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A bstract

The exponential growth of the Internet has presented great challenges for its infrastructure. 

Moreover, the rapid pace of the innovations in Internet applications mandates that the 

routers that forward packets between networks offer not only high throughput but also huge 

computation power and maximum flexibility.

In this thesis, we are concerned with the design and performance evaluation of Internet 

forwarding systems. We attack system performance problems through the study of its 

workload characteristics, which leads to sound system designs.

First, we characterize temporal locality in router workloads. Temporal locality is critical 

to cache performance and thus important to overall forwarding system throughput. We 

derive a mixed distribution which combines the Weibull and Pareto distributions and ac

curately captures the locality in destination IP address sequences of Internet traffic. Our 

model is generative; synthetic traffic can be produced with projected temporal locality.

Second, we show that flow popularity characteristics have a significant impact on load 

balancing in a parallel forwarding system where a hash-based scheduler dispatches incoming 

packets to individual forwarding engines. We model the flow popularity distribution using 

Zipf-like distributions and develop a scheme to  incorporate large flows into the generative 

model that captures temporal locality.

Third, we further explore performance implications of flow-level Internet traffic charac

teristics and develop a highly efficient and effective packet scheduling scheme for parallel 

forwarding system load balancing. We find tha t under certain Zipf-like distributions, hash- 

based scheduling scheme alone can not achieve load balance for a parallel forwarding system. 

The presence of a few dominating flows in Internet traffic has motivated us to develop a 

novel load balancer that capitalizes on this phenomenon by scheduling these high-rate flows 

to balance workload among the forwarding engines in a parallel forwarding system. The 

effectiveness of our scheme is demonstrated via simulation.
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Chapter 1

Introduction

Over the past three decades, the Internet has revolutionized the way that people communi

cate 1. W hat used to be a DARPA (Defense Advanced Research Projects Agency) project 

to connect four major research centers in the US has evolved into a global medium that 

carries digitized data in the forms of files, emails, newsgroup messages, etc., between people 

all over the world. Its growth was comparatively slow until the advent of the World Wide 

Web (WWW) when computer and network technologies matured to such a degree that peo

ple could search the huge amount of information available from the Internet using a Web 

browser. The tempo suddenly increased. The ease of use of the Internet ignited the imag

ination of the world as individuals, businesses, and institutions began to put information 

onto the Web. Recently, important applications e.g., voice over IP (Internet Protocol) and 

real-time video, have been developed to take advantage of this medium.

The exponential growth of the Internet presents scalability problems for its infrastruc

ture. In a sense, the Internet has become a victim of its own popularity. In particular, the 

forwarding devices, known as routers or gateways, that connect multiple networks, have to 

move huge amounts of data from network to network in time to prevent the Internet from 

degrading in service or even collapsing.

Recent advances in optical transmission technology, such as DWDM (Dense Wavelength 

Division Multiplexing), have unleashed the potential of seemingly unlimited bandwidth. 

This has rendered the performance issue of inter-connection devices even more prominent 

as they have become the major bottleneck of the information delivery system.

In this chapter, we first present the necessary background where the problems addressed

1A history of the Internet can be found at the Internet Society’s Web site 
http://w w w .isoc.org/in tem et/h istory/. A detailed account of the evolution of Internet backbone can 
be found in [Ij.

1
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Applications

Transport Protocols (TCP, UDP)

IP: the Internet Protocol

Underlying Network

V

Figure 1.1: T C P/IP  Model

in this thesis originate. This includes a brief description of the Internet model. A discus

sion of a general Internet forwarding system architecture is followed by a more detailed 

description of one of the major performance bottlenecks, i.e., routing table lookup. Model

ing locality in forwarding system workload is the main theme of our work; the concepts of 

locality and the significance of forwarding system workload characterizations are discussed 

in Section 1.4. The chapter ends with a brief list of contributions and an outline of this 

thesis.

1.1 The Internet Protocol Suite: T C P /IP

Fig. 1.1 shows the four-layer TC P/IP  networking model. Each protocol layer is a user of the 

services provided by the layer immediately below and at the same time, provides services 

to the layer immediately above. Interfaces exist only between adjacent layers.

The Internet connects heterogeneous networks rather than only those of the same archi

tecture. Each particular physical network has its own set of rules with which its hosts comply 

in order to communicate among themselves. The glue that ties various networks together so 

that hosts on different networks can communicate is the Internet Protocol, or IP. Immedi

ately above IP are transport layer protocols that provide end-to-end services to applications.

2
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Figure 1.2: The Layout of an IP Packet

The two main transport layer protocols are TCP and UDP. TCP, the Transmission Control 

Protocol, provides reliable transmission between communicating applications. UDP, on the 

other hand, simply provides access to the connectionless IP network.

Besides these components, the TC P/IP  suite includes protocols for routing, maintenance, 

diagnostic, and management purposes. Internet protocols are standardized in RFC (Request 

For Comments) documents. For example, the standard specification for IP is in RFC791 [2] 

and that for TCP is in RFC793 [3]. A good reference for TC P/IP  can be found in [4].

To send data to a host on a different network, the sender chops the data, if necessary, 

into smaller chunks. A transport layer (TCP/UDP) header is prepended on each chunk to 

form a segment, which includes, besides other information, the 16-bit source and destination 

ports that are used to locate the specific applications. Each segment, in turn, has an IP 

header prepended to it to form an IP packet. The layout of the IP packet is shown in 

Fig. 1.2. Among the fields of an IP header, the protocol field identifies the transport layer 

protocol. The 32-bit source and destination addresses uniquely identify the communicating 

hosts. Finally, each packet is sent onto the physical network after being encapsulated in the

3
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native network frame (e.g., Ethernet).

As an IP packet carried in one particular network frame is received at an Internet 

router, it is extracted from its frame. After the next-hop router is decided according to the 

destination address and other information carried in the headers, the packet is encapsulated 

using the frame format of the next-hop network and forwarded to the next-hop router. The 

procedure is repeated until the packet arrives at its destination host. Packets from the 

same application are forwarded independently through the Internet, possibly over different 

paths, toward their target hosts. IP does not guarantee successful or in-order delivery of 

the packets. This is called best-effort forwarding.

IP, as a network layer protocol, delivers an Internet packet to its destination host, ac

cording to its destination IP address. In most cases, the communicating entities are two 

application processes running on two hosts. Transport layer protocols provide information 

to identify the particular receiver process for a packet. The port numbers in TCP and UDP 

headers are used to specify the receiver. Thus, the three-tuple: destination port number, 

transport layer protocol, and IP destination address uniquely identify the intended receiver 

application for a packet. The five-tuple: source and destination addresses, source and des

tination port numbers, and the transport layer protocol uniquely identifies a connection 

between two applications.

1.2 G eneral Internet Forwarding S ystem  Architecture 
and Operation

The Internet is organized in tiers. At the basic level, there are home and small business 

networks tied to local Internet Service Providers (ISP’s). In the middle, small ISP networks, 

campus networks, and enterprise networks are connected to  major ISP networks. The top 

level consists of backbone networks that connect major ISP’s. Routers are found at all 

levels, connecting networks within the same tier or between adjacent tiers. A router has 

two main functions:

R o u tin g  and C ontro l The router exchanges network topology and routing policy infor

mation with peer routers via routing protocols. This information is used to maintain 

the routing table, including adding, removing, and updating table entries. The router 

also has to enable system management and control functions. Operations required to 

perform routing and control functions are relatively infrequent and thus consume only

4
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Figure 1.3: A General-purpose Computer as a Router

a small fraction of system resources.

Forw arding The router receives packets from its input ports, looks up the destination IP 

addresses in the routing table, and forwards the packets to  appropriate output ports. 

Forwarding decisions have to be made for every packet that the router receives. The 

resources required here are proportional to the traffic volume.

We are interested in the evaluation of the forwarding performance of a router. Through

out this work, we presume that forwarding decisions are based solely on the IP destination 

address field of a packet.

An Internet router can be implemented as a general-purpose computer system with 

multiple line cards. Indeed, some operating systems can easily be configured to forward 

packets. As shown in Fig. 1.3, each card connects the router to a different network. This is 

a centralized architecture where one processor is responsible for both forwarding and routing. 

The bus bandwidth is shared among all the ports and each packet traverses the bus at least 

twice to be forwarded, i.e., from the input port to memory and, once the forwarding decision 

is made, from memory to the output port. This solution is adequate and cost-efficient for 

most small networks.

Routers at backbone networks have a much heavier workload. As demands keep growing 

and advances in transmission technology make gigabit- or even terabit-per-second networks

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Line Card

Line Card

Line Card

Routing
Table

Network
Processor

Switch
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possible, centralized routers such as that in Fig. 1.3 are inappropriate, if at all feasible. 

To forward over one gigabit per second, a router needs to be able to  process at least one 

million packets per second. At such speeds, the cost of the router can be reduced by two to 

three orders of magnitude if a distributed architecture, instead of a centralized one, is used. 

Analytical models have been developed to evaluate the effect of design parameters on the 

cost of such systems [5].

The high-end router shown in Fig. 1.4 separates routing and forwarding functions. 

The network processor’s job is to run system management software and to maintain a 

master routing table. Each line card has its own copy of the routing table, which is now 

called a forwarding table. Line cards are full-fledged forwarding engines with resources to 

process both input and output traffic. Packets are transferred between line cards through 

a switch fabric. A switch, unlike a shared bus, allows multiple packets to be transferred 

simultaneously and thus can provide much higher bandwidth. Moreover, to forward at 

higher speeds and to cut cost, one current trend in router design is to put multiple network 

processing units (NPU’s) on the same line card to forward incoming packets in parallel.

6
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1.3 The Bottleneck: Routing Table Lookup

One of the most time-consuming operations in packet forwarding is routing table lookup. On 

one hand, this is because of increasing routing table size as the Internet expands. According 

to a BGP (Border Gateway Protocol) table size report [6], backbone routing table sizes have 

increased from fewer than 20,000 entries in 1994 to nearly 140,000 today. Moreover, the 

complexity of Longest Prefix Matching, required by Classless Inter Domain Routing (CIDR) 

[7, 8] aggravates the problem. The specifics of longest prefix matching will be discussed in 

Section 1.3.1.

1.3.1 The IP  A ddressing Scheme

Originally, IP used a class-based addressing scheme where the 32-bit address space was 

divided into classes A, B, C, D, and E. Classes D and E were reserved for multicast and 

experimental purposes. IP address blocks were allocated to the unicast classes A, B, and C 

where a 32-bit address was divided into two parts: the network specifier and the host. Fig.

1.5 shows the ranges of the three address classes. The first bytes of network addresses from 

class A, B, and C range from 0 to 127, 128 to 191, and 192 to 223, respectively; therefore, 

by the value of an address’s first byte, one can identify to which class it belongs. Class A 

networks were for large enterprises; they allowed a network to contain as many as 16 million 

hosts. Class B networks were for middle-sized organizations. Class C networks were for
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small institutions, and allowed no more than 253 hosts. This address scheme worked fine in 

the early years of TCP/IP.

As the Internet grew and more middle-sized organizations joined in, the community was 

faced with the depletion of class B network addresses. Moreover, the growth of routing 

tables became a serious concern when it was anticipated that the tables would become too 

large to manage.

CIDR tries to meet both needs by proposing a more flexible addressing scheme. First, it 

allows the length of network and host addresses to be variable to eliminate the inefficiency 

of allocating address blocks to organizations that are too large for class C yet too small for 

class B networks. Second, CIDR allows address aggregation to help manage large routing 

tables. In CIDR, an address is presented as a prefix/mask pair where the most significant 

bits of the mask are set to 1 to identify the portion of the prefix representing the network 

address. These Ts in the mask are contiguous and start from the most significant bit and 

the rest of the prefix that corresponds to the 0’s of the mask is the host address. In the 

same spirit, an Internet route can be represented as a pair of prefix/prefix length, where 

prefix length is the number of l ’s in the mask.

This hierarchical scheme lends itself to route aggregation. For example, if a routing 

table has two entries “129.128.25.0/24, port A” and “129.128.0.0/16, port A”, they can be 

collapsed into one route, “129.128.0.0/16, port A” . That is, if the address range covered by 

a route enclose the ranges by one or more other routes, these routes can be represented by 

the first route, which covers the largest range, as long as they point to the same output 

port.

1.3.2 R outing  Table Lookup

Before CIDR, deciding the output port of an IP packet required two steps:

• extract the network address from the destination address.

• use the network address as the index to a routing table of (network address, output 

port) pairs to  retrieve the output port.

The deployment of CIDR presented challenges to routing table lookup. For one thing, the 

length of the network address could theoretically be any value from 0 to 31. Moreover, there 

was no longer the “class” delineation to help find the network address in an IP address. The 

route aggregation of CIDR implies that multiple entries in the routing table may match
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the same address. For example, suppose that a routing table contains the two entries 

“129.128.25.0/24, port A” and “129.128.0.0/16, port B” and a packet with destination 

address “129.128.25.8” arrives. Either route matches this address in that

129.128.25.8 & 255.255.255.0 = 129.128.25.0

for the first route and

129.128.25.8 & 255.255.0.0 =  129.128.0.0

for the second, where represents the bitwise logical AND operation. The two routes 

cannot be aggregated because they have different port numbers, although the range covered 

by the second route covers that by the first. In this situation, the route lookup process must 

select the route that has the longer prefix.

The routing table in Berkeley Unix after the 4.3BSD Reno release manages CIDR 

lookups. It is organized in a radix tree structure [9] where routing entries located at leaf 

nodes. The bits in the destination address (not necessarily all of them) are compared with 

the internal nodes. Based on the result, the algorithm branches left or right until a leaf 

node is reached. This may not necessarily mean a successful longest-prefix match. After 

comparison of the destination address and the key value in the leaf, a decision will be made 

if back-tracking is to occur. This algorithm results in a worst case complexity of 0 (W )  

where W  is the length of the address in bits; the algorithm requires as many as 32 memory 

accesses per address for IPv4 [10].

Much research has been done to speed up the routing table lookup process. Degermark et 

al. [11] solve the problem by using a compact complete tree data structure so that the whole 

routing table fits in the second-level cache of a general-purpose processor. Waldvogel et al. 

[10] use a combined hashing and binary search method to reduce the number of memory 

accesses to logziW). This means a worst case of five memory accesses for IPv4. Chiueh 

and Pradhan [12] propose a novel caching scheme which uses a portion of the 32-bit IP 

address as part of the 32-bit virtual memory address and the rest as “tags” to be compared 

with those of a destination address. Nilsson and Karlsson [13] use a trie structure that is 

compressed both in path and level and achieves 0(loglog(n)) search depth where n  is the 

number of entries in the table. Gupta et al. [14] implement the routing table in hardware. 

Combined with pipelining, this approach achieves one lookup per memory access time. Shi 

and MacGregor [15] evaluate the cache performance of three software lookup algorithms in
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[9, 11, 13] and find that the algorithms described in [11] and [13], owing to their compact 

data structures, achieve much higher cache hit ratios than the radix tree approach [9].

1.4 Locality: The Concepts

The performance of routing table lookup became a concern well before the introduction of 

CIDR. Feldmeier [16] investigated using a route cache to improve gateway performance. A 

route cache stores the most recently used routes in fast memory so that lookups of future 

addresses that match cached routes (called cache hits) can be done quickly, as searching the 

full routing table and accessing slower memory are avoided. Caching only works well when 

sufficient locality exists in system workload. In the case of a router, it is the locality in the 

sequence of destination IP addresses that makes the cache useful.

The concept of locality originates from program memory reference behavior studies [17]. 

Models built to characterize locality in the workload of computer virtual memory systems 

are applicable to many other systems. For example, they have been used to capture the 

locality in workloads of file systems, local area networks, and Web servers.

Temporal locality refers to the phenomenon that when an item is accessed, it is highly 

possible that it will be accessed again in the near future. It describes the recency of repeated 

references to the same object. Many workloads exhibit temporal locality. In network traffic, 

temporal locality stems from bursts of packets transmitted for a chunk of application data 

that is larger than one single packet can carry. This is known as the packet train behavior 

of network traffic, observed in both local area networks (LAN’s) [18] and the Internet [19].

The term persistence is used to  describe the tendency for an item, once referenced, to 

be consecutively referenced [20] and it is a  special case of temporal locality.

In the context of program memory references, spatial locality refers to the phenomenon 

that when an address is referenced, it is highly likely that neighboring addresses will be 

accessed in the near future. This concept, however, is difficult to apply to the network 

environment because the notion of “neighboring” is not dear.

Another form of locality is called concentration which means that a small set of items 

are referenced in the workload [20]. Concentration is by definition related to the working 

set model [17] and a quantitative measure has been developed in [21, 22].
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1.5 Contributions

Due to its heterogeneity, complexity, scale, and fast-evolving nature, the Internet is best 

studied by models [23]. Besides being able to give a quantitative description of system 

features, models can be used to predict behaviors. Models capturing salient features of 

system workload can lead to better designs.

One goal of this thesis is to develop models of locality in router workloads. We have 

developed a mixed-distribution model, the combination of a Weibull and a Pareto, that ac

curately describes temporal locality in destination address sequences collected at networks 

ranging from campus networks to major backbones in the Internet. For the sake of parsi

mony, we later show that the five-parameter model can be substituted with a four-parameter 

model by replacing the Weibull by an exponential distribution. Traffic generation is one of 

the key challenges in modeling and simulating the Internet [23]. Given a set of parameters, 

our model produces synthetic address traces according to the specified temporal locality 

and can be used to test cache design alternatives for forwarding systems.

Another important aspect of Internet workloads is their flow-level characteristics. Based 

on measurements of network traces, we propose a Zipf-like [24] function to describe the non- 

uniform distribution of flow popularity. We incorporate popularity distributions into the 

framework of the least-recently-used stack model (LRUSM) in order to generate synthetic 

traffic that resembles real-world traffic in both temporal locality and skewed flow popularity 

distribution. This model is useful in evaluating the performance of critical algorithms, e.g., 

load balancing design, in parallel forwarding systems.

We investigate the effects of two traffic splitting schemes in parallel forwarding systems: 

round-robin and hash-based. Our results show that hash-based methods improve temporal 

locality, and that caching can help balance system load. This work also leads to insights 

into the design of load balancing schemes for parallel forwarding systems.

We propose a novel load balancing design for parallel forwarding systems. Our observa

tion that flow popularity distributions in Internet traffic are Zipf-like leads to the conclusion 

that hash-only traffic splitting schemes are unable to guarantee load balancing. Given the 

importance of cache performance, we introduce a new performance metric for load balancing 

designs, i.e., adaptation disruption caused by flow shifting. The key idea in our load bal

ancing scheme is to shift only the high-rate flows in Internet traffic when load adaptation is 

needed due to load imbalance. High-rate flow scheduling is both effective and efficient and,
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compared with state-of-the-art load balancing schemes, it minimizes adaptation disruption.

1.6 Thesis Outline

In this thesis, we discuss the characteristics of workloads for Internet forwarding systems. 

Recognizing Internet routing table lookup as one of the bottlenecks and load balancing as 

critical to parallel forwarding systems, we model the characteristics of IP traffic that are 

most relevant to forwarding performance in router workload. This work is organized as 

follows:

• Chapter 2 discusses related work in modeling computer program memory reference 

behavior, temporal locality modeling for computer network traffic, flow-level traffic 

characteristics, and load balancing in parallel forwarding systems. As locality is one 

of the most exploited concepts in computing system design, previous work on study

ing its effects is abundant and appears in different areas. These references provide 

valuable background information for this thesis. Some of the studies have recognized 

the importance of modeling temporal locality in IP address destination addresses and 

interesting results have been shown on this particular subject. We will briefly intro

duce these studies in Chapter 2 and will compare them to our work in more depth in 

later chapters.

• Chapter 3 presents a model that can describe temporal locality in Internet traffic. We 

begin by explaining the motivations behind our work and introducing our methodology. 

We adopt the LRU stack model and develop a flexible mixed distribution function that 

can accurately describe the temporal locality in IP destination address traces.

• Chapter 4 extends the aggregate traffic model to incorporate flow popularity informa

tion. Each of the two workload models, the LRU stack model and the independent 

reference model, has its strengths and weaknesses. The former captures temporal 

correlation and the latter characterizes the popularity of distinct addresses. To gen

erate realistic Internet traffic for parallel forwarding system performance evaluation, 

we propose an algorithm that is based on the LRU stack model but also considers the 

flow popularity distribution.

• Chapter 5 shows the effects of scheduling schemes on temporal locality in a parallel 

forwarding system. We study two scheduling methods, round-robin and hashing, which
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have drastically different effects on caching and load balancing.

