
In compliance with the
Canadian Privacy Legislation

some supporting forms
may have been removed from

this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the dissertation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U n iv e rs i ty o f A lb e r ta

W o r k l o a d M o d e l i n g a n d P e r f o r m a n c e E v a l u a t i o n
f o r I n t e r n e t F o r w a r d i n g S y s t e m s

by

W eiguang Shi ©

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of D octor o f Philosophy

Department of Computing Science

Edmonton, Alberta
Fall 2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-88047-8
Our file Notre reference
ISBN: 0-612-88047-8

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U niversity o f A lb e rta

L ib rary R elease Form

N am e o f A u th o r: Weiguang Shi

T itle o f T hesis: Workload Modeling and Performance Evaluation for Internet Forwarding
Systems

Degree: Doctor of Philosophy

Y ear th is D egree G ran ted : 2003

Permission is hereby granted to the University of Alberta Library to reproduce single copies
of this thesis and to lend or sell such copies for private, scholarly or scientific research
purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever
without the author’s prior written permission.

Am 2 3 2 203
D a te : _J J l _____________

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U n iv ers ity o f A lb erta

Faculty o f G raduate S tudies and R esearch

The undersigned certify th a t they have read, and recommend to the Faculty of G rad
uate Studies and Research for acceptance, a thesis entitled W o rk lo a d M o d e lin g
and Perform ance E valuation for In ternet Forwarding S y s te m s submitted
by Weiguang Shi in partial fulfillment of the requirements for the degree of D octor
o f Philosophy.

Dr. Mike H. MacGregor
Co-S.ufrervisQr

Dr. id&hrei Uburzynski
CodsppSfvisor

Dr. Byuce Cockbuxn.

Df. Joseph Culberson

Dr. Janelle Harms

Dr. Carey W illiam son
External Exam iner

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my parents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A bstract

The exponential growth of the Internet has presented great challenges for its infrastructure.

Moreover, the rapid pace of the innovations in Internet applications mandates that the

routers that forward packets between networks offer not only high throughput but also huge

computation power and maximum flexibility.

In this thesis, we are concerned with the design and performance evaluation of Internet

forwarding systems. We attack system performance problems through the study of its

workload characteristics, which leads to sound system designs.

First, we characterize temporal locality in router workloads. Temporal locality is critical

to cache performance and thus important to overall forwarding system throughput. We

derive a mixed distribution which combines the Weibull and Pareto distributions and ac

curately captures the locality in destination IP address sequences of Internet traffic. Our

model is generative; synthetic traffic can be produced with projected temporal locality.

Second, we show that flow popularity characteristics have a significant impact on load

balancing in a parallel forwarding system where a hash-based scheduler dispatches incoming

packets to individual forwarding engines. We model the flow popularity distribution using

Zipf-like distributions and develop a scheme to incorporate large flows into the generative

model that captures temporal locality.

Third, we further explore performance implications of flow-level Internet traffic charac

teristics and develop a highly efficient and effective packet scheduling scheme for parallel

forwarding system load balancing. We find tha t under certain Zipf-like distributions, hash-

based scheduling scheme alone can not achieve load balance for a parallel forwarding system.

The presence of a few dominating flows in Internet traffic has motivated us to develop a

novel load balancer that capitalizes on this phenomenon by scheduling these high-rate flows

to balance workload among the forwarding engines in a parallel forwarding system. The

effectiveness of our scheme is demonstrated via simulation.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgem ents

This thesis could not have been finished without the help of many people. The most im
portant is my co-supervisor, Mike MacGregor. Throughout my PhD study, he has always
been encouraging, understanding, and supportive. Among many other things, Mike moti
vated and guided my research and taught me how to write. His belief in research and his
professionalism have been most inspiring to me. I remember quite well when I just started
searching for a topic, I was at a loss and seriously doubted my ability to do useful work.
After giving some encouragement, Mike told me: “Have some faith.” I don’t know about
others but I hadn’t started to relate “faith" to “research" until that moment when he said
it. One never knows, but it just clicked and I went on.

I wish to thank my co-supervisor, Pawel Gburzynski, for his support, encouragement,
and insightful comments on my work. I have also benefited from discussions with Janelle
Harms, Ioanis Nikolaidis from the communication networks group, Joe Culberson on my
thesis committee, and Xiaobo Li. I have had the pleasure of working as a teaching assistant
under Paul Lu, Hong Zhang, and Mike MacGregor; their well recognized teaching methods
have been educational to me.

Some important inspirations in my work came from the industry. It was at Sprint
Advanced Tech. Lab where I conducted performance tests for Internet backbone routers
and later realized the discrepancy between the Router Tester-offered workload and the real
world traffic. This was one of the motivations for the workload modeling in this thesis. I
also wish to thank Andreas Herkersdorf at IBM Zurich Lab for answering my questions on
the IBM load balancer. Their paper inspired the load balancing design in this thesis.

I feel fortunate to have conducted my graduate research at the Computing Science De
partment, University of Alberta, which has provided a friendly, constructive, and efficient
academic environment. I wish to thank the supportive staff members who have helped me,
especially Edith Drummond for her help with all the paper work and Steve Sutphen for
answering my many system questions.

During my study, I have frequently turned to Internet newsgroups for help on various
technical questions. To the folks who answered my posts go my sincere thanks.

Finally, I would like to thank my family and friends. Four years as an international
student have also been a journey of adjustment to a completely different culture. My beloved
wife, Amy, has shared with me my dreams and cheered me through. I am so fortunate to
be blessed with some loving and faithful friends whose support I can always rely upon.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C ontents

1 In tro d u c tio n 1
1.1 The Internet Protocol Suite: T C P/IP .. 2
1.2 General Internet Forwarding System Architecture and O p e ra tio n 4
1.3 The Bottleneck: Routing Table Lookup ... 7

1.3.1 The IP Addressing S c h e m e .. 7
1.3.2 Routing Table L ookup... 8

1.4 Locality: The Concepts ... 10
1.5 Contributions................................... ..11
1.6 Thesis Outline ... 12

2 R e la te d W ork 14
2.1 Program Memory Reference Behavior Models .. 14

2.1.1 The Working Set Model .. 15
2.1.2 The Independent Reference M o d e l ... 16
2.1.3 The Least Recently Used Stack Model (LRU SM).......................................17
2.1.4 Synthetic Trace Model for Cache S im ulations...17

2.2 Locality in Network E nv ironm en ts... 19
2.2.1 Locality in Packet Networks........................... 19
2.2.2 Locality in Web Server Workloads 21
2.2.3 Synthetic IP Destination Address G eneration ...22

2.3 Flow-level Traffic C haracteristics..24
2.4 Load Balancing for Web Servers ..25

2.4.1 DNS-based Scheduling............... 25
2.4.2 Hash-based Routing 26

2.5 Packet Scheduling and Load Balancing in Parallel Forwarding Systems 27
2.5.1 Basic Scheduling Schem es... 28
2.5.2 Internet Link Load Balancing Schemes... 29
2.5.3 Load Balancing for Parallel Forwarding S y s te m s 30

2.6 S u m m a ry 31

3 L ocality M odels for A ggregate In te rn e t Traffic 32
3.1 Motivation ... 33
3.2 M ethodology... 34
3.3 The Footprint M odel................ 35
3.4 The Reuse Distance Model 40
3.5 The Reuse Distance Distribution M o d e l 43

3.5.1 Fitting the CCDF with a Mixed F u n c tio n 43
3.5.2 Discussion... 48

3.6 Synthetic Trace Generation and Simulation Results 49
3.6.1 Synthetic Trace G en era tio n ..49
3.6.2 On the Efficiency of LRU Stack Processing 51
3.6.3 General Cache Simulation R e s u l t s ... 52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6.4 Route Cache Simulation R e s u l ts ... 52
3.7 S u m m a ry ...54

4 A n In te g ra te d W orkload M odel 57
4.1 Flow-level Internet Traffic C haracteristics... 58

4.1.1 Zipf’s Law Applies to Internet Traffic .. 58
4.1.2 Impact on Load Balancing................................... 60

4.2 Synthetic Trace G en e ra tio n .. 62
4.2.1 Incorporating High-rate Flows .. 63
4.2.2 Trace Generation Algorithm................................ 63

4.3 Sim ulation... 66
4.3.1 Packet Arrival Model 67
4.3.2 Results ...67

4.4 S u m m a ry .. 67

5 Traffic L ocality in P aralle l Forw arding System s 72
5.1 General Impact of Scheduling Schemes on L o c a lity 72
5.2 Impact of Scheduling Schemes on Per-Processor Locality 75
5.3 S im ula tions ... 77

5.3.1 M e tr ic s ...78
5.3.2 Results ... 78

5.4 S u m m a ry ... 80

6 P ara lle l Forw arding S ystem Load B alancing 81
6.1 System M odel... 83
6.2 Sources of Load Imbalance..................................... 83

6.2.1 Hash Function .. 83
6.2.2 Burstiness of Internet T ra f f ic ..84
6.2.3 Skewed Flow Size D is tr ib u tio n .. 84

6.3 Load Balancer .. 87
6.3.1 Goals 87
6.3.2 D esign... 89
6.3.3 Triggering P o lic ie s ... 90

6.4 Detecting High-rate F low s................... 91
6.4.1 Definition of High-rate F lo w s 91
6.4.2 Detecting High-rate Flow s.. 92

6.5 S im ula tions... 93
6.5.1 Trace Driven Sim ulation................................ 93
6.5.2 Hash S p l i t te r ... 94
6.5.3 Triggering P o lic ie s 94
6.5.4 Adaptation D isruption...................................... 95
6.5.5 Packet R eo rdering 95
6.5.6 Simulation R e su lts .. 96

6.6 Summary .. 102

7 Conclusions and F u tu re W ork 104
7.1 Conclusions................ 104
7.2 Areas of Future Research .. 105

7.2.1 Integration of the IRM and the LRUSM 106
7.2.2 High-performance Designs Based on Traffic C h a ra c te ris tic s 106

B ibliography 108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A M ore C C D F F ittin g E xperim en ts 114
A.l Fitting More Data Sets with the W +P M odel... 114
A.2 On Parsimonious M o d e lin g .. .115

A.2.1 Replacing the Weibull D istribution... 115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 T C P /IP M ode!.. .. 2
1.2 The Layout of an IP P a c k e t... 3
1.3 A General-purpose Computer as a R o u te r .. 5
1.4 A High-end R o u te r ... 6
1.5 IP Address C lasses . 7

2.1 Some Hyperbolic C urves... 18
2.2 A Multi-processor Forwarding S y s te m ... 28

3.1 a. Footprints of the UofA (above) Traces (A = 11.95, 9 = 2.239); b. Foot
prints of the FUNET Traces (A = 23.25, 9 — 2.631) . 37

3.2 Simulation of a 16-KB Direct-Mapped Data C a c h e ...38
3.3 The Synthetic Trace Generation A lg o rith m ... 39
3.4 a. Footprints of the Two Synthetic Traces (above); b. Comparison of Cache

Miss R a t io s .. 41
3.5 Reuse Distance Over Time: LDestIP (above) and UofA T r a c e s 42
3.6 Reuse Distance CCDF’s of the LDestIP (above) and the UofA Traces 44
3.7 Fitting the LDestIP (left) and UofA CCDF’s with Weibull + P a r e to 46
3.8 The CCDF in Eq. 3.7 matches the Pareto in Eq. 3.5...................... 49
3.9 Synthetic Trace G en e ra tio n .. 50
3.10 Footprints (UofA) ... 51
3.11 General Cache Simulation Results: a. 64-KB Direct-Mapped Data Cache

(above) b. Different Cache Sizes with 32-byte Cache L ines................................... 53
3.12 Route Cache Misses: UofA (above) and LDestIP T ra c e s 55

4.1 Zipf’s Law for Internet F lo w s ... 59
4.2 Effect of Largest Flows on Load Balancing (UofA T race).................................. 60
4.3 Address Popularity Patterns: Real and LRUSM-based Synthetic Traces . . . 61
4.4 Synthetic Trace Generation: LRUSM -f 1 Alpha F lo w 64
4.5 Reuse Distance CCDF’s: UofA (above) and IP L S ..68
4.6 Flow Popularity Distributions: UofA (above) and IPLS 69
4.7 Load Imbalance for an 8-FE System: UofA (above) and I P L S 70

5.1 CCDF’s in a 4-FE System with the UofA(above) and the LDestIP Traces . . 74
5.2 CCDF’s in a 16-FE System with the LDestIP T r a c e .. 75
5.3 Impact of Scheduling on Per Processor Locality (UofA Trace with 4 FE ’s) . . 77

6.1 IP Address Popularity Distribution Follows Zipf’s L a w 85
6.2 Load Balancing Packet Scheduler.. 89
6.3 Effects of W on A (F = 5) 93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 Drop Rate vs. Buffer Size (For PM, BOT, and MQLT, the system load
condition checking is done every 20 packets. For BOT, the threshold is 80
percent of the buffer size. For the MQLT, the threshold is 30 percent of the
buffer size. There are eight FE’s and the system utilization p = 0.8. For this
simulation, the number of high-rate flows in the flow table is 1............................. 96

6.5 Adaptation Disruption vs. Buffer Size (The same setting with Fig. 6.4) . . . 97
6.6 Drop Rate vs. Checking Period (The buffer size is 400 packets. The other

parameters are the same as those of Fig. 6 . 4) ...98
6.7 Adaptation Disruption vs. Checking Period (The same setting as Fig. 6.6) . . 98
6.8 The Effectiveness of Scheduling More High-rate Flows (The checking period

is 20 and the buffer size is 400. The other parameters are the same with those
in Fig. 6 .4 ... 99

6.9 The Effects of Scheduling More Flows on Adaptation Disruption (with the
same setting as Fig. 6 .8) .. 100

6.10 The Effects of Scheduling More Flows on Packet Reordering (with the same
setting as Fig. 6 .8) ..100

A.l CCDF’s for the traces in the CLEV-Q(left) and CLEV-1 g ro u p s116
A.2 CCDF’s for the traces in the AucklV-O(left) and AuckIV-1 groups 117
A.3 Some CCDF Fittings(C L E V)... 118
A.4 Some CCDF Fittings(AucklV) ..119
A.5 Effects of p: Fitted CCDF’s for Two AucklV Traces and Their Components . 120
A.6 Effects of py Fitted CCDF’s for Two IPLS-CLEV Traces and Their Componentsl21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1 Traces Used in Experim ents........................... 34

5.1 No. of Flows vs. No. of Packets Seen at Each FE (UofA Trace, 4 FE’s) . . . 76
5.2 Simulation Results (Tm = 6 T / ,) ... 79
5.3 High Rate Flows in the Traces ... 79

6.1 Traces Used in Experim ents... 84
6.2 High Rate Flows in the Traces 85
6.3 Arrival Rates (No. of Packets/Second) of Four T r a c e s ...93
6.4 Comparison between Shifting Only the Largest Flow and Shifting Only Smaller

Ones ...101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of A cronym s

A D Adaptation Disruption

B G P Border Gateway Protocol

C A R P Cache Array Routing Protocol

C C D F Complementary Cumulative Distribution Function

C ID R Classless Inter Domain Routing

C ftC Cyclic Redundancy Code

C V Coefficient of Variation

D A Destination (IP) Address

D A R PA Defense Advanced Research Projects Agency

D N S Domain Name System

D P Destination (transport layer) Port number

D W D M Dense Wavelength Division Multiplexing

F E Forwarding Engine

H R W Highest Random Weight

H T T P HyperText Transfer Protocol

IC P Internet Caching Protocol

IP Internet Protocol

IR M Independent Reference Model

IS O /O S I International Standardization Organization / Open System Interconnection

LA N Local Area Network

L R U SM Least Recently Used Stack Model

M A D Minimum Adaptation Disruption

N P Network Processor

OSPF Open Shortest Path First

R F C Request For Comments

R IP Routing Information Protocol

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SA Source (IP) Address

SP Source (transport layer) Port number

S O N E T Synchronous Optical NETwork

T C P Transmission Control Protocol

U D P User Datagram Protocol

W S Working Set

W W W World Wide Web

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Over the past three decades, the Internet has revolutionized the way that people communi

cate 1. W hat used to be a DARPA (Defense Advanced Research Projects Agency) project

to connect four major research centers in the US has evolved into a global medium that

carries digitized data in the forms of files, emails, newsgroup messages, etc., between people

all over the world. Its growth was comparatively slow until the advent of the World Wide

Web (WWW) when computer and network technologies matured to such a degree that peo

ple could search the huge amount of information available from the Internet using a Web

browser. The tempo suddenly increased. The ease of use of the Internet ignited the imag

ination of the world as individuals, businesses, and institutions began to put information

onto the Web. Recently, important applications e.g., voice over IP (Internet Protocol) and

real-time video, have been developed to take advantage of this medium.

The exponential growth of the Internet presents scalability problems for its infrastruc

ture. In a sense, the Internet has become a victim of its own popularity. In particular, the

forwarding devices, known as routers or gateways, that connect multiple networks, have to

move huge amounts of data from network to network in time to prevent the Internet from

degrading in service or even collapsing.

Recent advances in optical transmission technology, such as DWDM (Dense Wavelength

Division Multiplexing), have unleashed the potential of seemingly unlimited bandwidth.

This has rendered the performance issue of inter-connection devices even more prominent

as they have become the major bottleneck of the information delivery system.

In this chapter, we first present the necessary background where the problems addressed

1A history of the Internet can be found at the Internet Society’s Web site
http://w w w .isoc.org/in tem et/h istory/. A detailed account of the evolution of Internet backbone can
be found in [Ij.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.isoc.org/intemet/history/

r

Applications

Transport Protocols (TCP, UDP)

IP: the Internet Protocol

Underlying Network

V

Figure 1.1: T C P/IP Model

in this thesis originate. This includes a brief description of the Internet model. A discus

sion of a general Internet forwarding system architecture is followed by a more detailed

description of one of the major performance bottlenecks, i.e., routing table lookup. Model

ing locality in forwarding system workload is the main theme of our work; the concepts of

locality and the significance of forwarding system workload characterizations are discussed

in Section 1.4. The chapter ends with a brief list of contributions and an outline of this

thesis.

1.1 The Internet Protocol Suite: T C P /IP

Fig. 1.1 shows the four-layer TC P/IP networking model. Each protocol layer is a user of the

services provided by the layer immediately below and at the same time, provides services

to the layer immediately above. Interfaces exist only between adjacent layers.

The Internet connects heterogeneous networks rather than only those of the same archi

tecture. Each particular physical network has its own set of rules with which its hosts comply

in order to communicate among themselves. The glue that ties various networks together so

that hosts on different networks can communicate is the Internet Protocol, or IP. Immedi

ately above IP are transport layer protocols that provide end-to-end services to applications.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

version header
length

type of service

identification

time to live(TTL’

/

/

/

protocol

total length

flags fragment offset

header checksum

32-bit source IP address

32-bit destination IP address

options (if any)

TCP/UDP header
(16-bit source & destination port numbers included)

Application Data

/

/

7

IP header

Figure 1.2: The Layout of an IP Packet

The two main transport layer protocols are TCP and UDP. TCP, the Transmission Control

Protocol, provides reliable transmission between communicating applications. UDP, on the

other hand, simply provides access to the connectionless IP network.

Besides these components, the TC P/IP suite includes protocols for routing, maintenance,

diagnostic, and management purposes. Internet protocols are standardized in RFC (Request

For Comments) documents. For example, the standard specification for IP is in RFC791 [2]

and that for TCP is in RFC793 [3]. A good reference for TC P/IP can be found in [4].

To send data to a host on a different network, the sender chops the data, if necessary,

into smaller chunks. A transport layer (TCP/UDP) header is prepended on each chunk to

form a segment, which includes, besides other information, the 16-bit source and destination

ports that are used to locate the specific applications. Each segment, in turn, has an IP

header prepended to it to form an IP packet. The layout of the IP packet is shown in

Fig. 1.2. Among the fields of an IP header, the protocol field identifies the transport layer

protocol. The 32-bit source and destination addresses uniquely identify the communicating

hosts. Finally, each packet is sent onto the physical network after being encapsulated in the

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

native network frame (e.g., Ethernet).

As an IP packet carried in one particular network frame is received at an Internet

router, it is extracted from its frame. After the next-hop router is decided according to the

destination address and other information carried in the headers, the packet is encapsulated

using the frame format of the next-hop network and forwarded to the next-hop router. The

procedure is repeated until the packet arrives at its destination host. Packets from the

same application are forwarded independently through the Internet, possibly over different

paths, toward their target hosts. IP does not guarantee successful or in-order delivery of

the packets. This is called best-effort forwarding.

IP, as a network layer protocol, delivers an Internet packet to its destination host, ac

cording to its destination IP address. In most cases, the communicating entities are two

application processes running on two hosts. Transport layer protocols provide information

to identify the particular receiver process for a packet. The port numbers in TCP and UDP

headers are used to specify the receiver. Thus, the three-tuple: destination port number,

transport layer protocol, and IP destination address uniquely identify the intended receiver

application for a packet. The five-tuple: source and destination addresses, source and des

tination port numbers, and the transport layer protocol uniquely identifies a connection

between two applications.

1.2 G eneral Internet Forwarding S ystem Architecture
and Operation

The Internet is organized in tiers. At the basic level, there are home and small business

networks tied to local Internet Service Providers (ISP’s). In the middle, small ISP networks,

campus networks, and enterprise networks are connected to major ISP networks. The top

level consists of backbone networks that connect major ISP’s. Routers are found at all

levels, connecting networks within the same tier or between adjacent tiers. A router has

two main functions:

R o u tin g and C ontro l The router exchanges network topology and routing policy infor

mation with peer routers via routing protocols. This information is used to maintain

the routing table, including adding, removing, and updating table entries. The router

also has to enable system management and control functions. Operations required to

perform routing and control functions are relatively infrequent and thus consume only

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bus

Line Card

Line CardLine Card

Routing
Table

Network
Processor

Figure 1.3: A General-purpose Computer as a Router

a small fraction of system resources.

Forw arding The router receives packets from its input ports, looks up the destination IP

addresses in the routing table, and forwards the packets to appropriate output ports.

Forwarding decisions have to be made for every packet that the router receives. The

resources required here are proportional to the traffic volume.

We are interested in the evaluation of the forwarding performance of a router. Through

out this work, we presume that forwarding decisions are based solely on the IP destination

address field of a packet.

An Internet router can be implemented as a general-purpose computer system with

multiple line cards. Indeed, some operating systems can easily be configured to forward

packets. As shown in Fig. 1.3, each card connects the router to a different network. This is

a centralized architecture where one processor is responsible for both forwarding and routing.

The bus bandwidth is shared among all the ports and each packet traverses the bus at least

twice to be forwarded, i.e., from the input port to memory and, once the forwarding decision

is made, from memory to the output port. This solution is adequate and cost-efficient for

most small networks.

Routers at backbone networks have a much heavier workload. As demands keep growing

and advances in transmission technology make gigabit- or even terabit-per-second networks

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Line Card

Line Card

Line Card

Routing
Table

Network
Processor

Switch

Figure 1.4: A High-end Router

possible, centralized routers such as that in Fig. 1.3 are inappropriate, if at all feasible.

To forward over one gigabit per second, a router needs to be able to process at least one

million packets per second. At such speeds, the cost of the router can be reduced by two to

three orders of magnitude if a distributed architecture, instead of a centralized one, is used.

Analytical models have been developed to evaluate the effect of design parameters on the

cost of such systems [5].

The high-end router shown in Fig. 1.4 separates routing and forwarding functions.

The network processor’s job is to run system management software and to maintain a

master routing table. Each line card has its own copy of the routing table, which is now

called a forwarding table. Line cards are full-fledged forwarding engines with resources to

process both input and output traffic. Packets are transferred between line cards through

a switch fabric. A switch, unlike a shared bus, allows multiple packets to be transferred

simultaneously and thus can provide much higher bandwidth. Moreover, to forward at

higher speeds and to cut cost, one current trend in router design is to put multiple network

processing units (NPU’s) on the same line card to forward incoming packets in parallel.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

\

CLASS A

NET ADDR

8-BIT
HOST ADDRESS

CLASSB

NETWORK ADDRESS

16-BIT
HOST ADDRESS

CLASS C
NETWORK ADDRESS

24-BIT
HOST ADDR

2

Figure 1.5: IP Address Classes

1.3 The Bottleneck: Routing Table Lookup

One of the most time-consuming operations in packet forwarding is routing table lookup. On

one hand, this is because of increasing routing table size as the Internet expands. According

to a BGP (Border Gateway Protocol) table size report [6], backbone routing table sizes have

increased from fewer than 20,000 entries in 1994 to nearly 140,000 today. Moreover, the

complexity of Longest Prefix Matching, required by Classless Inter Domain Routing (CIDR)

[7, 8] aggravates the problem. The specifics of longest prefix matching will be discussed in

Section 1.3.1.

1.3.1 The IP A ddressing Scheme

Originally, IP used a class-based addressing scheme where the 32-bit address space was

divided into classes A, B, C, D, and E. Classes D and E were reserved for multicast and

experimental purposes. IP address blocks were allocated to the unicast classes A, B, and C

where a 32-bit address was divided into two parts: the network specifier and the host. Fig.

1.5 shows the ranges of the three address classes. The first bytes of network addresses from

class A, B, and C range from 0 to 127, 128 to 191, and 192 to 223, respectively; therefore,

by the value of an address’s first byte, one can identify to which class it belongs. Class A

networks were for large enterprises; they allowed a network to contain as many as 16 million

hosts. Class B networks were for middle-sized organizations. Class C networks were for

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

small institutions, and allowed no more than 253 hosts. This address scheme worked fine in

the early years of TCP/IP.

As the Internet grew and more middle-sized organizations joined in, the community was

faced with the depletion of class B network addresses. Moreover, the growth of routing

tables became a serious concern when it was anticipated that the tables would become too

large to manage.

