
The following paper was published in:

Relevance Logics and other Tools for Reasoning. Essays in Honor of
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MODALITIES IN LATTICE-R

Katalin Bimbó and J. Michael Dunn

ABSTRACT. This paper considers modalities added to the relevance logic LR (lattice-
R), which is R with the distributivity of conjunction and disjunction omitted. First,
the modalities are defined from the Ackermann constants and the lattice connectives.
Then, we introduce modalities as primitives equipped with some fairly usual prop-
erties. We also consider some other logics in the neighborhood. For each logic,
including classical linear logic, we prove decidability. Lincoln, Mitchell, Scedrov,
and Shankar (1992) claimed to have proved classical linear logic undecidable. We
examine their work and find that their paper does not contain a proof of the admissi-
bility of the cut rule, which would be essential for their claims to hold. Furthermore,
according to their interpretation of proofs in linear logic, computations that lead to a
dead-end state are not considered, unlike computations from inaccessible states that
are included. The same problem with the direction of a proof vs the direction of
a computation appears in all other publications that claim undecidability, including
Kanovich (2016).

Keywords. Decidability, Linear logic, Modal logic, Relevance logic, Sequent
calculuses

INTRODUCTION

Modality in reasoning has intrigued thinkers for millennia — at least since the time
of Aristotle. Logically valid reasoning itself is often characterized in modal terms by
saying that a conclusion is true necessarily, provided the premises are true. Thus it
is not by chance that an attempt that aimed at tightening the connections between the
notions of logical consequence and implication led to the invention of modern modal
logics in the work of Clarence I. Lewis.

The logic of entailment, E gives a certain modal character to provable entailments.
A usual definition of “A is necessary” in some relevance logics is by the formula
(A→A)→A. However, there are other ways to think about modality in relevance
logics. In this paper, we look at an alternative definition of necessity and possibility
that involves t and f, then we consider � and ♦ as primitives.

In order to narrow our considerations, we start with the logic called lattice-R, which
is denoted by LR. This logic was derived from the logic of relevant implication R by
omitting the assumption that conjunction and disjunction distribute over each other; it
was created by Meyer [36]. The distributivity principle does not appear to be prob-
lematic from the point of view that motivates the family of relevance logics, hence,
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we might wonder why to consider lattice-R at all. Lattice-R has a straightforward se-
quent calculus formalization that goes back to Meyer’s thesis, and it was hoped way
back in the 1960s, that the decidability of lattice-R would be a stepping stone to the
decidability of R (and that of E, T, etc.). Accordingly, we will explore the question of
decidability in the context of modalities and also for logics neighboring R.

Section 1 introduces lattice-R in the way it was originally defined; then we throw
in some constants. We give a sequent calculus (LLR) and an axiomatic (HLR) formu-
lation.1 Next, in Section 2, we take up the idea of defined modalities within LLRc,
that is, lattice-R with zero-ary constants. Section 3 gives a somewhat detailed proof
that LLRc is decidable. The argument is along the standard Curry–Kripke lines, which
had been successfully applied to some other logics. The next section adds ♦ and �
as new unary connectives to LLRc. We prove that the resulting logic is decidable.
In Section 5, we consider a series of logics obtained by variations on the structural
rules — whether they are absent, modalized or included. Then in Section 6, we give
a direct and quite detailed proof of the decidability of (classical propositional) linear
logic. Finally, in Section 7, we briefly outline the argument in Lincoln et al. [35],
from which they conclude a theorem that conflicts with our decidability result about
linear logic in the previous sections. We pinpoint some gaps in their proof of the cut
elimination theorem, and we conclude with a different interpretation of LCLL proofs,
which dissolves the appearance of a contradiction between our result and those in [35],
Kanovich [28; 27] and Forster and Larchey-Wendling [21].

1. LATTICE-R WITH CONSTANTS

The relevant endeavor can be quickly motivated by the desire to avoid having the-
orems like A→ (B →A), where→ is some sort of implication. Roughly speaking,
B gets into the theorem, although it may be completely unrelated to A. Somewhat
less obviously, ((A → B)→ A)→ A is also an unwelcome theorem. It is easy to
verify that the proof of these formulas in a sequent calculus for classical logic, such
as Gentzen’s LK, requires the use of some of the thinning rules. Well, then it is plain
sailing to drop those rules and to see what results.

The language of LLRc contains a denumerable stock of propositional variables to-
gether with a handful of logical constants.2 The latter category is divided into three
subcategories by the arity of the connectives: 0-ary, 1-ary and 2-ary. The zero-ary con-
nectives are t (“real truth”), f (“real falsity”), T (“triviality”) and F (“absurdity”). The
only unary connective is ∼ (“De Morgan negation”). There are five binary connec-
tives, namely, ∧ (“conjunction”), ∨ (“disjunction”), ◦ (“fusion”), → (“implication”
or “entailment”) and + (“fission”). The set of well-formed formulas is inductively
defined from the base set, which comprises the propositional variables and the four
zero-ary connectives, by the rest of the connectives. A,B,C, . . . are meta-variables
that range over well-formed formulas (wff’s, for short).

1We would like to forewarn the reader that L in LR stands for “lattice” and not for “logistic” as in many
labels for sequent calculuses, including the original LK and LJ (where we italicize L). Then, LLR is a sequent
calculus formulation of LR, and so on.

2As we already hinted at, the superscript c in the label for the system indicates that four zero-ary
constants are included.
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Multisets constitute a datatype between sequences and sets. In a multiset, an ob-
ject may have more than one occurrence, and the number of occurrences matters, but
the order (of listing) of occurrences is unimportant. Here we always deal with fi-
nite multisets, that is, with multisets of finitely many objects, each with finitely many
occurrences; we will simply talk about multisets. α,β ,γ, . . . are meta-variables for
multisets of wff’s including the empty multiset.

Definition 1. The axioms and rules of the sequent calculus LLRc are as follows.

α;F ` β F` A `A id α ` T;β `T

f ` f`
α ` β

α ` f;β
` f

α ` β
α; t ` β

t` ` t ` t

α;A ` β
α;A∧B ` β

∧`1
α;B ` β

α;A∧B ` β
∧`2

α ` A;β α ` B;β
α ` A∧B;β

`∧

α;A ` β α;B ` β
α;A∨B ` β

∨`
α ` A;β

α ` A∨B;β
`∨1

α ` B;β
α ` A∨B;β

`∨2

α ` A;β
α;∼A ` β

∼`
α;A ` β

α ` ∼A;β
`∼

α ` A;β γ;B ` δ
α;γ;A→B ` β ;δ

→`
α;A ` B;β

α ` A→B;β
`→

α;A;B ` β
α;A◦B ` β

◦`
α ` A;β γ ` B;δ

α;γ ` A◦B;β ;δ
`◦

α;A ` β γ;B ` δ
α;γ;A+B ` β ;δ

+`
α ` A;B;β

α ` A+B;β
`+

α;A;A ` β
α;A ` β

W `
α ` A;A;β

α ` A;β
`W

The notion of a proof in LLRc is as usual in sequent calculuses. A is a theorem of
LLRc iff ` A is a provable sequent.

The original lattice-R does not include the constants, that is, it comprises the axiom
(id) and the rules save (t `) and (` f). The last two rules, which are called contrac-
tion, are the only structural rules. Other commonly considered structural rules such as
exchange and associativity are inherent in the datatype in the antecedent and succe-
dent, whereas thinning is discarded both on the left and on the right — except for their
special instances with t and f.

The above sequent calculus is a sensible and well-behaved sequent calculus in light
of the following theorem, which involves the single cut rule.

α ` C;β γ;C ` δ
α;γ ` β ;δ

single cut

Theorem 2. (Cut theorem for LLRc) The cut rule is admissible in LLRc.
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Proof. The cut rule formulated above is a version of the single cut rule. There are
various ways to prove this rule admissible; one of them is by a triple induction on the
degree of the cut formula, on the contraction measure of the cut and on the rank of the
cut. We do not include the details here.3 Here is a sample step, in which the degree of
the cut formula A+B is reduced.

α

...
` A;B;β

α ` A+B;β
γ;A

...
` δ ε;B

...
` η

γ;ε;A+B ` δ ;η
α;γ;ε ` β ;δ ;η

 

α

...
` A;B;β γ;A

...
` δ

α;γ ` B;β ;δ ε;B
...
` η

α;γ;ε ` β ;δ ;η /

The proof of the cut theorem also establishes that the addition of the zero-ary con-
stants (one by one, or all at once) is conservative over the original LR.

Lattice-R can be defined by an axiom system too. We denote the Hilbert-style
system by HLRc. This calculus comprises the axiom schemas (A1)–(A17) and the
rules (R1)–(R3). (Outside parentheses are omitted from wff’s, as before.)

(A1) A→A
(A2) (A→B)→ ((C →A)→ (C → B))
(A3) (A→ (B → C))→ (B → (A→ C))
(A4) (A→ (A→B))→ (A→B)

(A4–5) (A∧B)→A, (A∧B)→B
(A7) ((C →A)∧ (C → B))→ (C → (A∧B))

(A8–9) A→ (A∨B), A→ (B∨A)
(A10) ((A→ C)∧ (B → C))→ ((A∨B)→C)

(A11–2) (∼A→B)→ (∼B→A), A→∼∼A
(A13-4) t, (t→∼f)∧ (f→∼t)

(A15) (F→A)∧ (A→ T)
(A16) ((A◦B)→∼(A→∼B))∧ (∼(A→∼B)→ (A◦B))
(A17) ((A+B)→ (∼A→B))∧ ((∼A→B)→ (A+B))

(R1) A→B and A imply B
(R2) A and B imply A∧B
(R3) ` A implies ` t→A

The notion of a proof is the usual one for axiom systems, and the formulas occur-
ring in a proof are called theorems.

The axiom system HLRc is equivalent to LLRc in the sense that the two calculuses
have the same set of theorems, as we state in the following theorem. (We leave the
proof, which is completely routine, to the reader.)

Theorem 3. A is a theorem of HLRc iff it is a theorem of LLRc.

3Some details of a similar proof may be found in Bimbó [8, §2].
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2. MODALITIES IN LLRc DEFINED FROM t AND f

The symbols ♦ and � usually stand for unary modalities, which are read as “di-
amond” and “box,” or in alethic modal logics, as “possibility” and “necessity.” The
presence of t and f in LRc allows us to define surrogate unary connectives.

Definition 4. �A is t∧A, and ♦A is A∨ f.

Of course, the above definition in itself is nothing more than looking at formulas
with a squint. However, � and ♦ turn out to have certain properties that are remi-
niscent of properties the modalities often have. The notation that we introduced was
intended to prefigure this.

Lemma 5. The formulas in (1)–(4) are theorems of LLRc, and by (5), necessitation is
an admissible rule in LLRc.
(1) �(A→B)→ (�A→�B) (4) (♦A→∼�∼A)∧ (∼�∼A→ ♦A)
(2) �A→A (5) If ` A, then `�A.
(3) �A→��A
Proof. The proofs of the corresponding formulas are straightforward, once the defined
symbols are rewritten with the primitive connectives. For instance, (1) turns into the
formula (t∧ (A→B))→ ((t∧A)→ (t∧B)). (We omit the rest of the details.) /

The formulas in (1)–(3) resemble some well-known axioms from (normal) modal
logics, when � is viewed as �, ∧ as ∧, and→ is taken to be ⊃ (i.e., classical condi-
tional). In particular, (1) looks like (K), (2) looks like (T ) and (3) looks like (4).4 It
may be tempting, at first sight, to conjecture that we have found S4 in LLRc. However,
we should not forget that ∼ is not an orthonegation, and ∧ and ∨ are not related to
each other or to → in the way conjunction and disjunction are linked to ⊃ (and ¬,
orthonegation). We find another logic hidden within LLRc though.

Linear logic, as defined in Girard [23], is sometimes called classical linear logic,
because it shares more features with classical logic than with intuitionist logic.5 We
denote this logic by CLL. Linear logic without the modalities is called multiplicative–
additive linear logic (or MALL). Linear logic was first defined as a one-sided sequent
calculus. However, all fragments of classical linear logic that contain the negation
connective may be defined equivalently as two-sided sequent calculuses.6

Classical linear logic can be (and has been) formulated in various ways, as in Avron
[4] and [44], for instance. For our goals in this paper, it is convenient to rely on a se-
quent calculus formulation. Moreover, we will assume that sequents are defined as
before, that is, they comprise a pair of multisets of wff’s. The language of propo-
sitional CLL contains several connectives, and [23] uses unconventional notation to
denote them. A translation that turns a symbol into a symbol that looks the same in
another language is very manageable; hence, we list Girard’s symbols together with
his names for the connectives, but we immediately give our preferred notation that

4This is not a typo; (4) is the standard label for the characteristic axiom of the system S4.
5See, e.g., Troelstra [44], where intuitionist linear logic is introduced too.
6See Bimbó [9] for a comprehensive treatment of sequent calculuses — including calculuses for classi-

cal linear logic.
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induces an identity translation between languages of logics. (In Sections 6 and 7, we
turn back to using Girard’s notation to facilitate comparisons.)