• Chapter 6, based on work in Internet forwarding system workload characterization, 

shows that hash-only load-splitting schemes cannot guarantee load balance In a par

allel system. We propose an efficient adaptive load balancing scheme that, when 

activated, adjusts only the mappings of high-rate flows. In addition, the load adap

tation mechanism achieves the desirable goal of low adaptation disruption which is 

critical to forwarding system performance. We show trace-driven simulation results 

for different adaptation-triggering policies.

• Chapter 7 summarizes this work and discusses directions for future research.
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Chapter 2

R elated  W ork

In this chapter, we review some program memory reference models and later show how they 

are used in modeling temporal locality in Web document access sequences. We discuss work 

in measuring locality and using cache to improve system performance in network environ

ments. Flow-level measurement and modeling are important because they lead to better 

understanding of the burstiness of Internet traffic, a feature that is critical to forwarding 

system performance. Last we discuss traffic-splitting and load balancing schemes in parallel 

forwarding systems.

2.1 Program M emory Reference Behavior M odels

Much research has been done to model the program page reference behavior of virtual 

memory (VM) [25]. A VM system provides a much larger address space than physical 

memory, or main memory. Paging is often used in VM systems, where application programs 

are divided into fixed-size pages to fit into page frames of the same size in the main memory. 

There is no need to load whole programs at once into physical memory; the requirement is 

that the page(s) that contains the necessary code and data has to be in memory before a 

program can proceed. Loading pages from external storage into main memory is a costly 

operation and thus its frequency is critical to system performance. Therefore, page reference 

sequences of computer programs are important to model.

Since there are usually fewer page frames than required by application programs, most of 

the time when a page is to be loaded from the disk, a page in memory has to be swapped out 

to make room. A replacement policy decides which page is to be replaced. One well-known 

policy is least recently used (LRU) which states that the page that is least recently used 

should be swapped out. LRU takes advantage of locality in page reference sequences and
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assumes that recently-referenced pages are going to be accessed in the near future and thus 

should be kept in the main memory.

2 .1 .1  T h e  W orking Set M odel

The working set (WS) model [26, 27, 17] was developed to model page reference behavior. 

A program’s working set W(t,T) at time t is the set of distinct pages referenced in the time 

interval [t-T+1, t]. The parameter T  is called the working set window size. The working-set 

principle of memory management states that a program may use a processor only if its WS 

is in main memory, and that no working-set page of an active program may be considered for 

removal from main memory. Because of the locality in program memory reference sequences, 

the WS model can predict future memory demands based on the past reference pattern.

Given the set of possible pages that a program can access, N  — {1, 2,.... n}, the sub

ject of the WS model is a page reference string, a sequence of the pages accessed by the 

program during its execution, p =  r \, r 2, rt ,..., where rt G N  is the page referenced 

at the discrete time t. Denning and Schwartz [17] derived several relations between the 

average-working-set-size function, the missing-page-rate function, and the interreference- 

interval density function. The working-set size w(t, T) is the number of pages in W(t ,T) ,  

i.e.,

denote the working-set size averaged over the first k references; the average working-set size 

is defined as

The missing-page-rate m(T) is defined as the number of pages per unit time returning to 

the working set. m(T)  reflects the probability that a new page is referenced given that the 

current window size is T.  The overall interreference density function, f (x) ,  is defined as

w(t ,T)  =  \W (t,T)\. (2 .1)

Let

s(T)  =  lim sk(T).

n

f ( x )  =  Ai/i( x)

where /, (x) is the interreference density function of page i and A * is the frequency of refer

ences to page i. Analysis shows that

m(T)  = s(T  +  1) -  s(T)
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and

f {T)  =  m ( T -  1) - m { T ) .

That is, /(T )  is the negative slope of m(T) ,  which is the slope of s(T).

One important assumption in WS is that the stochastic mechanism that generates the 

page reference string is stationary, i.e., independent of the absolute time origin. This is 

largely true as long as the program does not transit to new sets of pages (called localities). 

Unfortunately, computer programs usually exhibit phase-transition behavior, jumping from 

one locality to another during execution. This assumption restricts the results of the WS 

analysis, which is the motivation for characterizing reference strings using a macro inter

phase model and a micro intra-phase model [28]. Nevertheless, the limitation of WS analysis 

does not prevent it from being a useful starting point in modeling program memory reference 

behavior. Moreover, in the contexts of computer network traffic and Web document reference 

sequences, the stationarity assumption seems to  hold, making the WS analysis applicable.

2.1.2 The Independent Reference Model

In the Independent Reference Model (IRM) [29], a page reference string, which is simply the 

page numbers visited by a program, R j, R 2 , R t ,  is treated as a sequence of independent 

random variables with a common stationary reference distribution:

Pr[Rt =  Ai] =  pi, 1 < i < N, t > 0

where A\ is the ith page out of N  unique pages.

The IRM captures the non-uniform page reference behavior of the programs. However, 

it does not describe the temporal correlation between successive references to the same page. 

Thus the IRM is inadequate to characterize temporal locality.

Zipf’s law [24] is the observation tha t the frequency of occurrence of some event (P) as 

a function of rank (R ) often obeys the power-1 aw function

P{R)  ~  l / R a (2.2)

with the exponent a close to 1.

A similar phenomenon has been observed in the studies of both program memory refer

ence sequences [30, 20] and Web server workload [31, 32]. Zipf-like popularity distributions 

have been combined with the IRM to produce synthetic workloads [33].
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2.1.3 T h e  Least Recently U se d  Stack Model (LRUSM)

The LRUSM [34, 28, 35] is another program behavior model. Consider a stack as a one

dimensional array containing all possible addresses, each of them a single array element. 

When an address is referenced, the array (stack) index of the address is output as the stack 

distance. Note that we use the equivalent term reuse distance in the rest of this thesis. All 

the addresses above this value are moved down by 1 position and the address just referenced 

is put at position 0 of the array, that is, at the top of the stack. This is equivalent to 

using the LRU model to update the stack, hence the name “LRU Stack.” In the LRUSM, 

each entry in the address trace produces a stack distance. Corresponding to an address 

trace, then, there is a sequence of stack distances, which is called the distance string of the 

trace. As an example, a distance string can look like “38,1,0,143,1,162,1,0,40,97,1,150, 

63, 311,80,312,1, 3,0,313,127”. The “0”s in the string indicate that the address at the 

top of the stack, which was just referenced, is referenced again; “l ”s mean that the address 

referenced just prior to the last reference (now at position 1 of the stack) is referenced again, 

and so on.

The LRUSM captures temporal locality in that the probability of a stack distance of n 

represents how likely an address just referenced is to be accessed again n  distinct addresses 

away in the future. This is not exactly the definition of temporal locality because the 

number of distinct addresses is not equivalent to the notion of time. As a result, according 

to the LRUSM, reference strings can have better temporal locality simply because there 

are fewer distinct addresses. Using the number of distinct addresses to represent time 

has utilitarian advantage in that LRUSM adapts itself conveniently to cache performance 

evaluation; recency in real time does not necessarily lead to good cache performance, but 

a small number of distinct addresses does. The LRUSM treats all addresses the same and 

thus is unable to characterize non-uniform accesses to the individual addresses.

2.1.4 Synthetic Trace M odel for Cache Simulations

Thiebaut et al. [36] developed a synthetic memory reference model for cache simulations. 

Different from earlier models, this one targets memory addresses instead of page reference 

sequences. A cache line is assumed to contain only one word. It is found that after an initial 

linear segment, the number of unique addresses observed at the nth address reference, u(n), 

can be expressed by the following power law function:
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Figure 2.1: Some Hyperbolic Curves

u{n) — A n 1/ 9, A > 0,0 > 1 (2.3)

where A  is a constant and 9 is interpreted as a measurement of spatial locality. The larger 

the value of 9, the fewer unique addresses are visited during a certain period of time. The 

curve of u(n) is called the footprint curve of the program. Fig. 2.1 shows some examples of 

hyperbolic curves. The probability of introducing a new address into the trace at reference 

n, or the cache miss rate when the cache size is x (x =  u(n)), is

Pr\x) =  { (A9/ ^ 2  ’ l \ Ccc (2.4)
I 1 cce , a  o c

where Cc =  Ae^ e~1̂  is called the Critical Cache, the inflection point of the curve. The initial 

phase of an empirical footprint curve is linear since the addresses tend to differ from each 

other and there are no re-appearances. In this forced mode, i.e., when x  < Cc, the number

of unique addresses in the trace equals the number of addresses. As more references are

made, fewer addresses are new and this forms the hyperbolic part of the curve. Eq. 2.4 

differs from the formula in the original article when x  < Cc. This change ensures that the 

function is smooth at x  =  Cc and when x = 0, Pr[x] = 1.

To generate a synthetic trace, the inverse of the function in Eq. 2.4 is used to generate
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LRU stack indexes. This inverse is:

. ! / < ! / »  , , 5 1

(1 -  V)6Cc , V > 1/8 1 ' '

where U (representing Pr[x] in Eq. 2.4) is uniformly distributed and is in the range of (0,1). 

We will discuss the algorithm in more detail in Section 3.3.

Although satisfactory cache simulation results are shown in [36], this model does not 

adequately characterize temporal locality in destination IP address traces. An initial ex

amination of this phenomenon and an ad hoc solution can be found in [37]. In the case of 

IP destination address traces, we show empirically in the next chapter that the footprint 

curves are the natural outcome of our reuse-distance based trace generation method.

2.2 L ocality  in N etw ork E nvironm ents

Locality has been observed in network environments, from LAN to WAN, and at all protocol 

layers of the Internet, e.g., the network layer, the transport layer, the application layer, etc. 

Significant locality makes caching appealing in the design of both host and forwarding 

systems, especially as the performance gap between microprocessors and main memory 

continues to widen [38]. In this section, we discuss work in measuring, characterizing, and 

exploiting network locality.

2.2.1 Locality in Packet N etw orks

The study in [18] shows that temporal locality exists in LAN traffic. Packets travel in 

trains, where a train is a burst of packets from the same source and to the same destination. 

The arrival of a packet indicates that there is a high probability that the next packet is to 

the same destination. At the same time, a sequence of packets heading in one direction is 

often followed by a second sequence for the reverse direction. This regularity is due to the 

request-response nature of network protocols. Based on these observations, destination and 

source address caches can be effective in improving the performance of network devices.

Feldmeier [16] studies a 24-hour trace collected at the router connecting the MIT campus 

to the Internet. It shows that IP routing table lookup can benefit from even simple caches 

with a few lines of “destination address, output port” pairs. The destination address reuse 

distance density curve is analyzed and it is concluded that an LRU cache should be effective 

for reducing the number of routing table references.
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Jain [39] examines destination address traces collected in an inter-connected LAN envi

ronment and demonstrates the existence of temporal locality. It is found that two different 

types of traffic, interactive and non-interactive show different locality behaviors. The locality 

of the non-interactive traffic is better captured by an LRU cache according to the monoton- 

ically decreasing stack distance distribution function. But the stack distance density curve 

of the interactive traffic has a hump and to capture this characteristic, the requirement for 

the cache is to have enough entries.

Gulati et al. [21, 22] measure four aspects of locality in LAN traffic: persistence, address 

reuse, concentration, and reference density. Persistence refers to the tendency of an address, 

once referenced, to be referenced again and again, consecutively. Address reuse is defined 

as the tendency for the address used in one network packet to reappear as the destination 

address of a future packet. Address reuse is a more general measure of temporal locality 

than persistence. Based on the WS model [17], a measure of concentration C t  is developed.

T - W t
Ct  = T  > 1 (2-6)

where T  is the WS window size and Wt  is the WS size. Reference density is defined as the 

tendency for a small number of hosts to account for a large proportion of the total network 

traffic. The measurements show that persistence is low but there is significant address reuse, 

concentration, and reference density in the traces.

Mogul [40] investigates network locality at a finer grain, the process level. The motivating 

observation is that the locality visible at the host-address level actually arises because of per- 

process network locality. Traces collected in 10 Mbps LAN environments are analyzed. It 

is found that around 75 per cent of the packets arriving at a host have the same destination 

ports, and thus the same destination processes as their predecessors. Operating systems 

can cache recent packet header and target process information to accelerate the search for 

receiver processes for incoming packets. Process level locality is also observed in UDP 

traffic in [41] and an improved one-behind cache is used to improve system performance by 

recording the last process that received a UDP segment.

One question is what to cache in exploiting temporal locality in packet destination ad

dress sequences to speed up routing table lookup. Certainly, caching full addresses can 

achieve no better a hit ratio than caching the network parts of the addresses or network 

ID’s. The latter, however, requires identifying the network part of an IP packet before the

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cache lookup. This identification process was non-trivial even in the days when the Internet 

used class-based addressing [16]. With CIDR, searching for the longest prefix that matches 

an address is the major part of route lookup, the process we try to avoid with caching. In 

this thesis, we consider only caching of full IP addresses.

Given the numerous evidences of the presence of locality in networking environments, one 

should not take it for granted. McKeimey [42] analyzes and compares TCP protocol control 

block (PCB) lookup performance of algorithms proposed in [43, 41], a move-to-front linked 

list, and a hash-based scheme. The offered workload is that of an on-line banking system 

[44] and is marked by the lack of locality observed in other work in networking environments. 

Under this workload and some other assumptions, the work in [42] predicts that both the 

algorithm in [41] and the move-to-front linked list achieve significant improvement over 

the single-line caching scheme in [43]. Moreover, the hashing scheme achieves orders of 

magnitude better performance.

2.2.2 Locality in Web Server Workloads

In [45], the popularity-based IRM is found to be inadequate to capture the temporal locality 

in the reference strings obtained from Web server access logs. The LRUSM is used instead 

and it is found that the marginal distribution of stack distance is best fit by the lognormal 

distribution. A similar approach is taken in [46] to generate synthetic workload for Web 

servers.

Arlitt and Williamson [47] emphasize that temporal locality is orthogonal to concentra

tion in that concentration refers to the aggregate reference counts for documents regardless 

of the reference order, while temporal locality refers to the relative order in which docu

ments are referenced, regardless of their reference counts. Here, the LRUSM is used to 

capture temporal locality. The request arrival processes of the aggregate traffic and some 

frequently referenced documents are investigated and it is found that the former is definitely 

not Poisson but the latter is.

It is pointed out in [33] that the main drawback of the LRUSM is its inability to distin

guish hot set (a set of most popular documents) effects from short-term temporal locality, 

or short-term document reference correlation. That is, a hot document may cause many 

references near the top of the stack, even if there is no correlation between the probability 

of referencing a particular document and the time since the document was last referenced. 

The IRM is used to generate synthetic reference sequences on a day-to-day basis. It is found
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that short-term temporal locality is important in Web workload characterization and that 

the simple IRM is incapable of capturing this locality.

In [48], the sources of Web document reference temporal locality are identified as short

term temporal correlation and long-term popularity. The model proposed is a combined 

popularity distribution described by a power-law, and an inter-request time distribution of 

equally popular documents is described by another power-law. An empirical relationship is 

established between the two. Based on this work, [49] develops the GreedyDual* Web cache 

replacement algorithm which takes into account both long-term popularity and short-term 

temporal locality characteristics in Web server workloads.

Fonseca et al. [50] give a formal definition of temporal locality which helps to differentiate 

the two sources of locality observed in Web reference sequences: document popularity and 

temporal correlation. The authors further introduce the entrophy [51] of popularity and the 

coefficient of variation of inter-arrival time as the measurements of the two aspects. These 

definitions are used in studying the transforms Web reference streams experience as they 

pass through the Internet. The major findings are that while popularity imbalance can rise 

and fall, temporal correlation usually declines as the result of transformations.

Work in Web traffic modeling and performance evaluation has shown that both document 

popularity and reuse-distance distributions are important characteristics of Web traffic. 

These can be captured by the ERM and LRUSM, respectively. Performance studies using 

either model tend to emphasize the importance of one feature of the workload, ignoring the 

other. It would be worthwhile to develop a unified model that combines the strength of the 

two models. Such a model would be useful in generating representative synthetic traffic.

2.2.3 Synthetic IP Destination A ddress Generation

Aida and Abe [52, 53] study LRU stack position reference probability under the stationarity 

assumption of the inverse stack growth function (ISGF), f (t ) ,  which is the number of distinct 

addresses accessed during a time period. Accordingly, the stack growth function (SGF) is 

expressed as g = f ~ l ■

By assuming that the ISGF depends only on the number of accesses or WS window 

size (the stationary assumption), the authors derive the probability function of the stack 

distance in the LRUSM. Therefore, the proposed method captures temporal locality.

The probability for the next address to be the same as the kth  most recently referenced 

distinct address, a*, is derived as:
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ak — { f ( g ( k -  1) +  1) -  (k -  1)} -  {f{g(k)  + 1) -  k).  (2.7)

The ISGF is in a form similar to the empirical power law footprint function in [36]:

f  (t) ^  r “ (r  »  1), (2 .8 )

where a  is a constant. Unlike the previous work, this is not directly used to generate 

synthetic traces. With Eq. 2.8, ak can be expressed as

The LRUSM is then used in the synthetic IP address generation algorithm.

There is an inherent relationship between the LRUSM and the WS when we assume that 

the WS size w is dependent only on the window size T  (see Eq. 2.1). The stack size equals 

the former and the number of accessed addresses is the latter. As a result, the synthetic 

address sequences generated using LRUSM resemble real world address sequences not only 

in temporal locality, but also in working set behavior.

It is observed that Internet addresses are not distributed uniformly [54]; the frequencies 

of addresses are highly skewed and follow Zipf’s law. The proposed address generation 

scheme in [52, 53], although it captures the WS behavior of Internet address sequences, 

cannot differentiate address distribution. This is because in the LRUSM, addresses in the 

stack are all treated the same way.

Aida and Abe [54] extend the proposed algorithm in [52, 53] to accommodate the skewed 

address distribution. A formula similar to Eq. 2.7 is used to generate stack distances. In the 

medium/long time scale, i.e., when a generated stack distance is large, the LRUSM is used 

to produce the output address. When the generated number is less than a threshold value, 

however, another random number, n, is produced. The meaning of n is that n addresses 

ago the to-be-generated address appeared in the address sequence. The probability, S„, is 

expressed as

The synthetic address traces generated using the extended algorithm show WS behavior 

similar to real world traces. At the same time, they exhibit address distributions that follow

ak =  {((k -  l ) 1/,a + 1)Q -  (fc -  1)} -  {(k1̂  +  l ) a -  *}.

a„ =  { f in)  -  f ( n  -  1))} -  { f ( n  +  1) -  /(n )} . (2.9)

Zipf’s law.
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2*3 Flow -level Traffic C h arac teris tics

The notion of a network flow is valuable in describing groups of packets with some common 

properties traveling in the same direction. For example, a packet train [18] can be seen 

as a network flow when defined as a burst of packets from the same source to the same 

destination. In the Internet, some packet header fields can be selected to identify a flow, e.g., 

the five-tuple { source and destination addresses, source and destination ports, protocol} 

identifies a connection between two communicating processes. Claffy et al. [55] discuss 

a parameterizable methodology for flow profiling. The parameters include flow direction, 

single/double endpoint(s), endpoint granularity and functional layer.

It is worth mentioning that many flow definitions are timeout-based [18, 55, 56, 57]: a 

flow is considered active when the inter-arrival time between two successive packets does 

not exceed a pre-defined timeout value; and is inactive otherwise. In this work, however, we 

identify flows simply by the common destination address of the packets and the inter-arrival 

time is not considered.

Numerous studies have focused on characterizing aggregate network traffic, where all the 

simultaneously active packet transmissions between network hosts are lumped together as 

a single flow. Recent studies have found that aggregate network traffic exhibits fractal or 

self-similar scaling behavior, i.e., the arrival count process of the traffic looks statistically 

similar on all time scales [58]. Self-similar traffic are long range dependent (LRD), meaning 

that the auto-correlation function has a long tail which decays slower than exponentially 

[59]. Erramilli et al. [60] did queueing experiments and found that LRD in packet traffic 

has significant performance impact.

Sarvotham et al. [61] examine Internet traffic at the connection level. It is found that the 

burstiness of Internet traffic is not due to a large number of flows transmitting at the same 

time, as assumed in some aggregate Internet traffic models [62, 63], but rather is caused 

by a few large files transmitted over high-bandwidth links. These connections contribute to 

alpha traffic and the rest create beta traffic. Methods to separate alpha and beta traffic are 

discussed in [64].

