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ABSTRACT 

Unreinforced and reinforced masonry walls are essential elements in low-to-medium-rise 

residential and commercial buildings. They play an indispensable role in both vertical and lateral 

load-resisting systems, withstanding diverse loads such as seismic loads acting along and 

perpendicular to the wall during earthquakes, wind loads perpendicular to the wall, and eccentric 

gravity loads transmitted from floor or roof diaphragms. These loads can be categorized into in-

plane (IP) loading and out-of-plane (OOP) loading, which occur simultaneously in most scenarios. 

Nevertheless, predicting their structural behaviors, including the failure modes and load-resisting 

capacity under IP and/or OOP loading, poses a considerable challenge considering the composite 

nature of masonry walls and the intricate interactions among their components, particularly when 

pertinent uncertainty in material properties is taken into account. In response to this challenge, this 

thesis consists of two parts: (1) development of 3D constitutive models for mortar joints to 

facilitate high-fidelity simulations of masonry walls and their applications to study the IP-OOP 

behavior interaction; and (2) development and application of algorithms and estimators for 

uncertainty analyses (e.g., mean and variance estimation of load resistance, reliability analysis) of 

masonry walls using low-fidelity models (e.g., design-code models) assisted by high-fidelity 

models via multi-fidelity approaches. 

To be specific, the first part of this thesis work aims at advancing finite element (FE) 

modeling techniques for masonry walls and enhancing the understanding of the interactive 

behavior of masonry walls under combined IP and OOP loading. At the core of this part is the 

development of two innovative constitutive models for cohesive interfaces to simulate mortar 



Abstract 

iii 

 

joints of masonry walls within the micro modeling framework. One model is implemented in a 

computational plasticity-based framework, while the other is developed within a damage 

plasticity-based framework, enabling the simulation of both monotonic and cyclic behaviors of 

masonry mortar joints, respectively. These two models are capable of capturing various failure 

modes, including tensile cracking, shear sliding, and compressive crushing, which allows for high-

fidelity representations of masonry walls under both IP and OOP loading scenarios. A significant 

application of the developed models is to explore the IP-OOP interaction behavior of masonry 

walls. Two groups of numerical analyses are conducted, with the focus on the unreinforced and 

reinforced masonry walls, respectively, to investigate the effects of various design parameters, 

such as aspect ratio (height-to-length ratio), slenderness ratio (height-to-thickness ratio), pre-

compression load, and reinforcement ratio. This application elucidates the intricate failure 

mechanisms of masonry walls under combined IP and OOP loadings and quantifies the consequent 

reductions in IP capacity due to the presence of OOP loading. Such insights highlight the criticality 

of considering IP-OOP interactions in ensuring safe and reliable masonry wall design and 

evaluation. 

The second part of this thesis aims at addressing a practical need for uncertainty analysis 

of masonry walls as required for reliability-based calibration of design codes and probabilistic 

performance-based design for masonry buildings. In this context, statistics estimation and 

reliability analysis are pivotal aspects. At the same time, the second part of this thesis will address 

a fundamental need in the field of uncertainty quantification: developing efficient 

algorithms/estimators for mean, variance, and failure probability when quantities of interest 

involved are obtained using computationally expensive high-fidelity models, such as those 
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developed in the first part. In the second part, two novel statistics estimators (for mean and variance, 

respectively) and an innovative reliability analysis algorithm are proposed. The proposed 

estimators/algorithms leverage limited expensive high-fidelity models (e.g., finite element models) 

with a large number of cheap low-fidelity models (e.g., design-code models), via a multi-fidelity 

(MF) approach. This not only enhances computational efficiency but also ensures the accuracy of 

estimations of mean, variance, and probability of failure in reliability analysis. Case studies on 

masonry walls under IP or OOP loadings demonstrate the adaptability and practicality of these 

methods, marking a significant improvement over several existing approaches. Aside from the 

uncertainty analysis, this research also opens new possibilities for integrating high-fidelity 

computational models into design-code model enhancements in the masonry community. 
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Structures using a New 3D Cohesive Interface Material Model considering Dilatancy Softening. 
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acquisition, and paper revision. 
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the submitted paper. Bowen Zeng was responsible for conceptualization, methodology 
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Yong Li was in charge of conceptualization, methodology development, supervision, funding 
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Chapter 1. INTRODUCTION 

 BACKGROUND 

Masonry has transitioned from basic stone constructions to complex architectural feats across 

millennia. This time-honored construction material is exemplified in historical landmarks such as 

the Egyptian pyramids, the Roman Colosseum, and the majestic cathedrals of Gothic architecture. 

These architectural wonders are not only testaments to human ingenuity but also stand as timeless 

symbols of ancient and medieval civilizations. In the modern construction industry, masonry 

continues to play a crucial role and maintains its relevance through the integration of traditional 

craftsmanship with modern technological innovations. This fusion has led to masonry being used 

not only for its aesthetic appeal but also for its practical benefits, such as energy efficiency, 

durability, and cost-effectiveness. The widespread application of masonry in global construction 

is underscored by a report from the Mason Contractors Association of America (MCAA), noting 

that over 70% of the world's buildings are built of masonry. Modern masonry structures, contrasted 

with traditional unreinforced masonry (URM), often include reinforcements to augment strength 

and ductility, leading to the development of reinforced masonry (RM) structures. 

Masonry walls serve as an integral component in both vertical and lateral load-resisting 

systems in masonry buildings, providing resistance against various loads such as earthquake loads 

along and perpendicular to the wall, wind loads perpendicular to the wall, and eccentrical gravity 

loads transferred from diaphragms supported on the wall. Consequently, the structural behaviors 

of masonry walls are typically characterized by two distinct loading modes: in-plane (IP) loading 

and out-of-plane (OOP) loading. The vulnerability of masonry walls has been highlighted in post-
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earthquake surveys in several notable earthquakes, including the 2011 Christchurch earthquake  

(Dizhur et al. 2011), 2013 Kaki earthquake (Sherafati and Sohrabi 2016a), 2017 Lesvos earthquake 

(Vlachakis et al. 2020). Due to masonry’s heterogeneity and anisotropy, masonry walls may 

exhibit various failure modes. Under IP loading, for example, masonry walls are governed by three 

main failure mechanisms, as shown in Figure 1-1 (a-c): diagonal tension cracking, shear sliding, 

and flexural rocking. OOP failure modes include overturning failure, one-way bending (i.e., 

vertical bending), and two-way bending, as illustrated in Figure 1-2 (a-c). 

   

(a) (b) (c) 

Figure 1-1. Failure modes of masonry walls under IP loading: (a) diagonal tension cracking 

(Celano et al. 2021), (b) shear sliding (Saatcioglu et al. 2006), and (c) flexural rocking (Celano et 

al. 2021) 

   

(a) (b) (c) 

Figure 1-2. Failure modes of masonry walls under OOP loading: (a) overturning failure 

(Giaretton et al. 2016), (b) one-way bending failure (Giaretton et al. 2016), and (c) two-way 

bending failure (Astroza et al. 2012) 

In addition to the distinct occurrence of IP or OOP failure, combined IP and OOP failure 

modes were also frequently observed in earthquake events, e.g., the 2017 Lesvos earthquake 
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(Vlachakis et al. 2020). Specifically, corner regions of masonry buildings (i.e., wedges) are 

typically highly stressed by the biaxial actions under combined IP and OOP loading. Such an effect 

often leads to a ‘bursting’ collapse phenomenon, as shown in Figure 1-3. A similar pattern was 

observed in the aforementioned earthquake survey, where OOP strength in masonry walls was 

compromised due to existing IP damage, leading to the isolation and overturning of walls under 

OOP forces, as shown in Figure 1-4. This IP-OOP interaction behavior is exemplified by the 

effects of axial load and bi-directional bending moment (P-M-M) interaction diagrams for 

reinforced concrete columns (Shen et al. 2023; Del Zoppo et al. 2017; Zuhair Murad 2021), as well 

as the IP and OOP capacity interaction relationships for masonry infill walls as specified in ASCE 

41-17 (2017). 

  

(a) (b) 

Figure 1-3. In-plane and out-of-plane failure at corner regions: (a) field observations, and (b) 

corresponding schematic sketch (Vlachakis et al. 2020) 
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(a) (b) 

Figure 1-4. Out-of-plane collapse of in-plane damaged masonry walls: (a) field observation, and 

(b) corresponding schematic sketch (Vlachakis et al. 2020) 

The prediction of structural behaviors in masonry walls (e.g., wall resistances, crack 

initiation and propagation, failure modes) faces significant challenges due to complex failure 

modes under various loading scenarios. Currently, masonry walls are primarily designed to adhere 

to prescriptive code regulations based on the limit-state design philosophy. In North America, 

several codes are available for the design of masonry walls, including CSA S304-14 (2014), TMS 

402-16 (2016), and NBCC (2015). These prescriptive codes generally provide guidelines on 

material properties, detailing requirements, minimum and/or maximum reinforcements, allowable 

stresses, and other considerations. Experimental, analytical, and numerical research efforts have 

played a vital role in shaping the development of masonry design and construction, contributing 

to the evolution of design regulations, and fostering a deeper understanding of the complex 

behaviors of masonry walls (Zeng and Li 2023). Over the past few decades, a scientific basis has 

been laid on what originated as a purely heuristic code development process, enabling the 

incorporation of research findings. However, design codes for the prediction of IP or OOP 
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behaviors of masonry walls in the current versions do not still lead to rational design outcomes, 

with many being overly conservative (Bolhassani et al. 2016; Izquierdo 2021; Samy et al. 2012; 

Seif ElDin et al. 2019). Moreover, current design practices for masonry walls often neglect the IP 

and OOP capacity interaction effects, and this aspect also remains largely unexplored in the 

research community, particularly in the case of RM walls. 

The composite nature of masonry walls not only results in challenges in the structural 

behavior prediction of masonry walls but also introduces substantial variabilities associated with 

masonry material. For instance, Müller and Graubner (2021) and Sherafati and Sohrabi (2016b) 

conducted the field studies regarding the compressive strength of masonry and the shear-sliding 

strength of mortar joints, respectively. The test results revealed that the coefficient of variation 

(COV) for these two material properties is extremely high: 30% ~ 40% and 56%, respectively. 

Despite these uncertainties, contemporary design guidelines for masonry walls still heavily rely 

on deterministic approaches with partial safety factors, which need to be calibrated using 

reliability-based approaches to ensure that masonry walls achieve the desired level of reliability 

(Isfeld et al. 2023; Lawrence and Stewart 2015; Moosavi and Korany 2014; Rota et al. 2014; 

Stewart and Lawrence 2007; Zhai et al. 2012; Zhai and Stewart 2010). In this context, uncertainty 

quantification (e.g., statistics estimation and reliability analysis) play crucial roles. 

 RESEARCH MOTIVATION AND PROBLEM STATEMENT 

To facilitate a reliable prediction of the structural behavior of masonry walls (including both URM 

and RM walls) under various loading conditions, a high-fidelity finite element (FE) model is of 

paramount importance. The first part of this thesis is dedicated to addressing this challenge. 
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In the realm of FE modeling for masonry structures, the research community broadly 

classifies modeling strategies into two main categories, as per Lourenço (1995a): micro modeling 

strategy and macro modeling strategy. The micro modeling approach provides an elaborate 

representation of masonry components, such as brick units or concrete blocks, mortar, grouts, and 

reinforcements. This technique facilitates an extensive analysis of both local and global behaviors 

of masonry walls. Notably, it provides essential local-level insights, particularly for phenomena 

like crack initiation and propagation. Despite its flexibility in accommodating complex loading 

conditions such as combined IP and OOP loading, its intricate nature entails considerable 

computational demands, posing challenges in simulating large-scale masonry structures. 

In contrast, the macro modeling strategy conceptualizes masonry as a homogenized 

continuum. This method is more efficient and practical for analyzing larger structures or for 

preliminary design phases, as it reduces computational demands and streamlines model 

configurations. Despite its efficacy in large-scale structural analysis, macro modeling strategy 

tends to overlook complex interactions between masonry constituents, potentially leading to the 

omission of critical local failure events. This generalization may lead to inaccuracies in capturing 

specific localized behaviors, such as distinctive crack patterns or stress concentrations. 

Recognizing the distinctive advantages and disadvantages inherent in both strategies, this 

thesis relies on the micro modeling approach to develop high-fidelity computational models for 

masonry walls. The efficacy of the micro modeling strategy in simulating structural behavior is 

heavily dependent on the constitutive model of cohesive interfaces for mortar joints, typically the 

most vulnerable part of masonry walls. An extensive literature review on this subject (Sections 2.1 

and 2.2), complemented by an investigation of public studies on the structural behavior of masonry 
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walls under combined IP and OOP loadings (Section 2.3), is presented. The review highlights 

several research gaps that motivate the first half of this thesis: 

• Existing constitutive models of cohesive interfaces in simulating mortar joints were mostly 

limited to two-dimensional (2D) stress domains. In scenarios when investigating the 

structural behavior of masonry walls subject to OOP loading or combined IP and OOP 

loading, a three-dimensional constitutive material model is essential.  

• The constitutive formulation for cohesive interfaces should encompass various potential 

failure modes of mortar joints under complex loadings, including tensile cracking, shear 

sliding, and compressive crushing. Furthermore, an important micro-mechanical 

phenomenon, ‘dilatancy’, was not adequately addressed in existing models.  

• The complex failure mechanisms of mortar joints under cyclic loading, characterized by 

stiffness degradation and irreversible deformations, were not satisfactorily modeled by 

existing models relying solely on computational plasticity or damage mechanics. 

• Public studies on the IP and OOP interaction behaviors of masonry walls are notably 

scarce, resulting in a significant knowledge gap. This deficiency in the literature can be 

attributed to the challenges and costs associated with testing masonry walls under complex 

loading conditions and the computational complexities of modeling masonry walls in 3D 

space. 

To promote modern limit-state design and foster the evolution of next-generation performance-

based design in the masonry community, the second part of this thesis is dedicated to formulating 

robust strategies to address the material uncertainty of masonry. This entails two main tasks: 

statistics estimation and reliability analysis. The research problems addressed in this part are to 
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formulate effective strategies for the statistics estimation of IP and OOP resistances of masonry 

walls and to establish a comprehensive framework for the reliability analysis of masonry walls. A 

literature review presented in Section 2.5 and Section 2.6 indicates that in the existing research, 

two types of deterministic models are commonly integrated into the Monte Carlo (MC) simulation 

framework for these purposes, namely low-fidelity (LF) model (e.g., design-code model, simple 

analytical model) and high-fidelity (HF) model (e.g., micro model). However, exclusively relying 

on either model may present challenges. LF model-based studies might incur substantial model 

error due to the inherent assumptions and simplifications. On the other hand, HF model-based 

studies are often associated with intense computational costs, and limited samples within the MC 

simulation framework do not ensure accurate results for uncertainty quantification. This motivates 

the second part of this thesis: multi-fidelity uncertainty quantification (including statistics 

estimation and reliability analysis) for masonry walls. Accordingly, research objectives are 

detailed in the subsequent section. 

 RESEARCH OBJECTIVES 

In light of the identified research gaps and motivations, the overarching objective of this thesis is 

twofold: (1) to develop 3D constitutive models for mortar joints to facilitate high-fidelity 

simulation of masonry walls and their applications in investigation of masonry walls under 

complex loading scenarios (e.g., combined IP and OOP loadings), and (2) to develop sophisticated 

algorithms for uncertainty quantification and their applications on masonry walls. To this end, this 

research is coordinated with the following four primary sub-objectives: 

(1) Sub-objective #1: Development of 3D constitutive models for mortar joints to facilitate the 

high-fidelity modeling of masonry walls 
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This sub-objective starts with an assessment of readily available modeling techniques for the 

modeling of mortar joints in the General-purpose Finite Element (FE) software ABAQUS 

(Dassault Systemes 2017). It involves evaluating their effectiveness and identifying the limitations 

of off-the-shelf modeling techniques. Following this, a new 3D multi-yield surfaces plasticity-

based constitutive model is developed for simulating the monotonic behavior of mortar joints. This 

model is subsequently extended to a damage plasticity-based framework, resulting in a second 

newly developed damage-plasticity constitutive model for simulating the cyclic behavior of mortar 

joints. Theoretical formulations and numerical implementations are detailed. The developed two 

constitutive models are validated against experimental tests in the public literature on small-scale 

masonry specimens (i.e., unit-mortar-unit assemblages) and URM and RM walls under IP or OOP 

loadings. 

(2) Sub-objective #2: Investigation of IP-OOP interaction behavior of unreinforced and 

reinforced masonry walls 

Expanding upon the constitutive model from Sub-objective #1, this sub-objective entails a 

comprehensive numerical investigation of 252 unreinforced masonry (URM) walls and 288 

reinforced masonry (RM) walls under combined IP and OOP loadings. The focus is to thoroughly 

analyze the failure mechanisms of masonry walls and to quantitatively assess the impact of pre-

existing OOP loading on the IP capacity. This involves an in-depth exploration of various potential 

influential factors: aspect ratio, slenderness ratio, and pre-compression load. Furthermore, IP-OOP 

interaction behaviors of URM and RM walls are compared to show the effects of reinforcements. 

Additionally, considering the complexity of model setup associated with the micro modeling 

strategy, automated modeling tools are needed to streamline this procedure. 
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(3) Sub-objective #3: Development of methodologies for statistics estimation using a multi-

fidelity approach and its application to the IP and OOP resistances of masonry walls with 

uncertain material properties 

This sub-objective addresses the first of two primary goals in the uncertainty quantification aspect 

of this research: statistics estimation. Accordingly, two novel statistics estimators for mean and 

variance are developed, respectively. The developed estimators integrate limited high-fidelity 

models (e.g., the FE models developed in Sub-objective #1) with a large number of low-fidelity 

models (e.g., design-code models), namely multi-fidelity (MF) approaches. The effectiveness of 

these estimators is demonstrated through case studies involving masonry walls subjected to IP or 

OOP loadings, showcasing their superior performance. 

(4) Sub-objective #4: Development of multi-fidelity reliability analysis algorithm and its 

application to masonry walls with uncertain material properties 

This sub-objective tackles the second goal of the uncertainty quantification part: reliability 

analysis. A novel MF reliability analysis algorithm is proposed, and its applicability is validated 

through four numerical examples. The algorithm is then applied to conduct reliability analyses for 

reinforced masonry walls under IP and OOP loadings, respectively. 

 NOVELTY AND SIGNIFICANCE OF RESEARCH 

This research contributes to the masonry community by developing innovative computational 

techniques and algorithms of uncertainty quantification for masonry walls. In the first part of this 

thesis, two novel 3D constitutive models for masonry mortar joints are introduced to facilitate the 

high-fidelity modeling of masonry walls. Contrasting with existing models in the public literature 
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that were mainly limited to 2D stress space and thus restricted to in-plane (IP) loading conditions, 

this research introduces more versatile models that can be applied in complex loading scenarios 

(e.g., combined IP and OOP loading). The newly developed models effectively incorporate critical 

micro-mechanical phenomena such as “dilatancy” and reasonably depict the complex failure 

mechanisms of mortar joints under cyclic loading, characterized by stiffness degradation and 

irreversible deformations. The research thoroughly addresses these aspects, filling a significant 

gap in existing modeling approaches. Furthermore, this thesis sheds light on the IP-OOP 

interaction effects in masonry walls, a topic previously largely unexplored in the literature. This 

exploration has direct implications for the practical design of masonry structures, offering insights 

into how different wall configurations influence the structural behaviors of masonry walls under 

combined IP and OOP loading. Additionally, the quantitative assessment of IP-OOP capacity 

interaction curves is vital for practical designs, improving the safety of masonry walls. 

The second part of the thesis takes a pioneering role in the advancement of multi-fidelity 

(MF) approaches within the realm of uncertainty quantification in the masonry community. It 

entails the development of innovative methods for statistics estimation and reliability analysis that 

integrate high-fidelity models (e.g., advanced computational models) and low-fidelity models (e.g., 

design-code models). This integration leads to more efficient and accurate estimations compared 

to other available methods. 

The significance of this research extends to enhancing the structural safety of masonry 

walls. The improved modeling capabilities provide more accurate predictions, aiding in the design 

of masonry buildings. By addressing notable gaps in existing literature and practices, the research 

enriches the body of knowledge about masonry structures, guiding future research and practical 
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applications. Moreover, the findings have the potential to influence the development of future 

building codes and standards for masonry structures. This contribution is critical in shaping more 

accurate and effective design guidelines, thereby enhancing the safety and resilience of masonry 

buildings. Moreover, the pioneering work in MF approaches for uncertainty quantification aligns 

with the principles of next-generation probabilistic performance-based design. This area of design, 

increasingly recognized for its potential to model the uncertainties inherent in structural behavior 

and loading conditions accurately, is enhanced by the integration of high-fidelity and low-fidelity 

models. Such integration leads to more reliable probabilistic analyses, which are crucial for 

developing design strategies that are not only safe but also adaptable to the variability and 

unpredictability of real-world conditions. 

 ORGANIZATION OF THESIS 

This thesis is structured into eleven chapters, each covering specific aspects as outlined below and 

shown in Figure 1-5: 

• Chapter 1 offers an introduction to this research, providing an overview of the background, 

problem statement, research motivation, objectives, and methodology. It also highlights the 

novelty and significance of the study. 

• Chapter 2 provides a comprehensive literature review pertinent to this thesis, focusing on 

computational modeling approaches for masonry walls, constitutive models for mortar joints 

in various computational frameworks, IP-OOP interaction behaviors of masonry walls, and 

aspects of uncertainty quantification on masonry walls. 

• Chapter 3 presents a finite element (FE) modeling strategy using off-the-shelf techniques to 

simulate the IP and OOP behavior of URM walls, accompanied by a parametric analysis to 
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assess parameter importance. Moreover, the limitations of off-the-shelf modeling techniques 

in modeling mortar joints are identified.  

• Chapter 4 presents a newly developed a 3D plasticity-based multi-yield surfaces constitutive 

model for monotonic modeling of mortar joints by addressing the limitations previously 

identified. Validation of this model is conducted with small-scale masonry specimens and 

large-scale masonry walls under IP or OOP loadings. 

• Building on the computational plasticity framework, Chapter 5 extends the monotonic model 

from Chapter 4 to a cyclic model, introducing a novel damage-plasticity based 3D multi-yield 

surfaces constitutive model for simulating the cyclic behavior of masonry mortar joints. 

• Chapter 6 and Chapter 7 present two comprehensive numerical studies exploring the 

structural behavior of URM and RM walls under combined IP and OOP loadings. The IP 

capacity reductions due to the OOP loading are quantified, and the critical scenarios most 

susceptible to the combined IP and OOP loadings are identified. 

• Chapter 8 and Chapter 9 introduce two innovative statistical estimators for mean and 

variance, respectively. This is achieved by leveraging efficient design-code models and 

expensive high-fidelity micro models using the control variate (CV) method. The performance 

of the proposed estimators compared to the crude Monte Carlo (MC) estimators relying solely 

on either model is demonstrated through several case studies. 

• In Chapter 10, a novel multi-fidelity reliability analysis algorithm is presented. Several 

numerical examples are presented to show its robustness. Subsequently, this novel algorithm 

is applied for the reliability analysis of masonry walls. 
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• Chapter 11 concludes the thesis work with a summary, conclusions, contributions, and 

highlights of this research, as well as the recommendation for future work. 

 

Figure 1-5. Organization of the thesis
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Chapter 2. LITERATURE REVIEW 

 FINITE ELEMENT MODELING FOR MASONRY WALLS 

Depending on different levels of sophistication and complexity, finite element (FE) modeling 

approaches for masonry walls are broadly characterized into two types: the micro modeling 

approach and the macro modeling approach (Lourenço et al. 1995a). This section reviews relevant 

works on using these strategies in the FE modeling of masonry walls. 

2.1.1. Micro modeling approach 

The micro modeling approach for masonry structures can be subdivided into detailed and 

simplified micro modeling strategies. For the masonry specimen shown in Figure 2-1 (a), all 

components are explicitly simulated in the detailed micro modeling approach: units and mortar are 

represented with solid continua, while contact surfaces between units and mortar are modeled by 

discontinuous cohesive interfaces, as shown in Figure 2-1 (b). In the simplified micro modeling 

approach, mortar and unit-mortar contact surfaces are lumped into mortar joints modeled by zero-

thickness interfaces, as illustrated in Figure 2-1 (c). This simplification reduces the number of 

interface elements considered, thereby leading to computational costs. In this subsection, the FE 

model strategies for investigating the IP and OOP behaviors of masonry walls are reviewed, 

encompassing both unreinforced masonry (URM) walls and reinforced masonry (RM) walls. 
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(a) 

  

(b) (c) 

Figure 2-1. FE micro modeling strategies for masonry structures: (a) masonry specimen, (b) 

detailed micro modeling approach, and (c) simplified micro modeling approach 

2.1.1.1 In-plane behavior 

Micro models for masonry walls are typically validated against existing experimental results. 

Remarkable success was achieved in reproducing the structural behaviors of URM walls under IP 

loading, including the load-deformation behaviors and failure modes. A significant number of 

studies based on the micro modeling approach focused solely on the monotonic IP behavior of 

URM walls, see for example (Abdulla et al. 2017; Anand and Yalamanchili 1996; Berto et al. 2004; 

Chaimoon and Attard 2007; Citto 2008; D’Altri et al. 2018; Dolatshahi and Aref 2011; Drougkas 

et al. 2019; Fouchal et al. 2009; Giambanco et al. 2001, 2018; Greco et al. 2016; Kumar et al. 2014; 

Kumar and Barbato 2019; Li and Zeng 2023; Lotfi and Shing 1994; Lourenço 1996; Lourenço and 

Rots 1997; Macorini and Izzuddin 2011; Marfia and Sacco 2012; Nazir and Dhanasekar 2014; da 

Porto et al. 2010; Vandoren et al. 2013; Wambacq et al. 2022; Xu et al. 2012; Zeng et al. 2021; 
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van Zijl 2004). For instance, URM walls tested in the monotonic IP loading condition (Raijmakers 

1992), characterized by a typical diagonal tension failure mode shown in Figure 2-2, were widely 

used as validation examples in a large number of studies, e.g., (Abdulla et al. 2017; Lourenço 1996; 

Macorini and Izzuddin 2011; Zeng et al. 2021). These studies demonstrate the capability of the 

micro modeling strategy to accurately predict the initial stiffness, peak strength, and post-peak 

behavior. 

  

(a) (b) 

  

(c) (d) 

Figure 2-2. FE models based on the micro modeling strategy for URM walls under IP loading by 

Lourenço (1996) 
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Nonetheless, comparatively fewer studies have addressed the cyclic behavior of URM 

walls under IP loading (Aref and Dolatshahi 2013; D’Altri et al. 2019; Gambarotta and 

Lagomarsino 1997a; Koutromanos and Shing 2012; Minga et al. 2018; Nie et al. 2022b; a; Oliveira 

and Lourenço 2004; Xie et al. 2021b; Yavartanoo and Kang 2022). This gap is partly attributed to 

the significant numerical complexity of the theoretical implementations involved in the model 

development. Effective cyclic constitutive models of mortar joints must encapsulate key 

characteristics of the material's hysteretic stress–strain loop, including energy dissipation during a 

cycle, plastic strains at the zero-stress level, crack closure under compressive stresses, and 

degradation of strength and stiffness in both tensile and compressive regimes. For instance, the 

flexural failure mode of URM walls tested in (Anthoine et al. 1994; Messali et al. 2020) and 

corresponding hysteretic behaviors were reasonably predicted using micro modeling strategy as 

evidenced by Minga et al. (2018) and D’Altri et al. (2019), as illustrated in Figure 2-3 (a-b). 
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(a) 

 

(b) 

Figure 2-3. Flexural rocking failures and corresponding hysteretic behaviors of URM walls 

predicted by the micro modeling strategy: (a) D’Altri et al. (2019), and (b) Minga et al. (2018) 

In recent decades, more high-fidelity micro models have been developed by researchers 

for the modeling of IP behaviors of RM walls. An early attempt by Shing and Cao (1997) involved 

simulating partially grouted reinforced masonry (PGRM) walls using the micro modeling strategy. 

In this model, masonry units were simulated using a plane-stress smeared crack formulation, and 

mortar joints were modeled by an elastic-plastic interface model proposed by Lotfi and Shing 

(1994). The validation results illustrated that the lateral strengths obtained were higher than those 

shown by tests. The discrepancies were attributed to the different load histories (i.e., monotonic or 

cyclic) and partly due to the assumption in the bond strength between the wall panels and concrete 

head beams. 
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Maleki (2008) simulated the PGRM walls in a discrete manner by using smear-crack plane 

stress elements to represent the grouted parts and cohesive interface elements to model the 

ungrouted parts and mortar joints, respectively. The proposed modeling scheme was capable of 

capturing the cracking pattern but was only applicable to monotonic loading scenarios. 

Calderón et al. (2017, 2019, 2021a) developed detailed micro models for PGRM walls, as 

shown in Figure 2-4. The nonlinear behaviors of units, mortar, and grout were considered by means 

of a total strain-based crack model, accounting for tensile cracking and compressive crushing. The 

steel reinforcement was assumed to be perfectly bonded with the surrounding grout parts and 

represented with beam elements and the Von Mises plasticity model. The proposed modeling 

strategy involved the nonlinear behaviors of the following interactions: unit to head-joint, bed-

joint to head-joint, bed-joint to reinforcement, unit to grout, and bed-joint to grout. Numerical 

validations included several PGRM walls with or without openings, and reasonable agreements 

were achieved in terms of failure modes, lateral resistances, and deformation capacities. The 

developed micro models by Calderón et al. (2017, 2019, 2021a) were subsequently used for a 

parametric study to assess the influence of aspect ratio, axial load level, and horizontal 

reinforcement ratio on the behaviors of PGRM walls (Calderón et al. 2021b). The analysis results 

indicated that increasing the horizontal reinforcement ratio could be associated with spreader 

damage and narrower cracks. Meanwhile, increasing the aspect ratio results in higher deformation 

capability but reduced strength. 
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(a) 

 

 

(b) (c) 

Figure 2-4. (a) Micro modeling strategy for PGRM walls, and (b-c) numerical-experimental 

comparison in terms of the crack pattern and load-deformation behavior by Calderón et al. 

(2019) 

Mavros (2015) proposed a novel discretization scheme for the micro modeling of fully 

grouted reinforced masonry (FGRM) walls. This approach utilized smear-crack shell elements to 

simulate the compressive behavior of concrete units, and cohesive discrete crack interface 

elements were placed at 45 and 135 degrees to capture the possible diagonal shear cracks in the 

units. Reinforcing steel was modeled using truss elements that were connected to the smear-crack 

shell elements through the nonlinear bond-slip and dowel action interface elements. The developed 
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model was validated using existing experimental walls, including flexural- and shear-governed 

FGRM walls. The simulation results were in good agreement with the experimental results in terms 

of failure mechanisms, hysteretic behaviors, energy dissipation capacities, stiffness, and strengths.  

Koutras and Shing (2019; 2021a) enhanced the modeling scheme proposed by Mavros 

(2015) in the following ways: 1) adding horizontal and vertical cohesive interfaces to account for 

possible sliding and splitting failure of masonry, respectively; 2) using beam elements instead of 

truss elements to better account for the reinforcement buckling and flexural deformation. The 

modeling discretization proposed by Koutras is shown in Figure 2-5, leading to accurate 

predictions for the structural performance of FGRM wall components under static cyclic loading. 

Moreover, Koutras and Shing (2019; 2021b) extended the applicability of the proposed modeling 

scheme from FGRM walls to PGRM walls. The grouted part of PGRM walls was modeled in the 

same way as that of FGRM walls, while the ungrouted units were represented by quadrilateral 

three-layered shell elements with vertical and horizontal interfaces inserted. It is worth noting that 

only the thickness of the face shells of units was considered in the shell elements. The validation 

results indicated the significant potential of the proposed modeling scheme to accurately capture 

the performance details of PGRM walls, including the hysteretic behaviors, failure modes, drift 

ratio time history, etc. 
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(a) 

Figure 2-5. Improved micro modeling strategy for FGRM walls by Koutras and Shing (2021a) 

2.1.1.2 OOP behavior 

The majority of research discussed in the previous section on the IP behaviors of masonry walls 

predominantly utilized two-dimensional (2D) FE models, thus not applicable to the three-

dimensional FE modeling of masonry walls. In such scenarios, when investigating the wall 

behavior under OOP loading, three-dimensional (3D) FE models are required. Such studies remain 

notably scarce on URM walls, and there is a lack of such research on RM walls in public literature. 

Macorini and Izzuddin (2012) introduced a micro modeling strategy in which the masonry 

units were modeled using 3D continuum solid elements, whereas the mortar and brick-mortar 

interfaces were modeled by means of nonlinear interface elements. This enables the representation 

of any 3D arrangement for brick-masonry, accounting for the through-thickness geometry, and 

importantly, it allows the investigation of both the IP and OOP responses of URM panels. Good 

agreements were observed between the numerical and experimental results in terms of the crack 

pattern (shown in Figure 2-6) and load-deformation behavior. 
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Figure 2-6. Numerical-experimental comparison of crack pattern of URM walls by Macorini and 

Izzuddin (2012) 

Abdulla et al. (2017) presented a simplified micro model strategy that integrated plasticity-

based constitutive models with the extended finite element method (XFEM). The constitutive 

models include surface-based cohesive behavior to capture the elastic and plastic behavior of 

masonry joints and a Drucker Prager (DP) plasticity model to simulate the crushing of masonry 

under compression. A notable aspect of this research is the detailed application of XFEM in 

simulating crack propagation within masonry units without requiring a pre-defined crack location. 

The efficacy of the proposed modeling strategy was validated through a study of a four-sided 

supported URM wall subjected to OOP loading. 

D'Altri et al. (2018) presented a novel 3D detailed micro-model to analyze the mechanical 

response of URM panels under IP and OOP loading conditions. The modeling approach, shown in 

Figure 2-7, features textured units composed of one brick and several mortar layers, each 

represented by 3D solid elements obeying plastic-damage constitutive laws. Textured units are 

assembled to accurately reflect the actual 3D through-thickness configurations of URM structures 
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and are interconnected using zero-thickness rigid-cohesive-frictional interfaces, and these 

interfaces were governed by a Mohr-Coulomb failure surface with tension cut-off. 

 

Figure 2-7. Detailed micro modeling approach for URM structures proposed by D’Altri et al. 

(2018) 

2.1.2. Macro modeling strategy 

Macro models for masonry structures can be generally categorized into two types: macro 

continuum and macro element models. Macro continuum models treat masonry as a continuum 

deformable body with a fictitious homogenized isotropic or orthotropic constitutive law. The 

constitutive law is typically formulated in the various computational mechanics frameworks, such 

as damage-based (Berto et al. 2002; Calderini and Lagomarsino 2008; Gambarotta and 

Lagomarsino 1997b; Karapitta et al. 2011; Pelà et al. 2011, 2013; Zucchini and Lourenço 2004), 

plasticity-based (De Buhan and De Felice 1997; Lotfi and Shing 1991; Lourenço et al. 1997, 1998; 

Lourenço 2000a), and damage plasticity-based (Biye et al. 2022; Chisari et al. 2023; Gatta et al. 
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2018; Lopez et al. 1999; Shen et al. 2022; Yacila et al. 2019). Consequently, the mesh 

discretization in macro continuum models does not need to describe the actual masonry texture. 

The computational cost is moderate and generally lower than that of micro models, enabling a 

more efficient procedure for large-scale masonry structural analysis. 

On the other hand, macro element models intend to idealize masonry systems into several 

components using structural elements/connectors (e.g., spring, hinge, interface, truss, beam, 

frame). Each component is represented with a phenomenological (e.g., from experimental data) or 

mechanical-based (e.g., from Euler Bernoulli beam formulation) material response, facilitating a 

more focused and component-specific analysis of masonry structures. 

2.1.2.1 IP behavior 

Macro continuum models were initially developed for URM walls, focusing on predicting the IP 

peak strength (i.e., failure envelope). The first group of available studies involves only the 

investigation of monotonic behaviors for URM walls under IP loading, such as (De Buhan and De 

Felice 1997; Lopez et al. 1999; Lourenço et al. 1997, 1998; Lourenço 2000a; Pelà et al. 2013). The 

primary objective is to validate the capability of macro continuum models to predict peak strength, 

while ductility, stiffness degradation, and post-peak behavior received less attention due to the 

inadequacy of monotonic models. 

With the increasing availability of experimental data on the hysteretic behavior of masonry 

materials, more sophisticated macro continuum models emerged (Berto et al. 2002; Biye et al. 

2022; Calderini and Lagomarsino 2008; Gambarotta and Lagomarsino 1997b; Gatta et al. 2018; 

Karapitta et al. 2011; Shen et al. 2022). These models have been instrumental in predicting the 

structural behavior of URM walls under cyclic IP loading. For example, two URM walls with 
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different height-to-width ratios, tested by Anthoine and Magonette (Anthoine et al. 1994), served 

as benchmark cases for validation. Experimental hysteretic behavior of the flexural-governed 

URM wall indicated a nonlinear response with limited energy dissipation and significant ductility, 

which was reasonably predicted in studies (Calderini and Lagomarsino 2008; Gatta et al. 2018; 

Shen et al. 2022). Shear-governed failure, characterized by an abrupt strength degradation and a 

larger energy dissipation, was also well captured in these studies. However, macro continuum 

models' inherent limitation in representing discrete crack patterns, typically characterized by 

localized cracking in masonry, was evident due to their assumption of smeared damage. To address 

this issue, Saloustros et al. (2018) enhanced the macro continuum model with a local crack-

tracking algorithm, improving the representation of localized tensile crack propagation. The 

proposed model was capable of capturing the multiple flexural and shear failure modes of a large-

scale URM wall. 
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(a) 

  

(b) 

  

(c) 

 Figure 2-8. Numerical predictions based on the macro continuum models: (a) Karapitta et al. 

(2011), (b) Shen et al. (2022), and (c) Gatta et al. (2018) 

In addition to macro continuum models, macro element models have wider applicability in 

practice-oriented assessments for URM walls. Examples include monotonic behavior estimation 

with a primary interest in the initial stiffness and peak strength (Addessi et al. 2014, 2015; Chen 
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et al. 2008; Kesavan and Menon 2023; Liberatore and Addessi 2015; Pirsaheb et al. 2020; Roca et 

al. 2005) and cyclic response assessment focusing on more structural characteristics (Bracchi et al. 

2021; Bracchi and Penna 2021; Penelis 2006; Penna et al. 2014; Rinaldin et al. 2016; Vanin et al. 

2020), e.g., stiffness degradation, energy dissipation capability. Based on the assumption that 

damage could be approximately concentrated in particular structural sections, macro elements can 

be modeled through lumped plasticity behaviors at specified locations (e.g., at the end and/or 

midpoint of structural elements). However, due to the simplification in the idealization of masonry 

walls, the crack location and damage distribution cannot be generally obtained explicitly but can 

be qualitatively inferred through the violation of plastic material laws (e.g., flexural or shear 

strength). 

Despite the extensive applicability of macro models on URM walls, particularly in the 

context of historic masonry structures, their potential for modeling the IP behaviors of RM walls 

has not been fully explored. Current studies on RM walls using macro continuum models, such as 

those by Lofti and Shing (1991), Dhanasekar and Haider (2008) , Abdellatif et al. (2019), Yacila 

et al. (2019), and Noor-E-Khuda and Thambiratnam (2021), focus primarily on monotonic 

behavior. Furthermore, the effects of reinforcements have not been adequately addressed, using 

either a smeared approach (Lotfi and Shing 1991) or assuming perfect bonding between the 

reinforcing bar and block/grout (Abdellatif et al. 2019; Dhanasekar and Haider 2008; Noor-E-

Khuda and Thambiratnam 2021; Yacila et al. 2019). Other effects, such as nonlinear bond slip 

behavior and dowel effects, are typically neglected, even though these effects have been shown to 

significantly impact the IP behaviors of RM walls. 
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Macro element models have only been introduced to RM walls very recently (Cheng and 

Shing 2022a; b; Peruch et al. 2019b), despite their considerable success in modeling reinforced 

concrete members. Peruch et al. (2019a) explored the use of distributed plasticity Timoshenko 

frame elements with fiber cross sections for analyzing the FGRM walls. Cheng and Shing (2022b) 

presented a modeling method based on a fiber-section beam-column element idealization to 

capture the nonlinear IP cyclic behavior of flexural-dominated RM walls illustrated in Figure 2-9 

(a), with a highlight of considering the buckling and low-cycle fatigue of vertical reinforcing bars 

using a phenomenological material law. Later, Cheng and Shing (2022a) developed a more 

advanced beam-column element capable of capturing the axial-flexural-shear interaction, as shown 

in Figure 2-9 (c). The proposed model was validated against tested RM walls, and the validation 

results showed a lower shear strength compared to the test results, but the hysteretic character was 

reasonably captured. 
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(a) (b) 

 

 

(c) (d) 

Figure 2-9. Macro element modeling strategy and numerical validation for: (a-b) flexural-governed 

RM walls by Cheng and Shing (2022b), and (c-d) shear-governed RM walls by Cheng and Shing 

(2022a) 

2.1.2.2 OOP behavior 

Studies utilizing macro continuum models for analyzing the out-of-plane (OOP) behavior of 

masonry walls are relatively limited. These models typically treat masonry as a homogenized 

material with orthogonal properties. For instance, Lourenço (2000a) proposed an anisotropic 

model for masonry plates and shells characterized by a composite plasticity criterion that is able 

to reproduce elastic and inelastic behavior in two orthogonal directions coinciding with the 

orientation of the bed and head joints of masonry. Further validation of the model with 

experimental results on masonry panels subjected to OOP loading demonstrates the accuracy of 

the proposed models. 
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Noor-E-Khuda et al. (2016a) developed a macro modeling strategy for masonry walls in 

which masonry is modeled as a layer with macroscopic orthotropic properties and external 

reinforcing render, grout, and and reinforcing bars are modeled as distinct layers within the shell 

element. The model was successfully validated using the OOP response of seven walls comprising 

unreinforced masonry, internally reinforced masonry, confined masonry (see Figure 2-10), and 

externally surface reinforced masonry walls. A subsequent parametric study by Noor-E-Khuda and 

Thambiratnam (2021) employed this macro modeling strategy to explore the impact of 

reinforcement ratio on the OOP behavior of FGRM walls. 

  

(a) (b) 

Figure 2-10. Experimental-numerical comparison in terms of crack pattern for confined masonry 

wall under OOP loading from Noor-E-Khuda and Thambiratnam (2021) 

EI-Hashimy et al. (2019) developed a three-dimensional model in the Open-source FE 

software framework Opensees (Mazzoni et al. 2006) to simulate the OOP response of masonry 

walls. This approach, namely the ‘layered finite-element model (LFEM)’, employed the 

SHELLMITC4 shell element (Lu et al. 2015), allowing for the incorporation of the properties of 

reinforcements and concrete units. The LFEM demonstrated its effectiveness in accurately 

predicting initial stiffness, peak load, and corresponding displacements for various FGRM walls. 
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In addition to macro continuum models, the other type of macro model in studying the 

OOP behavior of masonry walls is the macro element model. A significant example in this category 

is the section fiber-based-beam model, as illustrated in studies by Metwally et al. (2022), Pantò et 

al. (2017), Vanin et al. (2020). The section fiber-based-beam model adeptly integrates 

heterogeneous material properties and complex failure mechanisms, providing a realistic 

representation of masonry wall behaviors. Its flexibility in characterizing different masonry 

compositions and computational efficiency make it an advantageous tool for comprehensive 

studies, particularly when resources are constrained. However, the section fiber-based-beam 

model's assumption of material homogeneity along the beam's length can introduce inaccuracies, 

especially in walls with notable material heterogeneity. This limitation poses challenges in 

accurately capturing localized effects such as cracking or spalling at the micro-level, which are 

crucial for understanding damage initiation and propagation. 

 CONSTITUTIVE MODELS OF COHESIVE INTERFACES FOR MASONRY MORTAR 

JOINTS 

The capability of the micro modeling approach to simulate the structural behavior of masonry 

walls relies heavily on the constitutive models of cohesive interfaces for mortar joints. Cohesive 

interfaces were first introduced for the modeling of concrete structures by Ngo and Scordelis 

(1967), and also in the area of rock mechanics by Goodman et al. (1968). It was first introduced 

for the modeling of masonry mortar joints by Page (1978) and later has received great attention in 

the micro modeling of masonry structures. This section reviews significant contributions to the 

development of constitutive models for cohesive interfaces in masonry mortar joints. The review 
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categorizes the models into two groups: the first focuses on monotonic behavior, while the second 

group addresses more advanced cyclic (hysteretic) behaviors. 

2.2.1. Monotonic models 

In the monotonic model formulation of cohesive interfaces, a crucial factor is to represent various 

failure modes of mortar joints under different loading conditions. Generally, there are two primary 

categories of interface models: the first category includes models that account for tensile cracking 

and shear sliding with shear-compression hardening, as explored in studies (Abdulla et al. 2017; 

Giambanco et al. 2001; Giambanco and Di Gati 1997; Lotfi and Shing 1994; Stankowski et al. 

1993b; a; Zhai et al. 2017), and the second category extends the model by additionally considering 

compression failure mode, as demonstrated by (Aref and Dolatshahi 2013; Citto 2008; Dolatshahi 

and Aref 2011; Kumar et al. 2014; Kumar and Barbato 2019; Lourenço 1996; Lourenço and Rots 

1997; Nazir and Dhanasekar 2014; da Porto et al. 2010; Remacle et al. 2012; van Zijl 2004). 

Constitutive material models for interfaces should ideally incorporate all possible failure modes, 

as shown in Figure 2-11. 
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(a) (b) 

  

(c) (d) 

Figure 2-11. Failure modes considered in the cohesive interfaces for mortar joints: (a) tensile 

cracking, (b) shear sliding, (c) compressive-shear failure, and (d) compressive crushing (Lourenco 

1996) 

Lourenco and Rots (1996; 1997) pioneered the development of a multi-yield surfaces 

model to encompass all three primary failure modes and criteria: tensile cracking, shear sliding, 

and masonry or mortar crushing. This model has been extensively adopted and further refined by 

other researchers (Dolatshahi and Aref 2011; Giambanco and Di Gati 1997; Nazir and Dhanasekar 

2014; van Zijl 2004). However, these plasticity-based constitutive models are known to encounter 

a well-known singularity issue due to non-smooth corners at the intersection of different yield 

surfaces, as depicted in Figure 2-12. To address this challenge in the numerical integration, some 

researchers proposed a single yield surface failure criterion, e.g., (Citto 2008; Kumar et al. 2014, 

2015), as illustrated in Figure 2-13 and Figure 2-14. While the single yield surface model offers 

mathematical elegance, it suffers from a lack of clear physical interpretation of tension-shear 

failure, which represents a unit-mortar interfacial phenomenon (e.g., tensile cracking and shear 
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sliding), and the compression cap, which represents a masonry or mortar crushing failure mode. 

Accordingly, cohesive interface elements with single yield surface models often require complex 

yield function expressions that include some non-physical parameters that are difficult to quantify. 

Notably, using a single yield function to represent the tension-shear failure mode is more 

acceptable using hyperbolic (Kumar and Barbato 2019; Lotfi and Shing 1994; Remacle et al. 2012), 

elliptical (Nazir and Dhanasekar 2014), and parabolic (Stankowski et al. 1993b; a) yield surfaces. 

 

Figure 2-12. Multi-yield surfaces plasticity model proposed by Lourenco and Rots (1996; 1997) 

 

 

(a) (b) 

Figure 2-13. Single yield surface model to consider tensile cracking and shear sliding (a) 

Hyperbolic yield surface and plastic potential surface, (b) evolution of yield surface (Carol et al. 

1997) 
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Figure 2-14. Single yield surface model to consider tensile cracking, shear sliding, and 

compressive crushing (Kumar et al. 2014) 

The aforementioned constitutive models were all implemented in the 2D stress space, thus 

having the only possibility of being applied in the IP loading scenario. Recognizing the need for 

more versatile models for masonry walls under complex loading scenarios, such as OOP loading, 

researchers started to put focus on the 3D constitutive model formulation. 

Caballero et al. (2008) extended the 2D model developed by Carol et al. (1997) into 3D 

space. In addition, a backward-Euler integration strategy was developed in this study combined 

with a local/global Newton Solver, incorporating a consistent tangent operator compatible with an 

adaptive sub-stepping strategy. This innovation significantly enhanced numerical efficiency and 

accuracy. 

Macorini and Izzuddin (2012) adopted a co-rotational approach for interface elements, 

which shifts the treatment of geometric nonlinearity to the level of discrete entities. This approach 

facilitated material nonlinearity handling within a simplified local framework using first-order 

kinematics. In this respect, internal interface forces were modeled by means of elasto-plastic 

material laws based on work-softening plasticity and employing a multi-surface plasticity criterion.  
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Serpieri et al. (2017) developed a microstructured 3D composite Cohesive-Zone Model 

(CZM) to describe the behavior of joints of adhesive quasi-brittle materials. The developed model 

was capable of reproducing an initial linear elastic response, corresponding to the elastic 

parameters of a thin adhesive quasi-brittle layer of finite thickness and stiffness, followed by a 

post-elastic response of the joint featuring progressive crack formation and the onset of frictional 

and dilating responses. The proposed model was validated through a small-scale unit-mortar-unit 

assemblage and a masonry wallette subjected to OOP bending. 

D'Altri et al. (2018) developed a zero-thickness rigid-cohesive-frictional interface model 

based on the contact penalty method. The developed model was governed by a Mohr-Coulomb 

failure surface with a tension cut-off. The experimental-numerical comparisons were performed 

on the small-scale masonry assemblages and URM walls under IP and OOP loading, respectively, 

showing its great potential. 

 
  

(a) (b) (c) 

Figure 2-15. Failure surfaces for cohesive interfaces proposed by D'Altri et al. (2018): (a) Morh-

Coulomb surface with tension cut-off, (b) post-peak tensile respponse, and (c) post-peak shear 

response 

To overcome the numerical stability issues, Pari et al. (2021) proposed the use of 

numerically robust sequentially linear procedures and a suitable discretized tension-shear-

compression failure model for cohesive interfaces. The sequentially linear procedures described 
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the nonlinear response of a specimen/structure through a sequence of scaled linear analyses, each 

of which represents locally applied damage increments, using secant-stiffness based discretized 

constitutive relations called saw-tooth laws. 

Compared with the consideration of various failure modes in the constitutive models of 

interface elements for masonry joints, there is an important phenomenon that has attracted less 

attention. As identified by Andreotti et al. (2019), the micromechanical behavior of the mortar 

layer and the two mortar-unit interfaces has inherent dilatancy, as a result of a crack surface that 

is not perfectly smooth: the mortar joint specimen will deform with an uplift under compression 

and shear loading, thus leading to a volume increase. As evidenced by the experimental results 

(Andreotti et al. 2019; Jafari et al. 2020; Pluijm 1999), the dilatancy effects become pronounced 

under lower compression, and will diminish with the increase of normal compressive stress and 

plastic shear displacement. Inappropriate description of dilatancy can produce an increase in 

normal stress, resulting in a considerable overestimate of shear capacity for pressure-dependent 

materials or specimens. 

Two main methods have been developed to integrate the dilatancy effects into the 

numerical description of the constitutive material model for mortar joints. The first approach is to 

incorporate the dilatancy into the Mohr-Coulomb yield criterion (Giambanco et al. 2001; 

Giambanco and Di Gati 1997). As a result, it can reflect the increase in shear strength due to the 

dilatancy effects. However, the volume increase and the uplift of the specimen upon shearing 

cannot be captured. The other approach is to adopt an unassociated flow rule in the formulation of 

the constitutive material model to consider the influence of dilatancy. However, most studies 

assumed the constant dilatancy angle (Lourenço 1996; Lourenço and Rots 1997; Oliveira and 
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Lourenço 2004; da Porto et al. 2010; Stankowski et al. 1993b; a) in a simplified manner, which 

would result in an inaccurate estimation of shear capacity. Although some researchers considered 

the variation of dilation angle, the dependence of compressive stress (Koutromanos and Shing 

2012; Kumar and Barbato 2019; Remacle et al. 2012; Zhai et al. 2017) or plastic shear 

displacement (Citto 2008) on the dilatancy effects was neglected. Few 2D interface models (Lotfi 

and Shing 1994; van Zijl 2004) formulated the decreased dilatancy angle with the increase of 

compressive stress and plastic shear displacement. These 2D models, however, failed to address 

the OOP behavior prediction of masonry walls, as mentioned earlier. Meanwhile, although the 

diminishment of dilatancy is observed at large shear sliding due to the wear and damage to the 

asperities along the unit-mortar interface, the dilatancy becomes stable at a non-zero value based 

on some experimental evidence, e.g., (Andreotti et al. 2019; Jafari et al. 2020), which is not taken 

into account in current models. 

 Table 2-1 offers a comprehensive overview of existing constitutive models in the public 

literature for interface elements in masonry mortar joints. It summarizes key features of these 

models, including yield criteria, failure mechanisms considered, model implementation space 

(whether 2D or 3D), consideration of dilatancy variation, and their application in various contexts. 

This encompasses both small-scale masonry assemblages and large-scale masonry walls under IP 

and/or OOP loading. 
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Table 2-1. Existing monotonic models of interface elements for masonry mortar joints 

2.2.2. Cyclic models 

The cyclic behavior of mortar joints is much more complex than the monotonic behavior. In 

addition to the initial stiffness and strength softening that should be well addressed in the 

monotonic behavior, more factors should be well considered to lead to a rational constitutive 

formulation: stiffness degradation, stiffness recovery upon stress reversal (e.g., from tension to 

compression), residual displacement at zero-stress level, etc. 

To this aim, Oliveira and Lourenco (2004) improved the interface model proposed by 

Lourenço and Rots (1997) and introduced two auxiliary yield surfaces during the unloading 

process, as shown in Figure 2-16. The motion of the unloading surfaces is controlled by a mixed 

Reference 
Yield 

Criterion 

Failure 

Mechanisms 
Dimension Dilatancy Application 

Stankowski et al. (1993b; a) SYS TC, SS  

2D 

No UMU 

Lotfi and Shing (1994)  SYS TC, SS Yes UMU, IP 

Lourenço and Rots (1997) MYS TC, SS, CC No IP 

Giambanco and Di Gati (1997) MYS TC, SS Yes IP 

Giambanco et al. (2001) MYS TC, SS Yes UMU 

Giambanco et al. (2001)  MYS TC, SS Yes IP 

van Zijl (2004) MYS TC, SS, CC Yes UMU 

Citto (2008) SYS TC, SS, CC Yes IP 

Da Porto (2010) MYS TC, SS, CC No IP 

Dolatshahi and Aref (2011) MYS TC, SS, CC No IP 

Koutromanos and Shing (2012) SYS TC, SS Yes UMU, IP 

Kumar et al. (2014) SYS TC, SS, CC Yes IP 

Nazir and Dhanasekar (2014) MYS TC, SS, CC No UMU, IP 

Zhai et al. (2017) SYS TC, SS Yes IP 

Kumar and Barbato (2019) MYS TC, SS, CC Yes IP 

Caballero et al. (2008) SYS TC, SS 

3D 

No NA 

Macorini and Izzuddin (2012) MYS TC, SS, CC Yes IP, OOP 

Aref and Dolatshahi (2013) MYS TC, SS, CC No IP, OOP 

Abdulla et al. (2017) MYS TC, SS No IP, OOP 

D'Altri et al. (2018) MYS TC, SS No UMU, IP, OOP 

Pari et al. (2021) MYS TC, SS, CC No IP 

TC: Tensile cracking; SS: Shear sliding; CC: Compressive crushing 

MYS: Multi-yield surface; SYS: Single-yield surface 

UMU assemblage: Unit-mortar-unit assemblage 

IP: masonry walls under IP loading 

OOP: masonry walls under OOP loading 
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hardening law. Although the stiffness reduction effects were captured, the total of six possibilities 

for unloading/reloading movements resulted in a complex implementation framework.  

 

 

(a) (b) 

Figure 2-16. Hypothetic motion of the unloading surface in stress space to: (a) tension, and (b) 

compression (Oliveira and Lourenço 2004) 

Aref and Dolatshahi (2013) developed a 3D plasticity-based interface model within the 

explicit integration procedure, and the stiffness degradation was considered in the positive normal 

direction using a single scalar in a simplified manner. Koutromanos and Shing (2012) adopted a 

modified elastoplastic formulation to simulate mixed-mode fracture, crack opening and closing, 

reversible shear dilatation, and joint compaction under cyclic loading conditions, and the 

corresponding cyclic stress-displacement response is shown in Figure 2-17.  

 

Figure 2-17. Uniaxial behavior of interface model: (a) loading and unloading, and (b) reloading 
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In addition to the plasticity-based framework, damage mechanics theory has also been 

applied to formulate the constitutive material model for cohesive interface elements. Parrinello et 

al. (2009) proposed an interface constitutive model, which couples a cohesive behavior based on 

the damage mechanics with a frictional one defined in a non-associated plasticity framework. 

D'Altri et al. (2019) developed a damaging block-based model for the numerical analysis of the 

cyclic behavior of masonry structures. For the modeling of mortar joints, the cohesive-frictional 

contact-based formulation is adopted with an elastic-damage procedure assumed in the tensile 

regime, while stiffness degradation is neglected in the compressive regime. Similar numerical 

simplification methods can be found in (Gambarotta and Lagomarsino 1997a; Sacco and Lebon 

2012). However, the aforementioned pure damage-based models result in the absence of 

irreversible deformation (i.e., the unloading curve is pointing to the origin), which appears 

contradictory to the experimental findings for the quasi-brittle materials. 

As discussed above, general plasticity-based models are incapable of capturing the stiffness 

degradation observed in experimental results, whereas pure damage-based models are inadequate 

for describing irreversible deformation. Furthermore, the inelastic volumetric expansion of mortar 

joints under compression caused by the dilatancy effects cannot be accounted for with pure damage 

theory. Consequently, the combination of plasticity and damage might be an effective approach to 

modeling the cyclic behavior of mortar joints. This framework has gained popularity for the 

macroscopic modeling of quasi-brittle materials (Comi and Perego 2001; Grassl et al. 2013; Jason 

et al. 2006; Lee and Fenves 1998). However, its applications on the cohesive interface for the 

modeling of mortar joints are rare (Minga et al. 2018; Nie et al. 2022b; a; Yuen et al. 2019). Minga 

et al. (2018) introduced stiffness degradation via an anisotropic damage tensor based on the 
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evolution of plastic work produced. However, a simplified multi-surface plasticity criterion with 

two flat yield surfaces (i.e., compressive cap and tension cut-off) was employed, in which two 

sharp singularity corners could possibly result in a convergence issue. Yuen et al. (Yuen et al. 2019) 

presented a fracture-energy based damage-plasticity model in the explicit Euler integration scheme. 

Thus, a sufficient small loading increment is required to guarantee numerical accuracy. More 

recently, Nie et al. (2022b; a) proposed two interfacial damage-plasticity based models for mortar 

joints characterized by a smooth hyperbolic yield surface. However, the failure mode associated 

with compressive crushing was not considered, leading to a possible overestimation of the masonry 

wall’s capacity. A summary of existing cyclic models for mortar joints in the public literature is 

presented in Table 2-2. 

Table 2-2. Existing cyclic models of interface elements for masonry mortar joints 

Reference 
Failure 

mechanisms 
Dimension 

Computational 

framework 
Application 

Gambarotta and Lagomarsino (1997a) TC, SS 

2D 

Damage IP 

Oliveira and Lourenco (2004) TC, SS, CC Plasticity UMU, IP 

Koutromanos and Shing (2012) TC, SS Plasticity UMU, IP 

Parrinello et al. (2009) TC, SS Damage  IP 

Sacco and Lebon (2012) TC, SS Damage UMU 

Aref and Dolatshahi (2013) TC, SS, CC 

3D 

Plasticity UMU, IP 

Minga et al. (2018) TC, SS, CC Damage-plasticity UMU, IP, OOP 

Yuen et al. (2019) TC, SS Damage-plasticity UMU, IP 

Nie et al. (2022b; a) TC, SS Damage-plasticity UMU, IP 

TC: Tensile cracking; SS: Shear sliding; CC: Compressive crushing 

UMU assemblage: Unit-mortar-unit assemblage 

IP: masonry walls under IP loading 

OOP: masonry walls under OOP loading 

 IN-PLANE AND OUT-OF-PLANE INTERACTION BEHAVIORS OF MASONRY 

WALLS 

Experimental programs that test masonry walls under combined IP and OOP loadings are rare 

(Dolatshahi and Aref 2016; Krishnachandran and Menon 2023; Najafgholipour et al. 2013), and 

the majority of the numerical models developed are either limited to the simulation of pure IP or 
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OOP behavior, as reviewed in the previous sections. This deficiency in the literature could be 

attributed to the challenges and costs associated with testing masonry walls under complex loading 

conditions, as well as the technical complexities and computational costs involved in modeling 

masonry walls in 3D space. 

Najafgholipour et al. (2013) tested a series of URM wall panels subjected to simultaneous 

IP and OOP loading, as shown in Figure 2-18 (a). The experimental results highlighted a 

significant reduction in IP shear capacity as OOP load increased, and the corresponding results 

were expressed in terms of the capacity interaction curves illustrated in Figure 2-18 (b). It should 

be noted, however that in this test program, the IP capacity was obtained through diagonal 

compression tests, which did not capture the other possible IP failure modes (e.g., flexural rocking, 

shear sliding), and the coupling effects between axial load and flexure or shear capacity were also 

neglected.  

  

(a) (b) 

Figure 2-18. URM panel under combined IP and OOP loading tested by Najafgholipour et al. 

(2013): (a) test specimen, and (b) IP-OOP capacity interaction curve 

Dolatshahi and Aref (2016) conducted tests to explore the multi-directional behavior of 

URM walls under simultaneous IP and OOP loadings, using both monotonic and cyclic quasi-
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static loading protocols. It was observed that, due to the pre-applied OOP loading, the URM wall 

easily collapsed because of the accumulative OOP deformation under subsequent IP loading. The 

IP and OOP interaction effects were found to be strongly influenced by the aspect ratio (i.e., height-

to-length ratio) and the IP failure modes of URM walls when no OOP load exists. 

 

Figure 2-19. Load sequence of URM walls under combined IP and OOP loading tested by 

Dolatshahi and Aref (2016) 

A recent experimental study by Krishnachandran and Menon (2023) examined the IP 

flexural capacity of URM piers with varying aspect ratios in the presence of OOP displacements. 

The test results also demonstrated a reduction in both stiffness and strength of URM piers when 

subjected to inelastic OOP displacements. 
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(a) (b) 

Figure 2-20. URM wall tested by Krishnachandran and Menon (2023): (a) IP loading, and (b) 

OOP loading 

Several researchers have complemented the previously discussed experimental studies by 

exploring IP-OOP interaction effects in URM walls through numerical approaches. The first set of 

studies focused on simplified models, including macro and analytical models (Agnihotri et al. 2013; 

Dolatshahi et al. 2015; Malomo and DeJong 2022; Najafgholipour et al. 2014; Noor-E-Khuda and 

Dhanasekar 2018a; b). Nonetheless, these models are insufficient for accurately characterizing the 

inherent composite nature of masonry, and the intricate failure modes of URM walls cannot be 

well captured. The current use of micro modeling approach in examining IP-OOP interactions in 

URM walls is relatively limited (Dolatshahi and Yekrangnia 2015; Kesavan and Menon 2022). 

Dolatshahi and Yekrangnia (2015) examined the IP-OOP interaction effects utilizing the 

simplified micro models. The results revealed that the OOP strength could be reduced by up to 72% 

for URM walls under simultaneous IP and OOP loading. More recently, Kesavan and Menon 

(Kesavan and Menon 2022) relied on the so-called ‘block-based modeling approach’, in which 

units and mortar were modeled explicitly while the unit-mortar contacts were assumed to be rigidly 
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connected. It was generally concluded that the IP-OOP interaction effects were more significant 

in the shear-controlled URM piers than the flexural-controlled ones. 

In contrast to the URM walls, the relevant research on RM walls can only be found by 

Noor-E-Khuda and Dhanasekar (2018a), in which a macro continuum model was used by 

representing masonry (units plus mortar joints) as a homogeneous material. This numerical 

investigation identified a critical value of OOP load (as a percentage of OOP capacity), beyond 

which the IP capacity decreased rapidly. However, the influence of various parameters (e.g., 

geometrical parameters) on the IP and OOP interaction behaviors of RM walls was not reported 

due to the limited number of RM walls simulated. Moreover, the detailed failure modes of RM 

walls were not adequately captured through the macro modeling approach, causing a lack of 

comprehension regarding the IP and OOP interaction behaviors. 

 DESIGN CODE-BASED MODELS FOR MASONRY WALLS 

In current engineering practice, masonry walls are primarily designed to adhere to prescriptive 

code regulations, which establish specific construction practices to ensure performance 

satisfaction. In North America, several design codes are available for the design of masonry 

structures, including CSA S304-14 “Design of Masonry Structures” (2014), TMS 402 “Building 

Code Requirements and Specification for Masonry Structures” (2016), etc. These prescriptive 

codes generally provide guidelines on material properties, detailing requirements, minimum 

reinforcements, allowable stresses, and other considerations. The applicability and appropriateness 

of design codes to masonry walls are mainly studied by comparing the design code-model 

predictions and experimental results. In this section, the available studies on this topic for masonry 
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walls are reviewed. It should be noted that only unreinforced masonry (URM) walls and fully 

grouted reinforced masonry (RM) walls are included in the review. 

Hwang et al. (2022) found that the design equations specified by the New Zealand Society 

for Earthquake Engineering (NZSEE) and Federal Emergency Management Agency (FEMA) 273 

(Applied Technology Council 1997) result in quite conservative evaluations of the IP resistance 

of URM walls with a large deviation, particularly when the pre-compression stress is less than 0.5 

MPa. Haach et al. (2013) compiled an experimental database and evaluated the performance of 

Eurocode 6 (2005), finding that both design code models yielded overly-conservative results with 

a large scatter. Celano et al. (2021) collected the experimental tests from the public literature, and 

a comparison between theoretical and experimental results was carried out. The results revealed 

that the design code predictions and experimental results on the flexural capacity of URM walls 

were in good agreement, with the design code predictions slightly underestimated. Noor-E-Khuda 

and Dhanasekar (2020) compared the design code predictions and FE predictions on the OOP 

capacity of RM walls, with the results shown in Figure 2-21. It was concluded that the design 

provisions in the AS3700 (2018) and Euro (2005) are shown to be overly-conservative for RM 

walls under vertical compression higher than or equal to 1 MPa, while design provisions for walls 

supported at top and bottom are safe in all four design standards considered. In addition, OOP 

capacities of the three sides supported and longer/taller walls predicted with the code equations 

are overly-conservative. 



Chapter 2: Literature Review 

50 

 

 

Figure 2-21. Comparison of OOP capacity by design codes and FE model by Noor-E-Khuda and 

Dhanasekar (2020) 

Samy et al. (2012) compiled an experimental database of 173 flexural tests on RM beams 

and walls. CSA S304-14 flexural design provisions were checked against the compiled database. 

It was concluded that the mean value of the experimental-to-predicted ratio in terms of flexural 

strength is 1.13. Seif ElDin et al. (2019) performed a statistical analysis to evaluate the accuracy 

of various design equations of shear strength of fully grouted RM walls, including Matsumura 

(1988), Shing et al. (1990a), CSA (2014), TMS (2016), Voon and Ingham (2007), and the one 

proposed by Seif ElDin et al. (2019). The results of the statistical analysis showed that the given 
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equations by Matsumura (1988), TMS (2016), and the proposed equation were the most precise 

equations in terms of the smallest values for the coefficient of variation (COV). For the data set 

that includes all the studied walls, they have COV values of 15.3%, 13.6%, and 14.6%, respectively. 

Whereas, the proposed equation by Seif ElDin et al. (2019) has a COV ranging from 9.8% to 15.2% 

for the different data sets, compared to 11.3% ~ 17.5% and 11% ~ 19.5% for the equations 

provided by Matsumura (1988) and TMS (2016). Regarding the CSA S304-14 (2014), a consistent 

overestimate of shear strength was observed, as shown in Figure 2-22. The equation given in CSA 

S304-14 (2014) led to a 95th percentile value of the experimental-to-predicted ratio, which is 

higher than one. However, using the equation given in CSA S304-14 (2014) results in conservative 

values with a significantly large variation (COV = 25.1%). 

 

 

(a) (b) 

Figure 2-22. (a) Experimental results versus the predicted in-plane shear strength, and (b) 

statistical comparisons between the accuracy of shear equations for predicting in-plane shear 

strength of fully grouted reinforced masonry walls (Seif ElDin et al. 2019) 
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 UNCERTAINTY IN MASONRY WALLS 

Uncertainties in engineering systems are typically classified as either aleatoric or epistemic 

(Kiureghian and Ditlevsen 2009). Aleatoric uncertainty stems from inherent randomness of natural 

systems or processes and is commonly irreducible. This type of uncertainty, encompassing the 

intrinsic randomness in phenomena like material properties and loading conditions, is often 

addressed through probabilistic models. Epistemic uncertainty, on the other hand, arises from 

incomplete knowledge about the system or process. Characterized by measurement inaccuracies 

and model inadequacies, this uncertainty can diminish with enhanced information or 

understanding. 

 Epistemic uncertainty is often linked to limited data on masonry’s behavior, 

simplifications in structural modeling, or uncertainties in future environmental conditions. Bartoli 

et al. (2017) investigated the importance of epistemic uncertainties in the structural modeling of 

masonry structures. Different analytical models and/or numerical techniques, including macro 

element, equivalent frame, finite element, and energy approach, were used for assessing the 

structural behavior of a series of slender masonry elements under increasing horizontal loads. All 

these approaches, especially those adopting a damage model, provide estimations of the ultimate 

load quite different from each other, highlighting a very strong dependence of the collapse 

displacement on the employed constitutive model. Rota et al. (2014) introduced a probabilistic 

methodology for incorporating diverse epistemic uncertainty sources in seismic assessments of 

masonry buildings. Similarly, Mucedero et al. (2022) studied the influence of modeling uncertainty 

in existing masonry-infill RC frames. It was concluded that a robust estimation of modeling 

uncertainty plays an important role on the collapse capacity of existing masonry-infilled RC frames; 
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when the modeling uncertainty was considered in a more integrated manner, a stronger reduction 

of the median collapse intensity was observed to almost 50% of that obtained considering only 

aleatory uncertainty. 

Aleatoric uncertainty in masonry walls pertains to the inherent variability in these 

structures' behavior and properties. Sahu et al. (2020) investigate the statistical variations of the 

compressive strength of fly ash bricks. Twenty-six distributions were selected to find the best fit 

probabilistic model that closely describes the compressive strength of the bricks. Mendoza-

Puchades (2021) focused on the variability and uncertainty present in the brick-to-mortar interface 

under dynamic loading, contributing valuable experimental data on masonry joint strength 

variations. Heffler et al. (2008) developed an experimental program to examine the extent of spatial 

correlation between unit flexural bond strengths within clay brick walls, taking into account mortar 

type, batch location, and mason workmanship. Such statistical quantification of aleatoric 

uncertainty is essential for the uncertainty analysis of masonry walls, and relevant studies will be 

reviewed in the next section. 

 UNCERTAINTY ANALYSIS AND RELIABILITY ANALYSIS OF MASONRY WALLS 

2.6.1. Simplified model-based 

Uncertainty analyses of masonry walls can be classified into two primary categories. The first 

involves the use of simplified models, such as design code-based models, as exemplified by studies 

by Iannacone et al. (2021) and Metwally et al. (2022). A crucial aspect of these studies is the 

probabilistic quantification of model error, which is often significant in simplified models. For 

instance, Iannacone et al. (2021) developed probabilistic capacity models for URM walls under IP 

loading. The models were constructed using existing physics-based models, which attempt to 
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capture the underlying physics, together with correction terms used to improve the accuracy of the 

models and remove the inherent bias. Unknown parameters for the proposed models were 

calibrated using a Bayesian updating approach. The proposed models are probabilistic and 

encompass relevant uncertainties and have been applied to assess the fragility functions of URM 

walls. 

Metwally et al. (2022) incorporated uncertainties in material and geometric properties into 

the macro FE model to analyze the probabilistic OOP behavior of RM walls. Furthermore, the 

model error inherent in the macro model was quantified using a compiled experimental database. 

A sensitivity analysis indicated that a significant portion of the OOP load capacity variance was 

contributed by the uncertainty associated with model error. 

In the realm of reliability analysis, a large number of researchers relied on the design code 

for the reliability evaluation of masonry walls under various loading conditions. The initial attempt 

at applying the modern limit state design philosophy to the masonry structure was made by 

Ellingwood and Tallin (1985). They demonstrated how probability-based design criteria might be 

developed for strength limit states of brick and concrete masonry construction, and the focus was 

paid on masonry walls loaded in combinations of axial compression and OOP flexure. Stewart and 

Lawrence (2007) compared design strengths with experimental test data to estimate a model error 

in probabilistic terms, for slender and non-slender URM walls in compression. This information, 

in conjunction with probabilistic models for material properties and loads, was used to calculate 

the structural reliability of masonry walls in compression. Zhai and Stewart (2010) developed a 

probabilistic model to calculate the structural reliability of typical FGRM walls designed to 

Chinese standards, loaded concentrically and eccentrically in compression. The effect of the 
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probability distribution of model error, material strengths, live load type, structural safety class, 

live-to-dead ratio, reinforcement ratio, discretization of wall thickness, eccentricity and load effect 

combination were considered. Moosavi and Korany (2014) performed a reliability analysis on 

concrete masonry under axial compression using the First Order Reliability Method (FORM) to 

assess the reliability levels of the Canadian masonry design standard. The Hasofer–Lind reliability 

index was evaluated at different live-to-dead load and snow-to-dead load ratios using the 

Rackwitz–Fiessler procedure. Similar to the simplified model-based uncertainty analysis, the 

reliability analysis relying on the simplified models might involve significant model error, which 

necessitates careful quantification. 

2.6.2. Micro model-based 

In recent years, with the increasing availability of computational resources, there has been a 

growing focus among researchers on using the high-fidelity model (e.g., micro model) to quantify 

the uncertainty associated with masonry walls (Gonen et al. 2021, 2022; Gooch et al. 2021; Isfeld 

et al. 2021; Li et al. 2014, 2016, 2017; Muhit et al. 2022; Pulatsu et al. 2022; Tabbakhha and 

Deodatis 2017). 

Gooch et al. (2021) performed a stochastic FE analysis on perforated URM walls under IP 

loading conditions using the micro modeling strategy. The uncertainties were quantified in terms 

of IP capacities and ductility factors, as reflected in the load-deformation curves. Pulatsu et al. 

(2022) and Gonen et al. (2021, 2022) evaluated the probabilistic behavior of URM walls under IP 

loading using a discrete rigid block model, wherein the rigid blocks were utilized for masonry 

units, and mortar joints were represented as zero-thickness interfaces. Isfeld et al. (2021) 

investigated the uncertain behavior of URM walls subjected to uniformly distributed OOP loads 
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in a one-way vertical bending condition. Li et al. (2014, 2016, 2017) explored the impact of 

material uncertainty on the OOP capacity of URM walls under one-way (horizontally or vertically) 

and two-way bending conditions. Muhit et al. (2022) conducted a stochastic assessment of URM 

veneer walls subjected to OOP loading with variable constituent material properties. These studies 

utilized the micro modeling strategy that effectively replicates the inherent heterogeneity 

characteristics of URM walls, encompassing localized effects such as damage and cracking as well 

as corresponding IP or OOP capacity. However, it is notable that there are no existing uncertainty 

studies using micro modeling strategies specifically focused on RM walls. 

 MULTI-FIDELITY METHOD (MODEL)-BASED PROBABILISTIC ANALYSIS 

2.7.1. Surrogate model 

The main challenge in quantifying probabilistic behavior when using the micro model for masonry 

walls, as discussed above, can be attributed to the intense computational cost. In fact, this is also 

one of the biggest challenges in the general uncertainty quantification field. In order to address 

this challenge, surrogate models (aka metamodels) have been proposed to replace the original 

expensive model to approximate the input-output relationship. The construction of surrogate 

models is usually based on a certain amount of high-fidelity (HF) model data, through data-based 

approaches, as shown in Figure 2-23. Various surrogate models have been developed during recent 

decades, for example, response surface models (Bucher and Bourgund 1990; Gupta and Manohar 

2004; Li and Wang 2021), Kriging models (Hong et al. 2022; Sacks et al. 1989), polynomial chaos 

expansion (Clermont and Sudret 2007; Schöbi et al. 2017; Sudret 2008), artificial neural networks 

(Deng et al. 2005), etc. Most surrogate models are expressed analytically, making them an 

attractive option in uncertainty studies involving computational complexity. 
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Figure 2-23. General framework for surrogate model-based uncertainty quantification 

Efforts to apply the SM to the probabilistic analysis for masonry structures are limited, see 

Tubaldi et al. (2020) for the masonry arch bridge, Zhu et al. (2017) for hollow concrete block 

masonry wallettes, Mukherjee et al. (2011) for the URM shear wall, and Metwally et al. (2022) for 

the RM wall under OOP loading. Although SM showed the potential in these works, its 

applicability still remains questionable. This is because the accuracy of SM is highly dependent 

on the expensive data points available. The quality of SM should be evaluated in terms of some 

metrics (e.g., bias, variance, efficiency, problem size). However, these factors, in the 

aforementioned SM-based studies, were not discussed. In fact, the number of samples needed for 

an accurate approximation to construct a SM still requires an unaffordable computation cost, 

particularly for high-dimensional and highly nonlinear problems (Li and Jia 2020; Paiva et al. 2010; 

Skandalos et al. 2022). 
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2.7.2. Multi-fidelity method 

To further alleviate the computational burden, the concept of the multi-fidelity (MF) method has 

been recently proposed. In structural engineering problems, the use of high-fidelity (HF) 

computational models is paramount to characterizing the structural performance (e.g., micro model 

for masonry walls). On the other hand, computationally cheaper low-fidelity (LF) models are 

generally accessible. MF methods seek to leverage information from models of varying fidelities 

and computational costs to achieve an accurate approximation. The general procedure for MF 

method-based uncertainty quantification is shown in Figure 2-24. 