The zero-ary connectives are 1 (one, t), ⊥ (bottom, f), > (top, T) and 0 (null, F).
The unary connectives are ⊥ (nil, ∼), ! (of course, ♦ or �) and ? (why not, � or ♦).
The binary connectives are & (with, ∧), ⊕ (plus, ∨), ⊗ (times, ◦), ` (par, +) and(
(entail,→).

For the so-called exponentials ( ! and ?), we listed both modalities. The first modal-
ity is motivated by relational semantics, whereas the second one is based on similar-
ities of sequent calculus rules for the punctuation marks and for modalities. For the
sake of translating and comparing sequent calculuses in this paper, we use the second
variant. The issue is that when the Church constants (> and 0) are not definable from
negation using the lattice operations, Kripke’s rules for the modalities (or their adapta-
tions for ! and ?) do not provide both (dual) additivity and (dual) normality for either
of the two monotone operations.

In a two-sided sequent calculus for classical linear logic, which we denote by LCLL,
the connective rules for the connectives that have an alter ego in LLRc are exactly as
in LLRc. (Hence, we do no repeat those rules; rather, we simply assume that LCLL
is formulated with standard vocabulary.) The contraction rules (W `) and (`W ) are
absent from LCLL. However, the rules below allow the introduction of ! and ? on the
right- and left-hand sides of the turnstile, and they recuperate the effect of some of the
contractions and thinnings in a traceable way.

Definition 6. The eight rules that involve the exponential connectives are the fol-
lowing. !α and ?α are multisets in which the main connective of each formula is,
respectively, ! and ?.

α;A ` β
α; !A ` β

! `
!α ` A; ?β

!α ` !A; ?β
` !

!α;A ` ?β
!α; ?A ` ?β

?`
α ` A;β

α ` ?A;β
` ?

α; !A; !A ` β
α; !A ` β

!W `
α ` β

α; !A ` β
!K`

α ` β
α ` ?A;β

` ?K
α ` ?A; ?A;β

α ` ?A ` ?W

If we simply omit the (W `) and (`W ) rules from LLRc, then we obtain LMALL, a
sequent calculus formalization of MALL.

Our goal now is to establish that the defined modalities in LLRc behave sufficiently
similarly to the exponentials (i.e., the modalities) of LCLL. Moreover, the proof of
the next theorem provides a translation of wff’s of CLL into LRc, which is of special
philosophical interest, given that classical linear logic’s constructive character is pri-
marily manifest via the translation of intuitionist logic into CLL. In a similar sense,
LLRc is linear and constructive.

Theorem 7. (From LCLL to LLRc) If A is a theorem of LCLL, then τ(A) is a
theorem of LLRc, where τ is defined inductively by (1)–(6).

(1) τ(p) is p, when p is a propositional variable;
(2) τ(c) is c, where c is a zero-ary constant;

(3–5) τ( !A) is t∧ τ(A); τ( ?A) is τ(A)∨ f; τ(A⊥) is ∼τ(A);
(6) τ(A>B) is τ(A)> τ(B), where > is a binary connective.
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Proof. First, we note that τ is well-defined in the sense that it is applicable to any wff
of LCLL, and it results in a unique wff of LLRc.

The proof is by induction on χ , the height of a proof tree with root `A. We prove
that if α ` β is provable in LCLL, then τ(α) ` τ(β ) is provable in LLRc. (τ is applied
piece-wise to a multiset, and the translation of the empty multiset is itself.)
1. If χ = 1, then the proof is an instance of an axiom. We note that τ is independent
of the location of a formula within a sequent. Therefore, τ(A) ` τ(A) yields B ` B,
where B may be A or may be a different formula than A (if there are occurrences of
! or ? in A). Either way, B ` B is an instance of (id) in LLRc.

If the axiom is one of those that involve a zero-ary constant, then the claim is
obviously true too.
2. If χ > 1, then α ` β is by a rule.
2.1. The non-modal connective rules of LCLL turn into identical rules in LLRc; fur-
thermore, the latter rules are insensitive to the concrete shape of the parametric or
subaltern wff’s.7 As an example, we consider the (`∧) rule. α is α , whereas β is
A∧B;γ . On the left, we have the proof segment in LCLL, on the right, we have the
resulting proof segment in LLRc. The upper sequents are given by the hypotheses of
the induction that we indicate by “i.h.”

α

...
` A;γ α

...
` B;γ

α ` A∧B;γ

i.h. τ(α)

...
` τ(A);τ(γ) τ(α)

...
` τ(B);τ(γ)

τ(α) ` τ(A)∧ τ(B);τ(γ)

By clause (6), τ(A∧B) is τ(A)∧ τ(B). The other cases for the rules for non-modal
connectives has the same general structure, and we omit including their details here.
2.2. The last rule may be a modal connective rule. LCLL has the same pleasing sym-
metry as LK, the original sequent calculus for classical logic has; hence, we consider
in some detail the cases for ( !`) and (` !), but leave the details of the dual cases (i.e.,
of ( ?`) and (` ?)) to the reader.

We have the following subtrees.

γ;A
...
` β

γ; !A ` β

i.h. τ(γ);τ(A)
...
` τ(β )

τ(γ); t∧ τ(A) ` τ(β )

By (3), we know that τ( !A) is t∧ τ(A), as needed.
If the sequent α ` β is !γ ` !A; ?δ by (` !), then we have the following chunks

of proofs.

!γ

...
` A; ?δ

!γ ` !A; ?δ

i.h. τ( !γ)

...
` τ(A);τ( ?δ )

` t
τ( !γ) ` t;τ( ?δ )

τ( !γ) ` t∧ τ(A);τ( ?δ )

The thicker line indicates possibly several applications of rules — depending on the
number of wff’s in !γ and ?δ . For any wff !B in !γ , its translation is t∧ τ(B),
whereas, for any wff ?C in ?δ , its translation is τ(C)∨f. Each t∧τ(B) can be obtained
by (t `) and (∧ `); analogously, τ(C)∨ f may be gotten by (` f) and (`∨). The last
step above is justified by (`∧).

7These terms have their usual meanings following Curry [16].
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2.3. There are four modalized structural rules in LCLL. First of all, the modalized
contraction rules are special instances of their regular counterparts in LLRc. That is,
the claim is obviously true when the last rule is (!W `) or (` ?W ).

If the last rule applied in the LCLL proof is ( !K `), then α is γ; !A, and we have
the following.

γ

...
` β

γ; !A ` β

i.h. τ(γ)

...
` τ(β )

τ(γ); t ` τ(β )
τ(γ); t∧ τ(A) ` τ(β )

The rules applied in LLRc are (t `) and (∧`). The latter rule is applicable with an
arbitrary τ(A), and τ( !A) is t∧ τ(A) by clause (3). /

The theorem provides a way to test wff’s of LCLL for non-provability, because if
their translation is not provable in LLRc, then the starting formula is not provable in
LCLL. Of course, we are using the fact, which is well known to relevance logicians,
that LLR is decidable. We provide some details of the proof for LLRc in Section 3.
Provability is easily decidable if a wff of CLL does not contain occurrences of ! or
?, because LLRWc’s decidability is an immediate consequence of the cut theorem.
(LLRWc is LLRc without the (`W ) or (W `) rules.)

An insight that we attribute to Kripke [30] is that, in relevance logics, a wff has
to be introduced by a connective rule in order to be contracted. Once stated, the
truth of this observation is obvious. However, a profound consequence, as Kripke
realized, is that the contraction rules can be eliminated if operational rules permit
some contraction but require none. Relying on the same observation, the amount of
the permitted contractions in each operational rule may be minimized. The insight
that we attribute to Dunn, is that it is sufficient to allow a formula to be contracted if
it could not have been contracted in the premises.

In order to motivate the introduction of heap numbers (in Definition 8 below), we
illustrate how we use heap numbers extracted from irredundant proofs in one calculus
to bound the number of permitted contractions in another — but related — calculus.8

If we assume the usual definition of a subformula, then we may note the obvious
fact that every formula has at least one subformula, but “often” it has more. Fur-
thermore, if we count distinct occurrences of a subformula separately, then we find
that some formulas have even more subformulas (in the sense of subformula occur-
rences). Then it is obvious that permitting as many contractions on a larger formula
as we performed on some of its proper subformulas will produce at least as many or
more occurrences of subformulas. Let us consider a small proof in [LLRc] (cf. Defi-
nition 11).

[`◦]
A `A B ` B
A,B ` A◦B

A ` A B ` B
A,B ` A◦B [`◦]

A,B ` (A◦B)◦ (A◦B)
A∧B,B ` (A◦B)◦ (A◦B) [∧`]

A∧B ` (A◦B)◦ (A◦B)
t∧ (A∧B) ` (A◦B)◦ (A◦B) [∧`]

[∧`]

[`◦]

8The term “irredundant” is used in its standard sense in relevance logic; see Dunn [18, §3.6].
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This proof is irredundant — with the third application of [`◦] containing contractions
of A and B, and the second application of [∧`] containing a contraction of A∧B.
Each of those formulas are subformulas of !(A∧B) (which translates via τ into t∧
(A∧B)). Thus the heap number of !(A∧B) is at least 3. (We have not generated
all the irredundant proofs here, but having this proof we know that the heap number
cannot be less than 3.) The following proof in [LCLL] uses three contractions as part
of applications of the [ ! `] rule. This proof also happens to be irredundant, however,
that is an accidental feature. In the proof search that uses the heap number as an
upper bound on contractions, we do not require the resulting proof to be irredundant.
Accordingly, applications of the ( ! `) and ( !W `) rules may be separated without loss
of generality.

A `A B ` B
A,B ` A◦B

A ` A B ` B
A,B ` A◦B

A,B,A,B ` (A◦B)◦ (A◦B)
A,B,A,A∧B ` (A◦B)◦ (A◦B)
A,B,A∧B,A∧B ` (A◦B)◦ (A◦B)
A,B,A∧B, !(A∧B) ` (A◦B)◦ (A◦B)
A,B, !(A∧B) ` (A◦B)◦ (A◦B)
A,A∧B, !(A∧B) ` (A◦B)◦ (A◦B)
A, !(A∧B) ` (A◦B)◦ (A◦B)
A∧B, !(A∧B) ` (A◦B)◦ (A◦B)

!(A∧B) ` (A◦B)◦ (A◦B) [ ! `]

[ ! `]

[ ! `]

This time, we only labeled the steps that involve a contraction.
As already hinted at by the illustration, we will rely on the theorem (proved in the

next section) that LLRc is decidable. This result is a small extension of the decidability
of LLR originally proved in [36].9

It may be helpful to note that the decidability proof using a proof-search tree with
the sequent calculus [LLRc] provides all the irredundant proofs of a provable sequent
— unlike the example above where we only presented one irredundant proof.

Now we turn to the definition of heap numbers. Our definition uses the notion of
“ancestors,” which is essentially, Curry’s notion (see [16, p. 199]), with some obvious
modifications that are due to our calculuses being based on multisets. We briefly
explain the notion ancestors in the paragraph after the definition.

9We thank Alasdair Urquhart for calling to our attention (in December 2016) the preprint paper Roorda
[39], which claimed to have proved the decidability of classical linear logic. We did not know of Roorda’s
paper until well after we had our own proof, but his strategy is remarkably similar to ours. He uses the
method of Kripke to construct a finite proof-search tree, but the problem seems to be that there is no
guarantee that his tree will contain a proof of the candidate theorem if there is one. We provide such a
guarantee via our heap number in Definition 8. As Urquhart pointed out to us, Roorda’s proof does not
appear in his subsequent Ph.D. thesis [40]. In fact, on p. 12 of his thesis, he mentions [35] and repeats their
claim that CLL is undecidable. So, he apparently came to consider their proof to be correct and his own
earlier proof to be mistaken.
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Definition 8. (Heap number) Let `A be a provable sequent. The heap number of
B (where B is a subformula ofA) is the maximum of the total number of contractions
on the ancestors of B in any irredundant proof of the sequent.

Given a proof, B may be parametric in an application of a rule, in which case, it
has immediate parametric ancestors in the upper sequent. If B is the principal formula
of a rule then it typically has subalterns in the upper sequent. (Since the calculuses
from which we calculate the heap numbers have no explicit contraction rules, only the
thinning rules have no subalterns in the upper sequent.) We call immediate parametric
ancestors and subalterns immediate ancestors. If contraction is built into a rule, then
the principal formula may encompass contractions of parametric formulas, in which
case all the affected immediate parametric ancestors as well as the subalterns are im-
mediate ancestors of the principal formula. C is an ancestor of B when C is in the
reflexive transitive closure of the immediate ancestor of B relation.

