model, which is also known as camera calibration. 

However, there has been limited research in modelling the uncertain component: the measurement 

noise. How do we properly build a probabilistic camera sensor model that can be used in bearing- 

only visual SLAM? How robust is the SLAM algorithm to errors in the camera sensor model? 

What is the impact of an inaccurate camera sensor model on the performance of SLAM? This thesis 

addresses the above questions and provides a thorough study of a probabilistic camera sensor model.

1.2 Thesis Objectives and Contributions

The objective of this thesis is to build a probabilistic camera sensor model for bearing-only visual 

SLAM. Our focus is on modelling the uncertain component of the sensor model, the measurement 

noise, which accommodates the non-determinstic aspects of the model- In addition, we want to 

identify the importance of a probabilistic camera sensor model for bearing-only visual SLAM.

This thesis makes a number of research contributions. We introduce a method for building a 

probabilistic camera sensor model. This method is motivated by the camera calibration process and 

the definition of measurement noise. We confirm that for both close and distant landmarks, a proba­

bilistic camera sensor model with constant measurement noise variance is sufficient for solving the 

bearing-only visual SLAM problem. Using the assumption that a camera sensor model is indepen­

dent of the visual robot navigation algorithm, we test our camera sensor model on a localization 

problem. Simulation results demonstrate that our model gives good performance in terms of the 

accumulated localization error. The accumulated error is 16 percent of the length of the robot’s trav­

elling path for close landmarks, and 62 percent for distant landmarks. Under the same experimental 

setup, we suggest using close landmarks rather than distant landmarks based on the above result. We 

show that sensor models with a wide range values of measurement noise variance can give nearly 

optimal performance for the localization problem. In addition, we show that, in general, pessimistic 

camera sensor models perform better than optimistic models. From the experimental results, we 

conclude that an accurate model of the measurement noise is not critical for the performance of 

localization in a noisy environment if  proper landmark uncertainty is used. In conclusion, this thesis 

provides a thorough study of a probabilistic camera sensor model for bearing-only visual SLAM.

1.3 Overview

The rest of this thesis is arranged as follows. Chapter 2 will discuss the background and related 

work in the field of SLAM and camera sensor models. Chapter 3 will introduce our method for 

building a probabilistic camera sensor model for bearing-only visual SLAM. In Chapter 4, a proba­

bilistic camera sensor model is built based on data collected from a Dragonfly IEEE-1394 camera. 

In Chapter 5, visual localization simulation and experimental results are presented to validate our

3
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probabilistic camera sensor model. The effects of the sensor model errors on visual localization are 

also discussed. Finally in Chapter 6, a general conclusion on building a probabilistic camera sensor 

model is presented along with possible directions for future work.

4
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Chapter 2

Background

In the previous chapter, we presented the motivation and the contributions of this thesis. In this 

chapter, we introduce various concepts and definitions that form the background of this thesis. We 

discuss the problem of Simultaneous Localization and Mapping (SLAM) in mobile robot navigation 

and its two important solutions: EKF-SLAM and FastSLAM. We also overview the bearing-only 

visual SLAM problem and its related topics. We then talk about another robot navigation problem: 

localization using a single camera. Finally, the topic of building a camera sensor model in the context 

of bearing-only visual SLAM is presented.

2.1 SLAM

Simultaneous Localization and Mapping (SLAM) has been a major research area towards achieving 

fully autonomous robot systems. SLAM algorithms answer the question: “Can a robot estimate its 

travelling path and build a map of its environment given a set of measurements and the odometry 

data?” To express the process of solving the SLAM problem, we need to specify the environment 

and the robot’s path. A map of the environment is a list of objects in the environment and their 

locations:

m  =  [m i, m 2 , ■ • ■ ,mjv] (2.1)

where N  is the number of objects in the environment and m n , where n =  1 , 2 , . . .  , N ,  specifies the 

three-dimensional location of the object. In this thesis, objects are landmarks, which are distinct, 

static features of the environment. To build a map of the environment, the robot estimates the three- 

dimensional locations of the landmarks. At time k, a robot pose x k describes the location and 

orientation of the robot. A measurement Zk of a landmark is taken from the robot location at time k. 

The robot is driven to the state x vk and the odometry data v,k is collected. A history of robot locations 

is the robot’s path or trajectory.

Virtually all state of the art algorithms for SLAM are probabilistic [28], since robot odometry 

data and sensor measurements are noisy, complicated and difficult to accommodate. Probabilistic

5
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techniques can help solve this problem by modelling various sources of noise and incorporating 

them into the SLAM algorithm.

Currently, the dominating probabilistic scheme for integrating sensor measurements and robot 

odometry data into the SLAM algorithm is Bayes filters [21]. A SLAM algorithm recursively es­

timates the system state Xk, including both the robot pose xj. and the map to, from a sequence of 

noisy sensor measurements zi-.k and odometry data U\-k- Since the robot pose, odometry data, and 

measurements are all subject to noise, the state estimate is characterized by uncertainty. This uncer­

tainty is represented by a density function over a random variable Xk, p{xk\zi-.k, ui-.k), conditioned 

on all odometry data and measurement data available at time k. This density provides an answer to 

the SLAM question: “What is the probability that the estimate state is Xf- if the history of sensor 

measurements are z\-k and odometry data is u\-k, for all possible Xk?”

To make this problem computationally tractable, Bayes filters assume that the dynamic system is 

Markov, indicating that all historical relevant information is contained in the previous state variable 

Xk-i-  Figure 2.1 shows the dynamic Bayes network that characterizes the evolution of odometry 

data, sensor measurements and states. The state at time k  only depends on the state at time k — 1 

and its odometry input Uk- The measurement z/, depends on the state Xk at time k.

Figure 2.1: A graphical model of SLAM, describing the evolution of the odometry data U k - i - . k + i ,  

the states X k ~ \ :k + 2  and the measurements Z k - i - . k + i -

In general, a recursive solution to the SLAM problem is used. For each time step, a SLAM 

algorithm first predicts the system state (prediction), and then corrects this prediction using available 

sensor measurements (correction).

Prediction: The state is predicted according to the following update rule:

where p (xk \x k - i ,U k )  is the motion model, meaning the probability of the system state is .x/c, given 

that its previous state is X k - i  and the current odometry data is Uk.

Correction: With the generation of a sensor measurement Zk, the predicted system state is

► Xk-

Pip^k — I; P{.'^k\’̂ k—\itik)p{Xk — \\X'\:k — \'!ti\:k — \)d x^_l (2.2)

6
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corrected by the Bayes rule:

p { x k \ z i , k ,U i , k ) (X p { z k \x k ) p {x k \zv. k ~ i , u hk y (2.3)

where p ( z k \xk),  the sensor model, describes the likelihood of making observation z k given the 

system state x k .

Equations 2.2 and 2.3 provide a recursive procedure for calculating p ( x k \z i ,k ,u i :k) based on 

all the sensor measurements z \ :k and odometry data u i :k. This recursion is a function of a motion 

model p ( x k \ x k - i ,  Uk) and a sensor model p ( z k \xk ).

2.2 Solutions to the SLAM Problem

The following section gives an overview of two important Bayes Filter solutions for the SLAM prob­

lem: EKF-SLAM and FastSLAM. Finding appropriate representations for both the motion model 

and the sensor model is required for solving the SLAM problem. Algorithms based on the Ex­

tended Kalman Filter (EKF) [13,14,16,30] are the most widely used variant o f Bayes filters. It 

approximates both the motion model and the sensor model in the form of a deterministic state-space 

model with additive Gaussian noise. Another popular alternative solution, FastSLAM [26,27], uses 

a set of samples to represent the probabilistic distribution of the robot pose, along with Gaussians to 

represent landmarks in the map.

2.2.1 EKF-SLAM

A brief overview of the structure of the EKF framework is described here. Most of the notations are 

adopted from Welch and Bishop [34], The goal of SLAM is to estimate a state vector containing 

the robot pose, x k, and landmark positions m  — ( m i ,  m 2 , .. •, tojv) in the world reference frame. 

The Extended Kalman Filter represents the probabilistic distribution p ( x k \ z i :k, u i , k ) by the mean 

Xk and the covarinace matrix Pk as follows:

( * t \

x k =
m i
m 2

\ m N J

(2.4)

(  CT-V ~.v
x k x k < T r£ m i ® x vk m N  ^

crm 1 x% @ m \m \ @ m \rri2 % i m j v

Pk =
crm 2 x%

a m 3x l

^777.2 m  1 

& m z m \

^ m .2  m 2  

^777,34712 ^ m 3 m jv
(2.5)

\ V m N x vk ^ m ^ m 2 ^ m jv m A r)

where N  is the number of landmarks in the map. The covariance matrix represents the uncertainty in 

all the variables in the state vector and the correlations between landmarks and the robot pose. The 

initial position of the robot is taken to be the origin of the world reference frame. At the beginning,
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none of the landmark locations are known. As the robot moves, the dimensions of x k and Pk grow 

dynamically with the number of landmarks in the map. Figure 2.2 illustrates the simulated image of 

the map obtained using the EKF algorithm. The map consists of six landmarks denoted by stars. The 

ellipses around the landmarks show the residual uncertainty as specified by part of the covariance 

matrix Pk . The dotted line represents the estimated trajectory of the robot. The robot starts from 

a known initial pose. Similarly, the robot’s path is uncertain, as indicated by the ellipses that are 

shown along the path.

jj)> Robot 

^  Landmarks 

  Robot Path

Figure 2.2: Example of Extended Kalman Filter estimation of the map and the robot path. Land­
marks are denoted by stars and the triangle represents the robot. All the ellipses show the uncertain­
ties around the estimated landmark positions and robot poses respectively.

The evolution of the EKF involves two steps as the mean Xk and the covariance matrix Pk 

change. The prediction step uses a motion model to determine the robot’s pose and how its uncer­

tainty increases after it moves. An updating step then incorporates the sensor model that describes 

how the uncertainty of both the robot pose and the map can be reduced. In practice, both the motion 

model and the sensor model are often non-linear functions. In a general EKF framework, the lin­

earization process is performed on both models. EKF-SLAM makes a Gaussian noise assumption

for both the motion model and the sensor model. Such an assumption is sufficient as long as the

non-linearity of the system is small.

The motion model is in the form:

Xk =  f ( x k - i , u k )  +  w k ( 2 .6 )

where f { x k- i , u k) models the robot kinematics and w k is a zero-mean additive Gaussian noise with 

covariance matrix Q k .

The sensor model is described as the following:

zk = h{xk) +  vk (2.7)
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where h(xk)  describes the formation process of sensor measurements and vu is additive sensor 

noise, characterized by a zero-mean Gaussian with the covariance matrix Rk.