CIDR tries to meet both needs by proposing a more flexible addressing scheme. First, it

allows the length of network and host addresses to be variable to eliminate the inefficiency

of allocating address blocks to organizations that are too large for class C yet too small for

class B networks. Second, CIDR allows address aggregation to help manage large routing

tables. In CIDR, an address is presented as a prefix/mask pair where the most significant

bits of the mask are set to 1 to identify the portion of the prefix representing the network

address. These Ts in the mask are contiguous and start from the most significant bit and

the rest of the prefix that corresponds to the 0’s of the mask is the host address. In the

same spirit, an Internet route can be represented as a pair of prefix/prefix length, where

prefix length is the number of l ’s in the mask.

This hierarchical scheme lends itself to route aggregation. For example, if a routing

table has two entries “129.128.25.0/24, port A” and “129.128.0.0/16, port A”, they can be

collapsed into one route, “129.128.0.0/16, port A” . That is, if the address range covered by

a route enclose the ranges by one or more other routes, these routes can be represented by

the first route, which covers the largest range, as long as they point to the same output

port.

1.3.2 R outing Table Lookup

Before CIDR, deciding the output port of an IP packet required two steps:

• extract the network address from the destination address.

• use the network address as the index to a routing table of (network address, output

port) pairs to retrieve the output port.

The deployment of CIDR presented challenges to routing table lookup. For one thing, the

length of the network address could theoretically be any value from 0 to 31. Moreover, there

was no longer the “class” delineation to help find the network address in an IP address. The

route aggregation of CIDR implies that multiple entries in the routing table may match

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the same address. For example, suppose that a routing table contains the two entries

“129.128.25.0/24, port A” and “129.128.0.0/16, port B” and a packet with destination

address “129.128.25.8” arrives. Either route matches this address in that

129.128.25.8 & 255.255.255.0 = 129.128.25.0

for the first route and

129.128.25.8 & 255.255.0.0 = 129.128.0.0

for the second, where represents the bitwise logical AND operation. The two routes

cannot be aggregated because they have different port numbers, although the range covered

by the second route covers that by the first. In this situation, the route lookup process must

select the route that has the longer prefix.

The routing table in Berkeley Unix after the 4.3BSD Reno release manages CIDR

lookups. It is organized in a radix tree structure [9] where routing entries located at leaf

nodes. The bits in the destination address (not necessarily all of them) are compared with

the internal nodes. Based on the result, the algorithm branches left or right until a leaf

node is reached. This may not necessarily mean a successful longest-prefix match. After

comparison of the destination address and the key value in the leaf, a decision will be made

if back-tracking is to occur. This algorithm results in a worst case complexity of 0 (W)

where W is the length of the address in bits; the algorithm requires as many as 32 memory

accesses per address for IPv4 [10].

Much research has been done to speed up the routing table lookup process. Degermark et

al. [11] solve the problem by using a compact complete tree data structure so that the whole

routing table fits in the second-level cache of a general-purpose processor. Waldvogel et al.

[10] use a combined hashing and binary search method to reduce the number of memory

accesses to logziW). This means a worst case of five memory accesses for IPv4. Chiueh

and Pradhan [12] propose a novel caching scheme which uses a portion of the 32-bit IP

address as part of the 32-bit virtual memory address and the rest as “tags” to be compared

with those of a destination address. Nilsson and Karlsson [13] use a trie structure that is

compressed both in path and level and achieves 0(loglog(n)) search depth where n is the

number of entries in the table. Gupta et al. [14] implement the routing table in hardware.

Combined with pipelining, this approach achieves one lookup per memory access time. Shi

and MacGregor [15] evaluate the cache performance of three software lookup algorithms in

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[9, 11, 13] and find that the algorithms described in [11] and [13], owing to their compact

data structures, achieve much higher cache hit ratios than the radix tree approach [9].

1.4 Locality: The Concepts

The performance of routing table lookup became a concern well before the introduction of

CIDR. Feldmeier [16] investigated using a route cache to improve gateway performance. A

route cache stores the most recently used routes in fast memory so that lookups of future

addresses that match cached routes (called cache hits) can be done quickly, as searching the

full routing table and accessing slower memory are avoided. Caching only works well when

sufficient locality exists in system workload. In the case of a router, it is the locality in the

sequence of destination IP addresses that makes the cache useful.

The concept of locality originates from program memory reference behavior studies [17].

Models built to characterize locality in the workload of computer virtual memory systems

are applicable to many other systems. For example, they have been used to capture the

locality in workloads of file systems, local area networks, and Web servers.

Temporal locality refers to the phenomenon that when an item is accessed, it is highly

possible that it will be accessed again in the near future. It describes the recency of repeated

references to the same object. Many workloads exhibit temporal locality. In network traffic,

temporal locality stems from bursts of packets transmitted for a chunk of application data

that is larger than one single packet can carry. This is known as the packet train behavior

of network traffic, observed in both local area networks (LAN’s) [18] and the Internet [19].

The term persistence is used to describe the tendency for an item, once referenced, to

be consecutively referenced [20] and it is a special case of temporal locality.

In the context of program memory references, spatial locality refers to the phenomenon

that when an address is referenced, it is highly likely that neighboring addresses will be

accessed in the near future. This concept, however, is difficult to apply to the network

environment because the notion of “neighboring” is not dear.

Another form of locality is called concentration which means that a small set of items

are referenced in the workload [20]. Concentration is by definition related to the working

set model [17] and a quantitative measure has been developed in [21, 22].

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.5 Contributions

Due to its heterogeneity, complexity, scale, and fast-evolving nature, the Internet is best

studied by models [23]. Besides being able to give a quantitative description of system

features, models can be used to predict behaviors. Models capturing salient features of

system workload can lead to better designs.

One goal of this thesis is to develop models of locality in router workloads. We have

developed a mixed-distribution model, the combination of a Weibull and a Pareto, that ac

curately describes temporal locality in destination address sequences collected at networks

ranging from campus networks to major backbones in the Internet. For the sake of parsi

mony, we later show that the five-parameter model can be substituted with a four-parameter

model by replacing the Weibull by an exponential distribution. Traffic generation is one of

the key challenges in modeling and simulating the Internet [23]. Given a set of parameters,

our model produces synthetic address traces according to the specified temporal locality

and can be used to test cache design alternatives for forwarding systems.

Another important aspect of Internet workloads is their flow-level characteristics. Based

on measurements of network traces, we propose a Zipf-like [24] function to describe the non-

uniform distribution of flow popularity. We incorporate popularity distributions into the

framework of the least-recently-used stack model (LRUSM) in order to generate synthetic

traffic that resembles real-world traffic in both temporal locality and skewed flow popularity

distribution. This model is useful in evaluating the performance of critical algorithms, e.g.,

load balancing design, in parallel forwarding systems.

We investigate the effects of two traffic splitting schemes in parallel forwarding systems:

round-robin and hash-based. Our results show that hash-based methods improve temporal

locality, and that caching can help balance system load. This work also leads to insights

into the design of load balancing schemes for parallel forwarding systems.

We propose a novel load balancing design for parallel forwarding systems. Our observa

tion that flow popularity distributions in Internet traffic are Zipf-like leads to the conclusion

that hash-only traffic splitting schemes are unable to guarantee load balancing. Given the

importance of cache performance, we introduce a new performance metric for load balancing

designs, i.e., adaptation disruption caused by flow shifting. The key idea in our load bal

ancing scheme is to shift only the high-rate flows in Internet traffic when load adaptation is

needed due to load imbalance. High-rate flow scheduling is both effective and efficient and,

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

compared with state-of-the-art load balancing schemes, it minimizes adaptation disruption.

1.6 Thesis Outline

In this thesis, we discuss the characteristics of workloads for Internet forwarding systems.

Recognizing Internet routing table lookup as one of the bottlenecks and load balancing as

critical to parallel forwarding systems, we model the characteristics of IP traffic that are

most relevant to forwarding performance in router workload. This work is organized as

follows:

• Chapter 2 discusses related work in modeling computer program memory reference

behavior, temporal locality modeling for computer network traffic, flow-level traffic

characteristics, and load balancing in parallel forwarding systems. As locality is one

of the most exploited concepts in computing system design, previous work on study

ing its effects is abundant and appears in different areas. These references provide

valuable background information for this thesis. Some of the studies have recognized

the importance of modeling temporal locality in IP address destination addresses and

interesting results have been shown on this particular subject. We will briefly intro

duce these studies in Chapter 2 and will compare them to our work in more depth in

later chapters.

• Chapter 3 presents a model that can describe temporal locality in Internet traffic. We

begin by explaining the motivations behind our work and introducing our methodology.

We adopt the LRU stack model and develop a flexible mixed distribution function that

can accurately describe the temporal locality in IP destination address traces.

• Chapter 4 extends the aggregate traffic model to incorporate flow popularity informa

tion. Each of the two workload models, the LRU stack model and the independent

reference model, has its strengths and weaknesses. The former captures temporal

correlation and the latter characterizes the popularity of distinct addresses. To gen

erate realistic Internet traffic for parallel forwarding system performance evaluation,

we propose an algorithm that is based on the LRU stack model but also considers the

flow popularity distribution.

• Chapter 5 shows the effects of scheduling schemes on temporal locality in a parallel

forwarding system. We study two scheduling methods, round-robin and hashing, which

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have drastically different effects on caching and load balancing.

• Chapter 6, based on work in Internet forwarding system workload characterization,

shows that hash-only load-splitting schemes cannot guarantee load balance In a par

allel system. We propose an efficient adaptive load balancing scheme that, when

activated, adjusts only the mappings of high-rate flows. In addition, the load adap

tation mechanism achieves the desirable goal of low adaptation disruption which is

critical to forwarding system performance. We show trace-driven simulation results

for different adaptation-triggering policies.

• Chapter 7 summarizes this work and discusses directions for future research.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

R elated W ork

In this chapter, we review some program memory reference models and later show how they

are used in modeling temporal locality in Web document access sequences. We discuss work

in measuring locality and using cache to improve system performance in network environ

ments. Flow-level measurement and modeling are important because they lead to better

understanding of the burstiness of Internet traffic, a feature that is critical to forwarding

system performance. Last we discuss traffic-splitting and load balancing schemes in parallel

forwarding systems.

2.1 Program M emory Reference Behavior M odels

Much research has been done to model the program page reference behavior of virtual

memory (VM) [25]. A VM system provides a much larger address space than physical

memory, or main memory. Paging is often used in VM systems, where application programs

are divided into fixed-size pages to fit into page frames of the same size in the main memory.

There is no need to load whole programs at once into physical memory; the requirement is

that the page(s) that contains the necessary code and data has to be in memory before a

program can proceed. Loading pages from external storage into main memory is a costly

operation and thus its frequency is critical to system performance. Therefore, page reference

sequences of computer programs are important to model.

Since there are usually fewer page frames than required by application programs, most of

the time when a page is to be loaded from the disk, a page in memory has to be swapped out

to make room. A replacement policy decides which page is to be replaced. One well-known

policy is least recently used (LRU) which states that the page that is least recently used

should be swapped out. LRU takes advantage of locality in page reference sequences and

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

assumes that recently-referenced pages are going to be accessed in the near future and thus

should be kept in the main memory.

2 .1 .1 T h e W orking Set M odel

The working set (WS) model [26, 27, 17] was developed to model page reference behavior.

A program’s working set W(t,T) at time t is the set of distinct pages referenced in the time

interval [t-T+1, t]. The parameter T is called the working set window size. The working-set

principle of memory management states that a program may use a processor only if its WS

is in main memory, and that no working-set page of an active program may be considered for

removal from main memory. Because of the locality in program memory reference sequences,

the WS model can predict future memory demands based on the past reference pattern.

Given the set of possible pages that a program can access, N — {1, 2,.... n}, the sub

ject of the WS model is a page reference string, a sequence of the pages accessed by the

program during its execution, p = r \, r 2, rt ,..., where rt G N is the page referenced

at the discrete time t. Denning and Schwartz [17] derived several relations between the

average-working-set-size function, the missing-page-rate function, and the interreference-

interval density function. The working-set size w(t, T) is the number of pages in W(t ,T) ,

i.e.,

denote the working-set size averaged over the first k references; the average working-set size

is defined as

The missing-page-rate m(T) is defined as the number of pages per unit time returning to

the working set. m(T) reflects the probability that a new page is referenced given that the

current window size is T. The overall interreference density function, f (x) , is defined as

w(t ,T) = \W (t,T)\. (2 .1)

Let

s(T) = lim sk(T).

n

f (x) = Ai/i(x)

where /, (x) is the interreference density function of page i and A * is the frequency of refer

ences to page i. Analysis shows that

m(T) = s(T + 1) - s(T)

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and

f {T) = m (T - 1) - m { T) .

That is, /(T) is the negative slope of m(T) , which is the slope of s(T).

One important assumption in WS is that the stochastic mechanism that generates the

page reference string is stationary, i.e., independent of the absolute time origin. This is

largely true as long as the program does not transit to new sets of pages (called localities).

Unfortunately, computer programs usually exhibit phase-transition behavior, jumping from

one locality to another during execution. This assumption restricts the results of the WS

analysis, which is the motivation for characterizing reference strings using a macro inter

phase model and a micro intra-phase model [28]. Nevertheless, the limitation of WS analysis

does not prevent it from being a useful starting point in modeling program memory reference

behavior. Moreover, in the contexts of computer network traffic and Web document reference

sequences, the stationarity assumption seems to hold, making the WS analysis applicable.

2.1.2 The Independent Reference Model

In the Independent Reference Model (IRM) [29], a page reference string, which is simply the

page numbers visited by a program, R j, R 2 , R t , is treated as a sequence of independent

random variables with a common stationary reference distribution:

Pr[Rt = Ai] = pi, 1 < i < N, t > 0

where A\ is the ith page out of N unique pages.

The IRM captures the non-uniform page reference behavior of the programs. However,

it does not describe the temporal correlation between successive references to the same page.

Thus the IRM is inadequate to characterize temporal locality.

Zipf’s law [24] is the observation tha t the frequency of occurrence of some event (P) as

a function of rank (R) often obeys the power-1 aw function

P{R) ~ l / R a (2.2)

with the exponent a close to 1.

A similar phenomenon has been observed in the studies of both program memory refer

ence sequences [30, 20] and Web server workload [31, 32]. Zipf-like popularity distributions

have been combined with the IRM to produce synthetic workloads [33].

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.3 T h e Least Recently U se d Stack Model (LRUSM)

The LRUSM [34, 28, 35] is another program behavior model. Consider a stack as a one

dimensional array containing all possible addresses, each of them a single array element.

When an address is referenced, the array (stack) index of the address is output as the stack

distance. Note that we use the equivalent term reuse distance in the rest of this thesis. All

the addresses above this value are moved down by 1 position and the address just referenced

is put at position 0 of the array, that is, at the top of the stack. This is equivalent to

using the LRU model to update the stack, hence the name “LRU Stack.” In the LRUSM,

each entry in the address trace produces a stack distance. Corresponding to an address

trace, then, there is a sequence of stack distances, which is called the distance string of the

trace. As an example, a distance string can look like “38,1,0,143,1,162,1,0,40,97,1,150,

63, 311,80,312,1, 3,0,313,127”. The “0”s in the string indicate that the address at the

top of the stack, which was just referenced, is referenced again; “l ”s mean that the address

referenced just prior to the last reference (now at position 1 of the stack) is referenced again,

and so on.

The LRUSM captures temporal locality in that the probability of a stack distance of n

represents how likely an address just referenced is to be accessed again n distinct addresses

away in the future. This is not exactly the definition of temporal locality because the

number of distinct addresses is not equivalent to the notion of time. As a result, according

to the LRUSM, reference strings can have better temporal locality simply because there

are fewer distinct addresses. Using the number of distinct addresses to represent time

has utilitarian advantage in that LRUSM adapts itself conveniently to cache performance

evaluation; recency in real time does not necessarily lead to good cache performance, but

a small number of distinct addresses does. The LRUSM treats all addresses the same and

thus is unable to characterize non-uniform accesses to the individual addresses.

2.1.4 Synthetic Trace M odel for Cache Simulations

Thiebaut et al. [36] developed a synthetic memory reference model for cache simulations.

Different from earlier models, this one targets memory addresses instead of page reference

sequences. A cache line is assumed to contain only one word. It is found that after an initial

linear segment, the number of unique addresses observed at the nth address reference, u(n),

can be expressed by the following power law function:

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

80

A =l, theta=l
m I A=10, theta=l

A=10, theta=4
A=20, theta=4

40

Figure 2.1: Some Hyperbolic Curves

u{n) — A n 1/ 9, A > 0,0 > 1 (2.3)

where A is a constant and 9 is interpreted as a measurement of spatial locality. The larger

the value of 9, the fewer unique addresses are visited during a certain period of time. The

curve of u(n) is called the footprint curve of the program. Fig. 2.1 shows some examples of

hyperbolic curves. The probability of introducing a new address into the trace at reference

n, or the cache miss rate when the cache size is x (x = u(n)), is

Pr\x) = { (A9/ ^ 2 ’ l \ Ccc (2.4)
I 1 cce , a o c

where Cc = Ae^ e~1̂ is called the Critical Cache, the inflection point of the curve. The initial

phase of an empirical footprint curve is linear since the addresses tend to differ from each

other and there are no re-appearances. In this forced mode, i.e., when x < Cc, the number

of unique addresses in the trace equals the number of addresses. As more references are

made, fewer addresses are new and this forms the hyperbolic part of the curve. Eq. 2.4

differs from the formula in the original article when x < Cc. This change ensures that the

function is smooth at x = Cc and when x = 0, Pr[x] = 1.

To generate a synthetic trace, the inverse of the function in Eq. 2.4 is used to generate

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LRU stack indexes. This inverse is:

. ! / < ! / » , , 5 1

(1 - V)6Cc , V > 1/8 1 ' '

where U (representing Pr[x] in Eq. 2.4) is uniformly distributed and is in the range of (0,1).

We will discuss the algorithm in more detail in Section 3.3.

Although satisfactory cache simulation results are shown in [36], this model does not

adequately characterize temporal locality in destination IP address traces. An initial ex

amination of this phenomenon and an ad hoc solution can be found in [37]. In the case of

IP destination address traces, we show empirically in the next chapter that the footprint

curves are the natural outcome of our reuse-distance based trace generation method.

2.2 L ocality in N etw ork E nvironm ents

Locality has been observed in network environments, from LAN to WAN, and at all protocol

layers of the Internet, e.g., the network layer, the transport layer, the application layer, etc.

Significant locality makes caching appealing in the design of both host and forwarding

systems, especially as the performance gap between microprocessors and main memory

continues to widen [38]. In this section, we discuss work in measuring, characterizing, and

exploiting network locality.

2.2.1 Locality in Packet N etw orks

The study in [18] shows that temporal locality exists in LAN traffic. Packets travel in

trains, where a train is a burst of packets from the same source and to the same destination.

The arrival of a packet indicates that there is a high probability that the next packet is to

the same destination. At the same time, a sequence of packets heading in one direction is

often followed by a second sequence for the reverse direction. This regularity is due to the

request-response nature of network protocols. Based on these observations, destination and

source address caches can be effective in improving the performance of network devices.

Feldmeier [16] studies a 24-hour trace collected at the router connecting the MIT campus

to the Internet. It shows that IP routing table lookup can benefit from even simple caches

with a few lines of “destination address, output port” pairs. The destination address reuse

distance density curve is analyzed and it is concluded that an LRU cache should be effective

for reducing the number of routing table references.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Jain [39] examines destination address traces collected in an inter-connected LAN envi

ronment and demonstrates the existence of temporal locality. It is found that two different

types of traffic, interactive and non-interactive show different locality behaviors. The locality

of the non-interactive traffic is better captured by an LRU cache according to the monoton-

ically decreasing stack distance distribution function. But the stack distance density curve

of the interactive traffic has a hump and to capture this characteristic, the requirement for

the cache is to have enough entries.

Gulati et al. [21, 22] measure four aspects of locality in LAN traffic: persistence, address

reuse, concentration, and reference density. Persistence refers to the tendency of an address,

once referenced, to be referenced again and again, consecutively. Address reuse is defined

as the tendency for the address used in one network packet to reappear as the destination

address of a future packet. Address reuse is a more general measure of temporal locality

than persistence. Based on the WS model [17], a measure of concentration C t is developed.

T - W t
Ct = T > 1 (2-6)

where T is the WS window size and Wt is the WS size. Reference density is defined as the

tendency for a small number of hosts to account for a large proportion of the total network

traffic. The measurements show that persistence is low but there is significant address reuse,

concentration, and reference density in the traces.

Mogul [40] investigates network locality at a finer grain, the process level. The motivating

observation is that the locality visible at the host-address level actually arises because of per-

process network locality. Traces collected in 10 Mbps LAN environments are analyzed. It

is found that around 75 per cent of the packets arriving at a host have the same destination

ports, and thus the same destination processes as their predecessors. Operating systems

can cache recent packet header and target process information to accelerate the search for

receiver processes for incoming packets. Process level locality is also observed in UDP

traffic in [41] and an improved one-behind cache is used to improve system performance by

recording the last process that received a UDP segment.

One question is what to cache in exploiting temporal locality in packet destination ad

dress sequences to speed up routing table lookup. Certainly, caching full addresses can

achieve no better a hit ratio than caching the network parts of the addresses or network

ID’s. The latter, however, requires identifying the network part of an IP packet before the

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cache lookup. This identification process was non-trivial even in the days when the Internet

used class-based addressing [16]. With CIDR, searching for the longest prefix that matches

an address is the major part of route lookup, the process we try to avoid with caching. In

this thesis, we consider only caching of full IP addresses.

Given the numerous evidences of the presence of locality in networking environments, one

should not take it for granted. McKeimey [42] analyzes and compares TCP protocol control

block (PCB) lookup performance of algorithms proposed in [43, 41], a move-to-front linked

list, and a hash-based scheme. The offered workload is that of an on-line banking system

[44] and is marked by the lack of locality observed in other work in networking environments.

Under this workload and some other assumptions, the work in [42] predicts that both the

algorithm in [41] and the move-to-front linked list achieve significant improvement over

the single-line caching scheme in [43]. Moreover, the hashing scheme achieves orders of

magnitude better performance.

2.2.2 Locality in Web Server Workloads

In [45], the popularity-based IRM is found to be inadequate to capture the temporal locality

in the reference strings obtained from Web server access logs. The LRUSM is used instead

and it is found that the marginal distribution of stack distance is best fit by the lognormal

distribution. A similar approach is taken in [46] to generate synthetic workload for Web

servers.

Arlitt and Williamson [47] emphasize that temporal locality is orthogonal to concentra

tion in that concentration refers to the aggregate reference counts for documents regardless

of the reference order, while temporal locality refers to the relative order in which docu

ments are referenced, regardless of their reference counts. Here, the LRUSM is used to

capture temporal locality. The request arrival processes of the aggregate traffic and some

frequently referenced documents are investigated and it is found that the former is definitely

not Poisson but the latter is.

It is pointed out in [33] that the main drawback of the LRUSM is its inability to distin

guish hot set (a set of most popular documents) effects from short-term temporal locality,

or short-term document reference correlation. That is, a hot document may cause many

references near the top of the stack, even if there is no correlation between the probability

of referencing a particular document and the time since the document was last referenced.

The IRM is used to generate synthetic reference sequences on a day-to-day basis. It is found

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that short-term temporal locality is important in Web workload characterization and that

the simple IRM is incapable of capturing this locality.

In [48], the sources of Web document reference temporal locality are identified as short

term temporal correlation and long-term popularity. The model proposed is a combined

popularity distribution described by a power-law, and an inter-request time distribution of

equally popular documents is described by another power-law. An empirical relationship is

established between the two. Based on this work, [49] develops the GreedyDual* Web cache

replacement algorithm which takes into account both long-term popularity and short-term

temporal locality characteristics in Web server workloads.

Fonseca et al. [50] give a formal definition of temporal locality which helps to differentiate

the two sources of locality observed in Web reference sequences: document popularity and

temporal correlation. The authors further introduce the entrophy [51] of popularity and the

coefficient of variation of inter-arrival time as the measurements of the two aspects. These

definitions are used in studying the transforms Web reference streams experience as they

pass through the Internet. The major findings are that while popularity imbalance can rise

and fall, temporal correlation usually declines as the result of transformations.

Work in Web traffic modeling and performance evaluation has shown that both document

popularity and reuse-distance distributions are important characteristics of Web traffic.

These can be captured by the ERM and LRUSM, respectively. Performance studies using

either model tend to emphasize the importance of one feature of the workload, ignoring the

other. It would be worthwhile to develop a unified model that combines the strength of the

two models. Such a model would be useful in generating representative synthetic traffic.

2.2.3 Synthetic IP Destination A ddress Generation

Aida and Abe [52, 53] study LRU stack position reference probability under the stationarity

assumption of the inverse stack growth function (ISGF), f (t) , which is the number of distinct

addresses accessed during a time period. Accordingly, the stack growth function (SGF) is

expressed as g = f ~ l ■

By assuming that the ISGF depends only on the number of accesses or WS window

size (the stationary assumption), the authors derive the probability function of the stack

distance in the LRUSM. Therefore, the proposed method captures temporal locality.

The probability for the next address to be the same as the kth most recently referenced

distinct address, a*, is derived as:

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ak — { f (g (k - 1) + 1) - (k - 1)} - {f{g(k) + 1) - k). (2.7)

The ISGF is in a form similar to the empirical power law footprint function in [36]:

f (t) ^ r “ (r » 1), (2 .8)

where a is a constant. Unlike the previous work, this is not directly used to generate

synthetic traces. With Eq. 2.8, ak can be expressed as

The LRUSM is then used in the synthetic IP address generation algorithm.