Lemma 9. Let ` A be a provable sequent of LCLL. The heap numbers of the
subformulas of A (obtained from proofs in [LLRc]) are sufficiently large as bounds on
the number of contractions on each formula to construct a proof of ` A in LCLL
(or [[LCLL]]).

Proof. It is sufficient to consider the right-handed sequent calculus for CLL. Hence,
the only contraction rule is (` ?W ). There are two rules (beyond those for zeroary
constants) that can introduce several formulas into the sequent, namely, (` ◦) and
(` ?K). Clearly, a formula introduced by the latter does not need to be considered,
because the rule has no subaltern. (This means that if A∨ f resulted from (` f) in
[LLRc], then ?A can be introduced by (` ?K) in LCLL, if needed.) If the immediate
subformula of the contracted ?Awas introduced by (` ◦), then the proof-search might
have contained contractions on ?A or on its subformulas. Let us assume that n− 1
contractions on ?A are not sufficient for the proof of the sequent in LCLL, and the
proof search in [LLRc] provided a heap number ≤ n− 1. Then there are formulas in
the sequent that cannot be contracted in LCLL, which require at least n contractions
on ?A. However, if a formula cannot be contracted in LCLL, then it remains in the
sequent; hence, the sequent at the beginning of the proof search in [LLRc] contains
any such formula. That is, contractions on those formulas cannot reduce the number
of required contractions on ?A and its subformulas in [LLRc]. /

Theorem 10. Classical linear logic (CLL) is decidable.

Proof. Given a wff A of CLL, τ yields a wff of LLRc. It is decidable whether τ(A) is
a theorem of LLRc; if it is not, thenA is not a theorem of CLL. If τ(A) is a theorem of
CLL, then we can identify all the subformulas of τ(A), which result from the transla-
tion of an exponential subformula; we call them exceptional. The decision procedure
for τ(A) in [LLRc] produces all the irredundant proofs, hence, we can calculate the
heap number for each exceptional formula. Then we search for a proof of τ(A) in a
restricted version of [LLRc] by building a proof search tree in which contractions on
exceptional formulas are limited by their heap number.

The restrictions on the rules of [LLRc] are the following.
1. No contraction is permitted in [` ∧], [∨ `], [∼ `], [` ∼], [◦ `], [`+], [`→].
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2. A contraction is permitted in [∧1 `] and [∧2 `] when A∧B is an exceptional
wff. Dually, a contraction is permitted in [`∨1] and [`∨2], if A∨B is an
exceptional wff.

3. A contraction is permitted in α;γ in [` ◦], [+ `] and [→`] if an exceptional
formula t∧A occurs both in α and γ . Dually, a contraction is permitted in β ;δ
in an application of the same rules if an exceptional formula A∨ f occurs both
in β and δ . (The principal formulas of these rules cannot be contracted.)

The above restrictions match exactly the restricted contraction rules in CLL (see
Definition 6), whereas the heap numbers provide the upper bounds on the number
contractions. Therefore, the proof-search tree is finite. Since LLRc and LCLL coincide
on the exponential-free fragment of CLL, and we allowed heap-number-many contrac-
tions on exceptional formulas, ifA is a theorem of CLL, then the proof-search tree will
contain a proof of τ(A).

Once we have proofs in the proof-search tree for the formulaA, we also check that
any applications of [`∧] and [∨`] with principal formulas that are translations of a
!’d or ?’d formula satisfy the side conditions in Kripke’s rules (i.e., of the (` !) and
( ? `) rules). /

The theorem contradicts Theorem 3.7 in [35], which states the undecidability of
classical linear logic, and Corollaries 5.5 and 5.7 in [28], which state the undecidabil-
ity of two Horn-fragments of linear logic. We believe that those papers do not contain
proofs of the undecidability of CLL, and will provide our argument for this in Sec-
tion 7. We also give another proof of the decidability of CLL below; that proof also
uses in an essential way the Curry–Kripke strategy.

3. LATTICE-R’S DECIDABILITY

This section is a rather detailed presentation of the decidability of LLRc. The de-
cidability of LR was proved by Meyer in 1966 [36]. The addition of the zero-ary
constants is not a huge extension of that result, and it has a certain resemblance to the
extension of the decidability result for R→ proved by Kripke in 1959 [30] to a proof
of the decidability of Rt

→ in Bimbó and Dunn [13].
A core idea is to define a contraction-free sequent calculus that allows the proof of

the same sequents as LLRc does. This sequent calculus must be orderly, that is, the
cut theorem has to hold for it, and cut-free proofs must have the subformula property.
Then, we build a proof-search tree, which can be shown to be finite.

Definition 11. The sequent calculus [LLRc] is defined by the following axioms and
rules. (Sequents are as before, and the bracket notation is explained below. This use
of brackets motivates the label [LLRc] for the calculus.)

α;F ` β F` A `A id α ` T;β `T

f ` f`
α ` β

α ` f;β
`f

α ` β
α; t ` β

t` ` t `t

α;A ` β
[α;A∧B] ` β

[∧`1]
α;B ` β

[α;A∧B] ` β
[∧`2]

α ` A;β α ` B;β
α ` [A∧B;β ]

[`∧]
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α;A ` β α;B ` β
[α;A∨B] ` β

[∨`]
α ` A;β

α ` [A∨B;β ]
[`∨1]

α ` B;β
α ` [A∨B;β ]

[`∨2]

α ` A;β
[α;∼A] ` β

[∼`]
α;A ` β

α ` [∼A;β ]
[`∼]

α;A;B ` β
[α;A◦B] ` β

[◦`]
α ` A;β γ ` B;δ
[α;γ] ` [A◦B;β ;δ ]

[`◦]

α;A ` β γ;B ` δ
[α;γ;A+B] ` [β ;δ ]

[+`]
α ` A;B;β

α ` [A+B;β ]
[`+]

α ` A;β γ;B ` δ
[α;γ;A→B] ` [β ;δ ]

[→`]
α;A ` B;β

α ` [A→B;β ]
[`→]

Bracketing happens in three kinds of situations.
1. A parametric multiset is joined with the principal wff of a rule.
2. Two parametric multisets are joined with the principal wff of a rule.
3. Two parametric multisets are joined (without the addition of the principal wff

of a rule).
Situations of type 1 occur in all the ∧, ∨ and ∼ rules, as well as in [◦`], [`+] and

[`→]. Situations of type 2 and 3 occur in the rules [`◦], [+`] and [→`] — on one
or another side of the turnstile.

Definition 12. The bracketing indicates the following potential contractions — with-
out a total loss of a wff, of course — in the respective multisets. None of the contrac-
tions is mandatory, that is, any rule can be applied without contraction, if desired.

1. The principal wff may be contracted once, if it already occurs in the parametric
multiset.

2. The principal wff may be contracted once or twice, if it already occurs in one
or both parametric multisets, respectively. A parametric wff may be contracted
once, if it occurs in both parametric multisets.

3. A wff may be contracted once, if it already occurs in both parametric multisets.

Theorem 13. (Cut theorem for [LLRc]) The cut rule is admissible in [LLRc].

Proof. The proof can be carried out more or less along similar lines as the proof of
Theorem 2. However, instead of dealing with the contraction rules separately, we
have to verify that all the contractions, which could be carried out in a given proof,
can be carried out in the transformed proof too. As a sample transformation, we give
a transformation where ρ , the rank is minimal and the cut formula is a conjunction.

α

...
` A;β α

...
` B;β

α ` A∧B;β
γ;A

...
` δ

γ;A∧B ` δ
[α;γ] ` [β ;δ ]

 α

...
` A;β γ;A

...
` δ

[α;γ] ` [β ;δ ]
Since A∧B does not occur in β or γ due to the assumption about the rank, any
contraction must be part of the cut. All such contractions can be performed as part of
the cut in the new proof. (We omit the rest of the details.) /
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We state the obvious claim that is a consequence of the fact that any implicit con-
traction in [LLRc] is replicable by explicit contractions in LLRc.

Lemma 14. If A is a theorem of [LLRc], then A is a theorem of LLRc.

Next, we want to make sure that hiding the contractions in the connective rules
does not diminish the capacity of the calculus with respect to proving theorems.

Lemma 15. (Curry’s lemma for [LLRc]) If α ` β has a proof in [LLRc] with
the height of the proof tree being n, and γ ` δ results from α ` β by one or more
applications of the rules (W `) and (`W ), then γ ` δ has a proof in [LLRc], where
the height of the proof tree is not greater than n (i.e., it is ≤ n).

Proof. This is a core lemma for decidability, hence, we give more details here. The
base case concerns proofs of height 1.
1. The axioms (id), (` t) and ( f`) do not have instances to which a contraction rule
could be applied; hence, the claim is true.

If the proof is an instance of (F`), then it can be the case that F is the principal
formula of (W `) or some other wff may have multiple copies in α or in β . However,
a contraction on the left cannot lead to F being dropped altogether on the left-hand
side of the ` . For instance, α ′;F;F;A;A`B;B;β ′ is an instance of the axiom, but so
is α ′;F;A` B;β ′. The case of (`T) is similar, modulo T occurring on the right-hand
side of the ` .
2. The rest of the cases make up the inductive step. There are three kinds of rules in
[LLRc]. First, some rules have no contraction built in. The second group of rules has a
type 1 situation on one side of the ` and no contraction on the other side. Most rules
are like this. Lastly, in three rules, there can be contraction hidden on both sides, one
like type 2, the other like type 3. The concrete shape of the principal formula is really
indifferent in this proof (though it is specific in each rule). Hence, we exemplify each
case by detailing the step for one rule.
2.1. We will scrutinize the rules for the zero-ary constants, since, those rules (or the
constants themselves) are not included in [36]. (We of course know that t does not
cause a problem in [LRt

→], as we had shown in Bimbó and Dunn [12].)
If the constant is a wff that could be contracted, then the application of the rule

may be omitted. Any other contraction must involve parametric formulas, hence, the
new proof is guaranteed to exist by the inductive hypothesis. Here is what happens in
the case of the (`f) rule; the (t`) rule behaves dually. (We only make explicit two
pairs of parametric formulas and we assume that B is not f. However, it should be
clear that having more parametric formulas that could be contracted, or having them
only on one side or having more copies of one particular formula does not change the
general structure of this step in the proof.)

α ′;A;A
...
` B;B;β ′

α ′;A;A ` f;B;B;β ′

i.h. α ′;A
...
` B;β ′

α ′;A ` f;B;β ′

α ′;A;A
...
` f;B;B;β ′

α ′;A;A ` f; f;B;B;β ′
i.h. α ′;A

...
` f;B;β ′

2.2. In this situation, some duplicates of parametric formulas could be contracted, and
additionally, the rule allows the contraction of the principal formula too, provided that
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it already occurred among the parametric formulas. The former sort of contraction
can be dealt with by appeal to the inductive hypothesis, whereas the latter sort of
contraction can result from the application of the same rule (to the new premise). As
an illustration, we consider one of the [`∨] rules; the other rules are similar.

α ′;A;A
...
` B;B;D;C ∨D;β ′

α ′;A;A ` [B;B;C ∨D;C ∨D;β ′]

i.h. α ′;A
...
` B;D;C ∨D;β ′

α ′;A ` [B;C ∨D;C ∨D;β ′]
2.3. The last situation is just a notch more complicated, primarily, due to the need to
keep track of where the wff’s that could be contracted come from. As an illustration,
we choose the [+ `] rule and we will assume that all the contractable formulas have
been made explicit — with distinct letters standing for distinct formulas. (Adding
more wff’s only expands the size of the sequents, but it does not alter the proof step in
a crucial way.) Thus, instead of the bracket notation, we write multisets in the lower
sequents.
γ;A;A+B;C;E ;E

...
` D;δ ε;B;A+B;C

...
` G;G;D;η

γ;ε;A+B;A+B;A+B;C;C;E ;E ` G;G;D;D;δ ;η

i.h. 

γ;A;A+B;C;E
...
` D;δ ε;B;A+B;C

...
` G;D;η

γ;ε;A+B;C;E ` G;D;δ ;η
It is easy to verify that the height of the new proof tree in 2.1.–2.3. is not greater (in

some cases, strictly less) than the height of the original proof tree. /

Cognate sequents are often defined for sequents that comprise a pair of sequences
of formulas. However, the definition straightforwardly transfers to sequents based on
pairs of multisets.

Definition 16. (Cognate sequents) The sequents α ` β and γ ` δ are cognate iff
(1) and (2) hold for any formula A.
(1) A occurs in α iff it occurs in γ . (2) A occurs in β iff it occurs in δ .