Assuming the estimated system state x k- i  and its covariance matrix Pk- i  from the last iteration, 

the prediction step of the Extended Kalman Filter incorporating the odometry data, is defined by the 

following:

Xk~ =  f ( x k - i , u k ) (2.8)

Pk~ = A kP k - i A kT +  Qk (2.9)

where Ak  is the Jacobian matrix of /  with respect to x k- 1 .

The observation update is described as follows:

K k = Pk - H kT (H kP k - H k T + R kf 1 (2.10)

Xk — x k~ +  K k {zk ~ h(xk~)) (2 .11)

Pk = (1 -  KkHk)Pk~  (2.12)

where H k is the Jacobian matrix of h  with respect to x k and AT is the Kalman gain that minimizes 

the difference between the true state and the estimated one.

The EKF-SLAM algorithm updates the system state (the robot pose and the landmarks) and the 

system covariance matrix every time an observation is made. Such an update process requires time 

quadratic in the number of landmarks in the map. Practical real-time implementations with many 

landmarks is the main disadvantage of this type of algorithm. However, because of the correlations 

between all the landmarks and the robot pose, EKF-SLAM gives better performance when the robot 

closes the loop, which means that the robot comes back to the start position [28]. Another important 

limitation of the EKF-SLAM approach lies in the Gaussian noise assumption, which is not suitable in 

non-Gaussian noise situations. More generally, the EKF-SLAM algorithm collapses due to failure 

in the correspondence problem, which is the problem of correctly associating individual sensor 

measurements with landmarks already in the map.

2.2.2 FastSLAM

The FastSLAM algorithm, introduced by Montemerlo et al. [26], represents the system state by a 

set of weighted particles distributed according to the distribution p ( x k \z\-.k, u i:k)- It uses a particle 

filter [15] to estimate the robot path, and a separate low-dimension EKF to estimate each indi­

vidual landmark. Compared to the EKF-SLAM algorithm, FastSLAM can represent a non-linear 

motion model without techniques that approximate the model via a linear function. As a result, 

FastSLAM can be used on problems that EKF is not well-suited, for example, when the kinematics

9
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are highly non-linear. An efficient implementation of the FastSLAM algorithm is time logarithmic 

in the number of landmarks [28]. Therefore, FastSLAM is more efficient than EKF-SLAM in terms 

of time complexity. Recent research finds that both FastSLAM and EKF-SLAM suffer from incon­

sistency [4,5], which means both algorithms fail to accurately estimate the uncertainty of the system 

state.

An important characteristic of the SLAM problem lies in the fact that given a robot pose, land­

mark locations can be estimated independently of each other. The SLAM system state can be fac­

tored into a robot pose component x v and a conditional map component m:

p{xi:k \z i:k ,u1:k) = p ( m \ x \ . k , z 1:k)p{x\.k \z1:k , u u k ) (2.13)

Notice that the probability distribution is conditioned on the trajectory x \ . k rather than the single 

pose x k . Given the robot’s trajectory, the map landmarks become independent, and the recursive 

estimate divides the problem into two independent processes: estimation for the robot pose and that 

for the map. A robot pose is sampled, and assuming that this pose is perfect, the observed landmarks 

are updated individually as an EKF measurement update from a known robot pose. Thus, the map 

for a single particle is governed by the accuracy of the robot’s trajectory.

Each particle consists of the robot pose, all the landmarks and their uncertainty covariance ma­

trices. Calculating the distributionp ( x i :k\zi-k , u i :k) from time k — 1 to time k  involves generating a 

new particle set. This new particle set incorporates new odometry data u k and sensor measurement 

Zk- The general FastSLAM 2.0 [17] algorithm is performed in the following steps:

•  Prediction

For each particle, compute a proposal distribution p(x l \ x \-k-i> z ^-ki which is the ap­

proximation of the true distribution p{xk \x\.k_ 1, z \ .k , u i :k), and draw a sample robot pose 

from it:

X k ~ P ( Xt \ X l : k - l , z l-.k,U1:k)~ (2.14)

•  Measurement Update

For each particle, perform an EKF update on the observed landmarks as a simple mapping 

operation with a known robot pose.

•  Importance Weight

Samples are given importance weights to compensate for their variation. Calculate weight 

samples according to the importance function:

w k = w k„ 1-------— — --------------------—------ (2.15)
PKX k \ X l : k - V Z^ k , u l-.k)

which offsets the difference between the proposal distribution and the desired distribution by 

adjusting the weight of each particle.
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•  Resampling

The purpose of resampling is so that the particles are not distributed according to the desired 

distribution. New particles are selected from the previous particle set with replacement ac­

cording to the importance weight Wk- Selected particles are given uniform weight, Wk — 1 /N ,  

where N is the number of particles [28].

There are two versions of FastSLAM in the literature. For FastSLAM 1.0 [26], the robot pose is 

only sampled from the most recent odometry data ?//,, (see Equation 2.16), not paying attention to 

measurement z^.

X k ^ p ( x vk\x  I : f c - i ) _  (2.16)

FastSLAM 2.0 [27], described in the above procedure, proposes an improvement to the proposal 

distribution by taking the measurement information into account (see Equation 2.14). This new 

proposal improves the performance of FastSLAM, especially when the accuracy of the motion model 

is relatively lower than that of the robot’s sensor model [28].

2.3 Bearing-only Visual SLAM

Many solutions have been used to successfully solve the SLAM problem with sensors that provide 

both range and bearing information. However, sensors such as laser range finders are normally either 

large, heavy or expensive. Using cameras as sensors to help solve SLAM, has recently become an 

active research topic because of its many benefits over range-bearing sensors. First, cameras can 

be cheap, light and easily integrated into an embedded robot system. Second, it is possible to 

recover three-dimensional landmark positions from processing multiple two-dimensional images. 

Last, many well-known algorithms in computer vision can be used to solve feature detection and 

data association problems when solving the SLAM problem.

Solving the SLAM problem with a single camera falls into one SLAM algorithm category: 

bearing-only visual SLAM [12,23], Sensor measurements obtained from a camera can be used 

to calculate the angle to a landmark but not the range. The unavailability of the range information 

of the landmarks makes solving bearing-only visual SLAM a challenging task. Since the mean and 

the covariance of the landmark positions cannot be obtained by one observation, EKF or FastSLAM 

cannot be used directly because a full Gaussian estimation of the landmark position is required. 

Therefore, when a landmark is first observed, it is not incorporated as a landmark in the map of 

SLAM until it is well-conditioned, which means that it can be approximated by a Gaussian distri­

bution. At least two observations at two different robot poses can be used to localize the position of 

the landmark. The process of initializing the three-dimensional location of a landmark is referred to 

as landmark initialization problem for bearing-only visual SLAM [2,10,24],

Another interesting topic in bearing-only visual SLAM is feature detection. Features are im­

age points corresponding to three-dimensional landmarks in the physical environment. The task of
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feature detection is to extract features from the measurements, and thus provide useful information 

from images to be used in the SLAM framework. The Harris Corner detector [7] is one of the most 

popular feature detection algorithms. This algorithm calculates the value of the corner response 

and selects a good corner point which has the largest intensity change in all directions. Another 

widely used feature detection algorithm, David Lowe’s SIFT [25], can extract distinctive features 

from images. SIFT is able to robustly identify objects and is rotation, scale, and intensity invariant.

2.4 Localization

The algorithms described above all address the problem of estimating the robot pose as well as a 

map of its environment, which is known as Simultaneously Localization and Mapping (SLAM). 

The simpler case - estimating the robot pose with a known map - is also a basic perceptual problem 

in mobile robot navigation. Localization has the reputation of being robust and easy to implement 

compare to SLAM. Most importantly, localization is very useful for our experiments in this thesis 

because it separates the landmark initialization problem from the bearing-only visual SLAM prob­

lem. As a result, localization provides us a more convenient robot navigation algorithm to verify our 

camera sensor model than SLAM does. A probabilistic camera sensor model describes the formation 

process of sensor measurements that generated in the physical world. Such a model is independent 

of various types of robot navigation problems.

The localization problem is essentially the process of matching the map coordinate system and 

the robot’s local coordinate system. With a known map of its environment, the goal of the robot is 

to determine its pose relative to this map given the perceptions of the environment and its move­

ment. Because the robot pose cannot be measured directly and only one sensor measurement is not 

sufficient, measurement data has to be integrated over time to determine the robot’s pose. Not every 

localization problem is equally difficult. Assuming a known initial robot pose, position tracking is 

an easier problem than global localization, of which the initial pose of the robot is unknown. The 

rest of the thesis talks about localization with known initial robot pose.

Localization using a single camera is a simple version of bearing-only visual SLAM. Visual 

localization assumes that we have knowledge of the map. In this case, localization does not have the 

landmark initialization problem, which is quite challenging to solve in bearing-only visual SLAM. 

Most of the popular algorithms for solving SLAM can also be applied to visual localization, namely 

EKF localization and particle filter based localization, which is similar to FastSLAM. For EKF 

localization, the system state vector only consists of the robot pose. Therefore, EKF-SLAM is the 

same as EKF localization algorithm, except that the algorithm does not need to update the landmark 

positions in the map any more. As mentioned earlier, FastSLAM decomposes the SLAM problem 

into two subproblems: localization and mapping. Particle filter based localization is equal to the 

localization component of the FastSLAM algorithm.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.5 Probabilistic Camera Sensor Model

A sensor model pfz/J.x/,/) describes a robot’s expected measurement z .̂ given its system state x/... In 

the context of bearing-only visual SLAM and localization, a probabilistic camera sensor model can 

be described by Equation 2.7, which consists of a deterministic component h(xk)  and an uncertain 

component Vk- The first component h(xk)  is essentially a pinhole camera model, which projects the 

three-dimensional landmarks onto a two-dimensional image plane. The projection process is shown 

in Figure 2.3. The optical axis passes through the optical centre and is orthogonal to the image plane. 

Its intersection with the image plane is defined as the principal point. A three-dimensional landmark 

is projected onto the image plane.

I Im age Point

Optical Center

Principal point

Image Plane

3D Landmark

Optical Axis

Figure 2.3: A pinhole camera model. A three-dimensional landmark is projected onto a two- 
dimensional image plane. Its intersection of the image plane is the image point of the three- 
dimensional landmark.

Much work has been done in camera calibration [20,32, 36] for establishing a deterministic 

sensor model, but such a model is insufficient for bearing-only visual SLAM. Depending on the 

accuracy of the camera intrinsic parameters, the precision of the position of the image features ob­

tained from the pinhole camera model in the two-dimensional space varies. Because the computed 

parameters will never be the actual ones, it is important to capture the uncertainty of the measure­

ment due to the inaccuracy of the deterministic part of the sensor model. In addition, the noise 

introduced by the feature detection algorithm influences the accuracy of the sensor measurements. 