Brownlee and Claffy [65] study the flow patterns of measured Internet traffic, and points 

out that network streams can be classified by both size (elephants and mice) and lifetime 

(tortoises and dragonflies). Tortoises are flows lasting more than 15 minutes, which con

tribute to a small portion of the number of flows (one or two percent), but carry fifty to
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sixty percent of the total traffic.

2.4 L oad B alancing for W eb Servers

The rapid growth of the Internet manifests itself in, among others, the exponential growth 

in the request rate to some popular Web sites. To cope with the problem of Web server over

load, a collection of Web servers are usually used to service Web requests. Like traditional 

parallel and distributed computing systems, potentially, a cluster of Web servers provides 

scalability, but as a system, they can only deliver high performance when the workloads are 

distributed in a balanced manner. In this section, we will discuss load balancing designs in 

some multi-server Web systems.

2 .4 .1  DNS-based S c h e d u lin g

One way to  provide high performance Web service is via replication, i.e., to use multiple 

mirrored servers with duplicate information to serve the requests. These servers coordinate 

with each other to create a distributed Webserver system [66]. The servers share the same 

domain name but each has its unique IP address. A local domain name system (DNS) 

server responds to DNS requests from Web clients with the IP addresses of the individual 

Web servers. Before sending a hypertext transfer protocol (HTTP) request to a Web server, 

a client queries the DNS for the server’s IP address. By replying with the different IP 

addresses of the servers, the DNS distributes the workload among multiple Web servers.

The ability of the DNS server to distribute workload in a balanced manner plays a critical 

role in the performance, scalability, and fault-tolerance of the distributed system. Noticing 

that the basic round-robin scheme is ineffective for load balancing under skewed WWW 

request distribution in such a system, Colajanni et al. [67] proposed enhanced round robin 

schemes to improve distributed Web-server system performance, taking advantage of request 

statistics at the client side and load Information at the server side. One of the algorithms is 

called two-tier round robin (RR2) which divides domains into two classes: the normal class 

and the hot class. Based on the domains where the requests come from, RR2 assigns WWW 

servers in round robin fashion within each class, independently. This algorithm, combined 

with single-threshold server workload indicators (called alarms), is simple to  implement and 

shown to be able to achieve much better load balancing result than simple RR.
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2.4.2 Hash-based Routing

Proxy Web servers, also called shared Web caches (these are different from conventional 

CPU caches), are an effective way to  reduce Web request latency in an organization with 

internal high-speed network connections, but only low-bandwidth or congested links to the 

Internet. Usually, an organization employs a collection of shared Web caches instead of just 

one. The main advantages of using multiple caches are elimination of a potential single 

point of failure, scalability, and information sharing.

Two popular schemes are used to distribute WWW documents among the caches: the 

Internet caching protocol (ICP) [68, 69] and the cache array routing protocol (CARP) 

[70, 71, 72]. When a request to an ICP cache fails, the cache queries other caches for the 

object and copies it if found. Otherwise, the object has to be retrieved from its original 

server. Different servers can cache a same object. CARP is based on an extension [71] to 

the robust hash routing in [70], which allows caches with different processing power and 

storage capacity.

Noting that it is inefficient to have multiple servers process identical requests [70] pro

poses the highest random weight (HRW) mapping. The name of the requested object is 

combined with the IP addresses of the servers to produce random values, called weights, 

one for each server. The request is forwarded to the server with the highest weight. This 

approach improves object “hit ratio” at the servers, and thus reduces response time.

HRW is basically a hash-based scheduler which, in contrast to round robin, naturally 

partitions objects among servers and thus improves object hit ratio at servers and reduces 

response time. The novelty of this scheme, however, is to incorporate server addresses in 

the hash keys and to select the server with the highest weight, which allows the algorithm 

to  achieve minimum disruption. Whenever a server comes up or goes down, the number of 

objects that are remapped to another server is kept as small as possible. This is important 

to provide fault tolerance in case of server failures, and to ease upgrades and reconfiguration. 

Compared with simple hashing, the extra cost of HRW, due to minimum disruption, includes 

a weight calculation and comparison for every request.

Another goal of HRW is to achieve load balancing. The problem, present in all hash- 

based load distribution schemes, is caused by non-uniform distribution of object popularity, 

causing uneven workloads for the servers. Suppose that there are m  servers and K  distinct 

objects. The popularity of object i Is p*. The sum of the popularities of the objects mapped
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to server i {1 < i < m) is g*, which is defined as the server’s popularity. It is proved in [70] 

that

CV[qf  =  C ^ l ) C V [ p f  (2.10)

where CV[q] is the coefficient of variation of server popularity and CV\p] is the coefficient 

of variation of object popularity. When the variance of object popularity is finite,

lim CV[q] =  0. (2.11)
K - *  oo

Assume that, regardless of the object and server, each request represents the same 

amount of work. Thus the workload for each server is proportional to its popularity. It 

is further proved that, as the number of objects increases, the workloads on the servers 

become more balanced.

In the original HRW, the number of requests are divided evenly among the servers. Ross 

[71] recognizes that Web caches are more likely to be different in storage and processing 

capabilities and proposes an extension to HRW. The idea is to assign multipliers to cache 

servers to scale the return values of HRW. The scaled values are used as weights to select 

the destination cache servers. A recursive algorithm is provided to calculate the multipliers 

such that the object requests are divided among the servers according to a pre-defined set 

of proportions.

2.5 Packet Scheduling and Load Balancing in Parallel 
Forwarding System s

As mentioned in Section 1.2, one trend in router design to cope with the growth of the 

bandwidth demand is to have a number of network processors (NP’s) working in parallel to 

increase the system throughput. A major aspect of parallel processing of network processors 

is their ability to scale to higher data rates of the future.

In this thesis, because our main concern is the forwarding performance of routers, we 

describe parallel forwarding systems composed of multiple forwarding engines (FE’s). The 

FE’s are processors engaged in per-packet processing, e.g., routing table lookup, header 

checksum calculation, etc. Fig. 2.2 shows a system with four FE’s.
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Figure 2.2: A Multi-processor Forwarding System 

2.5.1 Basic Scheduling Schemes

The scheduler is responsible for dispatching the next packet in the input queue to an FE 

where it is processed, i.e., its output port is determined. The various schemes for dispatching 

packets to FE’s have differing performance. There are two popular ways that packets are 

distributed to FE’s:

R o u nd-R ob in (R R ) Packets are distributed to FE’s in a round-robin fashion.

H ash-based  A portion of the incoming packet is used as a hash key and an index is 

produced based on this information. The index is used to determine the FE to which 

this packet should be sent.

RR is simple and efficient. Moreover, it distributes packets evenly among the FE’s; load 

balancing is achieved naturally. This is important because load balancing mechanisms are 

usually needed in parallel systems to achieve maximum throughput. There are disadvan

tages, though. First, RR does not necessarily preserve packet ordering in a connection. 

Packet reordering can be detrimental to end-to-end protocol performance [73, 74]. Second, 

RR reduces locality in the workload of the FE compared to that in the aggregate traffic [75].

The hash-based scheme does not have the shortcomings of RR. Usually, packet header 

fields identifying a connection are used as hash keys by the scheduler, which ensures that 

packets from the same connection are delivered to the same FE in order. Hash-scheduling 

is known to improve temporal locality in the scheduled traffic [70, 75]. On the other hand,
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depending on the traffic characteristics, hashing could lead to serious load imbalance in a 

parallel system.

2 .5 .2  I n t e r n e t  L in k  L o a d  B a la n c in g  S c h e m e s

Cao et al. [76] classify hash-based traffic-splitting schemes into two categories: direct and 

table-based hashing. Direct hashing schemes use fields in a packet’s header as a hash key 

and feed them to a hash function. The result is the index of the outgoing link for the packet. 

Direct hashing is simple, but has some serious limitations. Among them is the difficulty of 

load distribution tuning. A table-based hashing scheme adds a mapping stage after splitting 

the incoming traffic stream into a number of bins. A bin number is used as the index to 

a table to produce the index of the outgoing link. Table entries can be changed to reflect 

bin-to-link mapping and thus achieve load tuning.

The ability of a direct hashing scheme to balance workload depends on its abilities to pro

duce uniformly distributed random numbers. Cao et al. [76] evaluate five schemes: Hashing 

of Destination Address, Hashing Using XOR Folding of Destination Address, Hashing Using 

XOR Folding of Source and Destination Addresses, Internet Checksum, and CRC16. The 

coefficient of variation (CV) [77] of the number of packets forwarded onto each output link is 

used as the measure of load balance. The results show that CRC16, the 16-bit CRC (Cyclic 

Redundancy Code) checksum over the 5-tuple (source and destination addresses, source 

and destination transport layer ports, and transport layer protocol number), produces more 

uniformly distributed values and achieves better load balance than the other schemes.

Simple hashing alone, however, is not enough to achieve load balancing. The randomness 

of packet header fields can be exploited by hashing schemes to distribute the number of flows 

evenly across the outgoing links, but a small number of large flows can easily cause load 

imbalance at the packet or byte level. Simulations in [76] show that table-based hashing that 

dynamically distributes traffic by monitoring queue length can achieve better load balancing 

than direct hashing or simple table-based traffic-splitting methods.

Jo et al. [78] propose dynamic hashing with flow volume (DHFV) which enhances a table- 

based hashing algorithm such as [76]. The idea is to distribute very large flows/bins during 

the time of load imbalance from more loaded links to less loaded ones. This approach relies 

on the temporal locality in Internet traffic to identify flows of large volumes. Simulation 

results show that this approach is very effective.

On the other hand, no extensive workload characterization has been done in [78] to
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justify the scheme. The question of why hashing cannot balance workload, even in the long 

run, is not answered. The effect of shifting different flows remains to be studied.

2 .5 .3  L o a d  B a la n c in g  fo r  P a r a l l e l  F o rw a rd in g  S y s te m s

Dittman and Herkersdorf [79] describe a load balancer for parallel forwarding systems. 

A two-step table-based hashing scheme is used to split traffic. Packet header fields that 

uniquely identify a flow are used as a hash key and fed to a hash function. In the case of 

TCP or UDP packets, these fields include source and destination addresses, port numbers, 

and the protocol type. The hash function return value is used as an index to  a look-up 

memory to derive the processor to which the packet should be forwarded. Flows that yield 

the same hash value are called a flow bundle and are associated with one processor.

In [79] three techniques are used to achieve load balancing. First, a time stamp is kept 

and updated at every packet arrival for each flow bundle. Before the update, however, this 

time stamp is compared with the current system time. If the difference is larger than a 

pre-configured value, the flow bundle is assigned to the processor that is currently least- 

loaded. Second, flow reassignment monitors the states of the input queues of the processors. 

Flow bundles are redirected from their current over-loaded processor to the processor with 

the fewest packets in its queue. Third, excessive flow bundles are detected and repeatedly 

assigned to the least-loaded processors. This is called flow spraying.

Kencl and Boudec [80] and Kencl [81] propose a scheduling algorithm for parallel IP 

packet forwarding. Their scheme is based on the HRW developed in [70] and extended in 

[71]. It is noticed that although HRW provides load balancing over the request object space, 

load imbalance still occurs due to uneven popularities of the individual objects.

An adaptive scheme is introduced to adjust loads among the FE’s to prevent over

utilization of a single processor when the system is under-utilized or under-utilization of a 

single processor when the system is over-utilized. A second goal is to minimize the amount 

of packet-to-FE remappings in realizing the adaptive scheduling scheme.

The algorithm includes two parts: the triggering policy and the adaptation. Periodically, 

the utilization of the system is calculated and compared to a pair of thresholds to determine 

if the system is under or over-utilized. In either condition, the adaptation is invoked which 

adjusts the weights (called multipliers in [71]) for the FE ’s to affect load distribution. In 

other words, the algorithm treats over or under-load conditions as changes in the processing 

power of the FE’s. It is shown that the adaptation algorithm can keep the minimal disruption
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property of HRW.

Although Kencl and Boudec [80] recognize the inability of HRW to provide load balanc

ing, their reasoning is not complete. It is true that during a short term period, the different 

frequencies of individual objects can affect load balancing. But in the long term, the effect 

may be averaged out; HRW cannot provide load balancing not because the uneven popular

ities of the objects, but because the popularity distribution, e.g., the Zipf-like distribution, 

may not have a finite variance.

The adaptation algorithm treats different IP traffic flows in the same way, although it 

is realized that their popularities are not the same. It is true that HRW provides minimum 

disruption in cases when servers go up and down. Adaptation by adjusting weights, however, 

does not take flow popularity into consideration and thus may not be able to achieve this 

goal.

2.6 Summary

Program memory reference behavior models are relevant to our work. Memory address 

sequences and destination IP address sequences are similar in many aspects. The addresses 

can be of the same length, i.e., both 32 bits. Both sequences exhibit temporal locality. 

In local network environments, many studies have shown that locality exists a t different 

protocol levels and have proposed caching schemes in network devices, e.g., routers, and 

network host systems, to exploit locality in their workloads to improve performance.

The IRM and LRUSM have been widely used in modeling Web traffic where the IRM cap

tures the popularity of documents and the LRUSM characterizes temporal locality. Different 

caching strategies have been proposed to take advantage of both in Web server systems. We 

will show in later chapters that both features exist in IP destination address sequences.

We have also discussed work on flow and connection level modeling of Internet traffic. 

Understanding the burstiness of the Internet traffic at the connection level is important. 

As one application, it explains load-imbalance in parallel forwarding systems. Finally, we 

compared hash-based traffic-splitting schemes used in these systems.
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Chapter 3

Locality M odels for Aggregate 
Internet Traffic

In this chapter, we first discuss the motivation behind modeling locality in IP destination 

address sequences. On the one hand, many studies have shown that locality has a significant 

impact on the performance of key forwarding algorithms [13, 12, 82, 83, 84]. On the other 

hand, locality in IP traffic is largely ignored in network system testing and performance 

evaluation practices. We believe that this discrepancy stems from the lack of accurate 

models for IP traffic locality and effective synthetic trace generation methods.

Next, we present our methodology. Our studies are based on the measurement of real- 

world data. We discuss the IP packet header traces collected from a wide range of networks 

that are used in our experiments. These networks differ from each other in traffic volume 

and location in the global Internet hierarchy; yet the temporal locality in their traffic can be 

captured by a common simple model. Trace-driven simulations for one of the key forwarding 

algorithms, the IP routing table lookup process, are used to validate the models developed.

We then describe models used to capture locality properties of aggregate Internet traffic, 

which include the footprint model and the reuse distance model. We show that the two 

models measure different aspects of locality and differ in capability. The footprint model 

captures concentration, and was initially developed for cache miss ratio measurement; the 

LRU cache miss ratio is derived from the average working set size function. The reuse 

distance model, on the other hand, captures both temporal locality and concentration. We 

develop a mixed function that accurately describes reuse distance distributions in a wide 

range of network environments.

Our synthetic trace generation method is directly derived from the reuse distance model 

and has proved, via routing table lookup simulations, to be able to generate representative

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



router workloads.

3.1 M otivation

One goal of this thesis is to quantify locality in IP destination address sequences. Given 

sample traces, our model can measure the quantitative difference in locality between them. 

Our second goal is to generate representative workloads for simulation and forwarding system 

benchmarking and testing. Synthetic workload models are highly desirable for simulation 

studies because their flexibility allows not only representative but also projected workload to 

be generated. Compared with real-world workloads, a synthetic workload is not necessarily 

less typical or accurate; moreover, for systems in the design phase, real-world workloads 

may not even exist. The two goals are achieved by a single generative model.

Temporal locality in Internet traffic can have a significant impact on forwarding perfor

mance. For example, the experiments on LC-trie routing table lookup algorithm [13] report 

that lookups with the actual traffic and routing table from the Finnish University and Re

search Network (FUNET) are almost twice as fast as those with random permutation of 

routing table entries, although the FUNET routing table is the largest among the routing 

tables used in the experiments. The authors explain this as due to the locality in the real 

world traffic.

Recently, network processors have emerged as a flexible technology to accommodate the 

exponential growth of the Internet [85] and have gained widespread application. Network 

processors, different from general-purpose processors, specialize in packet processing tasks 

and I/O . As many vendors now supply network processor products, e.g., the PowerNP™ 

from IBM and the IXP series network processors from Intel, it has become important to 

measure and compare the performance of these systems. Locality in IP destination address 

sequences, although critical to forwarding performance, is not adequately considered or often 

ignored in network equipment testing systems and network processor benchmarks.

Some router testing systems available today simply generate packets in a round-robin 

fashion [86, 87] with destination addresses based on the routes in the device under test. In 

each round, one packet is generated with the destination address for a route in the pool. The 

next packet’s destination address corresponds to  the next route. Locality characteristics in 

real world traffic, which will be the real workload for the router, are completely ignored. In 

this generated traffic, locality depends on the ordering of the entries in the routing table!
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Although the effect of locality has long been recognized in computer benchmarking [38] 

and incorporated into performance models of general micro-processors [88]; there seems 

to be little consideration of locality in the evaluation of network devices where synthetic 

instead of real-world workload is popular. For example, in [89], synthetic traces in the 

benchmark consist of a fixed number of distinct destination IP addresses. On the other hand, 

benchmarks that do consider temporal locality, e.g., [90], have to turn to real-world traces 

and, as the destination addresses in these traces are often anonymized, special treatment 

has to be used to preserve temporal locality.

In brief, our work is driven by the Increasing need to measure the forwarding performance 

of network devices and the lack of use of locality in current benchmarking and simulation 

practices.

3.2 M ethodology

To validate our locality models, we compare the locality properties of synthetic traces and 

real-world traces. Given a real-world trace, wre extract the model parameters from the data 

and feed them to our synthetic trace generation program. This produces a synthetic trace 

that resembles the real world trace in the characteristics captured by the model. Then we 

compare the plots of the two traces visually. In addition, we use trace-driven application- 

level simulation to validate models. The radix-tree routing table lookup code extracted from 

the FreeBSD [91] kernel is run on the SimpleScalar [92] platform. The general cache miss 

ratio results of the program with synthetic and the real-world traces are compared with 

each other. This can only be done when we have the routing table for the router where the 

trace was gathered.

Table 3.1: Traces Used in Experiments
Trace Length (entries) Description
UofA 1,000,000 A packet header trace recorded at the gateway 

connecting the University of Alberta campus net
work to the Internet backbone. For this trace, the 
routing table at the gateway is also available.

FUNET 100,000 A destination address trace which is used in eval
uating the LC-trie routing table lookup algorithm 
in [13] from FUNET.

LDestIP 31,518,464 A destination address trace from the PMA (Pas
sive Measurement and Analysis) research project 
at NLANR [93].

During model-building, we have experimented with the Internet header traces listed in

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.1. To verify the models, we used multiple traces from the following two sets available 

from NLANR:

A bilene-I Two-hour contiguous bidirectional packet header traces collected from two OC48c 

Packet-over-SONET links at the Indianapolis router node (IPLS). We used all 48 traces from 

this set. The Abilene-I set contains traces measured at two router ports. There are 4 groups: 

CLEV-0, CLEV-1, KSCY-0, KSCY-1, each containing 12 traces.

A uckland-IV  A 45-day continuous trace collected at the University of Auckland Internet 

access link by the Waikato Applied Network Dynamics (WAND) research group between 

February and April 2001. We retrieved and fit the first 37 out of 94 traces from this set. 

The Auckland-IV set contains traces from two directions at one port; thus there are two 

groups: AuckIV-0 (19 traces) and AuckIV-1 (18 traces).

To accurately capture temporal locality in IP address sequences, we use trace-driven 

simulation. This is in contrast with the approach taken in similar work [52, 53, 54] where 

the assumption of the average working set size function leads to over-simplified results which 

prevent them from being practically applied.

3.3 The Footprint M odel

Thiebaut et al. [36] use the footprint model to generate synthetic memory reference se

quences for computer programs (see Section 2.1.4). The footprint model for a sequence of 

addresses relates the working set size (see Section 2.1.1), \W(t ,T)\ ,  to the window size, T.  If 

we assume that the address generation process is stationary, as in [17], the WS size depends 

only on the window size and can be expressed as f (T) .  The definition of concentration, one 

of the locality characteristics (see Section 2.2.1 or [21, 22]), is based on the WS model. The 

concentration, C t, in Eq. 2.6, can be determined once the footprint function f (T)  is known. 

It is found in [94] that address-level program memory reference footprint curves converge 

to the following hyperbola:

u(T) = A T 1/ &, A  > 0,0 > 1

Shi and MacGregor [37] capture the footprint behavior of IP destination address traces 

and apply the synthetic trace generation algorithm described in [36] to produce synthetic 

IP destination addresses. Two real world traces, UofA and FUNET, are used in the exper

iments. For each trace, two synthetic traces are generated: one is based on the footprint 

model, called synthetic, and the other is a random trace, called random, which retains the
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same number of unique addresses of the original trace, but is produced by selecting addresses 

according to the uniform distribution.