The number of occurrences is not mentioned in the definition at all, which reflects
the idea that if we would view sequents as pairs of sets, then cognation means that the
set-view turns the antecedents and succedents, respectively, into the same set.

Lemma 17. (Kripke’s lemma for cognate sequents) A sequence of distinct cog-
nate sequents, in which, if αn ` βn precedes αm ` βm, then the former does not result
by one or more contractions of wff’s in αm ` βm, is finite.

A possibly easier-to-understand phrasing of the lemma is in terms of natural num-
bers. Let a finite fixed set of prime factors be given, let us say, {2,5,13}. Contraction
is the reduction of an exponent by 1, for instance, 26 · 56 · 134 is a contraction of
27 · 56 · 134. Then, a sequence of distinct natural numbers over the set of fixed prime
factors (all with positive integer exponents), in which earlier numbers are not (single
or multiple) contractions of later numbers, is finite.10

10Kripke’s lemma is equivalent to lemmas from other parts of mathematics, e.g., to Dickson’s lemma
in number theory. The truth of none of these equivalent lemmas has been questioned. The connection to
Dickson’s lemma was discovered by Meyer, as noted in [18] and also in its expanded version [20]. (Both
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Proof. We note that Kripke’s lemma is not specific to the language of a logic, that is,
it does not matter what connectives occur in the formulas. The numerical illustration
clearly hints toward this. A proof of Kripke’s lemma may be found in Anderson and
Belnap [2, §13], (and we do not repeat that proof here). /

Another lemma that is general, in the sense that the shape of the components in the
structure is unimportant, is Kőnig’s lemma about trees. Finite branching or finite fork-
ing means that no node has infinitely many children, whereas having finite branches
means that every maximal path is finite.

Lemma 18. (Kőnig’s lemma) A tree with finite branching and with finite branches
is finite.

Proof. A detailed proof of this lemma may be found in Smullyan [41], for example,
and we do not repeat that proof here. /

Now we can put together the latter two lemmas with some facts about [LLRc] to
obtain the decidability of [LLRc], thereby, of LLRc.

Theorem 19. (Decidability for LLRc) The logic LLRc is decidable.

Proof. To start with, we note that each formula in the language of [LLRc] has finitely
many subformulas (under the usual understanding of subformulas), hence, finitely
many proper subformulas. For example, if a sequent is by the (∧`) rule, then there
are only two possible choices as to what the subaltern in the premise could be.

Finiteness obtains in other respects too. Each sequent contains finitely many for-
mulas, each occurring finitely many times. Given a sequent and fixating on a rule
that could have resulted in that sequent, there are finitely many contractions that could
have been part of the application of that rule.

The cut theorem provides the assurance that every theorem has a cut-free proof.
Let us assume that a wffA is given. We construct a proof-search tree to determine if

A is or is not a theorem of [LLRc]. The proof-search tree has two important properties,
namely, it is a finite tree, and if the given formula is a theorem, then the proof-search
tree contains a subtree that is a proof of the formula in the root sequent.

The proof-search tree is built from the bottom to the top by “backward applications
of the rules.” The root of the tree is the sequent ` A. By “backward applications of
rules” we mean the consideration of potential rules (and their premises), the applica-
tions of which could result in the sequent in a given node. We may assume that the
potential premises are arranged into an ordered set of leaves, and on each level we
proceed from left to right — taking a node after another one, and trying to expand
the tree with new nodes (forming a new level in the tree). For a node in the tree, we
consider which rules could have been applied and what the premises would be. We
add all those premises as children of the given node (i.e., as new leaves) to the tree
as long as they do not violate the condition in Kripke’s lemma. Then we move on to
consider the next node.

contain a persuasive visualization of a concrete instance of the lemma; so does [9, §9.1].) See also Riche
and Meyer [38] and Kopylov [29].
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A theorem A has a cut-free proof in [LLRc], hence, the exhaustive search through
all the possible rules and potential premises guarantees that a proof is constructed
within the proof-search tree (if the formula is a theorem). On the other hand, the tree
is finite, because of the already mentioned finiteness properties together with Kripke’s
and Kőnig’s lemmas. Finally, the equivalence of LLRc and [LLRc] with respect to
provable sequents guarantees that no theorems are misclassified as unprovable when
we use [LLRc] in the proof search. /

4. MODALITIES ADDED TO LLRc

Modalities could be added explicitly to LLRc, indeed, �’s addition to LR was con-
sidered in [36]. A way to proceed is to consider some usual rules for �, and their
duals for ♦ together with the connecting rules from Kripke [31], which allow us to
prove versions of the so-called modal De Morgan laws for the two modalities.

Definition 20. The sequent calculus LLR♦� is defined by the axioms and rules of LLRc

and the following rules.
α;A ` β

α;�A ` β
�`

�α ` A;♦β
�α `�A;♦β

`�
�α;A ` ♦β
�α;♦A ` ♦β

♦`
α ` A;β

α ` ♦A;β
`♦

�α (♦α) is a multiset in which the main connective of each formula is � (♦). The
notions of a proof and of a theorem are as for LLRc.

There is an obvious similarity between these rules and the ( ! `), (` !), ( ? `) and
(`?) rules in LCLL (cf. Definition 6). The analogy suggests taking ! to be�, and ? to
be ♦, and this translation is very tempting. However, � and ♦ have deeply engraved
connotations in the presence of ∧ and ∨. Especially, under the alethic reading of the
connectives, it seems plausible that A is necessary and B is necessary exactly when
A∧B is necessary. In LLR♦�, it is not too difficult to prove half of this, namely, the
sequent �(A∧B) `�A∧�B, and dually, the sequent ♦A∨♦B ` ♦(A∨B). More-
over, neither proof requires an application of any structural rule. In other words, if we
were to omit (W `) and (`W ), the sequents would remain provable. We denote by
LLRW the contraction-less sequent calculus derived from LLRc; its modalized version
will be denoted by LLRW♦�.

Of course we know, though we have not yet stated it, that the cut theorem holds
for LLR♦�; moreover, that this logic is decidable too. Nonetheless, after some proof
attempts, one might convince oneself that �A∧�B ` �(A∧B) is not provable not
only in LLRW♦� but in LLR♦� either. The analog sequent !A∧ !B ` !(A∧B) is not
provable in LCLL. This formula provides an example of how the proof of Theorem 10
proceeds. If (t∧A)∧ (t∧B) ` t∧ (A∧B) would not be provable in LLRc, then we
could immediately conclude that !A∧ !B ` !(A∧B) is not provable in CLL. How-
ever, the translation is provable in LLRc, and so a proof search has to be carried out
in [LLRc] taking into account all the constraints from Theorem 10. The proof search
does not produce a proof, therefore, we may conclude that the sequent is not provable
in CLL. We return to the provability of �A∧�B `�(A∧B) in the next section, but
now we turn to what is provable in LLR♦�.

The following four formulas are theorems of LLR♦�, and (R4) is the rule of “neces-
sitation.” (We omit the details of the proofs, which are straightforward.) (A18)–(A21)
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look like the earlier wff’s (1)–(4), in which � and ♦ were defined connectives. By
numbering these formulas and the rule consecutively, we indicate that HLR♦� may be
defined from HLRc by these additions.
(A18) �(A→B)→ (�A→�B) (A20) �A→��A
(A19) �A→A (A21) (♦A→∼�∼A)∧ (∼�∼A→ ♦A)

(R4) ` A implies `�A
The cut theorem is true of LLR♦�, which facilitates the proof of the equivalence of

the sequent and axiomatic formulations as well as the proof of decidability.

Theorem 21. (Cut theorem for LLR♦�) The cut rule is admissible in LLR♦�.

Proof. The proof proceeds as usual. An important observation is that in the transfor-
mations of proofs no other rules are used than those already used. /

The modalities do not appear to be too intricate — even if they do not have all
the usual properties that � and ♦ have in S4. The latter logic (more precisely, the
propositional part of S4) is known to be decidable. Therefore, we may wonder whether
we can adapt and extend the proof of the decidability of LLRc to LLR♦�.

Definition 22. We define the sequent calculus denoted as [LLR♦�] by taking [LLRc],
and by adding the following connective rules for the modalities.

α;A ` β
[α;�A] ` β

[�`]
�α ` A;♦β
�α `�A;♦β

`�
�α;A ` ♦β
�α;♦A ` ♦β

♦`
α ` A;β

α ` [♦A;β ]
[`♦]

We assume some earlier notions and notational conventions in an obvious way.
Two of the rules have no bracketing at all, whereas the two others are of type 1.

Theorem 23. (Cut theorem for [LLR♦�]) The cut theorem is admissible in [LLR♦�].

Proof. The proof proceeds as usual.11 Here is a sample case from the transformation,
where �C is the cut formula. If ρ = 2, then �C could not have been contracted
in [� ` ].

�α

...
` C;♦β

�α `�C;♦β
γ;C

...
` δ

γ;�C ` δ
[�α;γ] ` [♦β ;δ ]

 �α

...
` C;♦β γ;C

...
` δ

[�α;γ] ` [♦β ;δ ]
If the right rank ρr > 1 and all the contractions in the original proof resulted from

the application of the cut, then the above transformation suffices. Otherwise, that is, if
�C, the principal formula of the [� ` ] rule, was contracted as part of the application
of the rule, then we consider the number of occurrences of �C in γ . If there are
several occurrences in γ , then we permute the applications of the cut rule and of the
[� ` ] rule. If there is only one occurrence of �C, then beyond the permutation, we
also include a cut on the subaltern (which is of lower degree than �C). Here are the
resulting chunks of the proof. (n ∈ N and n > 1.)

�α
···
` C;♦β

�α `�C;♦β γ ′;(�C)n;C
...
` δ

[�α;γ ′;(�C)n−1;C] ` [♦β ;δ ]
[�α;γ ′;(�C)n−1] ` [♦β ;δ ]

11Some details of a related proof are given in [8, §2].
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�α

...
` C;♦β

�α

...
` C;♦β

�α `�C;♦β γ ′;�C;C
...
` δ

[�α;γ ′;C] ` [♦β ;δ ]
[�α;γ ′] ` [♦β ;δ ] /

Next, we prove Curry’s lemma, which is sometimes called the height-preserving
admissibility of contraction.

Lemma 24. (Curry’s lemma for [LLR♦�]) If α ` β has a proof in [LLR♦�] with
the height of the proof tree being n, and γ ` δ results from α ` β by one or more
applications of the rules (W `) and (`W ), then γ ` δ has a proof in [LLR♦�], where
the height of the proof tree is not greater than n (i.e., it is ≤ n).

Proof. The proof of this lemma seamlessly incorporates the proof of Lemma 15. We
have four new rules — compared to [LLRc]. Two of those do not permit contractions,
hence, any contractions that could be applied to the lower sequent of those rules are
guaranteed to exist by the hypothesis of the induction. We consider the remaining two
rules, which expand case 2.2.
2.2. If the last rule applied in the given proof is [�` ], then �A may be contracted,
provided that it already occurs in the antecedent, that is, in α . We consider B and C
as other wff’s that potentially could be contracted. The following is an illustration of
a representative case, though concretely, there might be fewer or more formulas that
could be contracted.

α ′;B;B;�A;A
...
` C;C;β ′

[α ′;B;B;�A;�A] ` C;C;β ′

i.h. α ′;B;�A;A
...
` C;β ′

[α ′;B;�A;�A] ` C;β ′

B and C can be contracted above the application of the [� ` ] rule, by the inductive
hypothesis, and α ′;B;�A can be obtained using [� ` ].

If the last rule applied in the proof is [`♦ ], then we have a dual situation. Here is
the given segment, and the new chunk.

α ′;A;A
...
` B;♦B;C;C;β ′

α ′;A;A ` [♦B;♦B;C;C;β ′]

i.h. α ′;A
...
` B;♦B;C;β ′

α ′;A ` [♦B;♦B;C;β ′]

Clearly, the height of the proof tree does not increase in either case. /

Theorem 25. (Decidability for LLR♦�) The logic LLR♦� is decidable.