 

Figure 2-24. General framework for multi-fidelity model-based uncertainty quantification 

The first category of MF methods and/or models has been developed using data-driven 

approaches. The core idea is to ‘correct’ the LF model data by constructing a surrogate model to 

represent the difference or ratio between the HF and LF models, typically termed ‘additive or 
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multiplicative corrections’. Furthermore, this type of modeling approach can be broadly divided 

into deterministic and non-deterministic methods. In deterministic approaches, the correction 

terms are expressed in terms of deterministic basis functions, whose coefficients are determined 

by minimizing discrepancies between HF and LF data, for example (Alexandrov et al. 2001; 

Forrester et al. 2006; Vitali et al. 2002). In contrast, non-deterministic approaches assume 

uncertainty in either the basis functions or coefficients, and this uncertainty is reduced by 

incorporating the available sample data. A prominent example in this context is the Multi-fidelity 

Gaussian Process, also known as the Co-Kriging model (Kennedy and O’Hagan 2000). The 

applications of the Co-Kriging model in the civil engineering field can be found (Chen et al. 2022; 

Dey et al. 2021; Li and Jia 2020; Skandalos et al. 2022). Li and Jia (2020) developed an MF 

Gaussian Process model in the context of Bayesian updating for problems when only a limited 

number of HF data are available. The proposed model was then applied to establish a predictive 

model for the deformation capacity of reinforced concrete columns. Skandalos et al. (2022) 

performed the simulation-based seismic reliability analysis for a reinforced concrete frame by 

employing the MF surrogate model. The HF model was developed in OpenSees involving a 

distributed plasticity model for reinforced concrete primary buildings illustrated in Figure 2-25 (a), 

while the LF model was a linear-elastic stick model with one horizontal degree of freedom per 

floor shown in Figure 2-25 (b). Dey et al. (2021) evaluated the applicability of the Co-Kriging 

surrogate model for pipelines undergoing fault rupture displacements. The HF model is a well-

validated 3D nonlinear FE model, whereas in the LF model, the beam elements were used for 

pipelines and soil-pipeline interactions were represented as spring elements. Chen et al. (2022) 

presented an experimental study for the Co-Kriging surrogate model in the Real Time Hybrid 
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Simulation (RTHS) framework to explicitly account for structural uncertainty. The results indicate 

that Co-Kriging can achieve greater accuracy through less expensive HF information. 

 
 

(a) (b) 

Figure 2-25. Multi-fidelity method used for the simulation-based seismic reliability analysis for a 

reinforced concrete frame: (a) high-fidelity model, and (b) low-fidelity model (Skandalos et al. 

2022) 

The underlying mathematical principle of the second category MF method is the control 

variate (CV) method (Nelson 1987, 1990). Those estimations built based on the CV method, 

namely CV estimators (e.g., statistics estimators, reliability estimators), have two important 

properties: (1) unbiasedness; and (2) potential variance reductions. These properties allow CV-

based MF methods to perform the uncertainty analysis with both accuracy and efficiency. The key 

ingredient of CV-based MF methods is an optimization problem to distribute the computational 

budget among the expensive HF model and the cheap LF model such that the error (e.g., mean 

square error with respect to the true value) of the estimator is minimized for a given computational 

budget. 

This idea first emerged in Monte Carlo (MC) statistical estimation, such as mean and 

variance estimations, highlighted by relevant works in Multi-Level Monte Carlo (MLMC) 
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estimation (Giles 2008, 2015; Gruber et al. 2023), Multi-Fidelity Monte Carlo (MFMC) estimation 

(Peherstorfer et al. 2016b; Qian et al. 2018), as well as some engineering applications in aerospace 

engineering (Gianluca et al. 2017; Ng and Willcox 2016; Peherstorfer et al. 2018a), and additive 

manufacturing engineering (Xu and Liu 2019). Particularly, in the field of structural engineering, 

Patsialis et al. (2022; 2021) investigated the use of the CV-based MF method in probabilistic 

seismic risk assessment. In their work, an efficient but inaccurate reduced order model was 

integrated, in conjunction with the nonlinear time-history analyses on the HF FE model, into the 

CV-based MF framework, and the results indicated its significant potential in predicting the 

engineering demand parameters in terms of efficiency and accuracy. 

Different from statistical estimation, reliability assessments pose greater challenges, given 

the significance of extreme percentiles in probability distribution functions. Rashki et al. (2018) 

introduced a strategy that integrated coarse- and fine-mesh FE models for reliability analysis. In 

this study, the failure probability integral was broken down into two separate terms using the CV 

technique. The first term provided a low-cost estimate of the failure probability using a model with 

coarse mesh density, whereas the second term regulated the failure probability based on fewer FE 

analyses with fine mesh density. Hamdia and Ghasemi (2023) presented a reliability analysis for 

fracture toughness estimation using a multi-level refinement on a hierarchy of computational 

models. The probability of failure was estimated by expanding it into a telescoping sum of an 

initial approximation at the coarsest mesh and a series of incremental corrections between the 

subsequent levels. Li and Xiu (2010) proposed a hybrid approach by sampling the cheap LF model 

in a ‘large’ portion of the probability space and the expensive HF model in a ‘small’ portion. 

Nonetheless, these approaches typically assumed a certain type of LF model, without showing 
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generality. Lately, Peherstorfer et al. (2016a) incorporated the importance sampling strategy to 

facilitate the reliability analysis relying on both HF and LF models. Notably, the failure domain 

was captured using cheap LF models via an expectation-maximization method. However, a 

relatively large number of HF evaluations were still required, especially for rare event analyses.
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Chapter 3. FINITE ELEMENT MODELING AND PARAMETER 

IMPORTANCE INVESTIGATION OF UNREINFORCED 

MASONRY WALLS USING OFF-THE-SHELF TECHNIQUES 

The mechanical behavior of unreinforced masonry (URM) walls is complex due to the masonry 

heterogeneity and anisotropy, and thus finite element (FE) prediction of their structural response 

under in-plane (IP) and/or out-of-plane (OOP) loading conditions remains a challenging task for 

engineers. In this chapter, three-dimensional (3D) FE models were developed in the commercial 

FE software ABAQUS using off-the-shelf continuum elements for units and contact-based 

cohesive surfaces for between- or within-brick interfaces. This FE strategy was validated as a 

unified modeling approach that is capable of predicting the response of unit-mortar-unit 

assemblages and URM walls under IP and OOP loadings. The numerical-experimental 

comparisons showed the accuracy and potential of the FE models developed. A parametric study 

was then conducted to investigate the relative importance of influencing material parameters on 

the URM behavior under IP and OOP loadings. The results of the parametric study indicated that 

the OOP behavior was affected by the tension-related interface parameters, while the IP behavior 

was affected by both shear-related and tension-related interface parameters. 

 INTRODUCTION 

The structural behavior of unreinforced masonry (URM) walls depends on the properties of the 

masonry constituents (e.g., units, mortar) and their interaction. Due to the heterogeneity and 

anisotropy of masonry as well as the periodic arrangement of URM walls, the simulation or 

prediction of masonry wall behavior under in-plane (IP) and/or out-of-plane (OOP) loading 

conditions remains a challenging task (Xu et al. 2012). This has been evidenced by the uncertainty 
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in predicting the strength, stiffness, and ductility as typically reflected by overall load-deflection 

curves and the lack of accuracy in simulating the failure mechanisms as implied by crack patterns 

and/or unit crushing (Dymiotis and Gutlederer 2002; Tabbakhha and Deodatis 2017). 

In the past few decades, a wide range of finite element (FE) modeling approaches have 

been proposed with different levels of sophistication, accuracy, and efficiency. FE modeling 

approaches for masonry walls can be mainly classified into two broad categories (Lourenço et al. 

1995a): generalized macro modeling and detailed micro modeling. The generalized macro models 

can be further divided into macro continuum models and macro element models (D’Altri et al. 

2020). The generalized macro modeling approach treats masonry as an averaged continuum using 

homogeneous constitutive laws (Casapulla et al. 2013; Noor-E-Khuda and Dhanasekar 2018a), 

without explicit modeling of the geometry and material of individual constituents. As such, 

generalized macro modeling for masonry is computationally efficient and applicable for walls with 

sufficiently large dimensions. However, the macro modeling approach is incapable of capturing 

the detailed failure modes of masonry structures, such as tensile cracking and shear sliding of 

masonry mortar interfaces (Lourenço et al. 1995a; Lourenço 1996). On the other hand, the detailed 

micro modeling approach is characterized by a detailed representation of masonry on the basis of 

explicit modeling of each constituent and interfaces. The units and mortar are modeled using 

continuum elements, while the interface is modeled using discontinuous elements. This approach 

allows for the description of characteristic failure modes of URM structures, including unit 

crushing and potential crack propagation (e.g., along the joints, through the mortar and units), but 

at high computational costs.  
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As a compromise option between macro and detailed micro modeling, simplified micro 

modeling has been proposed and extensively developed in the masonry community (Abdulla et al. 

2017; Kumar and Barbato 2019; Lourenço 1996; da Porto et al. 2010) to achieve a balance between 

computation efficiency and accuracy. Different from the detailed micro modeling strategy, in the 

simplified micro modeling strategy, mortar joints and unit-mortar contacts are lumped into 

interfaces, while units are modeled with size expansion to maintain the overall geometry of a wall, 

leading to a reduced number of interface elements. The simplified micro modeling approach, 

which has been mainly used for IP behavior simulation (Kumar and Barbato 2019; Lourenço 1996; 

da Porto et al. 2010) in a two-dimensional (2D) domain, is adopted in this chapter to simulate both 

the IP and OOP behavior of tested URM walls from the literature.  

As the key aspects of the simplified micro modeling approach, material constitutive models 

for units and interface models have led to various modeling strategies, as found in the literature. 

Specifically, significant efforts have been devoted to developing interface models, e.g., single-

yield surface models (Lotfi and Shing 1994; Stankowski et al. 1993a), and multi-yield surface 

models (Lourenço 1996; Lourenço and Rots 1997). However, most of the surveyed material 

models are proprietary and unavailable to the majority of researchers and engineers. Instead, this 

study takes advantage of off-the-shelf materials and elements in the commercial FE software 

ABAQUS (Simulia 2017), adopting the contact-based surface approach to model the cohesive-

frictional behavior of interfaces. For cracking modeling of units, there are two main approaches: 

discrete (Lourenço 1996) and smeared crack models (Lotfi and Shing 1994). The former approach 

relies on simulating individual cracks as geometrical discontinuities localized at interfaces between 

continuum elements, while the latter one treats the cracked unit as a continuum with damage and 
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material deterioration spread across the elements. As noted by Lourenço (1996), the latter approach 

is better suited for larger-scale structures with distributed crack patterns, such as those made with 

reinforced concrete, while the localized cracks exhibited by masonry between the units are better 

described by the discrete crack model. Therefore, this chapter adopts the former approach, which 

is more computationally robust, in conjunction with the Drucker-Prager (DP) model to capture the 

possible compressive failure of masonry units. 

In spite of the aforementioned advantages of the simplified micro modeling approach, the 

relatively large number of micro-level mechanical parameters can be intimidating for numerical 

studies. As such, knowledge of their importance in simulating the structural behavior of masonry 

structures is essential. Many numerical studies were conducted to study the material parameter 

sensitivity to the structural behavior of masonry systems. Much attention has been focused on the 

FE simulations of small masonry tests such as triplet-shear tests, compressive tests for masonry 

prisms, and diagonal compression tests (for small masonry panels). Zhang et al. (2018) and Ferretti 

et al. (2018) performed parametric studies in terms of the elastic stiffness of mortar joints and 

dilatancy-related parameters based on the developed FE models for the triplet-shear test setup. 

Álvarez-Pérez et al. (2020) carried out a sensitivity analysis to conclude that the most influential 

material parameters for the masonry prism compression strength are the compressive strength of 

concrete block and the tensile strength of mortar. Sousa et al. (2015) developed a micro-FE model 

that was capable of simulating the European Standard Compressive Test and further studied the 

influence of compression-related parameters of units and mortar on the compressive strength of 

masonry prisms. Similar research conducted by Roca et al. (2016) indicated that the increase of 

the Young’s modulus and the decrease of the Poisson’s ratio of the units resulted in an increase in 
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the compressive strength of masonry, while the opposite effect of the relevant material parameters 

of the mortar was observed. The sensitivities of material parameters in the diagonal compression 

tests for small masonry panels were investigated in (Calderini et al. 2010; Sousa et al. 2013; Zhang 

et al. 2017), in which the material parameters of different constituents, including the brick-mortar 

interfaces, were studied. 

Regarding the large-scale masonry structure, some related numerical sensitivity studies can 

be found with a focus on masonry arch structures (Zhang et al. 2016), masonry domes (Li and 

Atamturktur 2014), masonry cross vaults (Gaetani et al. 2017), and large masonry columns (Qamar 

and Qin 2021). However, relatively less attention has been paid to the material parameter 

sensitivity or their importance to masonry walls through modeling the lateral-load tests and out-

of-plane loading bending tests. Specifically, to the best knowledge of the authors, no studies 

examined the importance of micro FE modeling parameters on both IP and OOP behaviors of 

masonry walls, and existing studies typically only focused on either IP (Stavridis and Shing 2010) 

or OOP (La Mendola et al. 2014) behaviors of masonry walls. Stavridis and Shing (2010) studied 

the IP behavior of masonry-infilled walls using a 2D simplified micro FE modeling approach and 

assessed the importance of material parameters for mortar joints and bricks. Among all the material 

parameters studied, the frictional coefficient for mortar joints was found to be the most influential 

for IP behaviors. La Mendole et al. (2014) studied the influence of material parameters on the OOP 

behavior of URM walls, in which only mode I failure-related material parameters were considered 

for mortar interfaces, such as elastic stiffness in the normal direction, tensile strength, and mode I 

fracture energy. However, mode II failure-related material parameters for mortar interfaces were 

not studied, even though they can be potentially important for URM walls under OOP loading 
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since they are related to shear sliding failure of interfaces (Pluijm 1999). Additionally, it is also 

unclear how the mode I failure-related material parameters affect the wall behavior under IP 

loading, particularly for URM walls that are prone to overturning and excessive cracking. This 

entails the need for further study of the relative importance of micro-level mechanical parameters 

on the IP and OOP behaviors of URM walls. 

In this chapter, the integrated use of off-the-shelf three-dimensional (3D) continuum 

elements and 3D contact-based cohesive surfaces leads to a unified modeling strategy for 

predicting both the IP and OOP behaviors of masonry walls. Thus, this unified approach allows 

for the assessment of the relative importance of different micro-level modeling parameters for the 

IP and OOP behaviors of URM walls, respectively. To this end, this chapter first validated the 

unified modeling approach through unit-mortar-unit assemblages and tested URM walls well-

documented in the literature, after a detailed description of the modeling strategy. With the 

validated FE models developed for the URM walls, this chapter then conducted a parametric study 

to investigate the importance of micro-level modeling parameters for the behavior prediction of 

URM walls under IP and OOP loadings. This is different from most parametric studies of URM 

walls, which focused on engineering design or wall configuration parameters such as aspect ratios, 

slenderness ratios, and pre-compression levels. The information on the relative importance of the 

micro model parameters could provide valuable guidance on (1) planning the material tests for 

experimental studies and (2) micro modeling of masonry walls under complex loadings for 

numerical studies. 
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 SIMPLIFIED MICRO MODELING STRATEGY 

In the simplified micro modeling approach, the geometrical configuration of masonry walls is 

simplified by: (1) expanding the brick units to the middle surfaces of mortar layers, and (2) bonding 

the expanded units through zero-thickness interfaces, as shown in Figure 3-1. The zero-thickness 

interfaces between expanded units, referred to as between-brick interfaces hereafter, are modeled 

as contact-based cohesive surfaces that are defined by node-to-surface discretization. As evidenced 

by experimental observations (Aref and Dolatshahi 2013; Dolatshahi 2012), cracks in masonry 

walls can form vertically through the middle surface of units. As such, a vertical contact-based 

cohesive surface is inserted at the middle of each brick shown in Figure 3-1 (b), referred to as a 

within-brick interface hereafter, to provide a potential path for crack propagation. It is worth 

mentioning that the cracks can develop arbitrarily along different paths with inclinations in brick 

units. Insertion of vertical contact-based cohesive surfaces to model crack propagation through 

brick units is a practical simplification, which was used in existing works (Aref and Dolatshahi 

2013; Kumar and Barbato 2019; Lourenço 1996; Remacle et al. 2012). Finite sliding tracking is 

enabled to allow arbitrary separation, sliding, and rotation of the contact surfaces (Dassault 

Systemes 2017). The material models for expanded units and interfaces are detailed in the 

following sections, respectively. 
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(a) (b) 

Figure 3-1. Simplified micro modeling strategy for URM structures: (a) masonry assemblage 

sample, and (b) FE modeling strategy 

 MATERIAL MODELING FOR EXPANDED BRICK UNITS 

In the case of URM walls under IP loading, the crushing behavior at the toe of URM walls has a 

significant influence on determining the ultimate shear capacity (Nazir 2015; Shing et al. 1989a). 

Since the interfacial behavior of contact-based cohesive surfaces does not include a compression-

cap failure surface as in the simplified micro modeling strategy proposed by Lourenco and Rots 

(1997), brick units are modeled using the Drucker-Prager (DP) model in order to take into account 

the compression failure mechanism of URM walls. In this model, the yield surface f can be 

considered a generalization of the von Mises criterion with hydro-static pressure dependence or a 

generalization of the Mohr-Coulomb criterion (Drucker and Prager 1952), defined by the frictional 

angle β and cohesion d, as defined in Eq. (3-1). A non-associated flow rule was selected, with the 

plastic potential defined by a dilation angle ψ, which is different from the frictional angle β.  

 tan 0f t p d= − − =  (3-1) 
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where 
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q = S S , in which S is the stress deviator, given by S = σ + pI; p is the equivalent stress, 
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3

p = − σ ; R is the ratio of the flow stress in tri-axial tension to the flow stress 

in tri-axial compression (referred to as the flow stress ratio ranging from 0.778 to 1.0); β is the 

frictional angle, d is the cohesion of the material with 
1
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 when hardening is 

defined by the uniaxial compressive yield stress fc, and r is the third deviatoric stress invariant. 

The yield surface plot is shown in Figure 3-2. 

 

Figure 3-2. Yield surface of DP model 



Chapter 3: Finite Element Modeling and Parameter Importance Investigation of Unreinforced Masonry Walls using 

Off-the-shelf Techniques 

72 

 

To summarize, in the DP model described above, two inelastic parameters (i.e., frictional 

angle β, dilation angle ψ) are needed together with the uniaxial compressive stress-strain curve, in 

addition to two elastic parameters (i.e., elastic modulus E, Poisson ratio γ). 

 CONTACT-BASED COHESIVE SURFACE BEHAVIOR FOR MORTAR JOINTS 

3.4.1. Elastic behavior 

The commonly used linear traction-separation relationship is utilized to characterize the interaction 

stiffness of contact-based cohesive interfaces prior to damage. Specifically, three stiffness 

constants knn, kss and ktt are assumed to relate three stress components (i.e., σn, τs, τt) and three 

displacement separations (i.e., un, us, ut ), see Eq. (3-2): 

 

n nn n

s ss s

t tt t

k u

k u

k u






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     

=
     
          

 (3-2) 

where for the stress and displacement components, subscript ‘n’ denotes the normal 

direction, ‘s’ and ‘t’ represent the first and second tangential directions. 

For the within-brick interfaces, three stiffness constants are treated as dummy parameters 

with relatively large values to avoid the non-physical penetration. For the between-brick interfaces, 

stiffness constants are determined under the assumption of stack bond, e.g., a series connection of 

the masonry constituents (i.e., brick units and mortar layers), and uniform stress distribution in 

both the brick unit and mortar (Lourenço 1996), as detailed in Eq. (3-3) and Eq. (3-4): 
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where E and G are Young’s and shear moduli, respectively; the subscripts u and m indicate 

the unit and mortar, respectively; and hm is the mortar thickness. 

3.4.2. Failure criterion 

The elastic traction-separation relationship discussed above is used with a certain failure criterion 

for cohesive interfaces. A built-in modified Mohr-Coulomb yield criterion combined with tension 

cut-off surface available in ABAQUS (Dassault Systemes 2017) is used to represent the shear and 

tensile strengths of mortar joints, which can be mathematically expressed as Eq. (3-5): 

 max , 1
n

t sf f

  
= 

 
 (3-5) 

where the symbol  represents the Macaulay bracket, i.e., ( ) / 2x x x= + ; n  and 

2 2

s t  = + are the normal stress (i.e., tensile as positive) and the resultant shear stress of 

interfaces, respectively; ft and fs are the tensile and shear strengths, respectively. This implies that 

a pure compressive deformation or stress state does not initiate damage in interfaces, and the 

compressive behavior is described as a linear pressure-overclosure relationship with a large contact 

stiffness to ensure negligible penetration of the slave surface to the master surface in contacts. It 

is also assumed that the pressure-overclosure relationship only governs compressive behavior, 

which is independent of the cohesive behavior and is deactivated when contact is lost. 
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Figure 3-3. Stress-displacement response of interfaces under pure tension 

As can be seen in Eq. (3-5), damage initiates when the tensile strength ft is reached under 

the pure tension condition (i.e., τs = τt = 0), corresponding to a damage initiation displacement 

0 0n   in the normal direction. An exponential softening branch is defined as damage evolves 

until the tensile stress reduces to zero with an ultimate failure displacement 
f

n  (shown in Figure 

3-3). As such, a scalar damage variable D, ranging from 0 to 1, is used to account for the stiffness 

degradation with respect to the initial stiffness, as shown in Eq. (3-6) for the normal direction: 

 ( )1n nn nk D = −  (3-6) 

In analogy to the definition of resultant shear stress (i.e., 2 2

s t  = + ), the resultant shear 

displacement   is determined as 2 2

s t  = + . Under pure shear loading condition, damage 

initiates when the cohesive strength c is reached, corresponding to a damage initiation 
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displacement 
0

 . Once the stiffness starts degrading, the frictional model activates and begins 

contributing to the shear stress. The elastic stick stiffness of frictional model (i.e., frictional 

coefficient = tan u  , in which u  is the initial frictional angle) is ramped up in proportion to the 

degradation of the elastic cohesive stiffness (i.e., ssk , ttk ). Prior to the ultimate failure of the 

cohesive bond, and following the damage evolution, the shear stress is a combination of the 

contribution from cohesive stress (i.e., coh ) and the frictional stress (i.e., fric ). At the peak point, 

corresponding to a shear displacement peak


 , peak shear stress sf  is determined by Eq. (3-7): 

 (1 ) tans coh fric n uf c D D   = + =  − +    (3-7)  

Consequently, this built-in cohesive-interfacial model underestimates the peak shear 

strength compared with the conventional Mohr-Coulomb model (D’Altri et al. 2018; Lourenço 

1996) that is not available for contact-based surfaces or interfaces in ABAQUS (Dassault Systemes 

2017). 

Similar to the damage-induced softening for the tensile regime, a softening branch under 

pure shear loading condition is followed. The post-peak behavior is also determined based on Eq. 

(3-6) with the increase of the damage variable D  until the maximum degradation of interface is 

reached. Once maximum damage is achieved (i.e., 1D = ), starting at a failure displacement 
f

 , 

the cohesive contribution to the shear stresses is zero, and the only contribution comes from the 

frictional component, resulting in a residual stress tanr n rf  = , where r  is the residual 

frictional angle. The stress-displacement response under shear condition for the cohesive-friction 

model is illustrated in Figure 3-4.  
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(a) (b) (c) 

Figure 3-4. Stress-displacement response of interfaces under shear: (a) cohesion model, (b) 

frictional model, and (c) cohesive-frictional model 

The damage evolution presented above for both tensile and shear regimes is attributed to 

the cementation of mortar (Aref and Dolatshahi 2013). As a result, the damage-induced softening 

behavior is fully coupled in both tension and cohesion component (not the frictional component) 

of shear, which means that the stiffness loss percentages for them are equal through the entire 

degradation process (Abdulla et al. 2017; Aref and Dolatshahi 2013; D’Altri et al. 2018; Lourenço 

1996). The single damage variable D  in Eqs. (3-6) and (3-7) is calculated as Eq. (3-8): 
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 (3-8) 

where 0  is the displacement at damage initiation and f  is the failure displacement at 

the complete stiffness loss;  is the maximum displacement reached during the entire loading 

history; and   is a non-dimensional parameter that determines the shape of soften branch of 

stress-displacement curve. It should be noted that all symbols in Eq. (3-8) have subscripts ‘ n ’ or 

‘ ’, corresponding to normal or tangential directions, respectively.  
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To summarize, to define the contact-based cohesive surfaces for interfaces, a total of 11 

model parameters are needed. They are three elastic stiffness coefficients (i.e., nnk , ssk  and ttk ), 

six nonlinear material parameters such as tensile strength tf , cohesion c , frictional coefficient 

 , residual frictional angle r , failure displacements in the normal and tangential direction (
f

n  

and 
f

 ), and two non-dimensional parameters ( n  and  ). These parameters can be defined as 

described earlier in this section. The relative importance for these parameters or associated 

parameters will be studied later for IP and OOP behavior of URM walls studied in this chapter. 

 FINITE ELEMENT MODEL VALIDATION 

To validate the simplified micro modeling strategy used in this chapter, two unit-mortar-unit 

assemblages, three masonry walls under IP loading, and three masonry walls under OOP loading 

are simulated and compared with the experimental data available in the public literature. 

Geometrical nonlinearity is considered in all numerical models to account for the large 

deformation effects occurring in unit-mortar-unit assemblages and URM walls subjected to 

different loading conditions. General standard static steps are used in the analysis to achieve 

convergence in each substep by means of the Newton-Raphson method. Since the developed 

model exhibits various forms of softening behavior (e.g., units and interfaces) and stiffness 

reduction, viscous regularization is introduced to overcome some severe convergence difficulties. 

A value of 0.002 for the viscosity coefficient is employed, as suggested by Abdulla et al. (2017). 

The modeling process, material model parameter determination, and simulation results are 

presented next, together with a concise summary of the experiments. 
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3.5.1. Unit-mortar-unit assemblages 

Two unit-mortar-unit assemblages simulated here were described in (Van der Pluijm 1992, 1993). 

One specimen was under pure tension, and the other one was under shear with various levels of 

pre-compression load (0.1 MPa, 0.5 MPa, and 1.0 MPa). These tests were conducted to understand 

the tensile and shear behavior of the mortar joints between bricks and were thus appropriate for 

validating the modeling of the between-brick interfaces adopted in this chapter. The experimental 

tensile and shear behaviors are shown in Figure 3-5 as shaded areas, respectively. Large variations 

in the stress-displacement curves were observed in the experiments due to the inherent variations 

in the material properties across different specimens. However, as the general stress-displacement 

behavior is characterized in both the tensile and shear behaviors with an exponential softening 

branch after the peak stress points in the model, it is rational to assume that the tensile strength 

would eventually deteriorate to zero, while the shear strength would remain at a certain level, 

depending on the pre-compression stress. With a focus on the interface behavior, the test 

specimens are modeled by assuming only elastic behavior for the brick units with an elastic 

modulus of 16700 MPa and a Poisson ratio of 0.15 (Van der Pluijm 1992, 1993) since experimental 

reports indicated that damage was concentrated on the mortar joints. The cohesive surface-based 

contact approach is used for the interface modeling between the two brick units, with the 

mechanical properties of the cohesive interface for small masonry specimens listed in Table 3-1. 

The cohesion c , tensile strength 
tf , tensile failure displacement f

n , and shear failure 

displacement f

  are determined directly from the experimental results. The frictional coefficient 

 was measured, ranging from 0.7 to 1.2 (Lourenço 1996). The residual friction angle tan r  was 

determined as 0.8, which is the ratio of the residual stress to the pre-compression stress. Non-
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dimensional parameters 
n  and 

  are calibrated to make the descending branch fit the 

experimental envelopes. Consequently, the areas under the tension-displacement curve and the 

shear-displacement curves are approximately equal to the mode I fracture energy GI = 0.012 N/mm 

and the mode II fracture energy GII = 0.058 – 0.13σc N/mm (Lourenço 1996), in which mode II 

fracture energy is related to pre-compression σc. It should be noted that elastic stiffness for 

cohesive interfaces was not reported in existing studies (D’Altri et al. 2018; Lourenço 1996; Van 

der Pluijm 1992, 1993). Hence, a default contact enforcement method available in ABAQUS 

(Dassault Systemes 2017) was used to automatically determine the cohesive stiffness in both 

normal and shear directions. In this context, the stiffness would be set as 10 times a representative 

underlying element stiffness.  

The simulated tensile and shear stress-displacement curves are compared with the 

experimental ones, as included in Figure 3-5. It can be observed that good agreements with the 

experimental results are achieved regarding the joint behavior under both pure tension and 

compressive-shear loading, except for the descending branch in Figure 3-5 (b) for σc = 1.0 MPa. 

As evidenced by the experimental results (Van der Pluijm 1992, 1993), the ductility and energy 

dissipation capacity of mortar joints (i.e., interfaces) are increased under higher pre-compressive 

stresses. As a result, the mode II fracture energy GII increases with the increase in the pre-

compressive stress, corresponding to a less steep softening branch. The variation of GII is neglected 

in the current FE model, which means that the brittleness parameter ατ is a constant. Although 

some discrepancies can be observed between the FE simulation and experimental results for the 

higher pre-compression stress cases, the main characteristics of interfaces under shear loading can 

still be reproduced with reasonable accuracy. As such, it can be concluded that interface modeling 



Chapter 3: Finite Element Modeling and Parameter Importance Investigation of Unreinforced Masonry Walls using 

Off-the-shelf Techniques 

80 

 

can well represent the tensile behavior and the shear behavior under different loading conditions. 

Thus, such an interface modeling approach can potentially be used for the between-brick interfaces 

in the modeling of masonry walls. For the within-brick interfaces, the same modeling strategy is 

used but with different model parameters, as described later. 

Table 3-1. Material parameters of contact-based cohesive surfaces for unit-mortar-unit 

assemblages 

 

  

(a) (b) 

Figure 3-5. Comparisons between numerical and experimental results for unit-mortar-unit 

assemblages: (a) pure tensile loading, and (b) shear loading under different pre-compression load 

levels 

3.5.2. URM walls under in-plane (IP) loading 

The IP behavior of three URM walls considered in this chapter was experimentally investigated at 

the Eindhoven University of Technology (Raijmakers 1992; Vermeltfoort and Raijmakers 1993). 

The dimensions, configurations, and test procedures for three walls (referred to as J4D, J5D and 

J6D) are the same except for the pre-compressive pressure: 0.3 MPa for the first two and 1.21 MPa 

for the third. They were solid (without openings) with the same dimensions: height = 1000 mm, 

tf  (MPa) c (MPa) 
 tan r

 
f

n (mm) f

 (mm) n
 

 

0.3 1.0 1.08 0.8 0.22 0.8 5.5 9.5 
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width = 990 mm, and thickness = 100 mm. Each wall was built up with 18 courses, composed of 

wire-cut solid clay bricks (210 mm × 52 mm × 100 mm) and 10 mm thick mortar layers. The top 

and bottom courses of the walls were clamped in steel beams, and the walls were tested to failure 

subjected to a monotonically increasing horizontal load shown in Figure 3-6 (b), after an initial 

pre-compression 
cp  applied at the top of masonry walls, as shown in Figure 3-6 (a).  

  

(a) (b) 

Figure 3-6. URM walls considered for IP loading: (a) pre-compression applied at the top of the 

walls, and (b) monotonic displacement-controlled in-plane loading 

These walls are selected for model validation and used for further study because their 

behaviors and material parameters were well documented and used by a number of other 

researchers (D’Altri et al. 2018; Dolatshahi 2012; Lourenço 1996; Lourenço and Rots 1997). In 

contrast to the modeling approach employed in this work, only elastic behavior was taken into 

consideration for units in (Lourenço 1996; Lourenço and Rots 1997), where the damage in the 

units (e.g., crushing of masonry toes) was not captured. Conversely, Dolatshahi (2012) and D’Altri 

et al. (2018) used CDP to model units but without within-brick interfaces. Different modeling 

approaches were used for the mortar joints in these works: interface elements based on energy-
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based softening laws (Dolatshahi 2012; Lourenço 1996; Lourenço and Rots 1997), and rigid 

contact-based cohesive surfaces with a user-defined Mohr-Coulomb model (D’Altri et al. 2018). 

It is worth mentioning that these strategies are not readily available to engineers since they are 

proprietary to the developers.  

Based on the simplified micro modeling approach presented earlier, one FE model is 

developed for J4D and J5D, which were designed to be identical, and the other FE model is 

developed for wall J6D. Regarding the DP model used for brick units, the elastic modulus and the 

Poisson ratio are 16700 MPa and 0.15, respectively. The frictional angle β, dilation angle ψ are 

determined as 10.0° and 5.0°, respectively (Pina-Henriques and Lourenço 2003; Zucchini and 

Lourenço 2007). The uniaxial stress strain curves as measured from tests are used, the compressive 

strengths of units for J4D/J5D and J6D are 10.5 MPa and 11.5 MPa, respectively. 

For the between-brick interfaces, elastic stiffness constants (knn, kss, and ktt), tensile strength 

ft, cohesion c, frictional coefficient μ and residual frictional φr are determined directly from 

experimental results. The non-dimensional parameters (αn and αt) are determined so that 

reasonable failure displacements (  and ) can be calibrated based on the fracture energies (GI 

and GII) reported in the experiment (Raijmakers 1992; Vermeltfoort and Raijmakers 1993). For 

the within-brick interfaces, elastic stiffness constants (knn, kss, and ktt) are assumed with a dummy 

elastic stiffness (Lourenço 1996), frictional coefficient μ and residual angle φr are selected as the 

same as the between-brick interfaces, and the tensile strength of interface ft is set to be equal to the 

tensile strength of units, cohesion c is determined as 1.4 times of tensile strength  (Abdulla et al. 

2017; Lourenço 1996). Similarly, the failure displacements (  and ) and non-dimensional 

f

n f



tf

f

n f


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parameters (αn and αt) are calibrated following the same way as for the between-brick interfaces. 

The material properties for interfaces are given in Table 3-2. 

Table 3-2. Material properties of interfaces of URM walls under IP loading 

The simulation results obtained from the FE models for walls J4D/J5D and J6D are 

compared with the corresponding experimental results. Figure 3-7 shows the comparison of the 

global behavior in terms of the load-displacement curves. It should be noted that walls J4D and 

J5D, which were designed to be identical, showed a slight difference in the post peak behavior 

during the tests, primarily due to the heterogeneity of the mortar and brick materials (Dolatshahi 

2012). Overall, the FE-predicted load-displacement curves agree well with the experimental results 

in terms of initial stiffness, peak strength, and post-peak behavior under different pre-compressive 

stresses.  

Figure 3-8 (a) shows the cracking propagation of the URM walls (e.g., J4D) from the FE 

simulation: starting from horizontal tensile cracking developed at the bottom and top of the wall, 

respectively (denoted as region A in Figure 3-8 (a)), to stepped cracking along the between-brick 

interfaces at the center of the wall (denoted as region B in Figure 3-8 (a)), and finally to stepped 

diagonal cracking along both between-brick and within-brick interfaces (denoted as region C in 

Figure 3-8 (a)). Figure 3-8 is associated with the four critical stages (A, B, C, and D) indicated in 

 Elastic properties Nonlinear properties 

 Wall nnk  
(N/mm3) 

ssk , ttk  

(N/mm3) 

Tension-related Shear-related 

tf  
(MPa) 

f

n  
(mm) 

n  
c  

(MPa) 
  

f



(mm) 
tan r    

Between

-brick 

J4D/ 

J5D 
82 36 0.25 0.34 4 0.35 0.75 0.93 0.75 1.4 

J6D 110 52 0.16 0.31 4 0.22 0.75 0.5 0.75 1.4 

Within 

-brick 
All 10000 10000 2 0.82 4 2.8 0.75 1.2 0.75 1.4 
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Figure 3-7. Note that the failure mode of the URM wall obtained by the FE model has a good 

agreement with the experimental one in terms of diagonal cracks passing through mortar joints 

and brick units, as highlighted red in Figure 3-8 (a). Additionally, crushing of masonry toes as 

indicated by the plastic damage in terms of PEEQ (i.e., the equivalent plastic strain) is also well 

captured, as illustrated in region D in Figure 3-8 (a). 

 

Figure 3-7. Load-displacement curve comparison between FE simulations and experiments for the 

three URM walls under IP loading 

 

 

(a)  (b)  

Figure 3-8. Failure crack pattern (J4D): (a) FE simulation, and (b) experiment (Raijmakers 1992; 

Vermeltfoort and Raijmakers 1993) 
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3.5.3. URM walls under out-of-plane (OOP) loading 

The OOP behavior of the three URM walls considered in this chapter was experimentally 

investigated by Ng (1996). The tested three walls, referred to as Wall 4, Wall 8, and Wall 10 in 

(Ng 1996), had different aspect ratios and were tested with various boundary conditions under 

OOP loading. Specifically, Wall 4 had an aspect ratio of 1.0 (i.e., 1140 mm long × 1140 mm tall), 

and the other two walls had an aspect ratio of 0.67 (i.e., 795 mm long × 1140 mm tall). Wall 4 and 

Wall 10 were simply supported on three sides with top edge and right edge free, respectively, while 

Wall 8 was simply supported on all four sides.  

The three single-wythe walls were built with 112 mm × 53 mm × 36 mm brick and 10 mm 

thick mortar. The walls were modeled using the same strategy as adopted in this chapter. The 

elastic moduli of brick units and mortar for Wall 8 are 16700 MPa and 2300 MPa, respectively, 

and the Poisson ratio is 0.15 (D’Altri et al. 2018). The same elastic properties are assumed for 

Wall 4 and Wall 10. The nonlinear material parameters used for the DP model (i.e., frictional angle 

β, dilation angle ψ) are the same as defined in the previous section, with the experimentally 

determined uniaxial compressive strength 36 MPa (Ng 1996). The model parameters for within-

brick interfaces are the same as those in the IP model, while the material parameters for between-

brick interfaces are summarized in Table 3-3.  

To be specific for the between-brick interfaces, the stiffness constants (knn, kss, and ktt) are 

determined based on Eq. (3-3) and Eq. (3-4). The tensile strength of between-brick interfaces ft is 

determined as one-third of the flexural tensile strength along the weak axis (Lourenço 2000b; 

Milani et al. 2006), and cohesion c = 1.4 ft (Abdulla et al. 2017; Lourenço 1996). The frictional 

coefficient μ and residual friction angle φr are both 0.58 and 30.1° (tanφr = 0.58), respectively 
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(Macorini and Izzuddin 2011). The additional parameters, failure displacements (
f

n  and 
f

 ) and 

non-dimension parameters ( n and  ), are calibrated following the same procedure mentioned 

earlier in the IP model. 

Table 3-3. Material properties of interfaces of URM walls under OOP loading 

The FE models developed above are used to simulate the OOP behaviors of URM walls. 

The comparisons of load-displacement curves are shown in Figure 3-9. Note that OOP 

displacements were measured at the locations with maximum bending moment, e.g., the midpoint 

of the top free edge for Wall 4, the central point of the surface for Wall 8, and the midpoint of the 

right free edge for Wall 10. The deflections were measured up to about 80% - 90% of the failure 

pressure for Wall 8 and Wall 4 and 65% for Wall 10 due to deflection gauge damage (Ng 1996). 

The comparison of the load-displacement curves shows that the FE models developed predicted 

well about the OOP behavior of URM walls, and the comparison of the maximum pressure 

obtained by the FE simulations (i.e., 8.50 KPa, 26.69 KPa, 11.66 KPa for Wall 4, Wall 8, and Wall 

10, respectively) and experimental results (i.e., 8.54 KPa, 25.00 KPa, 12.20 KPa for Wall 4, Wall 

8, and Wall 10, respectively) further confirms this conclusion. 

 Elastic properties Nonlinear properties 

Wall nnk  
(N/mm3) 

,ss ttk k  
(N/mm3) 

Tension-related Shear-related 

tf  
(MPa) 

f

n  
(mm) 

n  
c  

(MPa) 
  

f

  
(mm) 

tan r    

Wall 4 

266 116 

0.25 0.31 4 0.35 0.58 0.91 0.58 1.4 

Wall 8 0.3 0.31 4 0.42 0.58 0.91 0.58 1.4 

Wall 10 0.37 0.31 4 0.52 0.58 0.91 0.58 1.4 
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Figure 3-9. Comparison of load-displacement curves of URM walls under OOP loading 

Figure 3-10 to Figure 3-11 show the comparison of FE simulations and experimental tests 

in terms of the OOP displacement distribution along the height and length directions of the tested 

walls at a certain load level. Figure 3-10 shows that the simulation results of Wall 8 are in excellent 

agreement with the experimental results, while slight and moderate difference are observed, 

respectively, for Wall 4 and Wall 10, as shown in Figure 3-10 and Figure 3-11, respectively. This 

can be attributed to lack of experimental data on the elastic parameters for units in Wall 4 and Wall 

10 and the possible non-uniformly distributed pressure loading applied through the airbag in the 

experiment. 
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(a) (b) 

Figure 3-10. OOP displacement distribution for Wall 8 at 20 kPa: (a) vertical center line, and (b) 

horizontal center line 

  

(a) (b) 

Figure 3-11. OOP displacement distribution for Wall 10 at 5 kPa: (a) free right edge, and (b) 

horizontal center line 

The crack patterns obtained by the proposed models are also compared with the 

experimental results, as shown in Figure 3-12. Reasonably good agreements can be observed for 

these walls. Specifically, the FE simulations for Wall 4 and Wall 10, which have three edges 

simply supported and one edge free, reveal that the crack initiates at the mid-span of the free edge. 

With the increase of load pressure, the crack propagates vertically downwards (e.g., Wall 4) or 

horizontally leftwards (e.g., Wall 10) until reaching the center of the wall panel and then bifurcates 
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diagonally to the bottom corners (Figure 3-12 (a)) or left corners (Figure 3-12 (c)). The collapse 

mechanisms of Wall 4 and Wall 10 are both characterized by Y-shaped cracking. For Wall 4, the 

FE simulation results correlate well with the experimental observations except for the right branch 

of the diagonal crack in the experiment shown in Figure 3-12 (d). For Wall 10, its FE simulation 

fails to capture the cracking pattern observed in the experiment, which can be attributed to 

boundary effects, i.e., the OOP displacement was not strictly constrained at the left side illustrated 

Figure 3-12 (f). The FE model for Wall 8 predicts crack initiation in the center of the wall panel 

and further development vertically (Figure 3-12 (b)). The wall failure predicted features a 

symmetrical crack pattern (X-shaped), i.e., several vertical cracks with four diagonal cracking 

branches, while in the test, only two diagonal cracking branches at the bottom of the wall were 

observed.  

Note that the models presented in this chapter did not capture the failure pattern accurately. 

To be specific, the vertical failure lines were not exactly captured by the FE models. This is due 

to the lack of information on the tensile strength parameter for the within-brick interfaces. Thus, a 

more representative value of 2.0 MPa for the tensile strength of units from (Lourenço 1996) was 

adopted in this chapter for the URM walls under OOP loading. It is worth mentioning that this 

parameter value was not tuned to have a perfect match with the tests to achieve the vertical failure 

line, e.g., by using an extremely low value, e.g., 1.0 MPa (2.8% of the compressive strength of the 

brick unit). More importantly, it was found that the models with different tensile strength 

parameter values (e.g., between 1.0 MPa and 2.5 MPa) predicted the load-carrying capacities 

reasonably well, i.e., close to the experimental result (25.0 kPa) with a maximum difference of 

7.0%. Furthermore, the crack propagation path highly depends on the spatial variation of materials 
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(Ng 1996) and the boundary conditions. For example, the uncertainty in the boundary conditions 

in the experiments, such as insufficient constraints on the OOP displacements at the boundaries, 

can affect the crack propagation path and thus the crack pattern (e.g., walls failed with “rigid” 

zones bounded by horizontal crack paths). This could explain why no analytical studies, to the 

knowledge of the authors, were capable of predicting the accurate crack patterns, especially for 

Wall 8 and Wall 10 (D’Altri et al. 2018; Macorini and Izzuddin 2011; Milani and Taliercio 2016). 

As an alternative to showing the validity of the FE models, the crack patterns predicted by the 

yield line theory are included for numerical-theoretical comparison. It is observed that the 

idealized crack patterns predicted by the yield line theory are consistent with the FE predicted 

OOP deformation fields, characterized by three or four “quasi-rigid” zones. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 3-12. Crack pattern comparison: (a) (b) (c) FE simulations for Wall 4, Wall 8 and Wall 10, 

and (d) (e) (f) experimental studies for Wall 4, Wall 8, and Wall 10 (Ng 1996) 

Based on the presented results, the FE modeling strategy used in this chapter shows to be 

a valid approach for small and large-scale specimens, and more importantly, for URM walls under 

both IP and OOP loadings. In the next section, a parametric study will be conducted to investigate 

the importance of different material parameters (i.e., unit and interface parameters) on the IP and 

OOP behavior of URM walls, respectively. 

 FINITE ELEMENT-BASED PARAMETRIC STUDY 

In order to identify the relative importance of material parameters for IP and OOP behavior of 

URM walls, the FE models developed for wall J4D under IP loading and Wall 8 under OOP 

loading are used to conduct a parametric analysis, respectively, with a focus on the load-
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displacement behavior and failure modes (e.g., crack pattern). Note that the failure modes will only 

be emphasized in this section if they are different from those presented earlier. 

Based on the FE models developed, one-at-a-time sensitivity analysis is performed in this 

section. The studied parameters are unit-related model parameters and interface-related model 

parameters. Specifically, they are the elastic modulus E, dilation angle ψ, frictional angle β, 

compressive strength fc of masonry units, and the tensile strength ft, cohesion c, frictional 

coefficient μ, tensile and shear failure displacements (  and ) of interfaces. The parameter 

values are varied within reasonable ranges for their use in URM walls.  

The FE simulation results in the preceding section indicate that although some cracks went 

through within-brick interfaces, the failure modes depend largely on the damage of the between-

brick interface damage (Figure 3-8 and Figure 3-12). The fact that mortar joints always act as 

planes of weakness in URM structures has also been confirmed in (Dolatshahi 2012; Lourenço 

1996). As a result, the between-brick, instead of the within-brick, interface parameters are 

considered in the parametric study. 

3.6.1. Masonry unit-related model parameters  

Figure 3-13 (a) and Figure 3-13 (b) show the load-displacement curves for the URM walls under 

IP and OOP loadings, respectively, with different values for the elastic modulus E of masonry 

units. It is observed that the initial stiffness and the load capacity of the wall increase with the 

increase of E, especially for the OOP case. The URM walls under OOP loading with different 

elastic moduli E all fail with the same X-shaped crack pattern, as shown in Figure 3-12 (b). 

However, the URM wall under IP loading with a low elastic modulus (i.e., E = 5000 MPa) for the 

f

n f


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units fails with shear sliding of mortar joints at the bottom, which is associated with point A in 

Figure 3-13 (a). Note that shear sliding mode is in contrast to the failure with a diagonal crack 

pattern (i.e., Figure 3-8 (b)). The main reason is that the low stiffness of URM wall would promote 

the development of the flexural cracks located at the corner, which resultantly reduces the 

resistance capacity along the bed joints of URM walls. Note that shear sliding failure is another 

typical failure mode (Calderini et al. 2009; Haider 2007) for URM walls under IP loading. In this 

context, the URM wall behaves in a more brittle manner, and the IP capacity decreases rapidly to 

zero, as shown in Figure 3-13 (a). 

  

(a) (b) 

Figure 3-13. Effects of elastic modulus E on the: (a) IP load-deformation behaviors, and (b) OOP 

load-deformation behaviors  

The effects of the compressive strength of masonry units are illustrated in Figure 3-14 (a). 

It can be seen that it has limited influence on the load-displacement curves. For the IP case, the 

crushing of compression toes was observed (Raijmakers 1992; Vermeltfoort and Raijmakers 

1993). However, the crushing zones are only restricted to a small region shown in Figure 3-8 (a). 

As a result, although compressive crushing failure is necessary to form a collapse mechanism (i.e., 

diagonal crack and toe crushing) for the URM wall considered, the effects of compressive strength 



Chapter 3: Finite Element Modeling and Parameter Importance Investigation of Unreinforced Masonry Walls using 

Off-the-shelf Techniques 

94 

 

are not significant in the global load-displacement relationship of URM walls under IP loading. 

For the OOP case, the URM wall behavior is barely affected by the compressive strength of the 

masonry units. However, it should be noted that URM walls bounded by relatively rigid structural 

elements, such as reinforced concrete and steel frame members, may form a compressive strut 

arching mechanism under OOP loading, generally resulting in an increase of the OOP strength 

(Liberatore et al. 2020; Walsh et al. 2018). For the URM with timber diaphragms or insufficient 

boundary constraints (e.g., simply supported boundary, roller condition), the compressive arching 

effects have little influence on the OOP capacity, such as the Wall 8 in the current parametric 

study. 

  

(a) (b) 

Figure 3-14. Effects of compressive strength fc on the: (a) IP load-deformation behaviors, and (b) 

OOP load-deformation behaviors 

The effects of the nonlinear material parameters (i.e., the dilation angle ψ and friction angle 

β) of the masonry units are also examined. Figure 3-15 and Figure 3-16 show the corresponding 

load-displacement curves for the URM walls under IP and OOP loadings. It can be observed that 

the two nonlinear material model parameters have a negligible effect on the URM wall behavior. 



Chapter 3: Finite Element Modeling and Parameter Importance Investigation of Unreinforced Masonry Walls using 

Off-the-shelf Techniques 

95 

 

Only some slight differences can be found in the post-peak behavior for the OOP behavior of URM 

walls with the variation of frictional angle β.  

  

(a) (b) 

Figure 3-15. Effects of dilation angle   on the: (a) IP load-deformation behaviors, and (b) OOP 

load-deformation behaviors 

  

(a) (b) 

Figure 3-16. Effects of frictional angle   on the: (a) IP load-deformation behaviors, and (b) OOP 

load-deformation behaviors 

3.6.2. Mortar interface-related model parameters 

The material model parameters of interfaces can be categorized into: (1) tension-related parameters 

(i.e., tensile strength ft, tensile failure displacement ) and (2) shear-related parameters (i.e., 
f

n
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cohesion c, frictional coefficient μ, shear failure displacement ). The failure displacements are 

calibrated according to fracture energies, as mentioned earlier and thus various failure 

displacements considered in the parametric study are physically related to fracture energies as 

shown later. 

Figure 3-17 and Figure 3-18 present the effects of two tension-related parameters on load-

displacement curves for URM walls under IP and OOP loadings. It is observed that tension-related 

parameters have a great influence on the OOP behavior (Figure 3-17 (b) and Figure 3-18 (b)) than 

on the IP behavior of URM walls (Figure 3-17 (a) and Figure 3-17 (a)). Higher tensile strength 

and larger tensile failure displacement (larger fracture energies) increase the OOP capacities of 

URM walls. On the contrary, results indicate that tension-related parameters have little effect on 

the IP behavior of URM walls. This shows that the tensile properties are significant for a reliable 

prediction of the OOP behavior.  

  

(a) (b) 

Figure 3-17. Effects of tensile failure displacements 
f

n  on the: (a) IP load-deformation behaviors, 

and (b) OOP load-deformation behaviors 

f


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(a) (b) 

Figure 3-18. Effects of tensile strength ft on the: (a) IP load-deformation behaviors, and (b) OOP 

load-deformation behaviors 

Figure 3-19 to Figure 3-21 show the effects of three shear-related parameters on load-

displacement curves for URM walls under IP and OOP loadings. The results show that shear-

related parameters affect both the IP and OOP behaviors of URM walls, but they have a greater 

influence on the IP behavior. Specifically, the higher shear failure displacement (or model II 

fracture energy), the larger cohesion, and the higher frictional coefficient lead to higher strength 

and ductility for URM walls under IP loading. In particular, the ductility of URM walls under IP 

loading reduces significantly with lower shear failure displacements (or mode II fracture energies), 

e.g., =0.2mmf

 and 0.5mmf

 = , and lower frictional coefficient, e.g., 0.5 = . As shown in 

Figure 3-19 (a) and Figure 3-21 (a), sudden drops in lateral loads are observed for these cases, 

which are related to a different failure mode, namely shear sliding along horizontal mortar joints 

(Figure 3-13 (a)). It is worth mentioning that the shear sliding of mortar joints does not necessarily 

occur at the bottom mortar interface. Regarding the OOP behavior, the peak strength increases 

with stronger cohesion of interfaces, while the other two parameters (shear failure displacement 

and frictional coefficient) barely influence the peak strength of URM walls. The post-peak 
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behavior is highly sensitive to the shear failure displacement: the higher value will yield greater 

ductility, as shown in Figure 3-19 (b), and insensitive to the frictional coefficient, as shown in 

Figure 3-21 (b). 

  

(a) (b) 

Figure 3-19. Effects of shear failure displacement 
f

  on the: (a) IP load-deformation behaviors, 

and (b) OOP load-deformation behaviors 

  

(a) (b) 

Figure 3-20. Effects of cohesion c on the: (a) IP load-deformation behaviors, and (b) OOP load-

deformation behaviors 
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(a) (b) 

Figure 3-21. Effects of frictional coefficient μ on the: (a) IP load-deformation behaviors, and (b) 

OOP load-deformation behaviors 

 CHAPTER CONCLUSIONS 

A finite element model using 3D continuum elements and contact-based cohesive surfaces was 

presented for unreinforced masonry (URM) walls in this chapter, taking advantage of readily 

available modeling techniques in ABAQUS (Dassault Systemes 2017). Numerical-experimental 

comparisons were conducted in terms of load-displacement curves and failure crack patterns. 

Reasonable agreement was achieved in terms of initial stiffness, in-plane (IP) /out-of-plane (OOP) 

capacity, post-peak behavior, as well as the crack pattern. This allows a unified approach to model 

the masonry walls under IP and OOP loading and boundary conditions.  

A parametric study was subsequently conducted to investigate the influence of material 

parameters on URM wall behavior. For material parameters of units, elastic modulus has a 

considerable influence on the initial stiffness and the wall strength, other parameters such as 

compressive strength, dilation angle, and frictional angle have negligible effects on the URM wall 

behavior. Regarding the material parameters of mortar joint interfaces, the tension-related 

parameters have a greater influence on OOP behavior in terms of peak load and ductility, while 
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both shear- and tension-related interface parameters affect the IP behavior of masonry walls. 

Different failure modes (i.e., diagonal cracking, shear sliding) are captured, and under shear sliding 

failure, the URM wall behaves in a more brittle manner. Such information on the relative 

importance of the micro model parameters is valuable to both experimental and numerical studies 

of masonry walls under complex loadings.  
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Chapter 4. DEVELOPMENT OF A PLASTICITY-BASED 3D MULTI-

YIELD SURFACES CONSTITUTIVE MODEL FOR MASONRY 

MORTAR JOINTS UNDER MONOTONIC LOADING 

This chapter presents a new 3D multi-yield surfaces constitutive model for masonry mortar joints, 

which can be used with interface elements for finite element (FE) modeling of masonry structures 

to capture various failure mechanisms. This model is featured with (1) two hyperbolic yield 

surfaces capable of capturing various failure modes of mortar joints, including tensile cracking, 

shear sliding, and compressive crushing; (2) an unassociated flow rule to capture the ‘dilatancy’ 

phenomenon in the mortar joints; and (3) the dilatancy softening and variation of mode II fracture 

energy under different normal stress levels. An implicit Euler backward integration algorithm, 

combined with a local-global Newton-Raphson (NR) solver, is adopted to achieve the predictor-

corrector return mapping in the numerical formulation. The error-based auto-adaptive sub-stepping 

algorithm is employed to achieve robustness and efficiency in the integration procedure. The 

developed model is implemented in the general-purpose FE software ABAQUS, with the 

specialized capability of modeling masonry structures. The developed model is validated through 

three unit-mortar-unit assemblages and three unreinforced masonry (URM) walls under in-plane 

(IP) loading or out-of-plane (OOP) loading. The importance of appropriate modeling of dilatancy 

in simulating the IP and OOP behavior of URM walls is highlighted. The validation results show 

that the developed constitutive model is capable of modeling masonry structures at various scales 

with improved accuracy by considering dilatancy softening. 
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 INTRODUCTION 

Masonry structures are commonly used in historical and modern building construction, with 

attractive aesthetics arising from the periodic arrangement of masonry units (e.g., bricks, concrete 

blocks) and mortar joints. Under extreme loadings, extensive cracking and other damage can occur 

between units and within mortar layers (Khansefid et al. 2022). The structural behavior and failure 

of masonry structures under in-plane (IP) and/or out-of-plane (OOP) loadings highly depend on 

the mechanical properties of the masonry constituents (e.g., unit, mortar) and their interactions. As 

such, one of the leading challenges in computational mechanics for predicting masonry structural 

behavior lies in the appropriate treatment of the interaction between masonry units through mortar 

layers. 

Depending on the desired simulation accuracy and expected detail of the mechanical 

behavior, different modeling approaches have been developed and used for computational 

simulation of masonry structures in the literature, e.g., limit analysis (LA) approaches (Gilbert et 

al. 2006; Livesley 1992; Portioli and Cascini 2016), discrete element model (DEM)-based 

approaches (Pantò et al. 2021; Savalle et al. 2022), finite element (FE) approaches. A 

comprehensive review of the formulation and application of these approaches can be found in 

(Ghiassi and Milani 2019). LA and DEM-based approaches assume rigid blocks connected with 

contacts/interfaces to represent the non-linear behaviors of mortar joints, which have been proven 

to be efficient in predicting the structural behavior of masonry. In the recent decade, FE approaches 

have received more attention in masonry simulation. FE-based approaches can be broadly 

categorized into macro modeling, simplified micro modeling, and detailed micro modeling 

(Lourenço 1996). In these approaches, different strategies are taken to address the masonry joints. 
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Specifically, macro modeling treats masonry as a homogeneous material with the smeared 

properties of unit-mortar composites without explicitly modeling the interactions between 

masonry units. In contrast, detailed micro models represent masonry units and mortar layers 

explicitly using continuum elements and consider two unit-mortar interfaces. Compared to macro 

models that are oversimplified with less accuracy, detailed micro models are more accurate but 

computationally prohibitive. To achieve a balance between computation efficiency and modeling 

capability, simplified micro models were introduced by Page (1978) by making use of the concept 

of zero-thickness interface elements, representing the compounded behavior of mortar layers and 

unit-mortar contacts. Although Poisson’s effect of mortar is neglected in the simplified micro 

modeling strategy, it is proven to be capable of predicting the structural behavior of masonry at a 

high level of accuracy, which is widely used in the masonry community (Abdulla et al. 2017; Citto 

2008; Dolatshahi and Aref 2011; Giambanco et al. 2001; Kumar et al. 2014; Kumar and Barbato 

2019; Lotfi and Shing 1994; Lourenço 1996; Lourenço and Rots 1997; Nazir and Dhanasekar 2014; 

da Porto et al. 2010; Zeng et al. 2021). 

In the simplified micro modeling approach, units are modeled with size expansion to 

maintain the overall geometry of masonry structures, and the discontinuity between expanded 

masonry units is then represented by interface elements. The capability of the simplified micro 

modeling approach to simulate the structural behavior of masonry structures relies heavily on the 

accuracy of the interface elements. 

Large efforts have been devoted to developing interface models to consider different failure 

modes (e.g., tensile cracking, shear sliding, and/or compressive crushing), and a comprehensive 

review can be found in (Shadlou et al. 2020). In general, there exist mainly three groups of interface 
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elements: the first group assuming zero tensile strength and shear sliding based on Coulomb’s law 

(Lemos 2017; Yavartanoo and Kang 2022), second group considering tension cracking and shear 

sliding with shear-compression hardening (Abdulla et al. 2017; Giambanco et al. 2001; Giambanco 

and Di Gati 1997; Koutromanos and Shing 2012; Lotfi and Shing 1994; Stankowski et al. 1993b; 

a; Zeng et al. 2021; Zhai et al. 2017), and the third group considering compression crushing failure 

in addition to the two aforementioned failure modes (Aref and Dolatshahi 2013; Citto 2008; 

Dolatshahi and Aref 2011; Kumar et al. 2014; Kumar and Barbato 2019; Lourenço 1996; Lourenço 

and Rots 1997; Macorini and Izzuddin 2011; Nazir and Dhanasekar 2014; Oliveira and Lourenço 

2004; da Porto et al. 2010; van Zijl 2004). The first group of interface elements is mainly applicable 

to dry-stack masonry structures (i.e., the bonding effects of mortar play a limited role (Casapulla 

and Portioli 2016; Elvin and Uzoegbo 2011; Martínez and Atamturktur 2019)). For the scenario in 

which the mortar layer provides a certain bonding strength, all possible failure modes should be 

considered in the constitutive material model for interfaces. For example, Lourenco (Lourenço 

1996) made an early attempt to develop a multi-yield surfaces model to consider all three failure 

modes/criteria, which has later been extensively used and refined by other researchers, e.g., see 

(Dolatshahi and Aref 2011; Giambanco and Di Gati 1997; Nazir and Dhanasekar 2014; van Zijl 

2004). However, a well-known singularity issue in plasticity-based constitutive models exists due 

to non-smooth corners at the intersection of different yield surfaces. In order to overcome this 

potential issue in the numerical integration process, other researchers proposed a single yield 

surface failure criterion (Citto 2008; Kumar et al. 2014, 2015). In spite of the mathematical beauty 

introduced by defining a single yield surface, it suffers from a lack of clear physical interpretation 

of tension-shear failure, which represents a unit-mortar interfacial phenomenon (e.g., tensile 
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cracking, shear sliding), and the compression cap, which represents a masonry or mortar crushing 

failure mode. Accordingly, to describe different softening and hardening behaviors in the tension 

and compression conditions, the single yield surface model usually results in quite lengthy yield 

function expressions, with some non-physical parameters hard to be determined. Note that it is 

more acceptable to use a single yield function to represent the tension-shear failure mode, e.g., 

hyperbolic (Kumar and Barbato 2019; Lotfi and Shing 1994; Macorini and Izzuddin 2011), 

elliptical (Nazir and Dhanasekar 2014), parabolic (Stankowski et al. 1993b; a) yield surfaces. 

Among the aforementioned constitutive models for interface elements, a majority of them 

were implemented in the two-dimensional (2D) stress space (Citto 2008; Dolatshahi and Aref 

2011; Giambanco et al. 2001; Giambanco and Di Gati 1997; Kumar et al. 2014; Kumar and 

Barbato 2019; Lotfi and Shing 1994; Lourenço 1996; Lourenço and Rots 1997; Nazir and 

Dhanasekar 2014; Oliveira and Lourenço 2004; da Porto et al. 2010; Stankowski et al. 1993a; b; 

Zeng et al. 2021; van Zijl 2004) for masonry walls under IP loading conditions. Thus, they are not 

applicable to three-dimensional (3D) FE modeling of masonry walls under complex loading and 

boundary conditions. In such scenarios when investigating the wall behavior under OOP loading, 

or combined OOP and IP loading, 3D constitutive models for interface elements are required. In 

view of this research need, a few 3D interface models have been successfully developed in public 

literature (Aref and Dolatshahi 2013; Macorini and Izzuddin 2011), but each of them has its own 

limitations. Specifically, in Macorini’s model (Macorini and Izzuddin 2011), two yield surfaces 

are employed to account for all the possible failure modes, including compression failure. 

However, Kumar and Barbato (2019) showed that the work softening hypothesis negatively 

influences the accuracy of the simulation results compared with the results obtained by a strain 
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softening/hardening hypothesis. Aref and Dolatshahi (2013) proposed a 3D cyclic meso-scale 

interface model in an explicit integration framework in which a small loading increment is required 

to improve numerical accuracy. 

Compared with the consideration of various failure modes in the constitutive models of 

interface elements for masonry joints, there is an important phenomenon that has attracted less 

attention. The micromechanical behavior of the mortar layer and the two mortar-unit interfaces 

has inherent dilatancy (Andreotti et al. 2019), as a result of a crack surface that is not perfectly 

smooth. The mortar joint specimen will deform with an uplift under compression and shear 

loading, thus leading to a volume increase. As evidenced by the experimental results (Andreotti et 

al. 2019; Jafari et al. 2020; Pluijm 1999), the dilatancy effects are evident under lower 

compression, and will diminish with the increase of normal compressive stress and plastic shear 

displacement. An inappropriate description of dilatancy can produce an increase in normal stress, 

resulting in a considerable overestimate of shear capacity for pressure-dependent materials or 

specimens. Most current studies assumed the constant dilatancy angle (Lourenço 1996; Lourenço 

and Rots 1997; Oliveira and Lourenço 2004; da Porto et al. 2010; Stankowski et al. 1993b; a) in a 

simplified manner, which would result in an inaccurate estimation of shear capacity. Although 

some researchers considered the variation of dilation angle, the dependence of compressive stress 

(Koutromanos and Shing 2012; Kumar and Barbato 2019; Macorini and Izzuddin 2011; Zhai et al. 

2017) or plastic shear displacement (Citto 2008) on the dilatancy effects was neglected. Few 2D 

interface models (Lotfi and Shing 1994; van Zijl 2004) formulated the decreased dilatancy angle 

with the increase of compressive stress and plastic shear displacement. These 2D models, however, 

failed to address the OOP behavior prediction of masonry walls as mentioned earlier. Meanwhile, 
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although the diminishment of dilatancy is observed at large shear sliding due to the wear and 

damage to the asperities along the unit-mortar interface, the dilatancy becomes stable at a non-zero 

value based on some experimental evidences (Andreotti et al. 2019; Jafari et al. 2020), which is 

not taken into account in current models. In addition, previous interface models have not dealt with 

the dependence of mode II fracture energy (i.e., the energy required to create a unit area of a shear 

crack) on the compressive stress. It is observed that the higher compressive stress would improve 

the ductility and energy dissipation capacity (Pluijm 1999), inducing a mode II fracture energy, 

which should also be considered in the constitutive material model formulation. 

This chapter proposes a newly developed plasticity-based 3D constitutive material model 

for interface elements used in FE simulation of masonry structures considering dilation. The 

dilatancy softening and variation of mode II fracture energy are incorporated into the proposed 

model. Three failure modes (i.e., tensile cracking, shear sliding, compressive crushing) are all 

considered using two hyperbolic yield surfaces: one for compression and one for shear-tension. 

The proposed model is implemented in the commercial software ABAQUS (Dassault Systemes 

2017) via the user subroutine UMAT. A fully implicit Euler Backward integration algorithm, 

combined with a local-global Newton-Raphson (NR) solver, is adopted to achieve the predictor-

corrector return mapping procedure in the numerical formulation. The error-based auto-adaptive 

sub-stepping algorithm is used to enhance accuracy, robustness, and efficiency. After the 

description of the theoretical formulation and numerical implementation, the developed model is 

validated against tested unit-mortar-unit assemblages and three unreinforced masonry (URM) 

walls under IP and OOP loading, respectively, with a highlight on the effect of dilatancy on the 

behavior of URM walls. 
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 CONSTITUTIVE MODEL FORMULATION 

The elastic regime for the proposed interface model is characterized based on the traction-

separation relationship. Specifically, three stiffness constants knn, kss, and ktt are used respectively 

to relate the three stress components (i.e., σn, τs, τt) and three corresponding displacement 

separations (i.e., un, us, ut). Note that subscripts n, s, and t denote normal and two tangential 

directions of the interface, respectively. Negative values of σn indicate the interface element is 

under compressive while positive values correspond to the tensile stress states. The elastic 

behavior can be written in the matrix form shown in Eq. (4-1): 

 

n nn n

s ss s

t tt t

k u

k u

k u






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= =
     
          

Ku  (4-1) 

where K and u represent the initial stiffness matrix and the relative displacement vector. 

The stiffness constants are determined experimentally as the slopes of pre-peak branches in 

traction-separation curves obtained from experiments tests. The plastic regime is elaborated as 

follows in this section. 

4.2.1. Multi-yield surfaces plastic criterion 

The proposed multi-yield surface criterion consists of two hyperbolic surfaces: tension-shear 

failure surface f1 and compression cap f2. The tension-shear failure surface f1 is inspired by Ignacio 

Carol’s model (Carol et al. 1997), which was used to describe the concrete fracture at the meso-

scale. Compared with the Mohr-Coulomb and tension cut-off yield surfaces commonly used in the 

masonry interface model (Lourenço 1996), this continuous and differentiable hyperbolic yield 

surface provides a smooth transition between the Mohr-Coulomb surface and tension cut-off 
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surface, which can overcome the computational singularity in the non-smooth corner of tension-

shear failure region. Later, Carol’s model (Carol et al. 1997) was improved by introducing a 

hyperbolic cap to describe the compressive crushing failure mode (Macorini and Izzuddin 2011). 

However, two yield functions in (Macorini and Izzuddin 2011) are quadratic and thus have two 

branches, only one of which has actual physical meaning. This may cause the misidentification of 

yield surfaces in the numerical integration process, especially when the elastic stiffness constants 

are relatively large, resulting in the trial stress state being far away from the correct yield surfaces. 

Therefore, in the proposed interface model, two yield criteria are adjusted to Eq. (4-2) and Eq. (4-

3), respectively, such that each of them has only one correct branch considered in both failure 

regions: 

 ( ) 2 2 2

1 , , ( tan ) ( tan )n s t n s t tf c c        = − − + + + −  (4-2)     

 ( ) 2 2 2

2 , , ( tan ) ( tan )n s t c n s t c cf f f        = − + + + + −  (4-3)  

where c, σt, and tanφ denote the cohesion, the tensile yield stress, and the frictional 

coefficient, respectively; σc is the compressive yield stress, fc is the compressive strength; tanθ is 

the asymptote slope of compressive cap surface. 

The yield surface plot in the 3D space is schematically shown in Figure 4-1.  
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Figure 4-1. Schematic view of yield surfaces of proposed constitutive material model 

4.2.2. Flow rule 

The associated flow rule is assumed for the compression cap yield surface f2, i.e., plastic potential 

g2 = f2, while non-associated flow rule is used for the yield surface f1 to consider shear dilatancy in 

the masonry mortar interface, i.e., plastic potential g1 ≠ f1. A similar but different function from 

the yield function f1 is assumed for the plastic potential g1 as per Eq. (4-4): 

 ( ) 2 2 2

1 , , ( tan ) ( tan )n s t q n s t q tg c c        = − − + + + −  (4-4) 

where cq is the apparent cohesion, tanψ is the dilatancy coefficient. Note that ψ should not 

be constant, as observed in experiments where the dilatancy coefficient reduces from the initial 

value to the residual one (Almeida et al. 2016; Atkinson et al. 1988; Vasconcelos et al. 2008). The 

evolution law for the dilatancy coefficient is defined in terms of the compressive stress and plastic 

shear displacement, conforming to the experimental evidence (Andreotti et al. 2019; Jafari et al. 

2020; Pluijm 1999). The experimental results indicate that with the increase of plastic shear 
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displacement and compressive normal stress (absolute value), the dilatancy coefficient reduces 

gradually. Despite the large scatter in the experimental data, a linear relationship could be a good 

representation for this dilatancy softening behavior, as shown in Figure 4-2. Thus, the following 

model was proposed to incorporate the softening dilatancy effects into the unassociated flow rule, 

as shown in Eq. (4-5): 

  

(a) (b) 

Figure 4-2. Relationship between dilatancy coefficient and (a) plastic shear displacement, and (b) 

compressive normal stress 
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 (4-5) 

where  represents the Macaulay bracket (i.e., ( ) / 2x x x= + ); us
p and ut

p are plastic 

displacements on the first and second tangential directions, respectively; tanψ0 and tanψr are the 
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initial (i.e., corresponding to us
p = ut

p = 0 when σn = 0) and residual dilatancy coefficient, 

respectively; uτ is ‘critical shear plastic displacement’ and σu is ‘critical dilatancy compressive 

stress’. It is apparent from Eq. (4-5) that when the applied compressive stress σn is less than σu or 

the resultant plastic shear displacement (i.e., ( ) ( )
2 2

p p

s tu u+ ) is greater than uτ, the dilatancy 

coefficient tanψ is reduced to the residual level (i.e., tanψ = tanψr). 

4.2.3. State variables evolution during plastic flow 

4.2.3.1 State variables in the yield surface f1 

The mechanical behaviors of mortar joints under tension and shear show a similar softening 

phenomenon to those of other quasi-brittle materials (e.g., concrete). The evolution laws of tensile 

strength σt and cohesion c are based on strain softening (Lourenço 1996) defined as Eq. (4-6) and 

Eq. (4-7), respectively: 

 1exp t
t t

I

f κ
f

G


 
= − 

 
 (4-6) 

 0 2
0 exp

II

c κ
c c

G

 
= − 

 
  (4-7) 

where ft is the tensile strength, GI is the mode I fracture energy, c0 is the peak cohesion, 

and GII is the mode II fracture energy. The apparent cohesion cq in Eq. (4-7) has the same evolution 

law as c but with a different peak value cq
0. These four material parameters (i.e., ft, GI, c0, GII) have 

explicit physical meaning, which can typically be obtained from laboratory experiments. Previous 

experimental results, such as (Pluijm 1999; Raijmakers and Vermeltfoort 1992), showed the 

dependence of mode II fracture energy GII on the compressive normal stress σn. Although the 
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experimental data showed relatively large scatter, it is still apparent that GII increases with the 

increase of the compressive stress level (Jafari et al. 2020; Lourenço 1996). A regression analysis, 

illustrated in Figure 4-3, indicated that the relationship between GII and σn can be described using 

two parameters 
IIGa  and GII

0, shown in Eq. (4-8): 

 

Figure 4-3. Relationship between mode II fracture energy and compressive normal stress 
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where 
IIGa is a negative constant parameter, GII

0 is the mode II fracture energy when σn = 

0. In Eq. (4-6) and Eq. (4-7), ĸ1 and ĸ2 are two softening scalars, formulated in the rate form using 

plastic displacements, see Eq. (4-9) and Eq. (4-10): 
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where un
p
, us

p
, and ut

p
 are the plastic displacements in the normal, first tangential, and second 

tangential directions, respectively. The Macaulay bracket  implies that a compressive stress 

state in the normal direction has no contribution to the softening scalar variables (i.e., ĸ1, ĸ2). The 

quadratic combinations of plastic displacements in Eq. (4-9) and Eq. (4-10) ensure that the loss 

percentages for tensile yield stress σt and cohesion c are equal through the entire softening process. 

This fully coupled tension-shear softening model is consistent with the fact that both softening 

behaviors are related to the interfacial debonding at the micro level (Lourenço 1996).  

The frictional coefficient tanφ would have a gradual change during the plastic deformation 

process, which is coupled with cohesion softening, as given in Eq. (4-11): 

 ( )0
0 0

0

tan tan tan tan r

c c

c
   

−
= + −  (4-11) 

The residual frictional coefficient tanφr can be obtained directly from experimental results, 

defined as the ratio between the residual shear stress and the compressive normal stress after the 

cohesion c is fully exhausted. It is worth noting that the residual frictional coefficient tanφr is not 

necessarily less than the initial frictional coefficient tanφ0, which is related to the mortar type and 

the roughness of the unit-mortar interaction surface. Some experimental data with tanφr > tanφ0 

can be found in (Almeida et al. 2016; Atkinson et al. 1988; Vasconcelos et al. 2008). 

4.2.3.2 State variables in the yield surface f2 

The compressive yield stress σc evolves with the increase of equivalent plastic displacement ĸ3, 

defined as the quadratic combinations of three plastic displacement components in the rate form, 

as given in Eq. (4-12): 
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 ( ) ( ) ( )
2 2 2

3

p p p

n s tκ u u u= − + +  (4-12) 

The evolution law of σc is divided into three segments, similar to the those used by (Kumar 

and Barbato 2019; Lourenço 1996), shown in Eq. (4-13) and Figure 4-4. The compressive yield 

stress first experiences hardening from the initial value 
i

c  to the peak value 
p

c , i.e., compressive 

strength fc in Eq. (4-3). Then it reduces to the intermediate stress level 
m

c . An exponential 

softening branch is subsequently followed to the residual compressive stress 
r

c . The whole σc-ĸ3 

curve is determined based on several controlling values, which should be calibrated based on the 

experimental results. When relevant experimental data is not available, the values of controlling 

points can be assumed empirically. The displacement 3

p , corresponding to the compressive 

strength, is assumed to be equal to 
p

c nnk  according to (Nazir and Dhanasekar 2014). To make 

sure the numerical stability, the initial and residual compressive yield stress (i.e., 
i

c  and 
r

c ) are 

defined as 4p

c  (Nazir and Dhanasekar 2014) and 7p

c  (Lourenço 1996), respectively. The 

intermediate point ( )3 ,m m

c   is set to be ( )35 ,0.55p p

c   to provide a smooth transition between 

different segments (Lourenço 1996). 

 

( )
( )

( )

( )

2

3 3
3 32

3 3

2

3 3
3 3 3

3 3

3 3
3 3

3 3

2

exp 2

i p i p

c c c p p

p
p m p p m

c c c c m p

m p m
r m r mc c
c c c m p m r

c c

 
    

 

 
      

 

   
    

   

  
+ − −   

   

  −
= + −   

−  


 − − + −   − − 

 (4-13) 
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Figure 4-4. Evolution law of the compressive yield stress σc 

 PLASTICITY INTEGRATION STRATEGY 

In the context of finite element implementation, plasticity integration is required since the rate 

form is used in the evolutionary rules for the abovementioned hardening/softening and the flow 

rule, in addition to the strain rate decomposition. The plasticity integration problem can be stated 

as follows: Given the known stress (i.e., σn = [σn, τs, τt]T) and softening/hardening scalars (i.e., ĸn 

= [ĸ1,n, ĸ2,n, ĸ3,n]T at load step n and the displacement increment du = [dun, dus, dut]T at load step 

n+1, update all the stress and state variables (i.e., σn+1, ĸn+1) at load step n+1. This section deals 

with the plastic integration of the proposed constitutive material model for the interface element 

in a general finite element framework. Specifically, a fully implicit Euler Backward integration 

algorithm is adopted to achieve the predictor-corrector return mapping procedure (Simo et al. 

1988). The Newton-Raphson (NR) method is utilized to provide the nonlinear equation solutions 

at the constitutive level, and the consistent tangent matrix is derived to guarantee the quadratic rate 

of convergence at the finite element (FE) level. In addition, an error-based auto-adaptive sub-
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stepping algorithm is employed to enhance numerical accuracy, robustness, and efficiency. Details 

are provided as follows. 

4.3.1. Multi-yield surface plasticity integration strategy 

For the sake of generality, the specific case in which both yield criteria are violated is discussed 

here. The non-smooth corner is defined by the intersection region of tension-shear yield surface f1 

and compression cap f2.  

With the displacement increment du at load step n+1, the trial stress state tri
σ  can be 

obtained as Eq. (4-14): 

 
tri

n= +σ σ Kdu  (4-14) 

where σn is the last converged stress state (at step n), and K is the elastic stiffness matrix 

defined in Eq. (4-1). 