Fig. 3.1 shows the footprints of the traces where the values of 9 calculated from the 

two real traces are 2.239 (UofA) and 2.631 (FUNET); the values of A are 11.95 and 23.25 

respectively. The synthetic traces based on the footprint model approximate the real traces 

much more closely than the random traces. The number of unique addresses in the random 

trace reaches the maximum far more quickly than for either the synthetic or the real trace.

To verify the footprint model, we use both the synthetic and real traces to drive the 

radix tree routing table lookup algorithm and measure the general cache miss ratios. We 

used the SimpleScalar tool set, where the cache can be easily configured, for the simulations.

Figure 3.2 shows the results for a 16-KB direct-mapped cache with cache line sizes of 4, 

8, 16 and 32 bytes. The miss ratios of the real trace are consistently lower than those of both 

the random trace and the footprint-based synthetic trace. The miss ratios of the synthetic 

trace are between those of the real trace and those of the random trace. The synthetic trace 

curve is closer to that for the random trace than it is to the curve for the real trace.

Locality is the concept behind caching; if a synthetic trace is generated based on a model 

that accurately captures locality in a real trace, we would expect the cache miss results to be 

close for both traces. In the case of Fig. 3.2, the synthetic model apparently underestimates 

the locality in the real trace. From Fig. 3.1, we can conclude that the hyperbolic footprint 

curve captures concentration well.

The footprint model, however, does not take temporal locality explicitly into consider

ation. Empirically, we calculated a crude measure of the temporal locality of each trace, 

namely, the number of times when a destination address was the same as the previous ad

dress. This situation occurs 147272 times in the UofA trace, 155 times in the random trace 

and 6232 times in the synthetic trace. The results for the FUNET traces were very similar.

For the random trace, since the addresses are drawn using a uniformly distributed ran

dom number, the expected number of repeats would be

TraceLength 1000000 _
No.ofU niqueAddresses 5861

For the synthetic trace generated from the footprint model, we need to take a closer look 

at the algorithm (see Fig. 3.3 and Eq. 2.5). Repeats only occur when the generated index 

is 0. When U < 1/9 , the index is no less than A * ^ , i.e., Cc. Given the A  and 6 values for 

the UofA trace, we have an index larger than 88. Obviously, when U >1/6,  the chance that
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Figure 3.2: Simulation of a 16-KB Direct-Mapped Data Cache

the index is 0 is 1 f Cc. So overall, the probability of repeats in the generated trace should

be
1 -  1/0

=  0.00625,

far from that for the real trace.

To remedy this problem, we modified the trace generator by introducing one more pa

rameter, the so-called self-repeat ratio (In hindsight, the self-repeat ratio is equivalent to the 

concept of persistence). If the hit index is below the LRU-POINTER, i.e., the address to 

be generated has been seen already, that address is made identical to the previous one with 

the probability equal to the self-repeat ratio. Otherwise, with the remaining probability, 

the address at the hit index is issued as before. The modified algorithm is listed in Fig. 3.3. 

The four lines starting at “R =  Random2” are our modification to the original generator.

The self-repeat ratio observed in the UofA trace is 0.147272. With this modification, the 

generator will tend to issue not only repeating pairs of addresses, but also runs of three, four, 

and so on. With this self-repeat ratio, using the algorithm described above, we generated 

another trace, syn2. Measurement and cache simulation results are shown in Fig. 3.4. Fig. 

3.4.a compares the measured footprint curves of the synthetic and syn2 traces. The footprint 

of syn2 matches that of the synthetic trace because we only consider generating repeating 

addresses when the hit index is below LRU-POINTER. Thus, in terms of the total number
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{ fill an LRU stack with unique item s }
InitializeStack;

{ generate ” SyntheticTraceLength" synthetic addresses }

for count:= 1 to SyntheticTraceLength do 
begin
{ generate an index from uniform random real in [0, 1 ]------}
U:=Randoml; 
if (U<l/Theta) then

index := round((U/((AATheta)/Theta)))A(l/( 1-Theta)));
else

index := round(random * Cc);

{ determine the address to output }
R = Random2
if index<LRU_POINTER and R<SelfRepeatRate then 

address = Previous Address; 
else {-—  move the item at "index" to stack top }

UpdateLRUStack(index, address, LRU);

{---- process the new synthetic address —- )
UserProcess (address); 
end; {for}

Figure 3.3: The Synthetic Trace Generation Algorithm
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of different addresses that have been issued up to a given point, the two methods produce 

exactly the same outcome.

Figure 3.4.b shows that the miss ratios of the trace (syn2) from the modified algorithm 

are closer to those of the real trace (real) than that (synthetic) from the original algorithm. 

This is due to the improvement in temporal locality in the synthetic trace.

3.4 The Reuse D istance M odel

An important concept in this work is reuse distance, which is similar to the concept of 

stack distance in the LRUSM. Let “r 1, r 2 , ...,rn, ...” be the distance string of an address 

sequence “cp, <3 2 , an, ....” Let Ai  be the set that contains the unique addresses in the 

address sequence 0 1 ,(1 2 , . . . ,£q. Then \Ai\ is the largest reuse distance seen in the trace up 

to and including a .̂ Moreover, we have

_  /  idx{ai+i) if ai+i £ Ai , .
i+1 ”  1 \A>\ + 1  if ai+1g A i .

where idx(ai) yields the index of a, in the LRU stack. The first appearance of an address 

generates the largest reuse distance so far. This differs from [35], where the reuse distance 

for the first appearance of an address is infinite. This treatment of the first appearances 

leads to the explanation of the footprint curve in the context of reuse distance.

Aida and Abe [52, 53] use the footprint model combined with the reuse distance model 

to generate pseudo address sequences. Their approach is to first derive the distribution of 

reuse distances from the footprint model and then this distribution is used with the LRUSM 

to generate synthetic traces. Aida and Abe [53] show that the probability distribution of 

LRU stack distance can be derived from the footprint curve. There it is called the Inverse 

Stack Growth Function or ISGF.

However, the footprint model is inherently flawed in that it does not approach an upper 

limit (Eq. 2.3). In reality, however, the address spaces for IP or program virtual memory 

are both finite. For example, for IP version 4 [2], the size of the address space is 232. As 

time goes by, the unique number of addresses should approach and finally reach some limit. 

This limit, seen at a router, could be far less than the maximum of 232 addresses. This 

is mainly because the router only forwards packets to a subset of all the networks of the 

Internet.
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Figure 3.5: Reuse Distance Over Time: LDestIP (above) and UofA Traces

Our approach is to directly characterize the empirical distribution of reuse distances, 

which automatically captures the footprint behavior of the address sequences at the same 

time. Let F(x)  be the distribution function of the reuse distance and JJ the random variable 

that represents the number of distinct reuse distances. Then E(U)  depends on the distribu

tion of the random vector X i , X 2, ■.. X m , where X j , ( j  = 1, . . . ,  M )  are independently and 

identically distributed. Thus, the distribution of U depends solely on F(x)  and M. E(U)  is 

equivalent to the average WS size, so once F(x)  is decided the footprint curve, representing 

the average WS size, is known.

Fig. 3.5 shows the reuse distance patterns for the first 10,000 entries of the LDestIP and
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UofA traces. Two common features stand out:

• The reuse distances of the first appearances of the addresses form an upper border 

line.

• Under the border line, smaller reuse distances have higher density than larger ones.

The upper border lines in the two figures are the footprint curves of the two traces. Ac

cording to its definition, a footprint curve fits the points of (number of addresses referenced, 

number of unique addresses so far) where the “number of unique addresses so far” is the 

same as the “largest reuse distance so far” in Eq. (3.1).

The second feature observed in the figures is the result of temporal locality. Small reuse 

distances indicate repeated references to the same addresses in short intervals. With the 

reuse distance probability, we are able to say how likely it is that an address just referenced 

will reappear in a given number of steps, counted by the number of distinct addresses, in 

the near future.

3.5 The R euse Distance D istribution M odel

3 .5 .1  F ittin g  the CCDF with a  M ixed Function

We choose the CCDF (Complementary Cumulative Distribution Function),

S(x) = Pr[X  >  x] =  1 -  F(x) (3.2)

of reuse distances to characterize temporal locality.

Fitting the CCDF instead of the CDF allows the probability of the occurrence of larger 

reuse distances to be more accurately captured [35]. This is based on the assumption that 

the larger the reuse distance of an address, the more likely it will cause a cache miss, and 

thus the more important it will be in cache performance evaluation. Furthermore, fitting 

the CCDF makes performance measurement straightforward. That is, given the size of a 

fully associative cache, the miss ratio of a trace can be derived from the CCDF curve.

Fig. 3.6 shows the reuse distance CCDF’s for the LDestIP and UofA traces. Each curve 

represents a CCDF calculated from a sub-trace of a certain length. All sub-traces are longer 

than 10,000 entries. The CCDF’s follow a pattern. Initially, the curves are all very close. 

This consistency across different lengths of the traces implies stationarity. Over 60 percent 

of reuse distances fall in this range. Afterwards, the curves for different lengths diverge. 

We call this part of the curve the tail. The tails start with segments of roughly straight
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lines, though there are bumps in the middle of these segments. Then they drop off nearly 

vertically. The diverging tails give the look of branches from a common trunk.

Measurements show that the final segments, i.e., the almost vertical parts of the tails of 

the CCDF’s in Fig. 3.6 are linear. This linearity is due to addresses that are not reused, but 

appear only once in the traces. Using a longer trace to calculate the CCDF eliminates the 

linear tail of the CCDF for a shorter trace, although this introduces another longer linear 

tail. The reason is that the addresses that appear only once in a short trace can appear 

more than once in a long trace. The phenomenon that linear branches stem from a common 

base in all the CCDF figures reflects instability due to the limited length of the traces. In 

other words, if we had infinitely-long traces, there would be no linear tails in the CCDF’s 

and they would converge to one common shape.

Given these observations, our approach to fitting the CCDF of a trace is to use the 

longest trace available, and remove the linear tail first. It was shown in [45] that the 

distribution of reuse distances for URL’s in Web access traces can be fit by the lognormal 

distribution. However, we have not been able to fit the CCDF’s shown in Fig. 3.6 using 

a single distribution. Instead, we use the sum of two distributions, i.e., the two-parameter 

Weibull and Pareto distributions [95]:

C(x) = pW (x)  +  (1 - p)P(x), 0 < p <  1, (3.3)

where W (x ) is the CCDF of the Weibull distribution:

W(x) = e ~ {xl d)C, c ,d>  0, (3.4)

and P(x)  is the CCDF of the Pareto distribution

P(x) = (1 + bx)~a, a ,b> 0. (3.5)

The c and a are called the shape parameters for the Weibull and Pareto distributions, 

respectively, and the d and b are the scale parameters.

Fig. 3.7 shows the fitting of the W +P (shorthand for “Weibull +  Pareto”) function to the 

empirical data, where a heuristic method is used to cut off the linear segments in the first 

place.

For the existing data, our experiments show that the W +P fitting predicts the tails well 

in that the W +P tail from fitting a shorter sub-trace visually matches the tail of a longer 

sub-trace. Identifying the decay trend of the tail is important because it helps to generate
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longer synthetic traces without losing accuracy. This is the reason that the combination of 

Weibull and Pareto is chosen. We have tried to fit the CCDF data with other combinations, 

for example, two Weibull distributions (changing the P(x)  in (3.3) to a Weibull CCDF). The 

result actually shows better visual fit than the W +P scheme. However, further experiments 

show that for longer traces, CCDF’s for synthetic traces based on the tw o Weibull fitting 

have fewer unique addresses and the tails of the CCDF’s for the real traces decay more slowly 

than as predicted by the two-Weibull function. We believe that the faster decay trends in 

the CCDF tails of the real traces in Fig. 3.7 are caused by the limited trace length.

Recently, the distributions of many important parameters in workload models for com

munication networks have been found to be heavy-tailed or long-tailed, meaning that the 

tails of the CCDF’s of the distributions decay slower than exponentially. Empirical data are 

frequently better fit by such distributions like the Pareto, Weibull, or lognormal. According 

to the definition given by [96], the Pareto distribution and the Weibull distribution with 

c of less than 1 are all long-tailed. On the other hand, [97] showed that the lognormal 

distribution is not long-tailed.

After eliminating the linear segments, we have been able to fit the empirical CCDF’s 

with mixtures of Weibull and Pareto CCDF’s. The shape parameters for the Weibull are 

1.14 for the LDestIP trace and 1.22 for the UofA trace. Neither satisfies the requirement 

defined in [96] for being long-tailed. The Pareto segments, however, are long-tailed.

It is generally not easy to tell whether a parameter is long-tail distributed or not by 

merely obtaining a visually good fit to some specific samples. For example, [98] shows that 

fitting different samples of certain measures yields different best-fit tail distributions. In our 

case, the available traces are not long enough to observe a stable shape of the CCDF, which 

makes it harder to predict the exact tail behavior.

Besides these two traces, we have also examined the reuse distance distribution pattern 

of traces from two other sets at NLANR, i.e., the Auckland-IV and the Abilene-I set. We 

experimented with all 48 traces of the Abilene-I set and randomly selected 37 out of 94 traces 

from the Auckland-IV set. In all these cases, with appropriate parameters, the combination 

of Weibull and Pareto produced excellent fits. From these experiments, we have found 

that the values for the parameter p  in Eq. 3.3 are generally larger for backbone traffic 

(p € [0.14,0.19]) than for campus-level network traffic (p 6 [0.37,0.90]). In addition, the 

scale parameters, d for the Weibull and b for the Pareto CCDF, differ significantly for the 

two types of network traffic, but the shape parameters, c and a, are relatively constant for
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different sets of traces. These results are shown in Appendix A.

3.5.2 Discussion

Aida and Abe [53] derive the reuse distance probability distribution by first assuming the 

stationarity of the underlying address generation process (see also Section 2.2.3). The inverse 

stack growth function (ISFG), / ( t , r ) ,  which is equivalent to the working set size function 

in [17], relates the size of the stack (the number of distinct addresses) to discrete time t and 

the working set window size r . In addition, the stack growth function (SGF), g, is defined 

as f ~ l . The stationarity assumption leads to

=  / ( s , t )  (3.6)

where t and s are any points in time. Thus, the stack size is dependent only on r . / ( r )  is 

found to follow the power law in Eq. 2.8. The probability of the reuse distance k, a*, is 

shown to be that in Eq. 2.7.

A problem is that Eq. 2.8 describes an asymptotic behavior that may not apply to small 

t ; this could lead to inaccurate probability prediction for smaller reuse distances that appear 

frequently as the result of temporal correlation in IP address sequences. For this reason, 

Eq. 2.7 is not acceptable for cache performance evaluations. We will show that the reuse 

distance distribution predicted by Eq. 2.7 differs significantly from empirical measurement 

results.

We derive the complementary cumulative distribution function (CCDF) for reuse dis

tances from Eq. 2.7:

k
CCDF(k)  = 1 - 5 >  =  (*1'"  +  1)“ - *  (3.7)

i=l

The CCDF appears as a straight line in a  log-log scale plot (Fig. 3.8). For a  =  2/3 [53], the 

CCDF curve of a Pareto distribution (Eq. 3.5) also appears as a straight line in a log-log 

plot, and with properly tuned parameters (a =  2.03395, b — 0.-507146) it closely matches the 

curve of Eq. 3.7. From the empirical result in Fig. 3.8, one may conjecture that any reuse 

distance CCDF in the form of Eq. 3.7 can be approximated quite well by a Pareto CCDF. 

For large k and x, by binomial expansion for real exponents, Eq. 3.7 and Eq. 3.5 lead

to

CCDF(k)  = a x 1- 1/ 0 +  a(a -  l ) / 2 x 1~2/a + 0 ( x l ~3/a) (3.8)
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Figure 3.8: The CCDF in Eq. 3.7 matches the Pareto in Eq. 3.5.

and

P(x) =  a~b — 6(aa;)~5-1 +  0{x~b~2), (3.9)

respectively. If b = 1 /a  — 1 and a =  a ~ l/ h =  then P(st) is a good approximation

to CCDF(x)  when x is large.

In the CCDF patterns shown in Fig. 3.6, it is evident that each curve is composed 

of several distinct segments and cannot be fit well by a straight line in a log-log plot. In 

conclusion, we believe that the derivation using Eq. 2.7 is not adequate to accurately capture 

reuse distance distributions and thus temporal locality in IP traffic.

3.6 S ynthetic  Trace G en era tio n  and  S im ulation  R esu lts

3 .6 .1  S y n th e t ic  T ra c e  G e n e r a t io n

With a parameterized reuse distance CCDF, synthetic trace generation is straightforward. 

We populate a stack with IP addresses and use a random number generator to produce 

reuse distances according to the CCDF, each of which is used to index the stack to output 

an address. After an address is produced, the stack is updated accordingly using the LRU 

criterion. (See Fig. 3.9.)

“InitializeStackO” populates the LRU stack with unique addresses. Though the address 

space of IPv4 is 4xl09, the actual number of unique IP destination addresses in a trace is
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Initializes tack();
InitializePArray(); 
while(l) {

R = randomQ;
Index = GetStacklndex(R)
UpdateStack(Index);

}

Figure 3.9: Synthetic Trace Generation

limited. For example, for the 31-million LDestIP trace, the number of unique addresses is 

about 130,000.

The “Initialize? ArrayQ” reads an external file containing the discretized CCDF function 

into an internal “probability array” (PArray[ J) for generating random stack indices. After 

the initialization, PArray[iJ is the probability that a reuse distance is larger than i. This 

approach is more flexible than comparing random numbers to the CCDF of a certain formula 

with a set of parameters to decide what reuse distance to generate.

“GetStacklndexQ ” takes a random number and compares it sequentially to the probabil

ity array elements until one is found that is larger than the random number. Alternatively, 

since the array is sorted, a binary search can be used to find the smallest array element that 

is larger than the random number. The index of the array element is output as the reuse 

distance.

“UpdateStackQ” keeps an “LRU-pointer” which equals the number of unique addresses 

accessed so far. If the “Index” passed in is larger than LRU_pointer, the address at 

LRU-pointer is moved to the top of the stack, and the addresses previously above it are 

moved one step down the stack. LRU-pointer is incremented by one. If the Index is less than 

the LRU .pointer, the same sequence of operations are taken except that the LRU-pointer 

is not updated. In both cases, the address at the Index position of the stack is output as 

the synthetic IP destination address.

Fig. 3.10 shows the footprint curve calculated from the synthetic UofA trace along with 

that from the real trace. Visually, they seem to be close enough to be regarded as generated 

from the same source. The result for the LDestIP trace is similar. These results show that 

the reuse distance model alone can capture both features of the reuse distance patterns in
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3 .6 .2  On the E ffic ien cy  o f  L R U  S tack  Processing

The LRU stack processing algorithm used in our synthetic trace generation is the same as 

the original proposed by Mattson et al. [34]: a referenced address in the stack is moved to 

the top of the stack and the addresses previously before it are pushed down by one. This 

algorithm is naturally derived from the “least recently used” concept; it keeps the data 

structure simple and implementation straightforward.

An early work [99] addresses the inefficiency of using the LRU stack to  evaluate page 

reference sequences where a linear search is used to find a page in the stack. But linear 

search is not necessary in our trace generation algorithm because the location of an address 

in the stack, the reuse distance, is randomly generated according to E q . 3.3 . On the other 

hand, to improve the efficiency of updating the stack by shifting down addresses with smaller 

indices than that of the one currently accessed is a hard problem.

The LRU replacement policy is equivalent in concept to the move-to-front linear-list 

update rule. Sleator and Tarjan [100] studies the amortized efficiency of the move-to-front 

update and proves that it is within a constant factor of optimum, assuming that the access 

cost of the ith element from the front of the list is 0(f). The update cost in our stack 

algorithm can be seen as access cost; thus an access to the ith  address from the stack top
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involves i read and store operations. Thus, the naive form of stack processing is also the 

most efficient.

3.6.3 General Cache S im u la t io n  Results

We compare cache miss ratios to verify that our algorithm produces representative synthetic 

traces. A synthetic trace is generated using the parameters measured from the real UofA 

trace. Both the synthetic and real trace are used to drive a routing table lookup algorithm 

under different cache configurations and the miss ratios are recorded. The UofA trace is 

used because the routing table of the router where the trace was recorded is available. The 

radix tree algorithm [9] of the FreeBSD [91] kernel is used. SimpleScalar [92] is used as the 

simulation platform for its cache configuration flexibility.