However, there is limited work discussing the development of a probabilistic camera sensor model.

Existing research in bearing-only visual SLAM has used sensor models that are either ad-hoc or 

based on the physics of the sensor. In a recent paper, Robert Sim et al. [29] used a stereo camera 

to explore an unknown environment. They used a fixed 10.0 pixels as the camera measurement 

noise. Although their camera sensor model is used for a stereo camera, the measurement noise 

covariance matrix can still be applicable to a single camera. Such a constant sensor model seems to 

be sufficient for their system. Nevertheless, theoretical understanding of a camera sensor model has
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



scientific significance.

Davison’s work on monocular SLAM assumed a Gaussian noise sensor model whose covariance 

was determined by the image resolution [11]. However, detailed information was not provided 

regarding how the measurement noise covariance was calculated.

In Zucchelli and Kosecka’s work [37], the relationship between the coordinates of the normalized 

feature position x n =  [x_n, y_n, 1] and the image coordinates (pixel) x 1 =  [u, v,  1] was defined by:

where [cci, CC2 ] is the principal point. The distortion of the image is ignored, and both the horizontal 

focal length and the vertical focal length are the same / .  They discussed how to propagate the 

uncertainty of a camera’s intrinsic parameters into a covariance matrix E xn that characterizes the 

noisy feature positions in the normalized three-dimensional space. However, this still needs to be 

further propagated into the image space to capture E xi in order for it to be useful for bearing-only 

visual SLAM.

In a RoboCup application paper [18], a sensor model was represented by the range and bearing 

data, although the Sony Aibo used a camera to sense the artificial colored landmarks. They obtained 

the sensor model by calculating the standard deviation between the actual measurements and the 

estimated ones from the different samples. Our approach to building a probabilistic camera sensor 

model uses a similar empirical idea.

2.6 Summary

SLAM is an active research topic of both practical and theoretical importance. Over the past decade, 

much research has focused on understanding the problem of SLAM, implementing different variants 

of SLAM, and developing more consistent and efficient SLAM algorithms. The key challenge of 

SLAM in the near future is how to employ SLAM in large-scale or unstructured environments [3], 

However, Julier [22] posed an insightful question about current research of SLAM: “many of these 

discussions have missed a fundamental point: does SLAM actually work?” He has looked at answer­

ing the following question: what happens to SLAM if there are data association errors, modelling 

errors or probability transformation errors? Very limited attention has been received in discussing 

those fundamental problems. We consider the issues of how to build a probabilistic camera sensor 

model and the impacts of the camera sensor model on the performance of the visual localization 

problem. In the next chapter, we will describe how we build a probabilistic camera sensor model.

(2.17)
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Chapter 3

Model Development

In the previous chapter, we presented background information and related work in the research areas 

of SLAM and, more specifically, camera sensor models. In this chapter, we introduce our method for 

building a probabilistic camera sensor model for bearing-only visual SLAM. We begin by defining 

what is a camera sensor model. We then discuss the methodology used to build the sensor model. 

Finally, we describe our probabilistic camera sensor model, which is developed based on the camera 

calibration process and the definition of measurement noise.

3.1 Probabilistic Camera Sensor Model

In bearing-only visual SLAM, a mobile robot moves around an unknown environment and makes 

measurements using a single camera. The robot’s pose is defined by x v = [xv , y v , zv ,tp,9,4>], 

where [xv , y v , zv] is the three-dimensional position and ['</;, 9 , <$>] represents the orientation. A vector 

m  = [mi, m 2 ,.... rn,v] describes the three-dimensional locations of landmarks in the map, where 

N  is the total number of landmarks. The system state at time k is represented as

x k = [ x l , m i , m 2, m 3, . . . , m N )T (3.1)

The robot moves to the pose x vk at time k  and the odometry data u \ :k represent all the robot 

movements so far. zi,k are a set of landmark measurements available at time k. A general SLAM 

algorithm recursively estimates both the robot pose and the map from a sequence of noisy sensor 

measurements and the odometry data. For each iteration, the SLAM algorithm works in two steps: 

state prediction and measurement update as shown in Figure 3.1. First, the odometry data from the 

robot’s wheel encoders is used to predict both the robot pose and the map. When a new measurement 

zk is made, the predicted system state is immediately corrected based on the new information using:

p ( x k \zi,k , u 1:k) oc p ( z k \xk)p{xk \zi,k_ i , u i , k)~ (3.2)

where the probabilistic distribution p{xk \zi:k,u\.,k ) over x k represents the uncertainty of the system 

state created by the noisy odometry data and uncertain measurements. The distribution p ( x k \zi ,k- \ , u\ ,k)
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is the proposal distribution from the prediction step, and p(zk\%k) is the sensor model, describing 

the likelihood of making measurement given the system state x^.

Wheel
Encoders

u1:k’ Qk
Prediction

Camera
z f.k. Rk

»  Update

Robot Pose 
and Map

Figure 3.1: A flowchart of bearing-only visual SLAM.

The uncertainty of the system state due to the noisy odometry data and uncertain measurements 

is represented by a probabilistic distribution p(xk \ z \ - k ,u i :k) over x/,.. A measurement Zk is related 

to the current state Xk and measurement noise Vk, which is the difference between the actual mea­

surement and the estimated measurement, by the function:

zk =  h ( x k) +  vk (3.3)

where h(xk)  is the deterministic component of the camera sensor model and Vk is the uncertain 

component.

For bearing-only visual SLAM, let X c  = [xc , y c . z c ] be the three-dimensional position of a 

landmark in the camera reference frame. The landmark is reprojected onto the image plane by:

I)
where

r 2 =  ( £ ) ’ +  ( p f  0 .5 )

where f x and f y are the focal length in the horizontal and vertical directions respectively, [cci, CC2 ] is 

the principal point (image center) of the image, and k\  is the radial distortion coefficient. The camera 

intrinsic parameters [fx , f y , cci, CC2 , k\}T , which describe the camera’s internal characteristics, can 

be estimated from the camera calibration process.

In the SLAM framework, the measurement noise Vk can be captured by a covariance matrix Rk,  

which determines the accuracy of the measurement information acquired from the sensor model. 

When Rk  approaches zero, the algorithm relies more on the actual measurement than the odometry 

data. Thus, Rk  determines the significance of measurement information on the final estimation of 

the robot pose and the map of the environment. An accurate camera sensor model properly estimates 

the measurement noise, an optimistic camera sensor model underestimates the measurement noise, 

and a pessimistic camera sensor model overestimates the measurement noise. The focus of this
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chapter is to model the uncertain component of a camera sensor model, which is applicable to both 

bearing-only visual SLAM and visual localization.

3.2 Methodology

In this section, we introduce the methodology used to build our probabilistic camera sensor model. 

The deterministic component of a camera sensor model is defined as a function h (a pinhole camera 

model) from three-dimensional space to two-dimensional image space as described in Equation 3.4. 

Our focus is to estimate the measurement noise inherent in the sensor measurements from a camera 

model.

There are three different image points associated with a three-dimensional landmark X w  in the 

world reference frame: the actual observed image point x,  the measured image point x  and the 

estimated image point x 1, as shown in Figure 3.2. The actual observed image point is the ground 

truth where the three-dimensional landmark is projected onto an image plane through a camera. The 

position of the actual image point in the image space is determined using feature detection algorithms 

such as the Harris Corner detector [7] or the SIFT [25] algorithm. However, the measured point x  is 

not the actual point x  because of the error in the corner detection algorithm. We can approximate the 

actual image point by projecting X w  into the image space using a pinhole camera model described 

by Equation 3.4. Thus, the estimated image point x 1 = [u , v] equals h ( x k). Notice that the actual 

image point, the measured image point and the estimated image point are all on the same image 

plane.

h { x k )

Image Plane

Figure 3.2: A diagram of image points associated with a three-dimensional landmark X w . x  is the 
actual image point on the image plane, x  is the measured image point and x 1 is the estimated image 
point.

The reprojection error is defined as the difference between the measured image point x  and the 

estimated image point x 1 [19]. The difference between the actual observed image point x  and the 

estimated image point x 1 is the measurement noise. Their relationship in the vector space is defined 

by:

x  — x 1 = (x — x)  -I- (x -  x 1) (3.6)
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where the componet x  — x  is the error introduced by the feature detection algorithm. Since it is 

impossible to get the position of the actual image point, we cannot estimate the measurement noise 

or measurement noise covariance matrix Rk  directly. Our method outlined in the Section 3.3.2 esti­

mates the covariance matrix Rk  indirectly. First, we design experiments to estimate the reprojection 

errors. We then consider the noise introduced by the feature detection algorithm.

3.3 Model Building

We now introduce our method for building a probabilistic camera sensor model for bearing-only 

visual SLAM. First, a camera calibration process is introduced to build the deterministic component 

of the camera sensor model. We then outline our procedure for estimating the uncertain component 

Vk- Our method is inspired by the camera calibration process, and the model is built based on the 

definition of measurement noise, which is the difference between the actual image point and the 

estimated image point.

3.3.1 Camera Calibration

A probabilistic camera sensor model consists of two components: a pinhole camera model h(xk)  

and measurement noise Vk- To determine the pinhole camera model, we need to calculate the cam­

era’s intrinsic parameters, which can be obtained from the camera calibration process. Various 

methods for camera calibration can be found in the literature [20,32,36], A commonly used camera 

calibration toolbox [6] is based on Heikkila and Silven’s work.

Camera calibration is the process of determining the intrinsic parameters and extrinsic param­

eters of a camera. Extrinsic parameters are required to transform object coordinates into camera 

centered coordinates. In other words, we can calculate the three-dimensional positions of the land­

marks in the camera reference frame using the extrinsic parameters. Intrinsic parameters describe 

the internal geometric and optical characteristics of a camera. The intrinsic parameters used in 

this thesis include the focal length [fx , f y], the principal point [cci,cc2 ], and the radial distortion 

coefficient k \ .

The calibration procedure used in this work is performed with a checkerboard as shown in Fig­

ure 3.3. The origin of the world reference frame is the left hand corner of the checkerboard, and the 

z-axis of the frame is perpendicular to the checkerboard plane. The comers on the checkerboard are 

three-dimensional landmarks, and their corresponding image points in the image are feature points. 