There is an inherent relationship between the LRUSM and the WS when we assume that

the WS size w is dependent only on the window size T (see Eq. 2.1). The stack size equals

the former and the number of accessed addresses is the latter. As a result, the synthetic

address sequences generated using LRUSM resemble real world address sequences not only

in temporal locality, but also in working set behavior.

It is observed that Internet addresses are not distributed uniformly [54]; the frequencies

of addresses are highly skewed and follow Zipf’s law. The proposed address generation

scheme in [52, 53], although it captures the WS behavior of Internet address sequences,

cannot differentiate address distribution. This is because in the LRUSM, addresses in the

stack are all treated the same way.

Aida and Abe [54] extend the proposed algorithm in [52, 53] to accommodate the skewed

address distribution. A formula similar to Eq. 2.7 is used to generate stack distances. In the

medium/long time scale, i.e., when a generated stack distance is large, the LRUSM is used

to produce the output address. When the generated number is less than a threshold value,

however, another random number, n, is produced. The meaning of n is that n addresses

ago the to-be-generated address appeared in the address sequence. The probability, S„, is

expressed as

The synthetic address traces generated using the extended algorithm show WS behavior

similar to real world traces. At the same time, they exhibit address distributions that follow

ak = {((k - l) 1/,a + 1)Q - (fc - 1)} - {(k1̂ + l) a - *}.

a„ = { f in) - f (n - 1))} - { f (n + 1) - /(n)} . (2.9)

Zipf’s law.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2*3 Flow -level Traffic C h arac teris tics

The notion of a network flow is valuable in describing groups of packets with some common

properties traveling in the same direction. For example, a packet train [18] can be seen

as a network flow when defined as a burst of packets from the same source to the same

destination. In the Internet, some packet header fields can be selected to identify a flow, e.g.,

the five-tuple { source and destination addresses, source and destination ports, protocol}

identifies a connection between two communicating processes. Claffy et al. [55] discuss

a parameterizable methodology for flow profiling. The parameters include flow direction,

single/double endpoint(s), endpoint granularity and functional layer.

It is worth mentioning that many flow definitions are timeout-based [18, 55, 56, 57]: a

flow is considered active when the inter-arrival time between two successive packets does

not exceed a pre-defined timeout value; and is inactive otherwise. In this work, however, we

identify flows simply by the common destination address of the packets and the inter-arrival

time is not considered.

Numerous studies have focused on characterizing aggregate network traffic, where all the

simultaneously active packet transmissions between network hosts are lumped together as

a single flow. Recent studies have found that aggregate network traffic exhibits fractal or

self-similar scaling behavior, i.e., the arrival count process of the traffic looks statistically

similar on all time scales [58]. Self-similar traffic are long range dependent (LRD), meaning

that the auto-correlation function has a long tail which decays slower than exponentially

[59]. Erramilli et al. [60] did queueing experiments and found that LRD in packet traffic

has significant performance impact.

Sarvotham et al. [61] examine Internet traffic at the connection level. It is found that the

burstiness of Internet traffic is not due to a large number of flows transmitting at the same

time, as assumed in some aggregate Internet traffic models [62, 63], but rather is caused

by a few large files transmitted over high-bandwidth links. These connections contribute to

alpha traffic and the rest create beta traffic. Methods to separate alpha and beta traffic are

discussed in [64].

Brownlee and Claffy [65] study the flow patterns of measured Internet traffic, and points

out that network streams can be classified by both size (elephants and mice) and lifetime

(tortoises and dragonflies). Tortoises are flows lasting more than 15 minutes, which con

tribute to a small portion of the number of flows (one or two percent), but carry fifty to

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sixty percent of the total traffic.

2.4 L oad B alancing for W eb Servers

The rapid growth of the Internet manifests itself in, among others, the exponential growth

in the request rate to some popular Web sites. To cope with the problem of Web server over

load, a collection of Web servers are usually used to service Web requests. Like traditional

parallel and distributed computing systems, potentially, a cluster of Web servers provides

scalability, but as a system, they can only deliver high performance when the workloads are

distributed in a balanced manner. In this section, we will discuss load balancing designs in

some multi-server Web systems.

2 .4 .1 DNS-based S c h e d u lin g

One way to provide high performance Web service is via replication, i.e., to use multiple

mirrored servers with duplicate information to serve the requests. These servers coordinate

with each other to create a distributed Webserver system [66]. The servers share the same

domain name but each has its unique IP address. A local domain name system (DNS)

server responds to DNS requests from Web clients with the IP addresses of the individual

Web servers. Before sending a hypertext transfer protocol (HTTP) request to a Web server,

a client queries the DNS for the server’s IP address. By replying with the different IP

addresses of the servers, the DNS distributes the workload among multiple Web servers.

The ability of the DNS server to distribute workload in a balanced manner plays a critical

role in the performance, scalability, and fault-tolerance of the distributed system. Noticing

that the basic round-robin scheme is ineffective for load balancing under skewed WWW

request distribution in such a system, Colajanni et al. [67] proposed enhanced round robin

schemes to improve distributed Web-server system performance, taking advantage of request

statistics at the client side and load Information at the server side. One of the algorithms is

called two-tier round robin (RR2) which divides domains into two classes: the normal class

and the hot class. Based on the domains where the requests come from, RR2 assigns WWW

servers in round robin fashion within each class, independently. This algorithm, combined

with single-threshold server workload indicators (called alarms), is simple to implement and

shown to be able to achieve much better load balancing result than simple RR.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4.2 Hash-based Routing

Proxy Web servers, also called shared Web caches (these are different from conventional

CPU caches), are an effective way to reduce Web request latency in an organization with

internal high-speed network connections, but only low-bandwidth or congested links to the

Internet. Usually, an organization employs a collection of shared Web caches instead of just

one. The main advantages of using multiple caches are elimination of a potential single

point of failure, scalability, and information sharing.

Two popular schemes are used to distribute WWW documents among the caches: the

Internet caching protocol (ICP) [68, 69] and the cache array routing protocol (CARP)

[70, 71, 72]. When a request to an ICP cache fails, the cache queries other caches for the

object and copies it if found. Otherwise, the object has to be retrieved from its original

server. Different servers can cache a same object. CARP is based on an extension [71] to

the robust hash routing in [70], which allows caches with different processing power and

storage capacity.

Noting that it is inefficient to have multiple servers process identical requests [70] pro

poses the highest random weight (HRW) mapping. The name of the requested object is

combined with the IP addresses of the servers to produce random values, called weights,

one for each server. The request is forwarded to the server with the highest weight. This

approach improves object “hit ratio” at the servers, and thus reduces response time.

HRW is basically a hash-based scheduler which, in contrast to round robin, naturally

partitions objects among servers and thus improves object hit ratio at servers and reduces

response time. The novelty of this scheme, however, is to incorporate server addresses in

the hash keys and to select the server with the highest weight, which allows the algorithm

to achieve minimum disruption. Whenever a server comes up or goes down, the number of

objects that are remapped to another server is kept as small as possible. This is important

to provide fault tolerance in case of server failures, and to ease upgrades and reconfiguration.

Compared with simple hashing, the extra cost of HRW, due to minimum disruption, includes

a weight calculation and comparison for every request.

Another goal of HRW is to achieve load balancing. The problem, present in all hash-

based load distribution schemes, is caused by non-uniform distribution of object popularity,

causing uneven workloads for the servers. Suppose that there are m servers and K distinct

objects. The popularity of object i Is p*. The sum of the popularities of the objects mapped

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to server i {1 < i < m) is g*, which is defined as the server’s popularity. It is proved in [70]

that

CV[qf = C ^ l) C V [p f (2.10)

where CV[q] is the coefficient of variation of server popularity and CV\p] is the coefficient

of variation of object popularity. When the variance of object popularity is finite,

lim CV[q] = 0. (2.11)
K - * oo

Assume that, regardless of the object and server, each request represents the same

amount of work. Thus the workload for each server is proportional to its popularity. It

is further proved that, as the number of objects increases, the workloads on the servers

become more balanced.

In the original HRW, the number of requests are divided evenly among the servers. Ross

[71] recognizes that Web caches are more likely to be different in storage and processing

capabilities and proposes an extension to HRW. The idea is to assign multipliers to cache

servers to scale the return values of HRW. The scaled values are used as weights to select

the destination cache servers. A recursive algorithm is provided to calculate the multipliers

such that the object requests are divided among the servers according to a pre-defined set

of proportions.

2.5 Packet Scheduling and Load Balancing in Parallel
Forwarding System s

As mentioned in Section 1.2, one trend in router design to cope with the growth of the

bandwidth demand is to have a number of network processors (NP’s) working in parallel to

increase the system throughput. A major aspect of parallel processing of network processors

is their ability to scale to higher data rates of the future.

In this thesis, because our main concern is the forwarding performance of routers, we

describe parallel forwarding systems composed of multiple forwarding engines (FE’s). The

FE’s are processors engaged in per-packet processing, e.g., routing table lookup, header

checksum calculation, etc. Fig. 2.2 shows a system with four FE’s.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Forwarding Engines:

Scheduler Input
Traffic

Queues

FE 1 ---------------
cache

FE 2

FE 3

FE 4

cache

cache

cache

Figure 2.2: A Multi-processor Forwarding System

2.5.1 Basic Scheduling Schemes

The scheduler is responsible for dispatching the next packet in the input queue to an FE

where it is processed, i.e., its output port is determined. The various schemes for dispatching

packets to FE’s have differing performance. There are two popular ways that packets are

distributed to FE’s:

R o u nd-R ob in (R R) Packets are distributed to FE’s in a round-robin fashion.

H ash-based A portion of the incoming packet is used as a hash key and an index is

produced based on this information. The index is used to determine the FE to which

this packet should be sent.

RR is simple and efficient. Moreover, it distributes packets evenly among the FE’s; load

balancing is achieved naturally. This is important because load balancing mechanisms are

usually needed in parallel systems to achieve maximum throughput. There are disadvan

tages, though. First, RR does not necessarily preserve packet ordering in a connection.

Packet reordering can be detrimental to end-to-end protocol performance [73, 74]. Second,

RR reduces locality in the workload of the FE compared to that in the aggregate traffic [75].

The hash-based scheme does not have the shortcomings of RR. Usually, packet header

fields identifying a connection are used as hash keys by the scheduler, which ensures that

packets from the same connection are delivered to the same FE in order. Hash-scheduling

is known to improve temporal locality in the scheduled traffic [70, 75]. On the other hand,

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

depending on the traffic characteristics, hashing could lead to serious load imbalance in a

parallel system.

2 .5 .2 I n t e r n e t L in k L o a d B a la n c in g S c h e m e s

Cao et al. [76] classify hash-based traffic-splitting schemes into two categories: direct and

table-based hashing. Direct hashing schemes use fields in a packet’s header as a hash key

and feed them to a hash function. The result is the index of the outgoing link for the packet.

Direct hashing is simple, but has some serious limitations. Among them is the difficulty of

load distribution tuning. A table-based hashing scheme adds a mapping stage after splitting

the incoming traffic stream into a number of bins. A bin number is used as the index to

a table to produce the index of the outgoing link. Table entries can be changed to reflect

bin-to-link mapping and thus achieve load tuning.

The ability of a direct hashing scheme to balance workload depends on its abilities to pro

duce uniformly distributed random numbers. Cao et al. [76] evaluate five schemes: Hashing

of Destination Address, Hashing Using XOR Folding of Destination Address, Hashing Using

XOR Folding of Source and Destination Addresses, Internet Checksum, and CRC16. The

coefficient of variation (CV) [77] of the number of packets forwarded onto each output link is

used as the measure of load balance. The results show that CRC16, the 16-bit CRC (Cyclic

Redundancy Code) checksum over the 5-tuple (source and destination addresses, source

and destination transport layer ports, and transport layer protocol number), produces more

uniformly distributed values and achieves better load balance than the other schemes.

Simple hashing alone, however, is not enough to achieve load balancing. The randomness

of packet header fields can be exploited by hashing schemes to distribute the number of flows

evenly across the outgoing links, but a small number of large flows can easily cause load

imbalance at the packet or byte level. Simulations in [76] show that table-based hashing that

dynamically distributes traffic by monitoring queue length can achieve better load balancing

than direct hashing or simple table-based traffic-splitting methods.

Jo et al. [78] propose dynamic hashing with flow volume (DHFV) which enhances a table-

based hashing algorithm such as [76]. The idea is to distribute very large flows/bins during

the time of load imbalance from more loaded links to less loaded ones. This approach relies

on the temporal locality in Internet traffic to identify flows of large volumes. Simulation

results show that this approach is very effective.

On the other hand, no extensive workload characterization has been done in [78] to

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

justify the scheme. The question of why hashing cannot balance workload, even in the long

run, is not answered. The effect of shifting different flows remains to be studied.

2 .5 .3 L o a d B a la n c in g fo r P a r a l l e l F o rw a rd in g S y s te m s

Dittman and Herkersdorf [79] describe a load balancer for parallel forwarding systems.

A two-step table-based hashing scheme is used to split traffic. Packet header fields that

uniquely identify a flow are used as a hash key and fed to a hash function. In the case of

TCP or UDP packets, these fields include source and destination addresses, port numbers,

and the protocol type. The hash function return value is used as an index to a look-up

memory to derive the processor to which the packet should be forwarded. Flows that yield

the same hash value are called a flow bundle and are associated with one processor.

In [79] three techniques are used to achieve load balancing. First, a time stamp is kept

and updated at every packet arrival for each flow bundle. Before the update, however, this

time stamp is compared with the current system time. If the difference is larger than a

pre-configured value, the flow bundle is assigned to the processor that is currently least-

loaded. Second, flow reassignment monitors the states of the input queues of the processors.

Flow bundles are redirected from their current over-loaded processor to the processor with

the fewest packets in its queue. Third, excessive flow bundles are detected and repeatedly

assigned to the least-loaded processors. This is called flow spraying.

Kencl and Boudec [80] and Kencl [81] propose a scheduling algorithm for parallel IP

packet forwarding. Their scheme is based on the HRW developed in [70] and extended in

[71]. It is noticed that although HRW provides load balancing over the request object space,

load imbalance still occurs due to uneven popularities of the individual objects.

An adaptive scheme is introduced to adjust loads among the FE’s to prevent over

utilization of a single processor when the system is under-utilized or under-utilization of a

single processor when the system is over-utilized. A second goal is to minimize the amount

of packet-to-FE remappings in realizing the adaptive scheduling scheme.

The algorithm includes two parts: the triggering policy and the adaptation. Periodically,

the utilization of the system is calculated and compared to a pair of thresholds to determine

if the system is under or over-utilized. In either condition, the adaptation is invoked which

adjusts the weights (called multipliers in [71]) for the FE ’s to affect load distribution. In

other words, the algorithm treats over or under-load conditions as changes in the processing

power of the FE’s. It is shown that the adaptation algorithm can keep the minimal disruption

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

property of HRW.

Although Kencl and Boudec [80] recognize the inability of HRW to provide load balanc

ing, their reasoning is not complete. It is true that during a short term period, the different

frequencies of individual objects can affect load balancing. But in the long term, the effect

may be averaged out; HRW cannot provide load balancing not because the uneven popular

ities of the objects, but because the popularity distribution, e.g., the Zipf-like distribution,

may not have a finite variance.

The adaptation algorithm treats different IP traffic flows in the same way, although it

is realized that their popularities are not the same. It is true that HRW provides minimum

disruption in cases when servers go up and down. Adaptation by adjusting weights, however,

does not take flow popularity into consideration and thus may not be able to achieve this

goal.

2.6 Summary

Program memory reference behavior models are relevant to our work. Memory address

sequences and destination IP address sequences are similar in many aspects. The addresses

can be of the same length, i.e., both 32 bits. Both sequences exhibit temporal locality.

In local network environments, many studies have shown that locality exists a t different

protocol levels and have proposed caching schemes in network devices, e.g., routers, and

network host systems, to exploit locality in their workloads to improve performance.

The IRM and LRUSM have been widely used in modeling Web traffic where the IRM cap

tures the popularity of documents and the LRUSM characterizes temporal locality. Different

caching strategies have been proposed to take advantage of both in Web server systems. We

will show in later chapters that both features exist in IP destination address sequences.

We have also discussed work on flow and connection level modeling of Internet traffic.

Understanding the burstiness of the Internet traffic at the connection level is important.

As one application, it explains load-imbalance in parallel forwarding systems. Finally, we

compared hash-based traffic-splitting schemes used in these systems.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Locality M odels for Aggregate
Internet Traffic

In this chapter, we first discuss the motivation behind modeling locality in IP destination

address sequences. On the one hand, many studies have shown that locality has a significant

impact on the performance of key forwarding algorithms [13, 12, 82, 83, 84]. On the other

hand, locality in IP traffic is largely ignored in network system testing and performance

evaluation practices. We believe that this discrepancy stems from the lack of accurate

models for IP traffic locality and effective synthetic trace generation methods.

Next, we present our methodology. Our studies are based on the measurement of real-

world data. We discuss the IP packet header traces collected from a wide range of networks

that are used in our experiments. These networks differ from each other in traffic volume

and location in the global Internet hierarchy; yet the temporal locality in their traffic can be

captured by a common simple model. Trace-driven simulations for one of the key forwarding

algorithms, the IP routing table lookup process, are used to validate the models developed.

We then describe models used to capture locality properties of aggregate Internet traffic,

which include the footprint model and the reuse distance model. We show that the two

models measure different aspects of locality and differ in capability. The footprint model

captures concentration, and was initially developed for cache miss ratio measurement; the

LRU cache miss ratio is derived from the average working set size function. The reuse

distance model, on the other hand, captures both temporal locality and concentration. We

develop a mixed function that accurately describes reuse distance distributions in a wide

range of network environments.

Our synthetic trace generation method is directly derived from the reuse distance model

and has proved, via routing table lookup simulations, to be able to generate representative

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

router workloads.

3.1 M otivation

One goal of this thesis is to quantify locality in IP destination address sequences. Given

sample traces, our model can measure the quantitative difference in locality between them.

Our second goal is to generate representative workloads for simulation and forwarding system

benchmarking and testing. Synthetic workload models are highly desirable for simulation

studies because their flexibility allows not only representative but also projected workload to

be generated. Compared with real-world workloads, a synthetic workload is not necessarily

less typical or accurate; moreover, for systems in the design phase, real-world workloads

may not even exist. The two goals are achieved by a single generative model.

Temporal locality in Internet traffic can have a significant impact on forwarding perfor

mance. For example, the experiments on LC-trie routing table lookup algorithm [13] report

that lookups with the actual traffic and routing table from the Finnish University and Re

search Network (FUNET) are almost twice as fast as those with random permutation of

routing table entries, although the FUNET routing table is the largest among the routing

tables used in the experiments. The authors explain this as due to the locality in the real

world traffic.

Recently, network processors have emerged as a flexible technology to accommodate the

exponential growth of the Internet [85] and have gained widespread application. Network

processors, different from general-purpose processors, specialize in packet processing tasks

and I/O . As many vendors now supply network processor products, e.g., the PowerNP™

from IBM and the IXP series network processors from Intel, it has become important to

measure and compare the performance of these systems. Locality in IP destination address

sequences, although critical to forwarding performance, is not adequately considered or often

ignored in network equipment testing systems and network processor benchmarks.

Some router testing systems available today simply generate packets in a round-robin

fashion [86, 87] with destination addresses based on the routes in the device under test. In

each round, one packet is generated with the destination address for a route in the pool. The

next packet’s destination address corresponds to the next route. Locality characteristics in

real world traffic, which will be the real workload for the router, are completely ignored. In

this generated traffic, locality depends on the ordering of the entries in the routing table!

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Although the effect of locality has long been recognized in computer benchmarking [38]

and incorporated into performance models of general micro-processors [88]; there seems

to be little consideration of locality in the evaluation of network devices where synthetic

instead of real-world workload is popular. For example, in [89], synthetic traces in the

benchmark consist of a fixed number of distinct destination IP addresses. On the other hand,

benchmarks that do consider temporal locality, e.g., [90], have to turn to real-world traces

and, as the destination addresses in these traces are often anonymized, special treatment

has to be used to preserve temporal locality.

In brief, our work is driven by the Increasing need to measure the forwarding performance

of network devices and the lack of use of locality in current benchmarking and simulation

practices.

3.2 M ethodology

To validate our locality models, we compare the locality properties of synthetic traces and

real-world traces. Given a real-world trace, wre extract the model parameters from the data

and feed them to our synthetic trace generation program. This produces a synthetic trace

that resembles the real world trace in the characteristics captured by the model. Then we

compare the plots of the two traces visually. In addition, we use trace-driven application-

level simulation to validate models. The radix-tree routing table lookup code extracted from

the FreeBSD [91] kernel is run on the SimpleScalar [92] platform. The general cache miss

ratio results of the program with synthetic and the real-world traces are compared with

each other. This can only be done when we have the routing table for the router where the

trace was gathered.

Table 3.1: Traces Used in Experiments
Trace Length (entries) Description
UofA 1,000,000 A packet header trace recorded at the gateway

connecting the University of Alberta campus net
work to the Internet backbone. For this trace, the
routing table at the gateway is also available.

FUNET 100,000 A destination address trace which is used in eval
uating the LC-trie routing table lookup algorithm
in [13] from FUNET.

LDestIP 31,518,464 A destination address trace from the PMA (Pas
sive Measurement and Analysis) research project
at NLANR [93].

During model-building, we have experimented with the Internet header traces listed in

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.1. To verify the models, we used multiple traces from the following two sets available

from NLANR:

A bilene-I Two-hour contiguous bidirectional packet header traces collected from two OC48c

Packet-over-SONET links at the Indianapolis router node (IPLS). We used all 48 traces from

this set. The Abilene-I set contains traces measured at two router ports. There are 4 groups:

CLEV-0, CLEV-1, KSCY-0, KSCY-1, each containing 12 traces.

A uckland-IV A 45-day continuous trace collected at the University of Auckland Internet

access link by the Waikato Applied Network Dynamics (WAND) research group between

February and April 2001. We retrieved and fit the first 37 out of 94 traces from this set.

The Auckland-IV set contains traces from two directions at one port; thus there are two

groups: AuckIV-0 (19 traces) and AuckIV-1 (18 traces).

To accurately capture temporal locality in IP address sequences, we use trace-driven

simulation. This is in contrast with the approach taken in similar work [52, 53, 54] where

the assumption of the average working set size function leads to over-simplified results which

prevent them from being practically applied.

3.3 The Footprint M odel

Thiebaut et al. [36] use the footprint model to generate synthetic memory reference se

quences for computer programs (see Section 2.1.4). The footprint model for a sequence of

addresses relates the working set size (see Section 2.1.1), \W(t ,T)\ , to the window size, T. If

we assume that the address generation process is stationary, as in [17], the WS size depends

only on the window size and can be expressed as f (T) . The definition of concentration, one

of the locality characteristics (see Section 2.2.1 or [21, 22]), is based on the WS model. The

concentration, C t, in Eq. 2.6, can be determined once the footprint function f (T) is known.

It is found in [94] that address-level program memory reference footprint curves converge

to the following hyperbola:

u(T) = A T 1/ &, A > 0,0 > 1

Shi and MacGregor [37] capture the footprint behavior of IP destination address traces

and apply the synthetic trace generation algorithm described in [36] to produce synthetic

IP destination addresses. Two real world traces, UofA and FUNET, are used in the exper

iments. For each trace, two synthetic traces are generated: one is based on the footprint

model, called synthetic, and the other is a random trace, called random, which retains the

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

same number of unique addresses of the original trace, but is produced by selecting addresses

according to the uniform distribution.

Fig. 3.1 shows the footprints of the traces where the values of 9 calculated from the

two real traces are 2.239 (UofA) and 2.631 (FUNET); the values of A are 11.95 and 23.25

respectively. The synthetic traces based on the footprint model approximate the real traces

much more closely than the random traces. The number of unique addresses in the random

trace reaches the maximum far more quickly than for either the synthetic or the real trace.

To verify the footprint model, we use both the synthetic and real traces to drive the

radix tree routing table lookup algorithm and measure the general cache miss ratios. We

used the SimpleScalar tool set, where the cache can be easily configured, for the simulations.

Figure 3.2 shows the results for a 16-KB direct-mapped cache with cache line sizes of 4,

8, 16 and 32 bytes. The miss ratios of the real trace are consistently lower than those of both

the random trace and the footprint-based synthetic trace. The miss ratios of the synthetic

trace are between those of the real trace and those of the random trace. The synthetic trace

curve is closer to that for the random trace than it is to the curve for the real trace.

Locality is the concept behind caching; if a synthetic trace is generated based on a model

that accurately captures locality in a real trace, we would expect the cache miss results to be

close for both traces. In the case of Fig. 3.2, the synthetic model apparently underestimates

the locality in the real trace. From Fig. 3.1, we can conclude that the hyperbolic footprint

curve captures concentration well.

The footprint model, however, does not take temporal locality explicitly into consider

ation. Empirically, we calculated a crude measure of the temporal locality of each trace,

namely, the number of times when a destination address was the same as the previous ad

dress. This situation occurs 147272 times in the UofA trace, 155 times in the random trace

and 6232 times in the synthetic trace. The results for the FUNET traces were very similar.