Fig. 3.11a shows the simulation results with a 64-KB direct-mapped LRU cache. The 

“random trace” is generated by randomly selecting an address out of the total unique ad

dresses in the real trace; the “synthetic trace 1” is the trace based on the footprint model 

[36]; “synthetic trace 2” is the trace produced using the method described in Section 3.6.1. 

The miss ratios at different line sizes for synthetic trace 2 are very close to those of the 

real trace. The miss ratio curve of synthetic trace 1 is closer to that of the real trace than 

the curve of the random trace, but not as close as that of synthetic trace 2. This is be

cause synthetic trace 1, compared with the random trace, captures one more characteristic 

of the real trace, i.e., the footprint curve. Synthetic trace 2 is even closer because it also 

captures the reuse distance distribution of the real trace. The reuse distance distribution, 

as discussed earlier, essentially answers the question “How likely is it that a just-accessed 

address is going to be referenced in the near future?”. The differences between the curves for 

the real trace and synthetic trace 2 are mainly due to the inaccuracy of fitting the CCDF. 

Fig. 3.11b shows similar results for the four traces with varying cache sizes. In brief, the 

temporal locality of synthetic trace 2 approximates that of the real trace very well.

3.6.4 Route Cache Simulation Results

A “route cache” simulates a simple caching mechanism in routers [16]. Each cache entry 

contains an IP address and the corresponding output port. When a packet arrives, the 

router uses its destination address as an index to look up the output port where the packet 

should be forwarded. Again, we are interested in cache miss ratios.

There are several reasons that we use simple route caches where each entry contains
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a whole 32-bit destination address instead of a variable-length prefix in the routing table. 

First, due to the longest-prefix-matching requirement for routing table lookup, caching pre

fixes is an interesting problem itself. Matching prefixes involves rather tricky operations 

that are likely to increase the cost of the cache. Caching full IP addresses is considerably 

simpler. Second, for most traces that we work on, corresponding routing tables are not 

available. Third, the destination addresses for traces publicly available are usually “sani

tized” for security reasons, making it difficult to run lookup simulations even if the routing 

tables are available.

Fig. 3.12 shows the number of route cache misses for traces that contain 1 million 

destination IP addresses, where the real traces are the UofA and LDestIP traces (first 1 

million entries), respectively, and the synthetic traces are generated using the algorithm in 

Fig. 3.9. The replacement algorithm is LRU. The route cache simulation results support 

the idea that the synthetic trace produced using the method described in Section 3.6.1 has 

locality similar to that of the real trace.

3.7 Summary

We discuss the motivation and methodology for modeling locality in the Internet traffic 

at the beginning of this chapter. The lack of consideration in network system evaluation 

and the obvious impact of locality on forwarding system performance is the incentive for 

our work. Our study of network traffic locality is based on experiments with real world 

traces. Locality, however, is only one of the important characteristics of forwarding system 

workload. As we proceed to study other aspects of Internet traffic, we follow the same 

methodology.

Models previously used to characterize program memory reference behavior are adapted 

in this chapter to  the analysis of IP destination address traces. We reject the footprint 

model but accept the LRUSM as an effective model to capture temporal locality. Our 

work to fit the IP address reuse distance distribution produces a flexible model that can 

accurately describe the temporal locality in the various traces we have obtained. Compared 

with similar work on this subject, our model is more accurate in that it captures both the 

head and the tail of the distribution. Using this model, we have been able to generate 

representative IP destination address traces.

The distribution of address frequency is a traffic characteristic that cannot be conve-
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niently generated by the simple LRUSM which treats individual addresses uniformly. In 

trace generation, incorporating address frequency distribution into the LRUSM is chal

lenging. We discuss in Chapter 4 how this feature is integrated with our synthetic trace 

generator.
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Chapter 4

An Integrated Workload M odel

The LRUSM provides a means to capture temporal locality. By applying the LRU stack 

operations, a sequence of references is transformed into a series of reuse distances. Locality 

can then be quantified by characterizing the reuse distance distribution. The transformation, 

however, anonymizes the trace; information, such as the frequencies of distinct references, 

is lost. As an example, in Web workload characterization, it is noted that the LRUSM 

is not able to tell the difference between short-term temporal correlation and long-term 

popularity [48, 33, 101]. As a result, although the LRUSM can be used to characterize 

locality, additional models have to be built to describe other aspects of the reference strings, 

e.g., the distribution of reference popularity.

In the particular case of modeling IP address sequences, using the LRUSM ignores the 

address popularity distribution. The algorithm in Fig. 3.9 generates IP address traces with 

reuse distance distributions and an LRU stack populated with IP addresses. This is the 

reverse transformation to that in the modeling phase: from a series of randomly generated 

reuse distances to a sequence of IP addresses. The assumption is that the reuse distances 

are a realization of a stochastic process where all random variables are identically, and 

independently distributed. In the synthetic trace, the flows tend to be similar in rates 

and arrival patterns because the addresses in the stack have the same opportunity to be 

referenced, even though the reuse distance distribution may be skewed.

This contradicts the traffic patterns observed in [61, 65}: destination addresses are not 

evenly distributed and popular addresses are very popular. It has been observed that the 

accesses to forwarding data structures, such as the routing table, are biased toward the 

extremely popular IP addresses. Several data structures [82, 102, 84] are proposed to take 

advantage of temporal locality and the biased reference pattern in Internet traffic. The
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depth-constrained alphabetic tree in [82] and the biased skip list in [102] put the most 

recently or most frequently accessed routes near the top of the trees or at higher level link 

nodes to achieve high lookup performance.

The skewed popularity distribution of IP addresses has particular significance in parallel 

forwarding system load balancing design, especially for a hash-based scheduling system 

because a hash scheduler assigns packets of the same flow to the same FE. It does not 

help to balance the load if the hash function produces perfectly random forwarding engine 

identifiers, because the flows are different in rates.

In this chapter, we show that the address popularity distribution is generally Zipf-like, 

i.e., the pattern of “rank, popularity” pairs of the addresses can be modeled by a straight 

line in a log-log plot. Moreover, we show that the skewed popularity distribution and in 

particular, the presence of several high-rate flows, are the major source of load imbalance. 

This observation motivates us to incorporate flow-level information in our IP address gener

ation model to produce realistic synthetic traffic. In addition, the observation also indicates 

that efficient load balancing schemes can be built by exploring flow-level Internet traffic 

characteristics.

4.1 Flow-level Internet Traffic Characteristics

Targeting routing table lookup in routers, we define a flow as a sequence of packets with the 

same destination address. This definition is sufficient for our discussion of alpha flows and 

performance evaluation of IP  forwarding systems. In trace analysis, we do not consider the 

start and end of flows. We identify an alpha flow based on the popularity of its destination 

address.

4.1.1 Z ipf’s Law A pplies to  In te rn e t Traffic

Zipf’s law [24] is the observation that frequency of occurrence of some event (P) as a function 

of rank (R) is a power-law function

P{R)  ~  1 f R a, 1 < R  < N  (4.1)

with the exponent a  close to 1. N  is the number of ranks or the number of unique events. 

a  is the shape parameter and N  is the scale parameter of the distribution.
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Figure 4.1: Zipf’s Law for Internet Flows

The most famous examples of Zipf’s law include the frequency distribution of English 

words, the population of communities, and the revenue of a company as a function of its 

rank. The existence of a small number of very popular objects seems to be a general 

phenomenon and has been noticed in the workloads of many computer systems. Simi

lar observations were made in reference popularity characterization studies for Web docu

ments [103, 47], files [104], video objects [105], Internet flows [61], etc. See the Web site 

http://linkage.rockefeller.edu/wli/zipf for a bibliography of works related to  the Zipf’s law. 

The Zipf distribution has been used in Web workload generators such as in [46] and in the 

streaming media generator, GISMO [106].

We experimented with three traces: the 1-million-entry UofA trace, the 4.5-million-entry 

AuckIV trace randomly selected from the Auckland-IV set, and the 44.8-million-entry IPLS 

trace randomly selected from the Abilene-I set. (See Section 3.2 for the descriptions of these 

sets.) Fig. 4.1 shows that Zipf’s law applies to the popularity distribution of IP addresses in 

all three traces. Although the reasons for this distribution are unclear, we believe that the 

flows with the highest ranks are caused by the transmission of large files. It is evident from 

the figure that the values of a  vary for the three traces and that the curves may not be fit 

with straight lines of slope (-1). Generally, however, we believe that Zipf’s law is adequate 

for modeling the popularity distribution.
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4.1.2 Impact on Load Balancing

We consider a parallel forwarding system similar to that in Fig. 2.2, where a simple hash- 

based scheduler is used. The destination address of an IP packet is fed to the hash function 

which returns the ID of the FE to which the packet should be forwarded.

We use Bi to represent the total busy time of the zth FE. The coefficient of variation 

(CV)  of busy time is a measure of the degree of system load imbalance:

C V = —  (4.2)
f iB

where a s  is the standard deviation and hb is the mean of Bi. We assume that Bi is propor

tional to the number of packets forwarded by the ith  FE; thus in the following simulations, 

we only need to record the number of packets to represent the busy time of the iih  FE, 

which is independent of its actual forwarding rate.

CV  is chosen for its independence from the units of data. It is a measure of the combined 

effects of the traffic being skewed toward a few flows and the system’s ability to balance 

the load. With the simulation input fixed, C V  measures the latter. In the ideal case where 

each FE has exactly the same load, ab  and C V  would both become zero.

To appreciate the importance of flow-level specifics in Internet forwarding systems, we 

show the load balance difference after removing a number of the largest flows from the
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Figure 4.3: Address Popularity Patterns: Real and LRUSM-based Synthetic Traces

UofA trace in several configurations (2, 4, 8, 16 FE ’s) in Fig. 4.2. In each configuration, for 

the real trace, removing one or two of the largest flows drastically reduces CVg values; for 

the synthetic trace produced using LRUSM (See Fig. 3.9), however, there are no obvious 

changes when the largest flows are removed. This is because the LRUSM does not have a 

mechanism to produce traffic with the similar address popularity distribution to that of the 

real traffic. For both traces, however, further removing flows has much less effect on load 

imbalance than removing the first several largest. From the figure, we can conclude that 

high-rate flows are the major source of load imbalance in a parallel forwarding system. The 

results indicate that balancing the alpha flows over the forwarding engines will be far more 

effective than scheduling flows randomly.

Furthermore, from the figure, it is obvious that the more parallelism the more serious 

the load imbalance for the real trace. This indicates that as more forwarding processors are 

used to cope with bandwidth growth, the need for efficient schemes to balance workload 

becomes more urgent.
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4.2 Synthetic Trace Generation

Having developed an accurate reuse distance model, we try to extend the synthetic trace 

generation algorithm in Fig. 3.9 to take into account address popularity distribution. The 

resulting algorithm should be able to generate traces with the specified temporal locality as 

well as address popularity distribution.

The challenge, however, is that reuse distances measure the recency by which addresses 

are reused but do not describe the popularity of specific addresses. This is the reason 

that the synthetic traces produced by the method in Fig. 3.9 do not have the Zipf-like 

popularity pattern. As an example, Fig. 4.3 shows the address popularity patterns in the 

real and synthetic UofA traces. The difference is obvious. The numbers of addresses are 

much more homogeneous in the synthetic trace. There are no addresses that are popular 

enough to indicate dominating alpha flows.

Aida and Abe [54] try to combine the Zipf distribution of the destination address fre

quency with the LRU recency model. The proposed scheme divides the address generation 

into medium and long term behaviors, which obey the LRU model, and short time scale 

operations, which follow an inter-reference frequency model.

The inverse stack growth function ISGF, }{x), is equivalent to the average working set 

size function, s(T),  in [17] or the footprint curve in [36]. On the other hand, the inter

reference frequency density,

an = { /(« ) -  f ( n  -  1)} -  { /(n  +  1) -  f (n )}

is the negative of the numerical solution for s"(T), the second derivative of s(T), when 

T  =  n [107], and thus is the discrete form of the overall inter-reference interval density 

function in [17].

The problem with this approach is that the an is an average effect that is derived based 

on the stationarity assumption of the address generation process. In this sense, different 

flows have the same opportunity to dominate the traffic, which is not true in the real world. 

Although an accurate match between the Zipf curves of the synthetic and real traces is 

shown in [54], it is at least questionable to what extent this match can be maintained. In 

particular, both the traces have the length of 350,000 entries, which might be too small to 

observe any discrepancy.

This approach, although employing two different models, is based solely on the station

arity of the average working set size function, which is not adequate to capture the Zipf
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distribution of the address frequency because it does not include any flow-specific informa

tion: all the addresses have the same opportunity to be referenced. We have implemented 

the algorithm described in [54] and have found that the generated traces do not exhibit a 

Zipf-like popularity distribution.

Another Web traffic evaluation environment, WebTraff [108], provides a visually interac

tive front end to a set of Web traffic generation and analysis and Web proxy cache simulation 

tools, where the Web traffic generation tool, ProWGen, is described in [109, 110]. ProW- 

Gen characterizes four aspects of Web traffic: a Zipf-like document popularity distribution, 

a high degree of one-time referencing, heavy-tailed file size distributions, and temporal lo

cality. The proposed dynamic LRU stack generator re-calculates cumulative probability 

distribution every time a document that is not on the top of the stack is referenced.

4.2.1 Incorporating High-rate Flows

Based on the discussion in Section 4.1.2, we take a different approach to synthetic trace 

generation. Instead of taking all the flows into account, we consider the largest ones, which 

represent the major portion of the overall traffic and have significant impact on perfor

mance. Our model obeys Zipf’s law for these high-rate flows. Fig. 4.2 indicates that this 

simplification is justified for load balancing performance evaluation.

Given the number of addresses to generate, K ,  we can derive the number of unique 

addresses N,  the scale parameter for a Zipf-like function (Eq. 4.1), using the footprint 

model (Eq. 2.3):

N  =  A K 1/e.

The discrete form of a Zipf-like popularity distribution is defined as

/(*) =  * = 1 , 2 ( 4 . 3 )

where A =  YliLi *- “ -

4.2.2 Trace Generation Algorithm

In the following discussions, we consider the number of inter-arrival packets (NIP), the 

number of packets between two successive packets of the flow in question, as the measure 

of inter-arrival time between packets in the same flow. This concept enables us to integrate 

flows into the LRUSM.
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2. While (p < t) Do
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4. Swap RD[i] and RD[p]
5. UpdateStack(RD[p])
6. p <—  p + 1
7. Find i, so that i>=p, RD[i] —  Stacklndex(A)
8. Swap RD[p] and RD[i]
9. UpdateStack(RD[p])
10. p <—  p + 1
11. Go to step 1

Figure 4.4: Synthetic Trace Generation: LRUSM +  1 Alpha Flow
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The goal of our algorithm is to implement alpha flows in the framework of the LRUSM 

which ensures that the temporal locality of generated traffic approximate that in real world 

traces. The basic idea is to reorder LRUSM-generated reuse distances to meet the NIP’s 

generated from some packet arrival model for the alpha flows.

A stack is first initialized to contain all the distinct IP addresses. Let r 1, r 2 , b e  

a sequence of reuse distances generated by the LRUSM with desired temporal locality. 

Suppose that N  alpha flows are to be integrated. At time T,  the arrival model of the N  

flows is used to produce the {next address, N I P }  pair, say { A ,  N I P a }- Thus, the address 

A  is scheduled at future time t, t =  T  + NIPa ,  in the generated traffic.

While 0 < i < NIPa,  generating the T + i th  address is done by producing the address at 

the stack position ry+i with stack updating. To generate the tth address, i.e., A, we search 

the stack for address A  (alternatively, the stack position of the alpha flows can be tracked 

during the generation process). Assuming that A is found at index ta ,  we search forward 

in the reuse distance sequence rt , r t+1,.... for rm equal to rA- rm is then removed from the 

reuse distance sequence, the address A  Is output, and the stack is updated. (Alternatively, 

A can be simply output and as later when the generating process proceeds to the point 

where ta  appears in the reuse distance sequence, it is removed.) We generate another pair 

of {A, N I P a } and the above process repeats itself, and so on.

An important question is when searching for the desired reuse distance, t a , how far 

into the future (say K a  reuse distances) the algorithm is expected to look. The answer 

depends on the rates of the alpha flows. Suppose the arrival rate of flow A  is A a, then 

E[NIPa] = 1/A a, where E [ N I P a ] is the expected value of NIPa-  The definition of reuse 

distance implies that E[ta} < E [ N I P a ], thus the upper bound of E [ K a ] can be expressed 

as

UpperBound(E[KA]) =  ^ .-- - 1 ^ - ^ ,  (4.4)

where P{x) is the reuse distance probability density function which can be derived from Eq. 

3.3.

In practice, we would like K a to be as small as possible to avoid lengthy searching. 

Fortunately, since alpha flows are high-rate, i.e., any two successive packets from the alpha 

flow K a are not far-apart, and therefore the reuse distances for alpha flow addresses should 

be relatively small. According to Eq. 4.4, this, in turn, indicates that K A should be small. 

Even if the inter-arrival time (NIP) distribution is skewed, larger NIP’s are still rare for
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high-rate alpha flows. For these reasons, the trace generation procedure usually succeeds 

without having to scan long sequences of reuse distances.

The algorithm that combines the LRUSM and one alpha flow is shown in Fig. 4.4. 

The function Stacklndex(A)  returns the index of address A  in the stack. UpdateStack(n) 

outputs the address at stack index n  and updates the stack using LRU as described in 

Section 3.6.1. The next arrival time is generated by the flow model (step 1). It is trivial 

to incorporate more alpha flows because the address A  is controlled by the packet arrival 

model. We only need to mix all the alpha flows and generate NIP’s within packets of different 

flows. Since this process is independent from the LRUSM, the reuse distance search and 

stack update procedures need not be changed.

To summarize, our algorithm needs two groups of parameters to generate synthetic 

traces:

L ocality  P a ram e te rs: the five parameters, a, b, c, d, p, of the reuse distance distribution 

(Eqs. 3.3, 3.4, and 3.5).

P o p u la rity  P a ram e te rs: a, the shape parameter, and N,  the scale of the Zipf-like func

tion (Eq. 4.1), and the number of alpha flows to incorporate.

4.3 Simulation

We use two real world traces in the experiments, the UofA trace and the first 1 million 

entries of the IPLS trace. Two synthetic traces are generated for each, one based on the 

LRUSM model and Eq. 3.3, the other based on the algorithm described in Section 4.2.2. 

20 large flows are generated in the second synthetic trace. To better show the impact that 

large flows have on load balance, in the simulations we use the measured rates of the large 

flows from the real traces. The destination addresses of these flows are also used as those 

of the corresponding synthetic flows; this is necessary for simulating the load of the FE’s 

under hash-scheduling.

We thus have two sets of three traces, UofA and IPLS. For each set, we compare the reuse 

distance CCDF’s, the flow popularity distributions, and the load balance curves as large 

flows are removed from the trace. Comparing the popularity and reuse distance distributions 

shows how well the synthetic traces approximate the real traces in temporal locality and 

skewness of references. Comparing load balance validates the integrated trace generation 

algorithm.
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4 .3 .1  P a ck e t A rriva l M o d e l

Although other models, e.g., the two-state Markov chain used in [83], or the two-level arrival 

process described in [ ill] , may capture the arrival pattern of packets within a flow, for 

simplicity, we use the Poisson model for the alpha flows. This is adequate for our discussion 

of load balancing.

4.3.2 Results

Fig. 4.5 shows that no significant difference exists between the temporal locality of the 

real trace, the LRUSM-based synthetic trace, and the integrated-model-based trace, as the 

CCDF’s for these traces in each set are almost identical. This is easily understandable as 

reordering reuse distances does not disturb the distribution. This result also shows how well 

Eq. 3.3 captures the temporal locality of aggregate traffic.

However, the flow popularity distributions of the three traces differ from each other. In 

the results shown in Fig. 4.6, the curve for the LRUSM-based synthetic trace is far from 

the Zipf-like curve of the real trace. For the integrated-model-based synthetic trace, the 

popularities of its largest 20 flows match those of the real trace. The popularities of the 

remaining flows generated by the integrated model return to a similar pattern as those of the 

LRUSM-based synthetic trace. The “search forward and reorder” scheme in the integrated 

algorithm works in practice. For trace-driven performance evaluation purposes, we do not 

need to simulate all the flows. As indicated by Fig. 4.2, a small number of popular flows 

contribute the most to the load imbalance situation in the parallel forwarding system.