According to the multi-yield surface plasticity integration strategy proposed by Simo 

(1988), in the presence of yielding, the plastic strain increment is obtained as a linear combination 

of the plastic strain rates of the two yield surfaces, given in Eq. (4-15): 

 1 2
1 2

1 1n+ n+

g g
 

 
= +

 

p
du

σ σ
 (4-15) 

where dup = [dun
p
, dus

p
, dut

p]𝑇 is the plastic displacement vector, �̇�1 and �̇�2 are two plastic 

multipliers. 

As a result, the predictor-corrector return mapping strategy based on the Euler Backward 

algorithm gives a set of nonlinear equations (a total of 8 = 3 + 3 + 2), as given in Eq. (4-16): 
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( )

1 2
1 1

1 1

1 1

1 1,

n+ n

n+ n+

n+ n n+

n+ n+

g g
 

   
− − − − =  

   


− − =
 =

0

0

0

  



σ σ Κ du
σ σ

f σ

 (4-16)     

where the first sub-equation relates to the stress increment, the second sub-equation relates 

to the increments of scalar variables from load step n to load step n+1, and the third sub-equation 

imposes the yield constraints in the plasticity theory. 

The eight unknowns in the nonlinear Eq. (4-16) are three stress components in σn+1, three 

state variables in ĸn+1, and two plastic multipliers (i.e., �̇�𝑛+1= [�̇�1, �̇�2]T). It is unlikely to find a 

closed-form solution for this set of nonlinear equations. Therefore, a standard NR method is 

adopted to solve the nonlinear system to ensure quadratic convergence, provided that the initial 

solution is sufficiently close to the exact one. The residuals of Eq. (4-16) can be linearized as Eq. 

(4-17): 

 ( ) ( ) ( )
T

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1, , ,k k+ k+ k+ k k k k k k k k+ k+ k+

n+ n+ n+ n+ n+ n+ n+ n+ n+ n+ n+ n+d d d+  = +  r σ κ , λ r σ κ , λ J σ κ , λ σ κ λ  (4-17) 

where r k represents the residual vector for NR iteration k, and J is the Jacobian matrix of 

Eq. (4-16). 

By letting the left-hand side of Eq. (4-17) be equal to 0, the increments of the unknown 

variables are derived as Eq. (4-18): 

 ( ) ( )1 1 1 1

1 1 1 1 1 1 1 1 1, ,
T

k+ k+ k+ k k k k k k

n+ n+ n+ n+ n+ n+ n+ n+ n+d d d −  = − σ κ λ J σ κ , λ r σ κ , λ  (4-18) 
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The solution can be achieved iteratively by Eq. (4-18) until the Euclidean norm of the 

residual vector ( )1 1 1 1

1 1 1,k k+ k+ k+

n+ n+ n+

+=r r σ κ ,λ in Eq. (4-17) reaches a prescribed tolerance. The initial 

guess for stress vector 
0

1n+σ  and state variables 
0

1n+κ are determined as the trial stress tri
σ and the 

converged values in the previous load step nκ , respectively. The initial guess for plastic multipliers 

is 
0

1n+λ = 0. 

The graphical representation for the predictor-correction strategy for the multi-yield 

surface model is illustrated in Figure 4-5, in which Point A denotes the elastic stress state at the 

step n, Point B denotes the trial stress state at step n+1, and Point C is reached through NR method, 

denoting the converged stress state at step n+1. 

  

Figure 4-5. Graphical representation for the predictor-corrector strategy for the multi-yield surface 

model 
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4.3.2. Error-based auto-adaptive sub-stepping algorithm 

The implicit solver in the FE software, e.g., ABAQUS Standard (Dassault Systemes 2017), permits 

the use of large displacement increments. Thus, to ensure the robustness of NR iteration procedure 

at the constitutive level when a relatively large displacement increment is imposed at the structural 

level, an error-based auto-adaptive sub-stepping algorithm based on the error-tolerance ratio is 

introduced to control the step size.  

In the context of sub-stepping strategy, a single load step is discretized into several sub-

steps, resulting in a sub-incremental displacement ωi,n+1du (0 < ωi,n+1 < 1) in each sub-step, as 

given in Eq. (4-19): 

 1

1 1

m m

i i,n+

i i


= =

= = du du du  with 1

1

1
m

i,n+

i


=

=  (4-19) 

where ωi,n+1 is the reduction factor at sub-step i within global step n+1, m is the number of 

sub-steps. A large value of ωi,n+1 may cause the divergence of NR, resulting in numerical 

instability. On the contrary, a small value of ωi,n+1 would increase the computational cost with 

more sub-steps. To address this issue, the auto-adaptive step size control strategy proposed by 

Gupta et al. (2020) is used to adjust the reduction factor ωi,n+1 such that the residual error is close 

to the prescribed tolerance, as shown in Eq. (4-20):  

 

1

, +1

1 1

i n

i- ,n+

Tol

error





 
=  

 
 (4-20) 

where Tol is the prescribed tolerance, error is the residual r  and will be updated in each 

NR iteration, and α is a constant (α = 0.2 is used in this study). As shown in Eq. (4-20), if the NR 
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iteration fails to converge (i.e., Tol < error) within a specified number of iterations, ωi,n+1 is 

reduced accordingly. Conversely, if the NR iteration converges (i.e., Tol > error), ωi,n+1 is 

increased as per the sub-step controller, i.e., Eq. (4-20), to save computational cost.  

For the plasticity integration problems involved in the sub-stepping strategy, the nonlinear 

system at sub-step i+1 within load step n+1 can be written as Eq. (4-21): 

 

( )

1 2
, +1 1, 1 , 1 1, ,

, 1 , 1

, 1 1, 1 , 1

, +1 , 1,

i n i n i n i i

i n i n

i n i n i n

i n i n

g g
  − + + 

+ +

+ − + +

+

   
− − − − =      


− − =

 =

0

0

0

  



σ σ Κ du
σ σ

f σ

 (4-21) 

It should be noted that the independent variables of the nonlinear system in Eq. (4-21) are 

σi,n+1, ĸi,n+1, and �̇�𝑖 = [�̇�1,𝑖 , �̇�2,𝑖]. Similarly, Eq. (4-21) can be solved iteratively, as given in Eq. (4-

22): 

 ( ) ( )1 1 1 1

, +1 , +1 , +1 , +1 , +1 , +1, ,
T

k+ k+ k+ k k k k k k

i n i n i i i n i n i i n i n id d d −  = − σ κ λ J σ κ , λ r σ κ , λ  (4-22) 

where k and k+1 are NR iteration cycles. Plastic multipliers �̇�𝑖 = [�̇�1,𝑖 , �̇�2,𝑖] are set to zero 

at the first iteration cycle at each sub-step because they only take account of the plastic procedure 

incrementally. Thus, plastic displacements accumulate through all the sub-steps. 

The general idea for the sub-stepping backward integration is schematically illustrated in 

Figure 4-6, in which σn and σn+1 are the stress states at steps n and n+1, 
, 1

tri

i n+  and , 1i n+  (i=1,2…m) 

are the trial and converged stress states at sub-step i. 
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Figure 4-6. Schematic illustration of the general idea for the sub-stepping backward integration 

used in the proposed constitutive model 

For the global NR iteration at the structural level, the consistent tangent stiffness matrix at 

each Gaussian point, defined as 
∂σ

∂du
, is needed for the current load step. Following the method 

provided in (Caballero et al. 2008; Pérez-Foguet et al. 2001), 
∂σ

∂du
 can be computed by 

differentiating Eq. (4-21) with respect to du by applying the chain rule, leading to Eq. (4-23):  

 

T T

, 1 , 1 1 1 1 1

, +1

i n i n i- ,n+ i- ,n+i
i i n+ +      

= +          
0

 σ σλ
J Κ

du du du du du
 (4-23) 

where Ji has the same structure as the Jacobian matrix in the local NR iteration procedure 

shown in Eq. (4-22). Accordingly, the consistent tangent stiffness matrix 
∂σi,n+1

∂du
 at sub-step level i 

can be thus obtained by pre-multiplying the inverse of the Jacobian matrix Ji on both sides of Eq. 

(4-23).  
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The recursive structure in Eq. (4-23) indicates that the consistent tangent stiffness matrix 

from the previous sub-step (i.e., sub-step i-1) has to be considered for the update at the current 

sub-step (i.e., sub-step i). The initial conditions for Eq. (4-23) are corresponding to the case i = 1, 

given in Eq. (4-24): 

 0, 1n+
=


0

σ

du
, 0, 1n+

=


0


du
  (4-24) 

At the end of the sub-stepping process for each load level, i.e., until the summation of sub 

displacement increments is equal to the total displacement increments ( ∑ ωi,n+1
m
i=1 =1), the stress 

and state variables as well as the consistent tangent stiffness matrix will be obtained as given in 

Eq. (4-25):  

 1 , 1n m n+ +=σ σ , 1 , 1n m n+ +=κ κ , , 11 m nn ++


=
 

σσ

du du
 (4-25) 

where n+1 and m represent the load step level and last sub-step level, respectively.  

For the other two cases in which only a single yield surface (e.g., f1 or f2) is violated, the 

general procedure to obtain the solutions is almost identical to the case elaborated above. The only 

difference lies in the softening variables that are calculated in the plasticity integration procedure: 

ĸ1,n and ĸ2,n for the case when f1 is violated, and ĸ3,n when f2 is violated. It is also worth mentioning 

that at the end of each integration process, the Kuhn-Tucker conditions as detailed in Eq. (4-26) 

must be satisfied. If the Kuhn-Tucker conditions are violated after the return mapping procedure 

(i.e., �̇�𝑖 < 0 𝑜𝑟 𝑓𝑖 > 0), the correct number of active yield surfaces must be identified, and thus the 

plasticity integration procedure will be restarted. The implicit Euler backward integration strategy 

within the sub-stepping framework is illustrated in the following algorithm. 
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 ( )0, 0, 0 1,2i i i if f i   = =  (4-26) 
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 FINITE ELEMENT MODEL VALIDATION 

The proposed constitutive material model is implemented via the user-defined subroutine UMAT 

in ABAQUS (Dassault Systemes 2017). This empowers the general-purpose FE software 

ABAQUS with the specialized capability of modeling masonry structures, considering complex 

mechanisms under different loading and boundary conditions. For the purpose of demonstration, 

the implemented material model is used together with the interface element in ABAQUS within 

the simplified micro modeling strategy (Lourenço 1996) to simulate three unit-mortar-unit 

assemblages under compression-shear loading and three unreinforced masonry (URM) walls under 

IP and OOP loading. The FE simulation results are compared with the experimental results 

reported in the literature to validate the effectiveness of the proposed model. Note that an implicit 

dynamic procedure is utilized to enhance the convergence performance, without affecting the 

accuracy, considering various forms of softening behavior exhibited in units and interfaces. 

4.4.1. Unit-mortar-unit assemblages 

Different unit-mortar-unit assemblages were tested by Pluijm (1999). Two representative 

experimental specimens under compression-shear loading, referred to as ‘CS-brick90’ and ‘CS-

block96’, are simulated in this section. ‘CS-brick90’ and ‘CS-block96’ were constructed with 212 

mm × 100 mm × 53 mm calcium silicate brick units plus 12 mm thick mortar, and 439 mm × 100 

mm × 198 mm calcium silicate block units plus 2 mm thick mortar, respectively. The pre-

compression stresses were applied at the top of the masonry specimens, while the bottom sides 

were fully constrained. The shear loads were applied at the top surface in a displacement-control 

manner. 
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With a focus on the mortar joint behavior, the test specimens are modeled by considering 

elastic brick units with a commonly used Poisson ratio of 0.15 (Abdulla et al. 2017; Aref and 

Dolatshahi 2013) and the elastic moduli reported in the experimental tests (Pluijm 1999), i.e., 13.40 

GPa and 12.19 GPa for ‘CS-brick90’ and ‘CS-block96’, respectively.  

For the parameters of the material model for the interface element, elastic stiffness 

constants (knn, kss, and ktt) are determined as 400 N/mm3, 200 N/mm3, and 200 N/mm3 to represent 

the quasi-rigid behavior with small deformation before the onset of damage, as observed from the 

experimental results (denoted by shade areas) in Figure 4-7. The plastic material parameters for 

tension and shear are determined directly from the experimental report (Pluijm 1999), such as: 

tension-related parameters (tensile strength ft, mode I fracture energy GI), shear-related parameters 

(peak cohesion c0, mode II fracture energy under zero compressive stress GII
0, constant parameter 

IIGa , initial frictional coefficient tanφ0, residual frictional coefficient tanφr), as summarized in 

Table 4-1. The dilatancy-related parameters (initial dilatancy coefficient tanψ0, residual dilatancy 

coefficient tanψr, critical shear plastic displacement uτ, critical dilatancy compressive stress σu) are 

also included. Specifically, the critical shear plastic displacement uτ is obtained directly from the 

test report. The values of tanψ0 and tanψr are determined from the relationships between the 

dilatancy coefficient and the compressive normal stress σn (Pluijm 1999): tanψ = 0.35σn + 0.41 for 

‘CS-brick90’ and tanψ = 0.68σn + 0.86 for ‘CS-block96’. Note that the normal compressive stress 

level remained constant during the experiment for each of the unit-mortar-unit specimen tested, 

but different compressive normal stress levels were considered during the experiments. The stress 

level threshold σu is determined by letting tanψ = 0: -1.17 MPa and -1.26 MPa for two specimens, 

respectively. The initial dilatancy coefficients tanψ0 are equal to 0.41 and 0.86, respectively, 
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corresponding to the cases when σn = 0. At the residual state, the dilatancy effects can be negligible 

according to the experimental results (Pluijm 1999), resulting in a zero dilatancy coefficient at the 

residual level (i.e., tanψr = 0). Note that the yield surface f2 is assumed to be inactive in the unit-

mortar-unit assemblage models since the test specimens were under relatively low compressive 

stress.  

Table 4-1. Material parameters for unit-mortar-unit assemblages (Pluijm 1999) 

The simulated shear stress-displacement curves are compared with the experimental ones, 

as shown in Figure 4-7. It can be observed that good agreements with the experimental results are 

achieved. The shear strengths, post peak branches and residual behaviors under different 

compressive normal stresses are well reproduced. As such, it can be concluded that the developed 

constitutive material model for the interface element can well represent the tangential interfacial 

behavior of the mortar joint in the unit-mortar-unit assemblages. 

Specimen 
Tension-related Shear-related Dilatancy-related 

ft 

(MPa) 

GI 

(N/mm) 

c0 

(MPa) 

𝑐𝑞
0 

(MPa) 

GII
0 

(N/mm) IIGa  
tanφ0/ 

tanφr 

tanψ0/ 

tanψr 

σu 

(MPa) 

uτ 

(mm) 

CS-brick90 0.02 0.5 0.14 100c0 0.005 -0.02 
0.75/ 

0.73 

0.41/ 

0 
-1.26 0.75 

CS-block96 0.42 1.1 1.1 100c0 0.02 -0.14 
0.82/ 

0.85 

0.86/ 

0 
-1.17 0.3 
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(a)  (b)  

Figure 4-7. Comparison between numerical and experimental results for unit-mortar-unit 

assemblages under compression-shear loading: (a) CS-brick90, and (b) CS-block96 

 

Figure 4-8. Comparison of plastic normal displacement-plastic shear displacement relationship for 

specimen CS-block96 between the experimental and FE simulation results 

The dilatancy behaviors of specimen CS-block96 were illustrated in Figure 4-8 by the 

relationship between the plastic normal and shear displacements. Although there are some scatters, 

a good agreement is achieved between the simulation results and the experimental results. In this 

section, a masonry triplet under direct shear shown in Figure 4-9, tested by Amadei et al. (1989), 
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was also simulated to quantify the dilatancy behavior. The strength-related parameters are obtained 

directly from the experimental report (Amadei et al. 1989). The two critical dilatancy coefficients 

(i.e., tanφ0 and tanφr) are determined as the slopes of un
p
-uτ

p
 curve when uτ

p = 0 and uτ
p
 is large 

enough such that the dilatancy coefficient reaches a stable residual value. The uτ and σu are 

calibrated as the critical plastic shear displacement and compressive stress at which the dilatancy 

effects reach the residual level. Particularly, the value of σu is determined through the linear 

interpolation of tanψ (slopes of curves shown in Figure 4-10)-σn relationship when the plastic shear 

displacement is zero. The parameters are summarized in Table 4-2. The experimental results are 

indicated by the dashed lines in the Figure 4-10. The comparisons between the experimental results 

and FE simulation results indicated the good fitness of the proposed constitutive model considering 

dilatancy softening. 

 

Figure 4-9. Masonry triplet under direct shear tested by Amadei et al. (1989) 

Table 4-2. Dilatancy-related material parameters for the unit-mortar-unit assemblage 

Parameter tanψ0 σu (MPa) tanψr uτ (mm) 

Value 0.35 2.5 0 25 
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Figure 4-10. Comparison of un
p
-uτ

p
 curves for different normal compressive stress levels between the 

experimental results and FE simulation results 

4.4.2. URM wall under in-plane (IP) loading 

A single-leaf unreinforced masonry (URM) wall under in-plane (IP) loading, referred to as 

‘TMM’, was tested by da Porto (2005). The URM wall was built with perforated clay units with 

dimensions of 984 mm long, 1250 mm high, and 300 mm thick. The mortar thickness of the bed 

joints was 1.3 mm. The gross dimension of the units was 240 mm × 250 mm × 300 mm with holes 

inside. Due to the 43% percentage of holes, the effective thickness of the URM wall was 171 mm 

(da Porto 2005). A relatively stiff (quasi-rigid) reinforced concrete beam was placed at the top of 

the wall, which was used to enable uniform distribution of the applied vertical pre-compression 

load and to minimize the chances for local failure of the loaded corner of the wall. The base slab 

at the bottom of the wall was bolted down to the strong floor to prevent any horizontal sliding. The 

wall was first loaded with the pre-compression stress of 1.90 MPa. Then, the IP displacement-

controlled loading imposed on the top rigid beam was monotonically increased until the wall 

failed. The details of the URM wall and test procedure are illustrated in Figure 4-11. 
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(a) (b) 

Figure 4-11. URM wall considered for the IP loading: (a) pre-compression applied at the top of the 

quasi-rigid beam, and (b) IP displacement-controlled loading 

The FE model was developed based on the aforementioned simplified micro modeling 

strategy. The top reinforced concrete beam is represented with rigid elements, and the brick units 

are modeled with full integration 8-node solid element (C3D8), instead of C3D8R with reduced 

integration that is susceptible to non-physical hourglass modes. The mesh convergence study was 

first performed, and the adopted mesh density is 8×8×6 elements for one single unit in order to 

reach a balance between the computational efficiency and accuracy.  

The Concrete Damage Plasticity (CDP) model was employed for brick units, similar to the 

modeling strategy used in (Nazir and Dhanasekar 2014; da Porto et al. 2010) which allows to 

simulate the damage in units, in particular the tensile cracking (Dolatshahi 2012; da Porto 2005). 

The elastic modulus E = 9328 MPa and Poisson’s ratio γ = 0.15 reported in the experimental tests 

(da Porto 2005) are used for the CDP model. The nonlinear material parameters required to define 

the CDP model include dilation angle ψb, the ratio between the biaxial initial compressive strength 
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and the initial uniaxial compressive strength σb0/σc0, the ratio of the second stress invariant on the 

tensile meridian to that on the compressive meridian Kc, and flow potential eccentricity ϵ. Typical 

values of these four nonlinear parameters for the quasi-brittle materials suggested by (Dassault 

Systemes 2017; Nguyen and Livaoğlu 2020) are adopted: ψb = 35º, σb0/σc0 = 1.16, Kc = 2/3, and ϵ 

= 0.1. In addition, the tensile and compressive uniaxial stress-strain relationships and two 

corresponding damage scalars (i.e., dt, dc) are required to reproduce two failure mechanisms of 

brick units: tensile cracking and compressive crushing. The compressive strength σcu and tensile 

strength σtu of brick units are 20.43 MPa and 1.391 MPa according to the experimental results (da 

Porto 2005). The nonlinear branches of uniaxial stress-strain behavior are determined according 

to (Nguyen and Livaoğlu 2020). 

The material parameters for interface elements to simulate the mortar joints were obtained 

directly from the FE study (da Porto et al. 2010) by the same author, including the stiffness 

constants (knn, kss, ktt), tensile strength ft, peak cohesion c0, mode I fracture energy GI, mode II 

fracture energy GII
0 when σn = 0 MPa, initial and residual frictional coefficients tanφ0 and tanφr, 

initial and residual dilatancy coefficients tanψ0 and tanψr, and compressive strength p

c . For the 

other parameters, 
IIGa  is determined as -0.08, i.e., the mean value of the upper bound (-0.14) and 

the lower bound (-0.02) experimentally determined (Pluijm 1999). The asymptote slope of the 

compressive yield surface tanθ is assumed according to the numerical study (Macorini and 

Izzuddin 2011) in which a similar compressive yield surface was employed. The values of the 

controlling points on the compressive are calculated based on the assumptions previously detailed. 

All material parameters for the interface elements are summarized in Table 4-3. 
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Table 4-3. Material parameters of interface elements for the URM walls 

The FE simulation results are compared with the experimental results, including the load-

displacement curves in Figure 4-12 and the damage (cracking and crushing) pattern comparison in 

Figure 4-13. It can be observed from Figure 4-12 that the FE model with zero dilatancy (i.e., 

tan 0 = ) is able to reproduce the experimental test fairly well in terms of the initial stiffness and 

the post peak behavior. However, the IP load capacity is underestimated, i.e., 138.20 kN for the 

FE simulation and 168.05 kN for the experimental test. This can be attributed to the zero dilatancy 

assumption made in the FE analysis, which leads to a conservative prediction about the shear 

resistance of mortar joints and URM walls. 

Parameter In-plane model Out-of-plane models 

knn, kss, ktt (N/mm3) 34.90, 14.42, 14.42 (da Porto et al. 2010) 42,17,17 (Abdulla et al. 2017) 

ft (MPa) 0.36 (da Porto 2005; da Porto et al. 2010) 0.12 (Abdulla et al. 2017) 

c0 (MPa) 0.44 (da Porto 2005; da Porto et al. 2010) 0.17 (Abdulla et al. 2017) 

GI (N/mm) 0.026 (da Porto et al. 2010) 0.012 (Abdulla et al. 2017) 

GII
0 (N/mm) 0.044 (da Porto et al. 2010) 0.04 (Abdulla et al. 2017) 

IIGa  -0.08 (Pluijm 1999) -0.08 (Pluijm 1999) 

cq
0(MPa) 100c0 (assumed) 100c0 (assumed) 

tanφ0  0.4 (da Porto 2005; da Porto et al. 2010) 0.576 (Vaculik 2012) 

tanφr 0.4 (da Porto 2005; da Porto et al. 2010) 0.576 (Vaculik 2012) 

tanψ0 / tanψr 0/0 (da Porto et al. 2010) 0/0 (assumed) 

σu (MPa) -2 (assumed) -2 (assumed) 

uτ (mm) 25 (assumed) 25 (assumed) 

tanθ 0.045 (Macorini and Izzuddin 2011) 0.045 (Macorini and Izzuddin 2011) 

3 3,p m   (mm) 0.716 (calculated), 3.58 (calculated) 0.381 (calculated), 1.905 (calculated) 

i

c , 
p

c ,
r

c  

(MPa) 

6.25 (calculated), 25 (da Porto et al. 

2010), 3.57 (calculated) 

4 (calculated), 16 (Vaculik 2012), 1.6 

(calculated) 
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Figure 4-12. Load-displacement curve comparison for the URM wall under IP loading 

Even though the influence of dilatancy effects on the wall capacity may be significant, 

dilatancy-related parameters are usually difficult to obtain. There is no general agreement about 

the experimental standard methodology for these parameters. Thus, dilatancy-related parameters 

are mostly determined empirically (Andreotti et al. 2019). In this chapter, dilatancy-related 

parameters are assumed to be equal to those in the previous unit-mortar-unit assemblages 

validation model. Note that the mortar joint in this wall was on the thin side. The dilatancy-related 

parameters may be strongly influenced by the mortar thickness. However, the general trend of 

dilatancy effects is identical, i.e., the dilatancy coefficient decreased with the increase in the plastic 

shear displacement and compressive normal stress (absolute value). To expose the effects of 

dilatancy on wall responses, two additional cases are considered here: softening dilatancy (i.e., 

tanψ0 = 0.35, tanψr = 0), and constant dilatancy with non-zero value (i.e., tanψ0 = 0.35, tanψr = 

0.35). Compared with the case considering zero dilatancy, the load-displacement curve obtained 

from the FE model considering softening dilatancy has improved agreement with the experimental 
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one in terms of the IP capacity (i.e., 167.18 kN for the FE simulation and 168.05 kN for the 

experimental test). In contrast, a considerable overestimation of the IP load capacity was observed 

when no softening is considered with tanψ0 = 0.35 (i.e., 210.7 kN for the FE simulation). In this 

case, the shear stresses of mortar joints keep increasing even in the relatively high compressive 

stress regime, resulting in an overestimation of the IP capacity of the URM wall. This comparison 

further affirms the need for appropriate modeling of dilatancy behavior. 

Figure 4-13 summarizes the damage pattern comparison. The diagonal crack, denoted by 

the white line in Figure 4-13 (a), occurred and then developed toward the compressed toe following 

the inclined compressed struts, extending through both joint interfaces and units. The deformed 

shape and crack pattern obtained by the FE simulation are illustrated in Figure 4-13 (b) and Figure 

4-13 (c). The diagonal cracks are well captured in terms of the equivalent plastic displacements ĸ1 

and ĸ2 in the interfaces. The compressive struts, developed through units and mortar, are 

represented by the plastic displacement/damage in interfaces/units. Furthermore, the tensile 

damage through the units and compressive damage at the compressed toe, identified in the FE 

simulations, as shown in Figure 4-13 (d), conform with the findings reported in the experimental 

test (da Porto 2005). Overall, the damage patterns obtained by FE simulations are in fairly good 

agreement with the experimental ones. 
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(a) (b) 

   

(c) 

  

(d) 

Figure 4-13. Final crack pattern: (a) experiment (da Porto 2005), (b) deformed shape of wall from 

FE simulation, (c) equivalent plastic displacements for mortar joints from FE simulation, and (d) 

tensile damage scalar (DAMAGET) and compressive damage scalar (DAMAGEC) plots for units 

from FE simulation. Note: SDV1, SDV2, SDV3 represent the equivalent plastic displacements for 

tension, shear, and compression (i.e., ĸ1, ĸ2, ĸ3), respectively 
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4.4.3. URM walls under out-of-plane (OOP) loading 

Two URM walls experimentally investigated by Vaculik (2012) under OOP loading are considered 

in this section to investigate the effect of dilatancy on OOP behavior. The two walls, referred to as 

‘Wall s1’ and ‘Wall s2’, differed only in that Wall s2 was tested without pre-compression, while 

Wall s1 was tested with a 0.1 MPa pre-compression. Two walls were constructed using half-

overlap stretcher-bonded masonry and built with clay brick units of 230 mm (length) × 76 mm 

(height) × 110 mm (width) and 10 mm thick mortar. The main leaf of the walls was 4000 mm 

long, 2500 mm high, and 110 mm thick. Two 450 mm long retaining walls were rigidly connected 

with the main wall on the left and right sides. The top and bottom sides of walls were simply 

supported, while the left and right sides were fixed. The uniform OOP loading was applied through 

the airbag. 

Similarly, simplified micro models are developed using 3D full integration element (C3D8) 

for brick units and interface elements for mortar bedding. The mesh sensitivity study leads to an 

optimal mesh density of 4×2×2 elements for one single brick unit. For the material parameters of 

mortar joints, the initial and residual frictional coefficients are both equal to 0.576, and the 

compressive strength of p

c  is 16 MPa, according to the experimental report (Vaculik 2012). The 

stiffness constants, tensile strength, peak cohesion, mode I fracture energy, and mode II fracture 

energy when σn=0 are determined based on Abdulla et al. (2017), in which the same URM wall 

was simulated. The rest of the material parameters are assumed to be identical to those in the URM 

wall under IP loading, as detailed in Table 4-3. For the material parameters required to define the 

CDP model, commonly used empirical relationships (Nguyen and Livaoğlu 2020) are used to 

determine the compressive strength of brick units from 300 cuE = , and the tensile strength is 12% 
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of the compressive strength. The inelastic strains and damage scalars of the CDP model are 

determined following the same procedure as used for the IP model presented earlier. The material 

parameters of interface elements for the walls under OOP loading are detailed in Table 4-3. 

According to the experimental procedure reported in Vaculik (2012), the OOP 

displacements were measured at the middle position of the wall. Both walls displayed a relatively 

constant post-peak strength plateau; this apparent ‘plastic’ behavior occurred due to the 

redistribution of diagonal bending moment resistance at the retaining walls. The load-displacement 

curves are compared between the FE simulations and experimental tests shown in Figure 4-14. 

Due to the applied pre-compression load, Wall s1 has a larger initial stiffness and OOP strength 

compared with Wall s2, which is well captured in the FE simulations.  

For comparison, three different FE models are developed when considering three different 

dilatancy scenarios as studied for the IP model. It is found that when a constant dilation angle of 

tanψ0 = 0.35 without softening is used, the OOP load capacities are over-predicted. In contrast, 

considering a dilation angle of tanψ0 = 0.35 with softening can significantly improve the prediction 

accuracy. Note that considering a dilation angle of tanψ0 = 0.35 with softening can be approximated 

by considering a constant dilation angle of tanψ0 = 0, though the accuracy can be slightly sacrificed, 

particularly for Wall s1 with pre-compression, where dilatancy plays a greater role. 
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(a) (b) 

Figure 4-14. Load-displacement curve comparison for the URM walls under OOP loading: (a) Wall 

s1, and (b) Wall s2 

The crack patterns obtained by the experimental results and FE simulations (i.e., when 

considering a dilation angle with softening) are also compared. The diagonal (X-shaped) cracks 

were fully developed due to the bending tension failure of the bed joints for both walls and are 

well captured by the FE models, as verified by the deformed shapes. The plastic displacement 

distributions in the interface elements are shown in Figure 4-15 (b-c) and Figure 4-16 (b-c). 

Moreover, the discrepancy in crack propagation between Wall s1 and Wall s2 is accurately 

reproduced by the FE simulations: Wall s1 does not exhibit the horizontal tensile cracking along 

the bed joints at the middle height position due to the applied pre-compression load, as illustrated 

in Figure 4-15 (b-c); on the contrary, Wall s2 does exhibit the horizontal tensile cracking along the 

bed joints, as shown in Figure 4-16 (b-c). In addition, the vertical cracks along the intersection 

corner between the main wall and retaining wall, as found in the experimental test (Vaculik 2012), 

are well captured through the unit damage contour plots, shown in Figure 4-15 (d) and Figure 4-16 

(d). 
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(a) (b) 

  

(c) 

  

(d) 

Figure 4-15. Comparison of crack pattern for Wall s1: (a) experimental tests (Vaculik 2012), (b) 

deformed shape from FE simulation, (c) equivalent plastic displacements for mortar joints from FE 

simulation, and (d) tensile damage scalar (DAMAGET) and compressive damage scalar 

(DAMAGEC) plots for units from FE simulation. Note: SDV1, SDV2, SDV3 represent the 

equivalent plastic displacements for tension, shear, and compression (i.e., ĸ1, ĸ2, ĸ3), respectively 
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(a) (b) 

  

(c) 

  

(d) 

Figure 4-16. Comparison of crack pattern for Wall s2: (a) experimental tests (Vaculik 2012), (b) 

deformed shape from FE simulation, (c) equivalent plastic displacements for mortar joints from FE 

simulation, and (d) tensile damage scalar (DAMAGET) and compressive damage scalar Note: 

SDV1, SDV2, SDV3 represent the equivalent plastic displacements for tension, shear, and 

compression (i.e., ĸ1, ĸ2, ĸ3), respectively (DAMAGEC) plots for units from FE simulation 
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4.4.4. RM walls under IP loading 

Three RM walls (W-Ref, W-ρh0, W- σn1.5), tested under IP loading (Seif Eldin 2016; Seif ElDin 

and Galal 2017), are simulated using the FE modeling scheme mentioned above. They had 

dimensions of 1.8 m (length) × 1.6 m (height) × 0.19 m (thickness). Concrete masonry units had 

standard dimensions of 390 mm × 190 mm × 190 mm. The RM walls W-Ref and W- σn1.5 were 

vertically reinforced with 20M bars (with a 300 mm2 cross-section area) in each cell and 

horizontally reinforced with uniformly distributed 10M bars (with a 100 mm2 cross-sectional area) 

spaced at 400 mm. The corresponding horizontal and vertical reinforcement ratios were 0.13% and 

0.79%, respectively. On the other hand, W-ρh0 had a same vertical reinforcement ratio but did not 

have horizontal reinforcements. Note that the tested walls were designed with sufficient vertical 

reinforcements to fail in diagonal shear, thus eliminating possible sliding failure. A uniformly 

distributed pre-compression pressure load of 1.0 MPa was applied to the W-Ref and W-ρh0, while 

W- σn1.5 was subjected to a pre-compression load of 1.5 MPa. The pre-compression loads were 

applied in a force-controlled manner and were kept constant throughout the testing procedure, 

followed by displacement-controlled IP loads until the wall failures. An automated load increment 

control scheme is used in the FE model. The sensitivity of mesh (or element size) is investigated 

until convergence of load-deformation behavior is achieved. This leads to an optimal mesh size of 

8 × 4 × 5 for one single concrete unit. 

According to the experimental program loading (Seif Eldin 2016; Seif ElDin and Galal 

2017), the compressive strengths of the concrete block units and grout were  = 16.7 MPa and 

 = 29.4 MPa, respectively. The steel reinforcements have an elastic modulus of Es = 196 GPa, 

a yield strength of  fy = 430 MPa, and an ultimate strength of fu = 536 MPa with an ultimate strain 

,u cf

,g cf
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of 0.2. Additionally, the compressive strength of masonry fmc is 13.1 MPa as per the prism 

compression test, and the flexural tensile strength of masonry along the weak axis is fmt = 1.8 MPa. 

These key properties reported in the tests are summarized here and used as the basis for 

determining other modeling parameters with reference to the literature. It is noted that the values 

of stiffness constants for interfaces are calibrated so that the initial stiffness of load-deformation 

curve is consistent with the experimental one. Moreover, the compressive-related properties (e.g., 

compressive strength) presented in Table 4-5 represent the composite behavior of masonry, instead 

of mortar material. Thus, compressive strength of masonry is used as the compressive strength in 

the constitutive model for interfaces, following the well-established practice when using the 

simplified micro modeling strategy (Abdulla et al. 2017; Kumar and Barbato 2019; Lourenço 

1996). All parameters are detailed in Table 4-4 and Table 4-5. 
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Table 4-4. Material parameters of concrete block units, grouts, and reinforcements 

Material Parameter Value 

IP (Seif Eldin 

2016) 

OOP (Hamid and 

Abboud 1989) 

Concrete block 

unit 

Elastic modulus 
uE  (MPa) ,938 u cf (Barbosa et al. 2010) 

Tensile strength ,u tf  (MPa) ,0.09 u cf (Barbosa 

et al. 2010) 

1.93 (Hamid and 

Abboud 1989) 

Compressive strength ,u cf  

(MPa)  

16.7 (Seif Eldin 

2016) 

20.13 (Hamid and 

Abboud 1989) 

Grout Elastic modulus
gE  (MPa) ,500 g cf (TMS 2016) 

Tensile strength ,g tf  (MPa) ,0.24 g cf (Calderón et al. 2019) 

Compressive strength ,g cf  

(MPa) 

29.4 (Seif Eldin 

2016) 

38.54 (Hamid and 

Abboud 1989) 

Vertical 

Reinforcement 

Elastic modulus sE  (GPa) 196/196 (Seif 

Eldin 2016) 

174/207  (Wall1) 

 

(Hamid and Abboud 

1989) 

Yield strength yf  (MPa) 430/430 (Seif 

Eldin 2016) 

460/547  (Wall 1) 

448/547 (Wall 4) 

436/547 (Wall 

(Hamid and Abboud 

1989) 

Ultimate strength uf  (MPa) 536/536 (Seif 

Eldin 2016) 

758/724  (Hamid 

and Abboud 1989) 

Ultimate strain u  0.2/0.2 (Seif Eldin 

2016) 

0.125/0.117 (Hamid 

and Abboud 1989) 

Horizontal  

Reinforcement 
Elastic modulus  (GPa) 196 (Hamid and 

Abboud 1989) 

207 (Hamid and 

Abboud 1989) 

 Yield strength  (MPa) 430 (Hamid and 

Abboud 1989) 

547 (Hamid and 

Abboud 1989) 

 Ultimate strength  (MPa) 536 (Hamid and 

Abboud 1989) 

827 (Hamid and 

Abboud 1989) 

 Ultimate strain  0.2 (Hamid and 

Abboud 1989) 

0.117 (Hamid and 

Abboud 1989) 

sE

yf

uf

u
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Table 4-5. Material parameters of mortar joints (interfaces) used in the FE model 

Parameter 

Value (Reference) 

IP (Seif Eldin 2016) 
OOP (Hamid and 

Abboud 1989) 

Stiffness constants nnk , ssk , ttk   (N/mm3) 
75, 50, 50 

(Calibrated) 

26, 7, 7 

(Calibrated) 

Tensile strength tf  (MPa) ft = fmt / 3 (Li and Zeng 2023) 

Peak cohesion 0c  (MPa) 1.4 tf  (Lourenço 1996) 

Mode I fracture energy IG  (N/mm) 0.01571 0.0004882tf +  (Isfeld et al. 2021) 

Mode II fracture energy 
0

IIG  (N/mm) 10 IG  (Lotfi and Shing 1994) 

Initial/Residual frictional coefficient 0tan / tan r  
0.7 (Canadian Standards Association 2014; 

Mavros 2015) 

Initial/residual dilation coefficient 0tan / tan r  0 (Li and Zeng 2023) 

Compressive strength of masonry mf   (MPa) 
13.1 (Seif Eldin 

2016) 

14.1 (Hamid and 

Abboud 1989) 

Initial/intermediate/residual compressive yield 

strength 
i

c ,
m

c ,
r

c (MPa) 

0.25 mf  , 0.55 mf  , 0.143 mf   (Li and Zeng 

2023) 

Controlling displacements 3

p , 3

m  (mm) /m nnf k , 35 p  (Li and Zeng 2023) 

Figure 2 illustrates the comparisons of experimental and FE-predicted IP load-

displacement curves. The ‘IP displacement’ represents the deformation in the horizontal direction. 

Overall, the FE simulations capture the load-deformation behaviors of the walls well when 

compared with the experimental results, particularly concerning the wall capacities. Compared to 

the tested IP  capacities of 418 kN, 365 kN, and 458 kN for these three walls, the FE-predicted IP 

capacities are (i.e., 426 kN, 364 kN, and 450 kN) indicated errors of 1.9%, 0.3%, and 1.6%, 

respectively. Note that the onset of stiffness degradation, caused by the flexural cracking at the 

bed joints, and the yielding of vertical reinforcements were not accurately captured. This could be 

attributed to the perfect bond assumption for vertical reinforcements. However, the diagonal 

tension cracking observed in the tested wall is also well predicted, as demonstrated in Figure 3. 

Severe diagonal cracking can be observed in the top right corner for both the experimental test and 

the FE simulation results. 
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Figure 4-17. Experimental and FE-predicted load-deformation curves for the RM wall under IP 

loading 

 

 

(a) (b) 

Figure 4-18. Comparison of the failure mode of the RM wall under IP loading: (a) experiment 

(Seif Eldin 2016) and (b) FE simulation for W-Ref 

4.4.5. RM walls under OOP loading 

Three RM walls (W1, W4, and W6) tested under OOP loading in the TCCMAR research program 

(Hamid and Abboud 1989) are modeled to validate the capability of the modeling strategy 
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mentioned above. The RM walls were fully grouted, 3 units long and 13 courses high, with 

dimensions of 1.2 m (length) × 2.6 m (height) × 0.193 m (thickness). The concrete masonry units 

used in the tests were 393 mm long, 193 mm high, and 193 mm wide. These RM walls were tested 

with simple supports at the bottom and top in a four-point bending manner. The vertical 

reinforcement configurations of three walls are different: Two No. 5 rebars (with a 200 mm2 cross-

section area), No.4 rebars (with a 129 mm2 cross-section area), and No.7 rebars (with a 387 mm2 

cross-section area) were used for Wall 1, Wall 4, and Wall 6, respectively. The vertical 

reinforcements were placed at a spacing of 610 mm, and No. 3 rebars (with a cross-section area of 

71 mm2) were used every third course to provide a minimum horizontal reinforcement ratio of 

0.07% for all three walls. Two equal line loads (P + P) were applied to the face of the wall panels 

at the two third points to provide a pure bending zone in the middle region, as shown in Figure 

4-19. All required material parameters are summarized in Table 4-4 and Table 4-5. 

 

Figure 4-19. Tested RM wall under OOP loading 



Chapter 4: Development of a Plasticity-based 3D Multi-Yield Surfaces Constitutive Model for Masonry Mortar 

Joints under Monotonic Loading 

148 

 

Figure 4-20 presents the comparisons of the experimental and FE-predicted OOP load-

displacement curves. It is worth mentioning that the OOP load in Figure 4-20 represents the point 

load ‘P’ in Figure 4-19, and the OOP displacement was measured at the mid-height position. The 

OOP load capacities obtained through FE simulations are 13.54 kN, 7.82 kN, and 20.3 kN for W1, 

W4, and W6, respectively. Compared to the experimental tested capacities (13.31 kN, 7.79 kN, 

19.42 kN), the FE simulation results indicate relative errors of  1.7%, 0.39%, and 4.5%. The OOP 

deformation for W1 corresponding to the peak OOP load is shown in Figure 4-21, with the largest 

crack openings concentrated at the two load application locations. Overall, the FE model is capable 

of predicting the OOP behavior of RM walls well, particularly the load capacity of primary interest 

in this study. 

 

Figure 4-20. Experimental-numerical comparison of load-displacement curve of RM walls under 

OOP loading 
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Figure 4-21. OOP deformation (mm) of RM wall at the peak OOP load stage 

 COMPARISON BETWEEN THE DEVELOPED MODEL AND OFF-THE-SHELF 

MODELING TECHNIQUES 

The off-the-shelf modeling technique for simulating mortar joints presented in Chapter 3, namely 

contact-based cohesive surfaces, demonstrates satisfactory performance in certain scenarios. 

However, there are some limitations associated with this technique. Firstly, the modified Mohr-

Coulomb criterion would lead to an underestimation of shear strength, particularly under high pre-

compressive load. Secondly, the micromechanical phenomenon of ‘dilatancy’, as previously 

discussed, is not accounted for. More critically, the unloading behavior is inadequately addressed, 

characterized by stiffness degradation and irreversible deformation. However, the material 

modeling of contact-based cohesive surfaces in ABAQUS adheres to a general damage-based 

computational mechanics framework, within which these characteristics are not well interpreted. 

A detailed discussion on cyclic modeling will be presented in Chapter 5, while this section will 

compare the simulation results obtained by the off-the-shelf modeling technique and the one 

developed in this chapter.  
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Two examples are included in this section: one masonry triplet under compressive-shear 

loading tested by Hatch (2009), and one URM wall under IP loading tested by da Porto (2005). 

These two examples are selected here to show the effects of strength criterion employed in the off-

the-shelf modeling technique and the developed model. The shear displacement curve for the 

masonry triplet and the IP load-deformation curve are shown in Figure 4-22 (a-b), respectively. It 

can be seen that the built-in model underestimates the shear strengths for both examples. As 

discussed earlier, this is mainly due to the modified Mohr-Coulomb strength criterion employed 

in the built-in model. This effect is more evident in the cases with high compressive loads. 

Conversely, the developed model utilizes a Mohr-Coulomb criterion, providing an accurate 

estimation. 

  

(a) (b) 

Figure 4-22. Experimental-numerical comparison for (a) masonry triplet, and (b) masonry wall 

under IP loading 

 CHAPTER CONCLUSIONS 

A newly developed 3D constitutive material model for mortar joints in masonry structures was 

presented in this chapter. This plasticity-based model was featured with (1) two hyperbolic yield 

surfaces capable of capturing various failure modes (i.e., tensile cracking, shear sliding, 
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compressive crushing) of mortar joints; (2) an unassociated flow rule to capture the ‘dilatancy’ 

phenomenon in the mortar joints; and (3) dilatancy softening and variation of model II fracture 

energy under different normal stress levels. The newly developed model was implemented in the 

commercial FE software ABAQUS using a fully implicit Euler Backward integration algorithm, 

enhanced with an error-based adaptive sub-stepping strategy. This empowers the general-purpose 

FE software ABAQUS with the specialized capability of modeling masonry structures, 

considering complex mechanisms under different loading and boundary conditions. 

The developed constitutive material model was validated against the experimental results 

at both assemblage and wall component levels. Three unit-mortar-unit assemblages tested in the 

literature were simulated. Results indicated that the stress-displacement response and volume 

increase/specimen uplift under compression-shear loading were both well captured. Three 

unreinforced masonry walls tested under in-plane and out-of-plane loading were simulated as well. 

Reasonable agreement was achieved in terms of initial stiffness, in-plane/out-of-plane capacity, 

and post-peak behavior, as well as the damage patterns. 

Particularly, the effect of the dilatancy model on the simulated load-displacement curves 

was discussed. The simulation results indicated that considering dilatancy without softening led to 

a considerable overestimation of IP or OOP capacity, while a constant zero dilatancy led to an 

underestimation of masonry wall capacities. In contrast, the simulation results obtained by the 

proposed model with dilatancy softening had the best predictability when compared with the 

experimental results.  

It is worth mentioning that very limited experimental studies exist for the characterization 

of dilatancy in the mortar joints in public literature. Moreover, different testing methods (e.g., 
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triplet test, shove test, core test) may result in different results about dilatancy. The study of 

uncertain dilatancy-related parameters in the proposed constitutive material model and their 

importance on the masonry wall behavior prediction requires further investigation. The developed 

constitutive model with dilatancy softening, which is more realistic, can be potentially used in this 

regard.



Chapter 5: Development of a Damage Plasticity-based 3D Multi-yield Surfaces Constitutive Model for Masonry 

Mortar Joints under Cyclic Loading 

153 

 

Chapter 5. DEVELOPMENT OF A DAMAGE PLASTICITY-BASED 3D 

MULTI-YIELD SURFACES CONSTITUTIVE MODEL FOR 

MASONRY MORTAR JOINTS UNDER CYCLIC LOADING 

The mechanical behavior of mortar joints can be described by means of the cohesive interface 

element in the mesoscale modeling of masonry structures. In this chapter, a novel 3D constitutive 

model for the cohesive interface element under cyclic loading is presented. The proposed 

constitutive model is formulated in the damage-plasticity theoretical framework with the following 

unique features: (1) two smooth hyperbolic yield surfaces capable of capturing various failure 

modes of mortar joints; (2) two damage scalars Dt and Dc to characterize the stiffness degradation; 

(3) two damage functions  and  to describe the strength softening; and (4) an 

unassociated flow rule to capture the dilatancy behavior. The proposed constitutive model is 

implemented in the general-purpose Finite Element package ABAQUS using the user subroutine 

UMAT. The developed model is first validated at the masonry component level, through a mortar-

jointed specimen under indirect cyclic tensile loading and three masonry couplets under 

compressive-shear loading, and then at the structural level through two unreinforced masonry 

walls characterized by two distinct failure modes. The validation results show that the developed 

constitutive model is capable of modeling mortar joints and masonry structures with good 

performance. 

 INTRODUCTION 

Masonry, mainly composed of units and mortar layers, is one of the oldest construction materials 

and is still widely used in engineered structures due to its durability, energy efficiency, and fire 

resistance. However, masonry structures are sensibly vulnerable to earthquake excitations, 

( )t tD ( )c cD
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particularly unreinforced masonry walls. Compared to modern reinforced concrete and steel 

structures, unreinforced masonry structures are susceptible to a high level of damage even in light 

seismic events (Algohi 2013). The composite nature and induced complex failure modes pose a 

significant challenge when predicting the nonlinear mechanical behavior of masonry structures 

against cyclic seismic loading. With the advent of high computational technologies and resources, 

finite element (FE) simulation has emerged as a viable alternative and gained more and more 

popularity in the masonry community. The structural evaluation of masonry under complex 

loading conditions can be performed through a FE-based framework.  

FE modeling approaches for masonry structures can be roughly categorized as the macro 

modeling approach and the micro modeling approach (Lourenço et al. 1995a) depending on the 

different levels of sophistication and simplification. The macro modeling approach can be further 

subdivided into the macro element approach (Addessi et al. 2014; Chen et al. 2008; Di Trapani et 

al. 2018) and the macro block-based approach (Addessi et al. 2021; Lourenço 2000b; Zucchini 

and Lourenço 2004). The macro modeling approach, in which the masonry is treated as a fictitious 

homogeneous material with a uniform stress-strain relationship, is more applicable to large-scale 

masonry structures due to its computational efficiency. However, the local failure behavior (i.e., 

damage and cracking) of masonry structures cannot be adequately addressed by the macro model. 

In contrast, in the micro modeling approach, units and mortar are represented by the solid 

continuum, while the contact surfaces between the units and mortar are modeled by the 

discontinuous cohesive interface elements. As such, the micro modeling approach allows a more 

generic representation of masonry structure at the mesoscale. Although it requires a higher 

computational demand, the micro modeling approach can capture the complicated crack patterns 
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of masonry structures under complex loadings. Recently, the concept of simplified micro modeling 

was proposed and widely adopted by researchers (Lotfi and Shing 1994; Macorini and Izzuddin 

2011). In this approach, mortar layer and block-mortar contact surfaces are lumped into mortar 

joints modeled by zero-thickness interface elements. As a result, the number of interface elements 

considered in the simplified micro model was decreased, resulting in a reduced computational cost. 

Meanwhile, the failure modes of masonry structures under various loading scenarios can be 

described with a high degree of accuracy. Therefore, the simplified micro modeling strategy will 

be employed in this section. 

In the simplified micro modeling strategy, particular interest lies in the constitutive model 

of cohesive interface elements for mortar joints, which are the primary sources of structural 

weakness and material nonlinearity. The material formulations of cohesive interfaces should 

account for all possible failure modes observed in the experimental tests, such as tensile cracking, 

shear sliding, and compressive crushing. Pioneering works to apply the cohesive interface 

elements to simulate the cracking behavior of masonry structures were from Rots (1991). Later, 

Lotfi and Shing (1994) developed a 2D interface model characterized by a three-parameter 

hyperbolic yield criterion that provided a smooth transition between the Mohr-Coulomb and 

tension cut-off yield criteria, validated by the tested small-scale masonry specimens and 

unreinforced concrete masonry panels. Lourenco and Rots (1997) made the first attempt to include 

a compression cap surface in the constitutive material model of interface elements to represent the 

compression crushing behavior of masonry composite, and the proposed interface model was 

implemented in a multi-yield surfaces plasticity framework. Recent efforts have been devoted to 

the better applicability of interface elements to masonry structures. Giambanco et al. (2001) 
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adopted an asperity model in the numerical formulation that can describe the evolution of the 

block-mortar contact surface shape during the loss of cohesion. Carol et al. (2001) formulated a 

2D interface model conforming to work-softening elastoplastic theory, and a sub-stepping scheme 

was utilized to reduce the integration errors in the implementation procedure. Carol’s model (Carol 

et al. 2001) was later extended to 3D space by Caballero et al. (2008). Macorini and Izzuddin 

(2011) employed a co-rotational approach for the interface element formulation, which shifts the 

treatment of geometric non-linearity to the level of discrete entities and enables the consideration 

of material non-linearity within a simplified local framework. 

The constitutive material models for the cohesive interface element discussed above were 

based on plasticity theory and demonstrated good potential for the modeling of masonry structures 

under monotonic loading. These models, however, have a significant drawback when dealing with 

repeated loading-unloading conditions: the stiffness degradation effects cannot be well accounted 

for. To this aim, Oliveira and Lourenco (2004) improved the interface model proposed in 

(Lourenço 1996; Lourenço and Rots 1997) and introduced two auxiliary yield surfaces during the 

unloading process. Although the stiffness reduction effects were captured, a total of six 

possibilities for unloading and reloading movements resulted in a complex implementation 

framework. Aref and Dolatshahi (2013) developed a 3D plasticity-based interface model within 

the explicit integration procedure, and the stiffness degradation was considered in the positive 

normal direction using a single scalar in a simplified manner. Koutromanos and Shing (2012) 

adopted a modified elastoplastic formulation to simulate the cyclic response of joints for concrete 

and masonry structures; however, the gradual decrease in unloading stiffness was not accurately 

modeled. 
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In addition to the plasticity-based framework, damage mechanics theory has also been 

applied to formulate the constitutive material model for cohesive interface elements. Parrinello et 

al. (2009) proposed an interface constitutive model, which couples a cohesive behavior based on 

the damage mechanics with a frictional one defined in a non-associated plasticity framework. 

D'Altri et al. (2019) developed a damaging block-based model for the numerical analysis of the 

cyclic behavior of masonry structures. For the modeling of mortar joints, the cohesive-frictional 

contact-based formulation is adopted with an elastic-damage procedure assumed in the tensile 

regime, while the stiffness degradation is neglected in the compressive regime. Similar numerical 

simplification methods can be found in (Gambarotta and Lagomarsino 1997a; Sacco and Lebon 

2012). However, the aforementioned pure damage-based models result in the absence of 

irreversible deformation (i.e., the unloading curve is pointing to the origin), which appears 

contradictory to the experimental findings for quasi-brittle materials, e.g., concrete (Gopalaratnam 

and Shah 1985), mortar (Jefferson and Mills 1998). 

As discussed above, general plasticity-based models are incapable of capturing the stiffness 

degradation observed in experimental results, whereas pure damage-based models are inadequate 

for describing irreversible deformation. Furthermore, the inelastic volumetric expansion of mortar 

joints under compression caused by the dilatancy effects cannot be accounted for with pure damage 

theory. Consequently, the combination of plasticity and damage might be an effective approach to 

modeling the cyclic behavior of mortar joints. This framework has gained popularity for the 

macroscopic modeling of quasi-brittle materials (Comi and Perego 2001; Grassl et al. 2013; Jason 

et al. 2006; Lee and Fenves 1998). However, its applications on the cohesive interface for the 

modeling of mortar joints are rare, and each has its own limitations (Minga et al. 2018; Nie et al. 
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2022b; a; Yuen et al. 2019). Minga et al. (2018) introduced stiffness degradation via an anisotropic 

damage tensor based on the evolution of plastic work produced. However, a simplified multi-

surface plasticity criterion with two flat yield surfaces (i.e., compressive cap and tension cut-off) 

was employed, in which two sharp singularity corners could possibly result in a convergence issue. 

Yuen et al. (2019) presented a fracture-energy based damage-plasticity model in the explicit Euler 

integration scheme. Thus, a sufficient small loading increment is required to guarantee numerical 

accuracy. More recently, Nie et al. (2022b; a) proposed two interfacial damage-plasticity based 

models for mortar joints characterized by a smooth hyperbolic yield surface. However, the failure 

mode associated with compressive crushing was not considered, leading to a possible 

overestimation of the masonry wall’s capacity.  

To this end, a novel 3D cohesive interface constitutive model for the cyclic modeling of 

mortar joints was developed (i.e., formulated, implemented, and validated) in this chapter. The 

proposed model followed the damage-plasticity framework with two yield surfaces characterizing 

different failure modes (i.e., tension cracking, shear sliding, compressive crushing). Two damage 

scalars, Dt and Dc, are introduced, associated with two yield surfaces, respectively. Both damage 

and plasticity, and their coupling, are considered in a unified form of loading function. The 

formulation, together with the numerical implementation, is presented in detail. The capability of 

the proposed model was validated against several experimental tests, including an indirect tensile 

test on the mortar-jointed cylinder specimen, masonry couplets under compressive-shear loading, 

and two URM walls under in-plane loading with different aspect ratios. 
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 CONSTITUTIVE MODEL FORMULATION 

In the simplified micro modeling strategy, the zero-thickness interface element represents the 

compound mechanical behavior of mortar joints, including mortar and unit-mortar interactions. 

Relevant experimental and numerical works (Atkinson et al. 1989; Gopalaratnam and Shah 1985; 

Jefferson and Mills 1998; Lourenço 1996; Lourenco and Ramos 2004; Oliveira 2003; Reinhardt 

1984) indicated that cyclic behavior modeling of mortar joints should consider the following 

crucial aspects: 1) strength softening in both normal (i.e., in tension and compression) and shear 

loading scenarios; 2) normal stiffness degradation under both tension and compression loading 

regimes; 3) residual shear strength under compressive-shear loading; 4) unchanged shear stiffness 

under compressive-shear loading; and 5) stiffness recovery in the normal direction as a result of 

crack closure from tension to compression loading conditions. The proposed model in this chapter 

tackles all these aspects based on a rational formulation, as detailed below. 

5.2.1. Coupling of plasticity and damage 

Plasticity-based models are typically developed by defining yield criteria to bound elastic domains 

in the stress space, compounded with plastic strain-dependent softening and hardening laws, as 

shown in Figure 5-1 (a). The plasticity-based models generally show good potential to describe 

the irreversible deformation upon loading. On the contrary, damage-based models are not suitable 

for the description of irreversible deformations but reproduce the stiffness degradation well shown 

in Figure 5-1 (b). With plasticity or damage mechanics alone, the complex failure process of mortar 

joints, characterized by stiffness degradation and irreversible deformations, cannot be 

satisfactorily modeled. Thus, a combination of plasticity and damage mechanics, for example, see 

Figure 5-1 (c), might be a possible solution. 
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(a) (b) (c) 

Figure 5-1. Constitutive material ( − ) relationship in different computational frameworks: 

(a) plasticity-based, (b) damage-based, and (c) damage plasticity-based 

Plasticity with hardening and/or softening, enriched by various damage evolution laws, 

constitutes the basic theoretical framework of damage-plasticity models. Two general approaches 

have been developed to couple plasticity and damage in stress-based constitutive models. In the 

first type of damage-plasticity models, yield functions are expressed in terms of the effective stress; 

see for instance (Grassl et al. 2013; Grassl and Rempling 2008; Lee and Fenves 1998; Minga et al. 

2018; Simo and Ju 1987a; b). In this context, effective stress is meant as the average stress acting 

in the undamaged area between defects, defined as force divided by the undamaged part of the 

area. As such, plastic effects, governed by the effective stresses, are described separately from 

damage effects and vice versa. The other group of material models is formulated in the nominal 

stress space, also termed the ‘strong coupled damage-plasticity’ model (Jason et al. 2006). Here, 

the nominal stress is defined as force divided by the total area. Relevant numerical 

implementations can be found in (Luccioni et al. 1996; Nguyen 2005; Salari et al. 2004). The 

damage is implicitly embedded in the yield and plastic criteria, and a strong coupling between 

plasticity and damage is achieved through a simultaneous solution of the plastic and damage 

problems. In this chapter, the latter approach is adopted considering the fact that stiffness 
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degradation and plastic displacement in the mortar joints generally occur simultaneously. As a 

result, the damage effects are explicitly embedded in the plastic yield criteria, leading to one single 

loading function for plasticity and damage. 

5.2.2. Traction-separation relationship 

The configuration of the 3D 8-node zero-thickness interface element available in ABAQUS 

(Dassault Systemes 2017) is illustrated in Figure 5-2. The constitutive relationship of zero-

thickness interface elements is expressed in terms of the traction-separation relationship, relating 

the three stress components to relative displacements between top and bottom surfaces in three 

directions (i.e., one normal direction n, the first tangential direction s, the second tangential 

direction t shown in Figure 5-2). In the proposed model, the traction-separation law is given in Eq. 

(5-1): 
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where  represents the Macaulay bracket, i.e., ( ) / 2x x x= + . σ, u, up, and k are used 

together with the subscripts n, s, and t, denoting the stress component, displacement jump, plastic 

displacement, and initial stiffness constant under undamaged conditions. nn, ss, and tt represent 

three mutually orthogonal directions in 3D space: normal, first tangential, and second tangential 

directions. Specially, the plastic displacements in the normal direction are distinguished by the 

tensile one (
,1

p

n
u ) and the compressive one (

,2

p

nu ). Negative values of stress and (plastic) 

displacement components indicate that the cohesive interface is under compression, while positive 



Chapter 5: Development of a Damage Plasticity-based 3D Multi-yield Surfaces Constitutive Model for Masonry 

Mortar Joints under Cyclic Loading 

162 

 

values correspond to the tensile regime. D is a damage scalar used to indicate the material 

degradation state, which takes the value from 0 to 1. D = 0 represents the material state where 

mortar joint behavior is in the elastic range without any damage, while D = 1 represents a fully 

damaged state where stiffness is completely degraded.  

 

 

(a) (b) 

Figure 5-2. Illustration of 8-node zero-thickness interface element in the 3D space: (a) 

undeformed shape, and (b) deformed shape 

The definition of normal stress n  in Eq. (5-1) allows distinguishing the tensile and 

compressive behaviors separately. The normal stress evolution with load-unloading-reloading is 

presented in Figure 5-3. With this definition, tensile and compressive stress can develop only upon 

crack opening (i.e., ,1

p

n nu u ) and closure (i.e., ,2

p

n nu u ), respectively. When the normal 

displacement is between two plastic displacements (i.e., ,1 ,2

p p

n n nu u u  ), the normal stress remains 

zero, as depicted in Figure 5-3 (a). The shear stress evolution differs in the tensile and compressive 
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regimes, as shown in Figure 5-3 (b) and Figure 5-3 (c), respectively. This is related to the failure 

mechanisms activated. Under tensile loading, shear failure is only related to the cohesion loss, 

while under compressive loading, both cohesion and frictional effects contribute to the shear 

resistance. With the increase of shear displacement, cohesion would eventually be exhausted but 

frictional effects still play an important role. Therefore, in the compressive regime, higher shear 

strength is expected, and the residual shear resistance exists ( )res even under large shear 

displacement, as shown in Figure 5-3 (c). 

  
 

(a) (b) (c) 

Figure 5-3. Stress evolutions of the proposed constitutive model: (a) normal stress evolution, (b) 

shear stress evolution ( 0)n  , and (c) shear stress evolution ( 0)n   

The mechanism of stiffness degradation of mortar joints under cyclic loading is complex. 

Initial invisible microcracks induced by thermal expansion, shrinkage, and other factors would 

develop into noticeable cracks as the load increases. For typical quasi-brittle materials, e.g., mortar 

(Minga et al. 2018), concrete (Nguyen 2005), cement bond material (Senanayake et al. 2022), 

failure in compression (e.g., crushing of mortar) has significant effects on the tensile behavior. 

Conversely, tensile failure has limited influence on the compressive behavior due to the re-closure 
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of tensile crack up on load reversal from tension to compression. In order to consider this 

characteristic, two damage scalars (Dt and Dc) and two functions (st and sc) related to the stress 

states are introduced to define the single damage scalar D in Eq. (5-1), as shown in Eq. (5-2): 

 ( ) ( )( )1 1 1t c c tD s D s D− = − −  (5-2) 

In Eq. (5-2), Dt and Dc denote two damage scalars, ranging from 0 to 1, which describe the 

material deteriorations caused by tensile cracking and compressive crushing, respectively. As 

described earlier, mortar joints exhibit different stiffness behaviors in the tensile and compressive 

regimes. To achieve this, two functions ts  and cs  are introduced, reading Eq. (5-3) and Eq. (5-4), 

respectively: 

   (5-3) 

    (5-4) 

where ωc and ωt are two stiffness recovery factors ranging from 0 to 1, describing the 

compression-to-tension and tension-to-compression stiffness recovery effects, respectively. H(x) 

is the Heaviside step function, defined as: 
1 0

( )
0 0

x
H x

x


= 


. 

A typical case for mortar joints (Gatta et al. 2018; Koutromanos and Shing 2012; Oliveira 

and Lourenço 2004) is a complete stiffness recovery from tension to compression (i.e., ωc = 1) and 

no stiffness recovery from compression to tension (i.e., ωt = 0). In this case, by substituting Eq. (5-

3) and Eq. (5-4) into Eq. (5-2), damage scalar D then becomes: 

( )1t t ns ωH σ= −

( )( )1 1c c ns ω H σ= − −
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It can be seen from Eq. (5-5) that Dt has an influence on the material state only in the tensile 

regime, while Dc contributes to the stiffness degradation in both tension and compression. Figure 

5-4 presents a full cycle of normal stress-displacement response corresponding to the case ωc = 1 

and ωt = 0. The load path for the complete stiffness recovery case is O-A-B-C-O-D-E-F-O-C-G-H. 

Starting from Point O, tensile normal stress develops along the pre-peak path until Point A, which 

corresponds to the tensile strength, and the softening branch is subsequently followed with further 

loading (segment AB). On the tensile unloading branch (segment BC), the unloading stiffness has 

decreased compared with the initial one. Then, the normal stress remains zero until cracks fully 

close (segment CO). In the compressive regime, the stiffness fully recovers until reaching the 

compressive strength (Point D). After that, strength softening (segment DE) and stiffness 

degradation (segment EF) are followed due to compressive crushing. After a complete cycle, the 

stress state reverts to the tensile regime. The damage and plasticity deformation continue to 

accumulate in the next loading cycle (segment GH). 
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Figure 5-4. Normal stress evolution with stiffness recovery effects (ωc = 1, ωt = 0) 

5.2.2.1 Multi-yield surfaces plastic criterion 

The yield criterion is critical in determining the true stress state upon loading, aiming to capture 

material strength. In the proposed model, two yield criteria are introduced to consider different 

failure modes: tension-shear failure surface f1 and compression cap failure surface f2, as shown in 

Figure 5-5 (a) and Figure 5-5 (b), respectively. The continuous and differentiable hyperbolic yield 

surface f1, initially proposed by Carol et al. (1997) to describe the concrete fracture at the meso-

scale, provides a smooth transition between the Mohr-Coulomb surface and tension cut-off 

surface. This model was later refined by introducing a hyperbolic cap to describe the compressive 
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crushing failure mode (Li and Zeng 2023; Macorini and Izzuddin 2011). In this work, they are 

adjusted as Eq. (5-6) and Eq. (5-7) in a computational damage-plasticity framework: 

 ( )    
22 2

1 0 0, , , ( ) tan ( ) ( ) tann s t t t t n s t t t t t tf D c D c D f D          = − − + + + −  (5-6)

 ( )   ( ) ( )( )
2

2 2

2 , , , tan tann s t c c n s t c c r c c rf D f f f f D f         = − + + + + − − +   (5-7) 

where ( )
t t

D  and ( )
c c

D are two damage functions characterizing strength softening. In the 

yield function f1, ft and c0 are the tensile strength and peak cohesion. tanφ denotes the frictional 

coefficient. In the yield function f2, fc, and fr are the peak and residual compressive strengths, 

respectively. tanθ is the asymptote slope of compressive cap surface. 

  

(a) (b) 

Figure 5-5. Yield surfaces of the proposed constitutive model: (a) tension-shear yield surface, and 

(b) compression-cap surface 

The experimental findings (Lourenço 1996) indicate that the frictional coefficient tanφ 

would undergo a progressive softening during the plastic deformation process. The softening of 

frictional coefficient is coupled with damage function ( )t tD , given in Eq. (5-8): 

 ( )0tan tan tan ( ) tanr t t rD    = − +  (5-8) 
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where 0tan  and tan r  represent the frictional coefficients at the initial state and residual 

state, respectively. 

As can be seen from Eq. (5-6), Eq. (5-7), and Eq. (5-8), ( )t tD  and ( )c cD  play an 

important role in the yield criteria. The special feature of ( )t tD  and ( )c cD  is that they are equal 

to one at an undamaged state. The yield surfaces then shrink as damage variables increase until 

the fully damaged state, corresponding to ( ) ( ) 0t t c cD D = = . More specifically, yield surface f1 

intersects the normal stress axis at ( )n t t tf D =  (when 0s t = = ) in the tensile regime and 

asymptotically approaches the well-known Mohr-Coulomb strength criterion in the compressive 

regime. At a fully damaged state, tensile strength and cohesion would be fully exhausted. The yield 

surface f1 then degrades to ( ) 2 2

1 , , , tann s t t n r s tf D      = + + . The yield surface f2 intersects the 

normal stress axis at ( ) ( )n c r c c rf f D f = − − − : the absolute value of normal stress is equal to 

compressive strength cf  when ( ) 1c cD =  and reduces to the residual strength rf when ( ) 0c cD = . 

The initial undamaged and ultimate fully damaged states of yield surfaces in the 3D space are 

schematically shown in Figure 5-6. 

 

Figure 5-6. Evolution of yield surfaces in the 3D space 
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The formulation of ( )t tD  and ( )c cD  should satisfy the conditions that the values of 

( )t tD  and ( )c cD  are 1 when Dt = 0 and Dc = 0 at the initial undamaged state, while at the fully 

damage state, ( )t tD  and ( )c cD  are equal to 0 when Dt = 1 and Dc = 1. To this aim, ( )t tD  and 

( )c cD  are defined as Eq. (5-9) and Eq. (5-10), respectively: 

 ( )( ) 1 t

t t tD D


 = −   (5-9) 

 ( )( ) 1 c

c c cD D


 = −   (5-10) 

where t  and c  are two positive constants, which can be calibrated based on the 

experimental data. The effects of t  and c on the model behaviors are illustrated later. 

5.2.2.2 Plastic flow rule 

The definition of flow rule is crucial for a reasonable description of plastic deformation evolution. 

For the yield surface f2, an associated flow rule is assumed, i.e., plastic potential function g2 = f2. 

However, for the yield surface f1, a non-associated flow rule should be adopted for considering 

dilatancy effects as recognized in the relevant studies (Li and Zeng 2023; Nie et al. 2022b). The 

plastic potential function g1 is defined as Eq. (5-11): 

 ( )    
22 2

1
, , , ( ) tan ( ) ( ) tan

n s t t q t t n s t q t t t t t
g D c D c D f D          = − − + + + −  (5-11) 

where cq is the apparent cohesion, tanψ is the tangent of dilatancy angle ψ (i.e., dilatancy 

coefficient). Based on the experimental observations (Andreotti et al. 2019; Jafari et al. 2020; 

Pluijm 1999), dilatancy angle ψ reduces from the initial value to the residual one with the increase 

of plastic shear displacements and compressive normal stress (absolute value). The evolution law 
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for the dilatancy coefficient is adopted from (Li and Zeng 2023), defined in terms of the 

compressive stress and plastic shear displacement, as given in Eq. (4-5). 

5.2.3. Damage evolution laws 

As evidenced by the experimental findings (Le et al. 2018; Lee and Fenves 1998; Senanayake et 

al. 2022), the stiffness degrades rapidly right after reaching the yielding state, and the degradation 

rate reduces with further loading for quasi-brittle materials. Therefore, in the proposed model, the 

evolution laws for damage scalars Dt and Dc are defined as exponential decay functions shown in 

Eq. (5-12) and Eq. (5-13), respectively: 

 
( )

1
ptu

tD e
−

− =  with 

2 2 2

,1

0 0 0

p p p

npt s t

t t t

u u u
u

u u u

  
= + +

     
     
     

 (5-12) 

 
( )

1
pc

u

c
D e

−

− =  with 
,2

0

p

npc

c

u
u

u

 −
=  (5-13) 

where upt
 and upc

 are two displacement parameters formulated in the non-dimensional form; 

α, β, and γ are three non-dimensional constant parameters controlling the contribution of plastic 

displacement increments to the damage evolution;  represents the Macaulay bracket, indicating 

that compressive and tensile normal plastic displacements contribute to Dc and Dt, respectively; 

ut0 and uc0 are displacements corresponding to the tensile and compressive strengths, (i.e., 

0 /t t nnu f k= , 0 /c c nnu f k= ). It should be noted that ut0 and uc0 are introduced only for the purpose 

of making the damage variables non-dimensional. 

Following Eq. (5-12) and Eq. (5-13), the increments of two damage variables can then be 

obtained as Eq. (5-14) and Eq. (5-15), respectively: 
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 ( )1 pt

t tD D u= −  (5-14) 

 ( )1 pc

c cD D u= −  (5-15) 

5.2.4. Model parameterization 

The proposed model represents the mesoscale mechanical behaviors of mortar joints subject to 

cyclic loading. Therefore, more advanced experimental procedures would be required to obtain 

the required parameters. The first type of parameters includes tensile-related parameters (knn and 

ft), shear-related parameters (kss, ktt, c0, tanφ0 and tanφr), compressive-related parameters (fc and 

fr), and dilatancy related parameters (tanψ0, tanψr, uτ and σu). All these parameters have explicit 

physical meaning, thus can be identified easily through experimentation. The other type of non-

physical parameters includes α, β, γ, 
t , and 

c , which are defined to adapt the model to different 

stiffness degradation and strength softening effects. To illustrate the effects of these parameters on 

the model behavior, stress-displacement responses on a single Gaussian integration point under 

pure tensile, pure shear, and pure compressive loading are shown in Figure 5-7 and Figure 5-8. 

The baseline materials used for this illustration are listed in Table 5-1. Parameters α, β, γ, 
t , and 

c are varied one-at-a-time while keeping others fixed as the baseline values. 

Table 5-1. Baseline material parameters used for the parameter influence test 

Tension Shear Compression Dilatancy Non-physical 
knn 

(N/mm3) 

ft 

(MPa) 

kss 

(N/mm3) 

c0 

(MPa) 

tanφ0/ 

tanφr 

fc/fr 

(MPa) 

tanψ0/ 

tanψr 

σu 

(MPa) 

uτ 

(mm) 
α β γ t  c  

60 1.5 30 1.8 
0.9/ 

0.9 
7.7/1.1 0/0 -2 1 0.2 0.2 0.5 1 1 
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(a) (b) (c) 

Figure 5-7. Effects of parameter ηt and ηc on the stress-displacement responses: (a) pure tension 

behavior, (b) pure shear behavior, and (c) pure compressive behavior 

   

(a) (b) (c) 

Figure 5-8. Effects of parameter α, β, and γ on the stress-displacement responses: (a) pure tension 

behavior, (b) pure shear behavior, and (c) pure compressive behavior 

The parameter t  introduced in Eq. (5-9) aims to describe the relationship between the 

strength softening function ( )t tD  and the stiffness degradation scalar tD . When t  is greater than 

1, the strength softening amount is greater than the stiffness loss. Conversely, the stiffness 

degradation effect is more severe if t  is less than 1. It should be noted that t  is assumed to be 1 

(i.e., loss percentage of strength and stiffness is equal) in many damage-plasticity based models, 

see for example, (Nie et al. 2022a) for mortar joints, (Le et al. 2017, 2018) for rock. This has 

proved to be a reasonable option in the absence of experimental data. In the proposed model, the 

inclusion of t  and c  provides a certain level of flexibility when dealing with different material 

behaviors.  
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Figure 5-7 (a) and Figure 5-7 (b) present different post-peak behaviors under pure tensile 

and shear loading with different values of parameter t , whereas Figure 5-7 (c) demonstrates such 

behaviors under pure compression with different values of parameter c . It is evident from Figure 

5-7 (a) and Figure 5-7 (b) that for a given displacement, the stiffness degradation amount is 

identical, but the post-peak strengths vary, with higher values of t  indicating greater ductility. 

Furthermore, the proposed formulation of ( )t tD  ensures that the loss percentages for tensile 

strength ft and shear strength 
peak

s  are identical throughout the entire softening procedure. This 

fully coupled tension-shear softening model is consistent with the fact that both softening 

behaviors are related to the interfacial debonding at the micro level (Lourenço 1996). It is also 

worth mentioning that the shear strength 
peak

s  is slightly less than the peak cohesion c0, as shown 

in Figure 5-7 (b), due to the smooth hyperbolic yield function f1 employed in the proposed model. 

The effect of parameter c  on the compressive stress evolution is similar to that of parameter t , 

as evidenced in Figure 5-7 (c). Note that for the plotting purpose, the compressive stress and 

displacement are converted to positive values. 

The parameters α, β, and γ are directly correlated with the damage scalar evolutions given 

in Eq. (5-12) and Eq. (5-13), thereby affecting both stiffness degradation and strength softening. 

As per Eq. (5-12) and Eq. (5-13), larger values of α, β, and γ indicate a greater contribution of 

plastic displacements to the damage evolutions. This is consistent with the observations presented 

in Figure 5-8, which illustrates the effects of these three parameters on the pure tension, pure shear, 

and pure compressive behaviors, respectively. When the post-peak behavior is available, 

parameters α, β, and γ should be first determined to fit the stiffness degradation amount acquired 
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through FE simulation with the experimental one at a certain displacement. Subsequently, 

parameters t  and c  can be determined by conforming to the experimental post-peak stress 

softening behaviors.  

 MODEL IMPLEMENTATION 

This section deals with the formulation of the tangent stiffness and stress return algorithm in the 

general FE framework. In the proposed model, two yield criteria are defined to account for 

different failure modes of mortar joints. For the sake of generality, the special case in which both 

yield criteria are violated is detailed below. 

5.3.1. Tangent stiffness  

To facilitate the mathematical formulation, the stress, displacement, and plastic displacement 

components are written in the vector form:  
T

, ,n s t  =σ ,  
T

, ,n s tu u u=u , 
T

,1 ,2, , ,p p p p

n n s tu u u u  
p

u = . 

Accordingly, Eq. (5-1) for the stress state is reformulated in a compact vector form as Eq. (5-16): 

 ( ), , ,t cD D= p
σ σ u u  (5-16) 

By taking the derivative of Eq. (5-16), the stress is updated in the rate form, reading Eq. 