For the random trace, since the addresses are drawn using a uniformly distributed ran

dom number, the expected number of repeats would be

TraceLength 1000000 _
No.ofU niqueAddresses 5861

For the synthetic trace generated from the footprint model, we need to take a closer look

at the algorithm (see Fig. 3.3 and Eq. 2.5). Repeats only occur when the generated index

is 0. When U < 1/9 , the index is no less than A * ^ , i.e., Cc. Given the A and 6 values for

the UofA trace, we have an index larger than 88. Obviously, when U >1/6, the chance that

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

•3•o
<a>
3tx
5O

o
Z

6000

5000

4000

3000

2000

1000
random

synthetic
, real

0
400200 800 10000 600

No. of Processed Addresses (K)

■o<
3
cr
=

o
Z

2000

1800

1600

1400

1200

1000

800

600

400

200

0
20 400 60 10080

No. of Processed Addresses (K)

Figure 3.1: a. Footprints of the UofA (above) Traces (A = 11.95.
of the FUNET Traces (A = 23.25, 6 = 2.631)

2.239); b. Footprints

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.12

random
synthetic

real

0.08

0.04

0.02

0 5 10 15 20 25 30
Line Size

Figure 3.2: Simulation of a 16-KB Direct-Mapped Data Cache

the index is 0 is 1 f Cc. So overall, the probability of repeats in the generated trace should

be
1 - 1/0

= 0.00625,

far from that for the real trace.

To remedy this problem, we modified the trace generator by introducing one more pa

rameter, the so-called self-repeat ratio (In hindsight, the self-repeat ratio is equivalent to the

concept of persistence). If the hit index is below the LRU-POINTER, i.e., the address to

be generated has been seen already, that address is made identical to the previous one with

the probability equal to the self-repeat ratio. Otherwise, with the remaining probability,

the address at the hit index is issued as before. The modified algorithm is listed in Fig. 3.3.

The four lines starting at “R = Random2” are our modification to the original generator.

The self-repeat ratio observed in the UofA trace is 0.147272. With this modification, the

generator will tend to issue not only repeating pairs of addresses, but also runs of three, four,

and so on. With this self-repeat ratio, using the algorithm described above, we generated

another trace, syn2. Measurement and cache simulation results are shown in Fig. 3.4. Fig.

3.4.a compares the measured footprint curves of the synthetic and syn2 traces. The footprint

of syn2 matches that of the synthetic trace because we only consider generating repeating

addresses when the hit index is below LRU-POINTER. Thus, in terms of the total number

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{ fill an LRU stack with unique item s }
InitializeStack;

{ generate ” SyntheticTraceLength" synthetic addresses }

for count:= 1 to SyntheticTraceLength do
begin
{ generate an index from uniform random real in [0, 1]------}
U:=Randoml;
if (U<l/Theta) then

index := round((U/((AATheta)/Theta)))A(l/(1-Theta)));
else

index := round(random * Cc);

{ determine the address to output }
R = Random2
if index<LRU_POINTER and R<SelfRepeatRate then

address = Previous Address;
else {-— move the item at "index" to stack top }

UpdateLRUStack(index, address, LRU);

{---- process the new synthetic address —-)
UserProcess (address);
end; {for}

Figure 3.3: The Synthetic Trace Generation Algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of different addresses that have been issued up to a given point, the two methods produce

exactly the same outcome.

Figure 3.4.b shows that the miss ratios of the trace (syn2) from the modified algorithm

are closer to those of the real trace (real) than that (synthetic) from the original algorithm.

This is due to the improvement in temporal locality in the synthetic trace.

3.4 The Reuse D istance M odel

An important concept in this work is reuse distance, which is similar to the concept of

stack distance in the LRUSM. Let “r 1, r 2 , ...,rn, ...” be the distance string of an address

sequence “cp, <3 2 , an,” Let Ai be the set that contains the unique addresses in the

address sequence 0 1 ,(1 2 , . . . ,£q. Then \Ai\ is the largest reuse distance seen in the trace up

to and including a .̂ Moreover, we have

_ / idx{ai+i) if ai+i £ Ai , .
i+1 ” 1 \A>\ + 1 if ai+1g A i .

where idx(ai) yields the index of a, in the LRU stack. The first appearance of an address

generates the largest reuse distance so far. This differs from [35], where the reuse distance

for the first appearance of an address is infinite. This treatment of the first appearances

leads to the explanation of the footprint curve in the context of reuse distance.

Aida and Abe [52, 53] use the footprint model combined with the reuse distance model

to generate pseudo address sequences. Their approach is to first derive the distribution of

reuse distances from the footprint model and then this distribution is used with the LRUSM

to generate synthetic traces. Aida and Abe [53] show that the probability distribution of

LRU stack distance can be derived from the footprint curve. There it is called the Inverse

Stack Growth Function or ISGF.

However, the footprint model is inherently flawed in that it does not approach an upper

limit (Eq. 2.3). In reality, however, the address spaces for IP or program virtual memory

are both finite. For example, for IP version 4 [2], the size of the address space is 232. As

time goes by, the unique number of addresses should approach and finally reach some limit.

This limit, seen at a router, could be far less than the maximum of 232 addresses. This

is mainly because the router only forwards packets to a subset of all the networks of the

Internet.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■o
T3
<tu3O'
CD

oZ

6000

5000

4000

3000

2000

1000
synthetic

, syn2
0

600 800 1000200 4000

o
'U

No. of Processed Addresses (K)

0.12
random

synthetic
syn2
real0.1

0.08

0.06

0.04

0.02

0
15 20 25 300 5 10

Line Size

Figure 3.4: a. Footprints of the Two Synthetic Traces (above); b. Comparison of Cache
Miss Ratios

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reuse Distance Over Time

Virtual Clock
900 ---------1---------i---------1---------1---------1--------- 1----------1—-----1--------- r

Reuse Distance Over Time

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1001
Virtual Clock

Figure 3.5: Reuse Distance Over Time: LDestIP (above) and UofA Traces

Our approach is to directly characterize the empirical distribution of reuse distances,

which automatically captures the footprint behavior of the address sequences at the same

time. Let F(x) be the distribution function of the reuse distance and JJ the random variable

that represents the number of distinct reuse distances. Then E(U) depends on the distribu

tion of the random vector X i , X 2, ■.. X m , where X j , (j = 1, . . . , M) are independently and

identically distributed. Thus, the distribution of U depends solely on F(x) and M. E(U) is

equivalent to the average WS size, so once F(x) is decided the footprint curve, representing

the average WS size, is known.

Fig. 3.5 shows the reuse distance patterns for the first 10,000 entries of the LDestIP and

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UofA traces. Two common features stand out:

• The reuse distances of the first appearances of the addresses form an upper border

line.

• Under the border line, smaller reuse distances have higher density than larger ones.

The upper border lines in the two figures are the footprint curves of the two traces. Ac

cording to its definition, a footprint curve fits the points of (number of addresses referenced,

number of unique addresses so far) where the “number of unique addresses so far” is the

same as the “largest reuse distance so far” in Eq. (3.1).

The second feature observed in the figures is the result of temporal locality. Small reuse

distances indicate repeated references to the same addresses in short intervals. With the

reuse distance probability, we are able to say how likely it is that an address just referenced

will reappear in a given number of steps, counted by the number of distinct addresses, in

the near future.

3.5 The R euse Distance D istribution M odel

3 .5 .1 F ittin g the CCDF with a M ixed Function

We choose the CCDF (Complementary Cumulative Distribution Function),

S(x) = Pr[X > x] = 1 - F(x) (3.2)

of reuse distances to characterize temporal locality.

Fitting the CCDF instead of the CDF allows the probability of the occurrence of larger

reuse distances to be more accurately captured [35]. This is based on the assumption that

the larger the reuse distance of an address, the more likely it will cause a cache miss, and

thus the more important it will be in cache performance evaluation. Furthermore, fitting

the CCDF makes performance measurement straightforward. That is, given the size of a

fully associative cache, the miss ratio of a trace can be derived from the CCDF curve.

Fig. 3.6 shows the reuse distance CCDF’s for the LDestIP and UofA traces. Each curve

represents a CCDF calculated from a sub-trace of a certain length. All sub-traces are longer

than 10,000 entries. The CCDF’s follow a pattern. Initially, the curves are all very close.

This consistency across different lengths of the traces implies stationarity. Over 60 percent

of reuse distances fall in this range. Afterwards, the curves for different lengths diverge.

We call this part of the curve the tail. The tails start with segments of roughly straight

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

trace len gih=100000 -
trace lengfn=1000000 -

trace lengfli=10000000 -
trace length=31000000 -
"V-,

0.1

0.01

0.001fuQO
0.0001

le -05

le -0 6

le -07
10000 1000001 10 100 1000 le+06

Reuse Distance

trace lengths10000
trace lengm=100000
«u;e length=l 000000

0.1

0.01

Q 0.001UU

0.0001

le-05

le-06
100010 100 100001

Reuse Distance

Figure 3.6: Reuse Distance CCDF’s of the LDestIP (above) and the UofA Traces

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lines, though there are bumps in the middle of these segments. Then they drop off nearly

vertically. The diverging tails give the look of branches from a common trunk.

Measurements show that the final segments, i.e., the almost vertical parts of the tails of

the CCDF’s in Fig. 3.6 are linear. This linearity is due to addresses that are not reused, but

appear only once in the traces. Using a longer trace to calculate the CCDF eliminates the

linear tail of the CCDF for a shorter trace, although this introduces another longer linear

tail. The reason is that the addresses that appear only once in a short trace can appear

more than once in a long trace. The phenomenon that linear branches stem from a common

base in all the CCDF figures reflects instability due to the limited length of the traces. In

other words, if we had infinitely-long traces, there would be no linear tails in the CCDF’s

and they would converge to one common shape.

Given these observations, our approach to fitting the CCDF of a trace is to use the

longest trace available, and remove the linear tail first. It was shown in [45] that the

distribution of reuse distances for URL’s in Web access traces can be fit by the lognormal

distribution. However, we have not been able to fit the CCDF’s shown in Fig. 3.6 using

a single distribution. Instead, we use the sum of two distributions, i.e., the two-parameter

Weibull and Pareto distributions [95]:

C(x) = pW (x) + (1 - p)P(x), 0 < p < 1, (3.3)

where W (x) is the CCDF of the Weibull distribution:

W(x) = e ~ {xl d)C, c ,d> 0, (3.4)

and P(x) is the CCDF of the Pareto distribution

P(x) = (1 + bx)~a, a ,b> 0. (3.5)

The c and a are called the shape parameters for the Weibull and Pareto distributions,

respectively, and the d and b are the scale parameters.

Fig. 3.7 shows the fitting of the W +P (shorthand for “Weibull + Pareto”) function to the

empirical data, where a heuristic method is used to cut off the linear segments in the first

place.

For the existing data, our experiments show that the W +P fitting predicts the tails well

in that the W +P tail from fitting a shorter sub-trace visually matches the tail of a longer

sub-trace. Identifying the decay trend of the tail is important because it helps to generate

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1
LDestIP CCDF

C(x): Weibull + Pareto

0.1

0.01

0.001
10000C100 1000 10000101

Reuse Distance (log 10)

1
UofA CCDF

C(x): Weibull + Pareto

© 0.1

0.01

0.001
1000010 100 10001

Reuse Distance (log 10)

Figure 3.7: Fitting the LDestIP (left) and UofA CCDF’s with Weibull + Pareto

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

longer synthetic traces without losing accuracy. This is the reason that the combination of

Weibull and Pareto is chosen. We have tried to fit the CCDF data with other combinations,

for example, two Weibull distributions (changing the P(x) in (3.3) to a Weibull CCDF). The

result actually shows better visual fit than the W +P scheme. However, further experiments

show that for longer traces, CCDF’s for synthetic traces based on the tw o Weibull fitting

have fewer unique addresses and the tails of the CCDF’s for the real traces decay more slowly

than as predicted by the two-Weibull function. We believe that the faster decay trends in

the CCDF tails of the real traces in Fig. 3.7 are caused by the limited trace length.

Recently, the distributions of many important parameters in workload models for com

munication networks have been found to be heavy-tailed or long-tailed, meaning that the

tails of the CCDF’s of the distributions decay slower than exponentially. Empirical data are

frequently better fit by such distributions like the Pareto, Weibull, or lognormal. According

to the definition given by [96], the Pareto distribution and the Weibull distribution with

c of less than 1 are all long-tailed. On the other hand, [97] showed that the lognormal

distribution is not long-tailed.

After eliminating the linear segments, we have been able to fit the empirical CCDF’s

with mixtures of Weibull and Pareto CCDF’s. The shape parameters for the Weibull are

1.14 for the LDestIP trace and 1.22 for the UofA trace. Neither satisfies the requirement

defined in [96] for being long-tailed. The Pareto segments, however, are long-tailed.

It is generally not easy to tell whether a parameter is long-tail distributed or not by

merely obtaining a visually good fit to some specific samples. For example, [98] shows that

fitting different samples of certain measures yields different best-fit tail distributions. In our

case, the available traces are not long enough to observe a stable shape of the CCDF, which

makes it harder to predict the exact tail behavior.

Besides these two traces, we have also examined the reuse distance distribution pattern

of traces from two other sets at NLANR, i.e., the Auckland-IV and the Abilene-I set. We

experimented with all 48 traces of the Abilene-I set and randomly selected 37 out of 94 traces

from the Auckland-IV set. In all these cases, with appropriate parameters, the combination

of Weibull and Pareto produced excellent fits. From these experiments, we have found

that the values for the parameter p in Eq. 3.3 are generally larger for backbone traffic

(p € [0.14,0.19]) than for campus-level network traffic (p 6 [0.37,0.90]). In addition, the

scale parameters, d for the Weibull and b for the Pareto CCDF, differ significantly for the

two types of network traffic, but the shape parameters, c and a, are relatively constant for

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

different sets of traces. These results are shown in Appendix A.

3.5.2 Discussion

Aida and Abe [53] derive the reuse distance probability distribution by first assuming the

stationarity of the underlying address generation process (see also Section 2.2.3). The inverse

stack growth function (ISFG), / (t , r) , which is equivalent to the working set size function

in [17], relates the size of the stack (the number of distinct addresses) to discrete time t and

the working set window size r . In addition, the stack growth function (SGF), g, is defined

as f ~ l . The stationarity assumption leads to

= / (s , t) (3.6)

where t and s are any points in time. Thus, the stack size is dependent only on r . / (r) is

found to follow the power law in Eq. 2.8. The probability of the reuse distance k, a*, is

shown to be that in Eq. 2.7.

A problem is that Eq. 2.8 describes an asymptotic behavior that may not apply to small

t ; this could lead to inaccurate probability prediction for smaller reuse distances that appear

frequently as the result of temporal correlation in IP address sequences. For this reason,

Eq. 2.7 is not acceptable for cache performance evaluations. We will show that the reuse

distance distribution predicted by Eq. 2.7 differs significantly from empirical measurement

results.

We derive the complementary cumulative distribution function (CCDF) for reuse dis

tances from Eq. 2.7:

k
CCDF(k) = 1 - 5 > = (*1'" + 1)“ - * (3.7)

i=l

The CCDF appears as a straight line in a log-log scale plot (Fig. 3.8). For a = 2/3 [53], the

CCDF curve of a Pareto distribution (Eq. 3.5) also appears as a straight line in a log-log

plot, and with properly tuned parameters (a = 2.03395, b — 0.-507146) it closely matches the

curve of Eq. 3.7. From the empirical result in Fig. 3.8, one may conjecture that any reuse

distance CCDF in the form of Eq. 3.7 can be approximated quite well by a Pareto CCDF.

For large k and x, by binomial expansion for real exponents, Eq. 3.7 and Eq. 3.5 lead

to

CCDF(k) = a x 1- 1/ 0 + a(a - l) / 2 x 1~2/a + 0 (x l ~3/a) (3.8)

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C C D F (alpha=0.666666"
Pareto (a=2.03395,b=0.507146;

X
QuU

i.Ol

0.001

0.0001
1000 10000 100000 le+ 0 61 10 100

x

Figure 3.8: The CCDF in Eq. 3.7 matches the Pareto in Eq. 3.5.

and

P(x) = a~b — 6(aa;)~5-1 + 0{x~b~2), (3.9)

respectively. If b = 1 /a — 1 and a = a ~ l/ h = then P(st) is a good approximation

to CCDF(x) when x is large.

In the CCDF patterns shown in Fig. 3.6, it is evident that each curve is composed

of several distinct segments and cannot be fit well by a straight line in a log-log plot. In

conclusion, we believe that the derivation using Eq. 2.7 is not adequate to accurately capture

reuse distance distributions and thus temporal locality in IP traffic.

3.6 S ynthetic Trace G en era tio n and S im ulation R esu lts

3 .6 .1 S y n th e t ic T ra c e G e n e r a t io n

With a parameterized reuse distance CCDF, synthetic trace generation is straightforward.

We populate a stack with IP addresses and use a random number generator to produce

reuse distances according to the CCDF, each of which is used to index the stack to output

an address. After an address is produced, the stack is updated accordingly using the LRU

criterion. (See Fig. 3.9.)

“InitializeStackO” populates the LRU stack with unique addresses. Though the address

space of IPv4 is 4xl09, the actual number of unique IP destination addresses in a trace is

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initializes tack();
InitializePArray();
while(l) {

R = randomQ;
Index = GetStacklndex(R)
UpdateStack(Index);

}

Figure 3.9: Synthetic Trace Generation

limited. For example, for the 31-million LDestIP trace, the number of unique addresses is

about 130,000.

The “Initialize? ArrayQ” reads an external file containing the discretized CCDF function

into an internal “probability array” (PArray[J) for generating random stack indices. After

the initialization, PArray[iJ is the probability that a reuse distance is larger than i. This

approach is more flexible than comparing random numbers to the CCDF of a certain formula

with a set of parameters to decide what reuse distance to generate.

“GetStacklndexQ ” takes a random number and compares it sequentially to the probabil

ity array elements until one is found that is larger than the random number. Alternatively,

since the array is sorted, a binary search can be used to find the smallest array element that

is larger than the random number. The index of the array element is output as the reuse

distance.

“UpdateStackQ” keeps an “LRU-pointer” which equals the number of unique addresses

accessed so far. If the “Index” passed in is larger than LRU_pointer, the address at

LRU-pointer is moved to the top of the stack, and the addresses previously above it are

moved one step down the stack. LRU-pointer is incremented by one. If the Index is less than

the LRU .pointer, the same sequence of operations are taken except that the LRU-pointer

is not updated. In both cases, the address at the Index position of the stack is output as

the synthetic IP destination address.

Fig. 3.10 shows the footprint curve calculated from the synthetic UofA trace along with

that from the real trace. Visually, they seem to be close enough to be regarded as generated

from the same source. The result for the LDestIP trace is similar. These results show that

the reuse distance model alone can capture both features of the reuse distance patterns in

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6000

5000

C/3
I 4000
■3
T3<
§ 3000O'

‘S

o 2000
o

Z

1000

0
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 le+06

No. of Addresses Processed

Figure 3.10: Footprints (UofA)

Fig. 3.5.

3 .6 .2 On the E ffic ien cy o f L R U S tack Processing

The LRU stack processing algorithm used in our synthetic trace generation is the same as

the original proposed by Mattson et al. [34]: a referenced address in the stack is moved to

the top of the stack and the addresses previously before it are pushed down by one. This

algorithm is naturally derived from the “least recently used” concept; it keeps the data

structure simple and implementation straightforward.

An early work [99] addresses the inefficiency of using the LRU stack to evaluate page

reference sequences where a linear search is used to find a page in the stack. But linear

search is not necessary in our trace generation algorithm because the location of an address

in the stack, the reuse distance, is randomly generated according to E q . 3.3 . On the other

hand, to improve the efficiency of updating the stack by shifting down addresses with smaller

indices than that of the one currently accessed is a hard problem.

The LRU replacement policy is equivalent in concept to the move-to-front linear-list

update rule. Sleator and Tarjan [100] studies the amortized efficiency of the move-to-front

update and proves that it is within a constant factor of optimum, assuming that the access

cost of the ith element from the front of the list is 0(f). The update cost in our stack

algorithm can be seen as access cost; thus an access to the ith address from the stack top

51

UofA Footprint
Synthetic Trace Footprint

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

involves i read and store operations. Thus, the naive form of stack processing is also the

most efficient.

3.6.3 General Cache S im u la t io n Results

We compare cache miss ratios to verify that our algorithm produces representative synthetic

traces. A synthetic trace is generated using the parameters measured from the real UofA

trace. Both the synthetic and real trace are used to drive a routing table lookup algorithm

under different cache configurations and the miss ratios are recorded. The UofA trace is

used because the routing table of the router where the trace was recorded is available. The

radix tree algorithm [9] of the FreeBSD [91] kernel is used. SimpleScalar [92] is used as the

simulation platform for its cache configuration flexibility.

Fig. 3.11a shows the simulation results with a 64-KB direct-mapped LRU cache. The

“random trace” is generated by randomly selecting an address out of the total unique ad

dresses in the real trace; the “synthetic trace 1” is the trace based on the footprint model

[36]; “synthetic trace 2” is the trace produced using the method described in Section 3.6.1.

The miss ratios at different line sizes for synthetic trace 2 are very close to those of the

real trace. The miss ratio curve of synthetic trace 1 is closer to that of the real trace than

the curve of the random trace, but not as close as that of synthetic trace 2. This is be

cause synthetic trace 1, compared with the random trace, captures one more characteristic

of the real trace, i.e., the footprint curve. Synthetic trace 2 is even closer because it also

captures the reuse distance distribution of the real trace. The reuse distance distribution,

as discussed earlier, essentially answers the question “How likely is it that a just-accessed

address is going to be referenced in the near future?”. The differences between the curves for

the real trace and synthetic trace 2 are mainly due to the inaccuracy of fitting the CCDF.

Fig. 3.11b shows similar results for the four traces with varying cache sizes. In brief, the

temporal locality of synthetic trace 2 approximates that of the real trace very well.

3.6.4 Route Cache Simulation Results

A “route cache” simulates a simple caching mechanism in routers [16]. Each cache entry

contains an IP address and the corresponding output port. When a packet arrives, the

router uses its destination address as an index to look up the output port where the packet

should be forwarded. Again, we are interested in cache miss ratios.

There are several reasons that we use simple route caches where each entry contains

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M
iss

Ra

tio

M
iss

R

at
io

0.065
random trace

synthetic trace 1
synthetic trace 2

real trace

0.06
0.055

0.05
0.045

0.04

0.035

0.03
0.025

0.02
0.015
0.01

0.005

64 128 2568 16 32 512 1024
Cache Line Size (bytes)

0.11
random trace -' •

synthetic trace 1 - -
trace 2 • ■

 1 trace

0.1
synthetic ti

real0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

o *—
4096 8192 16384 32768 65536 131072

Cache Size (bytes)

Figure 3.11: General Cache Simulation Results: a. 64-KB Direct-Mapped Data Cache
(above) b. Different Cache Sizes with 32-byte Cache Lines

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a whole 32-bit destination address instead of a variable-length prefix in the routing table.

First, due to the longest-prefix-matching requirement for routing table lookup, caching pre

fixes is an interesting problem itself. Matching prefixes involves rather tricky operations

that are likely to increase the cost of the cache. Caching full IP addresses is considerably

simpler. Second, for most traces that we work on, corresponding routing tables are not

available. Third, the destination addresses for traces publicly available are usually “sani

tized” for security reasons, making it difficult to run lookup simulations even if the routing

tables are available.

Fig. 3.12 shows the number of route cache misses for traces that contain 1 million

destination IP addresses, where the real traces are the UofA and LDestIP traces (first 1

million entries), respectively, and the synthetic traces are generated using the algorithm in

Fig. 3.9. The replacement algorithm is LRU. The route cache simulation results support

the idea that the synthetic trace produced using the method described in Section 3.6.1 has

locality similar to that of the real trace.

3.7 Summary

We discuss the motivation and methodology for modeling locality in the Internet traffic

at the beginning of this chapter. The lack of consideration in network system evaluation

and the obvious impact of locality on forwarding system performance is the incentive for

our work. Our study of network traffic locality is based on experiments with real world

traces. Locality, however, is only one of the important characteristics of forwarding system

workload. As we proceed to study other aspects of Internet traffic, we follow the same

methodology.

Models previously used to characterize program memory reference behavior are adapted

in this chapter to the analysis of IP destination address traces. We reject the footprint

model but accept the LRUSM as an effective model to capture temporal locality. Our

work to fit the IP address reuse distance distribution produces a flexible model that can

accurately describe the temporal locality in the various traces we have obtained. Compared

with similar work on this subject, our model is more accurate in that it captures both the

head and the tail of the distribution. Using this model, we have been able to generate

representative IP destination address traces.

The distribution of address frequency is a traffic characteristic that cannot be conve-

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

No
.

of
M

iss
es

ou

t
of

1M
Re

fe
re

nc
es

No

.
of

M
iss

es

ou
t

of
1M

R
ef

er
en

ce
s

900000

800000

700000

600000

500000

400000

300000 random trace ‘ '
synthetic 1
synthetic 2 ~ ~

real trace
200000

100000

1024 2048 409616 32 64 128 256 5128
Route Cache Size (entries)

le+06

900000

800000

700000

600000
random trace ' '

synthetic 1
synthetic 2

real trace

500000

400000

300000

200000

100000

 L____

1024 2048 409616 64 2568 32 128 512
Route Cache Size (entries)

Figure 3.12: Route Cache Misses: UofA (above) and LDestIP Traces

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

niently generated by the simple LRUSM which treats individual addresses uniformly. In

trace generation, incorporating address frequency distribution into the LRUSM is chal

lenging. We discuss in Chapter 4 how this feature is integrated with our synthetic trace

generator.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

An Integrated Workload M odel

The LRUSM provides a means to capture temporal locality. By applying the LRU stack

operations, a sequence of references is transformed into a series of reuse distances. Locality

can then be quantified by characterizing the reuse distance distribution. The transformation,

however, anonymizes the trace; information, such as the frequencies of distinct references,

is lost. As an example, in Web workload characterization, it is noted that the LRUSM

is not able to tell the difference between short-term temporal correlation and long-term

popularity [48, 33, 101]. As a result, although the LRUSM can be used to characterize

locality, additional models have to be built to describe other aspects of the reference strings,

e.g., the distribution of reference popularity.