This is confirmed by the load balance simulation results shown in Fig. 4.7. The CV  

value from the real trace and that from the integrated model are very close, especially when 

fewer than 20 large flows are removed.

4.4 Summary

In this chapter, we first note that the LRUSM does not capture the biased address reference 

pattern in IP traffic. We then study the popularity distribution of the addresses; we show 

that this distribution can be modeled by Zipf’s law.

We observe that the skewed address popularity distribution and, in particular, the pres

ence of alpha flows have significant implications for the load balancing design in parallel 

forwarding systems. To evaluate the performance of such systems, we developed a synthetic
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trace generation algorithm that incorporates the alpha flows into the LRUSM. The reuse 

distance sequence produced by the LRUSM is reordered when necessary to generate specific 

addresses dictated by the packet arrival model for the high-rate flows. The synthetic traf

fic preserves two salient features of Internet traffic: temporal locality and the presence of 

high-rate flows.

Simulation results validate our observation on the impact of alpha flows on load bal

ancing. This discovery leads to the design of efficient packet distribution schemes which 

effectively balance workloads among multiple forwarding engines.
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Chapter 5

Traffic Locality in Parallel 
Forwarding System s

We consider a parallel forwarding system similar to Fig. 2.2. We call these processors 

forwarding engines (FE’s) because one of their major tasks is to do the IP address lookup in 

the routing table to find the output port for the incoming packet. The caches in the figure 

are simple route caches that contain entries of (destination IP address, output port) pairs.

Packet dispatching schemes are critical to parallel forwarding system performance. For 

an incoming IP packet, the scheduler’s job is to find the appropriate forwarding engine and 

deliver the packet to it. Usually, to accommodate variances in the packet arrival process and 

in the packet processing at FE’s, input buffers, or queues, are put in front of the processors.

In this chapter we first discuss the impact on temporal locality of different scheduling 

schemes. Second, we study the effects on cache performance of the presence of high-rate 

flows in IP traffic.

5.1 General Im pact of Scheduling Schemes on Locality

In this section, we investigate FE cache performance under two scheduling schemes: round 

robin and hashing:

R ound  R ob in  (R R ) Given the last packet was delivered to FE i, the scheduler forward 

the current packet to FE (i +  1)%IV where % is the modulo operator and N  is the number 

of FE’s. This can happen when the per-packet processing time is fixed and the same for all 

the FE’s. The scheduler simply delivers the next packet to the next FE. We consider strict 

round robin mainly for the ease of simulation. The results, however, should be extensible 

to similar scheduling schemes, e.g., random selection in available FE ’s.

H ash-based The destination address is used as the key to a hash function and the return
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value is the index of the target FE. For the particular hash function, we examined the 

simple Fletcher checksum [112] bits used in the Internet protocols and the 16-bit CRC 

(Cyclic Redundancy Check), as both have been shown to be able to produce uniformly 

distributed random numbers.

Using the model described in Section 3.5, we compare the temporal locality in two traces 

using their reuse distance CCDF’s. Trace i is said to have better temporal locality than 

trace j  if CC D F^x)  < CCDFj{x) for all 2  > 0.

Fig. 5.1 shows the GCDF’s for a 4-FE system driven by the UofA and LDestIP traces. 

Fig. 5.2 shows the results for the LDestIP trace in a 16-FE system. The notations used in 

these figures are:

CCDFaggr(x) is the CCDF of the aggregate traffic.

CCDFrr 1 (x) is the CCDF of the traffic processed at the first FE, under Round-Robin.

CCDFcksmi(x)  is the CCDF of the traffic processed at the first FE, under checksum 

hashing.

CCDFcrci (x) is the CCDF of the traffic processed at the first FE, under 16-bit CRC 

hashing.

The overall patterns of the CCDF’s at other FE’s under a given scheduling scheme are 

very similar to that given for the first FE. Since the results are similar for the checksum and 

CRC hashing functions we will only discuss the results for the checksum function.

Fig. 5.1 shows the impact that the two scheduling schemes have on the locality of

scheduled traffic. The CCDF’s can also be seen as the curves of miss ratio versus cache 

size with simple destination route caches [16]. The workload at each FE under hashing has

much better temporal locality and thus better cache performance than for both RR and the 

original aggregate traffic. For example, for the UofA trace, with 50 cache lines, the miss 

ratio for cksml is 0.178755, less than one third of that for rrl, 0.568349. With larger caches 

or more processors, the difference between the two disciplines is larger.

It is evident that the RR-scheduied traffic has less temporal locality and hash-scheduled 

traffic has more temporal locality than the original unscheduled traffic. Intuitively, RR 

disperses the original traffic over FE ’s but hashing groups packets that belong to the same 

flow and sends them to a particular FE, thus improving temporal locality.
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Figure 5.1: CCDF’s in a 4-FE System with the UofA(above) and the LDestIP Traces
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Figure 5.2: CCDF’s in a 16-FE System with the LDestIP Trace

The above observations are abstracted and shown in [70] as the “Partitioning Non- 

El armful” theorem which says that the expected hit ratio in a partitioned mapping (e.g., 

hashing) is greater than or equal to that in a non-partitioned mapping (e.g., round-robin).

5.2 Impact of Scheduling Schemes on Per-Processor Lo
cality

Besides the improvement in temporal locality with hash-scheduling, we observed that the 

hash-dispatched workload in terms of packets is not the same for all processors in a parallel 

forwarding system. In this section, we explain the problem qualitatively. For hashing 

schemes, we use CRC as an example.

As shown in Table 5.1, under either CRC-hashing or Round-Robin, each FE sees a 

similar number of flows, although overall, the number of flows seen by an FE under hashing 

is significantly smaller than that under RR. The total number of flows in the UofA trace 

is 5861. Under RR, the number of packets seen at each FE is the same. However, under 

hashing, the number of packets seen at FE1 is more than twice that seen at FE2. In other 

words, the load under RR is perfectly balanced but skewed under hashing. The problem is 

that although hashing divides the number of flows almost evenly among FE’s, due to the 

difference in flow rates, the numbers of packets processed by different FE’s can differ from
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Table 5.1: No. of Flows vs. No. of Packets Seen at Each FE (UofA Trace, 4 FE’s)

Hashing
FE No. of Flows No. of Packets
1 1473 385801
2 1436 174544
3 1525 213375
4 1427 226273

Round-Robin
FE No. of Flows No. of Packets
1 4282 249998
2 4268 249999
3 4303 249998
4 4258 249998

each other.

Sarvotham et al. [61] class Internet traffic flows into alpha and beta traffic, where alpha 

traffic “is caused by large file transmissions over high-bandwidth links and is extremely 

bursty” and beta traffic is caused by file transmission over low-bandwidth links. When an 

alpha flow exists in the workload, under hashing, all packets of that flow will be dispatched 

to one particular FE. There are relatively few alpha flows compared to the number of beta 

flows, but when one alpha flow is scheduled to an FE, this FE has many more packets to 

process than another FE processing only short-lived and low-volume beta flows.

In a system where no cache is used, the observed skewness in workload distribution for the 

processors creates a load imbalance which can significantly reduce the system utilization and 

overall performance. However, as will be discussed in the rest of this section, per-processor 

locality measurements show that better temporal locality exists in the workload for the most 

loaded processor.

Fig. 5.3 shows the CCDF curves for the workload for each processor in a 4-FE system. 

They are plotted on a log-log scale to emphasize the differences between the curves under 

either scheduling scheme, CRC or Round-Robin. The Round-Robin curves (RRO-3) do not 

show noticeable difference from each other. However, the CRC curves differ from each other, 

with CRCO seemingly in its own class. The other three curves under CRC, i.e., CRC1-3, 

are much closer to each other, but still distinguishable, for example, CRC3 is lower than 

the other two.

Generally speaking, under hash-scheduling, it seems that the workload for heavier loaded 

FE ’s has better temporal locality than that for relatively lightly loaded ones. This is con-
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Figure 5.3: Impact of Scheduling on Per Processor Locality (UofA Trace with 4 FE’s)

sistent with the results shown in Table 5.1 and Fig. 5.3. The implication is that under 

hash-scheduling, caching is not only effective in improving overall forwarding performance, 

but is also helpful in mitigating load-imbalance as a result of hashing. In other words, with 

a cache taking advantage of locality differences in the workload, the more heavily loaded an 

FE, the more efficient it becomes.

5.3 Simulations

Based on the discussion in the previous section, we can expect that in a parallel forwarding 

system with a hash-based scheduler, caching would be an effective way to improve system 

performance. Moreover, differences in temporal locality in per-processor workloads indicate 

that caching could also be helpful in mitigating load imbalance. In this section, we describe 

the simulations we conducted to verify these ideas. Simulations are simplified by the as

sumption that only routing table lookup operations are performed by the FE’s. It is further 

assumed that the system has an infinite buffer that stores the incoming packets. Finally, 

the cache replacement algorithm is assumed to be LRU.
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5 .3 .1  M etr ic s

We first consider system throughput T  as the metric which is measured in terms of number 

of packets forwarded during some unit time period:

T -  N
T<i(p n ) -  Te(pi)

where

• N  is the number of packets.

•  TdQ returns the time when a packet is dequeued.

• Te() returns the time when a packet is scheduled for lookup.

•  p i ,p 2 , Pn are the packets in their arrival order.

The cost of a route lookup for a destination IP address depends on the cache state. 

When the route is in the cache, it takes T/, to finish the lookup. When the route is not in

the cache, the time is Tm which includes plus the cache miss penalty. All the variables

measuring time will be expressed in terms of Tm and T/,. Tm/Th is usually much larger than 

1. For example, for the BBN multigigabit router [113], it is at least 5. As the speed gap 

between off-chip memory and CPU widens, this ratio will become much larger. For example, 

in [114], it takes the ^Engine 30 cycles to transfer a  word both to and from memory. Even 

with hardware assistance, it takes 30 cycles to finish an IP lookup.

We use the coefficient of variation (CV) (Eq. 4.2) described in Section 4.3 to  measure 

load imbalance.

5.3.2 Results

Table 5.2a shows the simulation results for a 4-FE system for the two traces. In both 

cases, a small amount of cache (4 entries in the UofA trace and 8 in the LDestIP trace) 

doubles the throughput. The differences between the results for the two traces are due to 

the peculiarities of each trace, for example, the composition of the trace a t the flow level.

Before showing the results for the effect of caching on CV, we should note that with the 

hashing scheme fixed, the composition of traces in terms of flow rates affects the value of 

CV. Generally, the more skewed the flow rate distribution, i.e., the more dominant a few 

flows are in the trace, the larger the value of C V . To give an appreciation of the flow rate 

composition of the two traces, Table 5.3 lists the largest 10 flows in each.
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Table 5.2: Simulation Results (Tm =  67),)

Cache Size 
(Entries)

CV
UofA LDestIP

0 0.621621 0.146373
1 0.492448 0.124491
2 0.393326 0.113517
4 0.325211 0.105923
8 0-320008 0.101943
16 0.297577 0.106039
32 0.317192 0.131886
64 0.405188 0.117430
128 0.565930 0.127425
256 0.595407 0.129325
512 0.603497 0.132768
1024 0.604258 0.137589
2048 0.604258 0.139844

Cache Size Performance(Pfcts/T/,)
(Entries) UofA LDestIP
0 0.431999 0.590651
1 0.606034 0.708440
2 0.727566 0.773254
4 0.867115 0.843081
8 0.956509 0.921658
16 1.040634 1.038129
32 1.227534 1.222992
64 1.481491 1.602527
128 1.927787 2.328812
256 2.415757 2.727164
512 2.515509 3.131331
1024 2.540820 3.262716
2048 2.543437 3.359013

a. Forwarding Performance (4FE) b. Load Balancing (8FE)

Table 5.3: High Rate Flows in the Traces

Trace UofA LDestIP
No. of Pkts 999,993 31,518,464
No. of Flows 5,861 130,163
No. of Pkts 
in 10 
Largest 
Flows

158,707 (15.9%) 
24,245 (2.4%) 
20,769 (2.1%) 
17,482 (1.7%) 
15,146 (1.5%) 
14,305 (1.4%) 
13,308 (1.3%) 
12,348 (1.2%) 
12,028 (1.2%) 
11,824 (1.1%)

1,183,834(3.7%) 
581,495 (1.8%) 
524,542 (1.7%) 
235,363 (0.7%) 
212,150 (0.7%) 
168,384 (0.5%) 
160,798 (0.5%) 
138,657 (0.5%) 
125,531 (0.5%) 
125,389 (0.5%)

Table 5.2b shows the simulation results for an 8-FE system. Generally, caches of all sizes 

help to reduce the CV. However, it is apparent that certain cache sizes are optimal. For 

the UofA trace, the optimal size is 16 entries and for the LDestIP trace, it is 32. As cache 

size increases, caching tends to be less beneficial in terms of helping balancing the load. In 

the extreme case that there are only compulsory misses, the CV  approaches a fixed value. 

This is the case with the UofA trace (see also Table 5.1 for the number of flows for each 

FE.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.4 Summary

We have Investigated the effects of two packet dispatching schemes, round robin and hashing, 

on the temporal locality in the scheduled workload. RR dispatches packets belonging to the 

same flow over multiple FE’s, and thus reduces temporal locality in the workload seen by an 

FE. On the other hand, good hashing algorithms evenly divide the flow identifier space and 

assign each flow to an FE. As a  result, hashing improves temporal locality in the workload 

of individual FE’s simply by reducing the number of different flows an FE has to process. 

Our findings indicate that, under hashing packet distribution, caching in forwarding engines 

is effective.

We also study the temporal locality differences in the workloads of different FE’s under 

a hashing scheduling. We have found that although high-rate flows dispatched to an FE 

tend to overload the processor, they also improve the temporal locality in its workload. This 

effect can mitigate load imbalance in a parallel forwarding system.
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Chapter 6

Parallel Forwarding System  
Load Balancing

Essential to the performance of a multi-FE system like the one in Fig. 2.2 is the scheduler 

that dispatches incoming packets to the FE’s. It is necessary for the scheduler to distribute 

workloads in a balanced manner so that the system can achieve its full forwarding potential. 

In this chapter, we divide a scheduler into two function units: the load splitter and the 

balancer/adapter. The former implements a general packet distribution policy and the latter 

is invoked when necessary to adjust the load distribution to  improve the load balance.

In some scheduling schemes, the two functions are naturally integrated. For example, 

workload may be distributed in a round-robin fashion, or an incoming packet can be delivered 

to the FE that is least-loaded. Such schemes schedule workload at the packet level and 

are not appropriate for IP forwarding for two reasons. First, reordering of packets from 

individual TCP connections easily occurs in these schemes. Packet reordering within a 

TCP connection can give TCP a false congestion signal and be detrimental to end-to-end 

system performance [74, 73]. The second reason is that these schemes are not efficient in 

FE cache utilization [75]: by dispatching packets from the same flow to different FE’s, these 

schemes leave copies of identical data in the caches of the individual FE ’s.

Hashing is a popular means to distribute load [115, 70, 76, 79, 80, 81, 78] in network 

systems. It is used in parallel IP forwarding systems because, in contrast to round-robin or 

minimum-load mapping, it is able to maintain packet order in individual TCP connections. 

Hashing operates at the flow level. The scheduler typically selects one or more header fields 

of an incoming IP packet, e.g., the destination address (DA), the source address (SA), the 

destination port (DP), the source port (SP), and the transport layer protocol number (PN). 

These fields define a flow and are fed as a key to a hash function; the return value is used to
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decide the target FE that the packet should be forwarded to. Since the selected fields remain 

constant for all the packets transmitted over a TCP connection, the target FE selected is 

the same and therefore packet order within individual TCP connections is maintained. In 

addition, since packets from one flow are directed sequentially to the same FE instead of 

scattered over several FE’s, a hashing scheme is efficient in cache utilization [75].

Hashing alone, however, is not able to balance workloads under highly variable Internet 

traffic. Adaptive schemes are needed to accommodate the burstiness and the presence of 

extremely large flows [79, 80, 78]. According to our terminology, in a load scheduler, the 

splitter implements the hashing scheme and the balancer/adapter implements load adjust

ment. We call such a scheduler hash-based.

In this chapter,

• first, by characterizing a wide range of IP traces, we trace the sources of load imbalance 

in a hash-based scheduler. We show that due to highly skewed Internet flow popularity 

distributions, hashing alone cannot achieve load balance.

• second, we introduce a new metric, adaptation disruption, to measure the efficiency 

of adaptive load balancing schemes. For a system to achieve a high forwarding rate, 

disruption to FE caches, caused by load adaptation, should be as small as possible.

• last, we develop a highly efficient load balancer which, compared with state-of-the-art 

scheduling schemes, is unique in capitalizing on flow-level Internet traffic characteris

tics. The balancer implements an adaptation algorithm that shifts only high-rate flows 

to  balance workload among FE’s. This design is inspired by IP traffic characterization 

and the goal to achieve minimum adaptation disruption.

In Section 6.1, we present the system model that this study targets and introduce no

tations used throughout the chapter. Section 6.2 discusses three sources of load imbalance 

in a hash-based load distribution scheme. In this section, we show that generally, hashing 

alone cannot balance workload given Zipf-like flow popularity distributions. We introduce 

the concept of adaptation disruption and describe the load balancer design in Section 6.3. 

A critical step in our load balancer is the detection of high-rate Internet flows, which is dis

cussed in Section 6.4. Section 6.5 presents simulation results for three adaptation policies 

under varying design parameters. Section 6.6 concludes this chapter and discusses future 

directions.
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6.1 System  M odel

We consider a parallel forwarding system where M  FE’s {FEi, . . . ,  FEm)  process packets 

dispatched from the scheduler. A packet destined to FEi is processed at once if FEi is idle; 

otherwise, it is stored in a shared buffer of size B  (in packets) in front of the FE’s. Logically, 

the packet is also appended to the input queue, Qi, of FEi. No limits are imposed on queue 

lengths; only the buffer size is fixed.

The hash-based load splitter maps the incoming flows onto the individual FE’s. The 

mapping scheme is a function H  that establishes relationships between two sets, the set of 

flow identifiers S  and the set of FE indices. That is

A flow identifier is defined as a vector of one or more fields of a packet header that remain 

the same for all the packets in the flow. It can be one or a combination of DA, SA, DP, 

SP, PN. We use the destination IP addresses of incoming packets as flow identifiers in this 

chapter. This is a coarser level of aggregation than the popular definition of a flow, identified 

by the five-tuple, {DA, DP, SA, SP, PN}. The justification here is that DA sequences 

represent workload for major forwarding algorithms, e.g., routing table lookup and filtering. 

Thus, S  contains all the possible destination IP addresses and the notion of flow popularity 

distribution is equivalent to that of address popularity distribution. Hereafter, we sometimes 

use destination addresses to refer to flows and it should be clear from context.

The processing power of FEi  is defined as its service rate p,. The total processing power 

is fi =  M»- The packet arrival rate at FEi  is A* which is determined by the aggregate

arrival rate A (A =  Y^iLi A») and the mapping scheme F. In this chapter, we consider only 

Mi =  i f ,  for 1 < i < M.

6.2 Sources of Load Imbalance

We discuss three sources of load imbalance in a hash-based traffic splitting scheme.

6.2.1 Hash Function

The mapping scheme F  has to be able to generate uniformly distributed random FE identi

fiers for the source set S. The result is that, on average, K /M  flows are mapped to each FE. 

Although for a non-random input, it is theoretically impossible to define a hash function
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that generates random output, it is not difficult in practice to find a scheme that approx

imates random data generation [116]. Jain [115] and Gao et al. [76] have found that the 

Internet checksum algorithm and the CRC over the five-tuple {DA, SA, DP, SP, PN} give 

good random outputs.

6 .2 .2  Bwrstiness o f  I n te r n e t  Traffic

Packet network flows are known to be bursty, i.e., packets of a flow travel in groups [18]. A 

large number of packets from one flow arriving at one FE in a short period can swamp the 

processor. At the same time, other FE’s may be idling. The bursty nature of Internet traffic 

can lead to temporary load imbalance and cause packet dropping. Aside from adjusting flow 

mappings adaptively, buffering and provisioning are the common practices to accommodate 

bursty packet arrivals.

6.2.3 Skewed Flow Size Distribution

In this section, we extend the discussion on skewed Internet flow popularity distributions 

in Chapter 4 and show that load distribution schemes based on hash only cannot balance 

workloads in the Internet environment.

F low -level Internet Traffic C haracteristics

Table 6.1: Traces Used in Experiments
Trace Length (entries) Description
FUNET 100,000 A destination address trace which is used in evaluating the LC-trie 

routing table lookup algorithm in [13] from Finnish University and 
Research Network (FUNET).