(5-17): 

  
t c

t c

D D
D D

   
= + + +

   

p

p

σ σ σ σ
σ u u

u u
  (5-17) 

The determination of updated yield surfaces is based on Kuhn-Tucker conditions: 

 ( )0, 0, 0 1,2i i i if f i   = =  (5-18) 

where i represents the yield surface specified, 
i  is the plastic multiplier. 
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Upon yielding, Eq. (5-17) can be written as the consistency equation: 0i   and 0if = , 

resulting in: 

 
1 1

1
0

t t

t t

f f
f D D

D D

   
= + + + =

    

 
 
 

  



p

p
u u

u u
 (5-19) 

 
2 2

2
0

c c

c c

f f
f D D

D D

   
= + + + =

    

 
 
 

  



p

p
u u

u u
 (5-20) 

According to the multi-yield surfaces plasticity integration strategy proposed by Simo 

(1988), the plastic strain increment can be obtained as a linear combination of the plastic strain 

rates of the two yield surfaces, determined as Eq. (5-21): 

 1 2

1 2

g g
 

 
= +

  

p
u  (5-21) 

By substituting Eq. (5-1), Eq. (5-12), Eq. (5-13), Eq. (5-14), Eq. (5-15), and Eq. (5-21) into 

Eq. (5-19) and Eq. (5-20), and solving for two plastic multipliers, one can obtain: 

 

( ) ( )

1

1 1
2

2 2

1 1 1

0 0 0

1 1
n s t

t t

t t t t

f

g g g

f f fg
D D

u u u D D



  
  

 
−

 = =

      
                 + + + − + −                  

p

u
u P u

u





 

  

 (5-22) 

 

( ) ( )

2

2 2
2

2 2 2 2

0

1 1
n

c c

c c c

f

g

f g f f
D D

u D D






 
−

 = =

 
− 

       + − + −          
p

u
u P u

u





 

  

 (5-23) 
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Once 
1  and 

2  are obtained, the increments of other state variables (i.e., p
u , 

cD , 
tD ) can 

be computed and then substituted into the rate form formula for the stress, i.e., Eq. (5-17), the 

tangent stiffness tan
K  can be formulated as Eq. (5-24): 

 
( ) ( )

2
2 2 2

1 2
1 2 1 2 2

0 0 0 0

tan

1 1
n s t n

t

t t t t c c

g g g g

g g
D D

D u u u D u

   
   

 
                                   = + + + − + + + −                        

 
  

= K

p
P P P P u

u u

u

   


   (5-24) 

5.3.2. Semi-implicit stress return algorithm 

The stress return problem can be stated as follows: Given the known stress 
( )m  at load step m and 

the displacement increment 
( 1)m+u  at load step m+1, update the stress 

( +1)m  at load step m+1. 

Although the formulation of tangent stiffness provides a simple way to calculate the stress 

increment, the state variables used in Eq. (5-24) are derived from the load step m. This fully explicit 

integration strategy, although adopted in some existing studies (Aref and Dolatshahi 2013; Yuen 

et al. 2019), only guarantees numerical accuracy provided that the displacement increment is 

sufficiently small. Therefore, to ensure the numerical robustness, a semi-implicit stress return 

algorithm is employed in the present study, detailed as follows. 

The trial stress state is firstly computed as Eq. (5-25), by assuming the strain/displacement 

increment from load step m to the trial stress state is elastic: 

 
trial

m= + DK  u   (5-25) 
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where D and K are damage and stiffness matrix defined in Eq. (5-1): 

1 0 0

0 1 0

0 0 1

D

D

D

− 
 

= −
 
 − 

D , 

0 0

0 0

0 0

n

s

t

k

k

k

 
 

=
 
  

K . u  is the displacement increment vector. 

If the trial stress state does not violate neither yield criterion, i.e., ( )trial

1 , 0tf D   and

( )trial

2 , 0cf D  , the stress at step m+1 can be updated as the trail stress trial

( +1)m = . The stress 

correction is needed when the trial stress state violates the yield criteria. Similarly, the specific 

case when both yield criteria are violated is discussed here, as shown in Figure 5-9. 

 

Figure 5-9. Graphical representation of stress return in the multi-yield surfaces model 

The adopted stress return algorithm is a special form of the one proposed in Simo and 

Hughes (2006). The yield functions at the load step m+1 (Point C in Figure 5-9) are approximated 

using first-order Taylor Expansion around the trial stress state (Point B in Figure 5-9): 
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1, 1,

B B

C B t

t

f f
f f D

D

 
= + +

 



 (5-26) 

 
2, 2,

2, 2,

B B

C B c

c

f f
f f D

D

 
= + +

 



 (5-27) 

The stress increment can be obtained similarly to Eq. (5-17). The only difference is that 

the contribution of total displacement increments to the stress increment, i.e., 





u

u
 in Eq. (5-17), 

has already been considered in the trail stress state. Thus, the stress increments in Eq. (5-26) and 

(5-27) can be written as: 

 
t

t

D
D

 
= +

 

 


p

p
u

u
  for Eq. (5-26) (5-28) 

 
c

c

D
D

 
= +

 

 


p

p
u

u
  for Eq. (5-27) (5-29) 

Substituting Eq. (5-12), Eq. (5-13), Eq. (5-14), Eq. (5-15), and Eq. (5-21) into Eq. (5-28) 

and Eq. (5-29), and then enforcing the yield functions Eq. (5-26) and Eq. (5-27) to be zero, two 

plastic multipliers 
1  and 

2  can be solved as follows: 

 

( ) ( )

1,

1
2 2 2

1 1 1

1 1 1 1

0 0 0
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 (5-30) 
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 (5-31) 
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With the values of 
1  and 

2 , the increment of state variables can be easily computed from 

Eq. (5-12), Eq. (5-13), Eq. (5-14), Eq. (5-15), and Eq.(5-21). Subsequently, stress increments can 

be computed as per Eq. (5-32): 

 
trial

t c

t c

D D
D D

  
+ + +

  
=

  
  p

p
u

u
 (5-32) 

 FINITE ELEMENT VALIDATION 

The proposed constitutive material model is implemented via the user-defined subroutine UMAT 

and used together with the 3D interface element COH3D8 in the general-purpose FE package 

ABAQUS (Dassault Systemes 2017). It is worth mentioning that the non-iterative stress update 

strategy employed in the numerical implementation improves the numerical efficiency at the local 

level, although the explicit strategy at the global level requires a small load increment. To 

demonstrate the potential of the developed constitutive model, four FE model validation examples 

were presented in this section: (1) a three-point bending beam under indirect cyclic tensile loading; 

(2) three masonry couplets under cyclic shear loading; (3) a short URM wall under cyclic in-plane 

(IP) loading; and (4) a tall URM wall under cyclic in-plane (IP) loading. The previous two 

validation models aim to test the capability of the proposed model to represent the small-scale 

behavior of mortar joints, and the two URM walls are selected to examine the proposed model at 

the structural scale to capture different failure modes. The simplified micro model (Lourenço et 

al. 1995a) is employed for the development of FE models. Without compromising accuracy, a 

quasi-static implicit dynamic procedure was utilized to enhance the convergence performance of 

the FE simulation. 
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5.4.1. Three-point bending beam under indirect cyclic tensile loading 

Experimental data about the cyclic tensile behavior of mortar joints is quite limited due to the 

difficulty in applying the reversible tensile loading to the mortar specimen. A mortar-jointed 

notched cylinder specimen with cyclic loading was carried out at the University of Wales Cardiff 

(Jefferson and Mills 1998). The mortar joint was formed with a 5 mm thickness mortar in a 

preformed gap between the two halves of the concrete cylinder. The experimental result was 

expressed in terms of the load-crack mouth opening displacement curve. The purpose of the test 

was to investigate the cyclic tensile behavior of mortar joints. Recognizing the fact that the 

nonlinear behavior of the cylinder specimen was governed by the notched mortar joint as described 

in the experimental report (Jefferson and Mills 1998), a single interface element model under pure 

tensile loading was developed to test the capability of the proposed constitutive material to 

reproduce the loading-unloading behavior. For the validation purposes, the experimental peak load 

was normalized to one.  

Required material parameters include the normal stiffness kn, tensile strength ft, and two 

non-physical parameters α and t . The tensile strength ft is taken as 1.5 MPa as experimentally 

reported, and the normal stiffness kn is set as the slope of the pre-peak branch at 60 N/mm3. α is 

determined as 0.23 to match the unloading stiffness to fit the experimental one and t is adjusted 

as 0.6 to fit the post-peak softening branch. 

Figure 5-10 presents the comparison between the normalized experimental and FE-

simulated stress-displacement curves. It can be observed that the FE simulation result matches 

well with the experimental one. During each loading-unloading cycle, characteristic features, 
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including stiffness degradation and tensile strength softening, are captured in an appropriate 

manner. 

 

Figure 5-10. Experimental-numerical comparison of normalized stress-displacement curve under 

cyclic tension loading 

5.4.2. Masonry couplet under compressive-shear loading  

In reference (Atkinson et al. 1989), three masonry couplets were tested under combined 

compressive and shear loading. The geometries of three specimens are identical, and the unit 

dimension is illustrated in Figure 5-11. The mortar thickness was 7 mm. Three specimens were 

first loaded with different pre-defined compressive stresses (0.49 MPa, 1.34 MPa, and 4.39 MPa), 

and then the cyclic shear displacement-control loading was applied on the top surface of couplets 

while keeping the pre-compressive stresses constant. The bottom surfaces of the specimens were 

fully restrained. The tests were designed to investigate the shear behavior of mortar joints under 

compressive stresses. Therefore, the material behavior of masonry units was assumed to be elastic 

in the FE models. The elastic modulus and Poisson ratio of units are 14701 MPa and 0.22, 

respectively, according to the experimental data (Atkinson et al. 1989). The compressive crushing 
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failure surface f2 is not active in the FE model since no crushing-related failure was observed in 

the test. The value of ηt is assumed to be equal to 1, while α and β are calibrated to fit the 

experimental post-peak responses. The material parameters required for the mortar joints are 

summarized in Table 5-2. 

 

Figure 5-11. Masonry couplet specimen by Atkinson et al. (1989) 

Table 5-2. Material parameters for the FE model of masonry couplet 

Figure 5-12 compares the simulated shear force-displacement curves with the experimental 

ones. It can be observed that good agreements are achieved. Based on the experimental data, the 

unloading shear stiffnesses have no obvious degradation compared with the initial ones, even 

under large shear displacements with cohesion strength being fully exhausted. Under higher pre-

compressive stresses, both peak and residual capacities increase due to the enhanced sliding 

resistance. The peak capacities, post-peak behaviors, residual strengths, and unloading behaviors 

under different compressive normal stresses are well reproduced. As such, it can be concluded that 

the developed constitutive material model for the interface element can well represent the 

tangential cyclic behavior of the mortar joint. 

Tension Shear Dilatancy Non-physical 
kn 

(N/mm3) 

ft 

(MPa) 

ks, kt 

(N/mm3) 

c0 

(MPa) 

tanφ0/ 

tanφr 

tanψ0/ 

tanψr 

σu 

(MPa) 

uτ 

(mm) 
α β γ t  c  

3.8 0.65 11.5 0.811 
0.745/ 

0.747 

0.01/ 

0 
-2 1 0.05 0.1 0.5 1 1 
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Figure 5-12. Numerical-experimental comparison of shear stress-displacement responses 

5.4.3. A short URM wall under cyclic in-plane (IP) loading 

In this validation example, a short URM wall tested by Salmanpour (2015) and Salmanpour et al. 

(2017) was simulated. The tested wall was constructed of calcium-silicate units and general-

purpose cement mortar with dimensions of 1550 mm long, 1600 mm high, and 150 mm thick. The 

dimension for units was 250 mm × 190 mm × 145 mm, with a void ratio of 25%. Thus, in the FE 

model, the thickness of the URM wall was reduced to 112.5 mm due to the hole inside. The wall 

was built in a running bond pattern, and the mortar thickness was 10 mm. 

The tested wall was first subjected to the 269 kN pre-compression load through a stiff steel 

loading beam on the top of the walls. Then, quasi-static cyclic IP loading was applied. The loading 

beam was connected to the walls by a layer of the same mortar used for the construction of the 

walls. The wall was tested with a two-end fixed boundary condition. The details of the wall 

specimen and test procedure are presented in Figure 5-13. The load history is illustrated in Figure 

5-14, in which the horizontal axis denotes the pseudo-time utilized in the FE simulation. 
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(a) (b) 

Figure 5-13. URM wall considered for the cyclic IP loading: (a) pre-compression applied at the top 

of the steel rigid beam, and (b) cyclic IP displacement-controlled loading  

 

Figure 5-14. Load-history for the tested wall (Salmanpour 2017; Salmanpour et al. 2015) 

In the FE model, the top steel beam and brick units are modeled using an 8-node solid 

element with reduced integration (C3D8R). A preliminary mesh convergence study leads to a mesh 
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size of 10 × 8 × 5 elements for one single unit in order to reach a balance between computational 

efficiency and accuracy. The mechanical behavior of units is assumed to be elastic, and all 

nonlinearities are concentrated in the mortar joints. The elastic modulus of brick units was not 

reported in the experimental test (Salmanpour 2017), and it was calibrated at 8000 MPa to fit the 

initial stiffness of the load-deformation curve obtained from the FE simulation to the experimental 

one. For the material parameters of mortar joints, the peak cohesion c0 was determined as 0.26 

MPa, the initial and residual frictional coefficients tanφ0 and tanφr are both 0.48, and the 

compressive strength fc is 7.7 MPa, according to the experimental tests (Salmanpour 2017; 

Salmanpour et al. 2015). The empirical relationship between tensile strength and cohesion c0= 1.4ft 

(Zeng et al. 2021) was adopted to determine the tensile strength ft. The dilatancy coefficient was 

assumed to be zero to avoid an overestimation of the shear capacity, and the residual compressive 

yield stress was determined as 1/7 of compressive strength, as suggested by Li and Zeng (2023). 

For the other modeling parameters, two stiffness recovery factors t  and c  are determined as 0 

and 1, respectively, as being reasonable for quasi-brittle materials. Due to the lack of small-scale 

experimental data, t  and c  are assumed to be 1, which implies that the amount of strength 

softening, and stiffness degradation is identical. The values of α, β, and γ are determined such that 

post-peak behaviors under pure tension, shear, and compression are characterized by the same 

fracture energies as those in Nie et al. (2022a), in which the same wall was modeled. The material 

parameters used for the mortar joints are summarized in Table 5-3. 
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Table 5-3. Material parameters for the FE model of short URM wall under cyclic IP loading 

The comparison of load-displacement curves is presented in Figure 5-15. The results from 

Nie et al. (2022a), in which the same wall was modeled, are also included. The wall capacity 

obtained by the FE simulation (i.e., 133 kN) is slightly less than the experimental one (i.e., 148 

kN). This is deemed a satisfactory result considering the lack of detailed information about several 

material parameters (e.g., elastic modulus of units, dilatancy coefficient), for which typical values 

from the literature were assumed. The progressively increasing degradation of stiffness is observed 

in both positive and negative directions. The amount of degradation is in reasonably good 

agreement with the experimental data. However, under large displacement cycles, the FE predicted 

results have an underestimation of energy dissipation. This can be partially attributed to the 

simplified elastic unloading-reloading behavior assumed in the model formulation. 

Tension Shear Compression Dilatancy Non-physical 
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Figure 5-15. Numerical-experimental comparison of IP force-displacement curve for the short 

URM wall 

The failure mode of the wall is characterized by a diagonal crack pattern. Figure 5-16 shows 

crack patterns and deformed shapes at four different stages (indicated by Points A, B, C and D in 

Figure 5-14) in the FE simulation, in which SDV1 and SDV2 represent the damage scalars Dt and 

Dc respectively. In the first half cycle at the first displacement level (Point A in Figure 5-14), only 

a small portion of mortar joints experienced shear sliding and tensile cracking along the diagonal 

line, and no compressive crushing was observed. Meanwhile, some horizontal tensile cracks 

developed at the top of the wall. With further loading, the cracks developed significantly at the 

center of the wall. At the third displacement level (Point C in Figure 5-14), the crushing induced 

by the high compressive stress at the toe of the wall was captured in Figure 5-16 (c). At a larger 

displacement level, the typical staircase-shaped crack pattern formed, as illustrated in Figure 5-16 

(d). It can be seen that the FE predicted crack pattern matches well with the experimental one, as 

shown in Figure 5-17. 
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(b) 

   

(c) 
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(d) 

Figure 5-16. Crack patterns and deformed shapes of the short URM wall obtained through the 

FE simulation at different stages (SDV1 and SDV2 represent the damage scalars Dt and Dc, 

respectively): (a) Point A, (b) Point B, (c) Point C, and (d) Point D 

 

Figure 5-17. Failure mode of short URM wall in the experimental study by Salmanpour (2017) 

5.4.4. A tall URM wall under cyclic in-plane (IP) loading 

In this section, a tall URM wall with a larger aspect ratio, tested by Anthoine and Magonette (1995), 

is simulated. The tested URM wall was 1000 mm long and 2000 mm high, built with 250 mm × 

120 mm × 55 mm units and 10 thickness hydraulic lime mortar, and arranged in a two-wythe thick 

English bonding pattern. The boundary conditions and loading procedure are identical to those of 
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the short wall illustrated in Section 5.4.3. An average compressive normal stress of 0.6 MPa was 

initially applied on the top of the wall. Subsequently, the displacement-control cyclic IP loading 

was applied. Similar to the FE model developed for the short URM wall, the top loading beam and 

brick units are modeled with an 8-node solid element with reduced integration (C3D8R). The mesh 

convergence study leads to 8×2×4 elements for one single unit. Limited information about the 

material parameters is available in the test (Anthoine and Magonette 1995). Therefore, material 

parameters are determined from the numerical works (Gambarotta and Lagomarsino 1997a; Minga 

et al. 2018) in which the same wall was modeled. Similar to the short URM wall, non-physical 

parameters ηt and ηc are assumed to be 1, while α, β, and γ are determined such that the fracture 

energies are equal to those reported in works (Gambarotta and Lagomarsino 1997a; Minga et al. 

2018). The elastic modulus and Poisson ratio of units are 3000 MPa and 0.15, respectively. The 

parameters for mortar joints in the tall URM wall are summarized in Table 5-4. 

Table 5-4. Material parameters for the FE model of tall URM wall under cyclic IP loading 

The main purpose of including the tall URM wall is to examine the capability of the 

proposed model to capture different IP failure modes of URM walls. The experimentally observed 

failure mode for the tall wall is significantly different from that of the short wall illustrated in 

Section 5.4.3. An in-plane rocking failure was observed, with flexural cracks concentrating on the 

top and bottom bed joints. The governed failure mode was well captured through the FE simulation 

shown in Figure 5-18. 

Tension Shear Compression Dilatancy Non-physical 
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(a) (b) (c) 

Figure 5-18. Failure mode of tall URM wall obtained from the FE simulation: (a) deformed 

shape, (b) damage variable Dt, and (c) damage variable Dc 

The numerical-experimental comparison in terms of the load-deformation curve is 

presented in Figure 5-19. The tested tall wall exhibited low energy dissipation during load-

unloading-reloading cycles, and no obvious strength degradation was observed from the test. This 

is a direct consequence of the activated failure mechanism. Although some discrepancies can be 

observed between the FE simulation and test results, a reasonably good agreement is achieved in 

terms of the maximum strength and the rocking mechanism. 
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Figure 5-19. Numerical-experimental comparison of IP force-displacement curve for the tall URM 

wall 

5.4.5. A reinforced masonry (RM) wall under cyclic in-plane (IP) loading 

The reinforced masonry (RM) wall considered in this section was experimentally studied by Shing 

et al. (1991). The tested RM wall was fully grouted and had a dimension of 1828 mm high and 

1828 mm long, thus an aspect ratio of 1.0. It was constructed using 152 × 203 × 406 mm hollow 

concrete blocks. The tested wall had five vertical and five horizontal reinforcing bars, with a 

center-to-center spacing of 406 mm. The vertical steel ran continuously from the base slab to the 

top beam with 180-degree anchoring hooks. The horizontal reinforcement had 180-degree hooks 

around the extreme vertical steel. This led to a vertical and horizontal reinforcement ratio of 0.74% 

and 0.14%, respectively. A pre-compression load of 0.69 MPa was first applied on the top of the 

wall, and then an IP load was applied in a cantilever condition.  

The FE modeling strategy used for this validation example is similar to that for URM walls 

discussed previously. The concrete blocks and grouts are modeled with C3D8 element, plus the 
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nonlinear behaviors represented via the Concrete Damage Plasticity (CDP) model (Lee & Fenves, 

1998), in which the tensile cracking and compressive crushing can be well described using 

different parameters for concrete and grouts. Reinforcing bars are modeled using truss elements 

T3D2 with the von Mises plasticity model and a bilinear hardening law. Note that a perfect bond 

is assumed for grout-reinforcement and grout-concrete unit contacts. Mortar joints are simulated 

using zero-thickness interface elements (COH3D8) in conjunction with the developed constitutive 

model in this chapter. The horizontal and vertical reinforcements have a yield strength of 383 MPa 

and 496 MPa, respectively. The material parameters of mortar joints are summarized in Table 5-5. 

Table 5-5. Material parameters for the FE model of the RM wall under cyclic IP loading 

The failure mode of the tested RM wall was characterized by diagonal tension cracking, as 

shown in Figure 5-20(a). This is consistent with the FE predictions illustrated in Figure 5-20(b). 

Moreover, the tensile damage distributions of mortar joints and concrete units (represented by the 

damage scalar DAMAGET) are shown in  Figure 5-20(c) and Figure 5-20(d). It is evident that 

significant damage is distributed along the two diagonal paths, and horizontal reinforcement 

experiences significant damage. The numerical-experimental comparison in terms of the load-

deformation behavior is shown in Figure 5-21. It can be observed that the peak IP load is well 

predicted. Meanwhile, the pinching effects and stiffness degradation of the tested wall under large 

displacement amplitudes are well captured. However, the FE prediction has more rapid strength 

softening compared to the tested data. Moreover, the load-capacity in the negative loading 

Tension Shear Compression Dilatancy Non-physical 
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direction (i.e., when the displacement is negative) is higher than that in the positive direction. This 

is mainly because full compressive stress develops when loaded in the negative direction. As a 

result, when loaded back to the positive direction, irreversible compressive crushing damage 

reduces the wall capacity.  

 
 

(a) (b) 

 

 

(c) (d) 

Figure 5-20. Failure modes of the RM wall: (a) experimental test by Shing et al. (1991), (b) 

deformed shape of wall, (c) tensile damage of mortar joints, and (d) tensile damage of concrete 

units 
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Figure 5-21. Experimental-numerical comparison in terms of the load-deformation behavior of RM 

wall under cyclic IP loading 

 CHAPTER CONCLUSION 

A novel three-dimensional constitutive model for cohesive interfaces was proposed in this chapter 

for the cyclic modeling of mortar joints in masonry structures. The proposed novel model was 

formulated in the damage-plasticity framework with the following unique features: (1) two smooth 

hyperbolic yield surfaces capable of capturing various failure modes (i.e., tensile cracking, shear 

sliding, compressive crushing) of mortar joints; (2) single damage scalar D to model various 

stiffness recovery effects; (3) two damage scalars Dt and Dc to characterize the normal (including 

the tensile and compressive) and tangential stiffness degradation; and (4) two damage functions 

( )t tD  and ( )c cD  to represent the strength softening (e.g., tensile strength, cohesion, 

compressive strength). The model formulation enables a high degree of flexibility in dealing with 

various modeling aspects (e.g., stiffness recovery, post-peak behavior), verified by illustrating the 

influence of parameters on the model behavior. 
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The newly developed constitutive material model was implemented in the commercial 

finite element software ABAQUS. Several experimental tests available in the literature were 

simulated to demonstrate the reliability of the proposed model. At the masonry component level, 

an indirect cyclic tensile test on a mortar-jointed cylinder specimen and three masonry couplets 

under compression-shear loading were simulated, respectively. Comparison results indicated that 

peak capacity, strength softening, and stiffness degradation were accurately captured. At the 

structural level, two unreinforced masonry (URM) walls with different aspect ratios were 

simulated, aiming to test the capacity of the proposed model to reproduce different failure modes 

of URM walls under in-plane loading. Two distinct failures, namely diagonal cracking and flexural 

rocking, were well predicted. Moreover, a reinforced masonry (RM) wall was also validated. 

Discrepancies in the load-deformation behaviors can be attributed to the uncertainty in some 

material parameters. This entails parameter sensitivity analysis when the proposed model is 

applied to the masonry wall. In conclusion, the proposed 3D model can be utilized in conjunction 

with a simplified micro modeling strategy to investigate the structural behavior of URM walls 

under complex loading scenarios (e.g., cyclic seismic loading) consider both in-plane and out-of-

plane loadings.
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Chapter 6. NUMERICAL INVESTIGATION OF UNREINFORCED 

MASONRY WALLS UNDER BI-DIRECTIONAL LOADING: 

IN-PLANE CAPACITY REDUCTION DUE TO OUT-OF-PLANE 

LOADING 

The structural behavior of unreinforced masonry (URM) walls under in-plane (IP) or out-of-plane 

(OOP) loading in masonry buildings has been extensively investigated in public literature. 

However, studies focusing on the URM walls subjected to concurrent IP and OOP loadings are 

limited. Neglecting IP and OOP interaction effects may lead to unsafe design practices. As such, 

this study conducts a comprehensive numerical investigation into the behavior of URM walls 

under combined IP and OOP loading, focusing on the influence of aspect ratio (i.e., height-to-

length ratio), slenderness ratio (i.e., height-to-thickness ratio), and pre-compression load levels. 

To capture the possible failure modes of URM walls under various loading scenarios, the 

simplified micro modeling approach is employed. The analysis results indicate that the presence 

of OOP loading leads to a substantial reduction in IP capacities. Longer walls, characterized by 

smaller aspect ratios (AR), exhibit more pronounced IP and OOP interaction effects. Additionally, 

highly slender walls show significant additional moments due to second-order effects under OOP 

loading, thereby negatively affecting the IP capacity. Low-level pre-compression loads are 

beneficial for diminishing capacity interaction effects, while high pre-compression loads exert a 

negative influence. To facilitate the consideration of IP and OOP capacity interaction effects in an 

efficient manner, a simplified analytical model is developed through curve fitting, in which the 

effects of aspect ratio, slenderness ratio, and pre-compression load are incorporated. 
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 INTRODUCTION 

Unreinforced masonry (URM) walls are an essential structural component of numerous buildings, 

encompassing residential, commercial, industrial, and cultural heritage structures. The widespread 

use of URM walls in various architectural styles and construction applications can be attributed to 

their inherent durability, thermal efficiency, aesthetic versatility, as well as their advantageous 

architectural and structural roles. However, URM walls are vulnerable to earthquake loads, 

including loads applied parallel to the wall (i.e., in-plane), and loads applied perpendicular to the 

wall (i.e., out-of-plane), along with simultaneous loads from other sources, like vertical gravity 

loads. This susceptibility has raised concerns regarding the safety and effectiveness of URM walls, 

prompting ongoing research aimed at understanding their behavior further and bolstering their 

ability to withstand adverse loading conditions. 

In the literature, the structural behavior of URM walls is commonly characterized under 

two distinct loading scenarios: in-plane (IP) and out-of-plane (OOP) loadings. Researchers and 

practicing engineers have devoted considerable efforts to investigating the load capacities and 

failure mechanisms of URM walls under either pure IP loading (Gonen et al. 2021; Hwang et al. 

2022; Pulatsu et al. 2023; Salmanpour et al. 2015; Zeng and Li 2023) or pure OOP loading 

(Doherty et al. 2002; Godio and Beyer 2019; Noor-E-Khuda et al. 2016a). However, the behavior 

of URM walls under combined IP and OOP loading scenarios (e.g., during earthquakes) needs to 

be better understood to consider the potential interplay between IP and OOP behaviors. Such a 

need is highlighted by a post-earthquake survey (Vlachakis et al. 2020), which pointed out that a 

URM wall can become more vulnerable under combined IP and OOP loading. 
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While it is unquestionable that an interaction between IP and OOP behaviors is present, 

existing engineering practices, e.g., CSA S304-14 (Canadian Standards Association 2014), often 

overlook the consideration of the interaction effect for URM structural walls. By contrast, the IP-

OOP interaction effects for masonry infill walls are provided for seismic evaluation and retrofit of 

existing buildings in ASCE 41-17 (ASCE 2017), which specifies the IP-OOP strength interaction 

relationships to account for the IP capacity reduction due to the presence of OOP loading and vice 

versa. The applicability of these relationships to URM structural walls is unclear since URM 

structural walls are often subjected to axial loading or pre-compression, which is considered an 

important factor affecting the failure modes of URM walls under both IP and OOP loadings. 

In the research community, in contrast to numerous studies conducted experimentally (De 

Risi et al. 2019; Xie et al. 2021a) and numerically (Mazza and Donnici 2022; Di Trapani et al. 

2018) to examine the accuracy of design provisions pertaining to the interaction behaviors of 

masonry infill walls, studies on the IP-OOP interactions of URM structural walls are scarce. 

Najafgholipour et al. (2013) tested a series of URM wall panels subjected to simultaneous IP and 

OOP loading. The experimental results highlighted a significant decrease in IP shear capacity as 

the OOP load increased, and corresponding IP-OOP interaction behaviors were expressed in terms 

of the capacity interaction curves. However, it is worth mentioning that in the test by 

Najafgholipour et al (2013), the IP capacity was obtained through diagonal compression tests, 

which did not capture the coupling between axial load and flexure. Dolatshahi and Aref (2012) 

performed tests on the bi-directional behavior of URM walls with both IP and OOP loadings 

imposed simultaneously. It was concluded that due to the pre-applied OOP loading, the URM wall 

easily collapsed because of the accumulative OOP deformation under subsequent IP loading. The 
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IP and OOP interaction effects were found to be strongly influenced by the aspect ratio (AR) (i.e., 

height-to-length ratio) and the IP failure modes of URM walls when no OOP load existed. A recent 

experimental study by Krishnachandran and Menon (2023) examined the IP flexural capacity of 

URM piers with varying aspect ratios in the presence of OOP displacements. The test results also 

indicated that the URM pier would experience a stiffness and strength reduction in the presence of 

inelastic OOP displacements. 

In addition to the previously discussed experimental studies, several researchers explored 

the IP-OOP interaction effects in URM walls using numerical approaches. Based on the macro 

continuum finite element (FE) or distinct element (DE) model with homogenized masonry material, 

(Agnihotri et al. 2013; Dolatshahi et al. 2015; Malomo and DeJong 2022; Najafgholipour et al. 

2014; Noor-E-Khuda and Dhanasekar 2018a; b) studied the IP-OOP interaction of URM walls, 

considering different influencing factors. These works confirmed the IP-OOP interaction of URM 

walls. Nonetheless, the models used were insufficient for accurately characterizing the inherent 

composite nature of masonry, and thus the intricate failure modes and IP-OOP interaction of URM 

walls cannot be well captured. To address this issue, other researchers took the simplified micro 

modeling approach, and intended to explicitly represent masonry units and mortar joints using 

discontinuous interfaces. For example, Dolatshahi and Yekrangnia (2015) examined the IP-OOP 

interaction effects utilizing this micro modeling approach. Their results revealed that the OOP 

strength could be reduced up to 72% for URM walls under simultaneous IP and OOP loading. 

More recently, Kesavan and Menon (2022) used the ‘block-based modeling approach’, in which 

units and mortar were explicitly modeled, while the unit-mortar contacts were assumed to be 



Chapter 6: Numerical Investigation of Unreinforced Masonry Walls under Bi-directional Loading: In-plane 

Capacity Reduction due to Out-of-plane Loading 

201 

 

rigidly connected. It was generally concluded that the IP-OOP interaction effects were more 

significant in the shear-controlled URM piers than the flexural-controlled ones. 

Upon reviewing the existing studies on the IP-OOP interaction behaviors of URM walls, it 

is evident that the OOP load detrimentally affects the IP capacity and vice versa. However, such 

interaction effects remain largely unexplored or rarely quantified using reliable models. The use 

of the micro modeling strategy is of paramount importance to characterizing the intricate structural 

behaviors of URM walls under combined IP and OOP loading, as stressed in (Dolatshahi and 

Yekrangnia 2015), which, however, only examined the effects of boundary conditions (cantilever 

or fixed) and loading patterns (monotonic or cyclic). It is well known that other geometric factors, 

including AR and SR and pre-compression load Pv, have substantial influences on the structural 

behavior of URM walls under IP loading (e.g., AR and Pv) or OOP loading (e.g., SR and Pv). Their 

effects on the IP and OOP interaction behaviors of URM walls have not been well understood. As 

such, the present study contributes to a numerical investigation of the IP-OOP interaction 

behaviors of URM walls using the simplified micro modeling approach. Detailed failure modes 

and corresponding load-deformation behaviors of URM walls under combined IP and OOP 

loadings are discussed, with a particular emphasis on IP capacity reduction due to the presence of 

OOP loading. The influences of AR, SR, and Pv are quantified in terms of the IP-OOP capacity 

interaction curves. Finally, based on the FE simulation data, an analytical model is proposed to 

account for the IP-OOP capacity interactions, considering the effects of AR, SR, and Pv, in 

comparison to the existing models in the literature and the ASCE 41-17 design provisions for 

masonry infill walls. 
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 3D FINITE ELEMENT MODELS OF URM WALLS 

6.2.1. Simplified micro modeling strategy 

The FE modeling strategy employed in this chapter for URM walls is illustrated in Figure 6-1. 

Mortar joints are modeled using the zero-thickness interface element COH3D8 available in 

ABAQUS (Dassault Systemes 2017), in conjunction with a 3D plasticity-based multi-yield 

surfaces model recently developed by the authors (Li and Zeng 2023), capable of capturing various 

failure modes (e.g., tensile cracking, shear sliding, compressive crushing). The constitutive model 

used was implemented via the user subroutine UMAT in ABAQUS. An implicit Euler backward 

integration algorithm, combined with a local-global Newton-Raphson solver, was employed to 

achieve the predictor-corrector return mapping in the numerical formulation. Other than that, off-

the-shelf elements and material constitutive models are used for the modeling of URM walls. For 

example, brick units are simulated using the 3D full integration element C3D8 and the Concrete 

Damage Plasticity (CDP) model (Lee and Fenves 1998), which allows for the simulation of the 

nonlinear damage behavior in units, in particular the tensile cracking commonly observed in the 

experimental tests. This modeling strategy was validated using small-scale masonry specimens 

(e.g., unit-mortar-unit assemblages) and large-scale URM walls under IP or OOP loadings (Li and 

Zeng 2023) and thus used in this chapter. For more details about the modeling strategy and its 

validations, interested readers are referred to Li and Zeng (2023). 
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Figure 6-1. Schematic view of the FE modeling strategy using the simplified micro approach for 

URM walls 

6.2.2. Parametric design for the numerical study 

The parametric design aims to cover factors that could affect the structural behavior of URM walls 

subjected to IP and/or OOP loading conditions. The baseline model employed in this study is a 

URM wall that was experimentally tested in (Raijmakers 1992). This wall is selected due to its 

extensive use as a benchmark or application example under IP loading in numerous studies 

(Abdulla et al. 2017; Zeng et al. 2021), as well as for its well-documented material parameters, 

which are summarized in Table 1.  
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Table 6-1. Material parameters of units and mortar joints (Lourenço 1996) 

Material Parameters Value 

Units Tensile strength  (MPa) 2 

Compressive strength  (MPa) 16.6* 

Elastic modulus  (MPa) 16700 

Mortar joints 

(interfaces) 
Stiffness constants , ,  (N/mm3) 82, 36, 36 

Tensile strength  (MPa) 0.25 

Peak cohesion  (MPa) 0.35 

Mode I fracture energy  (N/mm) 0.012 

Mode II fracture energy  (N/mm) 0.125 

Initial frictional coefficient  0.75 

Residual frictional coefficient  0.75 

Initial dilation coefficient  0.4 

Residual dilation coefficient  0 

Compressive strength of masonry  (MPa) 10.5 

Initial/intermediate/residual compressive yield 

strength , , (MPa) 
2.625, 5.775, 1.5 

Controlling displacements ,  (mm) 0.128, 0.64 

*Compressive strength of units  is empirically determined by the relationship: (Li and Zeng 2023) 

The tested URM wall was a 16-course solid wall built with wire-cut solid clay bricks (210 

mm × 52 mm × 100 mm) and 10 mm thick mortar layers. To verify the effectiveness of the 

employed modeling strategy in capturing the influence of different pre-compression load levels, 

the URM walls tested with pre-compression loads of 0.3 MPa and 1.21 MPa (Raijmakers 1992) 

were simulated, although the modeling strategy was validated by the authors based on other 

experimental studies (Li and Zeng 2023). Figure 6-2 (a) shows the numerical-experimental 

comparison in terms of IP load-deformation behaviors. Note that two walls were tested under a 

pre-compression load of 0.3 MPa and they showed slight difference in the post-peak behavior 

during the tests primarily due to the heterogeneity of the mortar and brick materials (Raijmakers 

1992). The increase in pre-compression load leads to an increase in the initial stiffness, peak 
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strength, and post-peak behavior, as evidenced by the experimental results. Overall, the FE-

predicted load–displacement curves agree well with the experimental ones, although some minor 

discrepancies in the post-peak behavior are observed for the case of 1.21 MPa. On the other hand, 

all tested walls were governed by the diagonal tensile cracking, and thus the crack pattern is 

presented only for the case of 0.3 MPa. Figure 6-2 (c) and Figure 6-2 (d) present the damage 

distributions in mortar joints (interfaces) and units, respectively. It can be observed that the failure 

modes predicted by the FE model closely resemble that of experimental observation as illustrated 

in Figure 6-2 (b). 
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(a) (b) 

 
 

(c) (d) 

Figure 6-2. Numerical-experimental comparison for URM walls under IP loading: (a) IP 

load-deformation behavior, (b) experimental crack pattern for the wall with a pre-

compression load of 0.3 MPa, (c) damage distribution in mortar joints (interfaces) from FE 

simulation, and (d) damage distribution in units from FE simulation 

It is well recognized that the aspect ratio AR (i.e., height-to-length ratio) and pre-

compression Pv exert considerable influence on the failure modes (e.g., flexural, diagonal shear, 

sliding) and associated capacities of URM walls under pure IP loading. On the other hand, the 

structural responses of URM walls under pure OOP loading are largely influenced by SR (i.e., 

height-to-thickness ratio) and Pv. Therefore, the influencing factors AR, SR, and Pv are considered 
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as variables in the parametric design in this study. Four different values of AR (0.75, 1.00, 1.5, 

and 2.25), combined with six different levels of Pv (0, 0.25, 0.5, 1.0, 1.5, and 2.0 MPa), are 

considered for URM walls to encompass different failure modes. Notably, AR is varied by 

changing the wall length while keeping the wall height constant. Furthermore, while keeping AR 

fixed as the same as the baseline wall, four different values of SR (9.92, 15.50, 21.08, and 32.24) 

are considered by adjusting the wall height, while the wall thickness remains the same as the unit 

thickness. This leads to a total of 42 cases with distinct geometrical configurations, or Pv levels, as 

summarized in Table 6-2. In the parametric design, the minimum and maximum values for AR 

and SR are selected in accordance with the design guidelines specified in the Canadian Masonry 

Design Code (Canadian Standards Association 2014), and the largest Pv is determined to be 

approximately 20% of the compressive strength of masonry (10.5 MPa), deemed a reasonable 

maximum axial load applied to URM walls (Kesavan and Menon 2022). In Table 6-2, the notations 

used to distinguish different wall geometries include the values of AR and SR. For instance, 

‘AR0.75_SR9.92’ refers to the URM wall with an AR of 0.75 and a SR of 9.92. 

Table 6-2. Design cases for FE-based investigation of the IP-OOP interaction behavior of URM 

walls 

The IP boundary condition of URM walls is considered to be cantilever, and the OOP 

boundary condition is characterized by simple supports with the wall subjected to a typical one-

way bending, representing a common boundary condition for masonry walls in low-rise buildings. 

Wall Length (mm) Height (mm) AR SR Pv (MPa) 

AR0.75_SR9.92 1320 992 0.75 9.92 0.0, 0.25, 0.5, 1.0, 1.5, and 2.0 

AR1.00_SR9.92 990 992 1.00 9.92 0.0, 0.25, 0.5, 1.0, 1.5, and 2.0 

AR1.50_SR9.92 660 992 1.50 9.92 0.0, 0.25, 0.5, 1.0, 1.5, and 2.0 

AR2.25_SR9.92 440 992 2.25 9.92 0.0, 0.25, 0.5, 1.0, 1.5, and 2.0 

AR1.00_SR15.50 1540 1550 1.00 15.50 0.0, 0.25, 0.5, 1.0, 1.5, and 2.0 

AR1.00_SR21.08 2090 2108 1.00 21.08 0.0, 0.25, 0.5, 1.0, 1.5, and 2.0 

AR1.00_SR32.24 3190 3224 1.00 32.24 0.0, 0.25, 0.5, 1.0, 1.5, and 2.0 
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In the FE analysis, a pre-compression load Pv is initially applied at the top of the wall and remains 

constant throughout the analysis. Following this, a uniformly distributed OOP pressure OOPp with 

a predetermined load level is applied. The analysis then proceeds with the application of an IP load 

IPF until the wall fails. The pre-applied OOP load OOPp  is determined as 20%, 40%, 60%, and 80% 

of the OOP capacity for the examined URM wall under pure OOP loading. These four OOP 

loading levels represent the slight, moderate, intermediate, and near collapse stages under pure 

OOP loading (i.e., with no IP load). The loading sequence considered in this study is illustrated in 

Figure 6-3. 

   

(a) (b) (c) 

Figure 6-3. Loading sequence considered for URM walls under combined IP and OOP loading: 

(a) apply a pre-compression load Pv, (b) apply a predetermined uniformly distributed OOP load 

OOPp , and (c) apply an IP load IPF until wall failure 

 PURE IP AND PURE OOP BEHAVIORS OF URM WALLS 

In this section, pure IP and pure OOP behaviors of URM walls are presented. Load-deformation 

behaviors, with a particular emphasis of IP and OOP capacities, and failure modes, are discussed 

to reflect the influence of AR, SR, and Pv. 
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6.3.1. Pure IP behavior 

Predicting the IP failure mode of URM walls is a rather challenging task due to the heterogeneity 

of the masonry material. Figure 6-4 (a) and Figure 6-4 (b) present the flexural and shear governed 

URM walls observed in the FE analyses. It can be deduced that flexural failure is initiated in cases 

with low pre-compression load and high aspect ratio, e.g., Figure 6-4 (a), while shear failure is 

commonly observed in squat walls under high pre-compression loads, e.g., Figure 6-4 (b). 

Moreover, slenderness ratio has negligible influence on the IP failure modes in all involved FE 

cases, as demonstrated by comparing Figure 6-4 (a) and Figure 6-4 (c). 
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(a) (b) 

 

(c) 

Figure 6-4. Failure modes of URM walls: (a) wall AR1.00_SR9.92 with a pre-compression 

load of 0.0 MPa, (b) wall AR0.75_SR9.92 with a pre-compression load of 2.0 MPa, and (c) 

wall AR1.00_SR32.24 with a pre-compression load of 0.0 MPa 

The variation of load-deformation curves for different values of AR, SR, and Pv is 

demonstrated in Figure 6-5. It should be noted that the displacement referenced here represents the 

horizontal drift at the top of the walls. As observed in Figure 6-5 (a), the IP capacity and stiffness 

increase with the reduction of AR. This is reasonable and consistent with experimental and/or 

numerical findings, as more compressive struts along the diagonal path and a larger compressive 

zone at the toe regions are expected in squat walls (i.e., walls with smaller ARs) under large pre-

compression loads. Nevertheless, the ductility is diminished for squat walls, indicating a more 
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pronounced strength loss during the post-peak stage. A similar trend is observed for the influence 

of pre-compression load, as illustrated in Figure 6-5 (c). As for the SR, its influence on the wall 

capacity is negligible but affects the pre-peak stiffness, as evidenced in Figure 6-5 (b). In this study, 

of particular interest is the IP capacity, whose variations are shown in Figure 6-6. 

 

(a) 
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(b) 
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(c) 

Figure 6-5. Influence of (a) AR, (b) SR, and (c) Pv on the IP load-deformation behaviors of 

URM walls 
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(a) (b) 

 

(c) 

Figure 6-6. Variation of IP capacity of URM walls in terms of the (a) AR, (b) SR, and (c) pre-

compression load 

6.3.2. Pure OOP behavior 

The structural behavior of URM walls subject to one-way vertical bending can be easily 

interpreted. It should be noted that failure modes of URM walls under OOP loading are not affected 

by factors discussed in this study (i.e., AR, SR, Pv). The bending moments developed along the 

wall section would lead to crack propagation at the base section and approximately mid-height 

position, as shown in Figure 6-7. 
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Figure 6-7. Failure mode of URM wall subject to one-way vertical bending 

Figure 6-8 illustrates the impact of AR, SR, and Pv on the load-deformation behaviors of 

URM walls under OOP loading, respectively. OOP displacements are measured at the central 

positions of the load-applied faces. As observed in Figure 6-8 (a), AR has a negligible influence 

on the OOP behavior, including stiffness, peak capacity (shown in Figure 6-9 (a)), and post-peak 

behavior. A larger SR generally leads to decreased OOP stiffness and capacity, as shown in Figure 

6-8 (b), since taller walls are more susceptible to buckling and secondary moments caused by 

larger deflections under OOP lateral loads. The variation curves of OOP capacity in terms of the 

SR under different pre-compression load levels, displayed in Figure 6-9 (b), indicate different 

slopes, which implies that the influence of pre-compression load and SR can be interdependent. 

An increase in the pre-compression load could counteract the tensile stress generated by OOP 

forces, thereby enhancing the OOP capacity (Figure 6-8 (c)). A linear relationship can be used to 
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describe the relationship between the OOP capacity and pre-compression load, shown in Figure 

6-9 (c). However, it should be noted that for highly slender walls (e.g., SR = 32.24) shown in 

Figure 6-8 (c), a higher pre-compression load would be detrimental to the wall’s stiffness. 

 

(a) 
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(b) 
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(c) 

Figure 6-8. Influence of (a) AR, (b) SR, and (c) Pv on the OOP load-deformation behaviors 
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(a) (b) 

 

(c) 

Figure 6-9. Variation of OOP capacity of URM walls in terms of the (a) AR, (b) SR, and (c) 

pre-compression load 

 IP AND OOP INTERACTION BEHAVIORS OF URM WALLS 

This section presents the simulation results for URM walls subjected to combined IP and OOP 

loading. The reduction in IP capacity caused by the presence of OOP loading is quantified across 

various geometrical configurations and pre-compression load levels. The effects of AR, SR, and 

Pv on the capacity interaction are investigated. To facilitate the discussion, pure IP and pure OOP 

capacities (i.e., capacities under pure IP and pure OOP loading) of URM walls are denoted as pure

IPF
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and pure

OOPp , respectively. Conversely, IP and OOP capacities under combined IP and OOP 

conditions are denoted as IPF and OOPp , respectively. 

6.4.1. Influence of aspect ratio (AR) and pre-compression load (Pv) 

To obtain insights into the IP-OOP interaction behaviors of URM walls with different AR, two 

walls with the smallest and largest AR values are considered to examine the failure modes: wall 

AR0.75_SR9.92 and wall AR2.25_SR9.92. Note that under pure IP lading, wall AR0.75_SR9.92 

(a long wall) demonstrates a diagonal shear failure mode, whereas wall AR2.25_SR9.92 (a short 

wall) exhibits the flexural failure. Under combined IP and OOP loading, the failure modes are 

affected by the pre-applied OOP loads.  

Figure 6-10 presents the different failure modes of wall AR0.75_SR9.92 when the peak IP 

loads are attained under IP loading after a pre-compression Pv = 2.00 MPa and different levels of 

OOP loads are pre-applied. As shown in Figure 6-10 (a), under the pure IP condition (i.e., no OOP 

load), IP flexural cracks can be observed at the bottom, but the IP capacity is governed by the 

formation of diagonal shear cracking and the crushing at the toe region. With the escalation of pre-

applied OOP loads to 20% of the pure OOP capacity, the failure mode remains largely unaltered, 

see Figure 6-10 (b). However, with OOP loads attaining 40% and 60% of the pure OOP capacity, 

more OOP flexural cracks develop at the bottom course and the middle height, and under combined 

IP-OOP loading, additional OOP shear sliding deformations can be observed with less diagonal 

shear cracking, see Figure 6-10 (c-d). The further increase in OOP load leads to a weakened section 

at the base, induced by the combined effects of OOP bending and OOP sliding, while no diagonal 

shear cracks are visible when the wall fails, as illustrated in Figure 6-10 (e). 
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(a) (b) (c) 

  

(d) (e) 

Figure 6-10. Failure modes of wall AR0.75_SR9.92 under a pre-compression load of 2.00 MPa 

with different pre-applied OOP load levels: (a) 0%, (b) 20%, (c) 40%, (d) 60%, and (e) 80% of 

pure OOP capacity (deformation scale factor: 15) 

 

The associated IP load-deformation curves are shown in Figure 6-11. It is worth noting that 

the IP loads are normalized by the wall lengths to reflect the load per unit wall length. In addition 

to the ductility reduction, an obvious decrease in IP capacities is observed due to the presence of 

the OOP load. When the pre-applied OOP load levels are at 60% and 80% of the pure OOP 

capacity, the IP capacities are 86.13 kN/m and 72.99 kN/m, respectively, corresponding to 

reductions of 10.37% and 24.04% with respect to the pure IP capacity of 96.09 kN/m. 
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Figure 6-11. IP load-deformation curves with different levels of pre-applied OOP loading for the 

wall AR0.75_SR9.92 with Pv = 2.00 MPa 

Similarly, Figure 6-12 illustrates the failure modes for the wall AR2.25_SR9.92 subjected 

to IP loading with Pv = 2.00 MPa and different pre-applied OOP loads. It can be observed that the 

failure modes with pre-applied OOP loads at 20%, 40%, and 60% of the pure OOP capacity closely 

resemble that of the wall without pre-applied OOP load, characterized by the IP flexural cracking, 

i.e., cracking opening at the mortar joints below the bottom course shown in Figure 6-12(a). When 

the pre-applied OOP load reaches 80% of the pure OOP capacity, the critical section shifts to the 

mid-height section due to the extensive OOP flexural cracks developed. Notably, there is no 

evident shear sliding developed for this wall, even with high pre-applied OOP loads. This is 

essentially different from the failure mechanism of wall AR0.75_SR9.92 with Pv = 2.00 MPa 

discussed earlier. Correspondingly, the IP load-deformation curves for the wall AR2.25_SR9.92 

with Pv = 2.00 MPa are shown in Figure 6-13. Note that the IP capacity with a pre-applied load 

equal to 80% of the pure OOP capacity is reduced by 30.3% compared to the pure IP capacity. 
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(a) (b) (c) (d) (e) 

Figure 6-12. Failure modes of wall AR2.25_SR9.92 under a pre-compression load of 2.00 MPa 

with different pre-applied OOP load levels: (a) 0%, (b) 20%, (c) 40%, (d) 60%, and (e) 80% 

of pure OOP capacity (deformation scale factor: 10) 

 

 

Figure 6-13. IP load-deformation curves with different levels of pre-applied OOP loading for the 

wall AR2.25_SR9.92 with Pv = 0.00 MPa 
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To quantify the IP-OOP capacity interaction effects, or the influence of OOP load on the 

IP capacity, interaction curves are developed by normalizing the IP and OOP capacities IPF and 

OOPp  using the pure IP and OOP capacities pure

IPF and pure

OOPp . Figure 6-14 presents the influence of 

AR on the interaction curves. As AR decreases, the interaction effects become stronger, leading to 

more pronounced reductions in IP capacities due to the presence of OOP loading. That is to say, 

longer walls exhibit more pronounced IP capacity reductions, which is attributed to the failure 

mechanisms discussed previously. 

  

Figure 6-14. IP-OOP capacity interaction curves for URM walls with different AR under a 

pre-compression load of: (a) 0.00 MPa, and (b) 2.00 MPa 

In addition, three reference interaction curves are included in Figure 6-14 for comparison 

purposes: one suggested by ASCE 41-17 (ASCE 2017) for masonry infill walls, one depicted by 

a unit circular arc, and another one indicating no interaction. Notably, the unit circular arc 

correlates better with the interaction curves derived based on FE simulations for the URM walls 

considered. For the URM wall exhibiting the most pronounced IP-OOP interaction effects shown 

in Figure 6-14 (i.e., wall AR0.75_SR9.92 with Pv = 0.00 MPa), there is a 37% reduction relative 
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to the IP capacity of the wall without OOP loads. This reduction is considerably less than that 

suggested by ASCE 41-17 for masonry infill walls (i.e., 58%). 

A comparison between Figure 6-14 (a) and Figure 6-14 (b) indicates that the walls without 

a pre-compression load exhibit greater IP capacity reduction than those with a 2.00 MPa pre-

compression load. To have more insights on the influence of pre-compression load on the IP-OOP 

interactions, the failure modes of the wall AR0.75_SR9.92 with pre-applied OOP loads at 80% of 

the pure OOP capacities subjected to different pre-compression load levels are presented as an 

example in Figure 6-15. For the cases of Pv = 0 MPa and Pv = 0.25 MPa, as shown in Figure 6-15 

(a-b), the combined IP and OOP loading results in the detachment of the corner region and a 

noticeable wall twist, largely attributed to the low OOP sliding resistance of the walls. This type 

of failure is commonly observed in low-rising URM buildings, for instance, see a post-earthquake 

survey referenced in (Vlachakis et al. 2020). Consequently, this would lead to a substantial 

reduction in IP capacity. An increase in pre-compression load would alleviate the IP-OOP 

interaction effects given its positive role in enhancing sliding resistance, and the OOP bending 

deformation would become more prominent, as shown in Figure 6-15 (b-d). However, as the pre-

compression load further increases, additional OOP flexural cracks would develop around the mid-

height region, as seen in Figure 6-15 (e-f). This can compromise the IP capacity due to the reduced 

effective thickness of the wall. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 6-15. Failure modes of wall AR0.75_SR9.92 with pre-applied OOP load levels at 80% of 

pure OOP capacities under a pre-compression load of : (a) 0 MPa (deformation scale factor: 

100), (b) 0.25 MPa, (c) 0.50 MPa, (d) 1.00 MPa, (e) 1.50 MPa, and (f) 2.00 MPa (deformation scale 

factor for (b-f): 15) 

 

Figure 6-16 illustrates the IP-OOP capacity interaction curves for both walls discussed. It 

is observed that pre-compression loads in a relatively lower range are beneficial for mitigating the 

capacity interaction effects for the walls. To be specific, this range is 0.00 MPa < Pv < 0.25 MPa 



Chapter 6: Numerical Investigation of Unreinforced Masonry Walls under Bi-directional Loading: In-plane 

Capacity Reduction due to Out-of-plane Loading 

227 

 

for the wall AR0.75_SR9.92, and 0.00 MPa < Pv < 0.5 MPa for the wall AR2.25_SR9.92. However, 

at higher pre-compression load levels, an increase in Pv adversely impacts the IP-OOP interaction 

effects. Notably, walls with Pv = 0.00 MPa exhibit the most significant IP capacity reductions when 

the pre-applied OOP loads are 80% of the pure OOP capacities, primarily due to their limited OOP 

sliding resistance. However, these reductions are still less than those suggested by ASCE 41-17 

for masonry infill walls. On the other hand, the unit circular arc is much better correlated with the 

ones obtained by FE simulations. 

  

(a) (b) 

Figure 6-16. IP-OOP capacity interaction curves under different pre-compression loads for: 

(a) wall AR0.75_SR9.92 and (b) wall AR2.25_SR9.92 

6.4.2. Influence of slenderness ratio (SR) and pre-compression load (Pv) 

Figure 6-17 presents the OOP deformation contours of wall AR1.00_SR9.92 and wall 

AR1.00_SR32.24, representing two walls with the smallest and largest SR considered, 

respectively. Both walls are subjected to a pre-compression load of 0.0 MPa. To illustrate the 

effects of IP loads on the OOP deformations, two IP loading levels are involved in Figure 6-17: 

no IP load (i.e., only with pre-applied OOP loads at 80% of the pure OOP capacities) and peak IP 

load. It is worth emphasizing that when assessing the influence of SR, the length and height of 
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walls are varied proportionally to maintain a fixed value of AR, as indicated by the dimensions (at 

undeformed stages) shown in Figure 6-17. The contour plots reveal that the IP load induces a 

greater additional OOP deformation for the highly slender wall (i.e., wall with SR = 32.24). The 

increased OOP deformations cause more extensive tensile crack openings, leading to more 

reductions in the effective thickness of the wall. In turn, walls with larger SR are prone to greater 

IP capacity reductions, thereby resulting in stronger IP and OOP interaction effects. This is 

corroborated by the IP-OOP capacity interaction curves shown in Figure 6-18, in which the 

influence of SR is illustrated with Pv = 0.0 MPa and Pv = 2.0 MPa. At both pre-compression load 

levels, the walls with maximum SR (i.e., wall AR1.00_SR32.24) demonstrate the most substantial 

IP capacity reductions due to the presence of OOP loading. For instance, with Pv = 0.00 MPa, the 

IP capacity of wall AR1.00_SR32.24 reduces by 61.5% when the pre-applied OOP load reaches 

80% of its pure OOP capacity, surpassing the 58% reduction suggested in ASCE 41-17 for 

masonry infill walls. In contrast, this reduction is only 35.4% for wall AR1.00_SR9.92. With Pv = 

2.00 MPa, the IP capacity reductions for wall AR1.00_SR32.24 and wall AR1.00_SR9.92 are 45% 

and 25%, respectively. 
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(a) 

 

(b) 

Figure 6-17. Evolution of OOP deformations (mm) due to IP loads for the: (a) wall 

AR1.00_SR9.92 with Pv = 0.0 MPa, and (b) wall AR1.00_SR9.92 with Pv = 0.0 MPa (deformation 

scale factor: 500) 



Chapter 6: Numerical Investigation of Unreinforced Masonry Walls under Bi-directional Loading: In-plane 

Capacity Reduction due to Out-of-plane Loading 

230 

 

  

(a) (b) 

Figure 6-18. IP-OOP capacity interaction curves for URM walls with different SR under a pre-

compression load of: (a) 0.00 MPa, and (b) 2.00 MPa 

To show the influence of pre-compression loads on the walls with different SR, the IP-

OOP interaction curves of two walls, AR1.00_SR9.92 and AR1.00_SR32.24, are shown in Figure 

6-19. The observation here is consistent with the discussion presented in Section 6.4.1. At 

relatively lower magnitudes, increasing the pre-compression load proves beneficial in mitigating 

the IP-OOP capacity interactions. However, a further increase in pre-compression load becomes 

detrimental, especially for highly slender walls. This is due to the additional moments generated 

from second-order effects, which would negatively impact the IP-OOP interactions, i.e., more 

reductions of IP capacities due to the pre-applied OOP loading. Specifically, it can be obtained 

from Figure 6-19 that the pre-compression load has beneficial effects in reducing the IP and OOP 

interaction within the range of 0 ~ 0.5 MPa while exhibiting adverse effects when the pre-

compression load exceeds 0.5 MPa. 
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(a) (b) 

Figure 6-19. IP-OOP capacity interaction curves for URM walls with different Pv for the wall: 

(a) AR1.00_SR9.92 and (b) AR1.00_SR32.24 

 ANALYTICAL MODEL FOR INTERACTION CURVES 

A total of 42 URM walls with varying values of AR, SR, and Pv are examined in this study, as 

detailed in Table 6-2. Figure 6-20 shows the range of interaction curves for the considered walls. 

Notably, the interaction curve suggested by ASCE 41-17 for masonry infill walls serves as the 

lower bound for the curves of URM walls considered in this study. However, due to the variation 

of geometrical parameters and pre-compression loads, a large scatter in interaction curves is 

observed for URM walls. The greatest IP-OOP interaction (i.e., the largest IP capacity reduction 

due to the pre-applied OOP loading) is observed in the wall AR1.00_SR32.24 with Pv = 0.00 MPa, 

while the least significant effects are identified in the wall AR2.25_SR9.92 with Pv = 0.50 MPa. 

Thus, it is valuable to develop an analytical model for the IP-OOP capacity interaction curves to 

account for the influence of AR, SR, and Pv, instead of using one unified relationship such as the 

one suggested by ASCE 41-17 for masonry infill walls or the unit circular arc. Such a relationship 

is proposed in the form of Eq. (6-1): 
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Figure 6-20. Range of interaction curves of URM walls considered 
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where the parameters ‘a’ and ‘b’ determine the shape of the interaction curves. 

The results derived from curve fitting imply that parameter ‘a’ depends on AR and Pv, 

while parameter ‘b’ is influenced by SR and Pv. The general trends regarding the impact of AR, 

SR, and Pv on interaction curves can be summarized as follows. A lower AR and a higher SR lead 

to more IP capacity reductions. Consequently, decreasing AR and increasing SR result in decreases 

in parameters ‘a’ and ‘b’, respectively. As for the pre-compression load Pv, an increase at a lower 

magnitude level proves advantageous in mitigating IP-OOP capacity interaction effects, while a 

further increase at a higher magnitude level negatively impacts IP-OOP interactions. Thus, 

increasing Pv initially leads to increases in parameters ‘a’ and ‘b’, followed by an inverse trend 
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upon further increases in Pv. The curve fitting leads to the expressions of parameters ‘a’ and ‘b’ in 

non-dimensional forms, given in Eq. (6-2) and Eq. (6-3):  

 

2

v vP P
(0.57 AR - 0.21) exp 160.7 38.3 ) 1.8 0

m m

a
f f

  
 =   −  +  +  

    

 (6-2) 
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b
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  
 = −  + −  +  −  

    

 (6-3) 

Here, mf   is the compressive strength of masonry. 

To verify the effectiveness of the proposed model, the interaction curves predicted by Eq. 

(6-1), Eq. (6-2), and (6-3) are compared with the model proposed by Kesavan and Menon (2022), 

the design provision in ASCE 41-17 for masonry infill walls, and the unit circular arc. Figure 6-21 

(a-d) presents the validation results, demonstrating the capability of the proposed analytical model 

to capture the effects of AR under different pre-compression loads. Figure 6-21 (e-h), on the other 

hand, aims to examine whether the impacts of SR can be well described. It is worth mentioning 

that the design provision in ASCE 41-17 assumes no variation of IP and OOP interaction curves, 

and constant values are used for parameters ‘a’ and ‘b’ in Eq. (6-1), both set equal to 1.5. 

Additionally, the model proposed by Kesavan and Menon (2022) does not account for the effects 

of SR, leading to identical interaction curves shown in Figure 6-21 (e) and (f), and Figure 6-21 (g) 

and (h). The model’s accuracy is evaluated in terms of the mean square error (MSE). It can be seen 

that the proposed model generally outperforms the other models, although it presents a marginally 

larger MSE in some cases than other models. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 



Chapter 6: Numerical Investigation of Unreinforced Masonry Walls under Bi-directional Loading: In-plane 

Capacity Reduction due to Out-of-plane Loading 

235 

 

  

(g) (h) 

Figure 6-21. Comparison of interaction curves between the proposed model, the model 

proposed by Kesavan and Menon. (2022), and ASCE 41-17 (ASCE 2017) for masonry infill 

walls: (a) AR0.75_SR9.92 with Pv = 0.00 MPa, (b) AR2.25_SR9.92 with Pv = 0.00 MPa, (c) 

AR0.75_SR9.92 with Pv = 2.00 MPa, (d) AR2.25_SR9.92 with Pv = 2.00 MPa, (e) 

AR1.00_SR9.92 with Pv = 0.00 MPa, (f) AR1.00_SR32.24 with Pv = 0.00 MPa, (g) 

AR1.00_SR9.92 with Pv = 2.00 MPa, and (h) AR1.00_SR32.24 with Pv = 2.00 MPa 

 CHAPTER CONCLUSION  

In this chapter, the complex structural behavior of unreinforced masonry (URM) walls under 

combined in-plane (IP) and out-of-plane (OOP) loading was investigated using the simplified 

micro modeling approach. The effects of aspect ratio (AR), slenderness ratio (SR), and pre-

compression load (Pv) on the IP-OOP interaction behaviors of URM walls were explored with 

regard to failure modes, load-deformation behaviors, and IP-OOP capacity interaction curves. 

The finite element (FE) analysis results highlighted the sensitivity of the IP capacity 

reduction in the presence of OOP loading. Longer walls, characterized by smaller AR, exhibit 

more pronounced IP and OOP interaction effects. Additionally, highly slender walls show 

significant additional moments due to second-order effects under OOP loading, thereby negatively 

affecting the IP capacity. Lower-level pre-compression loads are beneficial in diminishing 

capacity interaction effects, while higher pre-compression loads exert a negative influence. An 
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analytical model was developed based on the FE simulation data to predict the IP and OOP 

capacity interaction curves of URM walls more efficiently. The proposed analytical model 

incorporates the effects of AR, SR, and Pv. A comparison between the proposed analytical model 

and other models available in the public literature and design code demonstrates its 

outperformance. 

The findings of this study highlight the importance of considering IP and OOP interaction 

effects, as well as the influences of AR, SR, and Pv, when assessing the structural behaviors of 

URM walls. This contributes to the underexplored area in the literature. The newly developed IP-

OOP capacity interaction curves are complementary to the existing ones for masonry infill walls 

in ASCE 41-17 for seismic evaluation and retrofit of existing buildings. Note that the results are 

applicable to safety assessment of typical masonry walls in new and existing low-rise buildings. 

However, it is well worth noting the restriction in the applicability. For example, the vertical one-

way bending under OOP loading is considered, and thus it is not applicable to walls subjected to 

two-way bending under OOP loading. Moreover, material parameters of masonry walls and its 

components are taken as constants to represent a typical brick masonry wall with strong unit and 

weak mortar. Further research is needed to explore the effects of different masonry material 

properties on the IP and OOP interaction behaviors of URM walls. In addition, the loading 

sequence considered in this study aims for the investigation of influence of pre-applied OOP 

loading on the IP capacity reduction. However, the existence of IP load may be detrimental to the 

OOP capacity as well, which is worth further investigation. 
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Chapter 7. NUMERICAL INVESTIGATION OF REINFORCED MASONRY 

WALLS UNDER BI-DIRECTIONAL LOADING: IN-PLANE 

CAPACITY REDUCTION DUE TO OUT-OF-PLANE LOADING 

The structural behavior of reinforced masonry (RM) walls subjected to either pure in-plane (IP) or 

pure out-of-plane (OOP) loading has been thoroughly examined in public literature. However, in 

certain circumstances (e.g., seismic loading), RM walls could be subjected to combined IP and 

OOP loads. This study conducts a comprehensive numerical investigation into the structural 

behaviors of RM walls under combined IP and OOP loading, focusing on the influence of 

geometric parameters (aspect ratio and height-to-thickness ratio) and pre-compression load. To 

capture the possible failure modes of RM walls under bi-directional loading scenarios, a simplified 

micro modeling approach is employed in this study. The simulation results indicate that the 

presence of OOP loads can induce substantial IP capacity reductions, especially for flexural 

governed walls characterized by a larger aspect ratio and a low level of pre-compression load. For 

flexural governed walls, IP and OOP capacity interactions are found to be less sensitive to 

geometrical parameters and pre-compression load than shear governed walls. The most interaction 

is observed for highly slender walls without pre-compression loads, indicating a reduction in IP 

capacity by 45% when OOP loading is at 80% of its corresponding capacity. A further comparison 

between the RM walls and their counterparts, unreinforced masonry (URM) walls, suggests that 

the incorporation of reinforcements is effective in mitigating the IP-OOP interaction effects. 

 INTRODUCTION 

In North America, reinforced masonry (RM) walls have been successfully used in a variety of 

construction applications, including low-to-medium-rise residential, commercial, and school 
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buildings. Typically, the construction of an RM wall entails the utilization of vertical steel 

reinforcing bars within hollow concrete blocks filled with grout, accompanied by horizontal steel 

reinforcements. The incorporation of steel reinforcement enhances the structural performance of 

masonry walls effectively. A RM wall can be used as an integral component of both vertical and 

lateral load-resisting systems to provide resistance against loads applied in-plane (IP) or out-of-

plane (OOP), such as earthquake loads along and perpendicular to the wall, wind loads 

perpendicular to the wall, and eccentrical gravity loads transferred from diaphragms supported on 

the wall. 

The structural behavior of RM walls under IP or OOP loading has been extensively 

investigated through experimental tests and numerical models of different fidelity levels. 

Specifically for RM walls under IP loading, the recent advancements have been well documented 

in relevant review papers (El-Dakhakhni and Ashour 2017; Zeng and Li 2023). A notable research 

program launched during the 1980s by the US-Japan Technical Coordinated Committee for 

Masonry Research (TCCMAR) contributed a vast experimental database for RM walls 

(Kaminosono et al. 1988; Shing et al. 1989, 1990a, b; Takashi et al. 1986). This research initiative 

laid the basis for the contemporary prescriptive masonry design codes in North America (Canadian 

Standards Association 2014; TMS 2016), which regulate current design practices for masonry 

structures. As a complement to the experimental studies, various computational models were 

developed and applied for RM walls using commercial software or proprietary computer programs 

to facilitate the understanding and/or prediction of IP behaviors (Cheng and Shing 2022a, b; Peruch 

et al. 2019). The experimental and analytical findings reveal that RM walls can be categorized into 

two fundamental types under IP loading according to the behavior or failure mechanism: flexural 
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governed and shear governed. Failure of flexural governed walls, referred to as IP-flexure herein, 

is generally associated with bed-joint opening and yielding of flexural reinforcements at the bottom 

course on the tension side and masonry crushing at the toe region on the compression side. By 

contrast, the failure of shear governed walls is typically characterized by the formation of diagonal 

cracks and the yielding of horizontal reinforcements, or the horizontal sliding along the bed joint 

surface. The complex behavior of masonry shear walls, e.g., either flexure governed or shear 

governed, is influenced by the boundary condition, aspect ratio (i.e., height-to-length ratio), axial 

load, the ratio of vertical to horizontal reinforcement, etc (Kingsley et al. 2014b). 

Compared to RM walls under IP loading, the behavior of RM walls under OOP loading is 

relatively less complicated and better understood. When spanned in one-way, RM walls bend in 

the OOP direction, behaving like beams under lateral loading and/or columns under eccentric 

vertical loading. RM walls initially behave similarly to unreinforced masonry (URM) walls prior 

to cracking and then experience a stiffness reduction. However, they could still carry loads up to 

and beyond the yield of longitudinal (flexural) reinforcements. As such, the OOP failure mode is 

characterized by the presence of crack openings at bed joints on the tension face and spalling of 

the mortar and face shells of the masonry unit on the compression side. Such phenomenon was 

well reported in experimental testing of RM walls under OOP loading (Hamid et al. 1990a, 1990b; 

Hamid and Abboud 1989). Similarly, numerical models were developed to simulate the OOP-

flexural behavior of RM walls (Noor-E-Khuda et al. 2016b; Noor-E-Khuda and Dhanasekar 2020; 

da Porto et al. 2011; Salem et al. 2019). It is worth noting that the axial load on walls also 

contributed to the OOP-flexure failure or stability failure due to the second-order effect, 

particularly for slender RM walls (Metwally et al. 2022). 
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As noted above, the IP and OOP behaviors have been well studied in an uncoupled manner. 

Experimental programs rarely tested RM walls under both IP and OOP loadings, and the majority 

of the numerical models developed are either limited to the simulation of pure IP or OOP behavior. 

Contemporary design codes only provide models for the IP and OOP capacities of RM walls 

without mentioning the interaction for RM walls. In engineering practice, IP and OOP capacities 

are evaluated individually against the corresponding load demands with (partial) safety factors to 

ensure the desired safety margin, assuming either IP and OOP loads do not co-exist, or IP and 

OOP capacities are independent from each other. Nonetheless, it is not uncommon that in certain 

circumstances, such as during earthquakes, RM walls could be subjected to both IP and OOP loads. 

Note that the OOP loads here include both seismic loads applied perpendicular to the walls and 

the pre-existing OOP loads arising from winds or eccentrical vertical loads. Additionally, it is well 

acknowledged that concurrent load in one direction could potentially lead to load capacity 

reduction in the other direction, known as “capacity interaction effects”. This is exemplified by 

the effects of axial load and bi-directional bending moment (P-M-M) interaction diagrams for 

columns (Shen et al. 2023; Del Zoppo et al. 2017) and the IP and OOP capacity interaction 

relationships for masonry infill walls as specified in ASCE 41-17 (ASCE 2017). Lack of 

accounting for the IP and OOP behavior interaction of RM walls, e.g., the reduction in IP capacity 

caused by the presence of OOP loading, can potentially result in unexpected performance of RM 

walls under complex loading conditions. 

In contrast to the research focusing solely on the IP or OOP behaviors of RM walls, 

experimental or numerical works on the behaviors of RM walls under combined IP and OOP 

loading are notably scarce. This deficiency in the literature could be attributed to the difficulties 



Chapter 7: Numerical Investigation of Reinforced Masonry Walls under Bi-directional Loading: In-plane Capacity 

Reduction due to Out-of-plane Loading 

241 

 

and cost concerns associated with testing masonry walls under complex loading conditions, and/or 

the technical complexities and computational costs involved in modeling masonry walls in three-

dimensional (3D) space. A few experimental attempts were made in this aspect regarding URM 

walls (Dolatshahi 2012; Krishnachandran and Menon 2023; Najafgholipour et al. 2013), with all 

results indicating substantial IP and OOP capacity interaction effects. In addition, several 

numerical studies were conducted as well for URM walls (Agnihotri et al. 2013; Dolatshahi et al. 

2015; Dolatshahi and Yekrangnia 2015; Kesavan and Menon 2022; Najafgholipour et al. 2014; 

Noor-E-Khuda and Dhanasekar 2018a, 2018b), resulting in insights about the influence of various 

design parameters (i.e., geometry, pre-compression load) on the capacity interaction behavior of 

URM walls. A general conclusion made from these works is that shear-dominated URM walls (i.e., 

walls with lower aspect ratios under higher pre-compression loads) exhibited more IP capacity 

reductions with the presence of OOP loading compared to flexural-dominated walls (i.e., walls 

with higher aspect ratios under lower pre-compression loads). However, the relevant research on 

RM walls can only be found in Noor-E-Khuda and Dhanasekar (2018a), in which a macro 

continuum model was used by representing masonry (units plus mortar joints) as a homogeneous 

material. This numerical investigation identified a critical value of OOP load (as a percentage of 

OOP capacity), beyond which the IP capacity decreased rapidly. However, the influence of various 

parameters (e.g., geometrical factors) on the IP and OOP interaction behaviors of RM walls was 

not informed due to the limited number of RM walls simulated. Moreover, the detailed failure 

modes of RM walls were not adequately captured through the macro modeling approach, causing 

a lack of comprehension regarding the IP and OOP interaction behaviors. To reliably predict the 

masonry wall behavior under both IP and OOP loadings, 3D micro modeling that simulates the 
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individual masonry units and mortar joints under complex loadings is favored. Such a preference 

stems from the potential IP shear failure of RM walls, which adds complexity to the interaction 

between IP and OOP behaviors. This interaction extends beyond the simple bi-directional bending 

(IP-flexure and OOP-flexure) interaction observed in the P-M-M interaction of reinforced concrete 

columns. 

To address the inadequate research on the IP and OOP interaction behaviors of RM walls, 

this chapter presents a comprehensive numerical investigation based on the simplified micro 

modeling strategy introduced by Page (1978) and the recently developed multi-yield surfaces 

model for mortar joints (Li and Zeng 2023). Detailed failure modes and corresponding load-

deformation curves are discussed with a particular emphasis on IP and OOP capacities. The IP 

capacity reductions due to the presence of different levels of OOP loads are quantified. The 

primary objective herein is to identify the most critical scenario (i.e., strongest interaction effects) 

and investigate the influence of three important factors, namely the aspect ratio (AR), slenderness 

ratio (SR), and pre-compression load (Pv), on the level of reductions in IP capacity due to OOP 

loading. Moreover, the influence of reinforcement in RM walls is also addressed through a contrast 

between RM walls and their counterparts, URM walls, in terms of their susceptibility to IP capacity 

reduction under combined IP and OOP loadings. 

 3D FINITE ELEMENT MODEL FOR RM WALLS 

The 3D FE models for RM walls are developed using the simplified micro modeling approach in 

the general-purpose FE package ABAQUS (Dassault Systemes 2017), as shown in Figure 7-1 Off-

the-shelf elements and material constitutive models are used for masonry units, except for mortar 

joints, which are modeled utilizing a recently developed 3D plasticity-based multi-yield surfaces 
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constitutive model (Li and Zeng 2023). The modeling strategy was validated using small-scale 

masonry specimens (e.g., unit-mortar-unit assemblages), large-scale URM walls under IP or OOP 

loadings (Li and Zeng 2023), and RM walls under IP and OOP loadings presented in Chapter 4.  

 

Figure 7-1. Schematic view of the FE modeling strategy using simplified micro approach for RM 

walls 

 

 

 STRATEGY FOR FE-BASED INVESTIGATION OF RM WALLS UNDER 

COMBINED IP AND OOP LOADING 

The modeling strategy for RM walls validated for both IP and OOP capacity predictions is used in 

this section. This section aims to plan for the FE-based investigation of RM walls under combined 

IP and OOP loading, encompassing the baseline RM wall as a reference for variation, the varied 

parameters considered, the boundary condition, and the loading protocol for analysis. 
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The RM wall validated earlier (Seif Eldin 2016; Seif ElDin and Galal 2017) serves as the 

point of departure, i.e., the baseline model for investigating the IP and OOP interaction behavior 

of RM walls. This RM wall, designed in accordance with the CSA (2014), represents a typical 

masonry construction practice. Note that the tested RM wall was shear governed. In this study, the 

baseline model is varied to provide more cases to encompass both flexural and shear failures. As 

revealed by the experimental (Hamid et al. 1990a, b; Hamid and Abboud 1989; Shing et al. 1989, 

1990a) and numerical studies (Calderón et al. 2021a; Noor-E-Khuda and Dhanasekar 2020; Noor-

E-Khuda and Thambiratnam 2021), the IP behavior of RM walls is largely influenced by the aspect 

ratio (AR), defined as height-to-length ratio, and pre-compression load (Pv). On the other hand, 

OOP behaviors are greatly sensitive to the slenderness ratio (SR), defined as the height-to-

thickness ratio, and pre-compression load (Pv). Thus, AR, SR, and Pv are varied, as the primary 

focuses of this study, to investigate the behaviors of RM walls under combined IP and OOP loading, 

while the horizontal and vertical reinforcement ratios in these models are kept identical to those in 

the baseline model. 
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Table 7-1. Design cases for FE-based investigation of the IP-OOP behavior interaction of RM walls 

To be specific, AR is varied by changing the wall length while keeping the same height; 

SR is varied by changing the wall height while keeping the thickness the same as the unit thickness. 