Based on the knowledge of the grid size, we can calculate the three-dimensional locations of all the 

corners on the checkerboard in the world reference frame. The procedure first ignores the radial 

distortion coefficient k\  to acquire an initial value of the focal length [fx , f y] and the principal point 

[cci, CC2 ]. The resulting transformation from a corner point at location X w  =  \xw , y w , z w ] to a 

image point [u, v] is represented by the following equation:
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Figure 3.3: A checkerboard with the origin of the world reference frame is on the left hand corner. 
Z-axis of the frame is perpendicular to the checkerboard plane.

where matrix A  is a homogeneous 3 x 4  matrix. Given sufficient pairs of image points and corner 

locations, the Direct Linear Transformation (DLT) algorithm can be used to solve this linear trans­

formation [1]. Focal lengths, principal point and extrinsic parameters can be extracted from the 

solved matrix A.  Next, an optimization algorithm is used to iteratively calculate all extrinsic param­

eters and intrinsic parameters including the radial distortion coefficient. Parameters \ fx, f y, c c i, cc2] 

from the DLT algorithm are used as the initial values for the optimization procedure to avoid local 

minima. The optimization algorithm minimizes the sum of squared residuals between the observed 

image points and the estimated image points obtained from the pinhole camera model. The standard 

deviation of the parameters [fx , f y , cci, cc2, k\] can be calculated using backward propagation of 

the covariance of residuals between the observed image points and the estimated image points [19].

After camera calibration, the camera’s intrinsic parameters are known and a pinhole camera 

model is determined. The following section describes our method for estimating the uncertain com­

ponent of the probabilistic camera model.

3.3.2 Reprojection Error

We cannot find the measurement noise directly. However, we can calculate the reprojection error 

first, and then consider the noise introduced by the feature detection algorithm. The following 

paragraph outlines how to determine the reprojection error to build a probabilistic camera sensor 

model.

(3.7)
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Figure 3.4 shows the procedure for building a probabilistic camera sensor model [35]. This 

method is statistical. When we collect a sufficient number of samples of the reprojection error be­

tween a measured image point and an estimated image point, we can then determine the reprojection 

error covariance matrix T,reproj  from the sampled reprojection errors. We first determine the number 

of samples N  to obtain a statistically accurate estimate of the reprojection error covariance matrix. 

The process starts by first calibrating the camera. The camera calibration technique, described in 

Section 3.3.1, provides the camera’s intrinsic and extrinsic parameters. We then take an image of the 

camera calibration rig, which in our work is a checkerboard, placed at an arbitrary distance from the 

camera as shown in Figure 3.5. From the extrinsic parameters, we can now calculate the transfor­

mation between the checkerboard and the camera. Using the transformation, the three-dimensional 

positions of landmarks (the corner points) in the camera reference frame are obtained. Applying the 

pinhole camera model in Equation 3.4, we can obtain the coordinates of the estimated image points 

and their difference between the measured image points, which are the reprojection errors.

20
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Set # of samples 
total = 0

No
total = N?
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Camera Calibration

Fit the samples to a model
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Measure the reprojection 
errors of all feature points

Reproject the 3D landmarks 
to the image plane

Calculate 3D coordinates 
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Figure 3.4: A flowchart describing the construction of a probabilistic sensor model for a camera [35].
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If the number of feature points is smaller than N ,  we take another image of the checkerboard 

and repeat the above process. Otherwise, we use the collected samples of the reprojection errors to 

build a model to obtain the reprojection error covariance matrix E rtpro, . We repeat the procedure 

in Figure 3.4 when the distance between the checkerboard and the camera changes. We can then 

calculate different T,reproj  when the feature points are at various distances from the camera.

Figure 3.5: A camera mounted on an ActiveMedia Pioneer 3 robot facing a checkerboard.

The measurement noise in bearing-only visual SLAM not only comes from reprojection but also 

from errors caused by the feature detection algorithm (see Equation 3.6). In this thesis, we use a 

popular feature detection algorithm, the Harris Corner detector, to find the actual observed feature 

points Xi in the image. However, as with all feature detectors, the location of the features within the 

image may not be accurate. In Sojka’s work, the accuracy of the Harris Corner Detector was evalu­

ated on both synthesized images and real images [31]. They demonstrated that the average distance 

between the actual image points and the detected image points is between 0.5 pixels and one pixel. 

Because the Harris Corner Detector has sub-pixel accuracy, we assume that the variance of the errors 

introduced by the Harris Corner Detector is bounded by one pixel. Since the error introduced by the 

Harris Corner Detector is evaluated based on a different process from the reprojection errors, which 

are determined from the procedure in Figure 3.4, we assume that these two errors are independent 

from each other. Therefore, the covariance matrix of the measurement noise Rk  is equal to the sum 

of both reprojection error covariance matrix E repr0j  and the detection algorithm error covariance 

matrix. Numerically, Rk  is equal to T,reproj  plus the extra pixel errors introduced by the Harris Cor­

ner Detector, which are added to the diagonal elements of the reprojection error covariance matrix. 

In this thesis, we use the upper bound of one pixel as the noise caused by the Harris Corner Detector.
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3.4 Summary

Robot navigation algorithms such as EKF-SLAM and FastSLAM require both deterministic and 

uncertain components as measurement inputs to the Baye Filters. As we mentioned in the related 

work, much work has been done in estimating the intrinsic parameters of a camera. Our major 

concern in this thesis is how to build the uncertain component of a camera sensor model. Since we 

cannot estimate the measurement noise directly, our method introduces a procedure to determine the 

measurement noise covariance matrix Rk  indirectly.
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Chapter 4

Experiments of Building a Camera 
Sensor Model

In this chapter, we describe the experiments performed to build a probabilistic camera sensor model. 

First, the deterministic component of a camera sensor model is built by estimating the camera’s 

intrinsic parameters. Then, the procedure to build the uncertain component is introduced and issues 

related to building a camera sensor model using real data are discussed. Finally, the properties of a 

camera sensor model are presented.

4.1 Deterministic Component of a Camera Sensor Model

In this work, the deterministic component of the camera sensor model is a pinhole camera model 

from the camera’s intrinsic parameters. We use the camera calibration process to determine the 

necessary intrinsic parameters and their uncertainties. Our camera calibration is performed using the 

Camera Calibration Toolbox for Matlab [6] on images taken from a Dragonfly IEEE-1394 camera 

with 640x480 pixel resolution. The calibration is performed using a planar checkerboard shown 

in Figure 4.1 with 35 corners used as landmarks. The size of the grid on the checkerboard is 31.5 

cm x31.5 cm. Table 4.1 shows the resulting intrinsic camera parameters and their corresponding 

standard deviations.

f x  [pixel] f y [pixel] cci [pixel] cc2 [pixel] k \  [pixel]

769.77 ±1.45 775.08 ±1.41 330.43 ±1.09 254.77 ±1.03 -0.36 ±0.003

Table 4.1: Intrinsic camera parameters and their standard deviations. f x and f y are the camera focal 
length in x and y directions respectively, cci and CC2  represent the principal point on the image 
plane, k i  is the radial distortion scale factor of the image.

4.2 Uncertain Component of a Camera Sensor Model

After camera calibration, we proceed to estimate the measurement noise covariance matrix. The 

following sections present related topics regarding to the use of reprojection errors to build the
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Figure 4.1: The calibration pattern used in the experiments. Arrows represent the reprojection errors 
between the measured corners and the estimated ones.

uncertain component of a camera sensor model. In addition, a normality test is used to verify the 

assumption that a Gaussian function can be used to model the measurement noise for both the EKF- 

SLAM and the FastSLAM algorithms. Finally, a measurement noise covariance matrix is obtained 

indirectly from the reprojection error covariance matrix.

4.2.1 Normality Test

From the camera calibration process, we obtain the deterministic component of a camera sensor 

model. We then follow the model building procedure described in Section 3.3.2 to generate the 

reprojection errors using corner points as landmarks at various distances from the camera. In Fig­

ure 4.1, each arrow of the corner represents the reprojection error, which is the difference between 

the measured corner and the estimated corner. From the resulting set of images, we determine the 

reprojection error covariance matrix.

The reprojection errors appear to follow a normal distribution according to our experimental 

results. In order to test this statistical hypothesis, we use Geary’s test [33]. This test is based on 

the ratio of two estimators of the sample standard deviation. For example, suppose there is a set of 

random samples X \ ,  X q, ... , X n , where U is defined as

^ t \ X i - X \ / n  
U =  *=1 (4.1)

J t ( X i - X ) 2/ n

The standard normality Z  is transformed from U,  using:

Z  =  0 .2 6 6 1 / ^  (4'2) 
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This transformation produces a z-statistic that is converted to a probability by calculating the p- 

value:

p { Z )  2  ( 4 ' 3 )

The decision to accept the normality hypothesis is made when the p-value is larger than or equal 

to the significance value. In our experiments, we set the significance level at a  =  0.05, which 

is commonly used in statistical analysis. We then test the normality hypothesis for landmarks at 

different ranges. The results of Geary’s test are shown in Table 4.2.1.

ranges[m] p-value (x) p-value(y)

50 cm 0.5972 0.7771

70 cm 0.2158 0.3092

90 cm 0.0684 0.2939

110 cm 0.0572 0.1018

130 cm 0.3204 0.9498

150 cm 0.0651 0.1362

170 cm 0.8533 0.6023

210 cm 0.2243 0.7927

Table 4.2: The results of Geary’s test on reprojection error samples at both x and y directions. The 
number of samples used is 500. The significance level is set to a  — 0.05.

Since the p-values of the reprojection error samples along both the x and y directions are larger 

than a,  we are able to conclude that the reprojection errors do indeed follow Gaussian distributions. 

We proceed to determine the reprojection error covariance matrix using

1 N —  -  
^ re pro j  =  “Jy C i - X f  (4.4)

i = 1

The covariance matrices at the three different ranges: 50 cm, 130 cm and 210 cm, shown in Fig­

ures 4.2 to 4.4), are found to be:

_  / 0.2792 0.006 \
W e p r o j l  -   ̂q  0Q6 q  2532j  (4 .5)

„  _  /0 .1 2 5 2 - 0 .0 0 l \
r e p r 0j2  -  0Q 1 0 . i 2 0 2)  ( }

/0 .0982 0.000 \
WeprojZ ~   ̂q 00() 0 1 0 6 2  ̂ 14./)
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3D Histogram and Bivariate normal distribution of reprojection errors

Figure 4.2: Reprojection error standard deviation along both the horizontal and vertical directions. 
The reprojection error covariance matrix S reproji is (0.2792, 0.006; 0.006, 0.2532). The landmarks 
are at a distance of 50 cm from the camera.

3D Histogram and Bivariate normal distribution of reprojectron errors

Figure 4.3: Reprojection error standard deviation along both the horizontal and vertical directions. 
The reprojection error covariance matrix T,reproj2 is (0.1252, -0.001; -0.001, 0.1202). The land­
marks are at a distance of 130 cm from the camera.
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3D Histogram and Bivariate normal d istribution of reprojection errors

Figure 4.4: Reprojection error standard deviation along both the horizontal and vertical directions. 
The reprojection error covariance matrix E repr0j 3  is (0.0982, 0.000; 0.000 0.1062). The landmarks 
are at a distance of 210 cm from the camera.