Proof. The proof of this theorem proceeds like the proof of Theorem 19. We have two
sequent calculuses, [LLR♦�] and LLR♦�, in which the same theorems are provable.
Additionally, we have proved Curry’s lemma for [LLR♦�]. The whole structure of the
proof is the same as before, that is, it is through performing an exhaustive search in a
finite search space. /



Katalin Bimbó and J. Michael Dunn: Modalities in Lattice-R 107

5. LOGICS IN THE NEIGHBORHOOD OF LR♦�

If we keep the four connective rules for ♦ and � fixed, then we may wonder
about the effects of the inclusion of the contraction or the thinning rules, or of their
modalized versions (like those in CLL). In particular, the next proof suggests the
usefulness of the modalized thinning rules with LLR♦�. We labeled the steps where

�K`
A `A
A;�B ` A
�A;�B ` A

B ` B
�A;B ` B �K`

�A;�B ` B
�A;�B ` A∧B
�A;�B `�(A∧B)

�A;�A∧�B `�(A∧B)
�A∧�B;�A∧�B `�(A∧B)

�A∧�B `�(A∧B) W `

FIGURE 1. A proof of the distributivity of � over ∧

structural rules (modalized or plain ones) are applied. The proof sort of “explains”
why the bottom sequent is not provable in LLR♦� or in LCLL (with ! instead of �
in other notation). The logic LLR♦� has no thinning (except for t and f), whereas
LCLL does not have plain contraction. More contemplation of the proof allows us to
conclude that !A⊗ !B ` !(A&B) is provable in LCLL because of ( !K `), hence,
�A◦�B `�(A∧B) is provable in LBCK♦�, for example.

LBCK♦� is LLRW♦� with left and right thinning rules. The letters B, C and K are
motivated by the provability of the principal (simple) type schemas of the combinators
B, C and K in the implicational fragment of LBCK♦�. If we add modalized contraction
rules, then we get LBCK♦�

�♦W , which is also known as affine linear logic, and it had been
proved decidable by Alexei P. Kopylov, in 1995 (see [29]), using normal sequents
and vector games. We give a new proof of the decidability of LBCK♦�

�♦W (which is
conceptually different), in the second half of this section. Our proof shows that the
modalization of the contraction rules does not destroy decidability. (The modalization
of the thinning rules is absolutely unproblematic.)

The converse of the previously considered sequent, !(A&B) ` !A⊗ !B is also
provable in LCLL, because of ( !W `), hence, �(A∧B) ` �A◦�B is provable in
LLR♦�. Thus, some of the prototypical sequents provable in LCLL are the next four
ones (where α a` β indicates that both α ` β and β ` α are provable).

!A⊗ !B a` !(A&B) !( !A& !B) a` !(A&B)
The proof in Figure 1 also shows that the distribution of � over ∧ is provable in

LLR♦�
�♦K , that is, LLR♦� extended with a pair of modalized thinning rules. (We pointed

out on page 104 that the sequent �(A∧B) `�A∧�B is always provable.)
Figure 2 (below) shows seven logics that we consider in varying details. The arrows

indicate that the set of axioms and rules of a logic is a proper subset of the set of axioms
and rules of another one (assuming the identity translation throughout). As a result,
inclusions between sets of theorems of those logics also obtain, and they can be shown
to be proper.
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LK♦�

LLR♦�
�♦K LBCK♦�

�♦W

LLR♦� LCLL LBCK♦�

LLRW♦�

FIGURE 2. Seven logics with modalities

For the sake of clarity, the non-modalized thinning rules are the following rules:
α ` β

α;A ` β
K`

α ` β
α ` A;β

`K

The subscripts �♦K and �♦W in the labels of some logics indicate the addition of a
pair of the modalized structural rules (�K `) and (` ♦K), or (�W `) and (` ♦W ).

Definition 26. The modalized thinning and contraction rules are as follows.
α ` β

α;�A ` β
�K`

α ` β
α ` ♦A;β

`♦K
α;�A;�A ` β

α;�A ` β
�W`

α ` ♦A;♦A;β
α ` ♦A;β

`♦W

First of all, we should note that LK♦� is a baroque logic, because it has duplicate
symbols for two of its connectives, namely, for ∧ and ∨ (or for ◦ and +). The two
pairs of the zero-ary constants also match as T and t, and F and f. Furthermore, they
are definable by the lattice connectives and ∼. Unlike in the six other logics, ∧ and
∨ distribute over each other. In sum, LK♦� is classical logic with � and ♦, which are
S4-type modalities; that is, LK♦� is a notational variant of S4.

Normality means that ♦ preserves F, or dually, T→ �T is a theorem. It is not
difficult to check that if (`K) and (K`) are in one of those logics, then both obtain,
and vice versa. Thus, normality is a feature of modalities already in LBCK♦�. The
modal operators are monotone, and this is their feature in all seven logics. The proof of
additivity of ♦ requires contraction and (modalized) thinning, whereas the normality
of ♦, as we already mentioned, requires thinning. Thus, the modalities have some
S4ish properties — reflected by (A18)–(A21) and (R4) — in all seven logics, but ♦ is
normal and additive, and � has the dual of both properties only in LK♦�.

Propositional S4 is known to be decidable, and this remains true the duplicate sym-
bols notwithstanding. The decidability of LLRW♦� and of LBCK♦� is immediate (be-
cause neither calculus has any contraction rules), and we have shown that LLR♦� is
decidable. Three other logics are left to consider. First, we focus on LLR♦�

�♦K and
LBCK♦�

�♦W , then we turn to LCLL.
The sequent calculus [LLR♦�

�♦K] is an extension of the sequent calculus [LLR♦�] by
the two modalized thinning rules. There is no contraction included in those rules.
The rationale is the same as with the (t `) and (` f) rules, which may be viewed as
special thinning rules. Namely, if the principal formula would be contracted, then an
application of the rule may be simply omitted.

Theorem 27. (Cut theorem for [LLR♦�
�♦K]) The cut rule is admissible in [LLR♦�

�♦K].
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Proof. The proof extends the proof of the cut theorem for [LLR♦�]. We consider one
new case in detail, when ρ = 2 and the right premise is by (�K`) and �C is the cut
formula. The transformation ensures that �C (occurring in the succedent of the left
premise) disappears without an application of the cut rule.

�α

...
` C;♦β

�α `�C;♦β
γ

...
` δ

γ;�C ` δ
[�α;γ] ` [♦β ;δ ]

 

γ

...
` δ

�α;γ ` δ
[�α;γ] ` [♦β ;δ ]

The case, in which the pair of rules is 〈(`♦K),(♦`)〉, is the dual of this.
If the principal formula of the modalized thinning rules does not coincide with the

cut formula, then the cut may be permuted upward without difficulty, because there
are no side conditions on the applicability of the modalized thinning rules. (We omit
the remaining details.) /

The cut theorem ensures the subformula property in cut-free proofs. The following
lemma is preeminent for decidability.

Lemma 28. (Curry’s lemma for [LLR♦�
�♦K]) If α ` β has a proof in [LLR♦�

�♦K]
with the height of the proof tree being n, and γ ` δ results from α ` β by one or more
applications of the rules (W `) and (`W ), then γ ` δ has a proof in [LLR♦�

�♦K], where
the height of the proof tree is not greater than n (i.e., it is ≤ n).

Proof. Once again, we suppose the proof for the logic [LLR♦�]. We have to extend
the inductive step, namely, case 2.2. There are two new rules, and we consider each.
2.2. Let us assume that there are some parametric wff’s,A and B, which have multiple
occurrences that could be contracted, but�C, the principal formula of the (�K`) rule
is not among the contractable formulas. Then we have the following.

α ′;A;A
...
` B;B;B;β ′

α ′;A;A;�C ` B;B;B;β ′

i.h. α ′;A
...
` B;β ′

α ′;A;�C ` B;β ′

It could happen that�C already has some occurrences in the premise. Although the
rule does not have any built-in contraction, the resulting sequent could be contracted.
Here is an example.

α ′;A;A;A;�C;�C
...
` B;B;β ′

α ′;A;A;A;�C;�C;�C ` B;B;β ′
i.h. α ′;A;�C

...
` B;β ′

Dually, we have two possibilities with the (`♦K) rule. (We use two copies of A
and B in these proof segments.)

α ′;A;A
...
` B;B;β ′

α ′;A;A ` ♦C;B;B;β ′

i.h. α ′;A
...
` B;β ′

α ′;A ` ♦C;B;β ′

α ′;A;A
...
` ♦C;B;B;β ′

α ′;A;A ` ♦C;♦C;B;B;β ′
i.h. α ′;A

...
` ♦C;B;β ′

The height of the proof does not increase in any of the cases. /
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Theorem 29. The logic [LLR♦�
�♦K] is decidable.

Proof. The proof proceeds as before, hence, we skip the details here. /

The sequent calculus LBCK♦�
�♦W is defined by adding the modalized contraction

rules to LBCK♦�, and it differs from LK♦�, which has non-modalized contractions.
As we noted, LK♦�’s language could be simplified, however, for our purposes now
it is useful to retain both the extensional (i.e., lattice) connectives and the intensional
(including the modal) connectives.

We have noted also that LK♦� is decidable. In particular, the decidability of LK♦�

can be proved along the lines of the decidability proofs of LLR♦� and LLR♦�
�♦K . The

presence of thinning (modalized or plain) does not constitute a problem at all, because
it does not even require contraction to be built into the thinning rules in the contraction-
free version of the sequent calculus. [LK♦�] is defined as [LLR♦�] with the full left
and right thinning rules added. Definition 8 does not mention (explicitly) a calculus,
hence, we may use the same notion here with the assumption that the heap numbers
for LBCK♦�

�♦W are calculated from the Curry–Kripke decision procedure for LK♦�.

Theorem 30. The logic LBCK♦�
�♦W is decidable.

Proof. Given a wff A, we can determine if the wff is a theorem of LK♦�; if it is not,
thenA is not a theorem of LBCK♦�

�♦W either. On the other hand, we can also determine
if A is a theorem of LBCK♦�; if it is, then it is a theorem of LBCK♦�

�♦W too. We apply
a proof search procedure to the remaining wff’s.

We construct a proof-search tree in LBCK♦�
�♦W taking into account the heap numbers

for the subformulas ofA as upper bounds on the number of applications of the (�W `)
and (`♦W ) rules. The resulting tree will be finite, because there are no other contrac-
tions than those that are instances of the modalized contraction rules, and the number
of their applications is bounded by the heap numbers, which are finite numbers. /

6. THE DECIDABILITY OF LINEAR LOGIC

We have already proved that classical linear logic (CLL) is decidable — as The-
orem 10. CLL has a certain familiarity to many people, and it had been claimed to
be undecidable in [35] (see Theorem 3.7) and in [28] (see Corollaries 5.5 and 5.7)
We think though that those proofs fall short of establishing the undecidability of CLL.
Since the undecidability of CLL is widely believed in the computer science commu-
nity, we give a more direct proof (than the previous proof) for the decidability of CLL.

To make the reading of this proof easier for those in the linear logic community,
we define a sequent calculus, which we call [[[LCLL]]], and we use Girard’s notation.
[[[LCLL]]] is not classical linear logic though. (A careful reader will recognize this logic
as [LLR♦�

�♦K] in non-standard notation.)
The notion of a sequent is as before; a sequent is a pair of multisets of wff’s sepa-

rated by `. We use both single and double bracketing in this calculus for permissible
contractions that are built into the operational rules. For some purposes the single and
the double bracketing might be treated as the same (just blur your vision). But as we
shall explain after we state the rules, the double brackets sometimes mark a crucial
distinction.
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Definition 31. [[[LCLL]]] comprises the following axioms and rules.

α;0 ` β 0` A `A id α ` >;β `>

⊥ ` ⊥`
α ` β

α ` ⊥;β
`⊥

α ` β
α;1 ` β

1` ` 1 `1

α;A ` β
[α;A&B] ` β

[&`1]
α;A ` β

[α;B&A] ` β
[&`2]

α ` A;β α ` B;β
α ` [A&B;β ]

[`&]

α;A ` β α;B ` β
[α;A⊕B] ` β

[⊕`]
α ` A;β

α ` [A⊕B;β ]
[`⊕1]

α ` A;β
α ` [B⊕A;β ]

[`⊕2]

α ` A;β
[α;A⊥] ` β

[⊥`]
α;A ` β

α ` [A⊥;β ]
[`⊥]

α;A;B ` β
[α;A⊗B] ` β

[⊗`]
α ` A;β γ ` B;δ
[[α;γ]] ` [[A⊗B;β ;δ ]]

[[`⊗]]

α;A ` β γ;B ` δ
[[α;γ;A`B]] ` [[β ;δ ]]

[[``]]
α ` A;B;β

α ` [A`B;β ]
[``]

α ` A;β γ;B ` δ
[[α;γ;A( B]] ` [[β ;δ ]]

[[(`]]
α;A ` B;β

α ` [A( B;β ]
[`(]

α;A ` β
[[α; !A]] ` β

[[ ! `]]
!α ` A; ?β

!α ` !A; ?β
` !

!α;A ` ?β
!α; ?A ` ?β

?`
α ` A;β

α ` [[ ?A;β ]]
[[` ?]]