Note that when varying SR, AR is fixed the same as the baseline wall. A total of eight geometrical 

configurations, as summarized in Table 7-1, are considered, with AR ranging from 0.67 to 2.00 

and SR ranging from 8.42 to 29.47. The lower and upper bounds for AR and SR are determined in 

accordance with the design guidelines specified in CSA (2014). In Table 7-1, the notations 

distinguishing different walls include the values of AR and SR. For instance, ‘AR2.00_SR8.42’ 

refers to the wall with an AR of 2.00 and a SR of 8.42. For each wall, six levels of Pv are considered: 

0, 0.5, 1.0, 1.5, 2.0, and 2.5 MPa. The maximum pre-compression is chosen to be approximately 

20% of the compressive strength of masonry (13.1 MPa), deemed an appropriate maximum axial 

load level applied to masonry walls (Kesavan and Menon 2022). With the analysis results obtained 

from above walls considered, several RM walls with the strongest IP and OOP interaction effects 

Wall 
Length 

(mm) 

Height 

(mm) 

Thickness 

(mm) 
AR SR Pv (MPa) 

AR2.00_SR8.42 800 1600 190 2.00 8.42 0.0, 0.5, 1.0, 1.5, 2.0, and 2.5 

AR1.60_SR8.42 1000 1600 190 1.60 8.42 0.0, 0.5, 1.0, 1.5, 2.0, and 2.5 

AR1.33_SR8.42 1200 1600 190 1.33 8.42 0.0, 0.5, 1.0, 1.5, 2.0, and 2.5 

AR0.89_ SR8.42 1800 1600 190 0.89 8.42 0.0, 0.5, 1.0, 1.5, 2.0, and 2.5 

AR0.67_SR8.42 2400 1600 190 0.67 8.42 0.0, 0.5, 1.0, 1.5, 2.0, and 2.5 

AR1.33_SR12.63 1800 2400 190 1.33 12.63 0.0, 0.5, 1.0, 1.5, 2.0, and 2.5 

AR1.33_SR21.05 3000 4000 190 1.33 21.05 0.0, 0.5, 1.0, 1.5, 2.0, and 2.5 

AR1.33_SR29.47 4200 5600 190 1.33 29.47 0.0, 0.5, 1.0, 1.5, 2.0, and 2.5 

Note: All RM walls have a horizontal reinforcement ratio of 0.13% and a vertical reinforcement ratio of 0.79% 
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are identified and used to explore the effects of reinforcements by simulating their counterpart 

URM walls, as detailed in Section 7.6. 

The IP and OOP boundary conditions of RM walls are considered to be identical to those 

in the validation cases, i.e., cantilever for the IP case and one-way vertical bending for the OOP 

case. During the FE analyses, a pre-compression load Pv is applied at the top of the wall and kept 

constant throughout subsequent load steps to simulate the vertical load supported by the wall. 

Subsequently, a predetermined uniformly distributed OOP pressure (pOOP) is then imposed and 

maintained to represent the OOP load at a predetermined level. Finally, an IP load (FIP) is applied 

monotonically with an increasing amplitude until the wall collapses. The predetermined OOP load 

levels (pOOP) considered are 20%, 40%, 60%, and 80% of the OOP capacity of the examined wall. 

The FE modeling details, including the boundary conditions and loading sequences, are illustrated 

in Figure 7-2. 

   

(a) (b) (c) 

Figure 7-2. Loading sequence for RM walls under combined IP and OOP loading: (a) apply a 

pre-compression load, (b) apply a predetermined uniformly distributed OOP load, and (c) apply 

an IP load until wall failure 
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 PURE IP AND PURE OOP BEHAVIORS OF RM WALLS 

The failure mechanism of RM walls under pure IP loading is complex, as revealed by extensive 

studies in the literature, which may further be complicated by the IP and OOP interaction behaviors 

when concurrent OOP load exists. As a reference, the IP behaviors and capacities are simulated 

(i.e., under pure IP loading with zero OOP loading). In addition, to quantify the OOP load level as 

a certain percentage of OOP capacity, the OOP behaviors and capacities of RM walls (under pure 

OOP loading) are also simulated. The pure IP and pure OOP behaviors can also facilitate the 

understanding of their interaction behaviors. Thus, in this section, a brief discussion on the pure 

IP and pure OOP behaviors, including failure modes, of RM walls considered is provided. 

Regarding the RM walls under pure IP loading, the simulation results show that longer 

walls (i.e., those with smaller values of AR) subjected to larger pre-compression stresses are 

primarily governed by shear failure, characterized by diagonal tensile cracking and yielding of 

horizontal reinforcements. Conversely, taller walls (i.e., those with larger AR values) under lower 

pre-compressive loads primarily undergo flexural failure. In such instances, cracking at the bottom 

course, yielding vertical reinforcements, and crushing of the toe region form a collapse mechanism. 

These two different failure modes are illustrated in Figure 7-3, in which the deformed shapes and 

plastic strain of reinforcements (represented by the equivalent plastic strain PEEQ) are included. 

The RM walls studied are characterized into two groups based on failure modes exhibited under 

pure IP loading: flexural governed and shear governed walls, depending on the AR and Pv. Such 

information is detailed in , in which ‘F’ and ‘S’ represent flexural and shear failures, respectively. 

It should be noted that SR, when varying height with AR is fixed, namely the wall size, does not 

influence the IP failure modes. 
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(a) 

    

(b) 

Figure 7-3. FE simulation results for RM walls under pure IP loading: (a) the long wall 

AR0.67_SR8.42 with Pv = 2.50 MPa, and (b) the short wall AR2.00_SR8.42 with Pv = 0.00 MPa 

(Left: deformed shapes of RM walls; Right: the plastic strain distributions of reinforcements) 
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Table 7-2. Failure modes of RM walls under pure IP loading 

Pv (MPa) 

AR 
0.0 0.5 1.0 1.5 2.0 2.5 

2.00 F F F F F S 

1.60 F F F F S S 

1.33 S S S S S S 

0.89 S S S S S S 

0.67 S S S S S S 

  

(a) (b) 

Figure 7-4. Load-deformation curves of RM walls under pure IP loading with different pre-

compression load levels for: (a) the long wall AR 0.67_SR8.42 and (b) the short wall 

AR2.00_SR8.42 

Figure 7-4 (a-b) displays the load-deformation curves for the long wall and short wall under 

different pre-compression load levels, respectively. Correspondingly, the change in IP capacities 

with respect to the aspect ratio (i.e., wall length here) is reported in Figure 7-5 (a). It is worth 

mentioning that the IP load is normalized by the wall length. Notably, the IP capacity per unit wall 

length decreases with the increase in AR (i.e., decrease of wall length here) and the decrease in Pv, 

in other words, shear governed walls exhibit higher IP capacities than flexural governed walls. 

When SR is varied with fixed AR, namely varying the wall height and length proportionally, the 

IP capacities per wall length remain largely unaffected, as shown in Figure 7-5 (b). 



Chapter 7: Numerical Investigation of Reinforced Masonry Walls under Bi-directional Loading: In-plane Capacity 

Reduction due to Out-of-plane Loading 

250 

 

    

(a) (b) 

Figure 7-5. IP capacities of RM walls: (a) influence of AR and Pv and (b) influence of SR and Pv 

The structural behavior of RM walls under pure OOP loading is characterized by the 

cracking opening at the mortar joints below the bottom course and around the mid-height position, 

along with the yielding of vertical reinforcements at the peak OOP load point. This is exemplified 

in Figure 7-6, including the deformed shape and PEEQ distribution of reinforcements for wall 

AR1.33_SR12.63 with Pv = 1.00 MPa. Figure 7-7 shows the load-deformation behaviors of RM 

walls under pure OOP loading, and the change of OOP capacity with respect to SR and Pv are 

presented in Figure 7-8. It is noted that OOP capacity here denotes the OOP resistance against 

lateral pressure load. As SR or wall height increases, a significant decrease in OOP capacity is 

observed, which is mainly because the cross-sectional moment is approximately proportional to 

the square of the wall height. In addition, pre-compression load is beneficial in improving the OOP 

capacity of RM walls with lower values of SR, while for walls with relatively higher SR, an 

increase in the pre-compression load adversely affects OOP capacity for walls with larger SR due 

to P-delta effects, as illustrated in Figure 7-7 (b). 
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(a) (b) 

Figure 7-6. FE simulation results for Wall AR1.33_SR12.63 with Pv = 1.00 MPa under pure OOP 

loading: (a) deformed shape and (b) equivalent plastic strain of reinforcements 

  

(a) (b) 

Figure 7-7. Load-deformation curves of RM walls under pure OOP loading with different pre-

compression load levels for: (a) wall AR1.33_SR8.42 and (b) AR1.33_SR29.47  
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Figure 7-8. OOP capacities of RM walls with different slenderness ratios (with a fixed AR = 1.33) 

and pre-compression loads 

 COMBINED IP AND OOP LOADING 

This section presents the simulation results for RM walls subjected to combined IP and OOP 

loading. The IP capacity reduction caused by the pre-applied OOP loading is quantified, with a 

focus on the effect of AR and SR, as well as Pv. 

7.5.1. Influence of aspect ratio (AR) and pre-compression load (Pv) 

As discussed earlier, the failure of RM walls under IP loading is complex and can be primarily 

categorized into flexure and shear governed walls. Their IP behaviors, including IP capacity, can 

be further influenced by the OOP load level. Thus, the influence of OOP loads on the IP capacity 

is discussed here by dividing the walls into two groups. The first group of RM walls comprises 

flexural governed walls under pure IP loading, including all RM walls with AR = 2.0 except the 

one with Pv = 2.5 MPa and all RM walls with AR = 1.6 except the ones with Pv = 2.0 MPa and 2.5 
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MPa (as shown in Table 7-2). The remaining walls fall into the second group, comprising shear 

governed walls under pure IP loading. 

7.5.1.1 Flexural governed walls under pure IP loading 

Among the RM walls in the first group, wall AR2.00_SR8.42 under a pre-compression load of 

0.00 MPa and wall AR1.60_SR8.42 under a pre-compression load of 1.50 MPa represent the two 

extreme cases in terms of failure mechanism under pure IP loading. Their IP load-deformation 

curves with different levels of pre-applied OOP loading are shown in Figure 7-9. In addition to the 

ductility reduction, an obvious decrease in IP capacities is observed due to the presence of the 

OOP load. Specifically, the IP capacities of wall AR2.00_SR8.42 decrease by 10% and 26% with 

the pre-applied OOP loads equal to 60% and 80% of OOP capacity under pure OOP loading 

condition, respectively, when compared with the IP capacity of the RM wall subjected to no OOP 

load. A similar trend is observed for other flexural governed walls under IP loading in the first 

group, including AR1.60_SR8.42. Such observations highlight the importance of considering the 

IP and OOP capacity interactions for RM walls. 

To quantify the capacity interaction effect, or the influence of the OOP load on the IP 

capacity, the IP and OOP capacities are normalized by the pure IP and OOP capacities (i.e., 

capacities under pure IP and pure OOP loading conditions), denoted as pure

IPF and pure

OOPp , 

respectively. Interaction curves for wall AR2.00_SR8.42 and wall AR1.60_SR8.42 under different 

pre-compression levels are reported in Figure 7-10. Here, IPF  and OOPp  represent the IP and OOP 

capacities under combined IP and OOP loadings, respectively. Note that pre-compression levels 

have limited influence on the interaction behavior (see Figure 7-10), although they affect the load-

deformation behavior under IP or OOP loading. 
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(a) (b) 

Figure 7-9. IP load-deformation curves with different levels of pre-applied OOP loading for: (a) 

wall AR2.00_SR8.42 with Pv = 0.00 MPa and (b) wall AR1.60_SR8.42 with Pv = 1.50 MPa 

 

 

  

 

(a) (b) 

Figure 7-10. IP-OOP capacity interaction curves under different pre-compression loads for: (a) 

wall AR2.00_SR8.42 and (b) wall AR1.60_SR8.42  

To gain more insights into the influence of OOP load on the IP behavior, as an example, 

Figure 7-11 presents the failure modes of wall AR2.00_SR8.42 under a pre-compression load of 

0.00 MPa subjected to IP loading with various pre-applied OOP load levels. At low OOP load 

levels (e.g., 20% and 40% of the OOP capacity pure

OOPp ), the failure modes largely resemble those 
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observed in the pure IP case, as shown in Figure 7-3 (b), with failure mechanisms predominantly 

characterized by IP flexural rocking. Therefore, the critical section is still located at the bottom for 

lower levels of the pre-applied OOP load. Nonetheless, as the OOP loads escalate to higher levels, 

i.e., 60% and 80% of the OOP capacity pure

OOPp , OOP bending deformations become considerably 

more impactful, as revealed by the deformed shapes shown in Figure 7-14. In such a scenario, the 

critical section shifts to the mid-height section due to the extensive OOP bending deformation. 

    

(a) (b) (c) (d) 

Figure 7-11. Failure modes of wall AR2.00_SR8.42 under a pre-compression load of 0.00 MPa 

with different pre-applied OOP load levels: (a) 20%, (b) 40%, (c) 60%, and (d) 80% of OOP 

capacity obtained under pure OOP loading condition (deformation scale factor: 15) 

 

As evident from Figure 7-10, the interaction curves of flexural governed walls 

AR2.00_SR8.42 and AR1.60_SR8.42 exhibit minimal scatter, which is further shown in Figure 

7-12 by the narrow bounds of these interaction curves for all flexural governed RM walls. Namely, 

different values of AR and Pv have little impact on the interaction curves for the flexural governed 
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walls in the first group. This can be attributed to the similar failure mechanisms in these walls (see 

Figure 7-11). 

In addition, three reference interaction curves are included for comparison purposes: one 

suggested by ASCE 41-17 (ASCE 2017) for masonry infill walls, one represented by a unit circular 

arc, and one indicating no interaction. When the OOP loads reach 80% of OOP capacities, IP 

capacity reductions lie between 25% and 27% compared to the IP capacities of walls subjected to 

no OOP load. Such a reduction is only half of that (i.e., 58%) for masonry infill walls suggested 

by ASCE 41-17. Compared to the interaction curve suggested by ASCE 41-17, the unit circular 

arc correlates better with the interaction curves obtained for the RM walls considered. 

 

Figure 7-12. IP-OOP capacity interaction curves for flexural governed RM walls considered 

7.5.1.2 Shear governed walls under pure IP loading 

Among RM walls in the second group characterized by shear failure under pure IP loading, wall 

AR0.67_SR8.42 under a pre-compression load of 2.50 MPa represents the extreme case, i.e., the 

most susceptible to shear failure. Figure 7-13 depicts the deformed shapes (including cracking) of 
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this wall under combined IP and OOP loading with different OOP load levels. Notably, at the 20% 

OOP load level, the failure mode is similar to the one observed in the pure IP loading scenario, 

i.e., diagonal shear cracking shown in Figure 7-3 (a), and the pre-applied OOP load has negligible 

influence on the failure mechanism. As the OOP load level increases, flexural cracks manifest at 

both the bottom and mid-height locations of walls due to OOP bending, which consequently 

reduces the effective thickness of the wall and leads to a reduction in IP capacity. At the 80% OOP 

load level shown in Figure 7-13 (d), the flexural cracks induced by OOP bending become more 

pronounced, while no diagonal tension cracks are visible when the wall reaches its peak capacity. 

  
  

(a) (b) (c) (d) 

Figure 7-13. Failure modes of wall AR0.67_SR8.42 under a pre-compression load of 2.50 MPa 

with different pre-applied OOP load levels: (a) 20%, (b) 40%, (c) 60%, and (d) 80% of OOP 

capacity obtained under pure OOP loading (Deformation scale factor: 15) 

 

Figure 7-14 presents the influence of AR and Pv on the interaction curves for shear 

governed walls. As AR increases, the interaction effects become stronger, leading to more 

pronounced reductions in IP capacities due to the presence of OOP loading, as shown in Figure 

7-14 (a). For the walls with a pre-compression load of 2.0 MPa, RM walls with AR of 0.67, 0.89, 

1.33 and 1.60 exhibit IP capacity reductions of 12.8%, 16.3%, 20.8%, and 22.5%, respectively, 
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when pre-applied OOP load levels are at 80% of the pure OOP capacity. Namely, the IP capacity 

of longer walls is less influenced by the pre-applied OOP load compared with shorter walls. This 

is primarily because longer walls (those with smaller AR) feature more substantial cross sections 

under compression, thereby forming wider compressive struts and displaying less IP capacity 

reduction compared to shorter walls. This also explains the beneficial effects of Pv on mitigating 

the interaction effects: higher pre-compression loads would lead to less IP capacity reduction, as 

seen in Figure 7-14 (b). Similar to the flexural governed RM walls, the interaction observed here 

is less than that specified in the design provision in ASCE 41-17 (ASCE 2017) for masonry infill 

walls, and the unit circular arc are better correlated with the interaction curves obtained for the 

shear governed RM walls considered. 

  

(a)  (b) 

Figure 7-14. IP-OOP capacity interaction curves for the shear governed RM walls: (a) walls of 

different AR with Pv = 2.0 MPa and (b) the wall AR1.33_SR8.42 under different pre-compression 

loads 

Figure 7-15 presents a further comparison of interaction curves between the walls in two 

groups: flexural and shear governed RM walls under pure IP loading. More scatter is observed for 

shear governed RM walls considered, and the interaction curves for flexural governed RM walls 
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are essentially the lower bound of those for shear governed walls. That is to say, the presence of 

OOP loads can induce more substantial IP capacity reductions for flexural governed walls than 

shear governed walls. 

 

Figure 7-15. Comparison of IP-OOP capacity interaction curves for the flexural and shear 

governed walls 

7.5.2. Influence of slenderness ratio (SR) and pre-compression load (Pv) 

Figure 7-16 (a-b) presents the OOP deformations of the wall AR1.33_SR8.42 and the wall 

AR1.33_SR29.47 (i.e., walls with smallest and largest SR considered) without pre-compression 

load (i.e., Pv = 0.0 MPa). To show how IP loads affect the OOP deformations, OOP deformation 

contour plots are reported at three IP loading levels: no IP load (i.e., only with pre-applied OOP 

loads at 80% of the pure OOP capacities), intermediate IP load, and peak IP load. It is worth re-

emphasizing that when considering the influence of SR, the length and height of walls are varied 

proportionally to fix AR, as indicated by the dimensions (at undeformed stages) shown in Figure 

7-16. It can be observed from Figure 7-16 (b) that for the wall AR1.33_SR29.47 with Pv = 0.0 
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MPa, the maximum OOP deformation induced by the IP load is localized at the mid-height end 

zone above the crushed region of the wall. This behavior is indicative of a typical OOP instability 

phenomenon, as reported in relevant experimental studies on RM walls (Robazza et al. 2018) and 

reinforced concrete walls (Dashti et al. 2018). Such instability leads to a substantial decrease in 

the OOP stiffness of the wall (Robazza et al. 2018), thus inducing a significantly large OOP 

deformation or OOP instability. In turn, this would result in a pronounced reduction in IP capacity. 

The OOP instability is not observed in the non-slender wall (i.e., wall AR1.33_SR8.42), and the 

OOP deformation is mainly concentrated at the tension zone considering the IP loading direction. 

On the other hand, pre-compression load can be beneficial in mitigating the issue of OOP 

instability as shown in Figure 7-16 (c) for the wall AR1.33_SR29.47 with Pv = 2.5 MPa. This is 

also reported in relevant experimental studies (Dashti et al. 2018; Robazza et al. 2018). 
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(a) (b) 

 

(c) 

Figure 7-16. Evolution of OOP deformations (mm) due to IP loads for: (a) wall AR1.33_SR8.42 

with Pv = 0.0 MPa, (b) AR1.33_SR29.47 with Pv = 0.0 MPa, and (c) wall AR1.33_SR29.47 with Pv 

= 2.5 MPa (defomation scale factor:15) 

Figure 7-17 (a-b) presents the IP and OOP interaction curves for RM walls with different 

SR and Pv. Figure 7-17 (a) shows that the IP-OOP interaction of RM walls is not largely influenced 

by SR (when SR = 8.42, 12.63, 21.05), except when the wall has a relatively high SR (e.g., SR = 

29.47) with an instability issue. Specifically, when the pre-applied OOP load level is at 80% of the 

pure OOP capacity, there is approximately 24% reduction in IP capacity for RM walls with lower 

SR values; nevertheless, the reduction increases up to 45% for the wall with a relatively higher SR 

= 29.47 due to the instability failure. As explained earlier, an increase in pre-compression load 

leads to less IP-OOP interaction, namely less reduction in the IP capacity due to OOP load. This 

is confirmed by the results shown in Figure 21 (b). 
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According to Figure 7-17 (a-b), it is further confirmed that the interaction observed for RM 

walls considered is less than that specified in the design provision in ASCE 41-17 (ASCE 2017) 

for masonry infill walls. For example, the IP capacity reduction is 58% when the OOP load is 80% 

of the corresponding pure OOP capacity as prescribed in ASCE 41-17; however, this reduction is 

between 18% and 45% for RM walls considered here. 

  

(a) (b) 

Figure 7-17. IP-OOP capacity interaction curves of RM walls: (a) walls with different SR when 

pre-compression load Pv = 0.0 MPa, and (b) wall AR1.33_SR29.47 with different pre-compression 

load levels 

 COMPARISON BETWEEN RM AND URM WALLS 

This section investigates the potential benefits of reinforcements in alleviating the IP and OOP 

interaction effects. To be representative, three RM walls are considered: the most ‘flexural’ wall 

(AR2.00_SR8.42 with Pv = 0.0 MPa), the most ‘shear’ wall (AR0.67_SR8.42 with Pv = 2.5 MPa), 

and the wall with most IP-OOP interaction (AR1.33_SR29.47 with Pv = 0.0 MPa) that is associated 

with the OOP instability issue. For comparison, the IP-OOP interaction of their counterparts, URM 

walls with no reinforcements, are studied. 
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Figure 7-18 illustrates the capacity interaction curves for both URM and RM walls, 

highlighting the advantageous effects of reinforcements in reducing the IP and OOP interaction 

effects. The analysis results reveal that all three representative RM walls exhibit less capacity 

reduction in comparison to their URM counterparts. Additionally, it is also noted that the 

interaction curve derived for the URM wall with strongest interaction is relatively well correlated 

with the one suggested in ASCE 41-17 for masonry infill walls, as shown in Figure 7-18 (b). 

  

(a) (b) 

Figure 7-18. Comparison of the IP-OOP capacity interaction curves for RM walls and their URM 

counterparts: (a) the most ‘flexural’ and the most ‘shear’ walls considered, and (b) the wall 

considered with strongest IP-OOP interaction effects 

 CHAPTER CONCLUSION 

This study explored the structural behavior of fully grouted reinforced concrete masonry (RM) 

walls subjected to combined in-plane (IP) and out-of-plane (OOP) loading using a simplified micro 

modeling approach. A series of IP-OOP interaction curves were developed to quantify the IP 

capacity reductions due to the presence of OOP loadings. The influences of aspect ratio (AR), 

slenderness ratio (SR), and pre-compression load (Pv) on the IP-OOP interaction behaviors of RM 

walls were investigated. 
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The numerical simulation results in this study revealed that the presence of OOP loads can 

induce substantial IP capacity reductions, especially for flexural governed walls, characterized by 

a larger aspect ratio and a low level of pre-compression load. For flexural governed walls, IP and 

OOP capacity interactions are found to be less sensitive to geometrical parameters and pre-

compression load than shear governed walls. The most interaction is observed for highly slender 

walls without pre-compression loads, indicating a reduction in IP capacity by 45% when OOP 

loading reaches 80% of its corresponding capacity. This greatest reduction was attributed to the 

issue of OOP instability. However, increasing the pre-compression load would help mitigate such 

capacity reductions for highly slender walls. For the RM walls considered in this study, the IP-

OOP interaction is less than that specified in the design provision in ASCE 41-17 for masonry 

infill walls, and the unit circular arc are better correlated with the interaction curves obtained in 

this study. For example, for a wall potentially being stressed to about 60% of its OOP capacity, its 

IP capacity is reduced to approximately 80% and 66% using the circular interaction diagram and 

design provision in ASCE 41-17, respectively. According to this study, this reduction would be 

smaller, i.e., still around 90% of the pure IP capacity. Such a reduction is not very significant, 

particularly considering that most masonry walls have IP capacities well beyond what are required. 

The findings of this study can serve as a valuable reference and offer guidance for an informed 

consideration of IP-OOP interaction effects in designing RM walls, contributing to the 

advancement of current engineering standards and practices. The findings of this study aim to 

serve as a valuable reference and offer guidance for an informed consideration of IP-OOP 

interaction effects in the designing of RM walls, contributing to the advancement of current 

engineering standards and practices. 
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An additional comparison was conducted to compare the capacity interaction effects 

between the RM walls and their counterparts, unreinforced masonry walls. The results highlighted 

that incorporating reinforcements is effective in mitigating the IP-OOP interaction. For the most 

‘shear’ wall, the IP capacity reduction in the RM wall when the OOP load is equal to 80% of its 

OOP capacity is 11.6% less than that in the URM wall.
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Chapter 8. ESTIMATING MEAN AND VARIANCE OF IN-PLANE 

RESISTANCE OF MASONRY WALLS USING INACCURATE 

DESIGN-CODE MODELS AND LIMITED HIGH-FIDELITY 

DATA 

Analyzing uncertainty or estimating statistics of structures’ load resistance is crucial for reliability-

based code calibrations, forming the foundation for modern limit state design. While design-code 

models can be used to estimate the load resistance of masonry walls against in-plane (IP) loading, 

it is widely recognized that these models are inherently inaccurate due to their simplifications, 

assumptions, or empirical features. Therefore, employing them for uncertainty analysis or statistics 

estimation can be challenging. On the other hand, detailed mechanics-based finite element (FE) 

models and physical experimental tests are typically more accurate. Nevertheless, their application 

for uncertainty analysis or statistic estimation is often impractical due to high computational or 

economic cost. To address this challenge, this study introduces improved estimators for the mean 

and variance of the OOP resistance of masonry walls after considering parameter uncertainties, by 

leveraging efficient design-code models and limited high-fidelity data generated from detailed FE 

models by using the control variate method (Nelson 1987, 1990). In the proposed estimators, a 

large number of design-code model evaluations are introduced to improve the computational 

efficiency, while only a limited number of FE model evaluations are integrated to ensure accuracy. 

Three case studies are presented to illustrate the applicability of the proposed estimators: one on 

unreinforced masonry (URM) walls and two on reinforced masonry (RM) walls. The results 

indicate that the proposed estimators for mean and variance outperform the estimators that rely 

solely on the FE and design-code models regarding accuracy and efficiency, respectively. 
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 INTRODUCTION 

Masonry walls are commonly used as primary vertical load-bearing elements in low- and mid-rise 

buildings, resisting gravity loads and seismic or wind loads. Therefore, understanding and/or 

predicting their structural behaviors under in-plane (IP) loading is of paramount importance. 

Particularly, it is essential to assess the ultimate IP resistance of masonry walls with confidence in 

practice. 

However, despite extensive experimental studies undertaken over recent decades to study 

IP behaviors (El-Dakhakhni and Ashour 2017; Zeng and Li 2023), design-code models are 

inherently inaccurate due to their simplifications, assumptions, or empirical features, and are often 

associated with substantial model error. For instance, Hwang et al. (2022) noted that the design 

equations specified by the New Zealand Society for Earthquake Engineering (NZSEE) and FEMA 

273 (Applied Technology Council 1997) resulted in conservative assessments of the IP resistance 

of unreinforced masonry (URM) walls with a significant level of deviation when compared with 

test data. Shedid et al. (2008) compared the experimental results and design code predictions for 

the IP flexural capacity of reinforced masonry (RM) walls and found that both CSA S304.1-04 

(2004) and MSJC code (2005) resulted in conservative estimations. Seif ElDin et al. (2019) also 

noted that CSA S304-14 (2014) predictions for the IP shear strength of fully grouted RM walls 

were consistently conservative, with experimental-to-predicted IP shear strength ratios ranging 

from 1.35 to 3.11. Similar conclusions were made by Aguilar et al., (2016), and CSA S304-14 is 

overly conservative in predicting the IP shear strength of RM walls. Recent studies (Celano et al. 

2021; Tariq et al. 2023) also indicated that the design codes are not entirely effective in accurately 

predicting the failure modes of masonry walls under IP loading and associated wall capacities. 
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This inadequacy arises from the fact that multiple failure modes could co-exist and potentially 

interact.  

The issue of predicting the IP resistance of masonry walls is further exacerbated by the 

pronounced variability of masonry material (Iannacone et al. 2021). Contemporary design 

guidelines for masonry structures, such as Canadian masonry design code CSA S304-14 (2014), 

are rooted in the Limit State Design (LSD) philosophy but still heavily rely on deterministic 

approaches with partial safety factors, which need to be calibrated using reliability-based 

approaches to ensure that masonry structures achieve the desired level of reliability (Isfeld et al. 

2023; Lawrence and Stewart 2015; Moosavi and Korany 2014; Rota et al. 2014; Stewart and 

Lawrence 2007; Zhai et al. 2012; Zhai and Stewart 2010). In this context, uncertainty 

quantification of IP load resistance, such as its statistics like mean and variance, plays crucial roles. 

In the research community, there is a notable interest in understanding how material 

uncertainty impacts the IP resistance of masonry walls through stochastic sampling methods, such 

as the Monte Carlo (MC) simulation method (Metropolis and Ulam 1949). MC simulation is non-

intrusive and does not intervene deterministic models. This flexibility allows MC simulation to be 

integrated seamlessly with various analytical and numerical models, making it a versatile tool for 

uncertainty analyses. Notably, design-code models provide an efficient means for the uncertainty 

analysis of IP resistance for masonry walls within the MC simulation framework, in which a large 

number of model evaluations are necessary (Iannacone et al. 2021; Peng et al. 2020; Zhai et al. 

2012). However, relying solely on design-code models is not advisable, despite their 

computational efficiency, because of the inherent bias or inaccuracy as mentioned earlier. As such, 

model error must be quantified probabilistically using the high-fidelity experimental data before 
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their use for reliability calibration (Lawrence and Stewart 2015; Stewart and Lawrence 2007; Zhai 

and Stewart 2010), though it is noteworthy that such data are often limited and heterogeneous from 

different experimental sources. 

To address these limitations, researchers have shifted their attention to utilizing more 

accurate models, such as mechanics-based finite element (FE) models with realistic constitutive 

material models, to assess the IP behavior of masonry walls. For instance, the micro modeling 

strategy was proposed (Lourenço et al. 1995b) and received great popularity in the masonry 

research community. In the micro modeling strategy, individual components (e.g., units, mortar, 

reinforcements, grouts, unit-mortar contacts) are explicitly represented. This approach is generally 

perceived to be significantly more reliable than design-code models, with remarkable success in 

the prediction of IP resistance, as well as failure modes, for URM walls (Li and Zeng 2023; Zeng 

et al. 2021) and RM walls (Koutras and Shing 2021a; Mavros 2015). However, directly integrating 

the micro models for uncertainty analysis using the MC simulation for estimating the mean and 

variance of the IP resistance of masonry walls would lead to prohibitive computational cost. 

As previously highlighted, when evaluating the IP resistance of masonry walls, micro FE 

models are more accurate but computationally expensive, while design-code models are more 

accessible and efficient, but generally associated with larger mode errors. The objective of this 

chapter is to propose an improved methodology by leveraging the strengths of both models, namely 

by incorporating only a few high-fidelity data, generated from evaluations of expensive FE models, 

and a large number of cheap design-code model evaluations into the MC simulation framework. 

This is achieved by using the control variate method (Nelson 1987, 1990). The main focus is on 

estimating the mean and variance of IP resistance of both reinforced and unreinforced masonry 
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walls. The proposed approach promises more precise and efficient results than those stemming 

from sole reliance on either model, providing a new venue for utilizing computational models for 

design-code model enhancement. In what follows, the MC simulation-based statistical estimators 

for the IP resistance of masonry walls are introduced first, using solely design-code models or FE 

models. Next, improved estimators are introduced by using both design-code models and FE 

models, assuming FE models can provide high-fidelity data. The advantage of proposed estimators 

is then illustrated using three case studies: one on URM walls, and two on RM walls. 

 CRUDE MONTE CARLO-BASED ESTIMATORS 

The quantity of interest, such as the IP resistance of masonry walls ( )f x , is a derived random 

variable, as a function of basic random variables x, such as masonry or its constituents’ properties, 

described by probability density functions ( )g x . The goal is to estimate its expectation and 

variance, defined as Eq. (8-1) and Eq. (8-2), respectively: 

 ( ) ( ) ( )f f g d=   x x x x  (8-1) 

 ( ) ( ) ( ) ( )f f f g d = −       x x x x x  (8-2) 

where    and    are the expectation and variance operators. The integrals in Eq. (8-

1) and Eq. (8-2) can be estimated using MC simulation, by involving deterministic IP resistance 

models such as finite element models ( )FEf x , or design-code models ( )CSAf x specified in the 

Canadian masonry design code CSA S304-14 (Canadian Standards Association 2014). 
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8.2.1. Mean and variance estimators using design-code models 

When design-code models for the IP resistance of masonry walls are used, the mean and variance 

of IP resistance can be estimated as Eq. (8-3) and Eq. (8-4), respectively: 

 ( )
CSA

CSA CSA

1CSA

1ˆ
i

i

m
f

m =

=  x  (8-3) 

 ( )( )
CSA 2

CSA CSA CSA

1CSA

1ˆ ˆ
1

i

i

m
f

m =

= −
−

 x  (8-4) 

where CSA
ˆ  and CSA

ˆ  are unbiased MC estimators of ( )CSAf  x  and ( )CSAf  x ; ix  (i 

= 1, 2, … , mCSA) are independent identically distributed samples drawn from ( )g x ; and mCSA is 

the number of samples, and thus the evaluation number of design-code model. 

Masonry walls under IP loading may exhibit three different failure modes: flexural rocking, 

diagonal tension cracking, and shear sliding. In the design practices, IP resistance corresponding 

to each of these three modes is typically evaluated individually based on (semi-) empirical or 

simplified analytical models, with the one presenting the lowest value being the governing failure 

mode. In CSA S304-14 (Canadian Standards Association 2014), shear sliding resistance is 

evaluated based on the Mohr-Coulomb relationship, and the IP resistance of masonry walls 

governed by diagonal tension cracking is assessed using a semi-empirical relationship. On the 

other hand, the flexural capacity is evaluated based on the cross-sectional capacity, using the 

equivalent rectangular block by assuming zero tensile strength of masonry. The code provisions 

of CSA S304-14 for the prediction of IP resistances of URM and RM walls are detailed in 

Appendix C and Appendix D, respectively. 
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8.2.2. Mean and variance estimators using FE models 

FE models for masonry walls employed in this study are developed based on the simplified micro 

modeling strategy (Page 1978), as shown in Figure 6-1 . In this modeling approach, mortar layer 

plus unit-mortar interaction are lumped into a single zero-thickness interface. Mortar joints are 

simulated using zero-thickness interface elements COH3D8 in ABAQUS (Dassault Systemes 

2017), in conjunction with a recently developed constitutive model by the authors (Li and Zeng 

2023). This newly developed constitutive model is characterized by two yield surfaces (i.e., 

tension-shear yield surface f1 and compression cap surface f2) and is capable of capturing various 

failure modes, including tensile cracking, shear sliding, and compressive crushing. Concrete 

blocks and grouts are modeled using the C3D8 element plus the nonlinear behaviors represented 

via the Concrete Damage Plasticity (CDP) model (Lee and Fenves 1998), in which tensile cracking 

and compressive crushing can be well described using different parameters for concrete and grouts. 

Reinforcing bars in RM walls are modeled using the truss element T3D2 with the von Mises 

plasticity model and a bilinear hardening law. A perfect bond is assumed for grout and steel 

reinforcement in RM walls. The modeling strategy was validated for URM walls (Li and Zeng 

2023) and RM walls under IP loading. 

When FE models are used, MC estimators for the mean and variance of the IP resistance 

of masonry walls are expressed in a similar way as those when design-code models are used. 

Suppose the FE model is denoted by ( )FEf x , the expectation ( )FEf  x  and variance ( )FEf  x  

can be estimated as Eq. (8-5) and Eq. (8-6), respectively: 

 ( )
FE

FE FE

1FE

1ˆ
i

i

m
f

m =

=  x  (8-5) 
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 ( )( )
FE 2

FE FE FE

1FE

1ˆ ˆ
1

m

i

i

f
m =

= −
−

 x  (8-6) 

Here, FE
ˆ  and FE

ˆ  are the unbiased MC estimators of ( )FEf  x  and ( )FEf  x ; ix  (i = 

1, 2, … , mFE) are independent identically distributed samples drawn from ( )g x ; and mFE is the 

evaluation number of FE model. 

8.2.3. Quality measure of Monte Carlo estimators 

The quality of MC estimators can be evaluated by the mean square error (MSE) with respect to 

the true values. In this study, the true values of expectation and variance are assumed to be obtained 

by the high-fidelity FE model, i.e., ( )FEf  x and ( )FEf  x , considering the true values are 

generally unavailable. Error measurement of FE
ˆ and FE

ˆ  can be derived as Eq. (8-7) and Eq. (8-

8), respectively: 

 ( ) ( )( )
( )2 FE

FE FE FE FE

FE

ˆ ˆ ˆMSE
f

f
m

     = − = =     

x
x  (8-7) 

 ( ) ( )( ) ( ) ( )
2 2FE

FE FE FE FE 4 FE FE

FE FE

1 3ˆ ˆ ˆMSE
1

m
f f f

m m


−    =   − = =   −           − 
x x x  (8-8) 

In Eq. (8-8), ( )4 FEf   x  is the fourth central moment of ( )FEf x . It can be observed from 

Eq. (8-7) and Eq. (8-8) that a large value of mFE is required to reach a reasonable accuracy for 

( )FEf  x  and ( )FEf  x . However, this is generally impractical since evaluating a FE model is 

expensive, and this necessitates the use of design-code models. Evidently, the estimators using 
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design-code models shown in Eq. (8-3) and Eq. (8-4) would lead to inaccurate results due to the 

inherent bias associated with the model ( )CSAf x  compared to ( )FEf x . 

 IMPROVED ESTIMATORS FOR MEAN AND VARIANCE 

The fundamental idea of the proposed estimators is to use the control variate (CV) method, a 

classical variance reduction technique in statistics (Nelson 1987). The proposed estimators 

leverage the information from a very limited number of FE evaluations for accuracy enhancement 

and a large number of design code evaluations (i.e., mCSA >> mFE) for efficiency. The improved 

estimators for mean and variance for the IP resistance of masonry walls are described as follows. 

8.3.1. Mean estimator 

The proposed mean estimator for the IP resistance of masonry walls, denoted as IM
ˆ , is formulated 

as Eq. (8-9): 

 ( ) ( ) ( )
CSAFE FE

IM FE CSA CSA

1 1 1FE CSA FE

1 1 1ˆ
i i i

i i i

mm m
f f f

m m m


= = =

 
 = + −  

 
  x x x  (8-9) 

It is clear that both design-code and FE models are integrated in IM
ˆ . In Eq. (8-9), the first 

term of right-hand side (RHS) is related to the FE estimation, the latter two terms are based on the 

design-code predictions, and   is a coefficient determined by minimizing the MSE of the 

estimator IM
ˆ . More details about   are presented later. It is noted that the samples ix , x , and 

x  are independently and randomly generated. One notable advantage of the proposed mean 

estimator is that IM
ˆ is unbiased with respect to the true value ( )FEf  x : ( )IM FE

ˆ f  =    
x . 

This provides significant benefits than the MC estimator when only using design-code models, i.e., 
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Eq. (8-3). The other critical feature of IM
ˆ  is that the discrepancy between the FE model and 

design-code model (i.e., ( ) ( )FE CSAi if f−x x ) does not affect its accuracy. This is demonstrated by 

the MSE of IM
ˆ  with respect to the true value, as derived in Eq. (8-10). Due to the unbiasedness 

of IM
ˆ , ( )IM

ˆMSE  is equal to the variance of IM
ˆ : ( )

2

IM IM IM
ˆ ˆ ˆ    = −     

, derived as Eq. 

(8-10): 

 ( )
( ) 

( )  ( )  ( )  ( ) ( )FE

IM FE CSA FE CSA

FE FE CSA

1 1
ˆMSE 2

f
f f f f

m m m
= + − −

 
 
 

x
x x x x  (8-10) 

Here,  is the Pearson correlation coefficient between the FE model and design-code   

model, defined in Eq. (8-11): 
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f f


  =
      

x x

x x
 (8-11) 

where  Cov  is the covariance operator. Given a dataset with sample size N, Pearson 

correlation coefficient estimation ̂  is estimated as per Eq. (8-12): 
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 (8-12) 

where ( )FEf x  and ( )CSAf x  are the sample mean values: ( ) ( )FE FE

1

N

i

i

f f
=

= x x  and

( ) ( )CSA CSA

1

N

i

i

f f
=

= x x . 
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Based on Eq. (8-9), the proposed mean estimator for the IP resistance of masonry walls 

depends on the evaluation numbers of the FE and design-code models, i.e., mFE and mCSA, as well 

as the coefficient α. In this study, the close-form solution for the determination of mFE, mCSA, and α 

derived by Peherstorfer et al. (2016b) is used, by minimizing the ( )IM
ˆMSE  given a prescribed 

computational cost p, i.e., tC p . Here, the total cost Ct is formulated as Eq. (8-13): 

 FE FE CSA CSAtC m w m w= +  (8-13) 

where FEw and CSAw are the computational costs associated with one single FE model and 

design-code model evaluation, respectively. The constrained optimization leads to Eqs. (8-14)(8-

15)(8-16), which are used to determine the three parameters, respectively.  
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f

f




  =
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+
 (8-15) 

 CSA FE CSAm m r=  (8-16) 

where 
( )

2
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2

CSA 1

w
r

w




=

−
. One mild condition that needs to be met for the model 

management scheme is: 
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The advantage of the proposed mean estimator IM
ˆ  than the design-code based estimator 

CSA
ˆ  is evident, since IM

ˆ is unbiased. On the other hand, the ratio e between ( )IM
ˆMSE  and 

( )FE
ˆMSE  can indicate the performance of IM

ˆ  compared to the FE model-based estimator FE
ˆ . 

By assuming the identical computational cost p, the FE model evaluation number in the FE model-

based estimator is FE/p w . Thus, the ratio e between ( )IM
ˆMSE  and ( )FE

ˆMSE  can be derived as 

Eq. (8-18): 

 
( )
( )

( )
2

2IM
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FEFE

ˆMSE
1

ˆMSE

w
e
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


 
= = − + 

 
 

 (8-18) 

From Eq. (8-18), it is evident that a decrease in CSA FE/w w  leads to a greater error reduction. 

In addition, with the increase of the square of the correlation coefficient 
2 , e would be smaller, 

considering that design-code model is computationally much cheaper than the FE model. 

8.3.2. Variance estimator 

The proposed variance estimator IM
ˆ is formulated analogously to the mean estimator, as expressed 

in Eq. (8-19): 
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(8-19) 

where  is a coefficient to be determined. Based on the linearity of expectation operator, 

IM
ˆ  is also an unbiased estimator for ( )FEf  x , i.e., ( )IM FE

ˆ f  =    
x . Consequently, the 
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MSE of IM
ˆ is equal to its variance IM

ˆ 
  . The variance of a sum of random variables is computed 

by summing the variances of each variable and twice the sum of their pairwise covariances. 

Accordingly, the MSE of IM
ˆ  can be derived in Eq. (8-20): 

  ( )  ( ) 
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 (8-20) 

By comparing IM
ˆMSE  

   and Eq. (8-8), the quality of the proposed variance estimator can 

be deduced. In Eq. (8-19), the determination of model evaluation numbers mFE and mCSA, and 

coefficient  is crucial. Qian et al. (2018) suggested that these quantities be assumed to be identical 

to those in the mean-optimal model management scheme, as referenced in Eqs. (8-14)(8-15)(8-16). 

The primary reason for this recommendation is that fourth-order moments are involved in 

IM
ˆMSE  

  , which are typically more challenging to estimate than second-order moments. The 

second approach is to determine these quantities by minimizing IM
ˆMSE  

 
with a given 

computational budget p within a numerical optimization procedure. In this study, these two 

schemes are used and compared based on the estimation results for the study cases considered later. 

 MEAN AND VARIANCE ESTIMATORS FOR IP RESISTANCE OF URM WALLS 

The design-code model and FE model for the prediction of IP resistances of URM and RM walls 

introduced previously are incorporated into the proposed estimators. This section presents a case 

study for URM walls to demonstrate the efficacy of the proposed estimator. For comparison, three 
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estimators are examined: estimators that rely solely on the design-code model ( CSA
ˆ , CSA

ˆ ), 

estimators that rely solely on the FE model ( FE
ˆ , FE

ˆ ), and the proposed estimators ( IM
ˆ , IM

ˆ ). 

8.4.1. Wall configuration 

The URM wall considered in this study was experimentally investigated by Raijmakers (1992). It 

was constructed using solid clay bricks (210 mm × 52 mm × 100 mm) and 10 mm-thick mortar 

layers. The wall was 1000 mm high, 990 mm long, and 100 mm thick, as shown in Figure 8-1. The 

IP wall was tested under a fixed-fixed boundary condition, accompanied by a pre-compression 

load of 1.2 MPa. A displacement-controlled IP load was imposed on the top rigid beam until wall 

failure. 

  

Figure 8-1. URM wall considered for the case study 
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8.4.2. Uncertainties in material parameters 

Four statistically independent variables are considered for the URM wall: compressive strength of 

brick units c
uf , tensile strength tf , frictional coefficient tan  and initial dilatancy coefficient 

0tan  of interfaces (mortar joints) . The mean values of these four parameters are assumed to be 

those reported by Raijmakers (1992). The probability distributions and coefficient of variations 

(COVs) are determined based on either field observations (Li et al. 2014) or laboratory tests 

(Pluijm 1999). Other variables are determined based on these four independent variables following 

the deterministic empirical relationships as prescribed in the public literature. Accordingly, 

corresponding statistical information can be derived, as summarized in Table 8-1. 
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Table 8-1. Statistical characterization of material parameters for the URM wall considered 

Parameters Mean Distribution COV Reference 

Masonry Units 

Tensile strength u

tf  (MPa) 
2  

( 0.12u u

t cf f= ) 

Truncated 

Normal(a) 
0.3 (Li et al. 2014; Raijmakers 

1992) 

Compressive strength u

cf  (MPa) 16.67 
Truncated 

Normal 
0.3(b) (Li and Zeng 2023) 

Elastic modulus uE  (MPa) 16700 ( 1002 c

u uE f= ) 
Truncated 

Normal 
0.3 

(Li and Zeng 2023; 

Raijmakers 1992) 

Mortar 

Compressive strength 
m

cf (MPa) 

12.10 

 (
0.031

1.5

m

t cf f= ) 

Truncated 

Normal 
0.3 

(Isfeld et al. 2021; Li et al. 

2014; Lumantarna et al. 

2014) 

Elastic modulus Em  (MPa) 

2420 

( 200 m

m cE f= ) 

Truncated 

Normal 
0.3 (Kaushik et al. 2007) 

Mortar joints (interfaces) 

Tensile strength tf  (MPa) 0.16 
Truncated 

Normal(a) 
0.3 

(Li et al. 2014; Raijmakers 

1992) 

Mode I fracture energy IG  (N/mm) 
0.003

( )0.01571 0.0004882I tG f= +  
Truncated 

Normal 
0.25 

(Isfeld et al. 2021; Li et al. 

2014) 

Peak cohesion 0c  (MPa) 
0.224 

( 0 1.4 tc f= ) 

Truncated 

Normal 
0.3 

(Isfeld et al. 2021; Li et al. 

2014) 

Frictional coefficient tan  0.75 Lognormal 0.1 
(Pluijm 1999; Raijmakers 

1992) 

Mode II fracture energy when the normal 

stress is equal to zero 0

IIG  (N/mm) 

0.03 

( 0 10II IG G= ) 

Truncated 

Normal 
0.25 (Lotfi and Shing 1994) 

Initial dilation coefficient 0tan  0.36 
Truncated 

Normal(a) 
0.25 

(Pluijm 1999; Raijmakers 

1992) 

Compressive strength of masonry mf  (MPa) ( ) ( )
0.7 0.3

0.55 u m

m c cf f f =  Derived Derived 

(European Committee for 

Standardization (CEN) 

2005) 

Stiffness constants nnk , ssk , ttk  (N/mm3) 
( )

u m
nn

m u m

E E
k

h E E
=

−
;

( )2 1 0.15

nn
ss tt

k
k k= =

+
 

Derived Derived (Lourenço 1996) 

(a) u

cf  and
tf have a lower bound of 0.0, 0tan has lower and upper bounds of 0.27 and 0.57, respectively. 

(b) The value of COV is assumed to be 0.3 due to the lack of experimental information. 
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8.4.3. Statistics estimation 

An essential aspect in the construction of proposed estimators lies in the computation of model 

statistics and Pearson correlation coefficient, since these quantities subsequently inform the 

determination of model evaluation numbers mFE and mCSA, as well as the coefficients (α and β for 

mean and variance, respectively). Given the significant computational demands associated with 

the FE model, accurate assessments of these quantities are often impractical. In this study, a pilot 

run on 200 MC samples is performed for this purpose. Figure 8-2 (a-d) presents probability 

distributions of four statistically independent parameters on the pilot sample, while Figure 8-2 (e-

f) shows two examples of derived parameters, including peak cohesion of interfaces and 

compressive strength of masonry. 

  

(a) (b) 
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(c) (d) 

  

(e) (f) 

Figure 8-2. Histograms and probability distributions of random variables: (a) compressive 

strength of masonry units u

cf , (b) tensile strength of mortar joints tf , (c) frictional coefficient 

tan , (d) initial dilation coefficient 0tan , (e) peak cohesion 0c , and (f) compressive strength 

of masonry mf   

Due to material variations, the 200 simulated walls exhibit the three typical failure modes, 

i.e., diagonal tension cracking (DT) for 117 walls (i.e., 58.5%), shear sliding (SS) for 61 walls (i.e., 

30.5%), and flexural rocking failure (FR) for 22 walls (i.e., 11.0%). Empirical cumulative 

probability functions (CDFs) of IP resistances of URM walls governed by each failure mode are 

depicted in Figure 8-3, along with the CDF of IP resistance of URM walls irrespective of the failure 

modes. It is observed that, walls failing in FR show higher IP resistance, whereas those failing in 
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SS show lower IP resistance, but both with less dispersion, compared to those failing in DT. 

Overall, the IP resistances of the 200 walls range between 53.50 kN and 101.89 kN, with a mean 

of 76.03 kN and a sample standard deviation of 10.1 kN. Note that the tested wall, assumed to 

have mean properties, experienced failure in DT with an IP resistance of 72.46 kN. 

  

Figure 8-3. Emperical cumulative probability functions of IP resistances for the URM wall 

considered 

The comparison of IP resistances between the design-code and FE predictions obtained 

from the pilot sample is shown in Figure 8-4 for each failure mode. As depicted in Figure 8-4 (a), 

the design code tends to underestimate the IP resistances (i.e., the flexural capacities) for walls 

failing in FR, when compared to the FE predictions. This difference can be primarily attributed to 

the zero tensile strength assumption for masonry in the design-code model. Similarly, Figure 8-4(c) 

shows that the design code tends to underestimate the IP resistance (i.e., sliding capacity) 

compared to the FE predictions, primarily because the design-code model only accounts for the 
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frictional resistance in mortar joints while neglecting the contribution of cohesion. Regarding the 

URM walls governed by DT, the design-code model predictions are more consistent with the FE 

model predictions, as shown in Figure 8-4 (b). 

  

(a) (b) 

 

(c) 

Figure 8-4. Comparison of IP resistances obtained by FE model and design-code model for URM 

walls governed by (a) flexural rocking, (b) diagonal tension cracking, and (c) shear sliding failure 

Despite the discrepancy between design-code predictions and FE predictions, strong 

correlation exists between them. Thus, the quality of the proposed mean estimator IM
ˆ  can be 

guaranteed because it is only dependent on the squared Pearson correlation coefficient 
2  for a 

given computational cost ratio CSA FE/w w , as indicated by Eq. (8-18). In this study, computational 
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costs are measured as multiples of the CPU time for one FE model evaluation, leading to FE 1.0w =  

and CSA 0.0000047w = . The Pearson correlation coefficient ρ estimated by different sample sizes 

(N = 20, 50, 100, 150, 200), ranges from 0.85 to 0.90 as reported in Table 8-2. It can be inferred 

that the Pearson correlation coefficient does not exhibit significant variation with different sample 

sizes for the problem considered in this study. and a potentially optimum MSE reduction according 

to Eq. (8-18) is e = 75% for the URM wall considered, which is denoted by the green solid circle 

in Figure 8-5. 

Table 8-2. Pearson correlation coefficient  between design-code model and FE model for the IP 

resistance prediction for the URM wall considered 

 

 

 

To gain more insight into the MSE reduction, Figure 8-5 shows the relationship between 

the MSE ratio ( ) ( )IM FE
?MSE / MSEe =  and different values of Pearson correlation coefficient ρ 

and different values of CSA FE/w w , assuming the same computational budget. The red line in Figure 

8-5 serves as a reference denoting that the estimators FE
ˆ  and IM

ˆ achieve the same level of 

accuracy. The parametric study based on Eq. (8-18) reveals that when the design-code model is 

significantly more efficient than FE model (e.g., CSA FE/ 0.0000047w w =  and 0.00047 ), an increase 

in the correlation coefficient leads to a greater accuracy of IM
ˆ . However, if design-code and FE 

models exhibit comparable levels of computational cost (e.g., CSA FE/ 0.47w w =  and 0.047), the 

proposed estimator only outperforms the FE model-based estimator only in highly correlated cases. 

Sample size (N) Pearson correlation coefficient   

20 0.8940 

50 0.8562 

100 0.8647 

150 0.8688 

200 0.8770 
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Figure 8-5. Relationship between MSE reduction e and Pearson correlation coefficient ρ with 

different computational cost ratios CSA FE/w w  

To illustrate the effect of computational budget, six different levels for p, ranging from 5 

to 30, are considered as summarized in Table 8-3. The computational budget can be purely used 

for p FE simulations, or p / 0.0000047 design-code evaluations in crude Monte Carlo estimators. 

Alternatively, the computational budget is distributed between FE simulations and design-code 

evaluations (mFE and mCSA) with the value for coefficient   for the proposed estimator. To fully 

leverage the 200 FE models already completed, the selection of FE samples for the construction 

of the proposed estimator will be restricted only to this pre-computed dataset, as suggested by Yao 

et al. (2022). A reference mean value of IP resistance of 75.97 kN is derived using the proposed 

estimator with a significantly large computational budget, wherein samples are randomly selected 

from the pre-computed 200 samples. It is important to acknowledge that the proposed estimator 

IM
ˆ  is rigorously guaranteed to be unbiased, and therefore using the proposed estimator with a 

large computational budget to determine the reference mean value is justifiable. 
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Table 8-3. Model evaluation numbers (mFE and mCSA) and coefficient   for the mean estimation of 

IP resistance for the URM wall considered 

Figure 8-6 reports the MSE of three estimators (i.e., CSA
ˆ , FE

ˆ , IM
ˆ ) used for prediction of 

the mean value of IP resistance for the URM wall considered, relative to the reference mean value 

through 500 replicate runs. Notably, the MSE of CSA
ˆ levels off at a very early stage, even for the 

minimum computational budget (p = 5) considered, since a large number of design-code model 

evaluations are used, as illustrated in Table 8-3. This also highlights the inherent bias in the mean 

estimator when exclusively relying on the design-code model. For the same computational budget, 

the crude MC estimator FE
ˆ  derived based on the FE model alone outperform CSA

ˆ  only when 

the sufficient number of FE evaluations is used with a relatively large computation budget (say p > 

15). In contrast, the proposed estimator IM
ˆ achieves an MSE that is more than 70% lower than the 

crude MC estimator FE
ˆ  derived based on the FE model alone when the same computation budget 

is used. As the available computational budget increases, the MSE of IM
ˆ  decreases, suggesting 

the “unbiasedness” of proposed estimator. The same accuracy (or MSE) level, the proposed 

estimator needs much less computation budget, and this is because the efficient design-code model 

is employed to obtain speedups. 

Computational 

cost p 

Crude MC estimators Proposed estimator 

FE model Design-code model 
mFE mCSA   

mFE mCSA 

5 5 1063829 4 4193 0.62 

10 10 2127659 9 8386 0.62 

15 15 3191489 14 12580 0.62 

20 20 4255318 19 16773 0.62 

25 25 5319145 24 20967 0.62 

30 30 6382974 29 25160 0.62 
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Figure 8-6. MSE of FE model-based crude MC estimator, design-code model-based crude MC 

estimator, and proposed estimator for the mean value of IP resistance for the URM wall considered 

The histograms of FE
ˆ and IM

ˆ from 500 replicate runs are shown in Figure 8-7, from 

which similar conclusions can be obtained. It is worth mentioning that the design-code model-

based estimator exhibits nearly zero variance, but significantly deviates from the reference mean 

value, as shown in Figure 8-7. Notably, the proposed estimator exhibits a smaller variance 

compared to the FE model-based crude MC estimator when the same computational budget is 

allocated. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 8-7. Distributions of FE model-based crude MC mean estimator and proposed mean 

estimator obtained by 500 replicates with different computational costs 
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The variance estimation is more intricate, owing to the involvement of higher-order 

moments in the evaluation procedure. As previously discussed, there exists two approaches to 

determine the model evaluation numbers (mFE and mCSA) and coefficient  . The first approach, also 

suggested in studies (Qian et al. 2018; Yao et al. 2022), employs a mean-optimal strategy. mFE, 

mCSA and   obtained following this approach are detailed in Table 8-3. On the other hand, the 

second approach aims to obtain these quantities by minimizing the MSE of the proposed variance 

estimator, i.e., Eq. (8-20), with the corresponding values for mFE, mCSA and   presented in Table 

8-4. A comparison of Table 8-3 and Table 8-4 reveals the significant differences in mFE, mCSA and 

 . The primary reason is that in the mean-optimal strategy, more design-code model evaluations 

would be distributed due to their high correlation between the FE model. However, in the variance-

optimal strategy, these quantities are also influenced by the higher-order moments. 

Table 8-4. Model evaluation numbers (mFE and mCSA) and coefficient  for the variance estimation 

of IP resistance for the URM wall considered 

 

 

 

 

 

To facilitate the discussion, the proposed variance estimators based on the mean-optimal 

and variance-optimal strategies are denoted as IM,mean
ˆ and IM,var

ˆ , respectively. Figure 8-8 presents 

the MSE of different variance estimators, including CSA
ˆ , FE

ˆ , IM,mean
ˆ  and IM,var

ˆ . Similarly, the 

Computational cost p 

Proposed estimator (variance-optimal strategy) 

mFE mCSA   

5 4 1960 0.40 

10 9 4375 0.41 

15 14 6832 0.41 

20 19 9197 0.41 

25 24 11601 0.41 

30 29 14009 0.41 
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MSE of the design-code model-based estimator stabilizes around a much larger value due to its 

inherent bias. The estimator IM,var
ˆ  exhibits the lowest MSE among them. It should be noted that 

both IM,mean
ˆ and IM,var

ˆ  outperform the estimator FE
ˆ , for the URM wall considered in this study 

This is significant as it implies that even without optimizing the model evaluation numbers and 

coefficient for minimizing the MSE, the resultant variance estimators still surpass the crude MC 

estimator that solely relies on the FE model when the same computation budget is allocated.  

 

Figure 8-8. MSE of crude MC estimators, and proposed estimators (mean-optimal and variance-

optimal) for the variance of IP resistance for the URM wall considered 

An additional important observation from Figure 8-8 is that with the increase in the 

computational budget, the MSEs of estimator IM,mean
ˆ  and IM,var

ˆ  also decrease. This further 

confirms the “unbiasedness” of the proposed variance estimator, irrespective of the model 

evaluation numbers and the value of coefficient. However, it should be noted that the MSE of 

estimator IM,var
ˆ  (i.e., 300.35) achieves an approximate reduction of 50% compared to the estimator 

FE
ˆ  (i.e., 608.47) at a computational budget of 30. This reduction is smaller than that in the mean 
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estimation (i.e., around 75%). This is expected, as higher-order moments are more sensitive to the 

pilot sample size, thus affecting the determination of model evaluation numbers and coefficient. 

This can also be reflected in the distribution plots shown in Figure 8-9, where a less pronounced 

variance reduction is observed compared to that in the mean estimation illustrated in Figure 8-7, 

and the design code model-based variance estimator has almost zero variance due to a large 

number of samples available, but involves high bias with respect to the reference value. 

  

(a) (b) 

  

(c) (d) 
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(e) (f) 

Figure 8-9. Distributions of FE model-based crude MC variance estimator and proposed 

variance estimator (variance-optimal) obtained by 500 replicates with different computational 

costs 

 MEAN AND VARIANCE ESTIMATORS FOR IP RESISTANCE OF RM WALLS 

Variability in the material properties of masonry could result in different failure modes for the 

URM wall previously discussed. However, this is not the case for RM wall considered. Compared 

to URM walls, the failure modes of RM walls are less influenced by the material properties of 

masonry but more significantly by the vertical-to-horizontal reinforcement ratios (Kingsley et al. 

2014a), which generally exhibits limited material variability for a RM wall compared with the 

material variability in masonry and is commonly considered as deterministic in uncertainty 

analyses (Metwally et al. 2022). To show the applicability of the proposed estimators for RM walls 

with different failure modes, two RM walls, one failing in diagonal tension cracking and the other 

in flexure rocking are considered in this section. It is worth noting that shear sliding is rarely 

observed in engineering practices, given sufficient frictional resistance and dowel forces, and 

therefore is not considered in this study. 
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8.5.1. Shear-governed RM wall 

8.5.1.1 Wall configuration 

The fully grouted RM wall tested by Seif Eldin (2016) is utilized as an example in this section. 

The wall was designed to fail in diagonal tension cracking and was tested in a cantilever condition 

with a pre-compression load of 1.0 MPa. For the subsequent analysis and discussion, this wall is 

denoted as ‘RM shear wall’. The RM shear wall’s dimensions were 1.8 m (length) × 1.6 m (height) 

× 0.19 m (thickness), as illustrated in Figure 8-10. The concrete masonry units conformed to the 

standard dimensions of 390 mm × 190 mm × 190 mm. The vertical reinforcements consisted of 

20M bars (with a 300 mm2 cross sectional area) in every cell, while the horizontal reinforcements 

featured uniformly distributed 10M bars (with a 100 mm2 cross-sectional area) spaced at 400 mm. 

The corresponding horizontal and vertical reinforcement ratios were 0.13% and 0.79%, 

respectively. 

 

Figure 8-10. RM shear wall considered for the case study 
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Regarding the material parameters, six statistically independent variables are considered: 

tensile strength tf , frictional coefficient tan  and initial dilatancy coefficient 0tan  of 

interfaces (mortar joints), compressive strength of units u

cf , compressive strength of grouts g

cf , 

and yield strength of reinforcements yf . Other required material parameters treated as derived 

random variables using well-established relationships, as summarized in Table 8-5. 
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Table 8-5. Statistical characterization of material parameters for the RM shear wall 

Parameters Mean Distribution COV Reference 

Masonry Units 

Compressive strength u

cf  (MPa) 16.7 
Truncated 

Normal(a) 
0.048 (Seif Eldin 2016) 

Tensile strength u

tf  (MPa) 
1.50 

( 0.09u u

t cf f= ) 
Truncated 

Normal 
0.048 (Barbosa et al. 2010)  

Elastic modulus uE (MPa) 
15665 

( 938 u

u cE f= ) 
Truncated 

Normal 
0.048 (Barbosa et al. 2010) 

Grouts 

Compressive strength g

cf  (MPa) 29.4 
Truncated 

Normal(a) 
0.073 (Seif Eldin 2016) 

Elastic modulus
gE  (MPa) 

14700 

( 500 g

g cE f= ) 
Truncated 

Normal 
0.073 (TMS 2016) 

Tensile strength g

tf  (MPa) 
7.056 

( 0.24g g

t cf f= ) 
Truncated 

Normal 
0.073 (Calderón et al. 2019) 

Reinforcements 

Yield strength
yf  (MPa) 430 Normal 0.032 (Seif Eldin 2016) 

Elastic modulus yE  (MPa) 
196080 

( 456y yE f= ) 
Normal 0.032 (Seif Eldin 2016) 

Ultimate strength
uf  (MPa) 

516 

( 1.2u yf f= ) Normal 0.032 (Seif Eldin 2016) 

Mortar joints (interfaces) 

Tensile strength tf  (MPa) 0.6 
Truncated 

Normal(a) 
0.095 (Seif Eldin 2016) 

Mode I fracture energy IG  (N/mm) 
0.0099 

( )0.01571 0.0004882I tG f= +  
Truncated 

Normal 
0.09 

(Isfeld et al. 2021; Li et 

al. 2014) 

Peak cohesion 0c  (MPa) 
0.84 

( 0 1.4 tc f= ) 
Truncated 

Normal 
0.095 

(Isfeld et al. 2021; Li et 

al. 2014) 

Frictional coefficient tan  0.7 Lognormal 0.1 

(Canadian Standards 

Association 2014; 

Pluijm 1999) 

Mode II fracture energy when the normal 

stress is equal to zero 0

IIG  (N/mm) 

0.099 

( 0 10II IG G= ) 
Truncated 

Normal 
0.09 (Lotfi and Shing 1994) 

Initial dilation coefficient 0tan  0.36 
Truncated 

Normal(a) 
0.25 (Pluijm 1999) 

Compressive strength of masonry mf  (MPa) ( )18.46ln 37.71u

m cf f = −  Derived Derived (Fortes et al. 2015) 

Stiffness constants nnk , ssk , ttk  (N/mm3) 
( )

u m
nn

m u m

E E
k

h E E
=

−
;

( )2 1 0.15

nn
ss tt

k
k k= =

+
 

Derived Derived (Nazir 2015) 

(a) u

cf , g

cf , and 
tf  have a lower bound of 0.0, 0tan has lower and upper bounds of 0.27 and 0.57, respectively. 

8.5.1.2 Statistics estimations 

Similar to the URM case, a pilot run consisting of 200 MC samples on the RM shear wall is first 

conducted to evaluate the model statistics. Figure 8-11 shows the empirical CDF obtained from 
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the FE simulations. The IP resistances range between 396.7 kN and 451.4 kN with a mean of 424.9 

kN and a standard derivation of 10.87 kN, compared to the IP resistance of 418 kN experimentally 

reported in (Seif ElDin and Galal 2017). Figure 8-12 illustrates the comparison between the FE 

model and code predictions obtained from the pilot sample. The FE simulation results reconfirm 

that the material variability does not affect the failure mode for the RM shear wall considered in 

this study, i.e., all 200 walls exhibit diagonal tension cracking. Apparently, code predictions are 

consistently lower than those of the FE model, showing the conservatism of design provisions. 

This is consistent with the findings presented in (Seif ElDin et al. 2019), in which predictions from 

CSA S304-14 are consistently lower than the experimental results. In addition, a relatively high 

correlation is observed between the code and FE predictions, with a correlation coefficient of 

0.9228. The average computational cost ratio CSA FE/w w  is 0.0000022 / 1. Consequently, model 

evaluation numbers and coefficients can be derived through relevant optimization procedures, with 

the results detailed in Table 8-6. A comparative analysis of the results in Table 8-3, Table 8-4, and 

Table 8-6 shows that more design-code model evaluations are leveraged into the proposed 

estimator for the RM shear wall. This increase is attributable to the higher correlation between FE 

model and code predictions, along with a diminished computational cost ratio. 
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Table 8-6. Model evaluation numbers and coefficient for the mean and variance estimations of IP 

resistance for the RM shear wall 

Computatio

nal cost p 

Crude MC estimators Proposed estimator (mean-optimal) Proposed estimator (variance-optimal) 

FE model 
Design-code 

model mFE mCSA   mFE mCSA   

mFE mCSA 

5 5 1063829 4  8045 1.79 4  30098 3.22 

10 10 2127659 9 16090 1.79 9 60197 3.23 

15 15 3191489 14 24135 1.79 14 90296 3.23 

20 20 4255318 19 32180 1.79 19 120395 3.23 

25 25 5319145 24 40225 1.79 24 150494 3.23 

30 30 6382974 29 48270 1.79 29 180593 3.23 

 

 

Figure 8-12. Comparison of IP resistance obtained by FE model and design-code model for the 

RM shear wall 

To assess the performance of various estimators (i.e., CSA
ˆ , FE

ˆ , and IM
ˆ for the mean 

estimation, and CSA
ˆ , FE

ˆ , IM,mean
ˆ and IM,var

ˆ for the variance estimation), 500 replicate 

simulations are conducted. Figure 8-13 illustrates the MSEs of these estimators, while their 

distributions are shown in Figure 8-14 and Figure 8-15. It is worth mentioning that the design-

code model-based estimators are excluded in Figure 8-14 and Figure 8-15 since they exhibit nearly 
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zero variance and involve significant bias, as can be seen in Figure 8-13. The proposed estimators 

demonstrate consistent decreases in MSE with increased computational cost, and exhibits lower 

MSE and variances comapred to the other estimators examined. At a computational cost of 30, the 

MSEs of proposed mean and variance estimators (variance-optimal) are reduced by 85.0% and 

67.5%, respectively, compared to the crude MC estimator based on the FE model. 

  

(a) (b) 

Figure 8-13. MSE of FE model-based crude MC estimator, design code-based crude MC 

estimator, and proposed estimator for the (a) mean, and (b) variance of IP resistance of the 

RM shear wall 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 8-14. Distributions of FE model-based crude MC mean estimator and proposed mean 

estimator for the IP resistance of the RM shear wall obtained by 500 replicates with different 

computational costs 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 8-15. Distributions of FE model-based crude MC variance estimator and proposed 

variance estimator (variance-optimal) obtained by 500 replicates with different computational 

costs 
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8.5.2. Flexural-governed RM wall 

8.5.2.1 Wall configuration 

A flexural-governed RM wall is considered in this section. To facilitate the subsequent discussion, 

this wall is referred to as ‘RM flexural wall’. The RM flexural wall is designed to have the same 

geometry, boundary conditions, horizontal reinforcements, and material parameters as the RM 

shear wall, but differs in the pre-compression load and vertical reinforcements, as shown in Figure 

8-16. Specifically, the RM flexural wall is considered without a pre-compression load and is 

vertically reinforced with three 10M bars, placed at the wall ends and mid-length location. This 

results in horizontal and vertical reinforcement ratios of 0.13% and 0.88%, respectively. 

 

Figure 8-16. RM flexural wall considered for the case study 

8.5.2.2 Statistics estimations 

The empirical CDF obtained from the pilot run comprising 200 samples is shown in Figure 8-17. 

It is observed that the RM flexural wall exhibits lower IP resistance than the RM shear wall. The 
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RM flexural wall has a mean IP resistance of 52.9 kN, and a standard deviation of 1.48 kN. On the 

other hand, the comparison between code and FE predictions shown in Figure 8-18 illustrates a 

significantly high correlation between FE and code predictions with a correlation coefficient of 

0.9939. These findings suggest that the sectional analysis method suggested in CSA S304-14 

(2014) provides a good representation for the RM flexural wall. As a result, more design-code 

models are distributed into the proposed estimators, as evidenced by the derived results presented 

in Table 8-7 

 

Figure 8-18. Comparison of IP resistance obtained by FE model and design-code model for the 

RM flexural wall considered 

In addition, the design-code model appears to be consistently more conservative than the 

FE model, showcasing the ‘high-fidelity’ of the FE model. This is supported by various studies 

comparing the experimental results and code prediction regarding the flexural capacity of RM 

structures. For instance, Samy et al. (2012) compiled an experimental database of 173 flexural 

tests on RM beams and walls, and it was concluded that the mean value of experimental to 

predicted ratio in terms of the flexural strength is 1.13. For the 200 RM walls investigated in the 
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study, this ratio is calculated as 52.99 kN / 47.26 kN = 1.12. This consistency reaffirms the 

accuracy of the FE model for the prediction of IP flexural capacity of RM walls. 

 

Figure 8-17. Emperical cumulative probability function of IP resistance for the RM flexural 

wall considered 

 

Figure 8-18. Comparison of IP resistance obtained by FE model and design-code model for the 

RM flexural wall considered 
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Table 8-7. Model evaluation numbers and coefficients for the mean and variance estimations of IP 

resistance for the RM flexural wall 

Due to the significantly high correlation between FE model and design-code model, the 

proposed mean and variance estimators achieve a accuracy improvement at almost 2 orders and 1 

order in terms of the MSE, respectively, as shown in Figure 8-19. 

  

(a) (b) 

Figure 8-19. MSE of FE model-based crude MC estimator, design code-based crude MC 

estimator, and proposed estimator for the (a) mean, and (b) variance of IP resistance of the 

RM flexural wall 

At a computational cost of 30, the MSEs of proposed mean and variance estimations are 

reduced by 98.7% and 97.7% compared to the FE-based crude MC estimators. In addition, the 

variance of proposed estimators is significantly lower than others, as evidenced by the distribution 

plots shown in Figure 8-20 and Figure 8-21, for mean and variance estimators, respectively. 

Computational cost p 

Proposed estimator  

(mean-optimal) 

Proposed estimator 

 (variance-optimal) 

mFE mCSA   mFE mCSA   

5 4 30098 1.08  4 30098 1.16 

10 9 60197 1.08  9 60197 1.16 

15 14 90296 1.08 14 90296 1.16 

20 19 120395  1.08 19 120395 1.16 

25 24 150494 1.08 240 150494 1.16 

30 29 180593 1.08 29 180593 1.16 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 8-20. Distributions of FE model-based crude MC mean estimator and proposed mean 

estimator for the IP resistance of the RM flexural wall obtained by 500 replicates with 

different computational costs 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 8-21. Distributions of FE model-based crude MC variance estimator and proposed 

variance estimator (variance-optimal) obtained by 500 replicates with different computational 

costs 
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 CHAPTER CONCLUSIONS 

In this chapter, an improved statistic (i.e., mean and variance) estimation for the in-plane (IP) 

resistance of masonry walls, including unreinforced masonry (URM) walls and reinforced 

masonry (RM) walls, was presented. The estimators leveraged the advantages of both finite 

element (FE) model and design code-based model, e.g., Canadian masonry design code CSA S304-

14. Although FE model generally provided greater accuracy, they were computationally intensive. 

Conversely, design code-based model offered efficiency but its accuracy could be compromised 

by their inherent simplifications. The FE model utilized in this study was developed based on the 

simplified micro modeling strategy, in which individual components were explicitly represented. 

The detailed failure modes and associated IP resistances could be accurately captured through this 

approach.  

The proposed estimators were formulated based on a classical variance reduction technique, 

specifically the control variate method (Nelson 1987, 1990). A large number of design code model 

evaluations were integrated in the proposed estimators to improve the computational efficiency, 

while only a limited number of FE model evaluations are involved to ensure the accuracy (i.e., 

unbiasedness). The construction of proposed statistics estimators for the IP resistance of masonry 

walls, including the determination of model evaluation numbers and coefficients, was detailed.  

The outperformances of proposed estimators were demonstrated by comparing them to the 

crude Monte Carlo (MC) estimators that relied exclusively on either the FE or design-code model. 

The analysis results indicated that the design-code model could introduce significant biases, 

suggesting that relying solely on the design code-based model for uncertainty analysis is not 

advisable, despite their computational efficiency. The FE model-based crude MC estimator 
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exhibits large variances, primarily due to its high computational demands. Notably, the proposed 

estimations displayed the least error and variance, confirming their outperformance. 
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Chapter 9. STATISTICS ESTIMATION OF OUT-OF-PLANE LOAD 

RESISTANCE OF MASONRY WALLS USING ANALYTICAL 

MODELS AND MECHANICS-BASED FINITE ELEMENT 

MODELS 

The susceptibility of masonry walls to out-of-plane (OOP) failure under seismic loading is a 

critical concern. Adhering to the modern limit state design philosophy, it is imperative to 

accurately estimate statistics such as the mean and variance of OOP resistance. To achieve this, 

two deterministic models are often considered within the Monte Carlo (MC) simulation 

framework: design-code models, known for their computational efficiency but potential for 

significant model error, and mechanics-based finite element (FE) models, noted for its accuracy 

but computational intensity. Relying solely on one model for statistical estimation presents 

challenges due to their respective inherent limitations. This study introduces a strategy that 

synergizes the strengths of both models, resulting in enhanced statistics estimators for the OOP 

resistance of masonry walls. The approach involves integrating numerous design-code model 

evaluations to boost computational efficiency, alongside a limited number of FE model evaluations 

to maintain accuracy by using the control variate method (Nelson 1987, 1990). Theoretical 

derivations confirm the accuracy of these proposed estimators in comparison to the crude MC 

estimator. A key benefit of these estimators is their unbiased nature; and their accuracy is not 

compromised by the discrepancies between the FE model and the design-code model. To 

demonstrate the practicality of these estimators, two case studies are illustrated: one focusing on 

unreinforced masonry (URM) walls and the other on reinforced masonry (RM) walls. The findings 

reveal that the newly proposed estimators excel in both accuracy and efficiency compared to those 

relying solely on the FE or design-code models.  
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 INTRODUCTION 

Out-of-plane (OOP) failure is recognized as one of the predominant failure modes of masonry 

walls under seismic loading, as evidenced by recent post-earthquake surveys (Graziotti et al. 2019; 

Moon et al. 2014; Vlachakis et al. 2020) and laboratory tests (El-Hashimy et al. 2020; Hamid et 

al. 1990b; Salem et al. 2019; Sparling and Palermo 2023). Accurate assessment of wall resistances 

against OOP loads is crucial in design practices. Nevertheless, compared to other construction 

materials such as steel and concrete, this is more challenging for masonry, primarily due to its 

heterogeneity (Ferreira et al. 2015; Zeng et al. 2021). 

Current design codes largely rely on simplified analytical methods, treating masonry as a 

homogeneous material. For example, the Canadian masonry design code CSA S304-14 (Canadian 

Standards Association 2014) advocates the use of linear elastic beam bending theory for assessing 

the OOP resistance of vertically spanning unreinforced masonry (URM) walls. For reinforced 

masonry (RM) walls, OOP resistance is determined using section-level equilibrium equations. 

However, this approach overlooks masonry’s tensile strength as well as compressive forces in 

reinforcing bars. While these assumptions and simplifications facilitate wide applications in 

industry, they may lead to overly biased predictions (Isfeld et al. 2019; Liu and Hu 2007). 

The challenge of accurately assessing the OOP resistance of masonry walls is further 

intensified by the material’s inherent variability (Sahu et al. 2019; Sherafati and Sohrabi 2016b). 

This variability introduces substantial uncertainties in OOP resistance evaluations, necessitating a 

shift from deterministic methodologies to probabilistic ones. Uncertainty analysis not only forms 

the basis of modern limit-state design philosophy but also aligns with the industry’s embracement 

of next-generation probabilistic performance-based design. In this context, the evaluation of 
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statistical properties, such as the mean and variance of OOP resistance for masonry walls, is of 

utmost importance. 