In the particular case of modeling IP address sequences, using the LRUSM ignores the

address popularity distribution. The algorithm in Fig. 3.9 generates IP address traces with

reuse distance distributions and an LRU stack populated with IP addresses. This is the

reverse transformation to that in the modeling phase: from a series of randomly generated

reuse distances to a sequence of IP addresses. The assumption is that the reuse distances

are a realization of a stochastic process where all random variables are identically, and

independently distributed. In the synthetic trace, the flows tend to be similar in rates

and arrival patterns because the addresses in the stack have the same opportunity to be

referenced, even though the reuse distance distribution may be skewed.

This contradicts the traffic patterns observed in [61, 65}: destination addresses are not

evenly distributed and popular addresses are very popular. It has been observed that the

accesses to forwarding data structures, such as the routing table, are biased toward the

extremely popular IP addresses. Several data structures [82, 102, 84] are proposed to take

advantage of temporal locality and the biased reference pattern in Internet traffic. The

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

depth-constrained alphabetic tree in [82] and the biased skip list in [102] put the most

recently or most frequently accessed routes near the top of the trees or at higher level link

nodes to achieve high lookup performance.

The skewed popularity distribution of IP addresses has particular significance in parallel

forwarding system load balancing design, especially for a hash-based scheduling system

because a hash scheduler assigns packets of the same flow to the same FE. It does not

help to balance the load if the hash function produces perfectly random forwarding engine

identifiers, because the flows are different in rates.

In this chapter, we show that the address popularity distribution is generally Zipf-like,

i.e., the pattern of “rank, popularity” pairs of the addresses can be modeled by a straight

line in a log-log plot. Moreover, we show that the skewed popularity distribution and in

particular, the presence of several high-rate flows, are the major source of load imbalance.

This observation motivates us to incorporate flow-level information in our IP address gener

ation model to produce realistic synthetic traffic. In addition, the observation also indicates

that efficient load balancing schemes can be built by exploring flow-level Internet traffic

characteristics.

4.1 Flow-level Internet Traffic Characteristics

Targeting routing table lookup in routers, we define a flow as a sequence of packets with the

same destination address. This definition is sufficient for our discussion of alpha flows and

performance evaluation of IP forwarding systems. In trace analysis, we do not consider the

start and end of flows. We identify an alpha flow based on the popularity of its destination

address.

4.1.1 Z ipf’s Law A pplies to In te rn e t Traffic

Zipf’s law [24] is the observation that frequency of occurrence of some event (P) as a function

of rank (R) is a power-law function

P{R) ~ 1 f R a, 1 < R < N (4.1)

with the exponent a close to 1. N is the number of ranks or the number of unique events.

a is the shape parameter and N is the scale parameter of the distribution.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

le+07
IPLS

AuckIV
UofAle+06

100000

10000
oc<L>3
cr 1000

100

le+061 10 100 1000 10000 100000
Rank (R)

Figure 4.1: Zipf’s Law for Internet Flows

The most famous examples of Zipf’s law include the frequency distribution of English

words, the population of communities, and the revenue of a company as a function of its

rank. The existence of a small number of very popular objects seems to be a general

phenomenon and has been noticed in the workloads of many computer systems. Simi

lar observations were made in reference popularity characterization studies for Web docu

ments [103, 47], files [104], video objects [105], Internet flows [61], etc. See the Web site

http://linkage.rockefeller.edu/wli/zipf for a bibliography of works related to the Zipf’s law.

The Zipf distribution has been used in Web workload generators such as in [46] and in the

streaming media generator, GISMO [106].

We experimented with three traces: the 1-million-entry UofA trace, the 4.5-million-entry

AuckIV trace randomly selected from the Auckland-IV set, and the 44.8-million-entry IPLS

trace randomly selected from the Abilene-I set. (See Section 3.2 for the descriptions of these

sets.) Fig. 4.1 shows that Zipf’s law applies to the popularity distribution of IP addresses in

all three traces. Although the reasons for this distribution are unclear, we believe that the

flows with the highest ranks are caused by the transmission of large files. It is evident from

the figure that the values of a vary for the three traces and that the curves may not be fit

with straight lines of slope (-1). Generally, however, we believe that Zipf’s law is adequate

for modeling the popularity distribution.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://linkage.rockefeller.edu/wli/zipf

0.7

Rea! Trace, 16 FE’s
Real Trace, 8 FE’s
Real Trace, 4 FE 's
Real Trace, 2 FE’s
LRUSM, 16 FE’s

LRUSM, 8 FE’s
LRUSM, 4 FE’s
LRUSM. 2 FE’s

0.6

0.5

> 0.4
U

0.3

0.2

100010 100
No. of Largest Flows Removed + 1

Figure 4.2: Effect of Largest Flows on Load Balancing (UofA Trace)

4.1.2 Impact on Load Balancing

We consider a parallel forwarding system similar to that in Fig. 2.2, where a simple hash-

based scheduler is used. The destination address of an IP packet is fed to the hash function

which returns the ID of the FE to which the packet should be forwarded.

We use Bi to represent the total busy time of the zth FE. The coefficient of variation

(CV) of busy time is a measure of the degree of system load imbalance:

C V = — (4.2)
f iB

where a s is the standard deviation and hb is the mean of Bi. We assume that Bi is propor

tional to the number of packets forwarded by the ith FE; thus in the following simulations,

we only need to record the number of packets to represent the busy time of the iih FE,

which is independent of its actual forwarding rate.

CV is chosen for its independence from the units of data. It is a measure of the combined

effects of the traffic being skewed toward a few flows and the system’s ability to balance

the load. With the simulation input fixed, C V measures the latter. In the ideal case where

each FE has exactly the same load, ab and C V would both become zero.

To appreciate the importance of flow-level specifics in Internet forwarding systems, we

show the load balance difference after removing a number of the largest flows from the

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

le+06
UofA

Synthetic (LRUSM)

100000

10000

ucCD 1000
=3
S'

100

10 r

10 100 1000 10000
Rank(R)

Figure 4.3: Address Popularity Patterns: Real and LRUSM-based Synthetic Traces

UofA trace in several configurations (2, 4, 8, 16 FE ’s) in Fig. 4.2. In each configuration, for

the real trace, removing one or two of the largest flows drastically reduces CVg values; for

the synthetic trace produced using LRUSM (See Fig. 3.9), however, there are no obvious

changes when the largest flows are removed. This is because the LRUSM does not have a

mechanism to produce traffic with the similar address popularity distribution to that of the

real traffic. For both traces, however, further removing flows has much less effect on load

imbalance than removing the first several largest. From the figure, we can conclude that

high-rate flows are the major source of load imbalance in a parallel forwarding system. The

results indicate that balancing the alpha flows over the forwarding engines will be far more

effective than scheduling flows randomly.

Furthermore, from the figure, it is obvious that the more parallelism the more serious

the load imbalance for the real trace. This indicates that as more forwarding processors are

used to cope with bandwidth growth, the need for efficient schemes to balance workload

becomes more urgent.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Synthetic Trace Generation

Having developed an accurate reuse distance model, we try to extend the synthetic trace

generation algorithm in Fig. 3.9 to take into account address popularity distribution. The

resulting algorithm should be able to generate traces with the specified temporal locality as

well as address popularity distribution.

The challenge, however, is that reuse distances measure the recency by which addresses

are reused but do not describe the popularity of specific addresses. This is the reason

that the synthetic traces produced by the method in Fig. 3.9 do not have the Zipf-like

popularity pattern. As an example, Fig. 4.3 shows the address popularity patterns in the

real and synthetic UofA traces. The difference is obvious. The numbers of addresses are

much more homogeneous in the synthetic trace. There are no addresses that are popular

enough to indicate dominating alpha flows.

Aida and Abe [54] try to combine the Zipf distribution of the destination address fre

quency with the LRU recency model. The proposed scheme divides the address generation

into medium and long term behaviors, which obey the LRU model, and short time scale

operations, which follow an inter-reference frequency model.

The inverse stack growth function ISGF, }{x), is equivalent to the average working set

size function, s(T), in [17] or the footprint curve in [36]. On the other hand, the inter

reference frequency density,

an = { /(«) - f (n - 1)} - { /(n + 1) - f (n)}

is the negative of the numerical solution for s"(T), the second derivative of s(T), when

T = n [107], and thus is the discrete form of the overall inter-reference interval density

function in [17].

The problem with this approach is that the an is an average effect that is derived based

on the stationarity assumption of the address generation process. In this sense, different

flows have the same opportunity to dominate the traffic, which is not true in the real world.

Although an accurate match between the Zipf curves of the synthetic and real traces is

shown in [54], it is at least questionable to what extent this match can be maintained. In

particular, both the traces have the length of 350,000 entries, which might be too small to

observe any discrepancy.

This approach, although employing two different models, is based solely on the station

arity of the average working set size function, which is not adequate to capture the Zipf

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

distribution of the address frequency because it does not include any flow-specific informa

tion: all the addresses have the same opportunity to be referenced. We have implemented

the algorithm described in [54] and have found that the generated traces do not exhibit a

Zipf-like popularity distribution.

Another Web traffic evaluation environment, WebTraff [108], provides a visually interac

tive front end to a set of Web traffic generation and analysis and Web proxy cache simulation

tools, where the Web traffic generation tool, ProWGen, is described in [109, 110]. ProW-

Gen characterizes four aspects of Web traffic: a Zipf-like document popularity distribution,

a high degree of one-time referencing, heavy-tailed file size distributions, and temporal lo

cality. The proposed dynamic LRU stack generator re-calculates cumulative probability

distribution every time a document that is not on the top of the stack is referenced.

4.2.1 Incorporating High-rate Flows

Based on the discussion in Section 4.1.2, we take a different approach to synthetic trace

generation. Instead of taking all the flows into account, we consider the largest ones, which

represent the major portion of the overall traffic and have significant impact on perfor

mance. Our model obeys Zipf’s law for these high-rate flows. Fig. 4.2 indicates that this

simplification is justified for load balancing performance evaluation.

Given the number of addresses to generate, K , we can derive the number of unique

addresses N, the scale parameter for a Zipf-like function (Eq. 4.1), using the footprint

model (Eq. 2.3):

N = A K 1/e.

The discrete form of a Zipf-like popularity distribution is defined as

/(*) = * = 1 , 2 (4 . 3)

where A = YliLi *- “ -

4.2.2 Trace Generation Algorithm

In the following discussions, we consider the number of inter-arrival packets (NIP), the

number of packets between two successive packets of the flow in question, as the measure

of inter-arrival time between packets in the same flow. This concept enables us to integrate

flows into the LRUSM.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0. Initialization
Generate a reuse distance sequence in array RD[]
Populate the array Stack[] with unique IP addresses
Identify the flow’s destination address A
p <— 0

1. Generate next arrival time t
2. While (p < t) Do
3. Find i, so that i>=p, RD[i] != Stacklndex(A)
4. Swap RD[i] and RD[p]
5. UpdateStack(RD[p])
6. p <— p + 1
7. Find i, so that i>=p, RD[i] — Stacklndex(A)
8. Swap RD[p] and RD[i]
9. UpdateStack(RD[p])
10. p <— p + 1
11. Go to step 1

Figure 4.4: Synthetic Trace Generation: LRUSM + 1 Alpha Flow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The goal of our algorithm is to implement alpha flows in the framework of the LRUSM

which ensures that the temporal locality of generated traffic approximate that in real world

traces. The basic idea is to reorder LRUSM-generated reuse distances to meet the NIP’s

generated from some packet arrival model for the alpha flows.

A stack is first initialized to contain all the distinct IP addresses. Let r 1, r 2 , b e

a sequence of reuse distances generated by the LRUSM with desired temporal locality.

Suppose that N alpha flows are to be integrated. At time T, the arrival model of the N

flows is used to produce the {next address, N I P } pair, say { A , N I P a }- Thus, the address

A is scheduled at future time t, t = T + NIPa , in the generated traffic.

While 0 < i < NIPa, generating the T + i th address is done by producing the address at

the stack position ry+i with stack updating. To generate the tth address, i.e., A, we search

the stack for address A (alternatively, the stack position of the alpha flows can be tracked

during the generation process). Assuming that A is found at index ta , we search forward

in the reuse distance sequence rt , r t+1,.... for rm equal to rA- rm is then removed from the

reuse distance sequence, the address A Is output, and the stack is updated. (Alternatively,

A can be simply output and as later when the generating process proceeds to the point

where ta appears in the reuse distance sequence, it is removed.) We generate another pair

of {A, N I P a } and the above process repeats itself, and so on.

An important question is when searching for the desired reuse distance, t a , how far

into the future (say K a reuse distances) the algorithm is expected to look. The answer

depends on the rates of the alpha flows. Suppose the arrival rate of flow A is A a, then

E[NIPa] = 1/A a, where E [N I P a] is the expected value of NIPa- The definition of reuse

distance implies that E[ta} < E [N I P a], thus the upper bound of E [K a] can be expressed

as

UpperBound(E[KA]) = ^ .-- - 1 ^ - ^ , (4.4)

where P{x) is the reuse distance probability density function which can be derived from Eq.

3.3.

In practice, we would like K a to be as small as possible to avoid lengthy searching.

Fortunately, since alpha flows are high-rate, i.e., any two successive packets from the alpha

flow K a are not far-apart, and therefore the reuse distances for alpha flow addresses should

be relatively small. According to Eq. 4.4, this, in turn, indicates that K A should be small.

Even if the inter-arrival time (NIP) distribution is skewed, larger NIP’s are still rare for

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

high-rate alpha flows. For these reasons, the trace generation procedure usually succeeds

without having to scan long sequences of reuse distances.

The algorithm that combines the LRUSM and one alpha flow is shown in Fig. 4.4.

The function Stacklndex(A) returns the index of address A in the stack. UpdateStack(n)

outputs the address at stack index n and updates the stack using LRU as described in

Section 3.6.1. The next arrival time is generated by the flow model (step 1). It is trivial

to incorporate more alpha flows because the address A is controlled by the packet arrival

model. We only need to mix all the alpha flows and generate NIP’s within packets of different

flows. Since this process is independent from the LRUSM, the reuse distance search and

stack update procedures need not be changed.

To summarize, our algorithm needs two groups of parameters to generate synthetic

traces:

L ocality P a ram e te rs: the five parameters, a, b, c, d, p, of the reuse distance distribution

(Eqs. 3.3, 3.4, and 3.5).

P o p u la rity P a ram e te rs: a, the shape parameter, and N, the scale of the Zipf-like func

tion (Eq. 4.1), and the number of alpha flows to incorporate.

4.3 Simulation

We use two real world traces in the experiments, the UofA trace and the first 1 million

entries of the IPLS trace. Two synthetic traces are generated for each, one based on the

LRUSM model and Eq. 3.3, the other based on the algorithm described in Section 4.2.2.

20 large flows are generated in the second synthetic trace. To better show the impact that

large flows have on load balance, in the simulations we use the measured rates of the large

flows from the real traces. The destination addresses of these flows are also used as those

of the corresponding synthetic flows; this is necessary for simulating the load of the FE’s

under hash-scheduling.

We thus have two sets of three traces, UofA and IPLS. For each set, we compare the reuse

distance CCDF’s, the flow popularity distributions, and the load balance curves as large

flows are removed from the trace. Comparing the popularity and reuse distance distributions

shows how well the synthetic traces approximate the real traces in temporal locality and

skewness of references. Comparing load balance validates the integrated trace generation

algorithm.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 .3 .1 P a ck e t A rriva l M o d e l

Although other models, e.g., the two-state Markov chain used in [83], or the two-level arrival

process described in [ill] , may capture the arrival pattern of packets within a flow, for

simplicity, we use the Poisson model for the alpha flows. This is adequate for our discussion

of load balancing.

4.3.2 Results

Fig. 4.5 shows that no significant difference exists between the temporal locality of the

real trace, the LRUSM-based synthetic trace, and the integrated-model-based trace, as the

CCDF’s for these traces in each set are almost identical. This is easily understandable as

reordering reuse distances does not disturb the distribution. This result also shows how well

Eq. 3.3 captures the temporal locality of aggregate traffic.

However, the flow popularity distributions of the three traces differ from each other. In

the results shown in Fig. 4.6, the curve for the LRUSM-based synthetic trace is far from

the Zipf-like curve of the real trace. For the integrated-model-based synthetic trace, the

popularities of its largest 20 flows match those of the real trace. The popularities of the

remaining flows generated by the integrated model return to a similar pattern as those of the

LRUSM-based synthetic trace. The “search forward and reorder” scheme in the integrated

algorithm works in practice. For trace-driven performance evaluation purposes, we do not

need to simulate all the flows. As indicated by Fig. 4.2, a small number of popular flows

contribute the most to the load imbalance situation in the parallel forwarding system.

This is confirmed by the load balance simulation results shown in Fig. 4.7. The CV

value from the real trace and that from the integrated model are very close, especially when

fewer than 20 large flows are removed.

4.4 Summary

In this chapter, we first note that the LRUSM does not capture the biased address reference

pattern in IP traffic. We then study the popularity distribution of the addresses; we show

that this distribution can be modeled by Zipf’s law.

We observe that the skewed address popularity distribution and, in particular, the pres

ence of alpha flows have significant implications for the load balancing design in parallel

forwarding systems. To evaluate the performance of such systems, we developed a synthetic

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.01

Q 0.001
U

uofa
synthetic - LRUSM

synthetic - LRUSM+20flows0.0001

le-05

le-06
1 10 100 1000 10000

Reuse Distance

1

0,1

0.01
ipls

synthetic - LRUSM ' ' '
synthetic - LRUSM+20flows ~ ~

0.001

0.0001

le-05

le-06
10 100 1000 10000 100000

Reuse Distance

Figure 4.5: Reuse Distance CCDF’s: UofA (above) and IPLS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

le+06
uofa

synthetic - LRU SM
synthetic - L R U SM +20flow s

100000

10000

1000

100

100001 10 100 1000
R ank(R)

100000

synthetic -
10000

1000
octu3cr<uv-.fc 100

10 1000 10000 1000001 100
R ank(R)

Figure 4.6: Flow Popularity Distributions: UofA (above) and IPLS

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.7
uofa

synthetic: LRUSM
I + 2 0 flows

syntheti
synthetic: LRUSM0.6

0.5

0.4

0.3

0.2

0.1

0
101 100 1000

No. o f Largest Flows Removed + 1

0.2
ipls

'nthetic: LRUSM
I + 20 flows

syntheti
synthetic: LRUSM0.18

0.16

0.14

0.12
>u

0.08

0.06

0.04

0.02
1 10 1000100

No. of Largest Flows Removed + 1

Figure 4.7: Load Imbalance for an 8-FE System: UofA (above) and IPLS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

trace generation algorithm that incorporates the alpha flows into the LRUSM. The reuse

distance sequence produced by the LRUSM is reordered when necessary to generate specific

addresses dictated by the packet arrival model for the high-rate flows. The synthetic traf

fic preserves two salient features of Internet traffic: temporal locality and the presence of

high-rate flows.

Simulation results validate our observation on the impact of alpha flows on load bal

ancing. This discovery leads to the design of efficient packet distribution schemes which

effectively balance workloads among multiple forwarding engines.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Traffic Locality in Parallel
Forwarding System s

We consider a parallel forwarding system similar to Fig. 2.2. We call these processors

forwarding engines (FE’s) because one of their major tasks is to do the IP address lookup in

the routing table to find the output port for the incoming packet. The caches in the figure

are simple route caches that contain entries of (destination IP address, output port) pairs.

Packet dispatching schemes are critical to parallel forwarding system performance. For

an incoming IP packet, the scheduler’s job is to find the appropriate forwarding engine and

deliver the packet to it. Usually, to accommodate variances in the packet arrival process and

in the packet processing at FE’s, input buffers, or queues, are put in front of the processors.

In this chapter we first discuss the impact on temporal locality of different scheduling

schemes. Second, we study the effects on cache performance of the presence of high-rate

flows in IP traffic.

5.1 General Im pact of Scheduling Schemes on Locality

In this section, we investigate FE cache performance under two scheduling schemes: round

robin and hashing:

R ound R ob in (R R) Given the last packet was delivered to FE i, the scheduler forward

the current packet to FE (i + 1)%IV where % is the modulo operator and N is the number

of FE’s. This can happen when the per-packet processing time is fixed and the same for all

the FE’s. The scheduler simply delivers the next packet to the next FE. We consider strict

round robin mainly for the ease of simulation. The results, however, should be extensible

to similar scheduling schemes, e.g., random selection in available FE ’s.

H ash-based The destination address is used as the key to a hash function and the return

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

value is the index of the target FE. For the particular hash function, we examined the

simple Fletcher checksum [112] bits used in the Internet protocols and the 16-bit CRC

(Cyclic Redundancy Check), as both have been shown to be able to produce uniformly

distributed random numbers.

Using the model described in Section 3.5, we compare the temporal locality in two traces

using their reuse distance CCDF’s. Trace i is said to have better temporal locality than

trace j if CC D F^x) < CCDFj{x) for all 2 > 0.

Fig. 5.1 shows the GCDF’s for a 4-FE system driven by the UofA and LDestIP traces.

Fig. 5.2 shows the results for the LDestIP trace in a 16-FE system. The notations used in

these figures are:

CCDFaggr(x) is the CCDF of the aggregate traffic.

CCDFrr 1 (x) is the CCDF of the traffic processed at the first FE, under Round-Robin.

CCDFcksmi(x) is the CCDF of the traffic processed at the first FE, under checksum

hashing.

CCDFcrci (x) is the CCDF of the traffic processed at the first FE, under 16-bit CRC

hashing.

The overall patterns of the CCDF’s at other FE’s under a given scheduling scheme are

very similar to that given for the first FE. Since the results are similar for the checksum and

CRC hashing functions we will only discuss the results for the checksum function.

Fig. 5.1 shows the impact that the two scheduling schemes have on the locality of

scheduled traffic. The CCDF’s can also be seen as the curves of miss ratio versus cache

size with simple destination route caches [16]. The workload at each FE under hashing has

much better temporal locality and thus better cache performance than for both RR and the

original aggregate traffic. For example, for the UofA trace, with 50 cache lines, the miss

ratio for cksml is 0.178755, less than one third of that for rrl, 0.568349. With larger caches

or more processors, the difference between the two disciplines is larger.

It is evident that the RR-scheduied traffic has less temporal locality and hash-scheduled

traffic has more temporal locality than the original unscheduled traffic. Intuitively, RR

disperses the original traffic over FE ’s but hashing groups packets that belong to the same

flow and sends them to a particular FE, thus improving temporal locality.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lw m \ ■
CCDFcksml(x) '

CCDFcrcl(x) -

0.6

ftQ
8 0.4

0.2

0 100 200 300 400 500 600 700 800
Reuse Distance

CCDFcksmlfx
CCDFcrcl(x'

0.6

ft.Q
8 0.4

0.2

0 100 200 300 400 500 600 700 800
Reuse Distance

Figure 5.1: CCDF’s in a 4-FE System with the UofA(above) and the LDestIP Traces

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CCDFaggrSx'
C C D F rrllx '

CCDFcksmlfx'
CCDFcrc 1 (x‘

0.6

Q
y 0.4

0.2

0 100 200 300 400 500 600 700 800
Reuse Distance

Figure 5.2: CCDF’s in a 16-FE System with the LDestIP Trace

The above observations are abstracted and shown in [70] as the “Partitioning Non-

El armful” theorem which says that the expected hit ratio in a partitioned mapping (e.g.,

hashing) is greater than or equal to that in a non-partitioned mapping (e.g., round-robin).

5.2 Impact of Scheduling Schemes on Per-Processor Lo
cality

Besides the improvement in temporal locality with hash-scheduling, we observed that the

hash-dispatched workload in terms of packets is not the same for all processors in a parallel

forwarding system. In this section, we explain the problem qualitatively. For hashing

schemes, we use CRC as an example.

As shown in Table 5.1, under either CRC-hashing or Round-Robin, each FE sees a

similar number of flows, although overall, the number of flows seen by an FE under hashing

is significantly smaller than that under RR. The total number of flows in the UofA trace

is 5861. Under RR, the number of packets seen at each FE is the same. However, under

hashing, the number of packets seen at FE1 is more than twice that seen at FE2. In other

words, the load under RR is perfectly balanced but skewed under hashing. The problem is

that although hashing divides the number of flows almost evenly among FE’s, due to the

difference in flow rates, the numbers of packets processed by different FE’s can differ from

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.1: No. of Flows vs. No. of Packets Seen at Each FE (UofA Trace, 4 FE’s)

Hashing
FE No. of Flows No. of Packets
1 1473 385801
2 1436 174544
3 1525 213375
4 1427 226273

Round-Robin
FE No. of Flows No. of Packets
1 4282 249998
2 4268 249999
3 4303 249998
4 4258 249998

each other.

Sarvotham et al. [61] class Internet traffic flows into alpha and beta traffic, where alpha

traffic “is caused by large file transmissions over high-bandwidth links and is extremely

bursty” and beta traffic is caused by file transmission over low-bandwidth links. When an

alpha flow exists in the workload, under hashing, all packets of that flow will be dispatched

to one particular FE. There are relatively few alpha flows compared to the number of beta

flows, but when one alpha flow is scheduled to an FE, this FE has many more packets to

process than another FE processing only short-lived and low-volume beta flows.

In a system where no cache is used, the observed skewness in workload distribution for the

processors creates a load imbalance which can significantly reduce the system utilization and

overall performance. However, as will be discussed in the rest of this section, per-processor

locality measurements show that better temporal locality exists in the workload for the most

loaded processor.

Fig. 5.3 shows the CCDF curves for the workload for each processor in a 4-FE system.