α ` β
α; !A ` β

!K `
α ` β

α ` ?A;β
` ?K

To start with, the brackets (whether single or double) indicate optional contractions
as in Definition 12. Then [[[LCLL]]] is equivalent to [LLR♦�

�♦K]. We may weaken the
logic in two different ways, each time getting CLL. First, we may forget about all the
brackets and add the rules (�W `) and (`♦W ) (with ! for� and ? for ♦). This is the
calculus that we denote by LCLL. Second, we can omit the single brackets and change
the meaning of the double brackets as follows.

2. If !A occurs both in α and γ , then it may be contracted in [[α;γ]]. Dually, if
?A occurs both in β and δ , then it may be contracted in [[β ;δ ]]. The principal
formula cannot be involved in the contraction.

3. In [[ ! `]] and [[` ?]], !A and ?A may be contracted, respectively, if it occurs in
α and β .

Obviously, the scope of [[ ]] could be made narrower in the rules where the main
connective of the principal formula of the rule is binary. We denote the logic obtained
by omitting the single brackets as [[LCLL]].
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Now we prove some useful theorems about the calculus [[LCLL]]. Namely, every
theorem of LCLL is a theorem of [[LCLL]], and every theorem of [[LCLL]] has a cut-free
proof (by Lemma 32). A suitable version of Curry’s lemma (Lemma 33) holds too.

Lemma 32. (Cut theorem for [[LCLL]]) The cut rule is admissible in [[LCLL]].

Proof. The proof is by double induction on the rank of the cut and the degree of the
cut formula. The rank of the cut (ρ) is defined as in Gentzen [22], and the degree of
the cut formula (δ ) is the number of unary and binary logical connectives in the cut
formula. We divide the cases within the induction into four groups, and provide some
representative details.
I. Let δ = 0 and ρ = 2. The cut formula is (1) a propositional variable (e.g., p), (2)
1, (3) ⊥, (4) > or (5) 0. None of these formulas can be thinned into a sequent by the
rules ( !K`) or (` ?K), hence, both premises are by an axiom or by a rule for 1 or ⊥.
There are various ways to count the subcases; either way there are several cases, and
it is straightforward to verify that the cut is directly eliminable. We give two sample
cases here.

` 1
α

...
` β

1;α ` β
α ` β

The proof of the premise of the application of the (1 `) rule is identical to the end
sequent, hence, the cut may be omitted altogether.

α ` β ;>; p p;0;γ ` δ
α;0;γ ` β ;>;δ

The end sequent is an instance of (0 `) and also of (`>), hence, both premises of the
cut (and the cut itself) may be omitted.
II. Let δ = 0 and ρ > 2, in particular, let ρl > 1. We note that the left premise cannot
be the result of an application of the (` !) or ( ? `) rules. Furthermore, if it is by a
rule for ⊥, ⊗, `, (, &, ⊕, 1 or ⊥, then the principal formula cannot be contracted
as part of the application of the cut. It is routine to check that the rule yielding the
left premise and the cut may be permuted, and the contractions included in the given
proof may be carried out after the rules have been swapped.

Let the left premise be by ( ! `). The given and the transformed proof segments are
as follows.

A;α

...
` β ; p

[[ !A;α]] ` β ; p p;γ

...
` δ

[[ !A;α;γ]] ` [[β ;δ ]]
 

A;α

...
` β ; p p;γ

...
` δ

[[A;α;γ]] ` [[β ;δ ]]
[[ !A;α;γ]] ` [[β ;δ ]]

If the application of the [[ ! ` ]] rule involved a contraction of !A, then the same con-
traction may be performed in the transformed proof too. (The case of [[` ? ]] is dually
similar.)

Let the left premise be by [[` ?K]]. The given and the transformed proof segments
are as follows.
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α

...
` β ; p

α ` β ; ?A; p p;γ

...
` δ

[[α;γ]] ` [[β ;δ ; ?A]]  

α

...
` β ; p p;γ

...
` δ

[[α;γ]] ` [[β ;δ ]]
[[α;γ]] ` [[β ;δ ; ?A]]

If ?A was contracted in the given proof as part of the application of the cut rule,
then the last step is omitted from the transformed proof. All other contractions can be
carried out as in the given proof.

[[LCLL]] is fully symmetric — save the( rules, which however, are unproblematic
— when the connectives are dualized. Thus, we leave the details of the ρr > 1 case to
the reader.
III. Let δ > 0 and ρ = 2. We distinguish two groups of subcases, namely, when one
of the premises is by (id) or by an axiom for > or 0, and when the two premises are
by matching rules. The case when a premise is A ` A is immediate. As an example,
we consider 〈(`>), [[ ! ` ]]〉.

α ` β ;>; !A
A;γ

...
` δ

!A;γ ` δ
[[α;γ]] ` [[β ;>;δ ]]

The bottom sequent is an instance of (`>), hence, the proof simplifies to that sequent.
If the principal formulas in the rules in the left and right premises have as their

main connective ⊥, ⊗, ` or (, then the transformed proof contains cuts on proper
subformulas of the principal formula. The principal formula may not be contracted
as part of the application of the cut rule in the given proof. Further, the parametric
formulas are combined in the transformed proof in the same way as in the given proof;
therefore, all the earlier contractions can be carried out. (We omit the details.)

There are four subcases with modalized cut formulas, because such formulas may
be introduced by thinning too. We consider two of these cases, and leave the two
others (which are duals) to the reader.

!α

...
` ?β ;A

!α ` ?β ; !A
A;γ

...
` δ

!A;γ ` δ
[[ !α;γ]] ` [[ ?β ;δ ]]

 !α

...
` ?β ;A A;γ

...
` δ

[[ !α;γ]] ` [[ ?β ;δ ]]

The transformation decreases the degree of the cut formula, and provides a possibility
for the same contractions as before.

α

...
` β

α ` β ; ?A
A; !γ

...
` ?δ

?A; !γ ` ?δ
[[α; !γ]] ` [[β ; ?δ ]]

 
α

...
` β

[[α; !γ]] ` [[β ; ?δ ]]
In the transformed proof, the double brackets simply indicate that the ( !K `) and
(` ?K) steps are applied only to build up the same sequent as the bottom sequent in
the given proof. (The thinning rules do not contain any contraction.) It may be useful
to point out that [[α; !γ]]( α and [[β ; ?δ ]]( β are not possible, hence, we are justified
to start the transformed proof with the premise α ` β .
IV. Let δ > 0 and ρ > 2, in particular, let ρl > 1.
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Most of the subcases in this case are similar to those in II. (We omit the details of
those cases, where the change amounts to replacing p with A.) Now an additional
possibility is that the left premise is by (` !) or ( ? `). The side conditions of the
rules together with ρl > 1 imply that the principal formula of either rule is not the cut
formula. We consider in detail the case when the left premise is by (` !); the other
rule may be dealt with similarly.

If ρr = 1, then the only possibility (beyond an axiom) is that the right premise is
by ( ? `).

!α

...
` ?β ; ?C;A

!α ` ?β ; ?C; !A
C; !γ

...
` ?δ

?C; !γ ` ?δ
[[ !α; !γ]] ` [[ ?β ; ?δ ; !A]]  !α

...
` ?β ; ?C;A

C; !γ

...
` ?δ

?C; !γ ` ?δ
[[ !α; !γ]] ` [[ ?β ; ?δ ;A]]
[[ !α; !γ]] ` [[ ?β ; ?δ ; !A]]

The transformation is justified by a decrease in ρl .
If ρr > 1, then the right premise cannot be by (` !) or ( ? `) due to the shape of the

cut formula and the side conditions in those rules. If the right premise is by a rule for
⊥, ⊗,(, `, 1 or ⊥, then the cut is moved upward and the transformation is justified
by a decrease in ρr.

The remaining possibilities are that the right premise is by [[ ! ` ]], [[` ? ]], ( !K `)
or (` ?K).

!α

...
` ?β ; ?C;A

!α ` ?β ; ?C; !A
?C;B;γ

...
` δ

[[ ?C; !B;γ]] ` δ
[[ !α; !B;γ]] ` [[ ?β ;δ ; !A]]  

!α

...
` ?β ; ?C;A

!α ` ?β ; ?C; !A ?C;B;γ

...
` δ

[[ !α;B;γ]] ` [[ ?β ;δ ; !A]]
[[ !α; !B;γ]] ` [[ ?β ;δ ; !A]]

!α

...
` ?β ; ?C;A

!α ` ?β ; ?C; !A
?C;γ

...
` δ ;B

?C;γ ` [[δ ; ?B]]
[[ !α;γ]] ` [[ ?β ;δ ; !A; ?B]]  

!α

...
` ?β ; ?C;A

!α ` ?β ; ?C; !A ?C;γ

...
` δ ;B

[[ !α;γ]] ` [[ ?β ;δ ; !A;B]]
[[ !α;γ]] ` [[ ?β ;δ ; !A; ?B]]

The transformations are justified by a reduction in ρr. All the earlier contractions
may be carried out in the new proof segments too. The next two cases are justified
similarly.

!α

...
` ?β ; ?C;A

!α ` ?β ; ?C; !A
?C;γ

...
` δ

?C; !B;γ ` δ
[[ !α; !B;γ]] ` [[ ?β ; !A;δ ]]

 

!α

...
` ?β ; ?C;A

!α ` ?β ; ?C; !A ?C;γ

...
` δ

[[ !α;γ]] ` [[ ?β ; !A;δ ]]
[[ !α; !B;γ]] ` [[ ?β ; !A;δ ]]

!α

...
` ?β ; ?C;A

!α ` ?β ; ?C; !A
?C;γ

...
` δ

?C;γ ` δ ; ?B
[[ !α;γ]] ` [[ ?β ;δ ; !A; ?B]]  

!α

...
` ?β ; ?C;A

!α ` ?β ; ?C; !A ?C;γ

...
` δ

[[ !α;γ]] ` [[ ?β ;δ ; !A]]
[[ !α;γ]] ` [[ ?β ;δ ; !A; ?B]]

This completes the proof of the admissibility of the cut rule in [[LCLL]]. /
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Lemma 33. (Curry’s lemma for [[LCLL]]) If α ` β has a proof in [[LCLL]] with
the height of the proof tree being n, and γ ` δ results from α ` β by one or more
applications of the rules ( !W `) and (` ?W ), then γ ` δ has a proof in [[LCLL]],
where the height of the proof tree is not greater than n (i.e., it is ≤ n).

Proof. The proof of this theorem is a straightforward extension of Curry’s lemma
for the multiplicative–exponential fragment of CLL with six cases added. (See Theo-
rem 14 in [8].) Namely, the basis of the induction is expanded to deal with (0 `) and
(`>), plus (& `), (` &), (⊕ `) and (` ⊕) are added to the inductive step. Each of
these is quite routine (and we omit the details).

From another point of view, we can start with the proof of Lemma 28. We consid-
ered (�K `) or (`♦K) there. Here we have to consider what happens if ( !K `) or
(` ?K) are the last rules applied in a proof. We assume that !A, !C, ?B and ?D are
(pairwise) distinct, and that the former two differ from elements of α ′, and the latter
two are not among the elements of β ′. We also assume that three is a representative
number for the general situation (and it also allows us to fit everything on a page).

Let us assume that the last rule is ( !K `). We have the following.

!C; !C; !C;α ′
...
` β ′; ?D; ?D; ?D

!A; !C; !C; !C;α ′ ` β ′; ?D; ?D; ?D

i.h. !C;α ′
...
` β ′; ?D

!A; !C;α ′ ` β ′; ?D
If the thinned in formula is the same as !C, then the application of ( !K `) may be

simply omitted like in

!C; !C; !C;α ′
...
` β ′; ?D; ?D; ?D

!C; !C; !C; !C;α ′ ` β ′; ?D; ?D; ?D
i.h. !C;α ′

...
` β ′; ?D.

The case of (` ?K) is dual to this. Here is what it looks like.

!C; !C; !C;α ′
...
` β ′; ?D; ?D; ?D

!C; !C; !C;α ′ ` β ′; ?D; ?D; ?D; ?B

i.h. !C;α ′
...
` β ′; ?D

!C;α ′ ` β ′; ?D; ?B

!C; !C; !C;α ′
...
` β ′; ?D; ?D; ?D

!C; !C; !C;α ′ ` β ′; ?D; ?D; ?D; ?D
i.h. !C;α ′

...
` β ′; ?D

Next, we note that in the proof of Lemma 24, we can restrict contractions to expo-
nential formulas. Then some of the cases disappear, whereas the others go through as
before. This completes the proof. /

Now we turn to the decidability proof for LCLL.

Theorem 34. Classical linear logic (CLL) is decidable.