For this purpose, deterministic models are often utilized in conjunction with stochastic 

sampling approaches. One of the most widely-used methods is Monte Carlo (MC) simulation 

method (Metropolis and Ulam 1949) due to its non-intrusive nature and insensitivity to the curse 

of dimensionality. In the uncertainty analysis of masonry walls, design-code models (e.g., CSA 

S304-14) are frequently used for their efficiency (Hosseinzadeh and Galal 2021; Moosavi and 

Korany 2014). However, sole reliance on design-code models is problematic due to potential 

biases and inaccuracies arising from model assumptions and simplifications. It is essential to 

quantify model errors using high-quality experimental data prior to their applications (Metwally 

et al. 2022; Zhai et al. 2012). However, the availability and heterogeneity of such data from various 

experimental sources pose challenges. 

As a complement to design-code models, advanced computational models, such as 

mechanics-based finite element (FE) models, have been developed to facilitate the prediction of 

OOP resistances of masonry walls. A representative FE models for masonry is developed based 

on the micro modeling approach (Lourenço et al. 1995b), in which each component of masonry 

(i.e., units, mortar, grouts, reinforcements) and their interactions are explicitly simulated. This 

modeling strategy has been thoroughly studied and validated for the prediction of OOP behavior 

of masonry walls (Chen et al. 2023; Zeng et al. 2021). Although it is generally perceived to be 

more reliable in terms of the OOP resistance prediction than deign-code models (Metwally et al. 

2022), a noticeable obstacle associated with FE model-based statistics estimation is the 
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unaffordable computational cost, particularly when numerous high-fidelity model evaluations are 

required. 

To summarize, within the MC simulation framework, two types of deterministic models 

are used for estimating the statistics of OOP resistance in masonry walls: design-code models and 

FE models. FE models offer greater accuracy but require considerable computational resources. In 

contrast, design-code models are recognized for their efficiency and ease of access, though they 

tend to have larger model errors. To mitigate these limitations, the control variate method (Nelson 

1987, 1990) was used for the statistics estimation that combined the strengths of both design-code 

models and FE models. This method entails integrating a limited number of expensive FE model 

evaluations and a large number of design-code model evaluations to enhance both precision and 

efficiency. The focus of this chapter is on estimating the mean and variance of OOP resistance for 

both URM and RM walls. This approach promises more accurate results than reliance on either 

model alone, offering a new pathway for advancing computational models in masonry design. The 

effectiveness of this methodology is demonstrated through two case studies on URM and RM 

walls, highlighting the superior performance of the proposed statistics estimators. 

 CRUDE MONTE CARLO STATISTICS ESTIMATION 

This section commences with a brief introduction to the FE model and the design-code model 

utilized for the deterministic prediction of OOP resistance in URM and RM walls. Following this, 

crude MC estimators relying solely on the FE model or design-code model are presented, and then 

the quality measures of these estimators are discussed. 
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9.2.1. Finite element model 

FE models for predicting OOP resistances of masonry walls are developed in the general-purpose 

FE package ABAQUS (Dassault Systemes 2017), adopting the simplified micro modeling 

approach. This approach was initially introduced for URM walls by Page (1978). For the modeling 

of RM walls, the simplified micro modeling approach is refined by integrating the reinforcing bars 

in a discrete manner. Mortar joints are simulated using the zero-thickness interface element 

COH3D8, in conjunction with a multi-yield surfaces constitutive model recently developed by the 

authors (Li and Zeng 2023). This model effectively captures various failure modes such as tensile 

cracking, shear sliding, and compressive crushing. Fully integration element (C3D8) is used for 

the modeling of concrete blocks and grouts, with their material properties described by the 

Concrete Damage Plasticity (CDP) model (Lee and Fenves 1998). Reinforcing bars are represented 

by the truss element T3D2 with the von Mises plasticity model and a bilinear hardening law. A 

perfect bond is assumed for grout-reinforcement and grout-concrete unit contacts. The 

effectiveness of this modeling strategy was validated on both small-scale masonry specimens (e.g., 

unit-mortar-unit assemblages) and large-scale URM and RM walls under OOP loadings (Li and 

Zeng 2023). 

9.2.2. Design-code Model 

The loading and boundary conditions for masonry walls considered in this study is a one-way 

vertical bending with a pin-roller boundary condition, typical for low-to-medium rising buildings. 

The structural behavior of masonry walls in such condition closely resembles that of a simply 

supported beam under transverse loading. The OOP resistances of URM and RM walls predicted 

by the design-code models are elaborated in Appendix E and Appendix F. 
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9.2.3. Mean and variance estimations based on crude MC simulation 

The aforementioned FE and design-code models are integrated into the MC simulation framework 

for statistics estimation. Suppose that the OOP resistance of a masonry wall is denoted as ( )f x , 

where x represents a vector of random variables, such as the properties of masonry or its 

constituents. The probability density function associated with x is denoted by ( )g x . The objective 

of this study is to estimate mean (i.e., expectation) and variance, defined as Eq. (9-1) and Eq. (9-

2), respectively: 

 
( ) ( ) ( )f f g d=   x x x x

 (9-1) 

 ( ) ( ) ( ) ( )
2

f f f g d = −       x x x x x  (9-2) 

Here,    and    represent the expectation and variance operators, respectively. The 

model ( )f x  can be specified as either FE model ( )FEf x  or design-code model ( )CSAf x . The 

integrals in Eq. (9-1) and Eq. (9-2) are estimated using MC simulation. By substituting the models 

( )FEf x  and ( )CSAf x , crude MC estimators are expressed in Eqs. (9-3)(9-4)(9-5)(9-6): 
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 ( )( )
CSA 2

CSA CSA CSA

1CSA

1ˆ ˆ
1

i
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= −
−

 x  (9-6) 

where FE
ˆ  and FE

ˆ  are the crude MC estimator for the mean and variance based on the FE 

model; CSA
ˆ and CSA

ˆ  are the estimators relying on the design-code model; ix (i = 1, 2, … , mCSA 

or mFE) are independent identically distributed samples drawn from ( )g x , with mFE and mCSA 

representing sample sizes, i.e., mode evaluation numbers of FE model and design-code model, 

respectively. 

9.2.4. Quality measure of Monte Carlo estimators 

The quality of MC estimators is evaluated by the mean square error (MSE) relative to the true 

value. In this study, the true values of expectation and variance are assumed to be derived by the 

high-fidelity FE model, i.e., ( )FEf  x  and ( )FEf  x , considering that true values are typically 

unavailable. Therefore, MSEs of FE
ˆ  and FE

ˆ  are equal to their variances, as shown in Eq. (9-7) 

and Eq. (9-8), respectively: 

 ( ) ( )( )
( )2 FE

FE FE FE FE

FE

ˆ ˆ ˆMSE
f

f
m

    = = − =     

x
x  (9-7) 

( ) ( )( ) ( ) ( )
2 2FE

FE FE FE FE 4 FE FE

FE FE

1 3ˆ ˆ ˆMSE
1

m
f f f

m m


−   = = − = −               − 
x x x  (9-8) 

It should be noted that the crude MC estimators FE
ˆ and FE

ˆ  are unbiased with respect to 

the true values: ( )FE FE
ˆ f  =    

x  and ( )FE FE
ˆ = f     

x . In Eq. (9-8), ( )4 FEf   x  is 

the fourth central moment of ( )FEf x . It can be observed from Eq. (9-7) and Eq. (9-8) that a large 
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value of mFE is required to achieve reasonable accuracy for ( )FEf  x  and ( )FEf  x . However, 

this is generally impractical since the evaluation of FE models is expensive. Conversely, design-

code model-based estimators CSA
ˆ and CSA

ˆ heavily rely on the relative bias ( ) ( )CSA FEf f−x x , as 

will be demonstrated in the subsequent case studies. 

 IMPROVED MEAN AND VARIANCE ESTIMATORS 

The underlying principle of the proposed estimators is the control variate (CV) method, a classical 

variance reduction technique in statistics (Nelson 1987). The proposed estimators leverage the 

estimations from a very limited number of FE evaluations for enhanced accuracy and a large 

number of design code evaluations (i.e., mCSA >> mFE) to improve the efficiency. In other words, 

design-code model serves as a control variate of FE model. The improved estimators for mean and 

variance for the OOP resistance of masonry walls are described as follows. 

9.3.1. Mean estimator 

The proposed mean estimator for the OOP resistance of masonry walls, denoted as IM
ˆ , is 

formulated as per Eq. (9-9) based on the control variate method (Nelson 1987, 1990): 

 ( ) ( ) ( )
CSAFE FE

IM FE CSA CSA

1 1 1FE CSA FE

1 1 1ˆ
i i i

i i i

mm m
f f f

m m m


= = =

 
 = + −  

 
  x x x  (9-9) 

Here, α is a coefficient that weights the differences of the MC estimates obtained from 

design-code model with different sample sizes; the samples ix , x , and x  are independently and 

randomly generated. It can be seen that the formulation of IM
ˆ integrates both design-code and FE 

models: the first term on the right-hand side (RHS) relates to the FE estimation, and the latter two 

terms are based on the design-code predictions. A significant advantage of the proposed mean 
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estimator is its unbiasedness with respect to ( )FEf  x , even though the design-code model is 

integrated: 

 ( )IM HF
ˆ f  =    

x  (9-10) 

Eq. (9-10) can be readily justified by the linearity of expectation. This characteristic of 

unbiasedness offers a distinct advantage over the design-code model-based estimator due to its 

nature as an approximation. As such, MSE of IM
ˆ with respect to the true value is equal to its 

variance, as shown in Eq. (9-11): 

 ( )
( ) 

( )  ( )  ( ) ( )FE

IM CSA FE CSA

FE FE CSA

21 1ˆMSE 2
f

f f f

m m m
 = + − −

 
 
 

x
x x x  (9-11) 

Here, ρ is the Pearson correlation coefficient between the FE model and design-code 

model. Based on Eq. (9-11), it can be observed that ( )IM
ˆMSE  is highly dependent on the three 

factors: model evaluation numbers mFE and mCSA, and the coefficients  . They are determined by 

minimizing ( )IM
ˆMSE  given a specific computational cost. By assigning the computational costs 

of one single FE and design-code evaluations as HF  and LF , respectively, and available 

computational budget as p, the following optimization problem is formulated: 

 
( )

FE CSA

IM

, ,

FE FE CSA CSA

ˆMSEarg min      

subject to   

m m

m m p



 + 

 (9-12) 

In this study, the close-form solution for the aforementioned optimization problem derived 

by Peherstorfer et al. (2016b) is used, as shown in Eqs. (9-13)(9-14)(9-15): 
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w
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


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−
;  is the Pearson correlation coefficient ρ between the FE 

model and design-code model, which is expressed in Eq. (9-16): 
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where  Cov  is the covariance operator. Given a dataset with sample size N, Pearson 

correlation coefficient estimate ̂ is calculated as Eq. (9-17): 
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Here, ( )FEf x  and ( )CSAf x  are the sample mean: ( ) ( )FE FE

1

N

i

i

f f
=

= x x  and

( ) ( )CSA CSA

1

N

i

i

f f
=

= x x . 

By incorporating Eqs. (9-13)(9-14)(9-15) into Eq. (9-11), the MSE of proposed mean 

estimator IM
ˆ can be updated. The performance of IM

ˆ  relative to the crude FE model-based 
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estimator is derived through the comparison of MSE ratio e: ( ) ( )IM FE
?MSE / MSEe = . In this 

context, by assuming the identical computational cost p, the FE model evaluation number in the 

FE model-based estimator is FE/p w . Thus, the ratio e can be derived as Eq. (9-18): 

 
( )
( )

( )
2

2IM
CSA2

FEFE

ˆMSE
1

ˆMSE

w
e

w




 
= = − + 

 
 

 (9-18) 

Eq. (9-18) quantifies the MSE reduction achieved by the proposed estimator for a given 

computational cost compared to FE
ˆ . Notably, this ratio only depends on the square of Pearson 

correlation coefficient 
2  and the computational cost ratio CSA FE/w w . Conversely, it remains 

unaffected by the discrepancy between the FE and design-code predictions (i.e., 

( ) ( )FE CSAi if f−x x ) and the computational budget p. As CSA FE/w w  decreases, a greater MSE 

reduction is realized. Moreover, as the squared correlation coefficient 
2  increases, the ratio in 

Eq. (9-18) becomes smaller if design-code model is significantly more computationally efficient 

than the FE model, i.e., ( )
2

LF 2

HF

1
w

w


− , while is indeed the case considered in this study. 

9.3.2. Variance estimator 

The proposed variance estimator IM
ˆ  is formulated analogously to the mean estimator as detailed 

in Eq. (9-19) based on the control variate method (Nelson 1987, 1990): 
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(9-19) 
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where β is a coefficient. Note that IM
ˆ  is also unbiased relative to ( )FEf  x , i.e., 

( )IM FE
ˆ f  =    

x . Consequently, the MSE of IM
ˆ is equal to its variance IM

ˆ 
  . The variance 

of a sum of random variables is computed by summing the variances of each variable and twice 

the sum of their pairwise covariances. Accordingly, the MSE of IM
ˆ  with respect to the true value 

( )FEf  x  can be shown in Eq. (9-20): 
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The effectiveness of the proposed variance estimator can be deduced by comparing 

IM
ˆMSE  

   and Eq. (9-8). Regarding the determination of model evaluation numbers mFE and mCSA, 

and coefficient β, the first approach assumes that these quantities be assumed to be identical to 

those in the mean-optimal model management scheme, as referenced in Eqs. (9-13)(9-14)(9-15). 

The second approach is to determine these quantities by minimizing IM
ˆMSE  

  with a given 

computational budget p within a numerical optimization procedure, as shown in Eq. (9-21). In this 

study, these two schemes are used and compared based on the estimation results for the study cases 

considered later. 
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 (9-21) 
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 MEAN AND VARIANCE ESTIMATION OF OOP RESISTANCE OF MASONRY 

WALLS 

This section integrates the previously introduced design-code and FE models into the proposed 

estimators for predicting the OOP resistances of masonry walls. The effectiveness of these 

proposed estimators is demonstrated through two case studies: one focusing on a URM wall and 

the other on an RM wall. For the purpose of comparison, three types of estimators are compared: 

estimators based exclusively on the design-code model ( CSA
ˆ , CSA

ˆ ), estimators relying solely on 

the FE model ( FE
ˆ , FE

ˆ ), and the newly proposed estimators ( IM
ˆ , IM

ˆ ). This comparative 

analysis aims to ascertain the relative accuracy and efficacy of each estimator in predicting the 

mean and variance OOP resistances, providing valuable insights into their practical applications. 

9.4.1. Case study: URM wall 

9.4.1.1 Wall configuration and material uncertainties 

The URM wall considered in this study was experimentally investigated by Raijmakers (1992). It 

was constructed using solid clay bricks (210 mm × 52 mm × 100 mm) and 10 mm-thick mortar 

layers. The wall was 1000 mm high, 990 mm long, and 100 mm thick, as shown in Figure 9-1. The 

wall was subjected to a pre-compression load of 1.2 MPa. It should be noted that this URM wall 

was tested in the IP loading scenario. However, it was selected in this study due to its well 

documented material parameter and corresponding statistical information. 
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Figure 9-1. URM wall considered for the case study 

In the analysis of the URM wall, four statistically independent variables are considered: 

compressive strength of brick units 
c

uf , tensile strength tf , frictional coefficient tan and initial 

dilatancy coefficient 0tan of interfaces (mortar joints). The mean values of these parameters are 

assumed to be those reported by Raijmakers (1992). The probability distributions and coefficient 

of variations (COVs) for these variables are established based on either field tests (Li et al. 2014) 

or laboratory tests (Pluijm 1999). Other variables are determined based on the deterministic 

empirical relationships as prescribed in public literature, as shown in Table 8-1. 
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9.4.1.2 Statistics estimation 

To construct the proposed estimator as specified in Eq. (9-9) and Eq. (9-19), it is necessary to 

determine specific model evaluation numbers mFE and mCSA and the coefficients (α and β for mean 

and variance estimators, respectively). Optimally defining these quantities involves the calculation 

of model statistics, such as variance and the fourth central moment, along with the Pearson 

correlation coefficient. A pilot run on 200 MC samples is performed for this purpose. 

Empirical cumulative probability function (CDF) of OOP resistance for the studied URM 

wall obtained by the pilot run is depicted in Figure 9-2, in which a representative deformed shape 

of a URM wall under OOP loading is also included. In such scenarios, the moments developed 

along the wall section would lead to crack opening at the base section and approximately mid-

height position. The flexural stresses normal to the bed joints eventually result in tensile failure 

(e.g., cracking opening) when cracks occur along a course of bed joints. The analysis of the 200 

URM walls in the pilot run reveals OOP resistances ranging between 63.09 kPa and 72.35 kPa, 

with a mean of 67.55 kPa and a sample standard deviation of 1.74 kPa. 

 

Figure 9-2. Emperical cumulative probability functions of OOP resistances for the URM wall 

considered 
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Figure 9-3 presents a comparison of the OOP resistance between the design-code and FE 

predictions obtained from the pilot sample. It is evident that the design-code model tends to 

significantly underestimate the OOP resistances compared to the FE predictions. For the same 200 

URM walls considered, the design-code predictions showed a mean OOP resistance of 23.08 kPa 

and a standard deviation of 0.81 kPa, respectively. This tendency of underestimation is anticipated. 

For URM walls under OOP load and pre-compression load, after the cracking of the base, the 

counteracting moment due to eccentricity of the base reaction further increases the lateral load that 

must be applied to cause cracking near mid-height. The design approach inherently incorporates 

the assumption of zero eccentricity of the reaction at the base and, thus, ignores the significant 

increase in OOP capacity due to counteracting moment (Drysdale and Hamid 2005). 

 

Figure 9-3. Comparison of OOP resistances obtained by the 

FE model and design-code model for URM walls 

Despite the notable discrepancy between design-code and FE model predictions, there 

exists a strong correlation exists between them, as evidenced by a Pearson correlation coefficient 

ρ of 0.7902 obtained from the pilot run. Consequently, the quality of the proposed mean estimator 
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IM
ˆ is guaranteed because it is only dependent on the squared Pearson correlation coefficient 

2  

for a given computational cost ratio CSA FE/w w , as indicated by Eq. (9-18). In this study, 

computational costs are measured as multiples of the CPU time required for a FE model evaluation, 

leading to FE 1.0w =  and CSA 0.0000024w = . By substituting the values of computational cost ratio 

CSA FE/w w  and Pearson correlation coefficient ρ into the MSE reduction ratio in Eq. (9-18), the 

MSE reduction ratio achieved by the proposed estimator is calculated to be optimally around 63%, 

compared to the crude FE model-based MC estimator. 

To illustrate the effect of computational budget, six different levels for p, ranging from 5 

to 30, are considered. Optimization procedures for the determination of model evaluation numbers 

and coefficients are performed, and corresponding results are presented in Table 9-1. As an 

example, at a computational budget of 5, this budget is exclusively allocated for 5 FE simulations 

or 2.08 × 107 (calculated as 5 / 0.0000024) design-code evaluations in the crude MC estimators. 

Alternatively, in the proposed estimator, this budget is allocated for 4 FE model and 4152 design-

code model evaluations. To fully leverage the pre-computed 200 FE models, the selection of FE 

samples for the construction of the proposed estimator is restricted only to this dataset, as suggested 

by Yao et al. (2022). A reference mean value of 67.55 kN for OOP resistance is derived using the 

proposed estimator with a significantly large computational budget, wherein samples are randomly 

selected from the pre-computed 200 samples. It is critical to acknowledge that the proposed 

estimator IM
ˆ  is rigorously guaranteed to be unbiased, and therefore using the proposed estimator 

with a large computational budget to determine the reference mean value is justifiable. 
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Table 9-1. Model evaluation numbers (mFE and mCSA) and coefficient   for the mean estimation of 

OOP resistance for the URM wall considered 

Figure 9-4 presents the MSE for three estimators (i.e., CSA
ˆ , FE

ˆ , IM
ˆ ) in estimating the 

mean value of OOP resistance for the URM wall considered, relative to the reference mean value 

through 500 replicates. It is evident that the MSE of CSA
ˆ reaches a plateau even at the minimum 

computational budget (p = 5) considered, since a large number of design-code model evaluations 

are available. This finding underscores the inherent bias in the mean estimator when solely relying 

on the design-code model. The design-code model-based MC estimator exhibits a considerably 

higher MSE compared to the other two estimators. On the other hand, for all computational budgets 

considered, the proposed estimator IM
ˆ  achieves an MSE more than 60% lower than FE

ˆ  when 

the same computation budget is used. As the available computational budget increases, the MSE 

of IM
ˆ  decreases, indicating its “unbiasedness” of proposed estimator. 

Computational 

cost p 

Crude MC estimators Proposed estimator 

FE model Design-code model 
mFE mCSA   

mFE mCSA 

5 5 2.08 × 107 4 4152 1.70 

10 10 4.16 × 107 9 8305 1.70 

15 15 6.25 × 107 14 12458 1.70 

20 20 8.33 × 107 19 16611 1.70 

25 25 1.04 × 108 24 20763 1.70 

30 30 1.25 × 108 29 24916 1.70 
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Figure 9-4. MSE of FE model-based crude MC estimator, design-code model-based crude MC 

estimator, and proposed estimator for the mean value of OOP resistance for the URM wall 

considered 

Figure 9-5 displays the distributions of FE
ˆ and IM

ˆ from 500 replicates, from which 

similar conclusions can be drawn. It is important to note that the design-code model-based 

estimator is excluded in Figure 9-5 since it exhibits nearly zero variance, but significantly deviates 

from the reference mean value. Notably, the proposed estimator demonstrates a smaller variance 

compared to the FE model-based crude MC estimator when allotted the same computational 

budget. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 9-5. Distributions of FE model-based crude MC mean estimator and proposed mean 

estimator obtained by 500 replicates with different computational costs 
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Estimating variance in this research is notably challenging due to the involvement of 

higher-order moments. As previously discussed, two methodologies are identified for calculating 

model evaluation numbers (mFE and mCSA) and coefficient  . The first method, also suggested in 

studies (Qian et al. 2018; Yao et al. 2022), adopts a mean-optimal strategy, and corresponding 

results following this approach are detailed in Table 9-1. Alternatively, the second method focuses 

on minimizing the MSE of the proposed variance estimator, as indicated in Eq. (9-21), with the 

corresponding values for mFE, mCSA and   presented in Table 9-2. A comparison of Table 9-1 and 

Table 9-2 reveals the significant differences in mFE, mCSA and  . This discrepancy primarily results 

from the mean-optimal strategy's tendency to assign more evaluations to design-code models due 

to their strong correlation with the FE model. However, the variance-optimal strategy also takes 

into account the influence of higher-order moments. 

Table 9-2. Model evaluation numbers (mFE and mCSA) and coefficient  for the variance estimation 

of OOP resistance for the URM wall considered 

 

 

 

 

To facilitate the discussion, the proposed variance estimators developed from the mean-

optimal and variance-optimal strategies are denoted as IM,mean
ˆ  and IM,var

ˆ , respectively. Figure 9-6 

illustrates the MSE of these different variance estimators. Similarly, the MSE of the design-code 

model-based estimator remains significantly higher due to inherent bias. Among all estimator 

Computational cost p 

Proposed estimator (variance-optimal strategy) 

mFE mCSA   

5 4 1576 2.77 

10 9 8305 2.75 

15 14 12458 2.75 

20 19 16611 2.74 

25 24 20763 2.74 

30 29 24916 2.74 
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evaluated, IM,var
ˆ exhibits the lowest MSE among them. It should be noted that both IM,mean

ˆ and 

IM,var
ˆ  outperform the estimator FE

ˆ , for the URM wall considered in this study. This finding is 

crucial as it suggests that even without specific optimization of model evaluation numbers and the 

coefficient for MSE minimization, the resulting variance estimators are superior to the crude MC 

estimator, which depends solely on the FE model, given an equivalent computational budget. 

 

Figure 9-6. MSE of FE-based crude MC estimator, design code-based crude MC estimator, and 

proposed estimators (mean-optimal and variance-optimal) for the variance of OOP resistance for 

the URM wall considered 

Another key insight from Figure 9-6 is the observation that with an increased 

computational budget, the MSEs of both estimators IM,mean
ˆ  and IM,var

ˆ  decrease, re-confirming 

the “unbiasedness” of the proposed variance estimator irrespective of the model evaluation 

numbers and the value of coefficient. However, it is important to recognize that the MSE of 

estimator IM,var
ˆ  (i.e., 0.4227) shows an approximate 25% reduction compared to estimator FE

ˆ  

(i.e., 0.5608) at a computational budget of 30. This reduction is less pronounced than that observed 
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in mean estimation, which aligns with expectations since higher-order moments are typically more 

susceptible to the size of the pilot sample. This aspect influences the determination of model 

evaluation numbers and the coefficient. This phenomenon is also reflected in the distribution plots 

in Figure 9-7, where the variance reduction is less marked compared to the mean estimation 

depicted in Figure 9-5. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 9-7. Distributions of FE model-based crude MC variance estimator and proposed 

variance estimator (variance-optimal) obtained by 500 replicates with different computational 

costs 
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9.4.2. Case study: RM wall 

9.4.2.1 Wall configuration and material uncertainties 

The fully grouted RM wall tested by Seif Eldin (2016) is utilized as a case study. This wall is 

chosen for its well-documented material parameters. The wall’s dimensions were 1.8 m in length, 

1.6 m in height, 0.19 m in thickness. The concrete masonry units used for the construction of the 

tested RM wall adhered to the standard dimensions of 390 mm × 190 mm × 190 mm. The vertical 

reinforcements consisted of 20M bars (with a 300 mm2 cross sectional area) in every cell, while 

the horizontal reinforcements comprised the uniformly distributed 10M bars (with a 100 mm2 

cross-sectional area) spaced at 400 mm. Corresponding horizontal and vertical reinforcement 

ratios were 0.13% and 0.79%, respectively. A constant pre-compression load of 1.0 MPa was 

applied to the wall. 

In terms of the material parameters, six statistically independent variables are considered: 

tensile strength tf , frictional coefficient tan  and initial dilatancy coefficient 0tan  of interfaces 

(mortar joints), compressive strength of units u

cf , compressive strength of grouts g

cf , and yield 

strength of reinforcements yf . Other required material parameters treated as derived random 

variables using well-established relationships, as summarized in Table 8-5. 

9.4.2.2 Statistics estimation 

Similar to the URM case, a pilot run on 200 MC samples is first performed. The empirical CDF 

obtained from the pilot run is shown in Figure 9-8, with the OOP resistance ranging between 0.197 

MPa and 0.231 MPa with a mean of 0.213 MPa and a standard derivation of 0.0064 MPa. On the 

other hand, the comparison of code and FE predictions shown in Figure 9-9 illustrates a 

significantly high correlation between FE and code predictions with a high correlation coefficient 
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of 0.8466. This finding suggests that the sectional analysis method suggested in CSA S304-14 

(Canadian Standards Association 2014) provides a good representation for the OOP flexural 

capacity of RM walls. In addition, the design-code model appears to be consistently more 

conservative than the FE model. This is attributed to the reason that the tensile forces of masonry 

and the compressive forces of reinforcement bars are ignored in the equilibrium equation. The 

average computational cost ratio CSA FE/w w  is 0.0000019 / 1. Consequently, model evaluation 

numbers and coefficients can be derived through mean-optimal and variance-optimal optimization 

schemes. with the results detailed in Table 9-3. It is evident for the RM wall considered in this 

study, two optimization schemes lead to identical results for model evaluation numbers, but with 

different coefficients. In addition, compared to results for URM case shown in Table 9-1 and Table 

9-2, more design-code model evaluations are leveraged into the proposed estimator for the RM 

wall. This increase is attributable to the higher correlation between FE model and code predictions. 

 

Figure 9-8. Empirical cumulative probability function of OOP resistance for the RM wall 
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Figure 9-9. Comparison of OOP capacity obtained by design-code and FE models for RM 

walls 

Table 9-3. Model evaluation numbers and coefficient for the mean and variance estimations of OOP 

resistance for the RM wall 

Computa

tional 

cost p 

Crude MC estimators Proposed estimator (mean-optimal) Proposed estimator (variance-optimal) 

FE 

model 

Design-

code 

model 
mFE mCSA   mFE mCSA   

mFE mCSA 

5 5 2.63 × 106 4  5717 0.86 4  5717 0.97 

10 10 5.26 × 106 9 11514 0.86 9 11514 0.97 

15 15 7.89 × 106 14 17272 0.86 14 17272 0.97 

20 20 1.05 × 107 19 23029 0.86 19 23029 0.97 

25 25 1.32 × 107 24 28786 0.86 24 28786 0.97 

30 30 1.58 × 107 29 34544 0.86 29 34544 0.97 

To assess the performance of various estimators (i.e., CSA
ˆ , FE

ˆ , and IM
ˆ  for the mean 

estimation, and CSA
ˆ , FE

ˆ , IM,mean
ˆ and IM,var

ˆ for the variance estimation), 500 replicates are 

conducted. Figure 9-10 (a-b) illustrate the MSEs of mean and variance estimators, respectively. 

Regarding the mean estimation, the proposed estimator IM
ˆ achieves a MSE reduction of 70% 

compared to the FE-based crude MC estimator FE
ˆ . Similarly, design-code model-based 

estimator exhibits the highest largest MSE due to its bias. However, for the variance estimation 

shown in Figure 9-10 (b), the design-code model-based estimator exhibits the smallest MSE for 
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the computational budgets considered. However, it is expected that with the increase of 

computational budget, the MSE of FE
ˆ and IM

ˆ would continue to decrease due to their 

unbiasedness. By comparing FE
ˆ and IM

ˆ , two modeling management schemes lead to highly 

identical results. This is also reflected in Table 9-3, in which the model evaluations numbers 

obtained by two schemes are same and the values of coefficients are close. 

  

(a) (b) 

Figure 9-10. MSE of FE model-based crude MC estimator, design code-based crude MC 

estimator, and proposed estimator for the (a) mean, and (b) variance of OOP resistance of the 

RM wall 

The estimator distributions through 500 replicates are shown in Figure 9-11 and Figure 

9-12. The design-code model-based estimators are excluded since they exhibit nearly zero variance. 

Notably, the proposed estimators demonstrate a smaller variance compared to the FE model-based 

crude MC estimator when allotted the same computational budget. In addition, the variance 

reduction is more pronounced in the mean estimator than the variance estimator. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 9-11. Distributions of FE model-based crude MC mean estimator and proposed mean 

estimator obtained by 500 replicates with different computational costs 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 9-12. Distributions of FE model-based crude MC variance estimator and proposed 

variance estimator (variance-optimal) obtained by 500 replicates with different computational 

costs 
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 CHAPTER CONCLUSION 

This chapter presented an improved methodology for estimating the mean and variance of the out-

of-plane (OOP) resistance of masonry walls, encompassing both unreinforced masonry (URM) 

and reinforced masonry (RM) walls. The estimators developed herein adeptly combined the 

accuracy of mechanics-based finite element (FE) models and the efficiency of Canadian masonry 

design code-based models. The proposed estimators were formulated using the control variate 

method, a classical variance reduction technique (Nelson 1987, 1990). A large number of design 

code model evaluations were integrated in the proposed estimators to improve computational 

efficiency, while only a limited number of FE model evaluations are involved to ensure accuracy. 

The methodology for constructing these estimators, especially the determination of model 

evaluation numbers and coefficients for the OOP resistance of masonry walls, was elucidated in 

detail. 

The proposed statistics estimators had two main advantages: 1) they are strictly unbiased 

with respect to the true value, irrespective the discrepancy between the FE and design-code models; 

2) they potentially could achieve significant variance reductions providing that the higher 

correlation between the FE and design-code models. Two case studies were provided to illustrate 

the outperformance of the proposed estimators: one on a URM wall, and the other one on a RM 

wall. The proposed mean estimator, in particular, shows significantly greater accuracy compared 

to those based solely on either the FE model or design-code model. Although the variance 

estimator's superiority is less pronounced than that of the mean estimator, it still exhibits enhanced 

performance except in the assessment of OOP resistance of an RM wall. This exception is largely 

due to the maximum computational budget set in this study, limited to 30 FE model runs. It is 
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expected that with the increase of computational budgets, the proposed estimator would achieve 

higher accuracy than the design-code model. 
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Chapter 10. NOVEL STRUCTURAL RELIABILITY METHODS USING 

MULTI-FIDELITY MODELS THROUGH CROSS-ENTROPY 

IMPORTANCE SAMPLING AND CONTROL VARIATE 

TECHNIQUES WITH APPLICATIONS ON MASONRY WALLS  

In the realm of reliability assessment for complex real-world structures, the need of using high-

fidelity (HF) models (e.g., advanced computational models) in defining limit-state functions 

(LSFs) poses a significant challenge, due to the high computational costs in sampling-based 

reliability analysis. To address this challenge, this paper presents a novel multi-fidelity (MF) 

approach that harmoniously integrates HF and low-fidelity (LF) models to enhance the efficiency 

and accuracy of reliability analysis. The proposed method involves a two-step leveraging process. 

Initially, a large number of cost-effective LF models are evaluated, and a biasing probability 

density is constructed, and an inaccurate LF model-based reliability estimation is obtained through 

the cross-entropy adaptive sampling strategy. Subsequently, the biasing probability density 

constructed relying on the LF model is leveraged as an “importance” sampling function in the HF 

model-based reliability estimation. Lastly, the LF model-based reliability estimation is integrated 

with the HF model-based reliability estimation through the control variate (CV) technique, leading 

to a further variance reduction. The additional advantage of the proposed method is its flexibility 

in integrating any form of LF models, such as data-fit interpolation and regression models or 

simplified models based on physics, like many design-code models in civil engineering, or FE 

models with coarse mesh. To illustrate the performance of the proposed multi-fidelity reliability 

method, four numerical examples are used with comparison to sampling-based reliability 

estimators. 
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 INTRODUCTION 

The primary goal of structural reliability analysis is to evaluate the probability that a structure fails 

to fulfill its desired performance after considering pertinent uncertainties, arising from uncertain 

material properties, structural geometries, external forces, etc. In structural engineering, 

deterministic response prediction has advanced remarkably, as evidenced by the popularity of 

high-fidelity (HF) simulation using finite element models, which are unarguably more reliable than 

oversimplified analytical models with severe restrictions or approximations. However, the direct 

use of high-fidelity models for probabilistic response prediction or reliability analysis is limited in 

the field of structural engineering. 

Consider a structural system described by a response prediction model ( )Y f= X , where 

X represents a vector of random variables with outcomes or realizations denoted by x, 

characterized by a joint probability density function ( )p x . The structural performance is 

mathematically described by a performance function or limit state function (LSF), denoted as 

( )g x , defined such that ( ) 0g x  indicates the failure or unsatisfactory performance of a structural 

system. The evaluation of ( )g x  relies on the structural response prediction model ( )f x , which is 

typically implicit for complex structural systems. The objective of reliability analysis is to compute 

the probability of failure fP , as formulated in Eq. (10-1) (Lemaire 2013): 

 ( ) ( ) ( ) ( )0f gP p d p d= = x x x x x x  (10-1) 

Here, ( )x  is the indicator function, as given in Eq. (10-2): 
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g

g


= 
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x
x

x
 (10-2) 

The integral in Eq. (10-1) often becomes analytically intractable when advanced 

computational models (e.g., nonlinear FE models) are used for ( )fY = X . To overcome this, 

several approximation approaches have been introduced, such as the first-order reliability method 

(FORM) (Hasofer and Lind 1974; Rackwitz and Flessler 1978; Zhao and Ono 1999) and other 

methods developed based on FORM. These methods include second-order reliability methods 

(SORM) (Kiureghian et al. 1987; Zhao and Ono 1999), and response surface methods (RSM) 

(Bucher and Bourgund 1990; Rajashekhar and Ellingwood 1993), which attempt to approximate 

the true LSFs in an iterative manner. In the case of highly nonlinear LSFs, the linear approximation 

employed by FORM can lead to significant errors. This is because a linear representation is 

incapable of capturing the intricate behavior of a nonlinear function, especially in regions where 

the function exhibits sharp changes or curvature. As a result, the failure probability estimated by 

FORM may deviate substantially from the true value, leading to unreliable or even misleading 

conclusions about the system’s reliability. SORM, with its inclusion of second-order terms, offers 

a more accurate approximation than FORM for moderately nonlinear problems. However, for 

LSFs with severe nonlinearity or complex behavior, the second-order approximation may still fall 

short. The accuracy of SORM is heavily dependent on the adequacy of the quadratic approximation 

to represent the true LSF. In cases where the LSF has higher-order nonlinearities or discontinuities, 

SORM’s performance can deteriorate, resulting in inaccurate reliability estimates.  

The challenges posed by high-dimensional problems are multifaceted. Both FORM and 

SORM rely on the identification of a design point or most probable point in the standard normal 
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space, which becomes increasingly difficult as the dimensionality of the problem grows. The 

computational cost associated with the iterative search for the design point escalates rapidly with 

the number of random variables, making these methods less feasible for large-scale problems. 

Additionally, the curse of dimensionality affects the accuracy of the linear and quadratic 

approximations. In high-dimensional spaces, the volume of the region where the approximation is 

valid diminishes relative to the entire space, leading to a decrease in the overall effectiveness of 

FORM and SORM, as indicated by relevant studies (Geyer et al. 2019; Kurtz and Song 2013; Song 

and Kawai 2023). Note that there is another family of approximate methods, i.e., moment-based 

methods (Cornell n.d.; Shun Li and Lumb 1985; Tichý 1994; Zhao and Ono 2001), which attempt 

to approximate the probability distribution function based on a few probability moments of the 

LSF. These methods are practical in the sense that no probability distribution functions of basic 

random variables are needed, but their use is restricted by their applicability range. 

As an alternative to approximation methods, sampling-based approaches, such as the crude 

Monte Carlo Simulation (MCS) (Metropolis and Ulam 1949), have gained prominence due to their 

robustness against the complexity of LSFs and their asymptotic accuracy. Crude MCS aims at 

estimating the probability of failure by sampling the basic random variables, evaluating the LSF 

( )g x  repeatedly, and quantifying the proportion that ( ) 0g x . As such, crude MCS is particularly 

attractive when ( )g x  involves a ‘black-box’ model ( )f x . However, the accuracy of crude MCS 

is contingent upon a large sample size due to its low convergence rate when the probability of 

failure is low for rare event evaluation. This becomes an obstacle when evaluating the LSF is 

computationally expensive, for example, when high-fidelity models are used for ( )f x . 
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To address this issue, researchers have devoted considerable efforts to developing MCS 

variants to enhance the computational efficiency through variance reduction techniques such as 

importance sampling (IS) (Ibrahim 1991; Tokdar and Kass 2010), subset simulation (Au et al. 

2007; Au and Beck 2001), directional simulation (DS) (Bjerager 1988; Nie and Ellingwood 2000), 

line sampling (LS) (Koutsourelakis 2004; Koutsourelakis et al. 2004), Quasi-Monte Carlo methods 

(Nie and Ellingwood 2004a; b), and others as reported in recent literature reviews (Song and Kawai 

2023; Tabandeh et al. 2022; Zhang 2021). IS, for instance, targets regions of the input space that 

significantly influence the quantity of interest, with its efficacy reliant on the selection of the 

importance sampling distribution. Subset Simulation, on the other hand, partitions the original rare 

event probability estimation problem into a sequence of more tractable problems with higher 

probabilities. Its performance hinges on the optimal selection of intermediate failure thresholds, a 

task that can prove challenging. Although it diminishes the computational burden compared to 

crude MCS, it may still demand considerable computational resources for problems characterized 

by very low failure probabilities or high-dimensional input spaces. DS navigates the input space 

along specific directions, typically dictated by the gradient of the limit state function. Its 

performance is contingent upon the appropriate choice of directions for simulation, a process that 

can be complex in problems with intricate failure regions. DS might not be well-suited for 

scenarios where the failure region does not align well with any particular direction. Lastly, LS 

aims to simplify the problem by converting it into one-dimensional integrals along chosen lines in 

the input space. However, this reduction may not fully encapsulate the complexity of the limit state 

function in high-dimensional scenarios. The effectiveness of LS is dependent on the judicious 

selection of lines for sampling, a task that can be arduous in problems with irregular failure regions. 
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To sum up, these sampling-based methods might still be ineffective when the LSF evaluation is 

computationally intensive. Although they prove to be more efficient than the crude MCS (Song 

and Kawai 2023), they still necessitate a relatively large number of LSF evaluations, rendering 

them less feasible for reliability analysis based on HF models that are perceived to be more precise 

in characterizing the structural response. 

On the other hand, more readily accessible low-fidelity (LF) models, such as engineering 

models prescribed in design codes, analytical models characterized by assumptions or deliberate 

simplifications in structural complexities, surrogate models trained by data, serve as cost-effective 

alternatives. These LF models remain essential for practical use by providing efficient evaluations 

when model accuracy is non-critical. It is imperative to note, however, that LF models often suffer 

from relatively large inaccuracies, and thus reliability assessments based on LF models without 

considering model uncertainty may involve substantial errors in the reliability results (Gallimard 

2011; Hamdia and Ghasemi 2023; Rashki et al. 2018). 

Recognizing the strengths and limitations of HF and LF models, researchers have turned 

to multi-fidelity (MF) methods integrating both types of models in structural engineering, 

particularly for response prediction and uncertainty analysis (Hamdia and Ghasemi 2023; Patsialis 

et al. 2022; Patsialis and Taflanidis 2021; Rashki et al. 2018). These methods include Multi-Level 

(ML) and Multi-Fidelity (MF) methods. Both ML and MF methods employ HF and LF models. 

The former is typically limited to a hierarchy of LF models that are derived from the HF model by 

varying a parameter (e.g., discretization size), while MF methods are less restrictive in terms of 

the LF models (Peherstorfer et al. 2018b; Zhang 2021). As such, MF methods offer more 

flexibilities in the selection of LF models. For example, Rashki et al. (2018) and Hamdia and 
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Ghasemi (2023) used multi-level refinement on a hierarchy of computational models for reliability 

analysis. Patsialis and Taflanidis (2022; 2021) utilized the reduced order models as LF models for 

the investigation of seismic behavior of planar moment-resisting frame (MRF) structural systems. 

Peherstorfer et al. (2016a) used projection-based reduced models as LF models for a clamped plate 

in bending. It is worth noting that design-code models, which exist widely in structural engineering, 

can also be alternative LF models in MF methods. For instance, Liu et al. (2023b) used five 

concrete structure and bridge design-code models as LF models for the shear strength predictions 

of prestressed concrete girders. 

The key component of the MF method is the model management strategy. This involves 

how the outputs from LF and HF models are used to formulate the statistic estimators of interest, 

i.e., mean, variance, and probability of failure. In contrast to the correction approach, as used in 

(Liu et al. 2023b; a) where correction terms to LF models are learned using HF data, HF and LF 

information can be integrated by fusion or filtering (Peherstorfer et al. 2018b). More specifically, 

in the realm of reliability analysis, two common approaches to fuse LF and HF information are 

control variates (Abdollahi et al. 2020; Rashki et al. 2018) and co-kriging (Skandalos et al. 2022; 

Zhang et al. 2022), by exploiting the correlation between HF and LF models directly, where both 

HF and LF can be evaluated in parallel (Proppe and Kaupp 2022). In contrast, in the filtering 

approach, HF model is evaluated selectively in a way guided by LF information, only when 

meeting some criteria defined based on the LF evaluation (Li and Xiu 2010) or sampling according 

to a biasing distribution that is constructed with a LF model (Peherstorfer et al. 2016a, 2017). Note 

that in (Peherstorfer et al. 2016a, 2017), the failure domain is captured using cheap LF models via 

an expectation-maximization method, which still requires a relatively large number of HF 
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evaluations, especially for rare event analyses (i.e., fP  is small). Pham and Gorodetsky (2022) 

developed an approximate control variate estimator for the reliability estimation. The proposed 

approach leveraged the importance sampling method and variance reduction technique. Moreover, 

the lower bounds on the number of samples required to guarantee variance reduction were derived. 

The analysis results indicated that the proposed approximate control variate can further reduce the 

variance compared to the estimator presented in (Peherstorfer et al. 2016a, 2017). In this research, 

the developed estimator unexpectedly aligns with an idea previously proposed by Pham and 

Gorodetsky (2022). However, the primary motivation behind this estimator is to leverage finite 

element models commonly employed in research and design-code models for reliability analysis, 

as outlined in this chapter. Consequently, the assessment of this estimator’s effectiveness in 

estimating the probability of a rare event is undertaken through a comparison with estimators 

reliant on Monte Carlo simulations utilizing one or more models, rather than juxtaposing it against 

other reliability methods such as FORM. 

To further contribute to the field of MF reliability analysis, this paper presents a new MF 

approach that synergistically integrates the advantages of HF and LF models for reliability 

analyses using both information fusing (e.g., control variate) and filtering (e.g., importance 

sampling). As such, the proposed method involves a two-phase leveraging process using HF and 

LF models. Initially, a great number of cost-effective LF models (or LSFs based on LF models) 

are evaluated, and an ‘importance’ sampling density (i.e., a biasing density that allows more 

samples in the failure domain) is constructed and an inaccurate LF model-based reliability 

estimation is obtained. This procedure is realized through the cross-entropy adaptive importance 

sampling strategy (Geyer et al. 2019; Kurtz and Song 2013). Subsequently, the biasing density 
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constructed relied on the LF model is leveraged in the HF model-based IS reliability estimation, 

leading to a HF model-based reliability estimator. The computational saving is thus achieved by 

avoiding running resource-intensive HF models for the construction of biasing density. Lastly, the 

LF model-based reliability estimation is integrated into the HF model-based reliability estimation 

through the control variate (CV) technique, leading to a further variance reduction. In what follows, 

Section 10.2 introduces the proposed approach, including the mathematical fundamentals of cross-

entropy based importance sampling and control variate approach in the context of MF framework. 

Section 10.3 demonstrates the efficacy of the new estimator through four structural engineering 

case studies, along with comparison to several other estimators in Section 10.3. Section 10.4 

provides two application examples on RM walls: one is under IP loading and the other one focuses 

on the OOP loading scenario. 

 MULTI-FIDELITY RELIABILITY ANALYSIS  

This section presents the cross-entropy (CE) strategy utilized in importance sampling-based 

reliability analysis in the context of MFMC. As such, the probability of failure in Eq. (10-1) is 

reformulated by introducing HF model ( )Hf x  and LF model ( )Lf x . Note that both models are 

dependent on the same set of random variables x associated with PDF ( )p x . The objective is to 

evaluate the probability of failure ,HfP , i.e., the probability of violating the limit state described by 

the HF model, ( )H 0g x , as shown in Eq. (10-3): 

 ( ) ( ) ( )H,H H0f gP p d=  x x x x  (10-3) 
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where ( )H x  is the indicator function associated with the HF model, defined as 

( )
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1 0

0 0

g

g

 
= 
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x
x
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10.2.1. Importance sampling (IS) 

IS is a variance reduction technique commonly used in computational statistics (Kloek and van 

Dijk 1978). By introducing a biasing density ( )Hq x , ,HfP  can be reformulated as Eq. (10-4): 

 ( )
( ) ( )
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H

,H H0
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f g

p
P q d

q
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x x
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x
 (10-4) 

In MCS framework, the integral in Eq. (10-4) is estimated as: 
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 = 
x x

x
 (10-5) 

IS
,H

ˆ
fP  denotes the IS estimator of ,HfP , and samples ( 1,2,..., )i i N=x  are drawn in 

accordance with the biasing density ( )Hq x , instead of the original one ( )p x . IS aims to selectively 

samples more frequently from regions where the failure is more likely, thus improving efficiency 

by using fewer samples than crude MCS. The effectiveness of the IS estimator is significantly 

influenced by the choice of biasing density. Theoretically, an optimal biasing density ( )*
Hq x  exists 

as shown in Eq. (10-6), such that IS estimator would yield a zero-variance estimate (Fryer and 

Rubinstein 1983): 

 ( )
( ) ( )

( ) ( )
H*

H

H

p
q

p d
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x x
x

x x x
 (10-6) 
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However, ( )*
Hq x  is not directly attainable as the denominator involves the probability of 

failure ,HfP  that is being estimated. To address this, numerous sampling methods have been 

proposed to obtain a near-optimal biasing density (Tabandeh et al. 2022). Nonetheless, these 

sampling methods still require a relatively large number of HF model evaluations, which is proved 

to be computationally demanding. To alleviate this issue for MFMC, this study approximates the 

biasing density ( )*
Hq x  using the information obtained from LF models. More specifically, the 

biasing density is derived utilizing an adaptive cross entropy (CE) technique, which will be 

thoroughly detailed in the subsequent section. 

10.2.2. Cross entropy-based importance sampling (CEIS) 

Suppose there exists a LF model ( )Lf x , which is less accurate for the estimation of quantity of 

interest but more computationally efficient than ( )Hf x . Thus, a large number of evaluations of the 

LF model ( )Lf x , or LSF pertinent to the LF model ( )Lg x , are much more accessible. The 

indicator function ( )L x  for the LF model can be defined as Eq. (10-7): 

 ( )
( )

( )
L

L

L

1 0

0 0

g

g


= 



x
x

x
 (10-7) 

Notably, it is anticipated that the failure domains of HF model ( )( )H H H: 0g  x x  and 

LF model ( )( )L L L: 0g  x x  would exhibit a certain level of overlap, which depends on the 

closeness between the true failure boundary defined by ( )H 0g =x  and the approximate failure 

boundary defined by ( )L 0g =x . Analogous to Eq. (10-6), the optimal biasing density ( )*
Lq x  for 

the LF model is presented in Eq. (10-8): 
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The CE method seeks to adjust a parametric family of probability distributions to minimize 

the Kullback-Leibler (KL) divergence (also referred to as ‘cross-entropy’ or ‘relative entropy’) 

between ( )*
Lq x  and the near-optimal density ( )L ,q x v  (Rubinstein and Kroese 2008). Here, v  

denotes the statistical parameter. The KL divergence ( ) ( )*
KL L L, ,D q q  x x v  is a measure of the 

‘distance’ between two PDFs ( )*
Lq x  and ( )L ,q x v , as defined in Eq. (10-9): 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
L L0 0

* * * *
KL L L L L L L, , ln ln ,

g g
D q q q q d q q d

 
   = −        x x

x x v x x x x x v x  (10-9) 

It is noted that the first term in the right-hand side (RHS) of Eq. (10-9) is invariant with 

respect to v . Thus, to seek a suitable v  to minimize ( ) ( )*
KL L L, ,D q q  x x v , it is equivalent to 

maximize the second term ( ) ( )*
L Lln ,q q d   x x v x . Substituting ( )*

Lq x  from Eq. (10-8) into Eq. 

(10-9), and considering that denominator of Eq. (10-8) is a constant, one can obtain: 
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L 0
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In Eq. (10-10), estimating the integral 
( ) ( ) ( ) ( )0L

L Lln ,
g

p q d


   x
x x x v x  requires samples to 

be located within the failure domain. Such a procedure typically requires a large number of samples. 

To facilitate this, IS is re-used by introducing another sampling density ( )L ,w x u , with u 

representing the statistical parameter. Consequently, Eq. (10-10) is re-written as Eq. (10-11): 
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 (10-11) 
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By defining the likelihood ratio ( )
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x u
, the RHS of Eq. (10-11) can be 

estimated using MCS, as shown in Eq. (10-12): 
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In Eq. (10-12), samples ( )1,2,...,i i M=x  are generated according to the newly introduced 

density ( )L ,w x u , and M is the sample size. Note that statistical parameter u  is distinct from v , 

and thus, the updating of u  and v  can be decoupled in the optimization procedure. For most 

applications, the RHS of Eq. (10-12) is concave and differentiable with respect to v  (Geyer et al. 

2019; Kurtz and Song 2013; Rubinstein and Kroese 2004). Therefore, the optimization problem in 

Eq. (10-12) can be solved by letting the gradient equal to zero, as shown in Eq. (10-13): 

 ( ) ( ) ( )L L L
1

1
ln , ,arg max

M

i i i
i

q W
M =

    vx x v x u

v

 (10-13) 

However, one should notice that evaluating Eq. (10-13) requires a substantial number of 

samples to be sampled in the failure domain such that ( )L 1i =x  for these samples ix . To overcome 

this, the CE method (Geyer et al. 2019) introduces a series of intermediate failure events, using 

the concepts of importance splitting as similarly used in subset simulation (Propper and Kaupp 

2022). The intermediate failure event is defined such that ρ·M samples are located in its failure 

domain, and ρ is a chosen value in the interval [0, 1]. The indicator function at the tth intermediate 

level, denoted as ( )L,t x , can be defined as Eq. (10-14): 
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Here, 
( )t is a non-negative value, which is calculated as the lower ρ-quantile of the LSF 

values from all M samples at the intermediate level t. The optimization problem in Eq. (10-13) is 

reformulated at the intermediate level t, as shown in Eq. (10-15): 

 ( ) ( ) ( ) ( ) ( )*
KL L, L, L, L L
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 (10-15) 

where ( )*
L,tq x , ( )L, ,tq x v , and ut are written with the subscript ‘t’, to reflect the 

intermediate level. Similarly, one can set the gradient of Eq. (10-15) as zero with respect to v, to 

find a near-optimal density ( )L, ,tq x v . By focusing on the derivative of RHS of Eq. (10-15), if a 

Gaussian distribution is chosen as the parametric family comprising the mean vector   and 

covariance matrix  , i.e., ( ),v = v   , an explicit updating rule for parameters   and   at the 

intermediate level t + 1 can be derived (Kroese et al. 2013): 

 
( ) ( )

( ) ( )

L, L
1

1

L, L
1

,

,

M

t i i t i
i

t M

t i i t
i

W

W

=
+

=


=



x x u x

x x u

  (10-16) 

 
( ) ( )( )( )

( ) ( )

T

L, L 1 1
1

1

L, L
1

,

,

M

t i i t i t i t
i

t M

t i i t
i

W

W

+ +
=

+

=

− −
=



x x u x x

x x u

 
  (10-17) 

For the initialization of the abovementioned iterative procedure (i.e., when t = 0), the 

sampling density for ( )L , tw x u  is set as the original PDF ( )p x . Subsequently (when t > 0), 
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( )L , tw x u is determined as the density with statistical parameters derived following Eq. (10-16) and 

Eq. (10-17) at the previous level, i.e., ( ) ( )L, +1 L,, ,t tw q=x u x v . The near-optimal density ( )L ,q x v  is 

obtained through several rounds of adaptive sampling until lower ρ - quantile of the LSF values is 

less or equal than 0. Notably, the LSF at the last iteration becomes the original LSF ( )L x . 

Accordingly, the probability of failure based on the cross-entropy importance sampling method 

(CEIS) CEIS
,L

ˆ
fP can be approximated as Eq. (10-18): 

 
( ) ( )

( )
LISCE

,L
1 L

1ˆ
,

M i i

f
i i

p
P

M q=

= 
x x

x v
 (10-18) 

 MULTI-FIDELITY RELIABILITY ANALYSIS 

The cross-entropy importance sampling (CEIS), as discussed in Section 2, yields two essential 

outputs: a biasing density ( )L ,q x v  and a probability of failure estimate CEIS
,L

ˆ
fP  based on the LF 

model using the CEIS method. These outputs are integrated into the proposed multi-fidelity (MF) 

reliability analysis method through control variate (CV) method. In this section, the mathematical 

preliminary of CV method is first introduced, and subsequently the proposed methodology for 

reliability assessment is detailed. 

10.3.1. Mathematical preliminary of control variate (CV) method 

The CV method is another variance reduction technique widely used in the MCS (Song and Kawai 

2023). Consider a mean estimator Ŷ  for a quantity of interest Y and suppose there exists another 

variable X which is correlated with Y, also known as a control variate, and its expected value is 

. The CV estimator for the mean estimation of Y  is written as Eq. (10-19) (Nelson 1987): 
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 ( )? ?
CVY Y X = + −  (10-19) 

where X̂  is a mean estimate of X; and α is a coefficient chosen to minimize the variance 

of ĈVY , which can be derived as Eq. (10-20): 

 
2? ? ?2 COV ,CVY Y X X Y        = + + 

         (10-20) 

In Eq. (10-20),    is the variance operator;  COV   is the covariance operator, 

     COV , ( ) ( )X Y X X Y Y= − − ;    is the expectation operator. To seek an optimal α*, 

the derivative of ( )ĈVY  with respect to α is set as zero, leading to the result shown in Eq. (10-21): 

 
*

?COV ,

ˆ

X Y

X


 
 

= −
 
 

 (10-21) 

The resultant variance of CV estimator ĈVY 
  , using the optimal α*, is calculated as per 

Eq. (10-22): 

 ( )

2

2

?COV ,
? ? 1

ˆ
CV

X Y
Y Y Y

X


  
       = − = −
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 

 (10-22) 

where ρ is the correlation coefficient, defined as 

?COV ,

?

X Y

X Y


 
 =

   
   

. It is evident that a 

higher correlation between X̂  and Ŷ  would lead to a variance reduction. 
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10.3.2. Multi-fidelity (MF) reliability estimator 

The proposed MF reliability analysis method incorporates HF and LF model information based on 

the aforementioned CV technique. Initially, considering that failure regions of HF and LF models 

exhibit a certain level of overlap, the biasing density ( )L ,q x v  constructed from LF model data is 

used for IS estimation on the HF model. The corresponding estimator is denoted as CEIS
,MH

ˆ
fP . 

Assuming that the sample size is NH at each intermediate level in the CEIS-based biasing density 

construction procedure, i.e., M in Eq. (10-15), CEIS
,MH

ˆ
fP  can be estimated as Eq. (10-23): 

 
( ) ( )
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H HCEIS
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1H L

1ˆ
,

N i i

f
i i

p
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N q=

= 
x x

x v
 (10-23) 

It is anticipated that NH is not large considering the fact that evaluating the HF model is 

generally much more expensive than evaluating the LF model. Meanwhile, another LF model-

based reliability estimator ,L
ˆ

fP is introduced. Due to the LF model’s cost-effectiveness, a much 

larger sample size is feasible than the sample used for the estimation of CEIS
,MH

ˆ
fP . This estimator can 

be computed by using methods such as IS, SubSim, DS, or LS mentioned previously. In this study, 

the CEIS approach from Section 10. 2 is employed for this purpose. With a large sample size, ,L
ˆ

fP

would have significantly lower variance than CEIS
,L

ˆ
fP . Finally, the proposed reliability estimation 

CEISˆ
fP   is formulated as Eq. (10-24): 

 ( )CEIS CEIS * CEIS
,MH ,L ,L

? ?ˆf f f fP P P P = + −  (10-24) 

In a sample version, CEISˆ
fP   is expressed as Eq. (10-25): 
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According to Eq. (10-21), the coefficient *̂  is approximated, as shown in Eq. (10-26): 
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 (10-26) 

It is emphasized here, samples ( )H1,2,...,i i N=x  are drawn based on the biasing density 

( )L ,q x v . To summarize, the proposed reliability analysis method is stated as follows: 

Step #1: Construct the biasing density ( )L ,q x v based on the LF model following CEIS 

strategy detailed in Section 10.2.2, and a corresponding reliability estimate 
CEIS
,L

ˆ
fP is obtained by 

using the LF model. 

Step #2: The biasing density ( )L ,q x v  is used for the HF model, and a corresponding HF 

model-based IS reliability estimate CEIS
,MH

ˆ
fP  is obtained as per Eq. (10-23), and the coefficient *̂  can 

be computed using Eq. (10-26). 

Step #3: Compute the LF model-based estimate ,L
ˆ

fP  with a large number of LF models.  

Step #4: Leverage 
CEIS
,L

ˆ
fP , CEIS

,MH
ˆ

fP , ,L
ˆ

fP , and *̂ using the CV technique, leading to the 

proposed reliability estimate ( )CEIS CEIS * CEIS
,MH ,L ,L

? ?ˆf f f fP P P P = + − .  
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The flowchart of the proposed reliability analysis method is schematically shown in Figure 

10-1. 

 

Figure 10-1. Flowchart of the proposed reliability analysis method 

 NUMERICAL EXAMPLES 

In this section, four numerical examples are illustrated to show the performance of the proposed 

reliability analysis method. To show the generalization of the proposed method, LF models 

considered in this study include various commonly used simplified models in structural 

engineering applications, including finite element (FE) model with coarse mesh, data-based 

regression model, and structural analysis model with simplified physics. The proposed MF 

reliability estimation strategy is compared with following methods: 

(1) HF-MCS MCS
,H

ˆ
fP  : HF model-based crude MCS method ( )MCS

,H H
1

1ˆ
N

f i
i

P
N =

=  x  

(2) LF-MCS MCS
,L

ˆ
fP : LF model-based crude MCS method ( )MCS

,L L
1

1ˆ
N

f i
i

P
N =

=  x  
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(3) HF-CEIS CEIS
,H

ˆ
fP : HF model-based cross-entropy importance sampling method 

( ) ( )

( )
HCEIS

,H
1 H

1ˆ
,

N i i

f
i i

p
P

N q=

= 
x x

x v
 

(4) MF-CEIS: Cross-entropy importance sampling method without control variate 

( ) ( )

( )

H HCEIS
,MH

1H L

1ˆ
,

N i i

f
i i

p
P

N q=

= 
x x

x v
, i.e., Eq. (10-24). 

(5) MF-CEISα (proposed in this study): Multi-fidelity cross entropy importance sampling 

estimator with control variate, i.e., ( )CEIS CEIS * CEIS
,MH ,L ,L

? ?ˆf f f fP P P P = + − . 

500 replicate runs are performed for each numerical example. The quality of estimators is 

evaluated in terms of the root mean square error (RMSE), relative absolute error (ε), and coefficient 

of variation (COV). By assuming the reference probability of failure is fP , and the one single 

estimation obtained from replicate runs is denoted as ( )ˆ 1,2,...,500f

iP i = , RMSE, ε, and COV are 

calculated as Eqs. (10-27)(10-28)(10-29): 

 ( )
2

1

1 ˆRMSE
rep

f

N
i

f
irep

P P
N =

= −  (10-27) 

 
ˆ

f f

f

P P

P


−
=  (10-28) 

 

( )
2

1

1 ?
1

COV
ˆ

rep

f

N
i

f
irep

f

P P
N

P

=

−
−

=  (10-29) 



Chapter 10: Novel Structural Reliability Methods Using Multi-fidelity Models through Cross-Entropy Importance 

Sampling and Control Variate Techniques with Applications on Masonry Walls  

363 

 

where 500repN = ; and ˆ
fP  is the mean of replicate estimates: 

1

1?
rep

f

N
i

f
irep

P P
N =

=   

10.4.1. Example #1: Cantilever beam 

This section examines an isotropic linear elastic cantilever beam. This example was inspired by 

the example presented in Ferreira (2009), and the reliability problem was formulated to have a 

probability of failure of interest. The beam has dimensions of 5 m in length and 1 m in height. It 

is subjected to a concentrated load (P) at the free end. The elastic modulus (E) of the beam and the 

magnitude of external load (P) are considered as random variables, with their probability 

distributions and statistical properties detailed in Table 10-1. The structural analysis is conducted 

using a Finite Element software package implemented in MATLAB (Ferreira 2009). A 2D four-

node plane stress quadrilateral element is used for the modeling of the beam. The HF model 

employs a finer mesh size of 50 × 10 shown in Figure 10-2(a), while a coarser mesh size of 10 × 

2 is used for the LF model, as illustrated in Figure 10-2(b). The failure is defined when the vertical 

deflection at the free end exceeds 8 mm, and the associated LSF is specified in Eq. (10-30): 

 ( )H 8g = − x  (10-30) 

 Table 10-1. Statistics of random variables for the cantilever beam in Example #1 

Variable Distribution Mean Standard deviation 

E (Pa) Normal 3e10 7.5e9 

P (N) Normal 1e5 1e4 
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(a) (b) 

Figure 10-2. Cantilever beam under a concentrated vertical load at the free end: (a) HF model 

with a finer mesh, and (b) LF model with a coarser mesh 

The reference solution for the probability of failure, obtained through crude MCS with a 

sample size of 106 on the HF model, is 7.691 × 10-4. In comparison, the probability of failure 

estimated by the LF model using the same sample size is 5.519 × 10-4, indicating an absolute 

relative error of 28.2%. This significant discrepancy highlights the influence of mesh density on 

the reliability analysis for the problem considered. 

To provide further insights into the proposed methodology, a specific case is illustrated in 

Figure 10-3. In Step #1, the samples generated via the CEIS method are depicted in Figure 10-3 

(a). For this example, the quantile ratio ρ is determined as 0.1. And correspondingly, five 

intermediate levels are needed to establish the final biasing density ( )L ,q x v , resulting in a total of 

40000 LF model evaluations (with 8000 evaluations at each level). The PDFs of beam deflection 

at various intermediate failure levels are shown in Figure 10-3 (b), demonstrating an increased 

concentration of sampling points in the failure region as the statistical parameters of the biasing 

density are adapted. After five iterations, the established density ( )L ,q x v  serves as the IS biasing 

density for the HF model, with the estimated PDF represented by a black line shown in Figure 

10-3 (b). Subsequently, the CV coefficient *̂ can be evaluated based on the PDFs corresponding 

to two cases ‘LF: t = 5’ and ‘HF: t = 5’ shown in Figure 10-3 (b). In Step #3, a large sample size 



Chapter 10: Novel Structural Reliability Methods Using Multi-fidelity Models through Cross-Entropy Importance 

Sampling and Control Variate Techniques with Applications on Masonry Walls  

365 

 

of 3 × 105 (10 times greater that used in Step #1) is employed to estimate ,L
ˆ

fP . Finally, the proposed 

estimator is evaluated in Step #4 by integrating results in the previous three steps, as previously 

detailed. 

  

(a) (b) 

Figure 10-3. Illustration of proposed method: (a) generated samples on the LF model at 

different intermediate levels, and (b) correspondind probability densities of beam 

deformation at different intermediate levels for LF and HF models in Example #1 

Table 10-2 presents the COV and ε obtained by replicate runs using different methods, with 

sample size for the HF and LF models evaluated. Notably, for the proposed method MF-CEISα, 

the sample size on HF model is identical to MF-CEIS. However, the LF model is 10 times greater 

than that of MF-CEIS, due to the integration of LF model-based estimator ,L
ˆ

fP . By comparing the 

results in Table 10-2, it is evident that MF-ISCEα achieves the smallest COV and ε among all 

methods evaluated. Notably, much fewer samples are required compared to HF-MCS, LF-MCS, 

HF-CEIS, MF-CEISα, while more LF models are needed relative to MF-CEIS. However, the 

influence of more LF model evaluations is limited to the overall computational burden, which will 

be detailed subsequently. 
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Table 10-2. Reliability analysis results for Example #1 

 

 

To further 

elucidate the superiority of 

MF-ISCEα, Figure 10-4 provides a comparative analysis of RMSE and COV at varying 

computational costs. The computational costs here are defined in relation to the sample size and 

computational time used for the model running. One single evaluation for the HF and LF models 

are normalized to 1 and 6.5×10−4, respectively, based on their proportional CPU time requirements 

(32.3 seconds for the HF model and 0.021 seconds for the LF model). For instance, for the MF-

ISCEα estimation shown in Table 10-2, the total computational cost is calculated as 8000 + 4.4 × 

105 × 6.5 × 10-4 ≈ 8286. It can be seen that more LF model evaluations do not lead to a significant 

increase in the computational cost due to its cost-effectiveness. The LF model-based reliability 

estimation is excluded in Figure 10-4 as it involves a substantial inherent bias. As illustrated in 

Figure 10-3 (a), MF-ISCEα demonstrates exceptional performance, providing the lowest RMSE 

at any given computational cost, signifying its capacity to deliver accurate estimations efficiently. 

Figure 10-3 (b) further exhibits the advantages of MF-ISCEα, where a marked reduction in COV 

is observed with increasing computational effort, reaffirming its precision and reliability. 

Method Sample size (HF+ LF) ˆ
fP  COV (%) ε (%) 

HF-MCS 106 7.691 × 10-4 3.60 - 

LF-MCS 106 5.519 × 10-4 4.24 28.2 

HF-CEIS 4 × 104 7.630 × 10-4 19.9 5.78 

MF-CEIS 8 × 103 + 4 × 104 7.579 × 10-4 4.77 1.46 

MF-CEISα 8 × 103 + 4.4 × 105 7.657 × 10-4 2.03 0.44 



Chapter 10: Novel Structural Reliability Methods Using Multi-fidelity Models through Cross-Entropy Importance 

Sampling and Control Variate Techniques with Applications on Masonry Walls  

367 

 

  

(a) (b) 

Figure 10-4. Comparison of reliability analysis results for Example #1 in terms of: (a) RMSE, 

and (b) COV 

10.4.2. Example #2: Cantilever beam (rare event analysis) 

The example discussed in Section 10.4.1 is revisited here. The main purpose is to investigate the 

applicability of MF-ISCEα to the problem with small probability of failure, i.e., rare event analysis. 

This analysis maintains the same parameters as Example #1, except for the definition of LSF. In 

this case, the maximum allowable deflection is set as 300 mm. Thus, corresponding LSF is re-

defined as ( )H 300g = − x . A crude MCS with a sample size of 109 on the HF model is performed 

to get the reference solution for the probability of failure 3.120 × 10-6, while this estimate is 2.773 

× 10-6 by relying on the LF model. 

Given the nature of rare event analysis, a larger sample size is anticipated to be required to 

obtain a reasonable estimate. Therefore, at each intermediate level, a sample size of 3 × 104 is 

utilized for both MF-CEIS and MF-CEISα, with the quantile ratio ρ being 0.1. The analysis results 

indicate that nine intermediate levels are needed to establish the final biasing density. This leads 

to a total of 2.7 × 105 LF model evaluations, with the generated samples and corresponding PDFs 

of beam deflection shown in Figure 10-5 (a) and (b), respectively. Moreover, 2.7 × 106 samples 
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are used for the estimation of ,L
ˆ

fP , and the equivalent computational cost for these LF model 

evaluations is approximately only 1755 HF model runs. Again, the results summarized in Table 

10-3 shows the significant outperformance of proposed estimator in terms of both COV and ε for 

the rare event analysis than other methods evaluated in this study. The relationships of RMSE 

(COV) and computational cost are shown in Figure 10-6, revealing the efficiency of MF-ISCEα 

in yielding accurate estimations in scenarios with low probability of failure. 

 

(a) 
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(b) 

Figure 10-5. Illustration of proposed method: (a) generated samples on the LF model at different 

intermediate levels, and (b) correspondind probability densities of beam deformation on LF and 

HF models in Example #2 

Table 10-3. Reliability analysis results of the cantilever beam in Example #2 

Method Sample size (HF + LF) ˆ
fP  COV (%) ε (%) 

HF-MCS 109 3.120 × 10-6 1.79 - 

LF-MCS 109 2.773 × 10-6 1.90 11.1 

HF-CEIS 3 × 105 2.967× 10-6 11.4 4.90 

MF-CEIS 3 × 104 + 2.7 × 105 2.994 × 10-6 8.39 4.04 

MF-CEISα 3 × 104 + 2.97 × 106 3.115 × 10-6 0.62 0.15 
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(a) (b) 

Figure 10-6. Comparison of reliability analysis results for Example #2 in terms of: (a) RMSE, 

and (b) COV 

10.4.3. Example #3: A ten-bar truss structures 

In this section, a ten-bar truss structure (Wei and Rahman 2007) is examined, as shown in Figure 

10-7. The truss structure is subjected to two identical concentrated loads, each with a magnitude 

of 445 kN (100000 lb). Each of the ten bars has a Young’s modulus of 69 GPa (107 psi). The 

random variables considered are the cross-sectional areas for each bar, and thus a total of 10 

variables are considered. They are statistically independent, following a normal distribution 

truncated at 0 mm2, with a mean of 1613 mm2 (2.5 inch2) and a standard derivation of 323 mm2 

(0.5 inch2). The performance function is defined by the vertical displacement at point ‘A’, denoted 

as A . The maximum allowable vertical displacement is 590 mm (22.4 inch), and the LSF for 

the ten-bar truss structure is defined as per Eq. (10-31): 

 ( )H A590g = − x  (10-31) 
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Figure 10-7. A ten-bar truss structure 

The HF model is evaluated using CALFEM (Dahlblom et al. 1986), a linear elastic 

structural analysis program implemented in MATLAB (2021). A reference solution of Pf = 1.002 

× 10-3 is obtained through the crude MCS by running 106 HF models. The LF model used in this 

numerical example is a data-fitted model, which is constructed using a multivariate polynomial 

regression analysis of 5th degree. A dataset comprising 2000 HF samples, generated through the 

space-filled sampling technique, i.e., Halton’ Sequence Sampling (Halton 1994), is employed to 

construct the LF model. The probability of failure obtained through the LF model is 9.551 × 10-4. 

The normalized computational costs for one single HF and LF evaluation are 1 and 4.141 × 10-5, 

respectively. 

Table 10-4 details the reliability analysis results from various methods and the 

corresponding sample sizes used. Notably, MF-CEISα achieves an accurate estimate with only 

4000 HF model and 88000 LF model runs and exhibits the smallest ε. It is worth mentioning that 

the training dataset (2000 HF samples) used for the construction of the LF model is also counted 

in the sample size. Thus, only 2000 HF models are effectively used in the reliability analysis 
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procedure. By comparison, HF-CEIS achieves a similar level of accuracy with 8000 HF model 

runs, while MF-CEIS requires 80000 fewer LF model runs to achieve a comparable ε. However, 

both HF-CEIS and MF-CEIS predictions show significantly higher variance, as evidenced by the 

COV in Table 10-4. Figure 10-8 presents the variation of RMSE and COV in relation to the 

computational costs. It is observed that with increased computational cost, MF-CEIS and MF-

CEISα exhibit similar RMSE, but MF-CEIS demonstrates much higher variance at the same 

computational cost. 

Table 10-4. Reliability analysis results for the ten-bar truss structure in Example #3 

  

(a) (b) 

Figure 10-8. Comparison of reliability analysis results for Example #3 in terms of: (a) RMSE, 

and (b) COV 

 Sample size (HF + LF) ˆ
fP

 
COV (%) ε (%) 

HF-MCS 106 1.002×10-3 3.14 - 

LF-MCS 106 9.551×10-4 6.83 4.68 

HF-CEIS 8000 9.968×10-4 45.8 0.52 

MF-CEIS 4000* + 8000 9.957×10-4 26.7 0.63 

MF-CEISα 4000* + 88000 9.970×10-4 7.19 0.49 
*: 2000 HF samples used for the construction of LF model is included in the sample size. Thus, only 2000 HF 

samples are used in the reliability evaluation procedure. 
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10.4.4. Example #4: A three-bay three-story frame structure 

A three-bay by three-story steel frame investigated in (Haukaas and Scott 2006) is studied in this 

section. The frame structure is subjected to lateral loads as shown in Figure 10-9. The material 

model of each member is represented by a uniaxial bilinear hardening model shown in Figure 

10-10. This model is characterized by a Young’s modulus E, a yield strength fy, an ultimate strength 

fu and an ultimate strain εu. 

 

Figure 10-9. A three-bay by three-story frame structure 

The frame structure comprises 21 members, and the member IDs are shown in Figure 10-9. 

All members feature a rectangular section with a length B and a height H. In this example, beam 

members at the same height and within the same bay possess identical material property. To be 

specific, members (1) ~ (4), (5) ~ (8), (9) ~ (12), (13) ~ (15), (16) ~ (18), and (19) ~ (21) have 

identical properties. Young’s modulus E, width B, and height H are considered as independent 

random variables for each group of members. Corresponding statistical information is detailed in 

Table 10-5. Thus, a total of 6 × 3 = 18 random variables are considered. The yield strength fy is 

considered to be correlated deterministically with Young’s modulus fy = 500·E, and the ultimate 
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strength fu is assumed to be fu = 1.2 fy, and the corresponding ultimate strain εu is assumed to be 

0.2. The HF model is developed in the general Finite Element (FE) software package ABAQUS 

(Dassault Systemes 2017) using two-dimensional Timoshenko beam elements through which the 

shear deformation could be accounted for. Additionally, geometrical nonlinearity is considered. 

Each structural member is discretized as 5 elements, leading to a relatively finer mesh 

configuration. 

 

Figure 10-10. Stress-strain curve for the steel member considered in Example #4 

Table 10-5. Statistics of the random variables for the plastic frame in Example #4 

In the LF model, a two-dimensional Euler-Bernoulli beam element is used, with only 2 

elements considered for each member, and the geometrical nonlinearity is neglected. The material 

parameters and corresponding statistics are identical to those in the HF model. The LSF considered 

for the steel frame structure is related to the interstory drift ratio (IDR). By assuming the maximum 

Variable Distribution Mean Standard deviation 

Bi (mm)* Truncated Normal 100 2 

Hi (mm)* Truncated Normal 250 5 

fy, i (MPa)* Truncated Normal 400 20 
* Subscript ‘i’ (i = 1, 2, 3, 4, 5, 6) represents the each group of random variables. 
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allowable IDR equal to 0.25%, and denoting the horizontal displacements at points ‘A’, ‘B’, and 

‘C’ as A , B , and C , respectively, the LSF is defined as per Eq. (10-32): 

 ( )H A B B C C0.25% max( , , ) /g H= −  −   −  x  (10-32) 

where H is the story height, equal to 4 m. 

A crude MCS with a HF sample size of 106 leads to a reference solution for probability of 

failure equal to 1.337 × 10-3. In comparison, the LF model-based estimation by using the same 

sample size is 9.150 × 10-4. The reliability analysis results with certain sample sizes are shown in 

Table 10-6. Similarly, more LF samples leveraged in the MF-CEISα contributes the accuracy 

improvement in predicting the probability of failure, and the variance is significantly reduced 

compared to MF-CEIS. While HF-CEIS estimation relying on 20000 HF samples exhibits much 

larger error and variance. The relationship between RMSE (COV) and computational costs are 

shown in Figure 10-11. Again, MF-CEISα demonstrates superior performance in both RMSE and 

COV. With fewer samples, MF-CEISα exhibits smaller error and variance. 

Table 10-6. Reliability analysis results for the steel frame in Example #4 

 Sample size (HF + LF) ˆ
fP  

COV (%) ε (%) 

HF-MCS 106 1.337 × 10-3 2.73 - 

LF-MCS 106 9.150 × 10-4 3.33 31.6 

HF-CEIS 20000 1.103 × 10-3 46.5 17.5 

MF-CEIS 15000 + 75000 1.313 × 10-3 15.4 1.80 

MF-CEISα 15000 + 825000 1.320 × 10-3 4.67 1.27 
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(a) (b) 

Figure 10-11. Comparison of reliability analysis results for Example #4 in terms of: (a) RMSE, and 

(b) COV 

 RELIABILITY ANALYSIS OF REINFORCED MASONRY WALLS UNDER OUT-OF-

PLANE LOADING 

10.5.1. Details of the RM wall 

The studied RM wall is fully grouted with the height of 3000 mm and the thickness of 190 mm. 