As mentioned in Section 3.3.2, the error introduced by the Harris Corner Detector algorithm is 

independent of the reprojection errors. Thus, the measurement noise covariance matrix, which is the 

sum of the measured noise covariance matrix and the reprojection error covariance matrix, still fol­

lows a Gaussian distribution. Since popular SLAM algorithms, such as EKF-SLAM and FastSLAM, 

assume a Gaussian distribution of the measurement noise, our confirmation of this assumption is a 

convenient result for vision based SLAM algorithms.

4.2.2 Sensitivity to Range

Our previous experiments show that range, which is the distance between the landmark and the 

camera, is important. As shown earlier, the reprojection error covariance matrix has the value of

-‘re p ro j  1 : (0.2792, 0.006; 0.006, 0.2532), S re p r o j2 : = (0.1252, -0.001; -0.001,0.1202), and S re p ro jS

= (0.0982, 0.000; 0.000 0.1062) for the ranges of 50 cm, 130 cm and 210 cm respectively. To 

demonstrate the effect of range on the reprojection error standard deviation, we carry out the model 

building procedure, described in Figure 3.4, at different ranges. Figure 4.5 shows an example of the 

images that are taken at a range of 50 cm away from the camera. In order to obtain a statistically 

meaningful number of feature points, we take a set of images at the same range. Limited by the 

available image resolution of the Dragonfly IEEE-1394 camera, our experimental range between 

the camera and the landmarks extends from 50 cm to 210 cm. Figure 4.6 shows the relationship 

between the reprojection error standard deviation and the range in both the horizontal and the vertical 

directions.

From Figure 4.6, we see that the reprojection error standard deviation in both the horizontal
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Figure 4.5: The relationship between a camera and several images that are taken at a range of 50 cm 
in the camera coordinate frame.

and vertical directions decrease when the landmarks are further away from the camera. Ideally, 

two different three-dimensional points should project to the same image point if they are along the 

same ray originating from the principal point. Why is the reprojection error standard deviation 

sensitive to range? There are two possible reasons to explain this. The first possible reason is the 

discretization error, which is resulting from the fact that the continuous three-dimensional space 

are represented by discrete two-dimensional digital image space. In the three-dimensional space, 

more distant landmarks than close landmarks are represented by the same pixel in a digital image. 

Therefore, the difference between the measured image point and the estimated image point decreases 

with the range.

The second possible reason is the uncertainty of the three-dimensional positions of the land­

marks. For example, there are two three-dimensional landmarks X & = [x%, y ^ ,  z ^ \  and X b  = 

z%]. If the scale factor t  is larger than one, then the landmark B is further away in the 

camera reference frame. According to Equation 3.4, these two landmarks are projected onto the 

same two-dimensional image point x 1 = [u. v). The coordinate value along the 2  axis for landmark 

B scales the reprojection error. As a result, the same noise in the coordinates of a three-dimensional 

landmark leads to different noise in the image space for close and distant landmarks. Thus the re­

projection errors in the two-dimensional images of distant three-dimensional landmarks are smaller 

than those of close landmarks [35].

4.2.3 Measurement Noise Covariance Matrix

In order to obtain the measurement noise covariance matrix, we add an extra pixel noise, intro­

duced by the corner detection algorithm, to the diagonal elements of the reprojetion error covariance 

matrix. Since the off-diagonal values are very small and therefore can be ignored, we define the
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Figure 4.6: Reprojection error standard deviation along the x  and y  directions for landmarks at 
various distances from the camera.

measurement noise covariance matrix Rk  as diag(5u2, dv'2). 5u and 5v represent the measurement 

noise standard deviation in the x  and y  directions respectively. Figure 4.7 shows the final measure­

ment noise standard deviation of various ranges after adding one extra pixel noise to account for 

error in the Harris Corner Detector. Since the accuracy of the Harris Corner Detector is sub-pixel, 

therefore, adding one pixel noise sets the upper bound of the measurement noise standard deviation. 

The experimental results demonstrate that compared to the reprojection error standard deviation, the 

measurement noise standard deviation is less sensitive to the ranges, since the noise introduced by 

the Harris Corner Detector algorithm dominated the reprojection error in the measurement noise. 

Therefore, both the close landmarks and distant landmarks have a similar value of measurement 

noise standard deviation, of which the maximum difference is approximately 0.03 pixels. There­

fore, a constant measurement noise covariance matrix Rk = diag( l 2, l 2) is sufficient for a set of 

landmarks in a map regardless of their distance from the camera. Since the pinhole camera model is 

deterministic, we can claim that a camera sensor model with constant measurement noise variance 

can be used for bearing-only visual SLAM and localization algorithms.
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Figure 4.7: Plot of the measurement noise standard deviation with respect to various ranges between 
the camera and the landmarks. The measurement noise covariance matrix Rk = diag(5u2,5v2). 5u 
and 5v represent the measurement noise standard deviation in the x  and y  directions respectively.
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4.3 Summary

In summary, the construction of the camera sensor model can be obtained from the camera cali­

bration process using our reprojection error procedure. In the procedure, we build a camera sensor 

model based on the definition of measurement noise, which is the difference between the actual 

measurement and the estimated measurement. According to Geary’s test, we conclude that the 

reprojection errors in both the x and y directions follow normal distributions, which verifies the 

assumption that the sensor model noise is Gaussian. By repeating the same procedure using differ­

ent ranges between the camera and the checkerboard, we find that the reprojection error standard 

deviation decrease as the range increases. Although the resulting changes are not significant with 

respect to the final measurement noise covariance matrix, it provides an interesting observation of 

camera sensor models in bearing-only visual SLAM. Our study of a probabilistic camera sensor 

model helps us understand why a camera sensor model with constant measurement noise variance is 

sufficient for landmarks at any distance. In addition, we analyze the sources of the noisy measure­

ment and the difference between the measurement noise and the reprojection error. Therefore, our 

method not only builds a probabilistic camera sensor model but also provides a detailed study of the 

measurement noise.
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Chapter 5

Model Validation

In the previous chapter, we used real data to build a probabilistic camera sensor model. In this 

chapter, we conduct a set of localization experiments in both a simulated environment and a real 

environment to verify our probabilistic camera sensor model. We then analyze the effect of sensor 

model error on the performance of a particle filter based localization algorithm. Finally, simulation 

and experimental results are presented.

5.1 Experimental Setup

In this chapter, we conduct a series of experiments to validate the sensor model we developed in 

the previous chapter. As we discussed in Chapter 2.6, feature initialization is a very challenging 

problem in bearing-only visual SLAM and is beyond the scope of this thesis. We will avoid feature 

initialization by manually measuring the three-dimensional landmark positions in our real experi­

ments. In the simulation, we always assume that the three-dimensional positions of the landmarks 

are known. As a result, our experiments focus on the localization aspect of SLAM. Nonetheless, 

the experimental results are still applicable to SLAM if the feature initialization algorithm can pro­

vide accurate landmark positions. Since the probabilistic camera sensor model is necessary in any 

probabilistic approach to visual robot navigation, our sensor model is applicable to solve both visual 

localization and bearing-only visual SLAM.

5.1.1 Simulation and Experimental Environment

Our experimental environment is a corridor in the Department of Computing Science at the Uni­

versity of Alberta. Figure 5.1 shows the ActiveMedia Pioneer 3 robot we use in our experiments. 

Wheel encoders are fitted to the embedded computer to provide odometry data, including current 

robot positions and headings relative to the initial pose. Using a single camera, sufficient parallax, 

generated between two image frames, is needed to locate the three-dimensional landmark position. 

If the camera faces forward, it is difficult to obtain sufficient parallax since the camera faces the 

same direction as the robot’s movement. Therefore, a Dragonfly IEEE-1394 camera is mounted
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Figure 5.1: An ActiveMedia Pioneer 3 robot mounted with a camera mounted on the robot facing 
perpendicular to the robot’s forward motion.

on the robot facing perpendicular to the robot’s forward motion. Artificial landmarks are placed 

on the wall so that the Harris Corner Detector can easily identify features from the images. The 

three-dimensional landmark locations are measured relative to the robot’s initial pose. Numbers 

attached to the artificial landmarks help us correctly associate individual sensor measurements with 

landmarks in the map. Figure 5.2 gives a sample image of what is viewed by the robot when it 

travels along the hallway.

The robot is driven in a straight line in the hallway of the Department of Computing Science 

building, shown in Figure 5.3. The robot moves about 15 meters while observing landmarks on 

the wall and takes an image approximately every 15 centimeters. However, the noisy odometry 

data indicates to the robot that it moves in a curve. To evaluate the localization performance, it is 

necessary to know the robot’s real path. For this reason, the robot’s real path is measured manually 

to ensure that accurate distances are recorded.

In the simulation we know the robot’s real path and landmark positions. We simulate the mea­

surement noise by adding Gaussian noise with zero mean to the image feature position. Therefore, 

the added Gaussian noise becomes our true measurement noise for our sensor model. We define 

this probabilistic camera sensor model, using the true measurement noise covariance matrix, as a 

true camera sensor model. Alternatively, we define inaccurate sensor models as sensor models that 

either overestimate or underestimate the measurement noise standard deviation. To evaluate the per­

formance of the true sensor model we built, we use various inaccurate sensor models to perform 

the localization algorithm. Compared with the noisy real environment, our simulation guarantees 

perfect knowledge of the landmark positions and their transformation to the robot pose.

In both the simulation environment and the real environment, the robot moves on a two-dimensional
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Figure 5.2: An ActiveMedia Pioneer 3 robot observes artificial landmarks on the wall from images 
taken using a mounted camera. Corners detected by the Harris Corner Detector are shown by cross 
marks. The numbers in the image refer to the landmarks identification number in the map.

Artificial Landmarks

Wall

Pioneer 3 Robot

Real Path

Odometry

Figure 5.3: A diagram of our ActiveMedia Pioneer 3 robot moving down the hallway of the Depart­
ment of Computing Science. A camera is mounted on the robot and faces sideways to the wall. The 
robot observes artificial landmarks placed on the wall. The solid line indicates the robot’s real path 
and the dotted line represents the odometry data obtained from the robot’s wheel encoders.

plane, where the robot’s centre coordinates (xv , yv ) and orientation (9) are estimated with respect 

to the world reference frame. The robot’s start position is the origin of the world reference frame. 

Landmarks are corner points in the three-dimensional world reference frame and are represented

by X w  = w , y w , z w } Both the robot and the landmarks are registered in the same reference

frame. The landmark positions are transformed into the camera reference frame so they can be in­

corporated into the localization algorithm. Detailed information about the different reference frame
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transformations and other issues related to the localization algorithm implementation can be found 

in Appendix A .l and A.2.