They are plotted on a log-log scale to emphasize the differences between the curves under

either scheduling scheme, CRC or Round-Robin. The Round-Robin curves (RRO-3) do not

show noticeable difference from each other. However, the CRC curves differ from each other,

with CRCO seemingly in its own class. The other three curves under CRC, i.e., CRC1-3,

are much closer to each other, but still distinguishable, for example, CRC3 is lower than

the other two.

Generally speaking, under hash-scheduling, it seems that the workload for heavier loaded

FE ’s has better temporal locality than that for relatively lightly loaded ones. This is con-

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CRCG------
CRC1
C R C 2------
CRC3 - - •

R R Q ------
RR1 • •

v RR2 — -

0.1

0.01

Q 0.001UU

0.0001

le -0 5

le -0 6
100001000100

Reuse Distance

Figure 5.3: Impact of Scheduling on Per Processor Locality (UofA Trace with 4 FE’s)

sistent with the results shown in Table 5.1 and Fig. 5.3. The implication is that under

hash-scheduling, caching is not only effective in improving overall forwarding performance,

but is also helpful in mitigating load-imbalance as a result of hashing. In other words, with

a cache taking advantage of locality differences in the workload, the more heavily loaded an

FE, the more efficient it becomes.

5.3 Simulations

Based on the discussion in the previous section, we can expect that in a parallel forwarding

system with a hash-based scheduler, caching would be an effective way to improve system

performance. Moreover, differences in temporal locality in per-processor workloads indicate

that caching could also be helpful in mitigating load imbalance. In this section, we describe

the simulations we conducted to verify these ideas. Simulations are simplified by the as

sumption that only routing table lookup operations are performed by the FE’s. It is further

assumed that the system has an infinite buffer that stores the incoming packets. Finally,

the cache replacement algorithm is assumed to be LRU.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 .3 .1 M etr ic s

We first consider system throughput T as the metric which is measured in terms of number

of packets forwarded during some unit time period:

T - N
T<i(p n) - Te(pi)

where

• N is the number of packets.

• TdQ returns the time when a packet is dequeued.

• Te() returns the time when a packet is scheduled for lookup.

• p i ,p 2 , Pn are the packets in their arrival order.

The cost of a route lookup for a destination IP address depends on the cache state.

When the route is in the cache, it takes T/, to finish the lookup. When the route is not in

the cache, the time is Tm which includes plus the cache miss penalty. All the variables

measuring time will be expressed in terms of Tm and T/,. Tm/Th is usually much larger than

1. For example, for the BBN multigigabit router [113], it is at least 5. As the speed gap

between off-chip memory and CPU widens, this ratio will become much larger. For example,

in [114], it takes the ^Engine 30 cycles to transfer a word both to and from memory. Even

with hardware assistance, it takes 30 cycles to finish an IP lookup.

We use the coefficient of variation (CV) (Eq. 4.2) described in Section 4.3 to measure

load imbalance.

5.3.2 Results

Table 5.2a shows the simulation results for a 4-FE system for the two traces. In both

cases, a small amount of cache (4 entries in the UofA trace and 8 in the LDestIP trace)

doubles the throughput. The differences between the results for the two traces are due to

the peculiarities of each trace, for example, the composition of the trace a t the flow level.

Before showing the results for the effect of caching on CV, we should note that with the

hashing scheme fixed, the composition of traces in terms of flow rates affects the value of

CV. Generally, the more skewed the flow rate distribution, i.e., the more dominant a few

flows are in the trace, the larger the value of C V . To give an appreciation of the flow rate

composition of the two traces, Table 5.3 lists the largest 10 flows in each.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.2: Simulation Results (Tm = 67),)

Cache Size
(Entries)

CV
UofA LDestIP

0 0.621621 0.146373
1 0.492448 0.124491
2 0.393326 0.113517
4 0.325211 0.105923
8 0-320008 0.101943
16 0.297577 0.106039
32 0.317192 0.131886
64 0.405188 0.117430
128 0.565930 0.127425
256 0.595407 0.129325
512 0.603497 0.132768
1024 0.604258 0.137589
2048 0.604258 0.139844

Cache Size Performance(Pfcts/T/,)
(Entries) UofA LDestIP
0 0.431999 0.590651
1 0.606034 0.708440
2 0.727566 0.773254
4 0.867115 0.843081
8 0.956509 0.921658
16 1.040634 1.038129
32 1.227534 1.222992
64 1.481491 1.602527
128 1.927787 2.328812
256 2.415757 2.727164
512 2.515509 3.131331
1024 2.540820 3.262716
2048 2.543437 3.359013

a. Forwarding Performance (4FE) b. Load Balancing (8FE)

Table 5.3: High Rate Flows in the Traces

Trace UofA LDestIP
No. of Pkts 999,993 31,518,464
No. of Flows 5,861 130,163
No. of Pkts
in 10
Largest
Flows

158,707 (15.9%)
24,245 (2.4%)
20,769 (2.1%)
17,482 (1.7%)
15,146 (1.5%)
14,305 (1.4%)
13,308 (1.3%)
12,348 (1.2%)
12,028 (1.2%)
11,824 (1.1%)

1,183,834(3.7%)
581,495 (1.8%)
524,542 (1.7%)
235,363 (0.7%)
212,150 (0.7%)
168,384 (0.5%)
160,798 (0.5%)
138,657 (0.5%)
125,531 (0.5%)
125,389 (0.5%)

Table 5.2b shows the simulation results for an 8-FE system. Generally, caches of all sizes

help to reduce the CV. However, it is apparent that certain cache sizes are optimal. For

the UofA trace, the optimal size is 16 entries and for the LDestIP trace, it is 32. As cache

size increases, caching tends to be less beneficial in terms of helping balancing the load. In

the extreme case that there are only compulsory misses, the CV approaches a fixed value.

This is the case with the UofA trace (see also Table 5.1 for the number of flows for each

FE.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Summary

We have Investigated the effects of two packet dispatching schemes, round robin and hashing,

on the temporal locality in the scheduled workload. RR dispatches packets belonging to the

same flow over multiple FE’s, and thus reduces temporal locality in the workload seen by an

FE. On the other hand, good hashing algorithms evenly divide the flow identifier space and

assign each flow to an FE. As a result, hashing improves temporal locality in the workload

of individual FE’s simply by reducing the number of different flows an FE has to process.

Our findings indicate that, under hashing packet distribution, caching in forwarding engines

is effective.

We also study the temporal locality differences in the workloads of different FE’s under

a hashing scheduling. We have found that although high-rate flows dispatched to an FE

tend to overload the processor, they also improve the temporal locality in its workload. This

effect can mitigate load imbalance in a parallel forwarding system.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Parallel Forwarding System
Load Balancing

Essential to the performance of a multi-FE system like the one in Fig. 2.2 is the scheduler

that dispatches incoming packets to the FE’s. It is necessary for the scheduler to distribute

workloads in a balanced manner so that the system can achieve its full forwarding potential.

In this chapter, we divide a scheduler into two function units: the load splitter and the

balancer/adapter. The former implements a general packet distribution policy and the latter

is invoked when necessary to adjust the load distribution to improve the load balance.

In some scheduling schemes, the two functions are naturally integrated. For example,

workload may be distributed in a round-robin fashion, or an incoming packet can be delivered

to the FE that is least-loaded. Such schemes schedule workload at the packet level and

are not appropriate for IP forwarding for two reasons. First, reordering of packets from

individual TCP connections easily occurs in these schemes. Packet reordering within a

TCP connection can give TCP a false congestion signal and be detrimental to end-to-end

system performance [74, 73]. The second reason is that these schemes are not efficient in

FE cache utilization [75]: by dispatching packets from the same flow to different FE’s, these

schemes leave copies of identical data in the caches of the individual FE ’s.

Hashing is a popular means to distribute load [115, 70, 76, 79, 80, 81, 78] in network

systems. It is used in parallel IP forwarding systems because, in contrast to round-robin or

minimum-load mapping, it is able to maintain packet order in individual TCP connections.

Hashing operates at the flow level. The scheduler typically selects one or more header fields

of an incoming IP packet, e.g., the destination address (DA), the source address (SA), the

destination port (DP), the source port (SP), and the transport layer protocol number (PN).

These fields define a flow and are fed as a key to a hash function; the return value is used to

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decide the target FE that the packet should be forwarded to. Since the selected fields remain

constant for all the packets transmitted over a TCP connection, the target FE selected is

the same and therefore packet order within individual TCP connections is maintained. In

addition, since packets from one flow are directed sequentially to the same FE instead of

scattered over several FE’s, a hashing scheme is efficient in cache utilization [75].

Hashing alone, however, is not able to balance workloads under highly variable Internet

traffic. Adaptive schemes are needed to accommodate the burstiness and the presence of

extremely large flows [79, 80, 78]. According to our terminology, in a load scheduler, the

splitter implements the hashing scheme and the balancer/adapter implements load adjust

ment. We call such a scheduler hash-based.

In this chapter,

• first, by characterizing a wide range of IP traces, we trace the sources of load imbalance

in a hash-based scheduler. We show that due to highly skewed Internet flow popularity

distributions, hashing alone cannot achieve load balance.

• second, we introduce a new metric, adaptation disruption, to measure the efficiency

of adaptive load balancing schemes. For a system to achieve a high forwarding rate,

disruption to FE caches, caused by load adaptation, should be as small as possible.

• last, we develop a highly efficient load balancer which, compared with state-of-the-art

scheduling schemes, is unique in capitalizing on flow-level Internet traffic characteris

tics. The balancer implements an adaptation algorithm that shifts only high-rate flows

to balance workload among FE’s. This design is inspired by IP traffic characterization

and the goal to achieve minimum adaptation disruption.

In Section 6.1, we present the system model that this study targets and introduce no

tations used throughout the chapter. Section 6.2 discusses three sources of load imbalance

in a hash-based load distribution scheme. In this section, we show that generally, hashing

alone cannot balance workload given Zipf-like flow popularity distributions. We introduce

the concept of adaptation disruption and describe the load balancer design in Section 6.3.

A critical step in our load balancer is the detection of high-rate Internet flows, which is dis

cussed in Section 6.4. Section 6.5 presents simulation results for three adaptation policies

under varying design parameters. Section 6.6 concludes this chapter and discusses future

directions.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 System M odel

We consider a parallel forwarding system where M FE’s {FEi, . . . , FEm) process packets

dispatched from the scheduler. A packet destined to FEi is processed at once if FEi is idle;

otherwise, it is stored in a shared buffer of size B (in packets) in front of the FE’s. Logically,

the packet is also appended to the input queue, Qi, of FEi. No limits are imposed on queue

lengths; only the buffer size is fixed.

The hash-based load splitter maps the incoming flows onto the individual FE’s. The

mapping scheme is a function H that establishes relationships between two sets, the set of

flow identifiers S and the set of FE indices. That is

A flow identifier is defined as a vector of one or more fields of a packet header that remain

the same for all the packets in the flow. It can be one or a combination of DA, SA, DP,

SP, PN. We use the destination IP addresses of incoming packets as flow identifiers in this

chapter. This is a coarser level of aggregation than the popular definition of a flow, identified

by the five-tuple, {DA, DP, SA, SP, PN}. The justification here is that DA sequences

represent workload for major forwarding algorithms, e.g., routing table lookup and filtering.

Thus, S contains all the possible destination IP addresses and the notion of flow popularity

distribution is equivalent to that of address popularity distribution. Hereafter, we sometimes

use destination addresses to refer to flows and it should be clear from context.

The processing power of FEi is defined as its service rate p,. The total processing power

is fi = M»- The packet arrival rate at FEi is A* which is determined by the aggregate

arrival rate A (A = Y^iLi A») and the mapping scheme F. In this chapter, we consider only

Mi = i f , for 1 < i < M.

6.2 Sources of Load Imbalance

We discuss three sources of load imbalance in a hash-based traffic splitting scheme.

6.2.1 Hash Function

The mapping scheme F has to be able to generate uniformly distributed random FE identi

fiers for the source set S. The result is that, on average, K /M flows are mapped to each FE.

Although for a non-random input, it is theoretically impossible to define a hash function

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that generates random output, it is not difficult in practice to find a scheme that approx

imates random data generation [116]. Jain [115] and Gao et al. [76] have found that the

Internet checksum algorithm and the CRC over the five-tuple {DA, SA, DP, SP, PN} give

good random outputs.

6 .2 .2 Bwrstiness o f I n te r n e t Traffic

Packet network flows are known to be bursty, i.e., packets of a flow travel in groups [18]. A

large number of packets from one flow arriving at one FE in a short period can swamp the

processor. At the same time, other FE’s may be idling. The bursty nature of Internet traffic

can lead to temporary load imbalance and cause packet dropping. Aside from adjusting flow

mappings adaptively, buffering and provisioning are the common practices to accommodate

bursty packet arrivals.

6.2.3 Skewed Flow Size Distribution

In this section, we extend the discussion on skewed Internet flow popularity distributions

in Chapter 4 and show that load distribution schemes based on hash only cannot balance

workloads in the Internet environment.

F low -level Internet Traffic C haracteristics

Table 6.1: Traces Used in Experiments
Trace Length (entries) Description
FUNET 100,000 A destination address trace which is used in evaluating the LC-trie

routing table lookup algorithm in [13] from Finnish University and
Research Network (FUNET).

UofA 1,000,000 A 71-second packet header trace recorded in 2001 at the gateway
connecting the University of Alberta campus network to the Inter
net backbone.

Auck4 4,504,396 A 5-hour packet header trace from National Laboratory of Applied
Network Research (NLANR) [93]. This is one from a set of traces
(AuckIV) captured at the University of Auckland Internet uplink
by the WAND research group between February and April 2000.

SDSC 31,518,464 A 2.7-hour packet header trace from NLANR. Extracted from out
going traffic at San Diego Supercomputer Center (SDSC) around
the year 2000.

IPLS 44,765,243 A 2-hour packet header trace from NLANR. This is from a set
of traces (Abilene-I) collected from an OC48c Packet-over-SONET
links at the Indianapolis router node.

To study flow-level Internet traffic characteristics, we have experimented with traces

collected from networks ranging from campus to major Internet backbones. We show the

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.2: High Rate Flows in the Traces

Trace FUNET Auck4 IPLS
No. of 8,233 (8.2%) 640,730 (14.2%) 2,788,273 (6.2%)
Pkts 7,424 (7.4%) 440,149 (9.8%) 944,253 (2.1%)
(Percent) 2,971 (3.0%) 196,513 (4.4%) 919,088 (2.1%)

2,470 (2.5%) 194,757 (4.3%) 808,773 (1.8%)
2,298 (2.3%) 186,095 (4.1%) 732,339 (1.6%)
1,614 (1.6%) 177,388 (3.9%) 582,367 (1.3%)
1,387 (1.4%) 135,286 (3.0%) 570,316 (1.3%)
1,317 (1.3%) 135,033 (3.0%) 510,043 (1.1%)
1,309 (1.3%) 132,812 (2.9%) 473,562 (1.1%)
1,258 (1.3%) 104,716 (2.3%) 470,072 (1.1%)

le+07
FUNET ------

UofA
A uck4------
SDSC - • ■

IP L S -----
le+06

100000

10000oCo
3cr
P£ 1000

100

100 1000
Rank

10000 100000 le+06

Figure 6.1: IP Address Popularity Distribution Follows Zipf’s Law

results for three traces (see Table 6.1). The address popularity distributions in these traces

are shown in Fig. 6.1. We match each curve by a straight line, i.e., a Zipf-like function,

in the log-log plot. The slopes fit for the five traces, SDSC, FUNET, UofA, IPLS, and

Auck4, are -0.90-5, -0.929, -1.04, -1.21, and -1.66, respectively. Common to all traces is the

presence of several popular addresses dominating a large number of less popular addresses.

Table 6.2 shows the number of packets in the ten most popular flows of three traces (the

statistics for the other two traces can be found in Table 5.3). This common phenomenon is

the motivation of the load balancing scheme developed in this chapter.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I m p l ic a t io n s fo r L o ad B a la n c in g

The flow popularity distribution adds another dimension to the load balancing problem.

In [76], it is realized that “long packet trains will have negative effects on traffic splitting

adaptive load monitoring mechanisms, which forms the basis for the load balancing scheme

described in [79].

While hashing may manage to balance workloads in the average sense when the flow

popularity distribution is homogeneous, i.e., with a finite variance, as proved for HRW in

[70], it cannot when the distribution is so skewed that the coefficient of variation (CV) is

infinite.

Let K be the number of distinct addresses, i.e., the size of S. Let Pi (0 < * < K) be

the popularity of address i and let qj (0 < j < M) be the number of distinct addresses

distributed to FE j . It is derived in [70] that HRW, or any hash function tha t generates

uniformly distributed random numbers over its hash key space, distributes workloads in a

balanced way. This occurs when the load imbalance of the system, expressed as the CV of

q i-

approaches zero as K and the number of packets approach infinity. The condition here is

that CV\pi) should be finite.

The discrete-form probability density function (PDF) of a Zipf-like distribution (Eq. 2.2)

performance” , and “traffic splitting is significantly harder when there is a small number of

large flows.” Their solution is a table-based hashing scheme where mapping can be tuned by

cv[qi? = (6.1)

P (X = i) = ~ r a i — 1 ,2 , . . . , K, a > 1 (6.2)

where Z is a normalizing constant:

(6.3)

Given that the average popularity of the K objects, E\pi], is we have

(6.4)

E\pfl - E fp i f
E M 2

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Substituting the CV\pi\2 in Eq. 6.1, we have

i ’ f h ' * ' (6-5)

As a > 1 and K —> oo, items Z and YliLi converge, and thus C V [q i]2 is non-zero.

Zipf-like distributions (Eq. 2.2) are known to have infinite variance when a < 3 and infinite

mean when a < 2. This is the reason that a hash-based scheme, such as HRW [70], is not

able to achieve load balancing when the population distribution of objects in its input space,

in our case destination IP addresses, is Zipf-like.

6.3 Load Balancer

In addition to general desirable features for load-splitting schemes, to measure the efficiency

of adaptive load balancing schemes, we introduce the concept of adaptation disruption.

Minimizing this metric is achieved by scheduling only high-rate flows.

6.3.1 Goals

The goals of load-splitting algorithms [70] for Web proxy cache systems apply for the packet

schedulers in parallel forwarding systems. First, the scheduler shown in Fig. 2.2 is in the

data forwarding path and therefore should be as efficient as possible to reduce delay. Second,

load balancing is crucial for the system to achieve its full forwarding potential. As discussed

in Section 6.2, hashing alone cannot achieve load balancing; it is therefore necessary for the

scheduler to monitor the workloads on the FE’s and perform adjustments at appropriate

times. Third, since each FE usually has its own local fast storage functioning like cache,

higher hit ratio is desirable. FE cache hit ratio is mainly determined by temporal locality in

IP traffic. Scheduling schemes have a big impact on temporal locality seen at each FE [75].

Finally, the system has to be fault-tolerant to provide reliability and graceful degradation

when one or more FE’s fail.

Typically, when a system is unbalanced to some degree, the adaptation mechanism will

be triggered to make adjustments to the mapping from the system’s input to output [79, 80].

The result is that some flows will be shifted from the most loaded processors to less loaded

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ones. When remapping happens, it is desirable that the number of flows shifted is small to

cause minimum disruption to FE caches.

Most state-of-the-art schedulers migrate flows without considering their rates, but this is

ineffective. The probability of shifting low-rate flows is high since there are many of them.

Shifting these flows does not help re-balance the system much, and causes unnecessary

disruption. The high-rate flows are few so it is unlikely that they would be shifted, but it

is usually these flows that cause trouble [117]. While the scheduler is busy shifting low-rate

flows, the high-rate ones keep swamping the overloaded processor(s).

Thus in a hash-based parallel forwarding system, another feature is desirable; we call

it minimum adaptation disruption (MAD). In adaptation, migration of flows from one FE

to another renders some previously cached data in the source FE useless and causes cold

start in the target FE’s cache. We call this phenomenon adaptation disruption. Obviously,

flow migration is harmful to forwarding performance and should be done as infrequently as

possible. At the same time, when migrating, the number of flows to be shifted should also

be minimized. For N p packets forwarded, adaptation disruption, denoted by C? is defined

as follows:

C = <M>

where N s is the number of flow-shifts.

Note that minimum adaptation disruption is different from the minimum disruption in

HRW which describes the desirable behavior of a distributed system in the face of partial

failure. Redirecting only flows for a failed FE causes least disruption to the states of other

FE’s. Adaptation disruption, on the other hand, is caused by flow migrations among FE ’s

as a result of load balancing efforts. It measures the degree of disturbance to cache during

forwarding. As the performance gap between computer processor and memory keeps widen

ing, it is important for an adaptive scheduler to achieve MAD to maintain overall forwarding

performance.

In addition, MAD is also desirable for maintaining packet order within TCP connections.

When flows are shifted from a heavily loaded FE to a less loaded one as the result of adaptive

load balancing, it is hard to maintain the original packet order for these flows. Packets of

the shifted flows arriving after the migration are very likely forwarded before some previous

packets that still wait in the queue of the previously heavily loaded FE. For this reason,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IP Traffic

Load
Adapter

Flow
Classifier

Selector
Hash

Splitter

Input Queues

ToFE’s

Figure 6.2: Load Balancing Packet Scheduler

minimizing adaptation disruption also minimizes the occurrence of packet reordering, which

is important for maintaining end-to-end TCP performance.

6.3.2 Design

The Zipf-like flow popularity distribution and, in particular, the small number of very pop

ular addresses, indicate that scheduling high-rate flows should be effective in balancing

workloads among parallel forwarding processors. Since there are few high-rate flows, the

adaptation disruption should be small. Our scheduler design takes advantage of this ob

servation and divides Internet flows into two categories: the high-rate and the normal. By

applying different forwarding policies to the two classes of flows, the scheduler achieves load

balancing effectively and efficiently.

Fig. 6.2 shows the design of our packet scheduler. When the system is in a balanced

state, packets flow through the hash splitter to be assigned to an FE. When the system

is unbalanced, the load adapter may decide to override the decisions of the hash splitter.

When making its decisions, the load adapter refers to a table of high-rate flows developed

by the flow classifier.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The hash splitter uses the packet’s destination address as input to a hash function. The

packet is assigned to the FE whose identifier is returned by the hash function. There are

several possible choices for the hash function. For example, the function could use the

low order bits of the address and calculate the FE as the modulus of the number of FE ’s.

Alternatively, HRW could be used to minimize disruption in the case of FE failures.

The load adapter becomes active when the system is unbalanced. The load adapter

checks each passing packet to see whether it belongs to one of the high-rate flows identified

by the classifier. If the packet belongs to one of these flows, the load adapter sets it to be

forwarded to the FE that is least loaded at that instant. Any forwarding decisions made

by the load adapter override those from the hash splitter; the selector gives priority to the

decisions of the load adapter. In this sense, the hash splitter decides the default target FE

for every flow.

As noted above, the load balancer functions only when the system is unbalanced. Peri

odically, the system is checked and if it is unbalanced, the load balancer is activated: the

least loaded (possibly idle) FE is identified and the high-rate flows are shifted to it from

their default FE’s decided by the hash splitter. Later if, as a result of the adaptation, the

system becomes balanced, the balancer is inactivated and consequently, the high-rate flows

are automatically shifted back to their default FE’s. After the system becomes balanced, it

is not desirable to keep these high-rate flows mapped to the FE decided by the balancer be

cause even though they can be used very effectively to balance workloads, they can quickly

swamp the FE and cause load imbalance again.

An important design parameter is F, the size of the balancer’s flow table. Generally,

shifting more high-rate flows, i.e., having more flows in the table, is more effective as far

as load balancing is concerned. Nevertheless, to reduce cost, speedup the lookup operation,

and minimize adaptation disruption, the flow table should be as small as possible.

Another component in the system that is critical to the success of the load balancing

scheme described above is the flow classifier (See Fig. 6.2). The flow classifier monitors the

incoming traffic to decide which flows are high-rate flows and should be put in the balancer’s

flow table. We discuss in detail the high-rate flow identification procedure in Section 6.4.

6.3.3 Triggering Policies

The adapter implements the scheduling scheme that decides when to remap flows (the

triggering policy), which flows to remap, and where to direct the packets. To effectively

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

achieve load balancing with minimum adaptation disruption, the adapter only schedules

packets in the largest flows. Packets in the smaller flows are mapped to FE’s by the hash

scheduler.

There are multiple choices for deciding when the adapter should be activated to redirect

packets. For example, the adapter can be invoked periodically, i.e., triggered by a clock after

every fixed period of time. This scheme is easy to implement, as it does not require any

load information from the system. It may not be efficient, however, as far as minimizing

adaptation disruption is concerned since It could shift load unnecessarily, i.e., when the

system is not unbalanced.

The adapter can also monitor the lengths of the input queues, using them as indicators

of the workloads of the FE’s. Remapping can be triggered by events indicating that the

system is unbalanced to some degree, based on the input buffer occupancy, the largest

queue length, or the CV of the queue length growing above some pre-defined threshold.

The system load condition could be checked at every packet arrival. This overhead can be

reduced by periodic checking. We simulate several triggering policies in Section 6.5.

As another design dimension, the remapping policy decides to which processor(s) the

largest flows should be migrated. One solution is to redirect all the largest flows to the

shortest queue.

6.4 D etecting High-rate Flows

In this section, we describe the mechanism used in the flow classifier to identify high-rate

flows.

6.4.1 Definition of High-rate Flows

We define high-rate as flows that are both large and fast; these are the source of long-term

load imbalance and are most effective when shifted to balance load. These flows are similar

to the alpha flows in [61]. In addition, taking the bursty nature of Internet traffic into

consideration, we also classify flows that are smaller in size but are fast enough to cause

short-term load Imbalance or buffer-overflow as high-rate flows.