Concrete masonry units have standard dimensions of 390 mm × 190 mm × 190 mm, and the 

thickness of mortar layer is 10 mm. Reinforcing bars are located at the mid-thickness of the wall, 

with a reinforcement ratio of 0.0019 and a spacing at 200 mm. This reinforcement ratio intends to 

ensures the simultaneous yielding of the bars and the critical fiber in the cross-section reaching the 

crushing strain for the pure-bending case (Moosavi 2017). The RM wall is subjected to an eccentric 

axial load ratio of 1, and pinner-roller boundary condition (i.e., one-way vertically spanning). The 

eccentric axial load is applied with an eccentric-to-thickness ratio of 1.0. 

10.5.1.1 HF model 

The high-fidelity (HF) model utilized in this example is developed using a macro element 

approach, which is sufficiently accurate for RM walls under OOP loading. To simulate the RM 

wall, a fiber-based beam element technique available in OpenSees (McKenna et al. 2000) is 
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employed. The considered RM wall is modeled using displacement-based fiber beam elements, 

and four integration points are considered for each element. Each integration is assigned with a 

generalized fiber section consisting of masonry and steel. This methodology enables the 

integration of the nonlinear behavior of RM sections, considering the distinct nonlinear 

constitutive properties of each fiber. In this configuration, masonry fibers are modeled using the 

Concrete02 model, while steel fibers are depicted using the Steel01 model. The applicability of 

this model in reproducing the OOP behavior of masonry walls is well validated in relevant studies 

(Metwally et al. 2022). In the HF model, the eccentric loading is applied through a rigid beam with 

a length equals to the load eccentricity. 

10.5.1.2 LF model 

In this example, LF model is developed following the guidelines of the Canadian design code CSA 

S304-14 (2014). It should be noted that the OOP capacity of RM walls in this context is determined 

based on the moment magnifier method, considering the fact that studied RM wall exhibits a 

slenderness ratio of 18. In the moment magnified method, the maximum moment demand is 

magnified by a factor. More details about the calculation of OOP capacity based on CSA S304-14 

and associated consideration of slenderness effects are detailed in Appendix F. 

10.5.2. Demand and resistance calculation 

10.5.2.1 Uncertainty in the resistance 

The independent material properties considered include the compressive strength of masonry fm, 

the yield strength fy and the Young’s modulus E of reinforcements, the location of reinforcements 

d. The nominal values of these parameters are shown in Table 10-7. 
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Table 10-7. Nominal values of material parameter considered for the RM wall 

Other material parameters required in the HF model are assumed to be deterministic or are 

derived from properties shown in Table 10-7. To be specific, the peak strain (i.e., strain at 

compressive strength) is assumed to be 0.002. The residual compressive strength of masonry and 

corresponding strain are determined based on the empirical relationships proposed by Priestley 

and Elder (1983) for homogeneous masonry. The ultimate tensile strain is set as 0.004 (Wang et 

al. 1997). The strain hardening ratio of reinforcements is taken as 0.01. The statistical 

characterization of material parameters is derived according to their nominal values, as detailed in 

Table 10-8. 

Table 10-8. Statistical characterization of random variables considered for the RM wall under OOP 

loading 

10.5.2.2 Uncertainty in the load effects 

The load combination considered in this example is determined according to CSA S304-14 (2014): 

 1.25 1.5 0.5n n nLoad DL LL SL= + +  (10-33) 

where DLn, LLn, SLn denote the nominal values of dead load, live load, and snow load, 

respectively. The ratios between the dead load and the live load (as well as the snow load) 

Compressive strength of 

masonry fm,n  

(MPa) 

Yield strength of 

reinforcements fy, n  

(MPa) 

Young’s modulus of 

reinforcements En 

(MPa) 

Reinforcement 

location dn  

(mm) 

10 400 200000 95 

Random 

variable 
Mean 

Coefficient of 

variation 

Probability 

distribution 
Reference 

fm 1.6 fm,nominal 0.24 Gumbel 
(Moosavi and Korany 

2014) (Moosavi 2017) 

fy 1.14 fy, nominal 0.07 Normal (Moosavi 2017) 

E Enominal 0.033 Normal (Metwally et al. 2022) 

d dnominal 4 / dnominal Normal (Moosavi 2017) 
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considered, i.e., /PL n nDL LL =  and /PS n nDL SL = , are 1.25, as was used for the ultimate strength 

design of concrete buildings (Bartlett et al. 2003). 

The nominal material properties are used to calculate the design resistance ,r designP . 

Considering that HF model (i.e., macro element model) generally exhibited higher accuracy than 

the design code, the design resistance ,r designP  is obtained by the HF model. Notably, for a RM wall 

subjected to an eccentric loading with a deterministic eccentricity, the limit state is reached in the 

design process when the factored axial load is equal to the factored axial load capacity, i.e., design 

resistance. Subsequently, the nominal load effects can be calculated based on the design resistance. 

Following the load combination shown in Eq. (10-33), the nominal value of the dead load is 

determined as per Eq. (10-34): 

 ,

1.25 1.5 0.5

r design
n

PL PS

P
DL

 
=

+ +
 (10-34) 

where PL  and PS are the load ratios. The nominal load values are used with the 

statistical characteristics outlined by Bartlett (2003), as shown in Table 10-9, to determine the 

probabilistic load effects. 

 

Table 10-9. Statistical parameters for loads (Bartlett et al. 2003) 

Load Type Mean 
Coefficient of 

variation 
Distribution 

Dead 1.05DLn 0.10 Normal 

Live 

50-year maximum load 0.90LLn 0.17 Gumbel 

Point-in-time load 0.27LLn 0.68 Weibull 

Transformation to load effects 1.00 0.21 Normal 

Snow 

50-year maximum load 1.10SLn 0.20 Gumbel 

Point-in-time load 0.20SLn 0.89 Weibull 

Transformation to load effects 0.60 0.42 Lognormal 
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10.5.3. Reliability analysis 

For the RM wall under an eccentrical axial loading, the limit state function is established by 

comparing the applied axial load and axial load capacity. A reference solution for the probability 

of failure for this example is 1.763 × 10-4. The solution is obtained through running 5 × 106 HF 

samples using the crude MCS, with the probabilistic demands and resistances shown in Figure 

10-12. In comparison, when utilizing the LF model (i.e., design-code model) with an identical 

sample size, the reliability analysis yields a probability of failure of 3.674 × 10-4, indicating a 

relative error of 108.4%. 

 

Figure 10-12. Probabilistic load effects and resistance of RM wall under OOP loading using crude 

MCS on the HF model 

Table 10-10 displays the results of reliability analysis using various methodologies. For 

HF-CEIS, MF-CEIS, and MF-CEISα, a sample size of 1000 is utilized at each intermediate level, 

with the quantile ratio ρ being 0.2. This setup necessitates five intermediate levels to achieve a 

converged biasing PDF. Regarding the four material parameters detailed in Table 10-8, their 

adaptive probability densities are graphically illustrated in Figure 10-13. Evidently, the probability 

distributions for the yield strength of reinforcements and the reinforcement location are subject to 
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more substantial adjustments compared to others, e.g., Young’s modulus of reinforcements. From 

this, it can be inferred that the OOP resistances are particularly sensitive to the yield strength of 

reinforcements and the reinforcement location. 

  

(a) (b) 

  

(c) (d) 

Figure 10-13. Biasing PDFs at intemediate levels in the cross-entropy adaptive sampling 

procedure for the RM wall under OOP loading: (a) Young’s modulus of reinforcements, (b) yield 

strength of reinforcements, (c) compressive strength of masonry, and (d) reinforcement location 

Table 10-10 reveals that the HF-CEIS method, with 5000 HF samples, leads to a solution 

characterized by a significant high COV, in contrast, MF-CEISα achieves the smallest COV and 

ε. To illustrate the influence of sample size, the computational cost for one single evaluation of HF 

and LF models are normalized to 1 and 5.4 × 10−5, respectively, based on their proportional CPU 
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time requirements (3.3 seconds for the HF model and 0.00018 seconds for the LF model). As 

illustrated in Figure 10-14 (a), MF-ISCEα demonstrates superior performance, providing the 

lowest RMSE at any given computational cost, especially with a relatively smaller sample size. 

Figure 10-14 (b) further highlights the benefits of MF-ISCEα, where a smaller COV is observed 

compared to other methods, reaffirming its precision and reliability. 

Table 10-10. Reliability analysis results for the RM wall under OOP loading 

 

  

(a) (b) 

Figure 10-14. Comparison of reliability analysis results for the RM wall under OOP loading 

in terms of: (a) RMSE, and (b) COV 

 RELIABILITY ANALYSIS OF REINFORCED MASONRY WALLS UNDER IN-

PLANE LOADING 

10.6.1. Details of the RM wall 

In this section, a fully grouted RM wall tested by Seif Eldin (2016) is utilized as an application 

example. The wall was designed to fail in a diagonal tension cracking mode and was tested in a 

 Sample size (HF + LF) ˆ
fP

 
COV (%) ε (%) 

HF-MCS 5 × 106 1.763 × 10-4 7.53 - 

LF-MCS 5 × 106 3.674 × 10-4 5.22 108.4 

HF-CEIS 5000 2.254 × 10-4 577 27.9 

MF-CEIS 1000 + 5000 1.674 × 10-4 6.48 5.05 

MF-CEISα 1000 + 55000 1.681 × 10-4 2.35 4.65 
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cantilever condition with a pre-compression load of 1.0 MPa. The tested RM shear wall’s 

dimensions were 1.8 m (length) × 1.6 m (height) × 0.19 m (thickness). The concrete masonry units 

conformed to the standard dimensions of 390 mm × 190 mm × 190 mm. The vertical 

reinforcements consisted of 20M bars (with a 300 mm2 cross sectional area) in every cell, while 

the horizontal reinforcements featured uniformly distributed 10M bars (with a 100 mm2 cross-

sectional area) spaced at 400 mm. The corresponding horizontal and vertical reinforcement ratios 

were 0.13% and 0.79%, respectively. 

10.6.1.1 HF model 

HF model for the RM wall is developed based on the simplified micro modeling strategy (Page 

1978). Within this approach, the mortar layer plus its associated unit-mortar interactions is lumped 

into a single zero-thickness interface. Mortar joints are simulated using zero-thickness interface 

elements COH3D8 in ABAQUS (Dassault Systemes 2017), in conjunction with a recently 

developed constitutive model by the authors (Li and Zeng 2023). This newly developed 

constitutive model is characterized by two yield surfaces (i.e., tension-shear yield surface f1 and 

compression cap surface f2) and is capable of capturing various failure modes, including tensile 

cracking, shear sliding, and compressive crushing. Concrete blocks and grouts are modeled using 

the C3D8 element plus the nonlinear behaviors represented via the Concrete Damage Plasticity 

(CDP) model (Lee and Fenves 1998), in which tensile cracking and compressive crushing can be 

well described using different parameters for concrete units and grouts. Reinforcing bars in RM 

walls are modeled using the truss element T3D2 with the von Mises plasticity model and a bilinear 

hardening law. A perfect bond is assumed for grout and steel reinforcement in RM walls. 
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10.6.1.2 LF model 

The LF model for the calculation of IP resistance of RM walls is based on the Canadian masonry 

design code CSA S304-14 (2014). RM walls under IP loading may exhibit three different failure 

modes: flexural rocking, diagonal tension cracking, and shear sliding. In design practices, IP 

resistance corresponding to each of these three failure modes is evaluated individually based on 

(semi-) empirical or simplified analytical models/methods, with the one presenting the lowest 

value being the governing failure mode. In CSA S304-14 (2014), shear sliding resistance is 

evaluated based on the Mohr-Coulomb relationship, and the IP resistance of masonry walls 

governed by diagonal tension cracking is assessed using a semi-empirical relationship. On the 

other hand, the flexural capacity is evaluated based on the cross-sectional capacity, using the 

equivalent rectangular block by assuming zero tensile strength of masonry. The code provisions 

of CSA S304-14 for the prediction of IP resistances of RM walls are detailed in Appendix D. 

10.6.2. Reliability analysis 

Material parameters considered in this application example include six statistically independent 

variables: tensile strength tf  and frictional coefficient tan  of interfaces (mortar joints), 

compressive strength of units u

cf , compressive strength of grouts g

cf , and yield strength of 

reinforcements yf . The nominal values of these parameters are detailed in Table 10-11. Other 

required material parameters are correlated with these four parameters, using well-established 

relationships, as summarized in Table 10-12. Accordingly, the randomness of material parameters 

is related to the nominal values, with the information summarized in Table 10-13. 

Table 10-11. Statistical characterization of material parameters for the RM wall under IP loading 

Parameters Nominal value 
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Table 10-12. Empirical relationships of material parameters for the RM wall under IP loading 

Table 10-13. Statistical characterization of material parameters for the RM wall under IP loading 

Compressive strength of units ,

u

c nf  (MPa) 15 

Compressive strength of grouts ,

g

c nf  (MPa) 30 

Yield strength of reinforcements 
,y nf  (MPa) 400 

Tensile strength of mortar joints 
.t nf  (MPa) 0.3 

Frictional coefficient of mortar joints tan n  0.7 

Parameters Relationship 

Masonry Units 

Tensile strength u

tf  (MPa)  0.09u u

t cf f=  

Elastic modulus 
uE  (MPa)  938 u

u cE f=  

Grouts 

Elastic modulus
gE  (MPa)  500 g

g cE f=  

Tensile strength g

tf (MPa)  0.24g g

t cf f=  

Reinforcements 

Elastic modulus yE (MPa)  456y yE f=  

Ultimate strength 
uf (MPa)  1.2u yf f=  

Mortar joints (interfaces) 

Mode I fracture energy 
IG  (N/mm) 0.01571 0.0004882I tG f= +  

Peak cohesion 
0c (MPa)  

0 1.4 tc f=  

Mode II fracture energy when the normal stress is equal to zero 0

IIG (N/mm)  0 10II IG G=  

Compressive strength of masonry 
mf   (MPa) ( )18.46ln 37.71u

m cf f = −  

Stiffness constants 
nnk , 

ssk , 
ttk  (N/mm3) 

( )
u m

nn

m u m

E E
k

h E E
=

−

( )2 1 0.15

nn
ss tt

k
k k= =

+
 

Random variable Mean 
Coefficient 

of variation 

Probability 

distribution 
Reference 

Compressive strength of units u

cf  (MPa) 1.41 
,

u

c nf  0.16 Normal (Kazemi et al. 2011) 

Compressive strength of grouts g

cf  (MPa) 1.4 
,

g

c nf  0.20 Normal Assumed 

Yield strength of reinforcements 
yf  (MPa) 1.14

,y nf  0.07 Normal (Moosavi 2017) 

Tensile strength of mortar joints 
tf  (MPa) ,t nf  0.3 Normal (Li et al. 2014) 

Frictional coefficient of mortar joints tan  tan n  0.1 Lognormal Assumed 
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The load combination is considered as identical as the OOP case discussed in Section 

10.6.1, with the nominal load effects derived from the nominal material parameters. For the RM 

wall under IP loading considered in this study, the limit state function is established by comparing 

the applied IP load and IP capacity. The IP load is applied horizontally at the top of the wall. For 

the application of the proposed reliability analysis algorithm, the LF model (i.e., Canadian masonry 

design code) is firstly evaluated. At each level in the CEIS procedure, 500 LF models are evaluated. 

This necessitates a total of five levels to reach the ultimate biasing PDF. The probability 

distributions of uncertain parameters at each level are shown in Figure 10-15. It should be noted 

that the true value for this application example is unavailable since evaluating a large number of 

HF models is impractical. Thus, the reliability analysis results obtained by LF-MCS, MF-CEIS 

and MF-CEISα are presented here only to show the difference, or the possible improvement 

achieved by the proposed approach. Notably, for MF-CEIS, a total of 2500 LF samples are used 

(with 500 at each intermediate level). For the proposed estimator MF-CEISα, an additional 25000 

LF samples are used, leading to a total of 27500 LF model evaluations. Corresponding results are 

presented in Table 10-14, with the probability of failure predicted by the proposed method is 

0.0078. 

Table 10-14. Reliability analysis results for the RM wall under OOP loading 

 

 

 

 

 Sample size (HF + LF) ˆ
fP

 
LF-MCS 1 × 106 0.0109 

MF-CEIS 500 + 2500 0.0098 

MF-CEISα 500 + 27500 0.0078 



Chapter 10: Novel Structural Reliability Methods Using Multi-fidelity Models through Cross-Entropy Importance 

Sampling and Control Variate Techniques with Applications on Masonry Walls  

387 

 

 



Chapter 10: Novel Structural Reliability Methods Using Multi-fidelity Models through Cross-Entropy Importance 

Sampling and Control Variate Techniques with Applications on Masonry Walls  

388 

 

  

(a) (b) 

  

(c) (d) 

 

(e) 

Figure 10-15. Biasing PDFs at intemediate levels in the cross-entropy adaptive sampling 

procedure for the RM wall under IP loading: (a) Young’s modulus of reinforcements, (b) yield 

strength of reinforcements, (c) compressive strength of masonry, and (d) reinforcement location 
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 CONCLUSIONS 

This chapter has presented a multi-fidelity (MF) methodology to structural reliability analysis 

through the integration of high-fidelity (HF) and low-fidelity (LF) models. The proposed method, 

underpinned by a two-step leveraging process, harmonizes the accuracy of HF models with the 

computational efficiency of LF models, addressing the challenges traditionally associated with 

reliability assessments in structural engineering. The proposed MF approach effectively navigates 

these challenges. Initially, it involves assessing a large number of LF models to construct a biasing 

density that emphasizes the failure domain. This process, facilitated by the cross-entropy adaptive 

importance sampling strategy, allows for a preliminary, albeit less precise, LF model-based 

reliability estimation. The subsequent step leverages this biasing density in an HF model-based IS 

reliability estimation, leading to a more accurate reliability estimator. This integration not only 

enhances the precision of reliability assessments but also achieves significant computational 

savings by reducing dependence on resource-intensive HF model evaluations. Additionally, the 

incorporation of the control variate (CV) technique furthers the reduction of variance in our 

estimates. Notably, our methodology demonstrates flexibility in the choice of LF models, 

including data-fit interpolation, regression models, or FE models with simplified physics. 

Through detailed discussions and structural engineering examples, we have demonstrated 

the efficacy of our proposed method in comparison with other approaches. The results underscore 

the advantages of the MF approach in accurately estimating the probability of failure while 

mitigating computational costs and complexities. 

In conclusion, this research contributes a significant advancement in the field of structural 

reliability analysis. By synergistically combining HF and LF models, our MF approach addresses 
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both accuracy and efficiency, paving the way for more resilient and performance-based designs in 

structural engineering. Future work may explore the extension of this methodology to a broader 

range of applications, further enhancing its adaptability and applicability in the ever-evolving 

landscape of structural engineering. 
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Chapter 11. CONCLUSIONS AND RECOMMENDATIONS 

 SUMMARY AND CONCLUSIONS 

This thesis is dedicated to developing strategies to facilitate the understanding and prediction of 

the structural behaviors of masonry walls in both deterministic and probabilistic manners. The 

following summarizes the research conducted in this thesis and the conclusions derived in response 

to the stated research objectives: 

(1) Sub-objective #1: Development of 3D constitutive models for mortar joints to facilitate the 

high-fidelity modeling of masonry walls 

Two novel 3D multi-yield surface constitutive models for masonry mortar joints were developed. 

The first model, based on a computational plasticity framework, featured two hyperbolic yield 

surfaces adept at capturing various failure modes, including tensile cracking, shear sliding, and 

compressive crushing within mortar joints. In addition, an unassociated flow rule was incorporated 

in conjunction with a dilatancy-softening model in the proposed model to accurately capture the 

‘dilatancy’ phenomenon within mortar joints. An implicit Euler backward integration algorithm, 

combined with a local-global Newton-Raphson (NR) solver, was adopted to achieve the predictor-

corrector return mapping in the numerical formulation. The error-based auto-adaptive sub-stepping 

algorithm was employed to achieve robustness and efficiency in the integration procedure. 

Numerical validations at the masonry assemblage level showed that the developed model 

effectively captured stress-displacement responses, volume increases, and specimen uplift. At the 

structural level, the numerical-experimental comparison demonstrated reasonable agreement in 

terms of initial stiffness, in-plane/out-of-plane capacity, post-peak behavior, and crack patterns of 
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masonry walls. Notably, the study highlighted the impact of the dilatancy model on load-

displacement curves, indicating that neglecting dilatancy softening led to a significant 

overestimation of the in-plane or out-of-plane capacity of masonry walls, whereas constant zero 

dilatancy tended to underestimate wall capacities. In contrast, the simulation results obtained by 

the proposed model with dilatancy softening had the best predictability when compared with the 

experimental results.  

The second model, formulated within a damage-plasticity framework, focuses on the cyclic 

behavior of masonry mortar joints. Extending the features of the monotonic model, the cyclic 

model additionally included two damage scalars for the description of stiffness degradation. 

Additionally, two damage functions were integrated into the constitutive model formulation to 

describe the (tensile/cohesion/compressive) strength softening. The reliability of the proposed 

model was validated through simulations of various experimental tests available in the public 

literature, such as an indirect tensile test on a mortar jointed cylinder specimen and three masonry 

couplets under compression-shear loading. The validation results showed precise representations 

of peak capacity, strength softening, and stiffness degradation. At the structural level, two 

unreinforced masonry walls with different aspect ratios were simulated to assess the capability of 

the developed model to capture different failure modes of masonry walls (i.e., diagonal tension 

cracking and flexural rocking) and associated characteristics in the load deformation behaviors. 

The validation results indicated that using the proposed model could well predict different failure 

modes of masonry walls. 

In conclusion, these two newly developed models have demonstrated their effectiveness in 

accurately predicting failure modes and load-deformation behavior of masonry walls and can be 
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used to simulate masonry wall behaviors with high fidelity under complex loading scenarios (e.g., 

under combined IP and OOP loading). 

(2) Sub-objective #2: Investigation of IP-OOP interaction behavior of unreinforced and 

reinforced masonry walls 

The structural behaviors of unreinforced masonry (URM) and reinforced masonry (RM) walls 

under combined IP and OOP loading were studied. This study specifically investigated the 

influence of aspect ratio (AR), slenderness ratio (SR), and pre-compression load (Pv) on the IP-

OOP interaction behaviors in both wall types, with particular attention to the failure modes, load-

deformation behaviors, and capacity interaction curves. 

For URM walls, the simulation results revealed a significant reduction in IP capacity due 

to the presence of OOP loading, particularly in longer walls with smaller ARs and in highly slender 

walls. For instance, for the wall with an AR of 0.75 and SR of 9.92 without pre-compression load, 

when the pre-applied OOP load is at 80% of the OOP capacity, the IP capacity experienced a 37% 

reduction in the IP capacity. Among all the walls studied, the most substantial interaction effect 

was observed in the wall with the highest SR and a pre-compression load of 0.0 MPa: the IP 

capacity of the wall with an aspect ratio of 1.00 and a slenderness ratio of 32.24 was reduced by 

61.5% when the pre-applied OOP load reached 80% of its pure OOP capacity. It should be noted 

that this reduction surpassed the 58% reduction suggested in ASCE 41-17 for masonry infill walls. 

Another notable observation was that lower values of Pv mitigated the IP-OOP interaction effects 

given its positive role in enhancing the sliding resistance, while higher values of Pv intensified the 

interaction effects. To facilitate the practical consideration of IP-OOP interaction effects of URM 

walls, an analytical model was proposed based on the FE simulation results. This model efficiently 
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predicted the IP and OOP capacity interaction curves by accounting for the influence of AR, SR, 

and Pv and showed superior performance compared to existing models in the public literature. 

In the case of RM walls, OOP loading also led to substantial IP capacity reductions, 

particularly in flexural governed walls with larger ARs and lower levels of Pv. The interaction 

effects in flexural governed walls were less sensitive to geometrical parameters (i.e., AR, SR) and 

Pv compared to shear governed walls. Similar to URM walls, the most significant interaction 

occurred in highly slender walls without pre-compression loads, leading to a 45% reduction in IP 

capacity when OOP loading reached 80% of its capacity. This notable reduction was attributed to 

OOP instability, and it was observed that increasing Pv could effectively mitigate IP-OOP effects. 

The IP-OOP interaction in RM walls was less pronounced than that specified for masonry infill 

walls in the ASCE 41-17 design provision. 

A comparative study was performed between URM and RM walls in terms of the IP-OOP 

capacity interaction curves. Three representative walls were studied: the most ‘flexural’ wall (AR 

= 2.00, SR = 8.42, and Pv = 0.0 MPa), the most ‘shear’ wall (AR = 0.67, SR = 8.42, and Pv = 2.5 

MPa), and the slenderest wall with the most IP-OOP interaction (AR = 1.33, SR = 29.47, and Pv = 

0.0 MPa). The analysis results reveal that all three representative RM walls exhibited a lower 

capacity reduction in comparison to their URM counterparts. Additionally, it was also noted that 

the interaction curve derived for the URM wall with the strongest interaction was relatively well 

correlated with the one suggested in ASCE 41-17 for masonry infill walls. 

(3) Sub-objective #3: Using the control variate method for statistics estimation and its 

application on the IP and OOP resistances of masonry walls with uncertain material 

properties  
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This sub-objective tackles the first of two primary goals in the uncertainty quantification aspect of 

this research: statistics estimation. In this context, two  statistics estimators, one for the mean and 

the other for the variance, were formulated by using the control variate method. The proposed 

estimators used a multi-fidelity approach to capitalize on the strengths of both high-fidelity (HF) 

models (e.g., the FE model developed in Sub-objective #1) and design code-based models. While 

FE models offer higher accuracy, their computational intensity is notable. In contrast, design code-

based models provide efficiency but may suffer accuracy limitations (e.g., large bias) due to 

inherent simplifications. The multi-fidelity approach involves integrating numerous evaluations of 

the design code model to enhance computational efficiency while involving only a limited number 

of FE model evaluations to ensure accuracy and unbiasedness. 

Three case studies were presented for the statistics estimation of IP resistances of masonry 

walls: one on URM walls and two on RM walls. Furthermore, two case studies were presented for 

OOP resistance prediction, respectively. The results indicated that the proposed estimators for 

mean and variance outperform the estimators that rely solely on the FE and design-code models 

regarding accuracy and efficiency. The results underscored the potential for significant biases 

when relying exclusively on design code-based models for statistics estimation. On the other hand, 

the FE model-based crude MC estimators were associated with large variances when a small 

number of simulations were used, primarily attributable to the high computational demands of the 

FE model. For the URM wall considered in the case study, the mean and standard derivation of 

the IP resistance were 76.03 kN and 10.1 kN, respectively, indicating a coefficient of variation 

(COV) of 14.1%. In contrast, the value of COV is lower for RM walls: 2.6% and 2.8% for flexural 

and shear governed RM walls, respectively. Moreover, this statistics estimation method could be 
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further used for the evaluation of mean and mean minus one standard derivation of IP and OOP 

capacities of masonry walls. Such quantities are critically important for the next-generation 

performance-based design, as specified in ASCE 41-17. 

(4) Sub-objective #4: Development of multi-fidelity reliability analysis algorithm and its 

application to masonry walls with uncertain material properties 

The last sub-objective addressed the second goal of the uncertainty quantification part of this 

thesis: reliability analysis. A multi-fidelity (MF) reliability analysis algorithm was proposed, 

underpinned by a two-step information leveraging procedure that effectively integrated models of 

varying fidelities. The proposed method balanced the precision of high-fidelity (HF) models with 

the computational efficiency of low-fidelity (LF) models, effectively tackling the common 

challenges in reliability assessments within the realm of structural engineering. The distinct 

advantage of this method, as compared to other approaches, was demonstrated through 

comprehensive discussions and four examples in structural engineering. These illustrative 

examples highlighted the fact that the proposed MF approach was capable of accurately estimating 

failure probabilities while concurrently addressing computational constraints and complexities. 

The practical application of this newly developed reliability analysis algorithm was then 

broadened to encompass the reliability assessment of masonry walls under both in-plane (IP) and 

out-of-plane (OOP) loading conditions. Two application examples are presented, each 

corresponding to one of the loading scenarios, demonstrating the algorithm’s applicability to real-

world applications in masonry wall analysis. As such, it can be used for reliability analysis of 

masonry walls designed based on limit-state design approaches, leading to more convincing 

evaluations than those using design-code models without considering model uncertainty. From a 
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scientific perspective, this component of this research represents a contribution to the field of 

structural reliability analysis. By synergistically combining HF and LF models, the proposed MF 

approach strikes a balance between computational accuracy and efficiency. This is instrumental in 

fostering the development of reliability-based design and maintenance not only within the masonry 

community, but also more broadly in the field of structural engineering. 

 CONTRIBUTIONS AND DELIVERABLES 

The primary contributions and deliverables of this thesis, focusing on the development and application 

of computational techniques and uncertainty quantification algorithms for masonry walls, are outlined 

below: 

(1) This research presents two novel constitutive models for masonry mortar joints developed 

within the computational plasticity and damage plasticity frameworks for the simulation of 

monotonic and cyclic behaviors, respectively. The numerical validation examples 

demonstrated their great applicability in predicting the structural behavior (e.g., load-

deformation behavior, crack propagation, failure modes) of masonry walls under IP and/or 

OOP loading conditions. As such, the developed models enhance the capabilities of the 

general-purpose Finite Element (FE) software ABAQUS (Dassault Systemes 2017). The 

implementation comprises two Fortran-based subroutines: 

• Monotonic.for: A subroutine of the constitutive model to simulate the monotonic 

behavior of masonry mortar joints 

• Cyclic.for: A subroutine of the constitutive model to simulate the cyclic behavior of 

masonry mortar joints 
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(2) The study of masonry walls under combined in-plane (IP) and out-of-plane (OOP) loading 

conditions reveals critical insights for practical design considerations, suggesting that IP-OOP 

capacity interaction effects should be rigorously considered. Notably, walls with higher 

slenderness ratios (i.e., height-to-thickness ratios) exhibit significant IP capacity reductions 

due to OOP loading. In addition, such interaction effects (i.e., IP capacity reduction due to the 

presence of the OOP load) are generally more substantial in URM walls than in RM walls. A 

newly developed simplified analytical model, considering the impacts of aspect ratio, 

slenderness ratio, and pre-compression load, offers a valuable tool for addressing the IP-OOP 

capacity interaction effects of URM walls. 

(3) To streamline the micro modeling strategy of masonry walls, two Python-based automated 

tools were developed and integrated into the general-purpose Finite Element (FE) software 

ABAQUS. These tools offer a user-friendly environment for simulating masonry walls using 

micro modeling strategies with different boundary (e.g., cantilever, double-fixed, pin-roller) 

and loading conditions (e.g., IP loading, OOP loading, combined IP and OOP loadings): 

• URM.py: A tool for the modeling of unreinforced masonry wall 

• RM.py: A tool for the modeling of fully grouted reinforced masonry wall 

(4) To enable efficient estimation of the IP and OOP resistances of masonry walls in accordance 

with CSA S304-14, four MATLAB functions were implemented: 

• IP_URM.m: A toolbox for evaluating the IP capacity of unreinforced masonry walls 

• IP_RM.m: A toolbox for evaluating the IP capacity of reinforced masonry walls 

• OOP_URM.m: A toolbox for evaluating the OOP capacity of unreinforced masonry 

walls, applicable for both eccentrical axial loading and uniform lateral pressure loading 

scenarios (slenderness effects are considered through the moment magnifier method) 
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• OOP_RM.m: a toolbox for evaluating the OOP capacity of fully grouted reinforced 

masonry, applicable for both eccentrical axial loading and uniform lateral pressure 

loading scenarios (slenderness effects are considered through the moment magnifier 

method) 

(5) The MF reliability analysis method for the masonry walls presented in this thesis was 

implemented in MATLAB, and this toolbox allows the flexible integration of high-fidelity FE 

models and design code models (e.g., m-file, function handle) for the reliability analysis of 

masonry walls. Beyond the statistics estimation, this will advance the masonry community by 

laying the foundation for reliability-based code calibration and moment-based reliability 

analysis method. Accordingly, two MATLAB functions were implemented: 

• MF_MEAN.m: A toolbox for estimating the mean using the control variate-based 

multi-fidelity approach 

• MF_VAR.m: A toolbox for estimating the variance using the control variate-based 

multi-fidelity approach 

(6) The MF reliability analysis algorithm developed in this thesis was implemented in MATLAB, 

and this toolbox allows the flexible integration of various high-fidelity and low-fidelity models 

(e.g., m-file, function handle). Note that the toolbox implemented allows for any type of model 

incorporated (e.g., FE model, analytical model), thus allowing for a wide range of applications. 

This will lay the basis and open the new door for reliability analysis/fragility analysis using 

high-fidelity expensive computational models in structural engineering.  

• MF_RA.m: A toolbox that performs the MF reliability analysis 

These contributions and deliverables are collectively summarized in Figure 11-1. 
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Figure 11-1. Contribution and deliverables of this research work 

 LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORK 

This research work develops innovative constitutive models for mortar joints that enhance high-

fidelity modeling and introduces sophisticated uncertainty quantification algorithms for masonry 

walls. Despite these advancements, the study identifies certain limitations that offer directions for 

future research. In the first part of this thesis, which focuses on computational modeling of 

masonry walls and their application in the IP-OOP interaction effects, the main limitations and 

recommendations are as follows: 

(1) A limitation in the FE modeling of reinforced masonry (RM) walls is the absence of a 

nonlinear bond-slip relationship between grouts and reinforcements. Additionally, bar 

buckling is neglected in the proposed modeling strategy. This should be addressed in future 

studies. 

(2) In numerical investigations into studying the IP-OOP interaction behavior of masonry 

walls, material parameters were considered constants without variations. However, some 

critical parameters (e.g., tensile strength of mortar joints, compressive strength of masonry) 

could potentially influence the failure modes of masonry walls under combined IP and 
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OOP loading, thus further impacting the IP-OOP capacity interaction effects. In this regard, 

such influence needs to be investigated. 

For the second part of this study on uncertainty analysis, the main limitations and 

recommendations for future work are: 

(1) The primary limitation associated with the second part of this thesis is the assumption of 

taking the finite element model as the high-fidelity model. While this is reasonable when 

compared to design-code models, it is important to note that no model is error-free. Future 

research should aim to integrate experimental results into the proposed methodologies. 

(2) In the numerical examples for masonry walls, spatial variability is neglected. However, for 

masonry materials, spatial variability is widely observed. Future research work should 

incorporate such variability. 

(3) While the proposed reliability analysis algorithm performs well in the numerical examples 

provided, future work should include mathematical derivations of the quality of the 

proposed MF reliability estimator, such as variance and mean square error relative to the 

true value. Correspondingly, a model management scheme is anticipated to determine the 

model evaluation numbers for both high-fidelity and low-fidelity models, similar to what 

was done in the statistics estimation. 

(4) A finite element reliability-based code calibration for contemporary masonry design 

standards in North America is suggested for future research. This can be achieved by the 

MF reliability analysis algorithm developed in this study.  



Reference 

402 

 

REFERENCE 

Abdellatif, A., M. Shedid, H. Okail, and A. Abdelrahman. 2019. “Numerical modeling of 

reinforced masonry walls under lateral loading at the component level response as opposed 

to system level response.” Ain Shams Eng. J., 10 (2): 435–451. Ain Shams University. 

https://doi.org/10.1016/j.asej.2018.12.003. 

Abdollahi, A., M. Azhdary Moghaddam, S. A. Hashemi Monfared, M. Rashki, and Y. Li. 2020. 

“A refined subset simulation for the reliability analysis using the subset control variate.” 

Struct. Saf., 87 (August): 102002. Elsevier. https://doi.org/10.1016/j.strusafe.2020.102002. 

Abdulla, K. F., L. S. Cunningham, and M. Gillie. 2017. “Simulating masonry wall behaviour using 

a simplified micro-model approach.” Eng. Struct., 151: 349–365. Elsevier Ltd. 

https://doi.org/10.1016/j.engstruct.2017.08.021. 

Addessi, D., D. Liberatore, and R. Masiani. 2015. “Force-based beam finite element (FE) for the 

pushover analysis of masonry buildings.” Int. J. Archit. Herit., 9 (3): 231–243. Taylor & 

Francis. https://doi.org/10.1080/15583058.2013.768309. 

Addessi, D., A. Mastrandrea, and E. Sacco. 2014. “An equilibrated macro-element for nonlinear 

analysis of masonry structures.” Eng. Struct., 70: 82–93. Elsevier Ltd. 

https://doi.org/10.1016/j.engstruct.2014.03.034. 

Addessi, D., P. Di Re, C. Gatta, and E. Sacco. 2021. “Multiscale analysis of out-of-plane masonry 

elements using different structural models at macro and microscale.” Comput. Struct., 247: 

106477. Pergamon. https://doi.org/10.1016/j.compstruc.2020.106477. 

Agnihotri, P., V. Singhal, and D. C. Rai. 2013. “Effect of in-plane damage on out-of-plane strength 

of unreinforced masonry walls.” Eng. Struct., 57: 1–11. Elsevier. 



Reference 

403 

 

https://doi.org/10.1016/j.engstruct.2013.09.004. 

Aguilar, V., C. Sandoval, J. M. Adam, J. Garzón-Roca, and G. Valdebenito. 2016. “Prediction of 

the shear strength of reinforced masonry walls using a large experimental database and 

artificial neural networks.” Struct. Infrastruct. Eng., 12 (12): 1661–1674. Taylor & Francis. 

https://doi.org/10.1080/15732479.2016.1157824. 

Alexandrov, N. M., R. M. Lewis, C. R. Gumbert, L. L. Green, and P. A. Newman. 2001. 

“Approximation and model management in aerodynamic optimization with variable-fidelity 

models.” J. Aircr., 38 (6): 1093–1101. https://doi.org/10.2514/2.2877. 

Algohi, B. 2013. “An Experimental and Numerical Study of Retrofitted Masonry Walls under 

Cyclic Loading [Ph.D thesis].” King Fahd University of Petroleum and Minerals. 

Almeida, J. A. P. P., D. Bordigoni, E. B. Pereira, J. A. O. Barros, and A. Aprile. 2016. “Assessment 

of the properties to characterise the interface between clay brick substrate and strengthening 

mortar.” Constr. Build. Mater., 103: 47–66. Elsevier Ltd. 

https://doi.org/10.1016/j.conbuildmat.2015.11.036. 

Álvarez-Pérez, J., J. H. Chávez-Gómez, B. T. Terán-Torres, M. Mesa-Lavista, and R. Balandrano-

Vázquez. 2020. “Multifactorial behavior of the elastic modulus and compressive strength in 

masonry prisms of hollow concrete blocks.” Constr. Build. Mater., 241: 118002. Elsevier. 

https://doi.org/10.1016/j.conbuildmat.2020.118002. 

Amadei, B., S. Sture, S. Saeb, and R. H. Atkinson. 1989. “An evaluation of masonry joint shear 

strength in existing buildings.” Rep. Prep. NSF. 

Anand, S. C., and K. K. Yalamanchili. 1996. “Three-Dimensional Failure Analysis of Composite 

Masonry Walls.” J. Struct. Eng., 122 (9): 1031–1039. https://doi.org/10.1061/(asce)0733-



Reference 

404 

 

9445(1996)122:9(1031). 

Andreotti, G., F. Graziotti, and G. Magenes. 2019. “Expansion of mortar joints in direct shear tests 

of masonry samples: implications on shear strength and experimental characterization of 

dilatancy.” Mater. Struct., 52 (4): 1–16. Springer Netherlands. 

https://doi.org/10.1617/s11527-019-1366-5. 

Anthoine, A., and G. Magonette. 1995. “Shear-compression testing and analysis of brick masonry 

walls.” Proc. 10th Eur. Conf. Earthq. Eng., 1–6. Central lnstitute for Meteorology and 

Geodynamics Vienna, Austria. 

Anthoine, A., G. Magonette, and G. Magenes. 1994. “Shear-compression testing and analysis of 

brick masonry walls.” Proc. 10th Eur. Conf. Earthq. Eng. 

Applied Technology Council. 1997. “NEHRP guidelines for the seismic rehabilitation of 

buildings: FEMA 273.” Fed. Emerg. Manag. Agency, (October): 435. 

Aref, A. J., and K. M. Dolatshahi. 2013. “A three-dimensional cyclic meso-scale numerical 

procedure for simulation of unreinforced masonry structures.” Comput. Struct., 120: 9–23. 

Elsevier Ltd. https://doi.org/10.1016/j.compstruc.2013.01.012. 

AS3700. 2018. Australian Standard of Masonry Structures. 

ASCE. 2017. Seismic Evaluation and Retrofit of Existing Buildings. Seism. Eval. Retrofit Exist. 

Build. American Society of Civil Engineers. 

Astroza, M., O. Moroni, S. Brzev, and J. Tanner. 2012. “Seismic performance of engineered 

masonry buildings in the 2010 Maule earthquake.” Earthq. Spectra, 28 (SUPPL.1): 385–406. 

https://doi.org/10.1193/1.4000040. 

Atkinson, R. H., B. P. Amadei, S. Saeb, and S. Sture. 1989. “Response of masonry bed joints in 



Reference 

405 

 

direct shear.” J. Struct. Eng., 115 (9): 2276–2296. https://doi.org/10.1061/(ASCE)0733-

9445(1989)115:9(2276). 

Atkinson, R. H., G. R. Kingsley, S. Saeb, B. Amadei, and S. Sture. 1988. “A laboratory and in situ 

study of the shear strength of masonry bed joints.” Proc. Eighth Int. Brick Block Mason. 

Conf., 261–271. 

Au, S. K., and J. L. Beck. 2001. “Estimation of small failure probabilities in high dimensions by 

subset simulation.” Probabilistic Eng. Mech., 16 (4): 263–277. 

https://doi.org/10.1016/S0266-8920(01)00019-4. 

Au, S. K., J. Ching, and J. L. Beck. 2007. “Application of subset simulation methods to reliability 

benchmark problems.” Struct. Saf., 29 (3): 183–193. Elsevier. 

https://doi.org/10.1016/J.STRUSAFE.2006.07.008. 

Barbosa, C. S., P. B. Lourenço, and J. B. Hanai. 2010. “On the compressive strength prediction 

for concrete masonry prisms.” Mater. Struct. Constr., 43 (3): 331–344. 

https://doi.org/10.1617/s11527-009-9492-0. 

Bartlett, F. M., H. P. Hong, and W. Zhou. 2003. “Load factor calibration for the proposed 2005 

edition of the National Building Code of Canada : Statistics of loads and load effects.” Can. 

J. Civ. Eng., 30 (2): 429–439. https://doi.org/10.1139/L02-087. 

Bartoli, G., M. Betti, P. Biagini, A. Borghini, A. Ciavattone, M. Girardi, G. Lancioni, A. M. Marra, 

B. Ortolani, B. Pintucchi, and L. Salvatori. 2017. “Epistemic Uncertainties in Structural 

Modeling: A Blind Benchmark for Seismic Assessment of Slender Masonry Towers.” J. 

Perform. Constr. Facil., 31 (5): 1–18. https://doi.org/10.1061/(asce)cf.1943-5509.0001049. 

Berto, L., A. Saetta, R. Scotta, and R. Vitaliani. 2002. “An orthotropic damage model for masonry 



Reference 

406 

 

structures.” Int. J. Numer. Methods Eng., 55 (2): 127–157. https://doi.org/10.1002/nme.495. 

Berto, L., A. Saetta, R. Scotta, and R. Vitaliani. 2004. “Shear behaviour of masonry panel: 

Parametric FE analyses.” Int. J. Solids Struct., 41 (16–17): 4383–4405. 

https://doi.org/10.1016/j.ijsolstr.2004.02.046. 

Biye, W., D. Junwu, B. Wen, and Y. Yongqiang. 2022. “Triaxial elastoplastic damage constitutive 

model of unreinforced clay brick masonry wall.” Earthq. Eng. Eng. Vib. 

https://doi.org/10.1007/s11803-023-2151-6. 

Bjerager, P. 1988. “Probability Integration by Directional Simulation.” J. Eng. Mech., 114 (8): 

1285–1302. https://doi.org/10.1061/(asce)0733-9399(1988)114:8(1285). 

Bolhassani, M., A. A. Hamid, C. Johnson, and A. E. Schultz. 2016. “Shear strength expression for 

partially grouted masonry walls.” Eng. Struct., 127: 475–494. Elsevier Ltd. 

https://doi.org/10.1016/j.engstruct.2016.09.001. 

Bracchi, S., A. Galasco, and A. Penna. 2021. “A novel macroelement model for the nonlinear 

analysis of masonry buildings. Part 1: Axial and flexural behavior.” Earthq. Eng. Struct. Dyn., 

50 (8): 2233–2252. https://doi.org/10.1002/eqe.3445. 

Bracchi, S., and A. Penna. 2021. “A novel macroelement model for the nonlinear analysis of 

masonry buildings. Part 2: Shear behavior.” Earthq. Eng. Struct. Dyn., 50 (8): 2212–2232. 

https://doi.org/10.1002/eqe.3444. 

Bucher, C. G., and U. Bourgund. 1990. “A fast and efficient response surface approach for 

structural reliability problems.” Struct. Saf., 7 (1): 57–66. https://doi.org/10.1016/0167-

4730(90)90012-E. 

De Buhan, P., and G. De Felice. 1997. “A homogenization approach to the ultimate strength of 



Reference 

407 

 

brick masonry.” J. Mech. Phys. Solids, 45 (7): 1085–1104. https://doi.org/10.1016/S0022-

5096(97)00002-1. 

Caballero, A., K. J. Willam, and I. Carol. 2008. “Consistent tangent formulation for 3D interface 

modeling of cracking/fracture in quasi-brittle materials.” Comput. Methods Appl. Mech. Eng., 

197 (33–40): 2804–2822. North-Holland. https://doi.org/10.1016/j.cma.2008.01.011. 

Calderini, C., S. Cattari, and S. Lagomarsino. 2009. “In-plane strength of uninforced masonry 

piers.” Earthq. Eng. Struct. Dyn., 38: 243–267. https://doi.org/10.1002/eqe. 

Calderini, C., S. Cattari, and S. Lagomarsino. 2010. “The use of the diagonal compression test to 

identify the shear mechanical parameters of masonry.” Constr. Build. Mater., 24 (5): 677–

685. Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2009.11.001. 

Calderini, C., and S. Lagomarsino. 2008. “Continuum Model for In-Plane Anisotropic Inelastic 

Behavior of Masonry.” J. Struct. Eng., 134 (2): 209–220. https://doi.org/10.1061/(asce)0733-

9445(2008)134:2(209). 

Calderón, S., O. Arnau, and C. Sandoval. 2019. “Detailed micro-modeling approach and solution 

strategy for laterally loaded reinforced masonry shear walls.” Eng. Struct., 201 (October): 

109786. Elsevier. https://doi.org/10.1016/j.engstruct.2019.109786. 

Calderón, S., G. Milani, and C. Sandoval. 2021a. “Simplified micro-modeling of partially-grouted 

reinforced masonry shear walls with bed-joint reinforcement: Implementation and 

validation.” Eng. Struct., 234 (January). https://doi.org/10.1016/j.engstruct.2021.111987. 

Calderón, S., C. Sandoval, and O. Arnau. 2017. “Shear response of partially-grouted reinforced 

masonry walls with a central opening: Testing and detailed micro-modelling.” Mater. Des., 

118: 122–137. Elsevier Ltd. https://doi.org/10.1016/j.matdes.2017.01.019. 



Reference 

408 

 

Calderón, S., C. Sandoval, G. Milani, and O. Arnau. 2021b. “Detailed micro-modeling of partially 

grouted reinforced masonry shear walls: extended validation and parametric study.” Arch. 

Civ. Mech. Eng., 21 (3). Springer London. https://doi.org/10.1007/s43452-021-00237-z. 

Canadian Standards Association. 2004. “CSA S304. 1-04: Design of masonry structures.” 

Mississauga, ON, Canada. 

Canadian Standards Association. 2014. “CSA S304-14: Design of Masonry Structures.” 

Mississauga, Ontario, Canada. 

Carol, I., C. M. López, and O. Roa. 2001. “Micromechanical analysis of quasi-brittle materials 

using fracture-based interface elements.” Int. J. Numer. Methods Eng., 52 (1–2): 193–215. 

https://doi.org/10.1002/nme.277. 

Carol, I., P. C. Prat, and C. M. López. 1997. “Normal/Shear Cracking Model: Application to 

Discrete Crack Analysis.” J. Eng. Mech., 123 (8): 765–773. 

https://doi.org/10.1061/(asce)0733-9399(1997)123:8(765). 

Casapulla, C., and F. Portioli. 2016. “Experimental tests on the limit states of dry-jointed tuff 

blocks.” Mater. Struct. Constr., 49 (3): 751–767. Springer Netherlands. 

https://doi.org/10.1617/s11527-015-0536-3. 

Casapulla, C., F. Portioli, A. Maione, and R. Landolfo. 2013. “A macro-block model for in-plane 

loaded masonry walls with non-associative Coulomb friction.” Meccanica, 48 (9): 2107–

2126. https://doi.org/10.1007/s11012-013-9728-5. 

Celano, T., L. U. Argiento, F. Ceroni, and C. Casapulla. 2021. “Literature review of the in-plane 

behavior of masonry walls: Theoretical vs. experimental results.” Materials (Basel)., 14 (11). 

https://doi.org/10.3390/ma14113063. 



Reference 

409 

 

Chaimoon, K., and M. M. Attard. 2007. “Modeling of unreinforced masonry walls under shear and 

compression.” Eng. Struct., 29 (9): 2056–2068. Elsevier. 

https://doi.org/10.1016/j.engstruct.2006.10.019. 

Chen, C., Y. Yang, H. Hou, C. Peng, and W. Xu. 2022. “Real‐time hybrid simulation with multi‐

fidelity Co‐Kriging for global response prediction under structural uncertainties.” Earthq. 

Eng. Struct. Dyn., 51 (11): 2591–2609. Wiley Online Library. 

Chen, D., H. Wu, and Q. Fang. 2023. “Simplified micro-model for brick masonry walls under out-

of-plane quasi-static and blast loadings.” Int. J. Impact Eng., 174 (December 2022). 

https://doi.org/10.1016/j.ijimpeng.2023.104529. 

Chen, S. Y., F. L. Moon, and T. Yi. 2008. “A macroelement for the nonlinear analysis of in-plane 

unreinforced masonry piers.” Eng. Struct., 30 (8): 2242–2252. Elsevier. 

https://doi.org/10.1016/J.ENGSTRUCT.2007.12.001. 

Cheng, J., and P. B. Shing. 2022a. “A beam-column element for modeling nonlinear flexural and 

shear behaviors of reinforced masonry walls.” Earthq. Eng. Struct. Dyn. 

Cheng, J., and P. B. Shing. 2022b. “Practical Nonlinear Analysis Methods for Flexure-Dominated 

Reinforced Masonry Shear Walls.” J. Struct. Eng., 148 (8): 1–19. 

https://doi.org/10.1061/(asce)st.1943-541x.0003429. 

Chisari, C., L. Macorini, and B. A. Izzuddin. 2023. “An anisotropic plastic-damage model for 3D 

nonlinear simulation of masonry structures.” Int. J. Numer. Methods Eng. 

Citto, C. 2008. “Two-dimentional interface model applied to masonry structures [MS.c thesis].” 

University of Bologna. 

Clermont, P., and B. Sudret. 2007. “Uncertainty Propagation and Sensitivity Analysis in 



Reference 

410 

 

Mechanical Models.” English. 

Comi, C., and U. Perego. 2001. “Fracture energy based bi-dissipative damage model for concrete.” 

Int. J. Solids Struct., 38 (36–37): 6427–6454. Pergamon. https://doi.org/10.1016/S0020-

7683(01)00066-X. 

Cornell, C. A. n.d. “A Probability-Based Structural Code*.” ACI J. Proc., 66 (12). 

https://doi.org/10.14359/7446. 

D’Altri, A. M., F. Messali, J. Rots, G. Castellazzi, and S. de Miranda. 2019. “A damaging block-

based model for the analysis of the cyclic behaviour of full-scale masonry structures.” Eng. 

Fract. Mech., 209: 423–448. Elsevier Ltd. 

https://doi.org/10.1016/j.engfracmech.2018.11.046. 

D’Altri, A. M., S. de Miranda, G. Castellazzi, and V. Sarhosis. 2018. “A 3D detailed micro-model 

for the in-plane and out-of-plane numerical analysis of masonry panels.” Comput. Struct., 

206: 18–30. Elsevier Ltd. https://doi.org/10.1016/j.compstruc.2018.06.007. 

D’Altri, A. M., V. Sarhosis, G. Milani, J. Rots, S. Cattari, S. Lagomarsino, E. Sacco, A. Tralli, G. 

Castellazzi, and S. de Miranda. 2020. “Modeling Strategies for the Computational Analysis 

of Unreinforced Masonry Structures: Review and Classification.” Arch. Comput. Methods 

Eng., 27 (4): 1153–1185. Springer Netherlands. https://doi.org/10.1007/s11831-019-09351-

x. 

Dahlblom, O., A. Peterson, and H. Petersson. 1986. “Calfem — a program for computer-aided 

learning of the finite element method.” Eng. Comput., 3 (2): 155–160. MCB UP Ltd. 

https://doi.org/10.1108/eb023653. 

Dashti, F., R. P. Dhakal, and S. Pampanin. 2018. “Evolution of out-of-plane deformation and 



Reference 

411 

 

subsequent instability in rectangular RC walls under in-plane cyclic loading: Experimental 

observation.” Earthq. Eng. Struct. Dyn., 47 (15): 2944–2964. 

https://doi.org/10.1002/eqe.3115. 

Dassault Systemes. 2017. “Abaqus/Standard 2017.” Dassault Syst. SIMULIA, Provid. RI. 

Deng, J., D. Gu, X. Li, and Z. Q. Yue. 2005. “Structural reliability analysis for implicit 

performance functions using artificial neural network.” Struct. Saf., 27 (1): 25–48. 

https://doi.org/10.1016/j.strusafe.2004.03.004. 

Dey, S., S. Chakraborty, and S. Tesfamariam. 2021. “Multi-fidelity approach for uncertainty 

quantification of buried pipeline response undergoing fault rupture displacements in sand.” 

Comput. Geotech., 136: 104197. Elsevier. 

https://doi.org/10.1016/J.COMPGEO.2021.104197. 

Dhanasekar, M., and W. Haider. 2008. “Explicit finite element analysis of lightly reinforced 

masonry shear walls.” Comput. Struct., 86 (1–2): 15–26. Pergamon. 

https://doi.org/10.1016/j.compstruc.2007.06.006. 

Dizhur, D., J. Ingham, L. Moon, M. Griffith, A. Schultz, I. Senaldi, G. Magenes, J. Dickie, S. 

Lissel, J. Centeno, C. Ventura, J. Leite, and P. Lourenco. 2011. “Performance of masonry 

buildings and churches in the 22 February 2011 Christchurch earthquake.” Bull. New Zeal. 

Soc. Earthq. Eng., 44 (4): 279–296. https://doi.org/10.5459/bnzsee.44.4.279-296. 

Doherty, K., M. C. Griffith, N. Lam, and J. Wilson. 2002. “Displacement-based seismic analysis 

for out-of-plane bending of unreinforced masonry walls.” Earthq. Eng. Struct. Dyn., 31 (4): 

833–850. https://doi.org/10.1002/eqe.126. 

Dolatshahi, K. M. 2012. “Computational, Analytical and Experimental Modeling of Masonry 



Reference 

412 

 

Structures [Ph.D thesis].” State University of New York at Buffalo. 

Dolatshahi, K. M., and A. J. Aref. 2011. “Two-dimensional computational framework of meso-

scale rigid and line interface elements for masonry structures.” Eng. Struct., 33 (12): 3657–

3667. Elsevier. https://doi.org/10.1016/j.engstruct.2011.07.030. 

Dolatshahi, K. M., and A. J. Aref. 2016. “Multi-directional response of unreinforced masonry 

walls: experimental and computational investigations.” Earthq. Eng. Struct. Dyn., 45 (9): 

1427–1449. https://doi.org/10.1002/eqe.2714. 

Dolatshahi, K. M., A. J. Aref, and A. S. Whittaker. 2015. “Interaction curves for in-plane and out-

of-plane behaviors of unreinforced masonry walls.” J. Earthq. Eng., 19 (1): 60–84. 

https://doi.org/10.1080/13632469.2014.946571. 

Dolatshahi, K. M., and M. Yekrangnia. 2015. “Out-of-plane strength reduction of unreinforced 

masonry walls because of in-plane damages.” Earthq. Eng. Struct. Dyn., 44: 2157–2176. 

https://doi.org/10.1002/eqe. 

Drougkas, A., P. Roca, and C. Molins. 2019. “Experimental analysis and detailed micro-modeling 

of masonry walls subjected to in-plane shear.” Eng. Fail. Anal., 95 (February 2018): 82–95. 

Elsevier. https://doi.org/10.1016/j.engfailanal.2018.08.030. 

Drucker, D. C., and W. Prager. 1952. “Soil mechanics and plastic analysis or limit design.” Q. 

Appl. Math., 10 (2): 157–165. 

Drysdale, R. G., and A. A. Hamid. 2005. Masonry Structures: Behaviour and Design, Canadian 

Edition. Mississauga, ON: Canada Masonry Design Centre. 

Dymiotis, C., and B. M. Gutlederer. 2002. “Allowing for uncertainties in the modelling of masonry 

compressive strength.” Constr. Build. Mater., 16 (8): 443–452. Elsevier. 



Reference 

413 

 

https://doi.org/10.1016/S0950-0618(02)00108-3. 

El-Dakhakhni, W., and A. Ashour. 2017. “Seismic Response of Reinforced-Concrete Masonry 

Shear-Wall Components and Systems: State of the Art.” J. Struct. Eng., 143 (9): 1–25. 

https://doi.org/10.1061/(asce)st.1943-541x.0001840. 

El-Hashimy, T., M. Ezzeldin, W. El-Dakhakhni, and M. Tait. 2020. “Behavior of Seismically 

Detailed Reinforced Concrete Block Shear Walls with Boundary Elements under Out-of-

Plane Loading.” J. Struct. Eng., 146 (3): 1–17. https://doi.org/10.1061/(asce)st.1943-

541x.0002478. 

El-Hashimy, T., M. Ezzeldin, M. Tait, and W. El-Dakhakhni. 2019. “Out-of-Plane Performance 

of Reinforced Masonry Shear Walls Constructed with Boundary Elements.” J. Struct. Eng., 

145 (8): 1–14. https://doi.org/10.1061/(asce)st.1943-541x.0002337. 

Ellingwood, B., and A. Tallin. 1985. “Limit States Criteria for Masonry Construction.” J. Struct. 

Eng., 111 (1): 108–122. https://doi.org/10.1061/(asce)0733-9445(1985)111:1(108). 

Elvin, A., and H. Uzoegbo. 2011. “Response of a full-scale dry-stack masonry structure subject to 

experimentally applied earthquake loading.” J. South African Inst. Civ. Eng., 53 (1): 22–32. 

European Committee for Standardization (CEN). 2005. “Design of masonry structures—Part 1-1: 

General rules for reinforced and unreinforced masonry structures.” Eurocode 6, CEN, 

Brussels, Belgium. 

Ferreira, A. J. M. 2009. MATLAB codes for finite element analysis. Springer. 

Ferreira, T. M., A. A. Costa, and A. Costa. 2015. “Analysis of the Out-Of-Plane Seismic Behavior 

of Unreinforced Masonry: A Literature Review.” Int. J. Archit. Herit., 9 (8): 949–972. Taylor 

& Francis. https://doi.org/10.1080/15583058.2014.885996. 



Reference 

414 

 

Ferretti, F., C. Mazzotti, R. Esposito, and J. G. Rots. 2018. “Shear-sliding behavior of masonry: 

Numerical micro-modeling of triplet tests.” Comput. Model. Concr. Struct. - Proc. Conf. 

Comput. Model. Concr. Concr. Struct. EURO-C 2018, 941–954. 

https://doi.org/10.1201/9781315182964-109. 

Forrester, A. I. J., N. W. Bressloff, and A. J. Keane. 2006. “Optimization using surrogate models 

and partially converged computational fluid dynamics simulations.” Proc. R. Soc. A Math. 

Phys. Eng. Sci., 462 (2071): 2177–2204. https://doi.org/10.1098/rspa.2006.1679. 

Fortes, E. S., G. A. Parsekian, and F. S. Fonseca. 2015. “Relationship between the Compressive 

Strength of Concrete Masonry and the Compressive Strength of Concrete Masonry Units.” J. 

Mater. Civ. Eng., 27 (9): 04014238. https://doi.org/10.1061/(asce)mt.1943-5533.0001204. 

Fouchal, F., F. Lebon, and I. Titeux. 2009. “Contribution to the modelling of interfaces in masonry 

construction.” Constr. Build. Mater., 23 (6): 2428–2441. Elsevier. 

https://doi.org/10.1016/j.conbuildmat.2008.10.011. 

Fryer, M. J., and R. Y. Rubinstein. 1983. Simulation and the Monte Carlo Method. J. R. Stat. Soc. 

Ser. A. John Wiley & Sons. 

Gaetani, A., P. B. Lourenço, G. Monti, and G. Milani. 2017. “A parametric investigation on the 

seismic capacity of masonry cross vaults.” Eng. Struct., 148: 686–703. Elsevier Ltd. 

https://doi.org/10.1016/j.engstruct.2017.07.013. 

Gallimard, L. 2011. “Error bounds for the reliability index in finite element reliability analysis.” 

Int. J. Numer. Methods Eng., (February): 781–794. https://doi.org/10.1002/nme. 

Gambarotta, L., and S. Lagomarsino. 1997a. “Damage models for the seismic response of brick 

masonry shear walls. Part I: The mortar joint model and its applications.” Earthq. Eng. Struct. 



Reference 

415 

 

Dyn., 26 (4): 423–439. https://doi.org/10.1002/(sici)1096-9845(199704)26:4<423::aid-

eqe650>3.0.co;2-%23. 

Gambarotta, L., and S. Lagomarsino. 1997b. “Damage models for the seismic response of brick 

masonry shear walls. Part II: The continuum model and its applications.” Earthq. Eng. Struct. 

Dyn., 26 (4): 423–439. https://doi.org/10.1002/(sici)1096-9845(199704)26:4<423::aid-

eqe650>3.0.co;2-%23. 

Gatta, C., D. Addessi, and F. Vestroni. 2018. “Static and dynamic nonlinear response of masonry 

walls.” Int. J. Solids Struct., 155: 291–303. Elsevier Ltd. 

https://doi.org/10.1016/j.ijsolstr.2018.07.028. 

Geyer, S., I. Papaioannou, and D. Straub. 2019. “Cross entropy-based importance sampling using 

Gaussian densities revisited.” Struct. Saf., 76 (July 2018): 15–27. Elsevier. 

https://doi.org/10.1016/j.strusafe.2018.07.001. 

Ghiassi, B., and G. Milani. 2019. Numerical modeling of masonry and historical structures: from 

theory to application. Woodhead Publishing. 

Giambanco, G., and L. Di Gati. 1997. “A cohesive interface model for the structural mechanics of 

block masonry.” Mech. Res. Commun., 24 (5): 503–512. Pergamon. 

https://doi.org/10.1016/s0093-6413(97)00055-4. 

Giambanco, G., E. La Malfa Ribolla, and A. Spada. 2018. “Meshless meso-modeling of masonry 

in the computational homogenization framework.” Meccanica, 53 (7): 1673–1697. Springer 

Netherlands. https://doi.org/10.1007/s11012-017-0664-7. 

Giambanco, G., S. Rizzo, and R. Spallino. 2001. “Numerical analysis of masonry structures via 

interface models.” Comput. Methods Appl. Mech. Eng., 190 (49–50): 6493–6511. North-



Reference 

416 

 

Holland. https://doi.org/10.1016/S0045-7825(01)00225-0. 

Gianluca, G., M. S. Eldred, and G. Iaccarino. 2017. “A multifidelity multilevel Monte Carlo 

method for uncertainty propagation in aerospace applications.” 19th AIAA Non-Deterministic 

Approaches Conf. 2017, 1–24. https://doi.org/10.2514/6.2017-1951. 

Giaretton, M., D. Dizhur, F. da Porto, and J. M. Ingham. 2016. “Construction Details and Observed 

Earthquake Performance of Unreinforced Clay Brick Masonry Cavity-walls.” Structures, 6: 

159–169. Elsevier B.V. https://doi.org/10.1016/j.istruc.2016.04.004. 

Gilbert, M., C. Casapulla, and H. M. Ahmed. 2006. “Limit analysis of masonry block structures 

with non-associative frictional joints using linear programming.” Comput. Struct., 84 (13–

14): 873–887. https://doi.org/10.1016/j.compstruc.2006.02.005. 

Giles, M. B. 2008. “Multilevel Monte Carlo path simulation.” Oper. Res., 56 (3): 607–617. 

https://doi.org/10.1287/opre.1070.0496. 

Giles, M. B. 2015. “Multilevel Monte Carlo methods.” Acta Numer., 24: 259–328. 

https://doi.org/10.1017/S096249291500001X. 

Godio, M., and K. Beyer. 2019. “Trilinear Model for the Out-of-Plane Seismic Assessment of 

Vertically Spanning Unreinforced Masonry Walls.” J. Struct. Eng., 145 (12): 04019159. 

https://doi.org/10.1061/(asce)st.1943-541x.0002443. 

Gonen, S., B. Pulatsu, E. Erdogmus, P. B. Lourenço, and S. Soyoz. 2022. “Effects of spatial 

variability and correlation in stochastic discontinuum analysis of unreinforced masonry 

walls.” Constr. Build. Mater., 337 (September 2021): 127511. Elsevier Ltd. 

https://doi.org/10.1016/j.conbuildmat.2022.127511. 

Gonen, S., B. Pulatsu, S. Soyoz, and E. Erdogmus. 2021. “Stochastic discontinuum analysis of 



Reference 

417 

 

unreinforced masonry walls: Lateral capacity and performance assessments.” Eng. Struct., 

238 (March): 112175. Elsevier Ltd. https://doi.org/10.1016/j.engstruct.2021.112175. 

Gooch, L. J., M. J. Masia, and M. G. Stewart. 2021. “Application of stochastic numerical analyses 

in the assessment of spatially variable unreinforced masonry walls subjected to in-plane shear 

loading.” Eng. Struct., 235 (February): 112095. Elsevier Ltd. 

https://doi.org/10.1016/j.engstruct.2021.112095. 

Goodman, R. E., R. L. Taylor, and T. L. Brekke. 1968. “A Model for the Mechanics of Jointed 

Rock.” J. Soil Mech. Found. Div., 94 (3): 637–659. https://doi.org/10.1061/jsfeaq.0001133. 

Gopalaratnam, V. S., and S. P. Shah. 1985. “Softening Response of Plain Concrete in Direct 

Tension.” J. Am. Concr. Inst., 82 (3): 310–323. https://doi.org/10.1016/0148-9062(86)91965-

0. 

Grassl, P., and R. Rempling. 2008. “A damage-plasticity interface approach to the meso-scale 

modelling of concrete subjected to cyclic compressive loading.” Eng. Fract. Mech., 75 (16): 

4804–4818. Pergamon. https://doi.org/10.1016/j.engfracmech.2008.06.005. 

Grassl, P., D. Xenos, U. Nyström, R. Rempling, and K. Gylltoft. 2013. “CDPM2: A damage-

plasticity approach to modelling the failure of concrete.” Int. J. Solids Struct., 50 (24): 3805–

3816. Pergamon. https://doi.org/10.1016/j.ijsolstr.2013.07.008. 

Graziotti, F., A. Penna, and G. Magenes. 2019. “A comprehensive in situ and laboratory testing 

programme supporting seismic risk analysis of URM buildings subjected to induced 

earthquakes.” Bull. Earthq. Eng., 17 (8): 4575–4599. Springer Netherlands. 

https://doi.org/10.1007/s10518-018-0478-6. 

Greco, F., L. Leonetti, R. Luciano, and P. Nevone Blasi. 2016. “An adaptive multiscale strategy 



Reference 

418 

 

for the damage analysis of masonry modeled as a composite material.” Compos. Struct., 153: 

972–988. Elsevier Ltd. https://doi.org/10.1016/j.compstruct.2016.06.066. 

Gruber, A., M. Gunzburger, L. Ju, and Z. Wang. 2023. “A Multifidelity Monte Carlo Method for 

Realistic Computational Budgets.” J. Sci. Comput., 94 (1): 1–18. Springer US. 

https://doi.org/10.1007/s10915-022-02051-y. 

Gupta, A., U. M. Krishnan, R. Chowdhury, and A. Chakrabarti. 2020. “An auto-adaptive sub-

stepping algorithm for phase-field modeling of brittle fracture.” Theor. Appl. Fract. Mech., 

108: 102622. Elsevier B.V. https://doi.org/10.1016/j.tafmec.2020.102622. 

Gupta, S., and C. S. Manohar. 2004. “An improved response surface method for the determination 

of failure probability and importance measures.” Struct. Saf., 26 (2): 123–139. 

https://doi.org/10.1016/S0167-4730(03)00021-3. 

Haach, V. G. 2009. “Development of a design method for reinforced masonry subjected to in-

plane loading based on experimental and numerical analysis [Ph.D thesis].” 

Haach, V. G., G. Vasconcelos, and P. B. Lourenço. 2013. “Proposal of a Design Model for 

Masonry Walls Subjected to In-Plane Loading.” J. Struct. Eng., 139 (4): 537–547. 

https://doi.org/10.1061/(asce)st.1943-541x.0000636. 

Haider, W. 2007. “Inplane response of wide spaced reinforced masonry shear walls [Ph.D thesis].” 

Central Queensland University. 

Halton, J. H. 1994. “Sequential monte carlo techniques for the solution of linear systems.” J. Sci. 

Comput., 9 (2): 213–257. https://doi.org/10.1007/BF01578388. 

Hamdia, K. M., and H. Ghasemi. 2023. “Reliability analysis of the stress intensity factor using 

multilevel Monte Carlo methods.” Probabilistic Eng. Mech., 74 (August): 103497. Elsevier 



Reference 

419 

 

Ltd. https://doi.org/10.1016/j.probengmech.2023.103497. 

Hamid, A. A., and B. E. Abboud. 1989. “Response of Reinforced Block Masonry Walls to Out-

of-Plane Static Loads.” U.S.-Japan Coord. Progr. Mason. Build. Rep. No. 3.2(a). 

Pennsylvania: Department of Civil and Architectural Engineering, Drexel University. 

Hamid, A. A., B. E. Abboud, M. Farah, and H. G. Harris. 1990a. “Flexural behavior of vertically 

spanned reinforced concrete block masonry walls.” Proc., 5th Can. Mason. Symp., 209–218. 

Hamid, A. A., M. K. Hatem, H. G. Harris, and B. E. Abboud. 1990b. “Hysteretic response and 

ductility of reinforced concrete masonry walls under out-of-plane loading.” Proc., 5th North 

Am. Mason. Conf, 397–405. 

Hasofer, A. M., and N. C. Lind. 1974. “Exact and Invariant Second-Moment Code Format.” ASCE 

J Eng Mech Div, 100 (EM1): 111–121. https://doi.org/10.1061/jmcea3.0001848. 

Haukaas, T., and M. H. Scott. 2006. “Shape sensitivities in the reliability analysis of nonlinear 

frame structures.” Comput. Struct., 84 (15–16): 964–977. 

https://doi.org/10.1016/j.compstruc.2006.02.014. 

Heffler, L., M. Stewart, M. Masia, and M. Correa. 2008. “Statistical Analysis and Spatial 

Correlation of Flexural Bond Strength for Masonry Walls.” Mason. Int., (September). 

Hong, L., H. Li, and J. Fu. 2022. “Novel Kriging-Based Variance Reduction Sampling Method for 

Hybrid Reliability Analysis with Small Failure Probability.” ASCE-ASME J. Risk Uncertain. 

Eng. Syst. Part A Civ. Eng., 8 (2): 1–12. https://doi.org/10.1061/ajrua6.0001231. 

Hosseinzadeh, S., and K. Galal. 2021. “Probabilistic seismic resilience quantification of a 

reinforced masonry shear wall system with boundary elements under bi-directional horizontal 

excitations.” Eng. Struct., 247 (September): 113023. Elsevier Ltd. 



Reference 

420 

 

https://doi.org/10.1016/j.engstruct.2021.113023. 

Hwang, S. H., S. Kim, and K. H. Yang. 2022. “In-plane lateral load transfer capacity of 

unreinforced masonry walls considering presence of openings.” J. Build. Eng., 47 (August 

2021): 103868. Elsevier Ltd. https://doi.org/10.1016/j.jobe.2021.103868. 

Iannacone, L., M. Andreini, P. Gardoni, and M. Sassu. 2021. “Probabilistic Models and Fragility 

Estimates for Unreinforced Masonry Walls Subject to In-Plane Horizontal Forces.” J. Struct. 

Eng., 147 (6): 1–13. https://doi.org/10.1061/(asce)st.1943-541x.0003006. 

Ibrahim, Y. 1991. “Observations on applications of importance sampling in structural reliability 

analysis.” Struct. Saf., 9 (4): 269–281. https://doi.org/10.1016/0167-4730(91)90049-F. 

Isfeld, A. C., A. L. Müller, M. Hagel, and N. G. Shrive. 2019. “Analysis of safety of slender 

concrete masonry walls in relation to CSA S304-14.” Can. J. Civ. Eng., 46 (5): 424–438. 

https://doi.org/10.1139/cjce-2018-0210. 

Isfeld, A. C., M. G. Stewart, and M. J. Masia. 2021. “Stochastic finite element model assessing 

length effect for unreinforced masonry walls subjected to one-way vertical bending under 

out-of-plane loading.” Eng. Struct., 236 (January): 112115. Elsevier Ltd. 

https://doi.org/10.1016/j.engstruct.2021.112115. 

Isfeld, A. C., M. G. Stewart, and M. J. Masia. 2023. “Structural reliability and partial safety factor 

assessment of unreinforced masonry in vertical bending.” Aust. J. Struct. Eng., 24 (3): 191–

205. Taylor & Francis. https://doi.org/10.1080/13287982.2023.2173868. 

Izquierdo, K. 2021. “Statistical prediction methods for the in-plane shear strength of partially 

grouted masonry walls [MS.c. thesis].” University of Alberta. 

Jafari, S., J. G. Rots, and R. Esposito. 2020. “Core testing method to assess nonlinear shear-sliding 



Reference 

421 

 

behaviour of brick-mortar interfaces: A comparative experimental study.” Constr. Build. 

Mater., 244: 118236. Elsevier. https://doi.org/10.1016/J.CONBUILDMAT.2020.118236. 

Jason, L., A. Huerta, G. Pijaudier-Cabot, and S. Ghavamian. 2006. “An elastic plastic damage 

formulation for concrete: Application to elementary tests and comparison with an isotropic 

damage model.” Comput. Methods Appl. Mech. Eng., 195 (52): 7077–7092. North-Holland. 

https://doi.org/10.1016/j.cma.2005.04.017. 

Jefferson, A. D., and N. R. Mills. 1998. “Fracture and shear properties of concrete construction 

joints from core samples.” Mater. Struct. Constr., 31 (9): 595–601. 

https://doi.org/10.1007/bf02480609. 

Kaminosono, T., M. Teshigawara, H. Haraishi, M. Fujiissawa, and A. Nakaoka. 1988. 

“Expermental study on seismic performance of reinforced masonry walls.” Proceeding ninth 

world Conf. Earthq. Eng., VI-109-VI–114. 

Karapitta, L., H. Mouzakis, and P. Carydis. 2011. “Explicit finite-element analysis for the in-plane 

cyclic behavior of unreinforced masonry structures.” Earthq. Eng. Struct. Dyn. 

Kaushik, H. B., D. C. Rai, and S. K. Jain. 2007. “Stress-strain characteristics of clay brick masonry 

under uniaxial compression.” J. Mater. Civ. Eng., 19 (9): 728–739. 

https://doi.org/10.1061/(ASCE)0899-1561(2007)19:9(728). 

Kazemi, S., M. Mahoutian, H. Moosavi, and Y. Korany. 2011. “Reliability analysis of masonry 

members under compression.” Struct. Congr. 2011 - Proc. 2011 Struct. Congr., 605–615. 

https://doi.org/10.1061/41171(401)53. 

Kennedy, M. C., and A. O’Hagan. 2000. “Predicting the output from a complex computer code 

when fast approximations are available.” Biometrika, 87 (1): 1–13. 



Reference 

422 

 

https://doi.org/10.1093/biomet/87.1.1. 

Kesavan, P., and A. Menon. 2022. “Investigation of in-plane and out-of-plane interaction in 

unreinforced masonry piers by block-based micro-modeling.” Structures, 46 (July): 1327–

1344. Elsevier Ltd. https://doi.org/10.1016/j.istruc.2022.10.105. 

Kesavan, P., and A. Menon. 2023. “A macro-element with bidirectional interaction for seismic 

analysis of unreinforced masonry walls.” Earthq. Eng. Struct. Dyn. 

https://doi.org/10.1002/eqe.3841. 

Khansefid, A., S. M. Yadollahi, G. Müller, F. Taddei, and A. Kumawat. 2022. “Seismic 

performance assessment of a masonry building under earthquakes induced by geothermal 

power plants operation.” J. Build. Eng., 48: 103909. Elsevier Ltd. 

https://doi.org/10.1016/j.jobe.2021.103909. 

Kingsley, G. R., P. B. Shing, T. Gangel, and NIST. 2014a. Seismic Design of Special Reinforced 

Masonry Shear Walls: A Guide for Practicing Engineers. 

Kingsley, G., P. B. Shing, and T. Gangel. 2014b. “NEHRP Seismic Design Technical Brief No. 9: 

Seismic Design of Special Reinforced Masonry Shear Walls.” Grant/Contract Reports - 14-

917-31. Grant/Contract Reports (NISTGCR), National Institute of Standards and 

Technology, Gaithersburg, MD. 

Kiureghian, A. Der, and O. Ditlevsen. 2009. “Aleatory or epistemic? Does it matter?” Struct. Saf., 

31 (2): 105–112. Elsevier Ltd. https://doi.org/10.1016/j.strusafe.2008.06.020. 

Kiureghian, B. A. Der, M. Asce, H. Lin, and S. Hwang. 1987. “Second-order reliability 

approximations.” J. Eng. Mech., 113 (8): 1208–1225. 

Kloek, T., and H. K. van Dijk. 1978. “Bayesian Estimates of Equation System Parameters: An 



Reference 

423 

 

Application of Integration by Monte Carlo.” Econometrica, 46 (1): 1. 

https://doi.org/10.2307/1913641. 