5.1.2 Performance Evaluation

The localization algorithm we use is a particle filter based algorithm which uses a mixture proposal 

distribution. The algorithm is essentially a FastSLAM 2.0 algorithm with a known map. With 

known landmark positions, each particle contains only the robot’s pose. We use 50 particles for 

each experimental run. For each run, we compare the algorithm’s point-estimate of the robot pose, 

which is the average value over 50 particles, to the ground truth. The accumulated error e is the 

accumulated distance between the true pose and the estimated pose over the robot’s trajectory. We 

use the accumulated localization error to evaluate the performance of the localization algorithm. Let 

x \  =  [xvi, yv i, 9-i] be the true robot position, and x \  =  [xv l, yv i. 9t] be the estimated robot position 

at each time step i. We define the accumulated error as:

In order to verify our assumption that the accuracy of a sound estimator should increase with the 

accuracy of its sensor model, we not only use the sensor model we built but also a set of inaccurate 

sensor models that either overestimate or underestimate the measurement noise standard deviation. 

For each experimental setup, 20 runs are carried out to account for the randomness of the particle 

filter. The mean and the standard deviation of the accumulated localization errors over the 20 runs 

will be shown in the result section for each experiment.

In our simulation, we use the same intrinsic parameters that we used for the real environment ex­

periment. The uncertainties of the three-dimensional landmark positions and the transformation 

between the robot centre and the camera can be ignored. This controlled environment allows an 

accurate analysis of the effects of sensor model error. We consider the following statement: the 

accuracy of any probabilistic robot navigation algorithm should increase with the accuracy of the 

probabilistic camera sensor model. We simulate the true noisy sensor model by adding Gaussian 

noise to the estimated image points obtained from the pinhole camera model. We then repeat the 

experiment using various sensor models with different measurement noise covariance matrices. The 

optimal performance of the localization algorithm is expected if we use the true sensor model, where 

the measurement noise covariance R k  =  diag(5u2, Sv2) is equal to the added Gaussian noise and 

the measurement noise standard deviations 5u and Sv are equal.

Two sets of experiments are carried out. As mentioned before, we conduct 20 runs of each 

experiment and the results are averaged. The true measurement noise covariance R k  is equal to

n

(5.1)
i = 0

5.2 Simulation Results
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diag{l 2, l 2). The robot travels along the straight line for approximately 15 meters. For the first 

experiment, the robot can only observe landmarks that are approximately one meter away. In the 

second experiment, the robot travels along the same path and can only observe distant landmarks 

that are approximately two meters away. The simulation results using the close landmarks are shown 

in Figure 5.4 and the corresponding data is listed in Table 5.1. We can see that using the true camera 

sensor model with the measurement noise standard deviation Su =  1 pixel gives 2.39 meters of 

accumulated error (see Equation 5.1), which is 16 percent of the length of the robot’s total traveling 

path. However, the optimal performance with 2.33 meters of accumulated error is given when using 

a sensor model with the measurement noise standard deviation Su = 0.8 pixels. In addition, an 

optimistic sensor model with measurement noise standard deviation Su =  0.1 pixels gives 62.03 

meters of accumulated error, which is about 26 times worse than using the true sensor model. A 

pessimistic sensor model with measurement noise standard deviation 8u =  100 pixels also gives 

non-optimal performance. Its accumulated error is 8.00 meters, which is still approximately three 

times larger than using the true sensor model. Sensor models of 5u  from half to five times larger 

than the true Su provide similar accumulated errors to the true sensor model as shown in Table 5.1. 

The results demonstrate that using our camera sensor model gives small accumulated error although 

not optimal for close landmarks simulation.

The simulation results using distant landmarks are shown in Figure 5.5 with the corresponding 

data in Table 5.2. Using the true camera sensor model with the measurement noise standard deviation 

5u =  1 pixel gives 9.29 meters of accumulated error, which is 62 percent of the length of the robot’s 

total traveling path. When using a sensor model with the measurement noise standard deviation Su = 

3 pixels, the optimal performance with accumulated error 6.26 meters can be achived. A pessimistic 

sensor model with Su  five times larger than the true Su gives 1.7 times worse performance than using 

the true sensor model. An optimistic sensor model with Su 10 times smaller than the true Su gives 

22 times worse performance than using the true sensor model. The accumulated error increases 

dramatically when using sensor models with measurement noise standard deviation smaller than 

the true measurement noise standard deviation. Pessimistic sensor models with measurement noise 

standard deviation five times less than the true measurement noise standard deviation gives similar 

accumulated errors to the true sensor model does as shown in Table 5.2.

Under the same experimental setup as the close landmark simulation, the accumulated localiza­

tion error of distant landmarks is on average eight times larger than using the close landmarks. As 

shown in Figure 5.6, the dotted line represents the accumulated error ratio between the distant land­

marks and the close landmarks with respect to sensor models using various levels of measurement 

noise standard deviation. On average, the ratio is approximately 80 percent as shown by the straight 

line. Even with the same true sensor model, the performance of the close landmark simulation is 

approximately 40 percent better than that of the distant landmark simulation in terms of accumulated 

error.
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Since a camera can only measure bearing information, two landmarks X a  =  > Va > za \ and

X B =  y ^ ,  z%], that are projected onto the same image point, are equivalent to the camera.

Why does the landmark range influence the performance of the localization algorithm? We find 

that in the update step of the localization algorithm, the range scales the Jacobian matrix Hp. of 

the sensor model with respect to the robot pose. The Jacobian matrix H\~ influences the proposal 

uncertainty of the updated robot pose from which the current robot pose is sampled. When t  is 

larger than one, landmark B is further away in the camera reference frame. Thus, the relationship 

between the two Jacobian matrices is HkB = H k A /t• (The derivative of the Jacobian matrix Hk 

can be found in Appendix A.2. ) As a result, the uncertainty of the updated robot pose using the 

sensor measurement of landmark A s  is larger than using the sensor measurement of landmark X a - 

Therefore, the localization algorithm treats the close and distant landmarks differently, where more 

uncertainty is introduced by the distant landmarks than the close landmarks.

From the above simulation results, we can draw four conclusions. First, for both close and 

distant landmark situations, the localization algorithm is nearly optimal when the true camera sensor 

model is used. Secondly, being pessimistic about the measurement information also gives good 

performance of the localization algorithm. Being optimistic about the observation information can 

lead to poor performance and it is found to be more so when using distant landmarks. For example, 

if the localization algorithm is over confident about the estimated sensor measurement, which is not 

the tme measurement, it uses this inaccurate measurement information to update the predicted robot 

pose. Therefore, it is easy to update the robot pose to the wrong position. Thirdly, according to the 

result data listed in Tables 5.1 and 5.2, using distant landmarks gives on average 80 percent larger 

accumulated localization errors than using close landmarks. In addition, the standard deviation of 

the errors over all simulation runs for close landmarks are approximately 30 times smaller than those 

for distant landmarks, indicating that close landmarks provide more stable performance. Thus, care 

should be taken when using sensor measurements of the distant landmarks to correct the robot’s 

predicted pose [9]. Finally, the simulation results reinforce the observation made in Section 4.2 that 

a camera sensor model with constant measurement noise variance is sufficient for all landmarks at 

various ranges.
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Figure 5.4: Results of the close landmark simulation. The plot shows the accumulated localization 
error with respect to the camera sensor models using various levels of measurement noise standard 
deviation along x and y directions (Su and Sv). Sensor models using Su or Sv smaller than one pixel 
are optimistic models, whereas pessimistic sensor models uses Su or Sv larger than one pixel.

du [pixel] accumulated error [m] standard deviation [m]

0.1 62.03 39.14

0.3 5.03 6.15

0.5 2.69 0.48

0.6 2.38 0.21

0.8 2.33 0.10

1 2.39 0.14

2 2.51 0.15

3 2.73 0.27
4 2.63 0.26

5 2.75 0.32

* 100 8.00 0.55

Table 5.1: Results of the close landmark simulation for landmarks approximately one meter away 
from the camera. The table shows the average and standard deviation of the accumulated localization 
error for various sensor models. Sensor models using Su or Sv smaller than one pixel are optimistic 
models, whereas pessimistic sensor models uses Su or Sv larger than one pixel. The * refers to data 
not shown in Figure 5.4.
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Figure 5.5: Results of the distant landmark simulation. The plot shows the accumulated localization 
error with respect to the camera sensor models using various levels of measurement noise standard 
deviation along x and y directions (Su and Sv). Sensor models using Su or Sv smaller than one pixel 
are optimistic models, whereas pessimistic sensor models uses Su or Sv larger than one pixel.

(Su [pixel] accumulated error [m] standard deviation [m]

0.1 206.20 15.63

0.3 115.52 44.15
0.5 41.79 33.17

0.6 29.26 20.15

0.8 12.20 7.44

1 9.29 6.82

2 7.75 1.35

3 6.26 0.88
4 7.40 2.00

5 8.94 2.98
* 100 16.25 2.12

Table 5.2: Results of the distant landmark simulation for landmarks approximately two meter away 
from the camera. The table shows the average and standard deviation of the accumulated localization 
error for various sensor models. Sensor models using Su or Sv smaller than one pixel are optimistic 
models, whereas pessimistic sensor models uses Su or Sv larger than one pixel. The * refers to data 
not shown in Figure 5.5.
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Figure 5.6: Comparison of accumulated localization errors between the distant and close landmarks 
in simulation. The dotted line shows the ratio between the accumulated error for the landmarks 
ed is ta n t  and the accumulated error for the close landmarks eciose. The straight line represents the 
average error ratio over all the sensor models using various levels of measurement noise standard 
deviation.

One may expect that an optimal performance of a probabilistic robot navigation algorithm to 

occur when the true camera sensor model is used and the accuracy of the algorithm should increases 

with the accuracy of the probabilistic camera sensor model. However, this is not entirely supported 

by the simulation results. Optimal performance is more likely to occur when using pessimistic 

camera sensor models than using the true sensor model. We suggest that this results are due to the 

inconsistency problem of the robot navigation algorithm rather than the sensor model, as mentioned 

in Section 2.2.2. The inconsistent localization algorithm tends to underestimate the uncertainty of 

the robot pose. Therefore, the algorithm is in favour of a pessimistic sensor model to overcome its 

optimistic estimation. Tim Bailey et al. show that the improper resampling process may be the cause 

this inconsistency problem [5].

How does the localization algorithm behave when a pessimistic sensor model or an optimistic 

sensor model are used? Figures 5.7 and 5.8 show the localization simulation results in a three 

dimensional environment. When the measurement noise covariance matrix Rk  =  diag( 1002 ,1002), 

sensor measurements become noisy and inaccurate, causing the algorithm to depend less on the 

measurement data and more on the odometry data. Therefore, the estimated robot path follows 

to a great degree what the odometry data indicates, and it is different from the robot’s real path. 