It is pointed out in [65] that flow size and lifetime are independent dimensions. There

might be correlation between flow size and rate but generally, the notion of long-lived flows in

most previous studies is not accurate for our purposes. As a result, short-cut establishment

triggering [118] for long-lived flows cannot be used to detect high-rate flows. Instead, we

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

need a mechanism that takes into account both the number of packets and the length of

time during which the packets arrive.

6.4.2 D e te c t in g High-rate F lo w s

We define window size, W , as the number of packets over which flow information is collected.

Therefore, the incoming IP traffic is a sequence of windows: Wi, W-i, . . . , W„, n —> oo, each

containing W packets. Suppose we are receiving packets in Wi. We find the set Fi that

contains the largest flows in W i. The number of flows in Fi equals the size of the flow table,

F, |Fj| = F. Fq = {}. At the end of Wi, we replace the flows in the flow table by those in

Fi. This mechanism benefits from the phenomenon of temporal locality in network traffic.

Due to the packet train [18] behavior of network flows, it is highly possible that flows in Fi

are also some of the largest ones over the next W packets. That is Fi fl Fi+i ^ {}.

Let = \Fi-i n jFj|. To measure the effect of W on the continuity of the content of the

flow table due to temporal locality, we define

Thus, 0 < A < 1. The larger the value of A, the better flow information collected in the

current window predicts high-rate flows for the next window.

Small W values are preferred when the input buffer size is small and load adjustment

must be made to reflect the existence of smaller scale, short-term bursty flows. Larger

W values can be used for larger buffers where the system can tolerate the load imbalance

caused by bursts of small flows. Fig. 6.3 shows the effects of W on A for the first one million

entries of the four larger traces in Table 6.1 with F — 5. The larger the value of W , the

better the current high-rate flows predict the future. This high predictability is critical to

the success of the flow classifier. Despite the window size, however, experiments show that,

the largest flow of the entire trace is almost always identified as the largest flow of every

window (the smallest W experimented with is 100). And we will see that shifting even only

the one largest flow is very effective in balancing workloads.

To implement high-rate flow detection, another traffic model, the hyperbolic footprint

curve [36, 37]:

(6.7)
n

where

u{W) = A W 1/ 9, A > 0, 9 > 1, (6.8)

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.9

0.7

0.6

Q 0.5

0.4

IPLS —
UofA
SDSC - - -
Auck4 ,• • ■

0.3

0.2
1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

Window Size (Pkts)

Figure 6.3: Effects of W on A (F = 5)

Table 6.3: Arrival Rates (No. of Packets/Second) of Four Traces
IPLS UofA SDSC Auck4
74,608.742 14,007.337 3,210.378 251.394

could be used to relate the W to the total number of flows expected for W packets, u(W).

6.5 Simulations

In this section, we conduct trace-driven simulations of an eight-FE system under static hash

mapping and adaptive load balancing schemes. In the former, packets are directed to the

FE ’s by the hash splitter only and the results serve as performance bounds for the adaptive

load balancing scheme. For the latter, we simulate three adaptation triggering policies for

the balancer.

6.5.1 Trace Driven Simulation

The average packet arrival rates (A) are measured for the four larger traces (Table 6.3 1).

IP traffic is well known for its large variability; here A serves only as a gross estimation and

is used to derive the service rates for the FE ’s given some system utilization p:

P-i = t = l , . . . , M . (6.9)
P

- * T h e F U N E T t r a c e d o e s n o t h a v e a r r i v a l t i m e s t a m p i n f o r m a t i o n .

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Given a trace (so that A is fixed) and an overall service rate (p), parameters that have

major effects on system performance include: the input buffer size B, the number of FE’s

(M), the number of high-rate flows in the flow table, F, the adaptation policy, and classifier

window size W . We are mainly concerned, however, about the effects of scheduling policies

and the input buffer size (B) on two performance metrics: the packet loss rate (77) and the

adaptation disruption (£). Throughout the simulations, M = 8, p = .8, and W = 1000.

6.5.2 Hash Splitter

The hash splitter implements a modulo operation to dispatch a packet, i.e.,

H {IP Address) = {IPAddress)%M

where % is the modulo operation and M is the number of FE’s. This is equivalent to

retrieving the least significant log2{M) bits of the IP address, which is deprecated in [116] as

easily leading to significant bias, especially when M is a power of the radix of the computer.

According to the study of hash function performance in [76], however, the low order bits in

source and destination IP addresses tend to be more random than the high order bits.

This is another advantage of scheduling high-rate flows: we do not need to use complex

hash functions to generate perfectly uniformly distributed random FE identifiers. The reason

is that there are many low-rate flows but their contribution is insignificant compared with

that of a few high-rate flows. Uniform distribution of the hash return values is not important

as far as load balancing is concerned. As a result, our scheduling scheme is capable of

balancing the load with low-complexity and efficient hash splitter implementations.

6.5.3 Triggering Policies

We tested three triggering policies:

• Periodic Mapping (PM): The adapter schedules high-rate flows periodically (after each

interval of P packets), regardless of system load situation.

• Buffer Occupancy Threshold (BOT): The adapter is invoked if the buffer is filled above

some percentage. The term buffer refers to the physical shared storage for all FE ’s.

• Maximum Queue Length Threshold (MQLT): The adapter is invoked if the length of

the largest queue grows above some pre-defined threshold, also expressed as a per

centage of the total buffer size. The term queue refers to the logical input queue that

holds the incoming packets for an individual FE.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For comparison purposes, we also simulated hash-based load splitting without adapta

tion. For BOT and MQLT, periodic checking of the system workload condition is implied;

for comparison purposes, we would assume this period is the same as that in PM. Thus, the

results for PM set upper bounds on the frequency by which the high-rate flows are shifted

from one FE to another and the amount of adaptation disruption for BOT and MQLT.

6.5.4 Adaptation Disruption

Two sources in our load balancing scheduler contribute most to adaptation disruption (AD).

First is the decision of the adapter to re-map high-rate flows to the least loaded FE. If

the flows in the flow table are not currently destined to the target FE, flow-shifts occur. We

call this type of flow-shift explicit disruption (ED). ED ~ TV’s * F. For the PM balancing

policy, the number of flow-shifts is the length of the trace divided by the period P. For

BOT and MQLT, this number should be smaller since the balancer is not always activated.

Second, after processing a window of packets, the flow' classifier replaces the content of the

current flow table with the largest flows calculated during the past window. This implicitly

moves the flows that were not in the table from their current destination FE, determined by

the hash splitter, to the FE decided by the adapter and, at the same time, shifts the replaced

flows to the FE ’s determined by the splitter. Flow-shifting caused by the flow classifier is

called implicit disruption (ID). When the classifier updates the content of the flow table at

the end of window i, the total number of flows to be shifted is |F)_i UFj| — |Fj_i n F | . For

the PM balancing policy,

n
ID = u F M F U n F I

i=1

For the other two adaptive policies, the balancer is not always on, and therefore their ID

values should be smaller.

In addition, when the system is balanced and the adapter is inactive, the high-rate flows

are shifted back from the balancer-decided FE to their splitter-decided default FE ’s, causing

disruptions to the FE’s involved.

6.5.5 Packet Reordering

Adaptive load balancing in hash-based distribution schemes comes at the price of packet

reordering. Whenever a flow is shifted from a busy FE to a less loaded one, there is the

risk of packet reordering within this flow. Therefore, the sources of adaptation disruption

9-5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.4
No Adaptation

PM -
0.35 BOT

MQLT

0.3 ! - \ -

0.25

0.2CLo
Q

0.1

0.05

0
0 200 400 600 800 1000

Buffer Size (Packets)

Figure 6.4: Drop Rate vs. Buffer Size (For PM, BOT, and MQLT, the system load condition
checking is done every 20 packets. For BOT, the threshold is 80 percent of the buffer size.
For the MQLT, the threshold is 30 percent of the buffer size. There are eight FE’s and the
system utilization p = 0.8. For this simulation, the number of high-rate flows in the flow
table is 1.

are also the sources of potential packet reordering. Shifting a few high-rate flows minimizes

adaptation disruption and for the same reason, causes less packet reordering than adaptation

schemes that shift flows with no regard to their rates.

Let Li be a flow in a trace, where 0 < i < |S| and S is the set that contains all the flows

in the trace. Let P ij be a packet in Li, where 0 < j < Ni and Ni is the number of packets

in Li. Let T ij be the time that the packet P ij is observed. At the input port, T,-j

0 < j < Ni. At the output port, however, due to possible packet reordering, T \j might be

larger than T jj+ i. If

6.5.6 Simulation Results

Fig. 6.4 shows packet drop rates of different adaptation policies under varying buffer sizes

for the UofA trace. The hash-only scheme (no adaptation) has the highest drop rate and,

1 i f T ij > T ij+i
0 otherwise

then the packet reordering rate R r for Np packets forwarded is

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.06

0.05

§ 0.04
P»
aCO
s 0.03 cO
"c3
S' 0.02
<

0.01

0
0 200 400 600 800 1000

Buffer Size (Packets)

Figure 6.5: Adaptation Disruption vs. Buffer Size (The same setting with Fig. 6.4)

moreover, increasing buffer size does not help. This is because the trace is short and thus

variability in arrival rate is small. On the other hand, the three adaptation schemes all

respond positively to buffer increases and beyond certain buffer sizes, the drop rates reach

zero. PM achieves the best drop rates compared to BOT and MQLT.

Fig. 6.5 shows that changes in buffer size have very slight effects on adaptation disruption

for the three adaptation schemes, except when the sizes are small. The hash-only policy

does not shift flows from one FE to another and therefore does not incur any adaptation

disruption. The PM strategy has the highest adaptation disruption and this explains why it

achieves the lowest drop rate: it re-maps the high-rate flow much more frequently than BOT

and MQLT. The difference in adaptation disruption between MQLT and BOT is small; it

seems that MQLT achieves lower drop rates (Fig. 6.4) than BOT at the cost of a little more

adaption disruption.

An important parameter of the adaptation policies is the checking period. It controls

the system’s responsiveness to load imbalance. The smaller the interval, the more quickly

the system responds to load imbalance; this leads to a lower packet drop rate. On the other

hand, system load checking is one of the major parts of the adaptation overhead and could

cause more adaptation disruption. Frequent load checking also consumes more CPU cycles.

Figs. 6.6 and 6.7 show how the checking interval affects drop rate and adaptation

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.02

MQLT

0.015

« 0.01

0.005

400 600
Checking Period (Packets)

1000

Figure 6.6: Drop Rate vs. Checking Period (The buffer size is 400 packets. The other
parameters are the same as those of Fig. 6.4)

0.05
PM

BOT
MQLT0.045

0.04

c 0.035 o
| - 0.03
•J1
S 0.025 c oSd 0.02

0.015

0.01

0.005
 1 —

2000 400 600 1000800
Checking Period (Packets)

Figure 6.7: Adaptation Disruption vs. Checking Period (The same setting as Fig. 6.6)

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.5
PM

BOT
MQLT0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
100 4 6 82

No. of High-rate Flows

Figure 6.8: The Effectiveness of Scheduling More High-rate Flows (The checking period is
20 and the buffer size is 400. The other parameters are the same with those in Fig. 6.4

disruption. Generally, the decrease in responsiveness to load imbalance leads to packet

dropping. Fig. 6.6 shows that compared with PM and MQLT, BOT (with 80 percent

occupancy threshold value) is more susceptible to checking period increases. Fig. 6.7 shows

that increasing the checking period is effective in reducing adaptation disruption.

Simulations with other traces show similar trends to the above results for the UofA trace.

Differences in scale are caused by the peculiarities of the largest flows in the individual traces.

For example, as shown in Table 6.2, the largest flow in the Auck4 trace is not significantly

larger than the second, which is unlike the UofA trace where a single largest flow dominates.

This implies that, for the Auck4 trace, scheduling only the one largest flow might not be

able to spread load evenly over multiple processors. This can be solved partly by adding

more flows into the flow table at the cost of degradation in adaptation disruption.

In the following simulations, we experiment with the Auck4 trace to study the effect

of scheduling more high-rate flows on packet drop rate, adaptation disruption, and packet

reordering. The results are shown in Figs. 6.8, 6.9, and 6.10. In each figure, the x axis

denotes the number of high-rate flows. That is, x = 1 represents the case when only the

largest flow in the trace is remapped to balance load; x = 2 means the largest two flows are

scheduled, and so on.

Fig. 6.8 shows the effectiveness of scheduling more high-rate flows in reducing drop rates

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.6
PM

BOT
MQLT

0.5

o 0.4
cL
2c/3
5 0.3 c .2
s
f 0-2
<

0.1

No. of High-rate Flows

Figure 6.9: The Effects of Scheduling More Flows on Adaptation Disruption (with the same
setting as Fig. 6.8)

0.25
PM

BOT
MQLT

0.2

0.15

0.1

0.05

0
80 2 4 6 10

No. of High-rate Flows

Figure 6.10: The Effects of Scheduling More Flows on Packet Reordering (with the same
setting as Fig. 6.8)

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.4: Comparison between Shifting Only the Largest Flow and Shifting Only Smaller
Ones

Simulation Auck4
LF

Auck4
SF

IPLS
LF

IPLS
SF

No. of Flows 1 37 1 439
CV[qi] .172 .265 .0782 .137
V .133 .133 .0103 0.0121
(.0413 1.84 .0357 22.2
R r .0612 .146 .00965 0.0626

Simulation SDSC
LF

SDSC
SF

UofA
LF

UofA
SF

No. of Flows
c v m

V
C
R r

1
.181
.0904
.0342
.00546

2
.164
.0749
.0714
.00740

1
.143
0
.0357
.00965

500
.288
0.103
25.2
0.0511

for the Auck4 trace for the three adaptive policies. It seems that for a given configuration,

beyond a certain number of high-rate flows, the benefit of scheduling more flows becomes

negligible. On the other hand, as shown in Fig. 6.9, adaptation disruption increases linearly

with the number of flows scheduled. Therefore, it is both important and desirable to limit

the number of flows in the flow table.

Fig. 6.10 shows simulation results of packet reordering rates for the Auck4 trace. Like

adaptation disruption, packet reordering is affected mainly by the number of flows shifted.

It is apparent from the figure that shifting a larger flow causes more packet reordering than

migrating a smaller one. This is different from adaptation disruption where each flow-shift

contributes the same to the overall disruption regardless of the nature of the individual flow.

To further illustrate the advantage of shifting the largest flows, we compare the results

of two simulations: scheduling only the largest flow (LF) and scheduling only smaller flows

(SF) to achieve similar drop rates as with LF. We simulate the PM policy with a 20-packet

checking period. Table 6.4 summarizes the results for four traces. W ith similar packet

drop rates (tj), scheduling the largest flow always causes less adaptation disruption (Q and

packet reorders (Er). For the Auck4, IPLS, UofA traces, scheduling the largest flow also

achieves a smaller CV[qi\. Unanimously, more than one smaller flows are needed to achieve

similar packet drop rates as scheduling the largest flow. The least number of smaller flows

needed is two, as in the SDSC case where scheduling smaller flows achieves a lower miss

ratio and CV[qi}. One reason might be that in the SDSC trace, the largest flows identified

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by the mechanism in Section 6.4 only accounts for a small portion of the total traffic, not

significant enough for the sdieduling-the-largest-flow strategy to outperform scheduling-the-

smaller-flows by a large margin. The other extreme is the UofA trace, where the largest flow

by itself represents around 16 per cent of the aggregate traffic; when it is scheduled onto an

FE, even if the rest of the traffic are spread evenly among the other seven FE’s (each 12 per

cent), the system is still not perfectly balanced.

It is important to note that the arrival rate A for the Auck4 trace (see Table 6.3) used

to decide the FE service rates (Eq. 6.9) in the simulations of Figs. 6.8, 6.9, and 6.10 is the

average rate over five hours. Arrival rates during shorter intervals may be much higher. For

example, the arrival rate for the first one million packets in the Auck4 trace is 1.3 times the

average rate. The service rate of the system, however, is only 1.25 times the average arrival

rate. In such situations, packet losses occur regardless of the scheduling scheme. Therefore,

under similar adaptation configurations, differences in arrival rate variability account for

different drop rates, adaptation disruption, and packet reordering rates, for different traces.

6.6 Summary

The highly skewed Internet flow popularity distribution has profound implications for In

ternet forwarding system design. First, we have shown in this chapter that the Zipf-like

flow popularity distribution, which has infinite mean and variance, is one of the major

sources of load imbalance in a hash-based packet dispatching scheme. Second, to measure

the efficiency of adaptive scheduling schemes, we introduce a new metric, the adaptation

disruption, which reflects the effect of adaptive algorithms on cache performance and is an

important touchstone for evaluating overall parallel forwarding system performance. Third,

flow-level Internet traffic characterization inspires the classification of flows into two cate

gories: the high-rate and the normal. By applying different scheduling policies to the two

classes, we have been able to build a highly effective and efficient scheduler that can be used

in parallel Internet forwarding devices.

Instead of migrating flows, regardless of their nature, from heavily load FE ’s to less

loaded ones, our scheduler shifts only a few high-rate flows when the system is unbalanced.

Manipulating these flows is effective because they are the major source of load imbalance. At

the same time, since their number is small, migrating these flows causes minimum adaptation

disruption to the FE’s cache. We expect much higher disruption in adaptive load balancing

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

schemes that do not take flow popularity distribution into account. Experiments show that

due to temporal locality in Internet traffic, the high-rate flows can be readily Identified,

which Indicates that the proposed load balancer Is highly feasible.

The data in Table 6.4 indicates that, as a increases, a larger number of smaller flows

must be scheduled in order to achieve the same packet drop rate as scheduling the largest

flow. Intuitively, as a increases, the largest flow contributes more to the aggregate traffic and

thus it is more effective in balancing workloads. Analytical work is underway to determine

the bounds of the number of the largest flows to schedule under the constraints of a and

performance requirements of load balancing, adaptation disruption, and packet reordering.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusions and Future Work

The phenomenal development of the Internet poses challenges to forwarding systems. To

keep up with the growing bandwidth demand, Internet routers have to process packets at

line speed; to accommodate new applications and standards, these devices have also to be

flexible to allow easy updates; finally, new applications, e.g., secure transactions, require

computation power. Over the past years a wide variety of solutions have been proposed.

One trend in forwarding system design is to employ network processors and to implement

key forwarding algorithms in software.

Due to a huge design space and a diverse market, a large variety of these systems have

been developed. Workload characterization is critical to performance evaluation of systems

from different vendors, and essential to understanding the trade-offs in system design. This

thesis addresses this need by modeling two salient features critical to performance in the

workload for Internet forwarding systems: the temporal locality in IP destination address

sequences and the skewed address popularity distribution. The results from our work can

be applied in network forwarding system testing and benchmarking. Moreover, our work

on Internet traffic modeling leads to the design of an efficient and effective load scheduling

scheme for parallel forwarding systems.

7.1 C onclusions

First, after examining several existing schemes in similar areas, we use the LRUSM to

capture temporal locality in destination IP address sequences. Based on the analysis of real

world traces gathered from networks ranging from the campus level to major sections of the

Internet backbone, we propose a five-parameter mixed reuse distance distribution function

(which can be further reduced to four parameters). This distribution accurately models the

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

temporal locality in Internet traffic. Furthermore, we propose a synthetic trace generation

algorithm based on this model. Simulation results of the cache miss ratio of a routing table

lookup algorithm validate our model.

Second, we study the flow-level characteristics of Internet traffic streams, which are

important in the design of parallel forwarding systems. We observed that a few high-rate

flows usually dominate Internet traffic and we found that the popularity distribution of

IP addresses generally follows Zipf’s law. We demonstrated that with a simple hash-based

packet scheduler, the load imbalance In a parallel forwarding system is caused by a few high-

rate flows. This conclusion indicates that skewed popularity distributions and, in particular,

the existence of the few high-rate flows, are important to model.

The LRUSM, although it captures temporal locality, does not differentiate among flows.

In a synthetic trace generated using LRUSM alone, the flows tend to be similar in the rate

and arrival patterns. We propose an algorithm based on the LRUSM, to generate traffic

with the desired temporal locality, which also accommodates high-rate flows. Synthetic

traces generated by this algorithm are shown to induce similar load imbalance behavior of

parallel forwarding systems.

Third, we show the impacts of packet dispatching schemes on cache performance, and

the effects of caching on load balancing in parallel forwarding systems. We have found

significant differences in temporal locality in the traffic scheduled by two schemes: hashing

and round-robin.

Based on the work on Internet traffic characterization, we developed an efficient and

effective load balancing scheme for parallel forwarding systems. Compared with state-of-the-

art designs in this area, ours is unique in taking advantage of flow-level traffic characteristics.

We introduced an important metric for load balancing design, i.e., adaptation disruption,

which measures the disruption to cache states in the individual FE’s caused by load shifting

schemes. Our load adaptation scheme is effective at balancing workloads and achieving

minimum adaptation disruption.

7.2 Areas of Future Research

The development of this thesis is an example of how a deeper understanding of computing

system workload characteristics can lead to sound system designs. Workload character

ization, therefore, will be one of our directions for future work. At the same time, the

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

methodology and many results in this thesis are applicable to other networks and more

general computing systems. In this section, we discuss several future research directions.

7 .2 .1 I n te g r a t io n o f t h e IRM a n d th e L R U S M

We described in Chapter 4 an algorithm that generates high-rate Internet flows within

the LRUSM framework. The synthetic traffic exhibits the desired temporal locality and

can be used to evaluate the performance of hash-based load balancing schemes in parallel

forwarding systems. This is because the effectiveness of these schemes is strongly influenced

by a few high-rate flows in the traffic.

Incorporating a small number of flows, however, is only a partial solution to a more

general problem, i.e., how to integrate the IRM and LRUSM. Given a reference string, in

the IRM we calculate the frequency distribution of the objects; in the LRUSM we model

the reuse distance distribution, which quantifies temporal locality. It is desirable to develop

an algorithm that generates a sequence of objects that exhibits both features according to

the model parameters. Such an algorithm, besides capturing temporal locality, would be

able to produce a synthetic object reference sequence encompassing the whole spectrum of

object frequency distribution. As an example, the algorithm would allow us to generate

both “elephants” and “mice” in synthetic IP destination address sequences.

Few previous studies have focused on this topic. In [54] the authors develop a synthetic IP

address generation algorithm based on a hybrid model. The model does not explicitly take

into account individual address frequencies, yet is able to generate Zipf-like distributions.

Our preliminary implementation does not yield the same results. Further verification of this

model is part of our future work on incorporating the IRM and LRUSM.

7.2.2 High-performance Designs Based on T ra ff ic Characteristics

Highly skewed popularity distributions exist in the workloads for many network systems.

Dividing these workloads into two or more categories and treating each group differently is a

general idea that could be effective in improving system performance. For example, WWW

server cluster systems could benefit from hash-based load distribution schemes, e.g., HRW,

to improve cache hit ratio and to reduce response time. It is pointed out in [70], however,

that requests for one hot object alone could present enough load to swamp a server. Such

systems could implement object replication for the most popular objects so that these objects

have copies on more than one server and object space partition by hashing for the other

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

not-so-popular objects so that each server only hosts a partition of these objects. A load

distribution scheme similar to the one outlined in this chapter could then be used to balance

the load. For such systems, a centralized scheduling mechanism is essential.

Zipf-like popularity distributions have been found in workloads of many Internet systems

and novel designs have been developed to capitalize on this characteristic. Recently, Chvets

and MacGregor [119] and MacGregor [120] proposed a novel IP route caching scheme that

divides a cache into zones, where each cache routing table lookup results of certain prefix

lengths. According to the frequencies of prefix lengths, the sizes of the zones are assigned.

Results show that the best configuration can reduce the miss ratio of an LRU cache that

contains “IP Address, Output Port” pairs by half.

We observe that generally, LRU performance is degraded by the presence of the large

number of Internet “mice” . For example, IP addresses that appear only once in a trace evict

addresses that are to be referenced in the future. In a preliminary experiment, we divide an

LRU IP address cache into two sections, both using LRU. Only addresses that are referenced

more than once in the first section migrates to the second. This simple scheme eliminates

the “mice” effect described above and achieves better performance than an LRU cache of

the combined size of both sections. It is worth noting that this method is orthogonal to the

scheme proposed in [119, 120]. More experiments are underway.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B ibliography

[1] B. Halabi. Internet Routing Architecture. Cisco Press, 1997.

[2] J. Postel. RFC 791: Internet protocol, September 1981.

[3] J. Postel. RFC 793: Transmission control protocol, September 1981.

[4] R. W. Stevens. TC P/IP Illustrated, Volume 1. Addison-Wesley, 1994.

[5] H. C. B. Chan, H. M. Alnuweiri, V. C. M. Leung. A framework for optimizing the
cost and performance of next-generation IP routers. IEEE Journal on Selected Areas
in Communications, 17(6):1013-1029, 1999.

[6] G. Huston. BGP table data report. Statistics of Internet Routing Tables collected at
Telstra (available at h ttp ://bgp .potaroo.net/).

[7] Y. Rekhter, T. Li. RFC 1518: An architecture for IP address allocation with CIDR,
September 1993.

[8] V. Fuller, T. Li, J. Yu, K. Varadhan. RFC 1519: Classless inter-domain routing
(CIDR): an address assignment and aggregation strategy, September 1993.

[9] K. Sklower. A tree-based packet routing table for Berkeley Unix. In USENIX Winter
1991, pages 93-104, Dallas, TX, USA, January 1991.

[10] M. Waldvogel, G. Varghese, J. Turner, B. Plattner. Scalable high speed IP routing
lookups. In ACM SIGCOMM 1997, pages 25-38, Cannes, France, September 1997.

[11] M. Degermark, A. Brodnik, S. Carlsson, S. Pink. Small forwarding tables for fast
routing lookups. In ACM SIGCOMM 1997, pages 3-14, Cannes, France, September
1997.

[12] T. Chiueh, P. Pradhan. High performance IP routing table lookup using CPU caching.
In IEEE INFOCOM 1999, pages 1421-1428, New York, NY, USA, March 1999.