Koutras, A. 2019. “Assessment of the Seismic Behavior of Fully and Partially Grouted Reinforced 

Masonry Structural Systems through Finite Element Analysis and Shake-Table Testing 

[Ph.D. thesis].” University of California, San Diego. 

Koutras, A. A., and P. B. Shing. 2021a. “Finite-element modeling of the seismic response of 

reinforced masonry wall structures.” Earthq. Eng. Struct. Dyn. 

Koutras, A. A., and P. B. Shing. 2021b. “Numerical and Experimental Assessment of an Improved 

Design Detail for Partially Grouted Reinforced Masonry Wall Structures.” J. Struct. Eng., 

147 (8): 1–20. https://doi.org/10.1061/(asce)st.1943-541x.0003081. 

Koutromanos, I., and P. B. Shing. 2012. “Cohesive crack model to simulate cyclic response of 

concrete and masonry structures.” ACI Struct. J., 109 (3): 349–358. 

https://doi.org/10.14359/51683748. 

Koutsourelakis, P. S. 2004. “Reliability of structures in high dimensions. Part II. Theoretical 

validation.” Probabilistic Eng. Mech., 19 (4): 419–423. 

https://doi.org/10.1016/j.probengmech.2004.05.002. 

Koutsourelakis, P. S., H. J. Pradlwarter, and G. I. Schuëller. 2004. “Reliability of structures in high 

dimensions, part I: Algorithms and applications.” Probabilistic Eng. Mech., 19 (4): 409–417. 

https://doi.org/10.1016/j.probengmech.2004.05.001. 

Krishnachandran, S., and A. Menon. 2023. “Effect of out-of-plane displacements on the in-plane 

capacity of lightly precompressed rocking unreinforced masonry piers.” Eng. Struct., 281 

(February 2022): 115756. Elsevier Ltd. https://doi.org/10.1016/j.engstruct.2023.115756. 



Reference 

424 

 

Kroese, D. P., R. Y. Rubinstein, and P. W. Glynn. 2013. “The cross-entropy method for 

estimation.” Handb. Stat., 19–34. Elsevier. 

Kumar, N., R. Amirtham, and M. Pandey. 2014. “Plasticity based approach for failure modelling 

of unreinforced masonry.” Eng. Struct., 80: 40–52. Elsevier Ltd. 

https://doi.org/10.1016/j.engstruct.2014.08.021. 

Kumar, N., and M. Barbato. 2019. “New Constitutive Model for Interface Elements in Finite-

Element Modeling of Masonry.” J. Eng. Mech., 145 (5): 1–15. 

https://doi.org/10.1061/(ASCE)EM.1943-7889.0001592. 

Kumar, N., A. Rajagopal, and M. Pandey. 2015. “A rate independent cohesive zone model for 

modeling failure in quasi-brittle materials.” Mech. Adv. Mater. Struct., 22 (8): 681–696. 

https://doi.org/10.1080/15376494.2013.855852. 

Kurtz, N., and J. Song. 2013. “Cross-entropy-based adaptive importance sampling using Gaussian 

mixture.” Struct. Saf., 42: 35–44. https://doi.org/10.1016/j.strusafe.2013.01.006. 

Lawrence, S. J., and M. G. Stewart. 2015. “Reliability-Based Calibration of the Capacity 

Reduction Factor for Design of Masonry in Compression to AS3700.” Aust. J. Struct. Eng., 

9 (2). https://doi.org/10.1080/13287982.2009.11465013. 

Le, L. A., G. D. Nguyen, H. H. Bui, A. H. Sheikh, and A. Kotousov. 2018. “Localised failure 

mechanism as the basis for constitutive modelling of geomaterials.” Int. J. Eng. Sci., 133: 

284–310. Elsevier Ltd. https://doi.org/10.1016/j.ijengsci.2018.09.004. 

Le, L. A., G. D. Nguyen, H. H. Bui, A. H. Sheikh, A. Kotousov, and A. Khanna. 2017. “Modelling 

jointed rock mass as a continuum with an embedded cohesive-frictional model.” Eng. Geol., 

228 (August): 107–120. Elsevier. https://doi.org/10.1016/j.enggeo.2017.07.011. 



Reference 

425 

 

Lee, J., and G. L. Fenves. 1998. “Plastic-damage model for cyclic loading of concrete structures.” 

J. Eng. Mech., 124 (8): 892–900. https://doi.org/10.1061/(ASCE)0733-

9399(1998)124:8(892). 

Lemaire, M. 2013. Structural reliability. John Wiley & Sons. 

Lemos, J. V. 2017. “Contact representation in rigid block models of masonry.” Int. J. Mason. Res. 

Innov., 2 (4): 321–334. Inderscience Publishers (IEL). 

Li, J., M. J. Masia, and M. G. Stewart. 2017. “Stochastic spatial modelling of material properties 

and structural strength of unreinforced masonry in two-way bending.” Struct. Infrastruct. 

Eng., 13 (6): 683–695. Taylor & Francis. https://doi.org/10.1080/15732479.2016.1188125. 

Li, J., M. J. Masia, M. G. Stewart, and S. J. Lawrence. 2014. “Spatial variability and stochastic 

strength prediction of unreinforced masonry walls in vertical bending.” Eng. Struct., 59: 787–

797. Elsevier Ltd. https://doi.org/10.1016/j.engstruct.2013.11.031. 

Li, J., M. G. Stewart, M. J. Masia, and S. J. Lawrence. 2016. “Spatial Correlation of Material 

Properties and Structural Strength of Masonry in Horizontal Bending.” J. Struct. Eng., 142 

(11): 1–11. https://doi.org/10.1061/(asce)st.1943-541x.0001488. 

Li, J., and D. Xiu. 2010. “Evaluation of failure probability via surrogate models.” J. Comput. Phys., 

229 (23): 8966–8980. Elsevier Inc. https://doi.org/10.1016/j.jcp.2010.08.022. 

Li, M., and G. Jia. 2020. “Multifidelity Gaussian Process Model Integrating Low- and High-

Fidelity Data Considering Censoring.” J. Struct. Eng., 146 (3): 1–15. 

https://doi.org/10.1061/(asce)st.1943-541x.0002531. 

Li, P., and Y. Wang. 2021. “Development of an Efficient Response Surface Method for Highly 

Nonlinear Systems from Sparse Sampling Data Using Bayesian Compressive Sensing.” 



Reference 

426 

 

ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng., 7 (4): 1–14. 

https://doi.org/10.1061/ajrua6.0001155. 

Li, T., and S. Atamturktur. 2014. “Fidelity and Robustness of Detailed Micromodeling, Simplified 

Micromodeling, and Macromodeling Techniques for a Masonry Dome.” J. Perform. Constr. 

Facil., 28 (3): 480–490. https://doi.org/10.1061/(asce)cf.1943-5509.0000440. 

Li, Y., and B. Zeng. 2023. “Modeling of masonry structures using a new 3D cohesive interface 

material model considering dilatancy softening.” Eng. Struct., 277 (December 2022): 115466. 

Elsevier Ltd. https://doi.org/10.1016/j.engstruct.2022.115466. 

Liberatore, D., and D. Addessi. 2015. “Strength domains and return algorithm for the lumped 

plasticity equivalent frame model of masonry structures.” Eng. Struct., 91: 167–181. Elsevier 

Ltd. https://doi.org/10.1016/j.engstruct.2015.02.030. 

Liberatore, L., O. AlShawa, C. Marson, M. Pasca, and L. Sorrentino. 2020. “Out-of-plane capacity 

equations for masonry infill walls accounting for openings and boundary conditions.” Eng. 

Struct., 207: 110198. Elsevier Ltd. https://doi.org/10.1016/j.engstruct.2020.110198. 

Liu, J., J. Alexander, Q. Gu, and Y. Li. 2023a. “Gaussian process regression-based load-carrying 

capacity models of corroded prestressed concrete bridge girders for fast-screening and 

reliability-based evaluation.” Eng. Struct., 285 (October 2022): 116040. Elsevier Ltd. 

https://doi.org/10.1016/j.engstruct.2023.116040. 

Liu, J., J. Alexander, and Y. Li. 2023b. “Probabilistic error assessment and correction of design 

code-based shear strength prediction models for reliability analysis of prestressed concrete 

girders.” Eng. Struct., 279 (January): 115664. Elsevier Ltd. 

https://doi.org/10.1016/j.engstruct.2023.115664. 



Reference 

427 

 

Liu, Y., and K. Hu. 2007. “Experimental study of reinforced masonry walls subjected to combined 

axial load and out-of-plane bending.” Can. J. Civ. Eng., 34 (11): 1486–1494. 

https://doi.org/10.1139/L06-167. 

Livesley, R. K. 1992. “A computational model for the limit analysis of three-dimensional masonry 

structures.” Meccanica, 27 (3): 161–172. https://doi.org/10.1007/BF00430042. 

Lopez, J., S. Oller, E. Oñate, and J. Lubliner. 1999. “A homogeneous constitutive model for 

masonry.” Int. J. Numer. Methods Eng., 46 (10): 1651–1671. 

https://doi.org/10.1002/(SICI)1097-0207(19991210)46:10<1651::AID-NME718>3.0.CO;2-

2. 

Lotfi, H. R., and P. B. Shing. 1991. “An appraisal of smeared crack models for masonry shear wall 

analysis.” Comput. Struct., 41 (3): 413–425. 

Lotfi, H. R., and P. B. Shing. 1994. “Interface model applied to fracture of masonry structures.” J. 

Struct. Eng., 120 (1): 63–80. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:1(63). 

Lourenço, P. B. 1996. “Computational strategies for masonry structures [Ph.D thesis].” Delft Univ. 

Netherlands. Delft University of Technology. 

Lourenço, P. B. 2000a. “Anisotropic Softening Model for Masonry Plates and Shells.” J. Struct. 

Eng., 126 (9): 1008–1016. https://doi.org/10.1061/(asce)0733-9445(2000)126:9(1008). 

Lourenço, P. B. 2000b. “Anisotropic Softening Model for Masonry Plates and Shells.” J. Struct. 

Eng., 126 (9): 1008–1016. https://doi.org/10.1061/(asce)0733-9445(2000)126:9(1008). 

Lourenço, P. B., R. De Borst, and J. G. Rots. 1997. “A plane stress softening plasticity model for 

orthotropic materials.” Int. J. Numer. Methods Eng., 40 (21): 4033–4057. 

https://doi.org/10.1002/(SICI)1097-0207(19971115)40:21<4033::AID-NME248>3.0.CO;2-



Reference 

428 

 

0. 

Lourenco, P. B., and L. F. Ramos. 2004. “Characterization of Cyclic Behavior of Dry Masonry 

Joints.” J. Struct. Eng., 130 (5): 779–786. https://doi.org/10.1061/(ASCE)0733-

9445(2004)130. 

Lourenço, P. B., J. Rots, and J. Blaauwendraad. 1995a. “Two approaches for the analysis of 

masonry structures.” Heron, 40 (4): 313–340. 

Lourenço, P. B., and J. G. Rots. 1997. “Multisurface Interface Model for Analysis of Masonry 

Structures.” J. Eng. Mech., 123 (7): 660–668. https://doi.org/10.1061/(asce)0733-

9399(1997)123:7(660). 

Lourenço, P. B., J. G. Rots, and J. Blaauwendraad. 1995b. “Two approaches for the analysis of 

masonry structures - micro and macro-modeling.” Heron, 40 (4): 313–340. Delft University 

of Technology. 

Lourenço, P. B., J. G. Rots, and J. Blaauwendraad. 1998. “Continuum Model for Masonry: 

Parameter Estimation and Validation.” J. Struct. Eng., 124 (6): 642–652. 

https://doi.org/10.1061/(asce)0733-9445(1998)124:6(642). 

Lu, X., L. Xie, H. Guan, Y. Huang, and X. Lu. 2015. “A shear wall element for nonlinear seismic 

analysis of super-tall buildings using OpenSees.” Finite Elem. Anal. Des., 98: 14–25. 

Elsevier. https://doi.org/10.1016/j.finel.2015.01.006. 

Luccioni, B., S. Oller, and R. Danesi. 1996. “Coupled plastic-damaged model.” Comput. Methods 

Appl. Mech. Eng., 129 (1–2): 81–89. North-Holland. https://doi.org/10.1016/0045-

7825(95)00887-X. 

Lumantarna, R., D. T. Biggs, and J. M. Ingham. 2014. “Compressive, Flexural Bond, and Shear 



Reference 

429 

 

Bond Strengths of In Situ New Zealand Unreinforced Clay Brick Masonry Constructed Using 

Lime Mortar between the 1880s and 1940s.” J. Mater. Civ. Eng., 26 (4): 559–566. 

https://doi.org/10.1061/(asce)mt.1943-5533.0000685. 

Macorini, L., and B. A. Izzuddin. 2011. “A non-linear interface element for 3D mesoscale analysis 

of brick‐masonry structures.” Int. J. Numer. Methods Eng., 85: 1584–1608. 

https://doi.org/10.1002/nme.3046. 

Maleki, M. 2008. “Behaviour of partially grouted masonry shear walls under cyclic reversed 

loading [Ph.D. thesis].” McMaster University. 

Malomo, D., and M. J. DeJong. 2022. “A Macro-Distinct Element Model (M-DEM) for simulating 

in-plane/out-of-plane interaction and combined failure mechanisms of unreinforced masonry 

structures.” Earthq. Eng. Struct. Dyn., 51 (4): 793–811. https://doi.org/10.1002/eqe.3591. 

Marfia, S., and E. Sacco. 2012. “Multiscale damage contact-friction model for periodic masonry 

walls.” Comput. Methods Appl. Mech. Eng., 205–208 (1): 189–203. Elsevier B.V. 

https://doi.org/10.1016/j.cma.2010.12.024. 

Martínez, M., and S. Atamturktur. 2019. “Experimental and numerical evaluation of reinforced 

dry-stacked concrete masonry walls.” J. Build. Eng., 22 (September 2017): 181–191. Elsevier 

Ltd. https://doi.org/10.1016/j.jobe.2018.12.007. 

Masonry Standards Joint Committee. 2005. “Building Code Requirements for Masonry Structures 

(ACI 530/ASCE 5/TMS 402).” American Concrete Institute. 

MATLAB, M. 2021. “Version 9.10. 0 (R2021a) The MathWorks Inc.” Natick, MA, USA. 

Matsumura, A. 1988. “Shear strength of reinforced masonry walls.” 9th Worrld Conf. Earthq. 

Eng., 121–126. 



Reference 

430 

 

Mavros, M. 2015. “Experimental and Numerical Investigation of the Seismic Performance of 

Reinforced Masonry Structures [Ph.D thesis].” University of California, San Diego. 

Mazza, F., and A. Donnici. 2022. “In-plane-out-of-plane single and mutual interaction of masonry 

infills in the nonlinear seismic analysis of RC framed structures.” Eng. Struct., 257 (January): 

114076. Elsevier Ltd. https://doi.org/10.1016/j.engstruct.2022.114076. 

Mazzoni, S., F. McKenna, M. H. Scott, and G. L. Fenves. 2006. “OpenSees command language 

manual.” Pacific Earthq. Eng. Res. Cent., 264: 137–158. Berkeley, California, United States. 

McKenna, F., G. L. Fenves, and M. H. Scott. 2000. “Open system for earthquake engineering 

simulation.” Univ. California, Berkeley, CA. 

La Mendola, L., M. Accardi, C. Cucchiara, and V. Licata. 2014. “Nonlinear FE analysis of out-of-

plane behaviour of masonry walls with and without CFRP reinforcement.” Constr. Build. 

Mater., 54: 190–196. Elsevier. https://doi.org/10.1016/j.conbuildmat.2013.12.068. 

Mendoza-Puchades, M. 2021. “Masonry brick-to-mortar interface variability, for compressive and 

tensile strength, under blast actions: Experimental testing, numerical modelling challenges 

and the application of a framework for the treatment of uncertainties [Ph.D. thesis].” 

Universitty of Liverpool. 

Messali, F., R. Esposito, G. J. P. Ravenshorst, and J. G. Rots. 2020. “Experimental investigation 

of the in-plane cyclic behaviour of calcium silicate brick masonry walls.” Bull. Earthq. Eng., 

18 (8): 3963–3994. Springer Netherlands. https://doi.org/10.1007/s10518-020-00835-x. 

Metropolis, N., and S. Ulam. 1949. “The Monte Carlo Method.” J. Am. Stat. Assoc., 44 (247): 

335–341. https://doi.org/10.1080/01621459.1949.10483310. 

Metwally, Z., B. Zeng, and Y. Li. 2022. “Probabilistic Behavior and Variance-Based Sensitivity 



Reference 

431 

 

Analysis of Reinforced Concrete Masonry Walls Considering Slenderness Effect.” ASCE-

ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng., 8 (4): 1–12. 

https://doi.org/10.1061/ajrua6.0001273. 

Milani, G., P. Lourenço, and A. Tralli. 2006. “Homogenization Approach for the Limit Analysis 

of Out-of-Plane Loaded Masonry Walls.” J. Struct. Eng., 132 (10): 1650–1663. 

https://doi.org/10.1061/(ASCE)0733-9445(2006)132:10(1650). 

Milani, G., and A. Taliercio. 2016. “Limit analysis of transversally loaded masonry walls using an 

innovative macroscopic strength criterion.” Int. J. Solids Struct., 81: 274–293. Elsevier Ltd. 

https://doi.org/10.1016/j.ijsolstr.2015.12.004. 

Minga, E., L. Macorini, and B. A. Izzuddin. 2018. “A 3D mesoscale damage-plasticity approach 

for masonry structures under cyclic loading.” Meccanica, 53 (7): 1591–1611. Springer 

Netherlands. https://doi.org/10.1007/s11012-017-0793-z. 

Moon, L., D. Dizhur, I. Senaldi, H. Derakhshan, M. Griffith, G. Magenes, and J. Ingham. 2014. 

“The demise of the URM building stock in Christchurch during the 2010-2011 Canterbury 

earthquake sequence.” Earthq. Spectra, 30 (1): 253–276. 

https://doi.org/10.1193/022113EQS044M. 

Moosavi, H. 2017. “Structural Reliability of Non-Slender Loadbearing Concrete Masonry 

Members under Concentric and Eccentric Loads [Ph.D. thesis].” University of Alberta. 

Moosavi, H., and Y. Korany. 2014. “Assessment of the structural reliability of loadbearing 

concrete masonry designed to the Canadian standard s304.1.” Can. J. Civ. Eng., 41 (12): 

1046–1053. https://doi.org/10.1139/cjce-2013-0498. 

Mucedero, G., D. Perrone, and R. Monteiro. 2022. “Epistemic uncertainty in poorly detailed 



Reference 

432 

 

existing frames accounting for masonry infill variability and RC shear failure.” Earthq. Eng. 

Struct. Dyn., 51 (15): 3755–3778. https://doi.org/10.1002/eqe.3748. 

Muhit, I. B., M. J. Masia, M. G. Stewart, and A. C. Isfeld. 2022. “Spatial variability and stochastic 

finite element model of unreinforced masonry veneer wall system under Out-of-plane 

loading.” Eng. Struct., 267 (May): 114674. Elsevier Ltd. 

https://doi.org/10.1016/j.engstruct.2022.114674. 

Mukherjee, D., B. N. Rao, and A. Meher Prasad. 2011. “Global sensitivity analysis of unreinforced 

masonry structure using high dimensional model representation.” Eng. Struct., 33 (4): 1316–

1325. Elsevier Ltd. https://doi.org/10.1016/j.engstruct.2011.01.008. 

Müller, D., and C.-A. Graubner. 2021. “Assessment of Masonry Compressive Strength in Existing 

Structures Using a Bayesian Method.” ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. 

Eng., 7 (1). https://doi.org/10.1061/ajrua6.0001113. 

Najafgholipour, M. A., M. R. Maheri, and P. B. Lourenço. 2013. “Capacity interaction in brick 

masonry under simultaneous in-plane and out-of-plane loads.” Constr. Build. Mater., 38: 

619–626. Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2012.08.032. 

Najafgholipour, M. A., M. R. Maheri, and P. B. Lourenço. 2014. “Definition of interaction curves 

for the in-plane and out-of-plane capacity in brick masonry walls.” Constr. Build. Mater., 55: 

168–182. Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2014.01.028. 

National Research Council of Canada. 2015. National building code of Canada. NRCC Ottawa. 

Nazir, S. 2015. “Studies on the failure of unreinforced masonry shear walls [Ph.D thesis].” 

Queensland University of Technology. 

Nazir, S., and M. Dhanasekar. 2014. “A non-linear interface element model for thin layer high 



Reference 

433 

 

adhesive mortared masonry.” Comput. Struct., 144: 23–39. Elsevier Ltd. 

https://doi.org/10.1016/j.compstruc.2014.07.023. 

Nelson, B. L. 1987. “On control variate estimators.” Comput. Oper. Res., 14 (3): 219–225. 

Elsevier. 

Nelson, B. L. 1990. “Control variate remedies.” Oper. Res., 38 (6): 974–992. INFORMS. 

Ng, C. L. 1996. “Experimental and theoretical investigation of the behaviour of brickwork 

cladding panel subjected to lateral loading [Ph.D thesis].” The University of Edinburgh. 

Ng, L. W. T., and K. E. Willcox. 2016. “Monte Carlo information-reuse approach to aircraft 

conceptual design optimization under uncertainty.” J. Aircr., 53 (2): 427–438. 

https://doi.org/10.2514/1.C033352. 

Ngo, D., and A. C. Scordelis. 1967. “Finite Element Analysis of Reinforced Concrete Beams.” 

ACI J. Proc., 64 (3). https://doi.org/10.14359/7551. 

Nguyen, G. D. 2005. “A thermodynamic approach to constitutive modelling of concrete using 

damage mechanics and plasticity theory [Ph.D thesis].” Thesis. Trinity College, University 

of Oxford. 

Nguyen, Q. T., and R. Livaoğlu. 2020. “The effect of the ratio of Λ-shaped shear connectors on 

the flexural behavior of a reinforced concrete frame.” Adv. Struct. Eng., 23 (12): 2724–2740. 

https://doi.org/10.1177/1369433220920442. 

Nie, J., and B. R. Ellingwood. 2000. “Directional methods for structural reliability analysis.” 

Struct. Saf., 22 (3): 233–249. https://doi.org/10.1016/S0167-4730(00)00014-X. 

Nie, J., and B. R. Ellingwood. 2004a. “A new directional simulation method for system reliability. 

Part I: Application of deterministic point sets.” Probabilistic Eng. Mech., 19 (4): 425–436. 



Reference 

434 

 

https://doi.org/10.1016/j.probengmech.2004.03.004. 

Nie, J., and B. R. Ellingwood. 2004b. “A new directional simulation method for system reliability. 

Part II: Application of neural networks.” Probabilistic Eng. Mech., 19 (4): 437–447. 

https://doi.org/10.1016/j.probengmech.2004.03.005. 

Nie, Y., A. Sheikh, M. Griffith, and P. Visintin. 2022a. “A damage-plasticity based interface model 

for simulating in-plane/out-of-plane response of masonry structural panels.” Comput. Struct., 

260: 106721. Elsevier Ltd. https://doi.org/10.1016/j.compstruc.2021.106721. 

Nie, Y., A. Sheikh, P. Visintin, and M. Griffith. 2022b. “An interfacial damage-plastic model for 

the simulation of masonry structures under monotonic and cyclic loadings.” Eng. Fract. 

Mech., 271 (June): 108645. Elsevier Ltd. 

https://doi.org/10.1016/j.engfracmech.2022.108645. 

Noor-E-Khuda, S., and M. Dhanasekar. 2018a. “Masonry Walls under Combined In-Plane and 

Out-of-Plane Loadings.” J. Struct. Eng., 144 (2): 1–10. 

https://doi.org/10.1061/(ASCE)ST.1943-541X.0001930. 

Noor-E-Khuda, S., and M. Dhanasekar. 2018b. “Three sides supported unreinforced masonry 

walls under multi-directional loading.” Constr. Build. Mater., 188: 1207–1220. Elsevier Ltd. 

https://doi.org/10.1016/j.conbuildmat.2018.08.144. 

Noor-E-Khuda, S., and M. Dhanasekar. 2020. “On the out-of-plane flexural design of reinforced 

masonry walls.” J. Build. Eng., 27 (September 2019): 100945. Elsevier Ltd. 

https://doi.org/10.1016/j.jobe.2019.100945. 

Noor-E-Khuda, S., M. Dhanasekar, and D. P. Thambiratnam. 2016a. “An explicit finite element 

modelling method for masonry walls under out-of-plane loading.” Eng. Struct., 113: 103–



Reference 

435 

 

120. Elsevier Ltd. https://doi.org/10.1016/j.engstruct.2016.01.026. 

Noor-E-Khuda, S., M. Dhanasekar, and D. P. Thambiratnam. 2016b. “Out-of-plane deformation 

and failure of masonry walls with various forms of reinforcement.” Compos. Struct., 140: 

262–277. Elsevier Ltd. https://doi.org/10.1016/j.compstruct.2015.12.028. 

Noor-E-Khuda, S., and D. P. Thambiratnam. 2021. “In-plane and out-of-plane structural 

performance of fully grouted reinforced masonry walls with varying reinforcement ratio – A 

numerical study.” Eng. Struct., 248 (May): 113288. Elsevier Ltd. 

https://doi.org/10.1016/j.engstruct.2021.113288. 

Oliveira, D. V. de C. 2003. “Experimental and Numerical Analysis of Blocky Masonry Structures 

Under Cyclic Loading [Ph.D thesis].” Universidade do Minho. 

Oliveira, D. V., and P. B. Lourenço. 2004. “Implementation and validation of a constitutive model 

for the cyclic behaviour of interface elements.” Comput. Struct., 82 (17–19): 1451–1461. 

Pergamon. https://doi.org/10.1016/j.compstruc.2004.03.041. 

Page, A. W. 1978. “Finite Element Model for Masonry.” ASCE J Struct Div, 104 (8): 1267–1285. 

https://doi.org/10.1061/jsdeag.0004969. 

Paiva, R. M., A. R. D. Carvalho, C. Crawford, and A. Suleman. 2010. “Comparison of surrogate 

models in a multidisciplinary optimization framework for wing design.” AIAA J., 48 (5): 995–

1006. https://doi.org/10.2514/1.45790. 

Pantò, B., F. Cannizzaro, I. Caliò, and P. B. Lourenço. 2017. “Numerical and Experimental 

Validation of a 3D Macro-Model for the In-Plane and Out-Of-Plane Behavior of 

Unreinforced Masonry Walls.” Int. J. Archit. Herit., 11 (7): 946–964. Taylor & Francis. 

https://doi.org/10.1080/15583058.2017.1325539. 



Reference 

436 

 

Pantò, B., C. Casapulla, and I. Caliò. 2021. “Discrete rotating links model for the non-linear 

torsion-shear behaviour of masonry joints.” Proc. Inst. Civ. Eng. Eng. Comput. Mech., 174 

(4): 215–235. https://doi.org/10.1680/jencm.21.00010. 

Pari, M., A. V. Van de Graaf, M. A. N. Hendriks, and J. G. Rots. 2021. “A multi-surface interface 

model for sequentially linear methods to analyse masonry structures.” Eng. Struct., 238 

(January): 112123. Elsevier Ltd. https://doi.org/10.1016/j.engstruct.2021.112123. 

Parrinello, F., B. Failla, and G. Borino. 2009. “Cohesive-frictional interface constitutive model.” 

Int. J. Solids Struct., 46 (13): 2680–2692. Pergamon. 

https://doi.org/10.1016/j.ijsolstr.2009.02.016. 

Patsialis, D., and A. A. Taflanidis. 2021. “Multi-fidelity Monte Carlo for seismic risk assessment 

applications.” Struct. Saf., 93: 102129. Elsevier. 

https://doi.org/10.1016/J.STRUSAFE.2021.102129. 

Patsialis, D., A. A. Taflanidis, and D. Vamvatsikos. 2022. Improving the computational efficiency 

of seismic building-performance assessment through reduced order modeling and multi-

fidelity Monte Carlo techniques. Bull. Earthq. Eng. Springer Netherlands. 

Peherstorfer, B., P. S. Beran, and K. Willcox. 2018a. “Multifidelity monte carlo estimation for 

large-scale uncertainty propagation.” AIAA Non-Deterministic Approaches Conf. 2018, 0 

(209969): 0–15. https://doi.org/10.2514/6.2018-1660. 

Peherstorfer, B., T. Cui, Y. Marzouk, and K. Willcox. 2016a. “Multifidelity importance sampling.” 

Comput. Methods Appl. Mech. Eng., 300: 490–509. Elsevier B.V. 

https://doi.org/10.1016/j.cma.2015.12.002. 

Peherstorfer, B., B. Kramer, and K. Willcox. 2017. “Combining multiple surrogate models to 



Reference 

437 

 

accelerate failure probability estimation with expensive high-fidelity models.” J. Comput. 

Phys., 341: 61–75. Elsevier Inc. https://doi.org/10.1016/j.jcp.2017.04.012. 

Peherstorfer, B., K. Willcox, and M. Gunzburger. 2016b. “Optimal model management for 

multifidelity Monte Carlo estimation.” SIAM J. Sci. Comput., 38 (5): A3163–A3194. 

https://doi.org/10.1137/15M1046472. 

Peherstorfer, B., K. Willcox, and M. Gunzburger. 2018b. “Survey of multifidelity methods in 

uncertainty propagation, inference, and optimization.” SIAM Rev., 60 (3): 550–591. 

https://doi.org/10.1137/16M1082469. 

Pelà, L., M. Cervera, and P. Roca. 2011. “Continuum damage model for orthotropic materials: 

Application to masonry.” Comput. Methods Appl. Mech. Eng., 200 (9–12): 917–930. 

https://doi.org/10.1016/j.cma.2010.11.010. 

Pelà, L., M. Cervera, and P. Roca. 2013. “An orthotropic damage model for the analysis of 

masonry structures.” Constr. Build. Mater., 41: 957–967. 

https://doi.org/10.1016/j.conbuildmat.2012.07.014. 

Penelis, G. G. 2006. “An efficient approach for pushover analysis of unreinforced masonry (URM) 

structures.” J. Earthq. Eng., 10 (3): 359–379. https://doi.org/10.1080/13632460609350601. 

Peng, B., D. D. Wang, G. Zong, and S. D. Wei. 2020. “Calculation of reliability index for in-plane 

shear failure of unreinforced masonry walls based on Gaussian process model.” Eur. J. 

Environ. Civ. Eng., 0 (0): 1–14. Taylor & Francis. 

https://doi.org/10.1080/19648189.2019.1708467. 

Penna, A., S. Lagomarsino, and A. Galasco. 2014. “A nonlinear macroelement model for the 

seismic analysis of masonry buildings.” Earthq. Eng. Struct. Dyn., 43: 159–179. 



Reference 

438 

 

https://doi.org/10.1002/eqe. 

Pérez-Foguet, A., A. Rodríguez-Ferran, and A. Huerta. 2001. “Consistent tangent matrices for 

substepping schemes.” Comput. Methods Appl. Mech. Eng., 190 (35–36): 4627–4647. North-

Holland. https://doi.org/10.1016/S0045-7825(00)00336-4. 

Peruch, M., E. Spacone, and G. Camata. 2019a. “Nonlinear analysis of masonry structures using 

fiber-section line elements.” Earthq. Eng. Struct. Dyn., 48 (12): 1345–1364. 

https://doi.org/10.1002/eqe.3188. 

Peruch, M., E. Spacone, and P. B. Shing. 2019b. “Cyclic Analyses of Reinforced Concrete 

Masonry Panels Using a Force-Based Frame Element.” J. Struct. Eng., 145 (7): 1–12. 

https://doi.org/10.1061/(asce)st.1943-541x.0002335. 

Pham, T., and A. A. Gorodetsky. 2022. “Ensemble Approximate Control Variate Estimators: 

Applications to MultiFidelity Importance Sampling.” SIAM-ASA J. Uncertain. Quantif., 10 

(3): 1250–1292. https://doi.org/10.1137/21M1412268. 

Pina-Henriques, J., and P. B. Lourenço. 2003. “Testing and modelling of masonry creep and 

damage in uniaxial compression.” WIT Trans. Built Environ. WIT Press. 

Pirsaheb, H., M. Javad Moradi, and G. Milani. 2020. “A Multi-Pier MP procedure for the non-

linear analysis of in-plane loaded masonry walls.” Eng. Struct., 212 (March): 110534. 

Elsevier. https://doi.org/10.1016/j.engstruct.2020.110534. 

Van der Pluijm, R. 1992. “Material properties of masonry and its components under tension and 

shear.” Proc. 6th Can. Mason. Symp. 15-17 June 1992, Saskatoon, Canada, 675 - 686. 

University of Saskatchewan. 

Van der Pluijm, R. 1993. “Shear behaviour of bed joints.” 6th North Am. Mason. Conf. 6-9 June 



Reference 

439 

 

1993, Philadelphia, Pennsylvania, USA, 125–136. Technomic Publ. Co. 

Pluijm, R. Van der. 1999. “Out-of-Plane Bending of Masonry： Behaviour and Strength.” 

Portioli, F., and L. Cascini. 2016. “Assessment of masonry structures subjected to foundation 

settlements using rigid block limit analysis.” Eng. Struct., 113: 347–361. Elsevier Ltd. 

https://doi.org/10.1016/j.engstruct.2016.02.002. 

da Porto, F. 2005. “In-plane cyclic behaviour of thin layer joint masonry walls [Ph.D. thesiss].” 

UNIVERSITA’ DEGLI STUDI DI TRENTO. 

da Porto, F., G. Guidi, E. Garbin, and C. Modena. 2010. “In-Plane Behavior of Clay Masonry 

Walls: Experimental Testing and Finite-Element Modeling.” J. Struct. Eng., 136 (11): 1379–

1392. https://doi.org/10.1061/(asce)st.1943-541x.0000236. 

da Porto, F., F. Mosele, and C. Modena. 2011. “Cyclic out-of-plane behaviour of tall reinforced 

masonry walls under P-Δ effects.” Eng. Struct., 33 (2): 287–297. Elsevier Ltd. 

https://doi.org/10.1016/j.engstruct.2010.10.004. 

Priestley, M. J. N., and D. M. Elder. 1983. “Stress-strain curves for unconfined and confined 

concrete masonry.” J. Proc., 192–201. 

Proppe, C., and J. Kaupp. 2022. “On information fusion for reliability estimation with multifidelity 

models.” Probabilistic Eng. Mech., 69 (April): 103291. Elsevier Ltd. 

https://doi.org/10.1016/j.probengmech.2022.103291. 

Pulatsu, B., S. Gonen, and F. Parisi. 2023. “Effect of Precompression and Material Uncertainty on 

the In-Plane Behavior of URM Pier–Spandrel Systems.” Buildings, 13 (1): 1–12. 

https://doi.org/10.3390/buildings13010203. 

Pulatsu, B., S. Gonen, F. Parisi, E. Erdogmus, K. Tuncay, M. F. Funari, and P. B. Lourenço. 2022. 



Reference 

440 

 

“Probabilistic approach to assess URM walls with openings using discrete rigid block 

analysis (D-RBA).” J. Build. Eng., 61 (August): 105269. Elsevier Ltd. 

https://doi.org/10.1016/j.jobe.2022.105269. 

Qamar, F., and S. Qin. 2021. “Development of Nonlinear Finite Element Models of Mortar-Free 

Interlocked Single Block Column Subjected to Lateral Loading.” Arab. J. Sci. Eng., 

(0123456789). Springer Berlin Heidelberg. https://doi.org/10.1007/s13369-021-05668-7. 

Qian, E., B. Peherstorfer, D. O’Malley, V. V. Vesselinov, and K. Willcox. 2018. “Multifidelity 

monte carlo estimation of variance and sensitivity indices.” SIAM-ASA J. Uncertain. Quantif., 

6 (2): 683–706. https://doi.org/10.1137/17M1151006. 

Rackwitz, R., and B. Flessler. 1978. “Structural reliability under combined random load 

sequences.” Comput. Struct., 9 (5): 489–494. https://doi.org/10.1016/0045-7949(78)90046-

9. 

Raijmakers, T. M. J. 1992. Deformation controlled tests in masonry shear walls: report B-92-

1156. 

Raijmakers, T. M. J., and A. T. Vermeltfoort. 1992. Deformation controlled tests in masonry shear 

walls. holandés), Rep. B-92-1156, TNO-Bouw, Delft, Países Bajos. 

Rajashekhar, M. R., and B. R. Ellingwood. 1993. “A new look at the response surface approach.” 

Struct. Saf., 12 (April 1994): 205–220. 

Rashki, M., A. Ghavidel, H. Ghohani Arab, and S. R. Mousavi. 2018. “Low-cost finite element 

method-based reliability analysis using adjusted control variate technique.” Struct. Saf., 75: 

133–142. Elsevier Ltd. https://doi.org/10.1016/j.strusafe.2017.11.005. 

Reinhardt, H. W. 1984. “Fracture Mechanics of an Elastic Softening Material Like Concrete.” 



Reference 

441 

 

Heron, 29 (2): 1–42. 

Remacle, J., J. Lambrechts, and B. Seny. 2012. “Blossom‐Quad: A non‐uniform quadrilateral 

mesh generator using a minimum‐cost perfect‐matching algorithm.” International, 85 

(February): 1102–1119. https://doi.org/10.1002/nme. 

Rinaldin, G., C. Amadio, and L. Macorini. 2016. “A macro-model with nonlinear springs for 

seismic analysis of URM buildings.” Earthq. Eng. Struct. Dyn. 

De Risi, M. T., M. Di Domenico, P. Ricci, G. M. Verderame, and G. Manfredi. 2019. 

“Experimental investigation on the influence of the aspect ratio on the in-plane/out-of-plane 

interaction for masonry infills in RC frames.” Eng. Struct., 189 (April): 523–540. Elsevier. 

https://doi.org/10.1016/j.engstruct.2019.03.111. 

Robazza, B. R., S. Brzev, T. Y. Yang, K. J. Elwood, D. L. Anderson, and B. McEwen. 2018. “Out-

of-Plane Behavior of Slender Reinforced Masonry Shear Walls under In-Plane Loading: 

Experimental Investigation.” J. Struct. Eng., 144 (3): 1–16. 

https://doi.org/10.1061/(ASCE)ST.1943-541X.0001968. 

Roca, P., C. Molins, and A. Drougkas. 2016. “Micro-mechanical modeling of masonry - 

Parametric study.” Struct. Anal. Hist. Constr. Anamn. diagnosis, Ther. Control. - Proc. 10th 

Int. Conf. Struct. Anal. Hist. Constr. SAHC 2016, (September): 279–283. 

https://doi.org/10.1201/9781315616995-36. 

Roca, P., C. Molins, and A. R. Marí. 2005. “Strength Capacity of Masonry Wall Structures by the 

Equivalent Frame Method.” J. Struct. Eng., 131 (10): 1601–1610. 

https://doi.org/10.1061/(asce)0733-9445(2005)131:10(1601). 

Rota, M., A. Penna, and G. Magenes. 2014. “A framework for the seismic assessment of existing 



Reference 

442 

 

masonry buildings accounting for different sources of uncertainty.” Earthq. Eng. Struct. Dyn., 

43: 1045–1066. https://doi.org/10.1002/eqe. 

Rots, J. G. 1991. “Numerical simulation of cracking in structural masonry.” Heron. 

Rubinstein, R. Y., and D. P. Kroese. 2004. The cross-entropy method: a unified approach to 

combinatorial optimization, Monte-Carlo simulation, and machine learning. Springer. 

Rubinstein, R. Y., and D. P. Kroese. 2008. The Cross-Entropy Method. Technometrics. 

Saatcioglu, M., A. Ghobarah, and I. Nistor. 2006. “Performance of structures in Indonesia during 

the December 2004 Great Sumatra earthquake and Indian Ocean tsunami.” Earthq. Spectra, 

22 (SUPPL. 3): 295–319. https://doi.org/10.1193/1.2209171. 

Sacco, E., and F. Lebon. 2012. “A damage-friction interface model derived from micromechanical 

approach.” Int. J. Solids Struct., 49 (26): 3666–3680. Pergamon. 

https://doi.org/10.1016/j.ijsolstr.2012.07.028. 

Sacks, J., W. J. Welch, T. J. Mitchell, and H. P. Wynn. 1989. “Design and Analysis of Computer 

Experiments.” Stat. Sci., 4 (4): 409–435. https://doi.org/10.2307/2246134. 

Sahu, S., P. R. Ravi Teja, P. Sarkar, and R. Davis. 2019. “Variability in the Compressive Strength 

of Fly Ash Bricks.” J. Mater. Civ. Eng., 31 (2): 1–10. https://doi.org/10.1061/(asce)mt.1943-

5533.0002592. 

Sahu, S., P. Sarkar, and R. Davis. 2020. “Uncertainty in Bond Strength of Unreinforced Fly-Ash 

Brick Masonry.” J. Mater. Civ. Eng., 32 (3): 1–10. https://doi.org/10.1061/(asce)mt.1943-

5533.0003095. 

Salari, M. R., S. Saeb, K. J. Willam, S. J. Patchet, and R. C. Carrasco. 2004. “A coupled 

elastoplastic damage model for geomaterials.” Comput. Methods Appl. Mech. Eng., 193 (27–



Reference 

443 

 

29): 2625–2643. North-Holland. https://doi.org/10.1016/J.CMA.2003.11.013. 

Salem, S., M. Ezzeldin, W. El-Dakhakhni, and M. Tait. 2019. “Out-of-Plane Behavior of Load-

Bearing Reinforced Masonry Shear Walls.” J. Struct. Eng., 145 (11): 1–17. 

https://doi.org/10.1061/(asce)st.1943-541x.0002403. 

Salmanpour, A. H. 2017. “Displacement capacity of structural masonry [Ph.D thesis].” ETH 

Zurich. 

Salmanpour, A. H., N. Mojsilović, and J. Schwartz. 2015. “Displacement capacity of 

contemporary unreinforced masonry walls: An experimental study.” Eng. Struct., 89: 1–16. 

https://doi.org/10.1016/j.engstruct.2015.01.052. 

Saloustros, S., L. Pelà, M. Cervera, and P. Roca. 2018. “An Enhanced Finite Element Macro-

Model for the Realistic Simulation of Localized Cracks in Masonry Structures: A Large-Scale 

Application.” Int. J. Archit. Herit., 12 (3): 432–447. 

https://doi.org/10.1080/15583058.2017.1323245. 

Samy, B. A., S. R. Sarhat, and E. G. Sherwood. 2012. “Comparing flexural capacity of reinforced 

masonry members using different codes.” Proceedings, Annu. Conf. - Can. Soc. Civ. Eng., 4 

(May): 2648–2657. 

Savalle, N., P. B. Lourenço, and G. Milani. 2022. “Joint Stiffness Influence on the First-Order 

Seismic Capacity of Dry-Joint Masonry Structures: Numerical DEM Investigations.” Appl. 

Sci., 12 (4). https://doi.org/10.3390/app12042108. 

Schöbi, R., B. Sudret, and S. Marelli. 2017. “Rare Event Estimation Using Polynomial-Chaos 

Kriging.” ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng., 3 (2): 1–12. 

https://doi.org/10.1061/ajrua6.0000870. 



Reference 

444 

 

Seif Eldin, H. M. 2016. “In-plane Shear Behaviour of Fully Grouted Reinforced Masonry Shear 

Wall [Ph.D. thesis].” Concordia University. 

Seif ElDin, H. M., N. Aly, and K. Galal. 2019. “In-plane shear strength equation for fully grouted 

reinforced masonry shear walls.” Eng. Struct., 190 (April): 319–332. Elsevier. 

https://doi.org/10.1016/j.engstruct.2019.03.079. 

Seif ElDin, H. M., and K. Galal. 2017. “In-Plane Seismic Performance of Fully Grouted 

Reinforced Masonry Shear Walls.” J. Struct. Eng., 143 (7): 1–13. 

https://doi.org/10.1061/(asce)st.1943-541x.0001758. 

Senanayake, S. M. C. U., A. Haque, and H. H. Bui. 2022. “An experiment-based cohesive-

frictional constitutive model for cemented materials.” Comput. Geotech., 149 (June): 104862. 

Elsevier Ltd. https://doi.org/10.1016/j.compgeo.2022.104862. 

Serpieri, R., M. Albarella, and E. Sacco. 2017. “A 3D microstructured cohesive–frictional 

interface model and its rational calibration for the analysis of masonry panels.” Int. J. Solids 

Struct., 122–123: 110–127. Elsevier Ltd. https://doi.org/10.1016/j.ijsolstr.2017.06.006. 

Shadlou, M., E. Ahmadi, and M. M. Kashani. 2020. “Micromechanical modelling of mortar joints 

and brick-mortar interfaces in masonry Structures: A review of recent developments.” 

Structures, 23: 831–844. Elsevier. https://doi.org/10.1016/j.istruc.2019.12.017. 

Shedid, M. T., W. W. El-Dakhakhni, and R. G. Drysdale. 2008. “Behavior of Fully Grouted 

Reinforced Concrete Masonry Shear Walls Failing in Flexure: Experimental Results.” J. 

Struct. Eng., 134 (11): 1754–1767. https://doi.org/10.1016/j.engstruct.2009.03.006. 

Shen, J., X. Ren, Y. Zhang, and J. Chen. 2022. “Slip-enhanced plastic-damage constitutive model 

for masonry structures.” Eng. Struct., 254 (December 2021). Elsevier Ltd. 



Reference 

445 

 

https://doi.org/10.1016/j.engstruct.2021.113792. 

Shen, Y., Y. Tu, T. Li, and Y. Li. 2023. “Experimental and numerical study of resistance of multi-

cell L-shaped concrete-filled steel tubular stub columns under biaxial eccentric compressive 

loading.” J. Build. Eng., 70 (March): 106399. Elsevier Ltd. 

https://doi.org/10.1016/j.jobe.2023.106399. 

Sherafati, M. A., and M. R. Sohrabi. 2016a. “Performance of Masonry Walls during Kaki, Iran, 

Earthquake of April 9, 2013.” J. Perform. Constr. Facil., 30 (3): 1–19. 

https://doi.org/10.1061/(asce)cf.1943-5509.0000788. 

Sherafati, M. A., and M. R. Sohrabi. 2016b. “Probabilistic Model for Bed-Joint Shear-Sliding 

Strength of Clay-Brick Walls Based on Field Test Data.” ASCE-ASME J. Risk Uncertain. 

Eng. Syst. Part A Civ. Eng., 2 (4): 04016007. https://doi.org/10.1061/ajrua6.0000879. 

Shing, B., J. Noland, H. Spaeh, E. Klamerus, and M. Schuller. 1991. Response of Single-Story 

Reinforced Masonry Shear Walls to In-Plane Lateral Loads. 

Shing, P. B., and L. Cao. 1997. Analysis of partially grouted masonry shear walls, NIST GCR 

report. 

Shing, P. B., J. L. Noland, E. Klamerus, and H. Spaeh. 1989a. “Inelastic behaviour of concrete 

masonry shear walls.” J. Struct. Eng. 

Shing, P. B., J. L. Noland, E. Klamerus, and H. Spaeh. 1989b. “Inelastic Behavior of Concrete 

Masonry Shear Walls.” J. Struct. Eng., 115 (9): 2204–2225. 

https://doi.org/10.1061/(asce)0733-9445(1989)115:9(2204). 

Shing, P. B., M. Schuller, and V. S. Hoskere. 1990a. “In‐Plane Resistance of Reinforced Masonry 

Shear Walls.” J. Struct. Eng., 116 (3): 619–640. https://doi.org/10.1061/(asce)0733-



Reference 

446 

 

9445(1990)116:3(619). 

Shing, P. B., M. Schuller, V. S. Houskere, and E. Carter. 1990b. “Flexural and shear response of 

reinforced masonry walls.” Struct. J., 87 (6): 646–656. 

Shun Li, K., and P. Lumb. 1985. “Reliability analysis by numerical integration and curve fitting.” 

Struct. Saf., 3 (1): 29–36. https://doi.org/10.1016/0167-4730(85)90005-0. 

Simo, J. C., and T. J. R. Hughes. 2006. Computational inelasticity. Springer Science & Business 

Media. 

Simo, J. C., and J. W. Ju. 1987a. “Strain- and stress-based continuum damage models-I. 

Formulation.” Int. J. Solids Struct., 23 (7): 821–840. https://doi.org/10.1016/0020-

7683(87)90083-7. 

Simo, J. C., and J. W. Ju. 1987b. “Strain- and stress-based continuum damage models—II. 

Computational aspects.” Int. J. Solids Struct., 23 (7): 841–869. Pergamon. 

https://doi.org/10.1016/0020-7683(87)90084-9. 

Simo, J. C., J. G. Kennedy, and S. Govindjee. 1988. “Non‐smooth multisurface plasticity and 

viscoplasticity. Loading/unloading conditions and numerical algorithms.” Int. J. Numer. 

Methods Eng., 26 (10): 2161–2185. https://doi.org/10.1002/nme.1620261003. 

Simulia, D. S. 2017. “Abaqus 2017, Documentation.” Dassault Syst. Waltham, MA, USA. 

Skandalos, K., S. Chakraborty, and S. Tesfamariam. 2022. “Seismic reliability analysis using a 

multi-fidelity surrogate model: Example of base-isolated buildings.” Struct. Saf., 97 (October 

2020): 102222. Elsevier Ltd. https://doi.org/10.1016/j.strusafe.2022.102222. 

Song, C., and R. Kawai. 2023. “Monte Carlo and variance reduction methods for structural 

reliability analysis: A comprehensive review.” Probabilistic Eng. Mech., 73 (June): 103479. 



Reference 

447 

 

Elsevier Ltd. https://doi.org/10.1016/j.probengmech.2023.103479. 

Sousa, R., J. Guedes, and H. Sousa. 2015. “Characterization of the uniaxial compression behaviour 

of unreinforced masonry-Sensitivity analysis based on a numerical and experimental 

approach.” Arch. Civ. Mech. Eng., 15 (2): 532–547. Politechnika Wrocławska. 

https://doi.org/10.1016/j.acme.2014.06.007. 

Sousa, R., H. Sousa, and J. Guedes. 2013. “Diagonal compressive strength of masonry samples - 

Experimental and numerical approach.” Mater. Struct. Constr., 46 (5): 765–786. 

https://doi.org/10.1617/s11527-012-9933-z. 

Sparling, A., and D. Palermo. 2023. “Response of Full-Scale Slender Masonry Walls with 

Conventional and NSM Steel Reinforcement Subjected to Axial and Out-of-Plane Loads.” J. 

Struct. Eng., 149 (1): 1–16. https://doi.org/10.1061/jsendh.steng-11364. 

Stankowski, T., K. Runesson, and S. Sture. 1993a. “Fracture and slip of interfaces in cementitious 

composites II: implementation.” J. Eng. Mech., 119 (2): 315–327. 

Stankowski, T., K. Runesson, and S. Sture. 1993b. “Fracture and slip of interface in cementitious 

composites; I: characteristic.” J. Eng. Mech., 119 (2): 292–314. 

Stavridis, A., and P. B. Shing. 2010. “Finite-Element Modeling of Nonlinear Behavior of 

Masonry-Infilled RC Frames.” J. Struct. Eng., 136 (3): 285–296. 

https://doi.org/10.1061/(ASCE)ST.1943-541X.116. 

Stewart, M. G., and S. J. Lawrence. 2007. “Model Error , Structural Reliability and Partial Safety 

Factors for Structural Masonry in Compression.” Mason. Int., 20 (3): 107–116. 

Sudret, B. 2008. “Global sensitivity analysis using polynomial chaos expansions.” Reliab. Eng. 

Syst. Saf., 93 (7): 964–979. Elsevier. https://doi.org/10.1016/j.ress.2007.04.002. 



Reference 

448 

 

Tabandeh, A., G. Jia, and P. Gardoni. 2022. “A review and assessment of importance sampling 

methods for reliability analysis.” Struct. Saf., 97 (March): 102216. Elsevier Ltd. 

https://doi.org/10.1016/j.strusafe.2022.102216. 

Tabbakhha, M., and G. Deodatis. 2017. “Effect of Uncertainty of Tensile Strength of Mortar Joints 

on the Behavior of Masonry Walls under Lateral Loads.” J. Struct. Eng., 143 (2): 1–15. 

https://doi.org/10.1061/(ASCE)ST.1943-541X.0001640. 

Takashi, K., I. Hiroshi, Y. Yoshiharu, and K. Ryogo. 1986. “Seismic Capacity of Reinforced 

Masonry Walls Including Effects of Axial Stress.” Proc. 4th Can. Mason. Symp., 163–174. 

Tariq, H., M. Amir, V. Sarhosis, and G. Milani. 2023. “In-plane strength of masonry wall panels : 

A comparison between design codes and high-fidelity models.” Structures, 47 (December 

2022): 1869–1899. Elsevier Ltd. https://doi.org/10.1016/j.istruc.2022.11.125. 

Tichý, M. 1994. “First-order third-moment reliability method.” Struct. Saf., 16 (3): 189–200. 

https://doi.org/10.1016/0167-4730(94)00021-H. 

TMS. 2016. Building code requirements and specification for masonry structures (TMS 402/602-

16). The Masonry Society Boulder, CO. 

Tokdar, S. T., and R. E. Kass. 2010. “Importance sampling: A review.” Wiley Interdiscip. Rev. 

Comput. Stat., 2 (1): 54–60. https://doi.org/10.1002/wics.56. 

Di Trapani, F., P. B. Shing, and L. Cavaleri. 2018. “Macroelement Model for In-Plane and Out-

of-Plane Responses of Masonry Infills in Frame Structures.” J. Struct. Eng., 144 (2). 

https://doi.org/10.1061/(ASCE)ST.1943-541X.0001926. 

Tubaldi, E., L. Macorini, and B. A. Izzuddin. 2020. “Identification of critical mechanical 

parameters for advanced analysis of masonry arch bridges.” Struct. Infrastruct. Eng., 16 (2): 



Reference 

449 

 

328–345. Taylor & Francis. https://doi.org/10.1080/15732479.2019.1655071. 

Vaculik, J. 2012. “Unreinforced masonry walls subjected to out-of-plane seismic actions [Ph.D 

thesis].” University of Adelaide. 

Vandoren, B., K. De Proft, A. Simone, and L. J. Sluys. 2013. “Mesoscopic modelling of masonry 

using weak and strong discontinuities.” Comput. Methods Appl. Mech. Eng., 255: 167–182. 

Elsevier B.V. https://doi.org/10.1016/j.cma.2012.11.005. 

Vanin, F., A. Penna, and K. Beyer. 2020. “A three-dimensional macroelement for modelling the 

in-plane and out-of-plane response of masonry walls.” Earthq. Eng. Struct. Dyn., 49 (14): 

1365–1387. https://doi.org/10.1002/eqe.3277. 

Vasconcelos, G., P. B. Lourenço, and D. Oliveira. 2008. “Experimental shear behavior of stone 

masonry joints.” Struct. Anal. Hist. Constr. Preserv. Saf. Significance - Proc. 6th Int. Conf. 

Struct. Anal. Hist. Constr. SAHC08, 771–779. 

Vermeltfoort, A. T., and T. M. J. Raijmakers. 1993. Deformation controlled tests in masonry shear 

walls, Part 2. holandés), Rep. TUE/BKO/93.08, Eindhoven Univ. Technol. Eindhoven, Países 

Bajos. 

Vitali, R., R. T. Haftka, and B. V. Sankar. 2002. “Multi-fidelity design of stiffened composite 

panel with a crack.” Struct. Multidiscip. Optim., 23 (5): 347–356. 

https://doi.org/10.1007/s00158-002-0195-1. 

Vlachakis, G., E. Vlachaki, and P. B. Lourenço. 2020. “Learning from failure: Damage and failure 

of masonry structures, after the 2017 Lesvos earthquake (Greece).” Eng. Fail. Anal., 117 

(July): 104803. Elsevier. https://doi.org/10.1016/j.engfailanal.2020.104803. 

Voon, K. C., and J. M. Ingham. 2007. “Design Expression for the In-Plane Shear Strength of 



Reference 

450 

 

Reinforced Concrete Masonry.” J. Struct. Eng., 133 (5): 706–713. 

https://doi.org/10.1061/(asce)0733-9445(2007)133:5(706). 

Walsh, K., D. Dizhur, I. Giongo, H. Derakhshan, and J. Ingham. 2018. “Predicted Versus 

Experimental Out-of-plane Force-displacement Behaviour of Unreinforced Masonry Walls.” 

Structures, 15: 292–306. Elsevier Ltd. https://doi.org/10.1016/j.istruc.2018.07.012. 

Wambacq, J., J. Ulloa, G. Lombaert, and S. François. 2022. “A variationally coupled phase field 

and interface model for fracture in masonry.” Comput. Struct., 264: 106744. Elsevier Ltd. 

https://doi.org/10.1016/j.compstruc.2022.106744. 

Wang, R., A. E. Elwi, and M. A. Hatzinikolas. 1997. “Numerical study of tall masonry cavity 

walls subjected to eccentric loads.” J. Struct. Eng., 123 (10): 1287–1294. American Society 

of Civil Engineers. 

Wei, D., and S. Rahman. 2007. “Structural reliability analysis by univariate decomposition and 

numerical integration.” Probabilistic Eng. Mech., 22 (1): 27–38. 

https://doi.org/10.1016/j.probengmech.2006.05.004. 

Xie, X., Z. Qu, H. Fu, and L. Zhang. 2021a. “Effect of prior in-plane damage on the out-of-plane 

behavior of masonry infill walls.” Eng. Struct., 226: 111380. Elsevier Ltd. 

https://doi.org/10.1016/j.engstruct.2020.111380. 

Xie, Z., M. Sousamli, F. Messali, and J. G. Rots. 2021b. “A sub-stepping iterative constitutive 

model for cyclic cracking-crushing-shearing in masonry interface elements.” Comput. Struct., 

257: 106654. Pergamon. https://doi.org/10.1016/j.compstruc.2021.106654. 

Xu, C., X. Cheng, and L. Bin. 2012. “Modeling of influence of heterogeneity on mechanical 

performance of unreinforced masonry shear walls.” Constr. Build. Mater., 26 (1): 90–95. 



Reference 

451 

 

Elsevier. https://doi.org/10.1016/j.conbuildmat.2011.05.007. 

Xu, H., and Z. Liu. 2019. “Control variate multifidelity estimators for the variance and sensitivity 

analysis of mesostructure-structure systems.” ASCE-ASME J. Risk Uncertain. Eng. Syst. Part 

B Mech. Eng., 5 (2). https://doi.org/10.1115/1.4042835. 

Yacila, J., G. Camata, J. Salsavilca, and N. Tarque. 2019. “Pushover analysis of confined masonry 

walls using a 3D macro-modelling approach.” Eng. Struct., 201: 109731. Elsevier Ltd. 

https://doi.org/10.1016/j.engstruct.2019.109731. 

Yao, Y., X. Huan, and J. Capecelatro. 2022. “Multi-fidelity uncertainty quantification of particle 

deposition in turbulent pipe flow.” J. Aerosol Sci., 166 (July): 106065. Elsevier Ltd. 

https://doi.org/10.1016/j.jaerosci.2022.106065. 

Yavartanoo, F., and T. H.-K. Kang. 2022. “Dry-Stack Masonry Wall Modeling Using Finite-

Element Method.” J. Struct. Eng., 148 (11): 1–14. https://doi.org/10.1061/(asce)st.1943-

541x.0003457. 

Yuen, T. Y. P., T. Deb, H. Zhang, and Y. Liu. 2019. “A fracture energy based damage-plasticity 

interfacial constitutive law for discrete finite element modelling of masonry structures.” 

Comput. Struct., 220: 92–113. Elsevier Ltd. 

https://doi.org/10.1016/j.compstruc.2019.05.007. 

Zeng, B., and Y. Li. 2023. “Towards Performance-Based Design of Masonry Buildings: Literature 

Review.” Buildings, 13 (1534). https://doi.org/https://doi.org/10.3390/buildings13061534. 

Zeng, B., Y. Li, and C. Cruz Noguez. 2021. “Modeling and parameter importance investigation 

for simulating in-plane and out-of-plane behaviors of un-reinforced masonry walls.” Eng. 

Struct., 248: 113233. Elsevier. https://doi.org/10.1016/j.engstruct.2021.113233. 



Reference 

452 

 

Zhai, C., X. Wang, J. Kong, S. Li, and L. Xie. 2017. “Numerical Simulation of Masonry-Infilled 

RC Frames Using XFEM.” J. Struct. Eng., 143 (10): 1–14. 

https://doi.org/10.1061/(ASCE)ST.1943-541X.0001886. 

Zhai, X., and M. G. Stewart. 2010. “Structural reliability analysis of reinforced grouted concrete 

block masonry walls in compression.” Eng. Struct., 32 (1): 106–114. Elsevier. 

https://doi.org/10.1016/j.engstruct.2009.08.020. 

Zhai, X., Z. Zhong, and M. Stewart. 2012. “Model error and structural reliability for reinforced 

concrete block masonry walls in shear.” Adv. Struct. Eng., 15 (3): 389–398. 

https://doi.org/10.1260/1369-4332.15.3.389. 

Zhang, C., C. Song, and A. Shafieezadeh. 2022. “Adaptive reliability analysis for multi-fidelity 

models using a collective learning strategy.” Struct. Saf., 94 (August 2021): 102141. Elsevier 

Ltd. https://doi.org/10.1016/j.strusafe.2021.102141. 

Zhang, J. 2021. “Modern Monte Carlo methods for efficient uncertainty quantification and 

propagation: A survey.” Wiley Interdiscip. Rev. Comput. Stat., 13 (5): 1–23. 

https://doi.org/10.1002/wics.1539. 

Zhang, S., N. Richart, and K. Beyer. 2018. “Numerical evaluation of test setups for determining 

the shear strength of masonry.” Mater. Struct., 51 (4): 1–12. Springer Netherlands. 

https://doi.org/10.1617/s11527-018-1236-6. 

Zhang, S., S. M. Taheri Mousavi, N. Richart, J. F. Molinari, and K. Beyer. 2017. “Micro-

mechanical finite element modeling of diagonal compression test for historical stone masonry 

structure.” Int. J. Solids Struct., 112: 122–132. Pergamon. 

https://doi.org/10.1016/j.ijsolstr.2017.02.014. 



Reference 

453 

 

Zhang, Y., L. Macorini, and B. A. Izzuddin. 2016. “Mesoscale partitioned analysis of brick-

masonry arches.” Eng. Struct., 124: 142–166. Elsevier. 

https://doi.org/10.1016/J.ENGSTRUCT.2016.05.046. 

Zhao, Y. G., and T. Ono. 1999. “A general procedure for first/second-order reliability method 

(FORM/SORM).” Struct. Saf., 21 (2): 95–112. https://doi.org/10.1016/S0167-

4730(99)00008-9. 

Zhao, Y. G., and T. Ono. 2001. “Moment methods for structural reliability.” Struct. Saf., 23 (1): 

47–75. https://doi.org/10.1016/S0167-4730(00)00027-8. 

Zhu, F., Q. Zhou, F. Wang, and X. Yang. 2017. “Spatial variability and sensitivity analysis on the 

compressive strength of hollow concrete block masonry wallettes.” Constr. Build. Mater., 

140: 129–138. Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2017.02.099. 

van Zijl, G. P. A. G. 2004. “Modeling Masonry Shear-Compression: Role of Dilatancy 

Highlighted.” J. Eng. Mech., 130 (11): 1289–1296. https://doi.org/10.1061/(asce)0733-

9399(2004)130:11(1289). 

Del Zoppo, M., M. Di Ludovico, G. M. Verderame, and A. Prota. 2017. “Experimental Behavior 

of Nonconforming RC Columns with Deformed Bars under Constant Axial Load and Fixed 

Biaxial Bending.” J. Struct. Eng., 143 (11): 1–14. https://doi.org/10.1061/(asce)st.1943-

541x.0001892. 

Zucchini, A., and P. B. Lourenço. 2004. “A coupled homogenisation-damage model for masonry 

cracking.” Comput. Struct., 82 (11–12): 917–929. Pergamon. 

https://doi.org/10.1016/j.compstruc.2004.02.020. 

Zucchini, A., and P. B. Lourenço. 2007. “Mechanics of masonry in compression: Results from a 



Reference 

454 

 

homogenisation approach.” Comput. Struct., 85 (3–4): 193–204. Pergamon. 

https://doi.org/10.1016/j.compstruc.2006.08.054. 

Zuhair Murad, Y. 2021. “Predictive model for bidirectional shear strength of reinforced concrete 

columns subjected to biaxial cyclic loading.” Eng. Struct., 244 (June): 112781. Elsevier Ltd. 

https://doi.org/10.1016/j.engstruct.2021.112781. 

 

 

 

 

  

 



Appendix A: Derivation of Jacobian Matrices in the 3D Multi-yield Surfaces Plasticity-based Constitutive Model 

455 

 

Appendix A. DERIVATION OF JACOBIAN MATRICES IN THE 3D 

MULTI-YIELD SURFACES PLASTICITY-BASED CONSTITUTIVE 

MODEL 

In the multi-yield surface plasticity integration strategy illustrated in Chapter 4, Jacobian matrices 

J1, J2, and J3 are required in the Implicit Euler Backward integration strategy. They are detailed in 

Eq. (A-1) to Eq. (A-9): 
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where the elements in the first row in 3J  are expressed in Eq. (A-4) to Eq. (A-9): 
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Expressions for entries of Jacobian matrices are derived as (A-10) - (A-42): 
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In Eq. (A-11), 
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Appendix B. DERIVATION OF TANGENT STIFFNESS MATRIX AND 

STRESS INCREMENT IN THE 3D MULTI-YIELD SURFACES DAMAGE 

PLASTICITY-BASED CONSTITUTIVE MODEL 

The tangent stiffness tan
K  for the plasticity damage-based constitutive model presented in Chapter 

5 is formulated as Eq. (B-1): 
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1 2 3= + +K K K K  (B-1) 

where 
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2K , and 
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3K  are derived as follows: 
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P1 and P2 are defined as Eq.(B-5) and Eq. (B-6), respectively: 
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The expressions for the individual terms involved in previous equations are derived as 

follows: 
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Appendix C. IN-PLANE RESISTANCE PREDICTION OF 

UNREINFORCED MASONRY WALLS BASED ON CSA S304-14 

In the Canadian masonry design code CSA S304-14, the in-plane (IP) resistances of unreinforced 

masonry walls corresponding to three failure modes (i.e., diagonal tension cracking, shear sliding, 

flexural rocking) are denoted as dtV , ssV , and frV . They are expressed in Eqs. (C-1)(C-2)(C-3), 

respectively: 

 ( )0.25 0.4dt m v d g m v gV d t P f td  = +   (C-1) 

 ( )1min 0.16 ,ss m dV f lt P P = +  (C-2) 
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1
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d d
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P l P
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 (C-3) 

where 0.16 2m m

v

M
f

Vd


 
= − 

 

, M  and V are the IP moment and shear force, 

respectively. vd  is the effective shear depth. h, l, and t are the wall height, length and thickness, 

respectively. mf   is the compressive strength of masonry. dP  is the pre-compression load applied 

on the wall. g  is a grouting factor, taken as 1.0 for URM walls constructed with solid brick units. 

  is the friction coefficient, 1P  is the compressive force acting normal to the sliding place, 

normally taken as dP  plus the tensile force at yield of the vertical dowels crossing the sliding plane.  

The IP resistance of a specific URM wall IPV  is then determined as the minimum one: 
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 ( )min , ,IP dt ss frV V V V=  (C-4)
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Appendix D. IN-PLANE RESISTANCE PREDICTION OF REINFORCED 

MASONRY WALLS BASED ON CSA S304-14 

IP resistances of RM walls corresponding to the diagonal tension cracking dtV  and sliding failure 

ssV  specified by CSA S304-14 are given by: 

 ( )0.25 0.60 0.4 2v
dt m v d g sh yh m v g

d h
V d t P A f f td

s l
  

 
= + +  − 

 
 (D-1) 

 ( )ss d yV P T= +  (D-2) 

where m  is the shear strength of masonry, defined as a function of compressive strength 

of masonry
mf   and shear span to depth ratio 

v

M

Vd
: 0.16 2m m

v

M
f

Vd


 
= − 

 

. vd  is the effective 

wall depth. M  and V are the moment and horizontal shear force. g  is a grouting factor, taken as 

1.0 for fully grouted RM walls. yhf , shA  and s  are the yield strength, area, and spacing of 

horizontal reinforcements. l , t , and h  are the length, thickness, and height of the wall, dP  is the 

pre-compression load applied on the wall.   is the frictional coefficient. yT  is the tensile force at 

the yielding of vertical reinforcements, determined as y yv svT f A= . yvf  is the yield strength of 

vertical reinforcements. For the Conventional Construction shear walls and Moderately Ductile 

shear walls, svA denotes the total area of vertical reinforcement crossing the sliding plane. 

To evaluate the IP flexural capacity frV , the equilibrium equations can be established as 

per Eq. (D-3), by ignoring the tensile forces of masonry and compressive forces of reinforcements: 
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 ,m s i dC T P= +  (D-3)  

where dP  is the pre-compression load applied on the wall, Cm and ,s iT are the total forces 

in masonry and reinforcement, calculated based on Eq. (D-4) and Eq. (D-5): 

 10.85m mC f b c=  (D-4) 
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 (D-5) 

,s iA , ,s iE , and ,y if  are the cross-section area, Young’s modulus and yield strength of i-th 

reinforcement bar; mu  is the ultimate strain of masonry, taken as 0.0025; id  is the distance from 

the extreme compression fiber to centroid of tension reinforcement; c is the neutral axis depth. 

An iterative procedure is employed to solve the neutral axis depth c. Subsequently, the 

moment capacity of a RM wall can then be determined as Eq. (D-6): 

 ,
2 2 2

r m r i i

l c l
M C T d

   
= − + −   

   
  (D-6) 

Here, l is the wall length. The quantities in parentheses denote the moment arms of each 

(compressive or tensile) force. For the cantilever wall considered, the IP flexural capacity frV can 

be evaluated as:  

 /fr rV M h=  (D-7) 

The IP resistance of a specific RM wall IPV  is then determined as the minimum one: 
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 ( )min , ,IP dt ss frV V V V=  (D-8) 
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Appendix E. OUT-OF-PLANE RESISTANCE PREDICTION OF 

UNREINFORCED MASONRY WALLS BASED ON CSA S304-14  

Given the limited tensile strength and brittleness of URM structures, CSA S304-14 recommends 

the use of elastic bending beam theory to determine the OOP resistance of URM walls OOPV . It is 

noted that the OOP resistance OOPV  refers to the capacity to resist lateral load pressure. For 

unreinforced masonry walls that need to remain uncracked, the underlying principle in the design 

provision is to equate the maximum bending moment at the wall’s mid-height with the sectional 

moment capacity. The sectional moment capacity is calculated based on the tensile strength of 

masonry tmf or the compressive strength of masonry cmf  plus the contribution of uniform axial 

compression dP , as shown in Eq. (E-1): 

 , 2

8d e
OOP t tm

P S
V f

lt h

 
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 (E-1) 

 , 2

8d e
OOP c cm

P S
V f

lt h

 
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 
 (E-2) 

where l and t are the wall’s length and thickness; and Se is the section modulus. 
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Appendix F. OUT-OF-PLANE RESISTANCE PREDICTION OF 

REINFORCED MASONRY WALLS BASED ON CSA S304-14  

To evaluate the OOP resistance of RM walls, section P-M interaction diagram is derived first. For 

a given axial load, the section moment capacity of RM wall can be calculated using the equilibrium 

condition, assuming no tensile force contributions from masonry and no compressive force 

contribution from the reinforcing bars. The equilibrium equation is expressed as Eq. (F-1): 

 
m d rC P T= +  (F-1) 

where 
dP  is the pre-compression load; 

mC  and 
rT  are the compressive forces in masonry 

and tensile forces in steel, respectively. By assuming that the reinforcing bars experiencing the 

yielding and the masonry is experiencing the crushing, 
mC can be calculated by assuming the 

compressive block 
'

10.85m mC f b c= , in which b = min (4t , s) and s is the bar spacing; 
1c  is the 

depth of compressive block. The tensile forces of steel 
rT  is determined as r sv yvT A f=  where yvf  

is the yield strength of reinforcements, Based on the equilibrium equation shown in Eq. (F-1), the 

compressive block depth is calculated as per Eq. (F-2): 

 1 '0.85

sv yv d

m

A f P
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The moment resistance of a RM wall can then be calculated by Eq. (F-3): 
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where d is the effective depth, i.e., the distance from the extreme compression fiber to the 

centroid of the reinforcing bars. For the walls in which the reinforcements are placed in the center 

of the wall, d = t / 2. As such, the OOP resistance against the lateral pressure load is evaluated 

based on the moment capacity 
rM : 

 
2

8 r
oop

M
V

h
=  (F-4) 

Above equations are derived by assuming the steel bar experiences the yielding, and this 

needs to be checked. According to the strain compatibility, strain s  in the reinforcement bars is 

calculated as:  
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If yv
s y

s

f

E
  = , here y  is the yield strain, and sE  is the Young’s modulus of 

reinforcements, the assumption of steel bar yielding is correct. Otherwise, the compressive block 

depth needs to be re-calculated as per Eq. (F-6):  
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where svf  is the stress (less than the yield strength) of reinforcements, determined as Eq. 

(F-7) according to strain compatibility: 
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One can solve Eq. (F-6) and Eq. (F-7) to obtain 1c . Following this, the section moment 

capacity and OOP capacity against the lateral load pressure can be calculated as Eq. (F-3) and Eq. 

(F-4). 

To account for the second-order effects, CSA S304-14 suggests the moment magnifier 

method. In that sense, the moment applied on the RM wall is magnified by a factor, as given in 

Eq. (F-8). crP is the Euler buckling load of the wall defined as per Eq. (F-9): 

 =

1-

m

d

cr

C

P

P

    (F-8) 

where Cm is a factor relating actual moment diagram to an equivalent uniform moment 

diagram, determined as Cm = 0.6 + 0.4 M1/M2 where M1 and M2 are the end moments, Pd is the 

axial load acting on the wall, Pcr  is Euler buckling load of the wall. Pcr  is related to effective 

flexural rigidity EIeff . They are calculated according to Eq. (F-9) and Eq. (F-10): 

 2 2= ( )cr effP EI kh   (F-9) 
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In Eq. (F-9), k is the effective length depending on the boundary conditions (e.g., k = 1.0 

for simply supported), and h is the unsupported wall length. In Eq. (F-10), Em is the masonry 

modulus of elasticity, Icr is the cracked moment of inertia, Io is the gross moment of inertia, e is the 

eccentricity which is defined as the ratio between the applied moment and the axial load, and ek is 

the kern eccentricity which is defined between the ratio between the section modulus Se and the 

effective cross-section area. The cracked moment of inertia Icr is calculated as per Eq. (F-11): 
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 All the quantities are available for the calculation of moment magnifier factor. The moment 

capacity of a wall with the consideration of slenderness effects is equal to the section moment 

capacity, i.e., shown in Eq. (F-3), reduced by this factor.
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Appendix G. PYTHON-BASED TOOLS FOR MODELING MASONRY 

WALLS BASED ON MICRO MODELING STRATEGY 

To streamline the micro modeling strategy of masonry walls, two Python-based automated 

tools, namely URM.py and RM.py, were developed and integrated into the general-purpose 

Finite Element (FE) software ABAQUS. These tools offer a user-friendly environment for 

simulating masonry walls using micro modeling strategies with different boundary (e.g., 

cantilever, double-fixed, pin-roller) and loading conditions (e.g., IP loading, OOP loading, 

combined IP and OOP loadings). The following inputs are needed to run the codes: 

• Wording directory (default: C:\temp) 

• Geometry: dimensions of units (height, thickness, and length), and dimensions of walls 

(height, thickness, and length) 

• Material parameters of units and grouts (Concrete Damage Plasticity model): Young’s 

modulus, Poisson’s ratio, tensile strength, compressive strength, dilation angle, flow 

potential eccentricity (default: 0.1), the ratio between the biaxial initial compressive 

strength and the initial uniaxial compressive strength (default: 1.16), the ratio of the 

second stress invariant on the tensile meridian to that on the compressive meridian 

(default: 0.67), and viscosity parameter (default: 0.0002) 

• Material parameters of reinforcements (only for reinforcement masonry walls): 

Young’s modulus, passion’s ratio, yield stress vs plastic strain, cross section area, 

locations for horizontal reinforcements (indicate all reinforcements), and locations for 

vertical reinforcements (indicate all reinforcements) 

• Material parameters of mortar joints 
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o For the monotonic model: Elastic stiffness constants (knn, kss, and ktt), tensile 

strength, peak cohesion, initial/residual frictional coefficients, initial/residual 

dilatancy coefficients, mode I fracture energy, mode II fracture energy when 

the normal stress is zero, coefficient for mode II fracture energy (considering 

the influence of compressive stress on the mode II fracture energy), 

compressive strength of masonry, displacement corresponding to the 

compressive strength, and initial/residual compressive yield stress 

o For the cyclic model (in addition to the parameters required for the monotonic 

model): compression-to-tension stiffness recovery factor, tension-to-

compression stiffness recovery factor, ratios between stiffness degradation and 

strength softening or tension and compression (default: 1.0), and non-physical 

parameters (α ,β, and γ) 

• Numerical integration option (for monotonic model) 

o Activation of yield surfaces: 1 = active tension-shear yield surface, 2 = active 

compression cap yield surface, and 3 = active both yield surfaces 

o Error-based Sub-stepping integration strategy: 0 = off, and 1 = on (default)  

o Plasticity integration solver: 0 = modified Newton-Raphson method, and 1 = 

Newton-Raphson method (default) 

o Error-based sub-stepping integration factor (default: 0.2) 

o Initial sub-stepping incremental size (default: 0.001) 

o Maximum iterations in Newton-Raphson method (default: 100) 

o Tolerance for Newton-Raphson method (default: 1e-4) 
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• Mesh size and element type 

• Loading condition: 1 = in-plane loading (applied at the top beam along the horizontal 

direction), 2 = out-of-plane loading (applied as a uniform pressure at the outer surface 

of the wall), 3 = combined in-plane and out-of-plane loading. More options are 

available: 

o In-plane loading: “fixed_IP” for double fixed end condition, and 

“cantilever_IP” for cantilever condition 

o Out-of-plane loading: “pin_pin” for pin-pin condition (one-way vertical 

bending), “fixed_fixed” for fixed-fixed condition (one-way vertical bending) 

o When combined in-plane and out-of-plane loading conditions are selected, the 

aforementioned options can also be used. 

After inputting all necessary parameters, URM.py and RM.py could be run in Windows command 

batch mode or in ABAQUS CAE GUI mode. 
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