Proof. Given a wff A, we narrow down the question whether the wff is a theorem of
LCLL by ensuring that A is not a theorem of LLRW♦�, and it is a theorem of [[[LCLL]]].
(If A is not within that range, then we already know whether it is a theorem of LCLL.
Namely, if A is a theorem of LLRW♦�, then it is a theorem of LCLL, and if A is not
a theorem of [[[LCLL]]], then it is not a theorem of LCLL.) The proof search in [[[LCLL]]]
generates all the irredundant proofs of A. By Definition 8, we calculate the heap
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numbers for the subformulas ofA. Then we start to build a proof-search tree in LCLL.
The root is the sequent ` A, and we expand the tree by scrutinizing each rule that
could result in the sequent in a particular node in the tree. If there is a possibility for
contractions then we add each possibility separately to the tree. However, we limit the
number of contractions on each formula by its heap number. The whole tree is finite
and if A is provable in LCLL, then the search tree will contain a proof. If A is not a
theorem, then we will find this out in finitely many steps, namely, when the (finite)
proof-search tree is completed without containing a proof. /

7. REMARKS ON “DECISION PROBLEMS FOR LINEAR LOGIC”

Lincoln et al. [35] present what they take to be a proof of the undecidability of what
we call “classical linear logic” (CLL) and they call “full propositional linear logic”
(or sometimes just “linear logic”). This paper is highly original and well-motivated,
exploiting the notion of linear logic as a “resource conscious logic.” The proof was
seemingly well-presented, and seemed to have convinced many people that CLL is
undecidable. But only the most naive logician thinks that something is a proof because
it is called a proof. Maybe, someday the dream will be fulfilled that all proofs will be
computer checkable, but for now, and even as proofs get more and more complicated,
we are largely dependent on human intelligence and a mixture of formal language,
natural language, and a sometimes conventional, sometimes creative, hybrid mixture
of the two. Unfortunately, and we are apologetic about this to Lincoln, Mitchell,
Scedrov and Shankar (all fine logicians), but we think that there are some mistakes
in their proof. We shall outline their proof both to help the reader (and ourselves)
understand the virtues of their attempt, and a flaw in the proof.

The rough idea of their proof is to reduce the question of the decidability of CLL to
the problem of the solvability of a question about certain finite automata, which they
introduce and call And-Branching Two-Counter Machines Without Zero-Test (ACM
for short). These are a variant of the more standard And-Branching Two-Counter Ma-
chines With Zero-Test. They ingeniously replace the Zero-Test with something they
call “Forking.” The corresponding question for the former is known to be unsolvable,
and they show that the halting problem for these two is the same. They then go on to
translate the question of the decidability of linear logic into the solvability of ACMs,
and use the fact that ACMs are unsolvable to show that LCLL is undecidable. The
“trick” is the translation between computations in ACMs and proofs in LCLL.

They start by defining (p. 261) a theory to be a finite set of axioms, and they define
an axiom to be “a linear logic sequent of the form `C, p⊥i1 , . . . , p⊥in , where C is a MALL
formula (a linear logic formula without ! or ?) and the remainder of the sequent is made
up of negative literals.”12 They make it clear that the negative literals are allowed to
be absent and that the restrictive form of axioms is due to their wanting to “achieve
strict control over the shape of a proof.”

They define that “a sequent `Γ is provable in T exactly when we are able to derive
`Γ using the standard set of linear logic proof rules, in combination with axioms from

12We use “ ; ” in the sequent calculus LCLL, but in this section we resort to “ , ” for easy comparison
with Lincoln et al. [35]. Incidentally, they use a one-sided sequent calculus, however, in the case of CLL,
this affects only the presentation.



Katalin Bimbó and J. Michael Dunn: Modalities in Lattice-R 117

T .” It is evident from context and from their Appendix B that they assume the cut rule
to be in the “standard set of linear logic proof rules,” just as [23] does. They go on to
Lemma 3.1 that states that cut can be replaced by what they call “directed cut.” They
make it clear that such a derivation would be just like a proof tree in linear logic except
that the leaves can be axioms from T , and not just the usual logical axioms ` pi, p⊥i .
Let us write T `LCLL Γ for ` Γ is provable from the theory T in LCLL. Note that
they explicitly define this notion only for the case of LCLL, not for its multiplicative-
additive fragment MALL. This is important, because later (p. 265) they say: “We
have just shown how a decision problem for MALL with the addition of nonlogical
axioms may be encoded in full propositional linear logic without nonlogical axioms.
Thus the upcoming proof of undecidability of MALL with nonlogical axioms will yield
undecidability for full propositional logic.”

Notice that here they talk about “MALL with the addition of nonlogical axioms,” but
this has not been really defined. They actually defined provability from T in LCLL. We
know this sounds like a picky point, and readily agree that we can make sense of MALL
theories as just the obvious variant of LCLL theories that does not allow applying the
rules for the exponentials. But they misdescribe what they showed. What they in
fact showed was how a decision problem for full propositional linear logic (not just
for the MALL fragment) with the addition of nonlogical axioms may be encoded in
full propositional linear logic without nonlogical axioms. However, they say (p. 260)
that “We now show that if nonlogical (MALL) axioms are added to MALL, the decision
problem becomes recursively unsolvable. We also show that nonlogical MALL axioms
may be encoded in full propositional linear logic without nonlogical axioms, and thus
we hve the result that full propositional linear logic is undecidable.”

Lemmas 3.2 and 3.3 each prove different directions of the following biconditional.
For any finite set of axioms T , T `LCLL Γ iff `LCLL [T ],Γ .

But they also seem to be saying (or tacitly implying) that
T `MALL Γ iff `LCLL [T ],Γ .

To understand these claims we need to understand [T ], which translates a theory
T = {t1, t2, . . . , tk} into a multiset of linear logic formulas ?[t1],?[t2], . . . ,?[tk], where
[ti] is the translation of the axiom ti into a single linear logic formula as follows. If ti
is `C, p⊥i1 , . . . , p⊥in , then [ti] is `C⊥⊗ pi1 ⊗·· ·⊗ pin .

Also, (p. 269) they say: “We give a translation from ACMS to linear logic with
theories and show that our sequent translation of a machine in a particular state is
provable in linear logic if and only if the ACM halts from that state. In fact our transla-
tion uses only MALL formulas and theories, thus with the use of our earlier encoding
Lemma 3.2 and 3.3, we will have our result for propositional linear logic without non-
logical axioms. Since an instantaneous description of an ACM is given by a list of
triples, it is somewhat delicate to state the induction we will use to prove soundness.”

Lincoln et al. use non-deterministic And-Branching Two-Counter Machines With-
out Zero-Test (ACMs). An ACM has a set of states Q, a finite set δ of transitions, and
initial and final states QI and QF .

Depending on the state Qi, the ACM can do various things. Thus, where A and B are
natural numbers in the first and second registers, the rules can add 1 to them, subtract
1 from them (unless they are 0 in which case the rule is not applicable), and move to
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the state Q j. Or the machine can continue computation from two states Q j and Qk,
using as inputs the values A,B in the current state Qi.

Rule Transition Translation
Qi Increment A Q j 〈Qi,A,B〉 7→ 〈Q j,A+1,B〉 ` q⊥i ,(q j⊗a)
Qi Increment B Q j 〈Qi,A,B〉 7→ 〈Q j,A,B+1〉 ` q⊥i ,(q j⊗b)
Qi Decrement A Q j 〈Qi,A+1,B〉 7→ 〈Q j,A,B〉 ` q⊥i ,a

⊥,q j

Qi Decrement B Q j 〈Qi,A,B+1〉 7→ 〈Q j,A,B〉 ` q⊥i ,b
⊥,q j

Qi Fork to Q j and Qk 〈Qi,A,B〉 7→ 〈Q j,A,B〉 and 〈Qk,A,B〉 ` q⊥i ,(q j⊕qk)

An instantaneous description (ID) of an ACM M is a finite tree of ordered triples
〈Qi,A,B〉, where Qi ∈Q (Qi is a state), and A and B are natural numbers. The accept-
ing triple is 〈QF ,0,0〉. An accepting ID is any ID where every leaf of the ID is the
accepting triple. This means that no matter how the computation evolves it ends with
an accepting triple, that is, in an accepting state (which is unique) and the counters
containing 0.13

Given a triple 〈Qi,A,B〉, its translation θ(〈Qi,A,B〉) is ` q⊥i ,(a
⊥)A,(b⊥)B,qF ,

where the superscript A and B indicate the number of a⊥’s and b⊥’s in the sequent.
The translation of an ID comprises the translations of the elements of the ID, that is,
θ(E1,E2, . . . ,Em) = θ(E1),θ(E2), . . . ,θ(Em).

Lincoln et al.’s main result is: “Theorem 3.7. The provability problem for propo-
sitional linear logic is recursively unsolvable.” This is just a different way of saying
that CLL is undecidable. Their proof consists literally of the single statement (p. 275)
“From Lemmas 3.2–3.6 we obtain our main result.” We shall try to construct a proof
using these lemmas, and in the process end up deconstructing their proof.

As already mentioned, the first two of these lemmas can be put together as the two
halves of the next biconditional.
Lemmas 3.2–3.3. For any finite set of axioms T , T `LCLL Γ iff `LCLL [T ],Γ .

And the last two are the two halves of the following biconditional.
Lemmas 3.5–3.6. An ACM M accepts from the triple s iff the sequent θ(s) is provable,
given the theory derived from M.

And the middle lemma is the keystone.
Lemma 3.4. It is undecidable whether an ACM accepts from the triple 〈QI ,A,B〉.

The rough idea would then be to combine these lemmas so that the undecidability
of the ACM accepting from 〈QI ,A,B〉 translates into the undecidability of provability
in LCLL (without axioms).

So let us suppose that we have a method for deciding the provability of theorems
in LCLL. Consider then an arbitrary ACM M, and its theory TM that translates the
instructions of the machine using the table above. Then, as a special case of Lemmas
3.2–3.3 we have:

TM `LCLL Γ iff `LCLL [TM],Γ .

Further, as a special case of Lemmas 3.5–3.6, we have:

13Lincoln et al. defined an accepting ID to be an ID each element of which is an accepting triple. They
should have meant what is in this paragraph unless only one-step trivial computations are permitted.
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An ACM M accepts from 〈QI ,A,B〉 iff the sequent θ(〈QI ,A,B〉) is provable,
given the theory TM .14

What is the sequent θ(〈QI ,A,B〉)? It is ` qI ,(a⊥)A,(b⊥)B,qF . So the problem is to
figure out whether this sequent is provable using the theory TM , i.e., using the sequents
in TM together with applications of the cut rule.

While it is true that using the exponentials LCLL can emulate that a sequent from
TM is not used, used once or used several times in a MALL proof, the exponentials
interact with the MALL vocabulary. In effect, the interaction implies reliance on the
following claim.

TM `MALL Γ iff `LCLL [TM],Γ .

The following is an equivalent claim.

TM `MALL Γ iff TM `LCLL Γ .

From left to right, the claim is obvious and true, but the converse is less than obvi-
ous. The cut rule is not eliminable in the presence of proper axioms (the elements of
TM) — as Lincoln et al. [35] themselves point out on p. 262. Of course, using the cut
rule in a proof is unproblematic in the sense that it is a rule and so the sequent proved
is a theorem, but the cut rule causes problems for the analysis of the proof. Thus, when
we try to prove that TM `LCLL Γ implies TM `MALL Γ , we run into a problem, because
a proof of Γ in LCLL may contain applications of the cut rule too. In other words, if
the cut rule is not eliminable, then it is difficult to contemplate how the right-to-left
conditional could be proved at all.

So far, we assumed that Lemmas 3.5–3.6 concerned provability in MALL. An
alternative reading of the those lemmas is that they permit the use of all the rules
of LCLL, but the occurrences of applications of the cut rule are limited because of
Lemma 3.1, which reads as follows.
Lemma 3.1. (Cut standardization). If there is a proof of ` Γ in theory T , then there
is a directed proof of ` Γ in theory T .

A directed cut is simply an application of the cut rule, in which at least one of the
two premises is an axiom, and the cut formula is C (using the earlier notation). A
directed proof is a derivation with only directed cuts (or no cuts at all). The cut stan-
dardization lemma holds in MALL proofs, and ensures that MALL theories in proofs
in MALL can mimic the consumption of instructions in an ACM.

Before we turn to the discussion of the modeling of ACMs (and Minsky machines),
we illustrate a problem with the proof of the admissibility of the cut rule in Appen-
dix A. In the relevance logic literature, the use of a multi-cut rule is quite common,
because many relevance logics contain a contraction rule (but not a thinning rule). The
multi-cut rule is similar to Gentzen’s mix rule in that it allows cutting out more than
two formulas. On the other hand, these rules are different, because the multi-cut rule
does not require the elimination of all occurrences of the cut formula. Lincoln et al.
[35] opt to use both single cut and multi-cut in their elimination proof, however, the
latter is only applicable to formulas that start with exponentials. In CLL, only certain

14Lemmas 3.5–3.6 do not make explicit the logic in which provability is meant. However, the first
paragraph in §3.5 (p. 269) seems to suggest that it is MALL.
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exponential formulas can be contracted, which explains why multi-cut is introduced
for such formulas.