The set of particles, however, can still keep the average robot pose close to the ground truth as 

shown in Figure 5.7. When the measurement noise standard deviation is very small, for example 

when Rk = diag(0.12,0 .12), the algorithm is over confident about the accuracy of the estimated 

sensor measurements, which causes the robot’s pose to be updated using inaccurate estimated sensor 

measurements. In the subsequent update step, the particle set spreads over the three-dimensional
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space to cover the possible true robot pose. Therefore, the estimated robot pose, which is the average 

value of the 50 particles, actually jumps considerably back and forth from the robot’s real pose. This 

causes the estimated robot path to lose its track, as shown in Figure 5.8.
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Figure 5.7: Localization simulation in a three-dimensional environment. The robot moves along a 
straight line and observes close landmarks about one meter away. The length of the robot’s real path 
is approximately 15 meters. A pessimistic sensor model with the measurement noise covariance 
matrix R k — diag(1002, 1002) is used. The straight line represents the robot’s true path, the curve 
line is the robot’s estimated path based on the odometry data, and a set of 50 particles show the 
robot’s estimated path based on the localization algorithm.

Figure 5.8: Localization simulation in a three-dimensional environment. The robot moves along a 
straight line and observes close landmarks about one meter away. The length of the robot’s real path 
is approximately 15 meters. A pessimistic sensor model with the measurement noise covariance 
matrix R k — diag(0.12,0 .12) is used. The straight line represents the robot’s true path, the curve 
line is the robot’s estimated path based on the odometry data, and a set of 50 particles show the 
robot’s estimated path based on the localization algorithm.
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5.3 Experimental Results

The experimental setup for our real environment experiments is similar to that of the simulations. In 

the real environments, data is often corrupted by the uncertainty of the three-dimensional landmark 

positions and the noisy translation between the robot pose and the camera. Therefore, it is unrealistic 

to assume perfect knowledge of the three-dimensional landmark positions. In the particle filter based 

localization algorithm, both the uncertainty of the landmark position and the measurement noise 

covariance matrix influence the accuracy of the sensor measurements (see Appendix A.3). Because 

we manually measure the landmark positions and the robot’s real path, five centimetre noise is 

added to the uncertainty of the landmark position. Thus, the uncertainty of the landmark position Pi 

is equal to diag(0.052,0.052,0.052).

The experimental results from Section 4.3 indicate that a measurement noise covariance matrix 

Rk = d ia g (l2, l 2) for both close landmarks and distant landmarks is sufficient. In order to compare 

the performance with the true camera sensor model, we use sensor models with measurement noise 

standard deviation ranging from 0.1 pixels to five pixels. Two sets of experiments are carried out. In 

the first set, the robot observes only close landmarks that are approximately one meter away. In the 

second set, the robot observes distant landmarks that are approximately two meters away.

The experimental results of the close landmarks are shown in Figure 5.9 with its corresponding 

data in Table 5.3. We can see that sensor models with measurement noise standard deviation ranging 

from 0.1 pixels to five pixels all give accumulated error of approximately five meters. Even the stan­

dard deviation of the accumulated error is quite small, which is on average 0.34 meters. However, 

a pessimistic sensor model with a measurement noise covariance matrix R k =  diag(1002, 1002) 

provides approximately nine meters of accumulated error, which is 1.7 times worse than using the 

true sensor model.

The experimental results of the distant landmark experiment are shown in Figure 5.10 and the 

corresponding data is listed in Table 5.4. We can see that our camera sensor model with measurement 

noise standard deviation of one pixel gives about 9.9 meters of accumulated error. An optimal per­

formance with accumulated error of 9.57 is given when using a sensor model with the measurement 

noise standard deviation Su =  5 pixels. Sensor models with Su or Sv ranging from 0.1 pixel to five 

pixels also lead to similar performance. More specifically, the average accumulated errors over those 

models vary from approximately 9.57 meters to 11.49 meters. Considering that the average standard 

deviation of the accumulated error is about 2.7 meters, we can claim that all these sensor models 

give similar performance. Even using a pessimistic sensor model with Rk = d iag (l002, 1002), the 

accumulated error is still approximately 1.2 times worse than the optimal performance of 9.57 me­

ters of accumulated error. Similar to the simulation results, according to the data in both Tables 5.3 

and 5.4, the average accumulated error and their standard deviation for all the sensor models are 

larger when using close landmarks than using distant landmarks. As shown in Figure 5.11, the 

dotted line represents the accumulated error ratio between the distant landmarks and the close land-
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marks with respect to sensor models using various levels of measurement noise standard deviation. 

On average, the ratio is approximately 18 percent as shown by the straight line.

From the experimental results, we are able to draw three conclusions. First, for close landmark 

simulation, both the accurate sensor model and the inaccurate sensor models give similar perfor­

mance in terms of the accumulated error. This observation also holds true for the distant landmark 

simulation. Secondly, under the same experimental setup, using close landmarks instead of distant 

ones gives better performance in terms of the accumulated localization error and the standard devi­

ation. For example, using the same sensor model with measurement noise of one pixel, the close 

landmark experiment gives 5.52 meters of accumulated error while the distant landmark experiment 

gives 9.9 meters. If we want to make good use of the distant landmarks, they should be incorporated 

into the robot navigation system differently from the close landmarks. This topic is beyond the scope 

of this thesis, but related work can be found in recent work by Civera et al. [9].

Finally, the uncertain component of a camera sensor model is not as critical as we would expect 

since the noisy landmark positions in the real environment influences more the performance of the 

localization algorithm. Compared to the simulation results in Tables 5.1 and 5.2, we conclude that 

the uncertainty of the three-dimensional landmark position dominates the uncertainties of the sensor 

model in the performance of the localization algorithm. In order to investigate this observation, 

we run the simulation again to simulate the noisy landmark positions by adding five centimeters 

uncertainty to the three-dimensional landmark positions. As we can see from the Figures 5.12 and 

5.13, using the same landmark position uncertainty Pi = diag(0.052, 0.052,0 .052), the simulation 

results are similar to the experimental results in the Figures 5.9 and 5.10. From the comparison 

of the resulting plots, the same observation can be drawn: sensor models using various levels of 

measurement noise standard deviation can be used for visual localization algorithm.
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Figure 5.9: Results of the close landmark experiment. The plot shows the accumulated localization 
error with respect to the camera sensor models using various levels of measurement noise standard 
deviation along x and y directions (Su and Sv). Sensor models using Su or Sv smaller than one pixel 
are optimistic models, whereas pessimistic sensor models uses Su or Sv larger than one pixel. The 
uncertainty of the landmark position is Pi — diag(0.052,0 .052,0.052).

<5u [pixel] accumulated error [m] standard deviation [m]

0.1 5.36 0.29

0,3 5.40 0.35

0.5 5.41 0.37

0.6 5.51 0.31

0.8 5.37 0.41

1 5.52 0.28
2 5.39 0.29
3 5.42 0.28
4 5.36 0.28
5 5.40 0.34

* 100 9.30 0.55

Table 5.3: Results of the close landmark experiment for landmarks approximately one meter away 
from the camera. The table shows the average and standard deviation of the accumulated localization 
error for various sensor models. Sensor models using Su or Sv smaller than one pixel are optimistic 
models, whereas pessimistic sensor models uses Su or Sv larger than one pixel. The uncertainty 
of the landmark position is Pi — diag(0.052,0.052,0.052). The * refers to data not shown in 
Figure 5.9.
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Figure 5.10: Results of the distant landmark experiment. The plot shows the accumulated local­
ization error with respect to the camera sensor models using various levels of measurement noise 
standard deviation along x and y directions (Su  and Sv). Sensor models using Su or Sv smaller than 
one pixel are optimistic models, whereas pessimistic sensor models uses Su or Sv larger than one 
pixel. The uncertainty of the landmark position is Pi = diag(0.052,0.052,0.052).

<5u [pixels] accumulated error [m] standard deviation [m]

0.1 10.14 2.51

0.3 10.25 2.61
0.5 10.41 2.76

0.6 9.67 2.10

0.8 11.01 2.76
1 9.90 2.79
2 11.49 3.83
3 11.43 3.48

4 10.78 3.03
5 9.57 2.46

* 100 12.14 1.27

Table 5.4: Results of the distant landmark experiment for landmarks approximately two meter away 
from the camera. The table shows the average and standard deviation of the accumulated localization 
error for various sensor models. Sensor models using Su or Sv smaller than one pixel are optimistic 
models, whereas pessimistic sensor models uses Su or Sv larger than one pixel. The uncertainty 
of the landmark position is Pi = dio,g(0.0F>2, 0.052,0.052). The * refers to data not shown in 
Figure 5.10.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



S ensor m ode l m e asu re m e n t no ise  stdv. [p ixel]

Figure 5.11: Comparison of accumulated localization errors between the distant and close land­
marks. The dotted line shows the ratio between the accumulated error for the distant landmarks 
e d is ta n t  and the accumulated error for the close landmarks cciose. The straight line represents the 
average error ratio over all the sensor models using various levels of measurement noise standard 
deviation.
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Figure 5.12: Results of the close landmark simulation. The plot shows the accumulated localization 
error with respect to the camera sensor models using various levels of measurement noise standard 
deviation along x and y directions (Su and Sv). Sensor models using Su or Sv smaller than one pixel 
are optimistic models, whereas pessimistic sensor models uses Su or Sv larger than one pixel. The 
uncertainty of the landmark position is Pi = diag(0.052,0 .052,0.052).
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Figure 5.13: Results of the distant landmark simulation. The plot shows the accumulated localization 
error with respect to the camera sensor models using various levels of measurement noise standard 
deviation along x and y directions (Su and Sv). Sensor models using Su or Sv smaller than one pixel 
are optimistic models, whereas pessimistic sensor models uses Su or Sv larger than one pixel. The 
uncertainty of the landmark position is Pi = diag(0.052,0 .052,0 .052).
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5.4 Summary

In this chapter, we use the sensor model built in Chapter 4.3 to run a particle filter based local­

ization algorithm. To analyze the performance of using the true sensor model, a set of optimistic 

sensor models and pessimistic sensor models are used in the localization algorithm. We discuss the 

simulation results of the localization algorithm and analyze the effect of the sensor model on the per­

formance of the algorithm. We also discuss the discrepancy between the simulation results and the 

experimental results. It is found that in the noisy real environment, the uncertain component of the 

camera sensor model, the measurement noise, is not as critical as in the simulation. This is because 

that the uncertainties of landmark positions dominate the measurement noise in the performance of 

the localization algorithm. Since a probabilistic camera sensor model is independent of the robot 

navigation algorithm, the simulation and experimental results in this chapter can also be applied to 

bearing-only visual SLAM.
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Chapter 6

Conclusions

In the previous chapter, we described the experiments performed to evaluate our probabilistic camera 

sensor model. In this chapter, a general conclusion summarizes our method for building a probabilis­

tic camera sensor model and the major contributions of this thesis. We also discuss the limitation of 

the current work and provide suggestions for possible improvements in the future.