UofA 1,000,000 A 71-second packet header trace recorded in 2001 at the gateway 
connecting the University of Alberta campus network to the Inter
net backbone.

Auck4 4,504,396 A 5-hour packet header trace from National Laboratory of Applied 
Network Research (NLANR) [93]. This is one from a set of traces 
(AuckIV) captured at the University of Auckland Internet uplink 
by the WAND research group between February and April 2000.

SDSC 31,518,464 A 2.7-hour packet header trace from NLANR. Extracted from out
going traffic at San Diego Supercomputer Center (SDSC) around 
the year 2000.

IPLS 44,765,243 A 2-hour packet header trace from NLANR. This is from a set 
of traces (Abilene-I) collected from an OC48c Packet-over-SONET 
links at the Indianapolis router node.

To study flow-level Internet traffic characteristics, we have experimented with traces 

collected from networks ranging from campus to major Internet backbones. We show the
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Table 6.2: High Rate Flows in the Traces

Trace FUNET Auck4 IPLS
No. of 8,233 (8.2%) 640,730 (14.2%) 2,788,273 (6.2%)
Pkts 7,424 (7.4%) 440,149 ( 9.8%) 944,253 (2.1%)
(Percent) 2,971 (3.0%) 196,513 ( 4.4%) 919,088 (2.1%)

2,470 (2.5%) 194,757 ( 4.3%) 808,773 (1.8%)
2,298 (2.3%) 186,095 ( 4.1%) 732,339 (1.6%)
1,614 (1.6%) 177,388 ( 3.9%) 582,367 (1.3%)
1,387 (1.4%) 135,286 ( 3.0%) 570,316 (1.3%)
1,317 (1.3%) 135,033 ( 3.0%) 510,043 (1.1%)
1,309 (1.3%) 132,812 ( 2.9%) 473,562 (1.1%)
1,258 (1.3%) 104,716 ( 2.3%) 470,072 (1.1%)
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Figure 6.1: IP Address Popularity Distribution Follows Zipf’s Law

results for three traces (see Table 6.1). The address popularity distributions in these traces 

are shown in Fig. 6.1. We match each curve by a straight line, i.e., a Zipf-like function, 

in the log-log plot. The slopes fit for the five traces, SDSC, FUNET, UofA, IPLS, and 

Auck4, are -0.90-5, -0.929, -1.04, -1.21, and -1.66, respectively. Common to all traces is the 

presence of several popular addresses dominating a large number of less popular addresses. 

Table 6.2 shows the number of packets in the ten most popular flows of three traces (the 

statistics for the other two traces can be found in Table 5.3). This common phenomenon is 

the motivation of the load balancing scheme developed in this chapter.
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I m p l ic a t io n s  fo r L o ad  B a la n c in g

The flow popularity distribution adds another dimension to the load balancing problem.

In [76], it is realized that “long packet trains will have negative effects on traffic splitting

adaptive load monitoring mechanisms, which forms the basis for the load balancing scheme 

described in [79].

While hashing may manage to balance workloads in the average sense when the flow 

popularity distribution is homogeneous, i.e., with a finite variance, as proved for HRW in 

[70], it cannot when the distribution is so skewed that the coefficient of variation (CV) is 

infinite.

Let K  be the number of distinct addresses, i.e., the size of S. Let Pi (0 < * < K)  be 

the popularity of address i and let qj (0 < j  < M ) be the number of distinct addresses 

distributed to FE j .  It is derived in [70] that HRW, or any hash function tha t generates 

uniformly distributed random numbers over its hash key space, distributes workloads in a 

balanced way. This occurs when the load imbalance of the system, expressed as the CV  of 

q i-

approaches zero as K  and the number of packets approach infinity. The condition here is 

that CV\pi) should be finite.

The discrete-form probability density function (PDF) of a Zipf-like distribution (Eq. 2.2)

performance” , and “traffic splitting is significantly harder when there is a small number of 

large flows.” Their solution is a table-based hashing scheme where mapping can be tuned by

cv[qi? = (6.1)

P (X  = i) = ~ r a i — 1 ,2 , . . . ,  K, a > 1 (6.2)

where Z  is a normalizing constant:

(6.3)

Given that the average popularity of the K  objects, E\pi], is we have

(6.4)

E\pfl -  E fp i f
E M 2
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Substituting the CV\pi\2 in Eq. 6.1, we have

i ’ f h ' * '  (6-5)

As a > 1 and K  —> oo, items Z  and YliLi converge, and thus C V [ q i]2 is non-zero. 

Zipf-like distributions (Eq. 2.2) are known to have infinite variance when a  < 3 and infinite 

mean when a < 2. This is the reason that a hash-based scheme, such as HRW [70], is not 

able to achieve load balancing when the population distribution of objects in its input space, 

in our case destination IP addresses, is Zipf-like.

6.3 Load Balancer

In addition to general desirable features for load-splitting schemes, to measure the efficiency 

of adaptive load balancing schemes, we introduce the concept of adaptation disruption. 

Minimizing this metric is achieved by scheduling only high-rate flows.

6.3.1 Goals

The goals of load-splitting algorithms [70] for Web proxy cache systems apply for the packet 

schedulers in parallel forwarding systems. First, the scheduler shown in Fig. 2.2 is in the 

data forwarding path and therefore should be as efficient as possible to  reduce delay. Second, 

load balancing is crucial for the system to achieve its full forwarding potential. As discussed 

in Section 6.2, hashing alone cannot achieve load balancing; it is therefore necessary for the 

scheduler to monitor the workloads on the FE’s and perform adjustments at appropriate 

times. Third, since each FE usually has its own local fast storage functioning like cache, 

higher hit ratio is desirable. FE cache hit ratio is mainly determined by temporal locality in 

IP traffic. Scheduling schemes have a big impact on temporal locality seen at each FE [75]. 

Finally, the system has to be fault-tolerant to provide reliability and graceful degradation 

when one or more FE’s fail.

Typically, when a system is unbalanced to some degree, the adaptation mechanism will 

be triggered to make adjustments to the mapping from the system’s input to output [79, 80]. 

The result is that some flows will be shifted from the most loaded processors to less loaded
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ones. When remapping happens, it is desirable that the number of flows shifted is small to 

cause minimum disruption to FE caches.

Most state-of-the-art schedulers migrate flows without considering their rates, but this is 

ineffective. The probability of shifting low-rate flows is high since there are many of them. 

Shifting these flows does not help re-balance the system much, and causes unnecessary 

disruption. The high-rate flows are few so it is unlikely that they would be shifted, but it 

is usually these flows that cause trouble [117]. While the scheduler is busy shifting low-rate 

flows, the high-rate ones keep swamping the overloaded processor(s).

Thus in a hash-based parallel forwarding system, another feature is desirable; we call 

it minimum adaptation disruption (MAD). In adaptation, migration of flows from one FE 

to another renders some previously cached data in the source FE useless and causes cold 

start in the target FE’s cache. We call this phenomenon adaptation disruption. Obviously, 

flow migration is harmful to forwarding performance and should be done as infrequently as 

possible. At the same time, when migrating, the number of flows to be shifted should also 

be minimized. For N p  packets forwarded, adaptation disruption, denoted by C? is defined 

as follows:

C = <M>

where N s  is the number of flow-shifts.

Note that minimum adaptation disruption is different from the minimum disruption in 

HRW which describes the desirable behavior of a distributed system in the face of partial 

failure. Redirecting only flows for a failed FE causes least disruption to the states of other 

FE’s. Adaptation disruption, on the other hand, is caused by flow migrations among FE ’s 

as a result of load balancing efforts. It measures the degree of disturbance to cache during 

forwarding. As the performance gap between computer processor and memory keeps widen

ing, it is important for an adaptive scheduler to achieve MAD to maintain overall forwarding 

performance.

In addition, MAD is also desirable for maintaining packet order within TCP connections. 

When flows are shifted from a heavily loaded FE to a less loaded one as the result of adaptive 

load balancing, it is hard to maintain the original packet order for these flows. Packets of 

the shifted flows arriving after the migration are very likely forwarded before some previous 

packets that still wait in the queue of the previously heavily loaded FE. For this reason,
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minimizing adaptation disruption also minimizes the occurrence of packet reordering, which 

is important for maintaining end-to-end TCP performance.

6.3.2 Design

The Zipf-like flow popularity distribution and, in particular, the small number of very pop

ular addresses, indicate that scheduling high-rate flows should be effective in balancing 

workloads among parallel forwarding processors. Since there are few high-rate flows, the 

adaptation disruption should be small. Our scheduler design takes advantage of this ob

servation and divides Internet flows into two categories: the high-rate and the normal. By 

applying different forwarding policies to the two classes of flows, the scheduler achieves load 

balancing effectively and efficiently.

Fig. 6.2 shows the design of our packet scheduler. When the system is in a balanced 

state, packets flow through the hash splitter to be assigned to an FE. When the system 

is unbalanced, the load adapter may decide to override the decisions of the hash splitter. 

When making its decisions, the load adapter refers to a table of high-rate flows developed 

by the flow classifier.
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The hash splitter uses the packet’s destination address as input to a hash function. The 

packet is assigned to the FE whose identifier is returned by the hash function. There are 

several possible choices for the hash function. For example, the function could use the 

low order bits of the address and calculate the FE as the modulus of the number of FE ’s. 

Alternatively, HRW could be used to minimize disruption in the case of FE failures.

The load adapter becomes active when the system is unbalanced. The load adapter 

checks each passing packet to see whether it belongs to one of the high-rate flows identified 

by the classifier. If the packet belongs to one of these flows, the load adapter sets it to be 

forwarded to the FE that is least loaded at that instant. Any forwarding decisions made 

by the load adapter override those from the hash splitter; the selector gives priority to the 

decisions of the load adapter. In this sense, the hash splitter decides the default target FE 

for every flow.

As noted above, the load balancer functions only when the system is unbalanced. Peri

odically, the system is checked and if it is unbalanced, the load balancer is activated: the 

least loaded (possibly idle) FE is identified and the high-rate flows are shifted to it from 

their default FE’s decided by the hash splitter. Later if, as a result of the adaptation, the 

system becomes balanced, the balancer is inactivated and consequently, the high-rate flows 

are automatically shifted back to their default FE’s. After the system becomes balanced, it 

is not desirable to keep these high-rate flows mapped to the FE decided by the balancer be

cause even though they can be used very effectively to balance workloads, they can quickly 

swamp the FE and cause load imbalance again.

An important design parameter is F, the size of the balancer’s flow table. Generally, 

shifting more high-rate flows, i.e., having more flows in the table, is more effective as far 

as load balancing is concerned. Nevertheless, to reduce cost, speedup the lookup operation, 

and minimize adaptation disruption, the flow table should be as small as possible.

Another component in the system that is critical to the success of the load balancing 

scheme described above is the flow classifier (See Fig. 6.2). The flow classifier monitors the 

incoming traffic to decide which flows are high-rate flows and should be put in the balancer’s 

flow table. We discuss in detail the high-rate flow identification procedure in Section 6.4.

6.3.3 Triggering Policies

The adapter implements the scheduling scheme that decides when to remap flows (the 

triggering policy), which flows to remap, and where to direct the packets. To effectively
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achieve load balancing with minimum adaptation disruption, the adapter only schedules 

packets in the largest flows. Packets in the smaller flows are mapped to FE’s by the hash 

scheduler.

There are multiple choices for deciding when the adapter should be activated to redirect 

packets. For example, the adapter can be invoked periodically, i.e., triggered by a clock after 

every fixed period of time. This scheme is easy to implement, as it does not require any 

load information from the system. It may not be efficient, however, as far as minimizing 

adaptation disruption is concerned since It could shift load unnecessarily, i.e., when the 

system is not unbalanced.

The adapter can also monitor the lengths of the input queues, using them as indicators 

of the workloads of the FE’s. Remapping can be triggered by events indicating that the 

system is unbalanced to some degree, based on the input buffer occupancy, the largest 

queue length, or the CV  of the queue length growing above some pre-defined threshold. 

The system load condition could be checked at every packet arrival. This overhead can be 

reduced by periodic checking. We simulate several triggering policies in Section 6.5.

As another design dimension, the remapping policy decides to which processor(s) the 

largest flows should be migrated. One solution is to redirect all the largest flows to the 

shortest queue.

6.4 D etecting High-rate Flows

In this section, we describe the mechanism used in the flow classifier to identify high-rate 

flows.

6.4.1 Definition of High-rate Flows

We define high-rate as flows that are both large and fast; these are the source of long-term 

load imbalance and are most effective when shifted to balance load. These flows are similar 

to the alpha flows in [61]. In addition, taking the bursty nature of Internet traffic into 

consideration, we also classify flows that are smaller in size but are fast enough to cause 

short-term load Imbalance or buffer-overflow as high-rate flows.

It is pointed out in [65] that flow size and lifetime are independent dimensions. There 

might be correlation between flow size and rate but generally, the notion of long-lived flows in 

most previous studies is not accurate for our purposes. As a result, short-cut establishment 

triggering [118] for long-lived flows cannot be used to detect high-rate flows. Instead, we
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need a mechanism that takes into account both the number of packets and the length of 

time during which the packets arrive.

6.4.2 D e te c t in g  High-rate F lo w s

We define window size, W , as the number of packets over which flow information is collected. 

Therefore, the incoming IP traffic is a sequence of windows: Wi, W-i, . . . ,  W„, n —> oo, each 

containing W  packets. Suppose we are receiving packets in Wi. We find the set Fi that 

contains the largest flows in W i. The number of flows in Fi equals the size of the flow table, 

F, |Fj| =  F. Fq =  {}. At the end of Wi, we replace the flows in the flow table by those in 

Fi. This mechanism benefits from the phenomenon of temporal locality in network traffic. 

Due to the packet train [18] behavior of network flows, it is highly possible that flows in Fi 

are also some of the largest ones over the next W  packets. That is Fi fl Fi+i ^  {}.

Let = \Fi-i n  jFj|. To measure the effect of W  on the continuity of the content of the 

flow table due to temporal locality, we define

Thus, 0 < A < 1. The larger the value of A, the better flow information collected in the 

current window predicts high-rate flows for the next window.

Small W  values are preferred when the input buffer size is small and load adjustment 

must be made to reflect the existence of smaller scale, short-term bursty flows. Larger 

W  values can be used for larger buffers where the system can tolerate the load imbalance 

caused by bursts of small flows. Fig. 6.3 shows the effects of W  on A for the first one million 

entries of the four larger traces in Table 6.1 with F  — 5. The larger the value of W , the 

better the current high-rate flows predict the future. This high predictability is critical to 

the success of the flow classifier. Despite the window size, however, experiments show that, 

the largest flow of the entire trace is almost always identified as the largest flow of every 

window (the smallest W  experimented with is 100). And we will see that shifting even only 

the one largest flow is very effective in balancing workloads.

To implement high-rate flow detection, another traffic model, the hyperbolic footprint 

curve [36, 37]:

(6.7)
n

where

u{W) =  A W 1/ 9, A  > 0, 9 > 1, (6.8)
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Figure 6.3: Effects of W  on A (F  =  5)

Table 6.3: Arrival Rates (No. of Packets/Second) of Four Traces
IPLS UofA SDSC Auck4
74,608.742 14,007.337 3,210.378 251.394

could be used to relate the W  to the total number of flows expected for W  packets, u(W).

6.5 Simulations

In this section, we conduct trace-driven simulations of an eight-FE system under static hash 

mapping and adaptive load balancing schemes. In the former, packets are directed to the 

FE ’s by the hash splitter only and the results serve as performance bounds for the adaptive 

load balancing scheme. For the latter, we simulate three adaptation triggering policies for 

the balancer.

6.5.1 Trace Driven Simulation

The average packet arrival rates (A) are measured for the four larger traces (Table 6.3 1).

IP traffic is well known for its large variability; here A serves only as a gross estimation and 

is used to derive the service rates for the FE ’s given some system utilization p:

P-i =  t =  l , . . . , M .  (6.9)
P

- * T h e  F U N E T  t r a c e  d o e s  n o t  h a v e  a r r i v a l  t i m e s t a m p  i n f o r m a t i o n .
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Given a  trace (so that A is fixed) and an overall service rate (p), parameters that have 

major effects on system performance include: the input buffer size B,  the number of FE’s 

(M), the number of high-rate flows in the flow table, F, the adaptation policy, and classifier 

window size W . We are mainly concerned, however, about the effects of scheduling policies 

and the input buffer size (B) on two performance metrics: the packet loss rate (77) and the 

adaptation disruption (£). Throughout the simulations, M  =  8, p =  .8, and W  =  1000.

6.5.2 Hash Splitter

The hash splitter implements a modulo operation to dispatch a packet, i.e.,

H {IP Address) =  {IPAddress)%M

where % is the modulo operation and M  is the number of FE’s. This is equivalent to 

retrieving the least significant log2{M) bits of the IP address, which is deprecated in [116] as 

easily leading to significant bias, especially when M  is a power of the radix of the computer. 

According to the study of hash function performance in [76], however, the low order bits in 

source and destination IP addresses tend to be more random than the high order bits.

This is another advantage of scheduling high-rate flows: we do not need to use complex 

hash functions to generate perfectly uniformly distributed random FE identifiers. The reason 

is that there are many low-rate flows but their contribution is insignificant compared with 

that of a few high-rate flows. Uniform distribution of the hash return values is not important 

as far as load balancing is concerned. As a result, our scheduling scheme is capable of 

balancing the load with low-complexity and efficient hash splitter implementations.

6.5.3 Triggering Policies

We tested three triggering policies:

• Periodic Mapping (PM): The adapter schedules high-rate flows periodically (after each 

interval of P  packets), regardless of system load situation.

• Buffer Occupancy Threshold (BOT): The adapter is invoked if the buffer is filled above 

some percentage. The term buffer refers to the physical shared storage for all FE ’s.

• Maximum Queue Length Threshold (MQLT): The adapter is invoked if the length of 

the largest queue grows above some pre-defined threshold, also expressed as a per

centage of the total buffer size. The term queue refers to the logical input queue that 

holds the incoming packets for an individual FE.
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For comparison purposes, we also simulated hash-based load splitting without adapta

tion. For BOT and MQLT, periodic checking of the system workload condition is implied; 

for comparison purposes, we would assume this period is the same as that in PM. Thus, the 

results for PM set upper bounds on the frequency by which the high-rate flows are shifted

from one FE to another and the amount of adaptation disruption for BOT and MQLT.

6.5.4 Adaptation Disruption

Two sources in our load balancing scheduler contribute most to adaptation disruption (AD).

First is the decision of the adapter to re-map high-rate flows to the least loaded FE. If 

the flows in the flow table are not currently destined to the target FE, flow-shifts occur. We 

call this type of flow-shift explicit disruption (ED). ED  ~  TV’s * F. For the PM balancing 

policy, the number of flow-shifts is the length of the trace divided by the period P. For 

BOT and MQLT, this number should be smaller since the balancer is not always activated.

Second, after processing a window of packets, the flow' classifier replaces the content of the 

current flow table with the largest flows calculated during the past window. This implicitly 

moves the flows that were not in the table from their current destination FE, determined by 

the hash splitter, to the FE decided by the adapter and, at the same time, shifts the replaced 

flows to the FE ’s determined by the splitter. Flow-shifting caused by the flow classifier is 

called implicit disruption (ID). When the classifier updates the content of the flow table at 

the end of window i, the total number of flows to be shifted is |F)_i UFj| — |Fj_i n F | .  For 

the PM balancing policy,

n
ID  = u F M F U n F I

i=1

For the other two adaptive policies, the balancer is not always on, and therefore their ID  

values should be smaller.

In addition, when the system is balanced and the adapter is inactive, the high-rate flows 

are shifted back from the balancer-decided FE to their splitter-decided default FE ’s, causing 

disruptions to the FE’s involved.

6.5.5 Packet Reordering

Adaptive load balancing in hash-based distribution schemes comes at the price of packet 

reordering. Whenever a flow is shifted from a busy FE to a less loaded one, there is the 

risk of packet reordering within this flow. Therefore, the sources of adaptation disruption
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Figure 6.4: Drop Rate vs. Buffer Size (For PM, BOT, and MQLT, the system load condition 
checking is done every 20 packets. For BOT, the threshold is 80 percent of the buffer size. 
For the MQLT, the threshold is 30 percent of the buffer size. There are eight FE’s and the 
system utilization p =  0.8. For this simulation, the number of high-rate flows in the flow 
table is 1.

are also the sources of potential packet reordering. Shifting a few high-rate flows minimizes 

adaptation disruption and for the same reason, causes less packet reordering than adaptation 

schemes that shift flows with no regard to their rates.