[13] S. Nilsson, G. Karlsson. IP-address lookup using LC-tries. IEEE Journal on Selected
Areas in Communications, 17(6):1083-1092, June 1997.

[14] P. Gupta, S. Lin, N. McKeown. Routing lookups in hardware at memorv access speeds.
In IEEE INFOCOM 1998, pages 1240-1247, San Francisco, CA, USA" March 1998.

[15] W. Shi, M. H. MacGregor. Cache reference behavior of three IP routing table lookup
algorithms. In The 5th Multi- Conference on Systemics, Cybernetics and Informatics
(SCI-2001), pages 318-320, Orlando, FL, USA, July 2001.

[16] D. Feldmeier. Improving gateway performance with a routing table cache. In IEEE
INFOCOM 1988, pages 298-307, New Orleans, LA, USA, April 1988.

[17] P. J. Denning, S. Schwartz. Properties of the working set model. Communications of
the ACM, 15(3):191-198, 1972.

[18] R .. Jain, S. Routhier. Packet trains: Measurements and a new model for computer
network traffic. IEEE Journal of Selected Areas in Communications, SAC-4(6):988-
995, September 1986.

[19] K. Claffy. Internet Workload Characterization. PhD thesis, University of California,
San Diego, June 1994.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://bgp.potaroo.net/

[20] R. B. Bunt, J. M. Murphy, S. Majumdar. A measure of program locality and its
application. Performance Evaluation Review, 12(3):28-40, 1984.

[21] N. Gulati, C. Williamson, R. Bunt. Local area network traffic locality: Characteristics
and application. In The First International Conference on LAN Interconnection, pages
233-250, Research Triangle Park, NC, USA, October 1993.

[22] N. Gulati. Local area network traffic locality: Characteristics and application. Mas
ter’s thesis, University of Saskatchewan, July 1992.

[23] S. Floyd, V. Paxson. Difficulties in simulating the Internet. IEEE/ACM Transactions
on Networking, 9(4):392-403, Febrary 2001.

[24] G. K. Zipf. Human Behavior and the Principle of Least-Effort. Addison-Wesley,
Cambridge, MA, 1949.

[25] R. Glass, editor. In the Beginning: Recollections of Software Pioneers, chapter 6.
IEEE Press, 1997.

[26] P. J. Denning. The working set model for program behavior. Communications of the
ACM, ll(5):323-333, 1968.

[27] P. J. Denning. Working sets past and present. IEEE Transactions on Software Engi
neering, SE-6(l):64-84, January 1980.

[28] J. Spirn. Distance string models for program behavior. IEEE Computer, 9(ll):14-20,
November 1976.

[29] A. V. Aho, P. J. Denning, J. D. Ullman. Principles of optimal page replacement.
Journal of the ACM, 18(l):80-93, 1971.

[30] R. B. Bunt, J. M. Murphy. The measurement of locality and the behavior of programs.
The Computer Journal, 27(3):238-245,1984.

[31] S. Glassman. A caching relay for the World Wide Web. Computer Networks and ISDN
Systems, 27(2):165-173, 1994.

[32] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker. Web caching and Zipf-like distri
butions: evidence and implications. In IE E E INFOCOM 1999, pages 126-134, New
York, NY, USA, March 1999.

[33] A. M ah anti, D. Eager, C. Williamson. Temporal locality and its impact on Web
proxy cache performance. Performance Evaluation Journal: Special Issue on Internet
Performance Modeling, 42(2-3) :187-203, 2000.

[34] R. Mattson, J. Gecsei, D. Slutz, I. Traiger. Evaluation techniques for storage hierar
chies. IBM Systems Journal, 9(2):78-117, 1970.

[35] J. Spirn. Program Behavior: Models and Measurements. Elsevier-North Holland,
' N.Y., 1977.

[36] D. Thiebaut, J. L. Wolf, H. S. Stone. Synthetic traces for trace-driven simulation of
cache memories. IEEE Transactions on Computers, 41(4):388-410, 1992.

[37] W. Shi, M. H. MacGregor, P. Gburzynski. Synthetic trace generation for the Internet.
In The fth IEEE Workshop on Workload Characterization (WWC-4), pages 169-174,
Austin. TX, USA, December 2001.

[38] J. L. Hennessy, D. A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, 3rd edition, 2003.

[39] R. Jain. Characteristics of destination address locality in computer networks: a com
parison of caching schemes. Computer Networks and ISDN Systems, J8(4):243-254,
May 1990.

[40] J. Mogul. Network locality at the scale of processes. ACM Transactions on Computer
Systems (TOCS), 10(2):81-109, May 1992.

[41] C. Partridge, S. Pink. A faster UDP. IEEE/A CM Transactions on Networking,
l(4):429-440, 1993.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[42] P. McKennev, K. Dove. Efficient demultiplexing of incoming TCP packets. In ACM
SIGCOMM 1992, pages 269-279, Baltimore, MD, USA, August 1992.

[43] V. Jacobson. Congestion avoidance and control. In ACM SIGCOMM 1988, pages
314-329, Stanford, CA, USA., August 1988.

[44] J. Gray. The Benchmark Handbook for Database and Transaction Processing Systems.
Morgan Kaufmann, 1991.

[45] V. Almeida, A. Bestavros, M. Crovella, A. Oliveira. Characterizing reference locality
in the WWW. In The IEEE Conference on Parallel and Distributed Information
Systems (PDIS 1996), pages 92-107, Miami Beach, FL, USA, December 1996.

[46] P. Barford, M. Crovella. Generating representative Web workloads for network and
server performance evaluation. In ACM SIGMETRICS 1998, pages 151-160, Madison,
WI, USA, July 1998.

[47] M. F. Arlitt, C. L. Williamson. Internet Web servers: Workload characterization and
performance implications. IEEE/ACM Transactions on Networking, 5(5):631-645,
Oct. 1997.

[48] S. Jin, A. Bestavros. Sources and characteristics of Web temporal locality. In MAS
COTS 2000, pages 28-35, San Fransisco, CA, USA, August 2000.

[49] S. Jin, A. Bestavros. GreedyDual* Web caching algorithm: exploiting the two sources
of temporal locality in Web request streams. Computer Communications, 24(2):174-
183, 2001.

[50] R. Fonseca, V. Almeida, M. Crovella, B. Abrahao. On the intrinsic locality properties
of Web reference streams. In IEEE INFOCOM 2003, pages 448-458, San Francisco,
CA, USA, April 2003.

[51] C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379-423 and 623-656, July and October 1948.

[52] M. Aida, T. Abe. Pseudo-address generation algorithm of packet destinations for Inter
net performance simulation. In IEEE INFOCOM 2001, pages 1425-1433, Anchorage,
AK," USA, April 2001.

[53] M. Aida, T. Abe. Stochastic model of Internet access patterns. IEICE Transactions
on Communications, E84-B(8):2142-2150, 2001.

[54] M. Aida, T. Abe. Stochastic model of Internet access patterns: coexistence of sta-
tionarity and Zipf-type distributions. IEICE Transactions on Communications, E85-
B(8): 1469-1478, 2002.

[55] K. C. Claffy, H. W. Braun, G. C. Polyzos. A parameterizable methodology for Internet
traffic flow profiling. IEEE Journal of Selected Areas in Communications, 13(8):1481-
1494, 1995.

[56] R. Caceres, P. Danzig, S. Jamin, D. Mitzel. Characteristics of wide-area TC P/IP con
versations. In ACM SIGCOMM 1991, pages 101-112, Zurich, Switzerland, September
1991.

[57] M. Acharya, B. Bhalla, R. E. Newman-Wolfe, H. Latchman, R. Chow. A flow model
for computer network traffic using real-time measurements. In Second International
Conference on Telecommunications Systems, Modeling and Analysis, pages 141-149,
Nashville, TN, USA, March 1994.

[58] W. E. Leland, M. S. Taqq, W. Willinger, D. V. Wilson. On the self-similar nature of
Ethernet traffic. In ACM SIGCOMM 1993, pages 183-193, San Francisco, CA, USA,
September 1993.

[59] J. Beran. Statistics for Long-Memory Processes. Chapman & Hall, 1994.

[60] W. Willinger A. Erramilli, O. Narayan. Experimental queueing analysis with long-
range dependent packet traffic. IEEE/A CM Transactions on Networking, 4(2):209-
223, 1996.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[61] S. Sarvotham, R. Riedi, R. Baraniuk. Connection-level analysis and modeling of
network traffic. In ACM SIGCOMM Internet Measurement Workshop, pages 99—103,
San Francisco, CA, USA, November 2001.

[62] W. Willinger, M. Taqqu, R. Sherman, D. Wilson. Self-similarity through higfa-
variability: Statistical analysis of Ethernet LAN traffic at the source level. IEEE/
ACM Transactions on Networking, 5(1):71—86, Feb 1997.

[63] M. Crovella, A. Bestavros. Self-similarity in World Wide Web traffic. IEEE/ACM
Transactions on Networking, 5(6):835-846, Dec. 1997.

[64] S. Sarvotham, R. Riedi, R. Baraniuk. Network traffic analysis and modeling at the
connection level. Technical report, Electrical and Computer Engineering Department,
Rice University, June 2001.

[65] N. Brownlee, K. Claffy. Understanding Internet traffic streams: Dragonflies and tor
toises. IEEE Communications, 40(10):11Q-117, Oct. 2002.

[66] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, P. Sturm. Enhancing the Web’s
infrastructure: From caching to replication. IEEE Internet Computing, 1(2): 18-27,
Mar. 1997.

[67] M. Colajanni, P. S. Yu, D. M. Dias. Analysis of task assignment policies in scal
able distributed Web-server systems. IEEE Transactions on Parallel and Distributed
Systems, 9(6):585-600, 1998.

[68] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, K. J. Worrell, a
hierarchical Internet object cache. In USENIX Annual Technical Conference, pages
153-164, San Diego, CA, USA, January 1996.

[69] D. Wessels and K. Claffy. RFC 2186: Internet cache protocol (ICP), version 2, Septem
ber 1997.

[70] D. G. Thaler, C. V. Ravishankar. Using name-based mappings to increase hit rates.
IEEE/ACM Transactions on Networking, 6(1):1-14, February 1998.

[71] K. W. Ross. Hash routing for collections of shared Web caches. IEEE Network,
I I (7) :37—44, Nov-Dee 1997.

[72] N. Phadnis, V. Valloppillil, K. W. Ross J. Cohen. Cache array routing proto
col v l.l . Internet Draft, http://dsl.intem ic.net/internet-drafts/draft-vinod-carp-vl-
01.txt, September 1997.

[73] E. Blanton, M. Allman. On making TCP more robust to packet reordering. ACM
Computer Communication Review, 32(l):20-30, Jan. 2002.

[74] J. Bennett, C. Partridge, N. Shectman. Packet reordering is not pathological network
behavior. IE EE/A CM Transactions on Networking, 7(6):789-798, Dec. 1999.

[75] W. Shi, M. H. MacGregor, P. Gburzynski. Effects of a hash-based scheduler on cache
performance in a parallel forwarding system. In Communication Networks and Dis
tributed Systems Modeling and Simulation Conference (CNDS 2003), pages 130-138,
Orlando, FL, USA, January 2003.

[76] Z. Cao, Z. Wang, E. Zegura. Performance of hashing-based schemes for Internet load
balancing. In IEEE INFOCOM 2000, pages 332-341, Tel-Aviv, Israel, March 2000.

[77] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons,
Inc., 1991.

[78] J. Jo, Y. Kim, H. Chao, F. Merat. Internet traffic load balancing using dynamic
hashing with flow volumes. In Internet Performance and Control of Network Systems
III at SPIE 1TCOM 2002, pages 154-165, Boston, MA, USA, July 2002.

[79] G. Dittmann, A. Herkersdorf. Network processor load balancing for high-speed
links. In 2002 International Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS 2002), pages 727-735, San Diego. CA. USA,
July 2002.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://dsl.intemic.net/internet-drafts/draft-vinod-carp-vl-

[80] L. Kencl, J. Le Boudec. Adaptive load sharing for network processors. In IEEE
INFOCOM 2002, pages 545- 554, New York, NY, USA, June 2002.

[81] L. Kencl. Load Sharing for Multiprocessor Network Nodes. PhD thesis, Swiss Federal
Institute of Technology (EPFL), January 2003.

[82] P. Gupta, B. Prabhakar, S. P. Boyd. Near optimal routing lookups with bounded
worst case performance. In IEEE INFOCOM 2000, pages 1184-1192, Tel-Aviv, Israel.
March 2000.

[83] X. Chen. Effect of caching on routing-table lookup in multimedia environment. In
IEEE INFOCOM 1991, pages 1228-1236, Bal Harbour, FL, USA, April 1991.

[84] G. Cheung, S. McCanne. Optimal routing table design for IP address lookups under
memory constraints. In IEEE INFOCOM 1999, pages 1437-1444, New York, NY,
USA, March 1999.

[85] N. Shah. Understanding network processors. Master’s thesis, U. C. Berkeley, Septem
ber 2001.

[86] Agilent Technologies. Router tester. http://advanced.comms.agilent.com/RouterTester/.

[87] J. Kuan. Private communication, 2001.

[88] R. H. Saavedra-Barrera. CPU Performance Evaluation and Execution Time Prediction
Using narrow Spectrum Benchmarking. PhD thesis, University of California, Berkeley,
February 1992.

[89] M. Tsai, C. Kulkarni, C. Sauer, N. Shah, K. Keutzer. A benchmarking methodology
for network processors. In Workshop on Network Processors, pages 75-85, Cambridge
MA, USA, February 2002.

[90] M. Franklin, P. Crowley, H. Hadimioglu, P. Onufryk, editor. Network Processor De
sign, chapter 2. Morgan Kaufmann, 2002.

[91] FreeBSD. The FreeBSD project, http://www.freebsd.org.

[92] T. M. Austin, E. Larson, D. Ernst. SimpleScalar: an infrastructure for computer
system modeling. IEEE Computer, 35(2):59-67, 2002.

[93] NLANR (National Laboratory for Applied Network Research) Measurement and Op
erations Analysis Team (MOAT). Packet header traces, h ttp:/ /m oat.nlanr.net.

[94] D. Thiebaut. On the fractal dimension of computer programs and its application to the
computation of the cache miss-ratio. IEEE Transactions on Computers, 38(7):1012-
1026, 1989.

[95] N. L. Johnson, S. Kotz. Continuous Univariate Distributions. Hougton Mifflin, 1970.

[96] A. Feldmann, W. Whitt. Fitting mixtures of exponentials to long-tail distributions
to analyze network performance models. In IEEE INFOCOM 1997, pages 1096-1104,
Kobe, Japan, April 1997.

[97] V. Paxson, S. Floyd. Wide-area traffic: The failure of Poisson modeling. IEEE/A CM
Transactions on Networking, 3(3):226-244, June 1995.

[98] A. B. Downey. Evidence for long-tailed distributions in the Internet. In ACM SIG
COMM Internet Measurement Workshop, pages 229-241, San Francisco, CA, USA,
November 2001.

[99] B. T. Bennett, V. J. Kruskal. LRU stack processing. IBM Journal of Research and
Development, 19(4):353-357, 1975.

[100] D. D. Sleator, R. E. Tar j an. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202-208, 1985.

[101] A. Mahanti. Web proxy workload characterization and modeling. Master’s thesis,
University of Saskatchewan, September 1999.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://advanced.comms.agilent.com/RouterTester/
http://www.freebsd.org
http://moat.nlanr.net

102] F. Ergun, S. Mittra, S. C. Sahinalp, J. Sharp, R. K. Sinha. A dynamic lookup scheme
for bursty access patterns. In IEEE INFOCOM 2001, pages 1444-1453, Anchorage,
AL, USA, April 2001.

103] M. Arlitt, C. Williamson. Trace-driven simulation of document caching strategies for
Internet Web servers. Simulation Journal, 68(l):23-33, 1997.

104] A. B. Downey. The structural cause of file size distributions. In MASCOTS 2001,
pages 361-370, Cincinnati, OH, USA, August 2001.

105] C. C. Aggarwal, J. L. Wolf, P. S. Yu. On optimal batching policies for video-on-
demand storage servers. In International Conference on Multimedia Computing and
Systems (ICMCS), pages 253-258, Hiroshima, Japan, June 1996.

106] Shudong Jin and Azer Bestavros. GISMO: A generator of Internet streaming media
objects and workloads. ACM SIGMETRICS Performance Evaluation Review, 29(3):2-
10, November 2001.

107] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical Recipes in
C: The Art Of Scientific Computing. Cambridge University Press, 2nd edition, 1992.

108] N. Markatchev, C. Williamson. WebTraff: a GUI for Web proxy cache workload
modeling and analysis. In MASCOTS 2002, pages 356-363, Fort Worth, TX, USA,
October 2002.

109] M. Busari, C. Williamson. ProWGen: a synthetic workload generation tool for simu
lation evaluation of Web proxy caches. Computer Networks, 38(6):779-794, 2002.

110] M. Busari. Simulation evaluation of Web caching hierarchies. Master’s thesis, Uni
versity of Saskatchewan, June 2000.

111] P. P. Ware, T. W. Page Jr., B. L. Nelson. Modeling file-system input traces via a two-
level arrival process. In Winter Simulation Conference, pages 1230-1237, Coronado,
CA, USA, December 1996.

112] J. G. Fletcher. An arithmetic checksum for serial transmissions. IEEE Transactions
on Communications, COM-30(l):247-252, January 1982.

113] C. Partridge, et al. A fifty gigabit per second IP router. IEEE/ACM Transactions on
Networking, 6(3):237-248,1998.

114] T. Spalink, S. Karlin, L. Peterson, Y. Gottlieb. Building a robust software-based
router using network processors. In The 18th ACM Symposium on Operating Systems
Principles (SOSP 2001), pages 216-229, Banff, AB, Canada, December 2001.

115] R. Jain. A comparison of hashing schemes for address lookup in computer networks.
IEEE Transactions on Communications, 40(3):1570-1573, October 1992.

116] D. E. Knuth. The Art Of Computer Programming, volume 3: Sorting and Searching.
Addison-Wesley, 1st edition, 1969.

117] W. Shi, M. H. MacGregor, P. Gburzynski. Synthetic trace generation for the Internet:
An integrated model, 2003. Submitted.

118] A. Feldmann, J. Rexford, R. Caceres. Efficient policies for carrying Web traffic over
flow-switched networks. IEEE/ACM Transactions on Networking, 6(6):673-685,1998.

119] I. Chvets, M. MacGregor. Multi-zone caches for accelerating IP routing table lookups.
In High Performance Switching and Routing (HPSR 2002), pages 121-126, Kobe,
Japan, May 2002.

120] M. H. MacGregor. Design algorithm for multi-zone IP address caches. In High Per
formance Switching and Routing (HPSR 2003), Torino, Italy, June 2003.

121] G. E. P. Box, G. M. Jenkins. Time Series Analysis: forecasting and control. Holden-
Day Inc., 1970.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix A

M ore CCDF F itting
Experim ents

In this appendix, we first show the results of fitting the W +P model developed in Section 3.5
to more data sets, to further validate Eq. 3.3. We show further that to achieve parsimonious
modeling, the Weibull component in Eq. 3.3 can be replaced by an exponential distribution.

A .l F itting M ore D ata Sets w ith the W + P M odel
The traces used in this section are from the Abilene-I and Auckland-IV sets, both from
NLANR. They are divided into groups by their directions. The Abilene-I set contains traces
measured at two router ports. So there are four groups: CLEV-0, CLEV-1, KSCY-0, KSCY-
1, each containing 12 traces. The Auckland-IV set contains 94 traces from two directions at
one port. We select a subset of traces for each direction: AuckIV-0 (19 traces) and AuckIV-1
(18 traces). The reuse distance CCDF’s of these traces are shown in Figs. A.l and A.2. The
CCDF’s for the KSCY traces are similar to those for the CLEV traces and are not shown.

During our experiments, we have found that temporal locality characteristics of traces
of packets traveling in the same direction, i.e., arriving at or departing from a measurement
port, are very similar. For example, using the fitting results of one trace as initial values,
we have been able to automate the fitting procedure to fit all the other CCDF’s of traces
in the same group. This is especially true for the traces in the Abilene-I set where one set
of parameters was used as initial values to obtain the fitting of all the CCDF’s, even those
of traces from different groups. This is also true for the AuckIV-1 group and most of the
traces (17 out of 19) in the Auck-0 group. The similarity of the CCDF curves in the figures
indicates that the backbone traces are relatively consistent in terms of temporal locality
whereas the traces from lower-bandwidth links have more variation.

As shown in Figs. A.3 and A.4, our model is successful in describing the temporal
locality characteristics of a wide range of traces gathered at different levels in the Internet,
from campus networks to Internet backbones.

We have also found that the parameters in the model are similar within groups of traces.
We are especially interested in the parameter “p” in Eq. 3.3, which represents the percentage
that the Weibull contributes to the mixed-CCDF model. The values of p are in the ranges
of [0.62,0.90] and [0.37,0.65] for the Auck-0 and Auck-1 traces, respectively. They are in
the range of [0.14,0.16] and [0.16,0.19] for the CLEV-0 and CLEV-1 traces. It seems that
p tends to be larger for a campus level network but smaller for backbone networks. The p
values for the IJofA and LDestIP traces collected at campus-level networks and those for
the KSCY-0 and KSCY-1 traces gathered at backbone networks support this hypothesis.
Figs. A.5 and A.6 show the effects of p by decomposing the fit CCDF’s for some traces into
the two components of the model, pW {x) and (1 — p)P(x).

The other parameters that differ significantly across trace sets are the scale parameters,
i.e., d for the Weibull and b for the Pareto CCDF. b for the AuckIV set is in the range of
[1.21,253] and for the IPLS set is within [0.059,0.154]. d is within [6.23,47.0] for the AuckIV
set but [1067,1325] for the IPLS set. Both scale parameters differ by more than one order
of magnitude, respectively. On the other hand, the shape parameters, i.e., c for the Weibull
and a for the Pareto, are relatively constant for different trace sets.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus the set of values of p, b, d, or even only one of them, can be used to indicate a
trace’s origin. Moreover, we can generate synthetic traces using different parameter values
for the evaluation of network devices at different levels.

A .2 On Parsimonious M odeling
Parsimony is desirable in modeling [121]; the goal is to use as few parameters as possible in
a model without losing accuracy. In our reuse distance distribution model (Eq. 3.3), there
are a total of five parameters, i.e., the parameter p, and the scale and shape parameters of
the Weibull and Pareto functions.

A .2.1 Replacing the Weibull Distribution
Our intuition about reducing the number of parameters comes from the observation that
Eq. 3.3 consists of a long-tailed component, the Pareto, and a short-tailed component,
the Weibull. The tails of the CCDF’s are largely contributed by the Pareto distribution;
any short-tailed distribution might be able to replace the Weibull without fundamentally
changing the shape of the tails.

Feldmann and W hitt [96] show that long-tailed distributions can be approximated by
hyper-exponentials. In light of this work, both distributions in Eq. 3.3 can be expanded as
a mixture of exponentials. This leads us to experiment with replacing the Weibull with the
CCDF of the exponential distribution

E{x) = e~~Xx (A.l)

which leads to the reuse distance CCDF

C'(x) = pE{x) + (1 - p)P(x), 0 < p <1. (A.2)

The results show that fitting with Eq. A.2 achieves comparable accuracy with fitting
with Eq. 3.3.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.01

0.001

0.0001
1000001000 10000100

Reuse Distance

1

0.1

0.01

(.001

0.0001
1000001000 1000010 1001

Reuse Distance

Figure A.l: CCDF’s for the traces in the CLEV-O(left) and CLEV-1 groups

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.1

PUQuu
0.01

0.001

0.0001

le -05
1000 10000 1000001 10 100

Reuse Distance

n.QUU
0.01

0.001

0.0001
1000 100001 10 100 100000

Reuse Distance

Figure A.2: CCDF’s for the traces in the AucklV-O(left) and AuckIV-1 groups

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1
IPLS-CLEV-20020814-090000-0

c(x)

0.1

0.01

0.001

0.0001
1 10 300 1000 10000 100000

Reuse Distance

IPLS-CLEV-20020814—090000-1
c(x)

0.1

0.01

0.001
1000 10000100 100000

Reuse D istance

Figure A.3: Some CCDF Fittings(CLEV)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Auck4—20010222-020000-0
c(x)

0.1

0.01

0.001

0.0001
1000 10000 100000100

Reuse Distance

Auck4-20010222-020000-1
c(x)

e °-01u

0.001

0.0001
100 1000 10000 1000001 10

Reuse Distance

Figure A.4: Some CCDF Fittings(AuckIV)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

auck4_20010222-020000-0 (in-bound trace), p = 0.864

0.1

0.01

0.001

0.0001
Q
y le -05

le-06

le —07

C(x'
pWtx

a-p)p(x: 8_
le -0 8

le -09
100

Reuse Distance

auck4_20010222-020000-1 (out-bound trace), p = 0.424
1

0.1

0.01

0.001

0.0001

le-05

le-06 C(x’
pW(x

d-P)Px:
le-07

10 1001
Reuse Distance

Figure A.5: Effects of p: Fitted CCDF’s for Two AuckIV Traces and Their Components

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ipls-clev-20020814—090000-0 (in-bound trace), p = 0.180

0.01

0.001

0.0001

le-05
100

Reuse Distance
1000

ipls-clev-20020814-090000-1 (out-bound trace), p = 0.152

0.01

Q 0.001
U

0.0001

i e—05 - C(x'
pWix'

(l-p)P (x‘
le -06

1 10 100 1000
Reuse Distance

Figure A.6: Effects of p: Fitted CCDF’s for Two IPLS-CLEV Traces and Their Components

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