6.1 Camera Sensor Model

A probabilistic camera sensor model that accounts for uncertainty in the sensor measurements is 

critical for solving the SLAM problem. A probabilistic camera sensor model consists o f a determin­

istic component and an uncertain component. Extensive work has been carried out towards building 

a pinhole camera model, however, limited work has studied how to model the measurement noise. 

The measurement noise determines the accuracy of the sensor measurements obtained from a cam­

era sensor model. Thus, building an accurate camera sensor model that properly captures the noise 

in the sensor measurements is important for the performance of bearing-only visual SLAM.

In this thesis, we present our method for building a probabilistic camera sensor model for 

bearing-only visual SLAM. This method is inspired by the camera calibration process and the mea­

surement noise definition, which is the difference between the actual measurement and the estimated 

measurement. In order to validate our probabilistic camera sensor model, we test the model on a 

localization problem in both simulation and real environments.

In the field of using the probabilistic approach to solving visual robot navigation, researchers 

often use a constant measurement noise covariance matrix. However, no detailed information is 

given to explain how they choose this value for the matrix. Our research provides a detailed study of 

modelling the measurement noise covariance matrix used in bearing-only visual SLAM. We verify 

the assumption that the measurement noise can be modelled by a Gaussian distribution, which is 

required for the EKF-SLAM and FastSLAM algorithms. In addition, we conclude that a camera 

sensor model with constant measurement noise standard deviation is sufficient for all landmarks 

regardless of their distance from the camera.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This thesis identifies the significance of a probabilistic camera sensor model and analyzes the 

sensor model error on the performance of visual localization. Simulation results show that our 

camera sensor model provides good performance in terms of the accumulated localization error. An 

optimistic camera sensor model tends to give poor performance than a pessimistic camera sensor 

does. More interestingly, sensor model with different levels of measurement noise standard deviation 

larger than the true measurement noise standard deviation can also give good performance. Finally, 

our experimental results demonstrate that an accurate model of the measurement noise is not critical 

for noisy environments as long as proper uncertainties for the landmark positions are used.

We find that landmarks at various distances from the camera have different influence on the per­

formance of the visual localization algorithm. Under the same experimental setup, close landmarks 

give smaller accumulated localization errors than distant landmarks. In addition, using close land­

marks are more stable in the presence of randomness in the localization algorithm. We suggest using 

close landmarks rather than distant landmarks to correct both the predicted robot pose and the map.

Although we present our probabilistic camera sensor model in the context of bearing-only visual 

SLAM, our sensor model and the resulting conclusions are also applicable to any other probabilistic 

robot navigation algorithm. In conclusion, this thesis provides us with a possible technique for 

constructing a probabilistic camera sensor model and also gives insight into general camera sensor 

models. This is the first time that a theoretical study of a probabilistic camera sensor model has been 

undertaken.

6.2 Limitations and Future Work

At this time, we will address a number of limitations in our current work and suggest possible 

directions for future research. Our method for building a probabilistic camera sensor model suffers 

from its inability to fully capture the reprojection error, which is the difference between the measured 

image point and the estimated image point. In our method, the three-diemensional locations of the 

corner points on the checkerboard in the camera’s reference frame are calculated from the camera’s 

intrinsic parameters. Then, we project the corner points back onto the image plane through the same 

camera’s intrinsic parameters. Therefore, the influence of the inaccurate pinhole camera model 

has been cancelled out through this method. Ideally, the locations of the corner points should be 

determined independently from the camera sensor model. Future work requires a highly accurate 

setup to measure the transformation between the camera and the checkerboard.

The experiments on localization in the real environment suffer from noisy landmark positions. 

Future work in conducting experiments could benefit from constructing a noise-free environment. 

Our simulation and experimental results on localization contradict the general assumption that the 

accuracy of a probabilistic estimator should increase with the accuracy of the sensor model. Future 

research towards properly integrating the sensor model into the SLAM framework is required to 

realize a sound estimator for solving the SLAM problem.
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Although a sensor model should be independent of its statistical estimator, the same sensor 

model can be used for both bearing-only visual SLAM and visual localization. Future research 

requires experiments designed specifically for solving a SLAM problem. In addition, our sensor 

models are only tested for indoor environment. It is worthwhile to verify they can also be applied 

for outdoor robot navigation.
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Appendix A

Implementation of Particle Filter 
Based Localization

In this appendix, we provide details of the implementation of the particle filter based localization 

algorithm, including the motion model, the transformation between the different reference frames, 

and the innovation covariance matrix.

A.l Motion Model

The motion model p (x k \x k -i,U k )  describes the probability of system state x k , given the previous 

system state X k - i  and the odometry data ut-. Because only the robot pose is estimated in a local­

ization problem, the system state Xk is the robot pose at each time step k. The current robot pose 

x vk = (xvk ,y vk,&k) can be calculated from the previous robot pose x vk_ t = (xvk - i , y vk - i ,0 k - i )  

and the odometry data, which can be obtained from the robot’s wheel encoders. We consider 

(/Pro ti ,  (frtrans, <prot2) as relative motion information (see Figure A .l), which is defined by the fol­

lowing:

tfiroti arctan{yvk Vvk—ii %vk a:vk—i ) 1

*'Ptrans ~  \ j (X vk  X v k — l ) ‘̂  T ( j jvk  V vk—l ) ^  (A .l)

$ r o t2  — @k @k — 1 4*rotl

Notice that rotations should be normalized to [—7r, 7r]. The translation and rotations are noisy, 

and their uncertainties are assumed to follow a Gaussian distribution.

^ r o t l  =  a l ^ r o t l 2  +  a 2 < ^ L n j

a l t r a ns =  a 3 0 t r a n s  +  a i4 > lo t l  +  a 4<t>lot2 ( A -2 )

a 1r o t 2 =  a l (t)lo t2  +  a 2 P tr a n s

The process noise covariance matrix Q k is represented as :
2
^ r o / ,1

0 0  '
0 £ 7 ?

<P t r a n s
0 (A.3)

0 0
^ 4 >r o t 2 ~
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rans

Figure A. 1: Odometry motion model. The robot’s motion from time step k -  1 to k  is approximated 
by translation 4>trans> rotations (j>roti ar|d <j>rot2 -

Scale parameters [ai , £*2 , 0 3 . 0 4 ] determine how noisy the odometry information is. In order to 

obtain a correct motion model for all our experiments, we simulate the odometry data by corrupting 

the robot’s real motion information with predefined scale parameters.

A.2 Transformation Between Reference Frames

The estimation of the localization algorithm is in the world reference frame, but we also have the 

robot reference frame and the camera reference frame. Figure A.2 shows a schematic diagram of 

the robot in the process of observing a landmark X c  = [ x ° , y c , z c ] and the relationship between 

the different reference frames.

The transformations between the different reference frames are represented by a homogeneous 

matrix. For example, the transformation between the world reference frame and the robot reference 

frame can be defined as:

ftW R rpWK

0 T 1
(A.4)

where R w r  is a 3 x 3 matrix, T WR a translation 3-vector, and 0T a null 3-vector. The inverse 

transformation can be obtained from the inverse of this matrix.

As we mentioned in Chapter 2.6, the sensor model is linearized in order to incorporate it into the 

robot navigation algorithms. The deterministic component of the sensor model is a pinhole camera 

model, which is defined in the camera reference frame. Therefore, the Jacobian matrix Hk of the 

sensor model with respect to the robot pose has to be propagated into the world reference frame. To 

simplify the calculation, the Jacobian matrix Hk can be generated by:

d h {xk) ( d h (x k) CR d X R
Hk -  ~ d * f  -  {^ x ^ )R  ( } (A-5)
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(xc,yc,zc)
Cam era R eference Frame

p R C , J R C

Robot R eference Frame

R W R , J W R

World R eference Frame

Figure A.2: The relationship between the world reference frame, the robot reference frame and the 
camera reference frame. R w r  and T WR are the rotation and translation from the world coordinate 
frame to the robot reference frame. R r c  and T RC are the rotation and translation from the robot 
reference frame to the camera reference frame.

where the first term

d h (x k )
d X c

Al Jl2 

Al J22 J23
C

J n = U ( l  + h (  3( ^ ) 2 + (^ )2 ))

•A 2  =  2 /;

A  3

x c  y c

+  3fci( - ^ ) 3  +  3 A - ^ r ( ^ ) 2)z c ( z c

At = 2/j
x c  y °

J22=fV(l+k1((~y + 3(y-uy)) 
„c

c

(A.6)

,,C
t ) 3  +  3ki -

' z ^  z ^  ' z'-

The rotation from the camera to robot centre differs from different experimental setup. The last 

term can be defined by:

d X R

d x l
d X R d X R d X R
d x vk dyvk rid/.

(A.7)

where
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d X R
QXyk

d X R

—cosOk
sindk

0

—sinOk
—cosQk

0
8]Jvk

d X R 8 R r w

dOk

d R RW
ddk

d9k

rv n — c o s 9 k y w  + s i n 6 k X W
y W + s i n 0 k y w  + c o s 9 k X W

_ z w _ 0

—sinOk
—cosOk

0

cosOk 0 
— sin8k  0 

0  1

(A. 8)

A.3 Innovation Covariance Matrix

The measurement noise is represented in the SLAM algorithm using covariance matrix Rk. In both 

EKF-SLAM and FastSLAM 2.0, S'k is the covariance matrix of the innovation, which is the differ­

ence between the actual measurement and the estimated measurement from the estimated landmark 

position. The covariance of the innovation is calculated as:

Sk =  H kPk + Rk  (A.9)

where H  is the Jacobian of h(xk)  with respect to Xk, Pk~  is the system state covariance matrix,

H kPk~H%  is the uncertainty of the system state, and R k  is the measurement noise covariance 

matrix. Without the effect of the noisy robot pose and landmark positions, when H kP k~ H J  is

equal to zero, the covariance matrix of innovation is equal to Rk-

The covariance matrix of the innovation influences the accuracy of the sensor measurements 

when performing the localization algorithm in a real environment. In the particle filter based local­

ization algorithm, for each update step, we assume perfect robot pose. Thus, the uncertainty of the 

system state is only the uncertainty of the landmark position in the particle filter based localization 

algorithm. In this thesis, we use Pi as the uncertainty of the landmark position to represent the 

system state covariance matrix Pfc.
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