Let Li be a flow in a trace, where 0 < i < |S| and S  is the set that contains all the flows 

in the trace. Let P ij  be a packet in Li, where 0 < j  < Ni and Ni is the number of packets 

in Li. Let T ij be the time that the packet P ij is observed. At the input port, T,-j 

0 < j  < Ni. At the output port, however, due to possible packet reordering, T \j  might be 

larger than T jj+ i. If

6.5.6 Simulation Results

Fig. 6.4 shows packet drop rates of different adaptation policies under varying buffer sizes 

for the UofA trace. The hash-only scheme (no adaptation) has the highest drop rate and,

1 i f  T ij  > T ij+i 
0 otherwise

then the packet reordering rate R r for Np  packets forwarded is
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Figure 6.5: Adaptation Disruption vs. Buffer Size (The same setting with Fig. 6.4)

moreover, increasing buffer size does not help. This is because the trace is short and thus 

variability in arrival rate is small. On the other hand, the three adaptation schemes all 

respond positively to buffer increases and beyond certain buffer sizes, the drop rates reach 

zero. PM achieves the best drop rates compared to BOT and MQLT.

Fig. 6.5 shows that changes in buffer size have very slight effects on adaptation disruption 

for the three adaptation schemes, except when the sizes are small. The hash-only policy 

does not shift flows from one FE to another and therefore does not incur any adaptation 

disruption. The PM strategy has the highest adaptation disruption and this explains why it 

achieves the lowest drop rate: it re-maps the high-rate flow much more frequently than BOT 

and MQLT. The difference in adaptation disruption between MQLT and BOT is small; it 

seems that MQLT achieves lower drop rates (Fig. 6.4) than BOT at the cost of a little more 

adaption disruption.

An important parameter of the adaptation policies is the checking period. It controls 

the system’s responsiveness to load imbalance. The smaller the interval, the more quickly 

the system responds to load imbalance; this leads to a lower packet drop rate. On the other 

hand, system load checking is one of the major parts of the adaptation overhead and could 

cause more adaptation disruption. Frequent load checking also consumes more CPU cycles.

Figs. 6.6 and 6.7 show how the checking interval affects drop rate and adaptation
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disruption. Generally, the decrease in responsiveness to load imbalance leads to packet 

dropping. Fig. 6.6 shows that compared with PM and MQLT, BOT (with 80 percent 

occupancy threshold value) is more susceptible to checking period increases. Fig. 6.7 shows 

that increasing the checking period is effective in reducing adaptation disruption.

Simulations with other traces show similar trends to the above results for the UofA trace. 

Differences in scale are caused by the peculiarities of the largest flows in the individual traces. 

For example, as shown in Table 6.2, the largest flow in the Auck4 trace is not significantly 

larger than the second, which is unlike the UofA trace where a single largest flow dominates. 

This implies that, for the Auck4 trace, scheduling only the one largest flow might not be 

able to spread load evenly over multiple processors. This can be solved partly by adding 

more flows into the flow table at the cost of degradation in adaptation disruption.

In the following simulations, we experiment with the Auck4 trace to study the effect 

of scheduling more high-rate flows on packet drop rate, adaptation disruption, and packet 

reordering. The results are shown in Figs. 6.8, 6.9, and 6.10. In each figure, the x  axis 

denotes the number of high-rate flows. That is, x  =  1 represents the case when only the 

largest flow in the trace is remapped to balance load; x  =  2 means the largest two flows are 

scheduled, and so on.

Fig. 6.8 shows the effectiveness of scheduling more high-rate flows in reducing drop rates
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Table 6.4: Comparison between Shifting Only the Largest Flow and Shifting Only Smaller 
Ones

Simulation Auck4
LF

Auck4
SF

IPLS
LF

IPLS
SF

No. of Flows 1 37 1 439
CV[qi] .172 .265 .0782 .137
V .133 .133 .0103 0.0121
( .0413 1.84 .0357 22.2
R r .0612 .146 .00965 0.0626

Simulation SDSC
LF

SDSC
SF

UofA
LF

UofA
SF

No. of Flows
c v m

V
C
R r

1
.181
.0904
.0342
.00546

2
.164
.0749
.0714
.00740

1
.143
0
.0357
.00965

500
.288
0.103
25.2
0.0511

for the Auck4 trace for the three adaptive policies. It seems that for a given configuration, 

beyond a certain number of high-rate flows, the benefit of scheduling more flows becomes 

negligible. On the other hand, as shown in Fig. 6.9, adaptation disruption increases linearly 

with the number of flows scheduled. Therefore, it is both important and desirable to limit 

the number of flows in the flow table.

Fig. 6.10 shows simulation results of packet reordering rates for the Auck4 trace. Like 

adaptation disruption, packet reordering is affected mainly by the number of flows shifted. 

It is apparent from the figure that shifting a larger flow causes more packet reordering than 

migrating a smaller one. This is different from adaptation disruption where each flow-shift 

contributes the same to the overall disruption regardless of the nature of the individual flow.

To further illustrate the advantage of shifting the largest flows, we compare the results 

of two simulations: scheduling only the largest flow (LF) and scheduling only smaller flows 

(SF) to achieve similar drop rates as with LF. We simulate the PM policy with a 20-packet 

checking period. Table 6.4 summarizes the results for four traces. W ith similar packet 

drop rates (tj), scheduling the largest flow always causes less adaptation disruption (Q and 

packet reorders (Er ). For the Auck4, IPLS, UofA traces, scheduling the largest flow also 

achieves a smaller CV[qi\. Unanimously, more than one smaller flows are needed to achieve 

similar packet drop rates as scheduling the largest flow. The least number of smaller flows 

needed is two, as in the SDSC case where scheduling smaller flows achieves a lower miss 

ratio and CV[qi}. One reason might be that in the SDSC trace, the largest flows identified
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by the mechanism in Section 6.4 only accounts for a small portion of the total traffic, not 

significant enough for the sdieduling-the-largest-flow strategy to outperform scheduling-the- 

smaller-flows by a large margin. The other extreme is the UofA trace, where the largest flow 

by itself represents around 16 per cent of the aggregate traffic; when it is scheduled onto an 

FE, even if the rest of the traffic are spread evenly among the other seven FE’s (each 12 per 

cent), the system is still not perfectly balanced.

It is important to note that the arrival rate A for the Auck4 trace (see Table 6.3) used 

to decide the FE service rates (Eq. 6.9) in the simulations of Figs. 6.8, 6.9, and 6.10 is the 

average rate over five hours. Arrival rates during shorter intervals may be much higher. For 

example, the arrival rate for the first one million packets in the Auck4 trace is 1.3 times the 

average rate. The service rate of the system, however, is only 1.25 times the average arrival 

rate. In such situations, packet losses occur regardless of the scheduling scheme. Therefore, 

under similar adaptation configurations, differences in arrival rate variability account for 

different drop rates, adaptation disruption, and packet reordering rates, for different traces.

6.6 Summary

The highly skewed Internet flow popularity distribution has profound implications for In

ternet forwarding system design. First, we have shown in this chapter that the Zipf-like 

flow popularity distribution, which has infinite mean and variance, is one of the major 

sources of load imbalance in a hash-based packet dispatching scheme. Second, to measure 

the efficiency of adaptive scheduling schemes, we introduce a new metric, the adaptation 

disruption, which reflects the effect of adaptive algorithms on cache performance and is an 

important touchstone for evaluating overall parallel forwarding system performance. Third, 

flow-level Internet traffic characterization inspires the classification of flows into two cate

gories: the high-rate and the normal. By applying different scheduling policies to the two 

classes, we have been able to build a highly effective and efficient scheduler that can be used 

in parallel Internet forwarding devices.

Instead of migrating flows, regardless of their nature, from heavily load FE ’s to less 

loaded ones, our scheduler shifts only a few high-rate flows when the system is unbalanced. 

Manipulating these flows is effective because they are the major source of load imbalance. At 

the same time, since their number is small, migrating these flows causes minimum adaptation 

disruption to the FE’s cache. We expect much higher disruption in adaptive load balancing
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schemes that do not take flow popularity distribution into account. Experiments show that 

due to temporal locality in Internet traffic, the high-rate flows can be readily Identified, 

which Indicates that the proposed load balancer Is highly feasible.

The data in Table 6.4 indicates that, as a  increases, a larger number of smaller flows 

must be scheduled in order to achieve the same packet drop rate as scheduling the largest 

flow. Intuitively, as a  increases, the largest flow contributes more to the aggregate traffic and 

thus it is more effective in balancing workloads. Analytical work is underway to determine 

the bounds of the number of the largest flows to schedule under the constraints of a  and 

performance requirements of load balancing, adaptation disruption, and packet reordering.
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Chapter 7

Conclusions and Future Work

The phenomenal development of the Internet poses challenges to forwarding systems. To 

keep up with the growing bandwidth demand, Internet routers have to process packets at 

line speed; to accommodate new applications and standards, these devices have also to be 

flexible to allow easy updates; finally, new applications, e.g., secure transactions, require 

computation power. Over the past years a wide variety of solutions have been proposed. 

One trend in forwarding system design is to  employ network processors and to implement 

key forwarding algorithms in software.

Due to a huge design space and a diverse market, a large variety of these systems have 

been developed. Workload characterization is critical to performance evaluation of systems 

from different vendors, and essential to understanding the trade-offs in system design. This 

thesis addresses this need by modeling two salient features critical to performance in the 

workload for Internet forwarding systems: the temporal locality in IP destination address 

sequences and the skewed address popularity distribution. The results from our work can 

be applied in network forwarding system testing and benchmarking. Moreover, our work 

on Internet traffic modeling leads to the design of an efficient and effective load scheduling 

scheme for parallel forwarding systems.

7.1 C onclusions

First, after examining several existing schemes in similar areas, we use the LRUSM to 

capture temporal locality in destination IP address sequences. Based on the analysis of real 

world traces gathered from networks ranging from the campus level to major sections of the 

Internet backbone, we propose a five-parameter mixed reuse distance distribution function 

(which can be further reduced to four parameters). This distribution accurately models the
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temporal locality in Internet traffic. Furthermore, we propose a synthetic trace generation 

algorithm based on this model. Simulation results of the cache miss ratio of a routing table 

lookup algorithm validate our model.

Second, we study the flow-level characteristics of Internet traffic streams, which are 

important in the design of parallel forwarding systems. We observed that a few high-rate 

flows usually dominate Internet traffic and we found that the popularity distribution of 

IP addresses generally follows Zipf’s law. We demonstrated that with a simple hash-based 

packet scheduler, the load imbalance In a parallel forwarding system is caused by a few high- 

rate flows. This conclusion indicates that skewed popularity distributions and, in particular, 

the existence of the few high-rate flows, are important to model.

The LRUSM, although it captures temporal locality, does not differentiate among flows. 

In a synthetic trace generated using LRUSM alone, the flows tend to be similar in the rate 

and arrival patterns. We propose an algorithm based on the LRUSM, to generate traffic 

with the desired temporal locality, which also accommodates high-rate flows. Synthetic 

traces generated by this algorithm are shown to induce similar load imbalance behavior of 

parallel forwarding systems.

Third, we show the impacts of packet dispatching schemes on cache performance, and 

the effects of caching on load balancing in parallel forwarding systems. We have found 

significant differences in temporal locality in the traffic scheduled by two schemes: hashing 

and round-robin.

Based on the work on Internet traffic characterization, we developed an efficient and 

effective load balancing scheme for parallel forwarding systems. Compared with state-of-the- 

art designs in this area, ours is unique in taking advantage of flow-level traffic characteristics. 

We introduced an important metric for load balancing design, i.e., adaptation disruption, 

which measures the disruption to cache states in the individual FE’s caused by load shifting 

schemes. Our load adaptation scheme is effective at balancing workloads and achieving 

minimum adaptation disruption.

7.2 Areas of Future Research

The development of this thesis is an example of how a deeper understanding of computing 

system workload characteristics can lead to sound system designs. Workload character

ization, therefore, will be one of our directions for future work. At the same time, the
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methodology and many results in this thesis are applicable to other networks and more 

general computing systems. In this section, we discuss several future research directions.

7 .2 .1  I n te g r a t io n  o f  t h e  IRM a n d  th e  L R U S M

We described in Chapter 4 an algorithm that generates high-rate Internet flows within 

the LRUSM framework. The synthetic traffic exhibits the desired temporal locality and 

can be used to evaluate the performance of hash-based load balancing schemes in parallel 

forwarding systems. This is because the effectiveness of these schemes is strongly influenced 

by a few high-rate flows in the traffic.

Incorporating a small number of flows, however, is only a partial solution to a more 

general problem, i.e., how to integrate the IRM and LRUSM. Given a reference string, in 

the IRM we calculate the frequency distribution of the objects; in the LRUSM we model 

the reuse distance distribution, which quantifies temporal locality. It is desirable to develop 

an algorithm that generates a sequence of objects that exhibits both features according to 

the model parameters. Such an algorithm, besides capturing temporal locality, would be 

able to produce a synthetic object reference sequence encompassing the whole spectrum of 

object frequency distribution. As an example, the algorithm would allow us to generate 

both “elephants” and “mice” in synthetic IP destination address sequences.

Few previous studies have focused on this topic. In [54] the authors develop a synthetic IP 

address generation algorithm based on a hybrid model. The model does not explicitly take 

into account individual address frequencies, yet is able to generate Zipf-like distributions. 

Our preliminary implementation does not yield the same results. Further verification of this 

model is part of our future work on incorporating the IRM and LRUSM.

7.2.2 High-performance Designs Based on T ra ff ic  Characteristics

Highly skewed popularity distributions exist in the workloads for many network systems. 

Dividing these workloads into two or more categories and treating each group differently is a 

general idea that could be effective in improving system performance. For example, WWW 

server cluster systems could benefit from hash-based load distribution schemes, e.g., HRW, 

to improve cache hit ratio and to reduce response time. It is pointed out in [70], however, 

that requests for one hot object alone could present enough load to swamp a server. Such 

systems could implement object replication for the most popular objects so that these objects 

have copies on more than one server and object space partition by hashing for the other
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not-so-popular objects so that each server only hosts a partition of these objects. A load 

distribution scheme similar to the one outlined in this chapter could then be used to balance 

the load. For such systems, a centralized scheduling mechanism is essential.

Zipf-like popularity distributions have been found in workloads of many Internet systems 

and novel designs have been developed to capitalize on this characteristic. Recently, Chvets 

and MacGregor [119] and MacGregor [120] proposed a novel IP route caching scheme that 

divides a cache into zones, where each cache routing table lookup results of certain prefix 

lengths. According to the frequencies of prefix lengths, the sizes of the zones are assigned. 

Results show that the best configuration can reduce the miss ratio of an LRU cache that 

contains “IP Address, Output Port” pairs by half.

We observe that generally, LRU performance is degraded by the presence of the large 

number of Internet “mice” . For example, IP addresses that appear only once in a trace evict 

addresses that are to be referenced in the future. In a preliminary experiment, we divide an 

LRU IP address cache into two sections, both using LRU. Only addresses that are referenced 

more than once in the first section migrates to the second. This simple scheme eliminates 

the “mice” effect described above and achieves better performance than an LRU cache of 

the combined size of both sections. It is worth noting that this method is orthogonal to the 

scheme proposed in [119, 120]. More experiments are underway.
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A ppendix A

M ore CCDF F itting  
Experim ents

In this appendix, we first show the results of fitting the W +P model developed in Section 3.5 
to more data sets, to further validate Eq. 3.3. We show further that to achieve parsimonious 
modeling, the Weibull component in Eq. 3.3 can be replaced by an exponential distribution.

A .l  F itting M ore D ata Sets w ith  the W + P  M odel
The traces used in this section are from the Abilene-I and Auckland-IV sets, both from 
NLANR. They are divided into groups by their directions. The Abilene-I set contains traces 
measured at two router ports. So there are four groups: CLEV-0, CLEV-1, KSCY-0, KSCY- 
1, each containing 12 traces. The Auckland-IV set contains 94 traces from two directions at 
one port. We select a subset of traces for each direction: AuckIV-0 (19 traces) and AuckIV-1 
(18 traces). The reuse distance CCDF’s of these traces are shown in Figs. A.l and A.2. The 
CCDF’s for the KSCY traces are similar to those for the CLEV traces and are not shown.

During our experiments, we have found that temporal locality characteristics of traces 
of packets traveling in the same direction, i.e., arriving at or departing from a measurement 
port, are very similar. For example, using the fitting results of one trace as initial values, 
we have been able to automate the fitting procedure to fit all the other CCDF’s of traces 
in the same group. This is especially true for the traces in the Abilene-I set where one set 
of parameters was used as initial values to obtain the fitting of all the CCDF’s, even those 
of traces from different groups. This is also true for the AuckIV-1 group and most of the 
traces (17 out of 19) in the Auck-0 group. The similarity of the CCDF curves in the figures 
indicates that the backbone traces are relatively consistent in terms of temporal locality 
whereas the traces from lower-bandwidth links have more variation.

As shown in Figs. A.3 and A.4, our model is successful in describing the temporal 
locality characteristics of a wide range of traces gathered at different levels in the Internet, 
from campus networks to Internet backbones.

We have also found that the parameters in the model are similar within groups of traces. 
We are especially interested in the parameter “p” in Eq. 3.3, which represents the percentage 
that the Weibull contributes to the mixed-CCDF model. The values of p  are in the ranges 
of [0.62,0.90] and [0.37,0.65] for the Auck-0 and Auck-1 traces, respectively. They are in 
the range of [0.14,0.16] and [0.16,0.19] for the CLEV-0 and CLEV-1 traces. It seems that 
p  tends to be larger for a campus level network but smaller for backbone networks. The p  
values for the IJofA and LDestIP traces collected at campus-level networks and those for 
the KSCY-0 and KSCY-1 traces gathered at backbone networks support this hypothesis. 
Figs. A.5 and A.6 show the effects of p  by decomposing the fit CCDF’s for some traces into 
the two components of the model, pW {x) and (1 — p)P(x).

The other parameters that differ significantly across trace sets are the scale parameters,
i.e., d for the Weibull and b for the Pareto CCDF. b for the AuckIV set is in the range of 
[1.21,253] and for the IPLS set is within [0.059,0.154]. d is within [6.23,47.0] for the AuckIV 
set but [1067,1325] for the IPLS set. Both scale parameters differ by more than one order 
of magnitude, respectively. On the other hand, the shape parameters, i.e., c for the Weibull 
and a for the Pareto, are relatively constant for different trace sets.
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Thus the set of values of p, b, d, or even only one of them, can be used to indicate a 
trace’s origin. Moreover, we can generate synthetic traces using different parameter values 
for the evaluation of network devices at different levels.

A .2 On Parsimonious M odeling
Parsimony is desirable in modeling [121]; the goal is to use as few parameters as possible in 
a model without losing accuracy. In our reuse distance distribution model (Eq. 3.3), there 
are a total of five parameters, i.e., the parameter p, and the scale and shape parameters of 
the Weibull and Pareto functions.

A .2.1 Replacing the Weibull Distribution
Our intuition about reducing the number of parameters comes from the observation that 
Eq. 3.3 consists of a long-tailed component, the Pareto, and a short-tailed component, 
the Weibull. The tails of the CCDF’s are largely contributed by the Pareto distribution; 
any short-tailed distribution might be able to replace the Weibull without fundamentally 
changing the shape of the tails.

Feldmann and W hitt [96] show that long-tailed distributions can be approximated by 
hyper-exponentials. In light of this work, both distributions in Eq. 3.3 can be expanded as 
a mixture of exponentials. This leads us to experiment with replacing the Weibull with the 
CCDF of the exponential distribution

E{x) = e~~Xx (A.l)

which leads to the reuse distance CCDF

C'(x) =  pE{x) + (1 -  p)P(x),  0 < p <1.  (A.2)

The results show that fitting with Eq. A.2 achieves comparable accuracy with fitting 
with Eq. 3.3.
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Figure A.l: CCDF’s for the traces in the CLEV-O(left) and CLEV-1 groups
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Figure A.2: CCDF’s for the traces in the AucklV-O(left) and AuckIV-1 groups
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Figure A.3: Some CCDF Fittings(CLEV)
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Figure A.4: Some CCDF Fittings(AuckIV)
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auck4_20010222-020000-0 (in-bound trace), p = 0.864
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Figure A.5: Effects of p: Fitted CCDF’s for Two AuckIV Traces and Their Components
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ipls-clev-20020814—090000-0 (in-bound trace), p = 0.180
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Figure A.6: Effects of p: Fitted CCDF’s for Two IPLS-CLEV Traces and Their Components
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