[35] defines the degree of the cut formula in a fairly standard manner. However,
they also define the degree of a proof as the maximal degree of any cut in the proof or
zero (if there is no cut). Unfortunately, the degree of the proof does not decrease in
every step in the cut elimination proof.15 Their crucial lemma reads as
Lemma A.1 (Reduce one cut). Given a proof of the sequent ` Γ in linear logic which
ends in an application of Cut* of degree d > 0, and where the degree of the proofs
of both hypotheses is less than d, we may construct a proof of ` Γ in linear logic of
degree less than d.

The proof is divided into cases, and in each case a local modification of the proof
is given. The transformations are similar to what is to be expected. However, it is
completely obvious that several of the one-step transformations do not establish the
claim of the lemma.

The following example shows an application of the single cut rule with d = 7. (We
make explicit only the segment of the proof that is problematic.)

` p&( !q⊕ r)
` !(p&( !q⊕ r))

` ?(p⊥⊕ ( ?q⊥& r⊥)), ?q⊥
...
& r⊥,(p&q)⊕ r

` ?(p⊥⊕ ( ?q⊥& r⊥)), p⊥⊕ ( ?q⊥& r⊥),(p&q)⊕ r
` ?(p⊥⊕ ( ?q⊥& r⊥)), ?(p⊥⊕ ( ?q⊥& r⊥)),(p&q)⊕ r

?D

` ?(p⊥⊕ ( ?q⊥& r⊥)),(p&q)⊕ r
?C

` (p&q)⊕ r
cut

The last step in the proof is an application of the cut rule. The cut formula is principal
in both premises of the cut, hence by A.2.5, the cut is moved up by a sequent in the
right premise. This requires that Cut! be applied. However, the cut formula is the
same as before, hence, the degree of the proof is also the same.

Lincoln et al. [35] must have realized that they do not have an inductive proof of
Lemma A.1, because they say on p. 299 that “by induction on the size of proofs, we
can construct the desired proof of degree less than d.” It is possible, perhaps, even
plausible that one can do this. However, they do not give such a proof, indeed, they
do not even define what the size of a proof is. It could be the number of propositional
variables in the proof, the sum of the degrees of all formulas, the height of the proof
tree, to name a few alternatives.

Another problem with the argument for Lemma A.1 is that once the above proof
is transformed (as shown below), it is no longer clear which transformation is to be
applied next. The cut formula is still principal in the left premise, however, it is both
principal and non-principal in the right premise. There is no definition in [35] that
would allow us to determine whether the cut formula in the right premise is principal
or not, which is needed in order to apply (1) or (2) on p. 298. In fact, the situation is
very typical, because principal formulas are (usually) unique in a rule. Then, a cut on

15Lambek [32] was able to prove a cut theorem for his calculuses by induction on one parameter that
he called degree, which is however, not identical to either of the degrees just mentioned. Also, Lambek’s
calculuses do not contain any kind of contraction, which means that the admissibility of the single cut rule
can be proved directly (without mix or multi-cut).
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` p&( !q⊕ r)
` !(p&( !q⊕ r))

` ?(p⊥⊕ ( ?q⊥& r⊥)), ?q⊥
...
& r⊥,(p&q)⊕ r

` ?(p⊥⊕ ( ?q⊥& r⊥)), p⊥⊕ ( ?q⊥& r⊥),(p&q)⊕ r
` ?(p⊥⊕ ( ?q⊥& r⊥)), ?(p⊥⊕ ( ?q⊥& r⊥)),(p&q)⊕ r

?D

` (p&q)⊕ r
cut!

several formulas moved upward in a proof tree will likely come to a sequent in which
the cut formula has both principal and non-principal occurrences. The usual notion
of a principal formula is extended on p. 297. However, that expansion leaves one
occurrence of the cut formula in the right premise of the application of the cut! rule
above as a non-principal occurrence.

Presumably, we should apply the second transformation in A.2.6 now. The trans-
formation yields two cuts in a new proof that have the same degree, and which repeat
a whole branch of the proof tree. This is a point where the informal allusion to the size
of the proofs would need to be made precise, because neither the height of the proof
tree is decreasing nor the number of sequents or cuts does.16

The cut elimination proof would be the basis for the proof that directed cuts suffice.
However, we believe that there is no proof of the admissibility of the cut rule in [35],
hence, there is no proof of Lemma 3.1 and further, of Theorem 3.7 in that paper.

The main problem with the alleged proofs in [35] and [27] (as well as in [21]) goes
beyond what we have outlined so far. The two models, ACMs and Minsky machines,
are very similar; they are both variations on what more simply are called counter
machines. A particularly elegant formulation is termed abacus machines in Boolos
and Jeffrey [15] with reference to Lambek [34].

Counter machines are “full-fledged” models of computation as proved in [15] and
in [34]. However, the abacus machines compute functions, that is, starting with natu-
ral numbers in the counters the machine halts with some content (which may or may
not be all 0’s) in the counters. ACMs and Kanovich’s Minsky machines do not com-
pute any functions, rather, they accept a certain input. Furthermore, both models are
modified to accept by a final state with all the counters empty.

Neither [35] nor [28] ([27]) prove that the machines that they intend to model have
an undecidable halting problem. The undecidability of the halting problem for Minsky
machines with a restricted halting problem was recently proved in [21, §7] via several
reduction steps from the Post correspondence problem.17

One might wonder how the computation of one or another machine is modeled in
propositional logic. There are well-known ways to model primitive recursive func-
tions and computations of a Turing machine in the language of first-order arithmetic.
We have explained at the beginning of this section how [35] intend to model the com-
putations of ACMs; the rest of the authors follow a similar idea. We present in Figure 3

16Sequent calculuses are, perhaps, more difficult to understand than axiomatic systems. This may be
one of the reasons behind [42], which shows that the author does not understand the proof of the cut theorem
in [8]. He also seems to assume that the decision procedure for MELL should generate all the infinitely many
proofs for a provable sequent. Of course, decision procedures, normally, do not yield all possible proofs.

17In all the papers that we mentioned in this paragraph, a proof that matches a computation starts with
the final state. We will refer to the authors of all these papers as the authors, when we talk about this feature
of the machines.
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(below) a small ACM, which differs from the example in [35] in that it accepts an infi-
nite language and it contains three zero-tests. (Their sample machine accepts the finite
language {a0b0 } and contains no zero-tests at all.)

qI q1

q2

q3

qF

a−1

b−1

b = 0

a = 0

b+1

a−1

a = 0

FIGURE 3. The ACM M1

The picture of the ACM employs some notational conventions that are often used
in visualizing finite state automata such as circles for states with the name of the
state inside, and arrows with labeling for the actions of the machine. However, these
similarities are somewhat superficial. The ACM receives input at the arrow pointing
to qI in the form of finitely many counters filled as desired. Then, the machine reads
and occasionally modifies the content of the counters. The arrows labeled with a = 0
and b = 0 represent successful zero-tests. (The diagram hides the implementation of a
zero-test via “and-branching.”) The state q3 is a seemingly spurious state; its function
is simply to ensure that counter a is empty. The machine is so designed that if it
reaches qF , then it is guaranteed that the counters are empty, hence, the role of qF is to
indicate acceptance and halting. It is not difficult to see that M1 accepts the language
{ambn : m> n} (where a and b are placeholders for “first” and “second” counter). This
language is not very complicated, it’s easily seen to be a CFL (context-free language).
Alternatively, the machine can be thought to accept when the characteristic function
of the > relation (on N) evaluates to true.

For example, the full description of the computation of the machine starting with
a3b1 (i.e., 3 in the first counter, and 1 in the second counter) is the following sequence
of triplets.

〈qI ,a3,b1〉,〈q1,a2,b1〉,〈qI ,a2,b0〉,〈q1,a1,b0〉,〈q3,a1,b0〉,〈q3,a0,b0〉,〈qF ,a0,b0〉
The set of instructions for M1 encoded as axioms for a CLL theory is as follows.

Here we make explicit the hidden and-branching, which we use only with the zero
states za and zb.

Axioms for M1:
1. ` q⊥I ,a

⊥,q1 2. ` q⊥1 ,b
⊥,qI 3. ` q⊥3 ,a

⊥,q3 4. ` q⊥2 ,b⊗q2

5. ` q⊥I ,za⊕q2 6. ` q⊥1 ,zb⊕q3 7. ` q⊥3 ,za⊕qF

8. ` z⊥a ,b
⊥,za 9. ` z⊥b ,a

⊥,zb 10. ` z⊥a ,qF ⊕qF 11. ` z⊥b ,qF ⊕qF
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If we construct proofs with cuts, then these axioms cut out their negations from a
sequent. If the proof is cut-free, then the same formulas have to be built-up.

Negations of axioms:
1. qI⊗ (a⊗q⊥1 ) 2. q1⊗ (b⊗q⊥I ) 3. q3⊗ (a⊗q⊥3 ) 4. q2⊗ (b⊥`q⊥2 )

5. qI⊗ (z⊥a &q⊥2 ) 6. q1⊗ (z⊥b &q⊥3 ) 7. q3⊗ (z⊥a &q⊥F )

8. za⊗ (b⊗ z⊥a ) 9. zb⊗ (a⊗ z⊥b ) 10. za⊗ (q⊥F &q⊥F ) 11. zb⊗ (q⊥F &q⊥F )

It is easy to see that ` z⊥a ,(b
⊥)n,qF and ` z⊥b ,(a

⊥)n,qF are provable for any n ∈N.
We will omit these parts of the proof to limit the size of the tree shown. The axioms
that are used in applications of cuts are listed on the left.

`
...

z⊥a ,qF ` q⊥F ,qF

` q⊥3 ,za⊕qF ` z⊥a &q⊥F ,qF

` q⊥3 ,a
⊥,q3 ` q⊥3 ,qF

` q⊥3 ,a
⊥,qF `

...
z⊥b ,a⊥,qF

` q⊥1 ,zb⊕q3 ` z⊥b &q⊥3 ,a
⊥,qF

` q⊥I ,a
⊥,q1 ` q⊥1 ,a

⊥,qF

` q⊥1 ,b
⊥,qI q⊥I ,a⊥,a⊥,qF

` q⊥I ,a
⊥,q1 ` q⊥1 ,a

⊥,a⊥,b⊥,qF

` q⊥I ,a⊥,a⊥,a⊥,b⊥,qF

The proof starts in the final state. It is not accidental, because sequent calculus
proofs are trees in which the root of the tree is the sequent that is proved. Hence, no
tree branch in a proof can split downward.

A cut-free proof for the same sequent is the following. We indicate the negations
of the axioms by their number in the listing above, and we omit the proofs leading to
a zx state from qF together with the horizontal lines. (The two sequents that are not
axioms, but easily provable, are ∗’d.)

∗ ` z⊥a ,qF ` q⊥F ,qF

` q⊥3 ,q3 ` z⊥a &q⊥F ,qF ,10
` a⊥,a ` q⊥3 ,qF ,10,7
` q⊥3 ,q3 ` a⊗q⊥3 ,qF ,10,7
∗ ` z⊥b ,a

⊥,qF ` q⊥3 ,a
⊥,qF ,10,7,3

` q⊥1 ,q1 ` z⊥b &q⊥3 ,a
⊥,qF ,10,7,3,11,9

` a⊥,a ` q⊥1 ,a
⊥,qF ,10,7,3,11,9,6

` q⊥I qI ` a⊗q⊥1 ,a
⊥,a⊥,qF ,10,7,3,11,9,6

` b⊥,b ` q⊥I ,a
⊥,a⊥,qF ,10,7,3,11,9,6,1

` q⊥1 ,q1 ` b⊗q⊥I ,a
⊥,a⊥,b⊥,qF ,10,7,3,11,9,6,1

` a⊥,a ` q⊥1 ,a
⊥,a⊥,a⊥,b⊥,qF ,10,7,3,11,9,6,1,2

` q⊥I ,qI ` a⊗q⊥1 ,a
⊥,a⊥,a⊥,b⊥,qF ,10,7,3,11,9,6,1,2

` q⊥I ,a
⊥,a⊥,a⊥,b⊥,qF ,10,7,3,11,9,6,1,2,1

The traditional claim is that if the proof is turned upside down, then it can be seen
as a modeling of the computation from qI (with 3 in a and 1 in b) to qF . Of course,
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the upside down tree is not a proof in CLL at all. If we try to create an interpretation
from the top of the proof, then it seems that the subproofs in the whole proof tree do
not have an interpretation that is independent from the whole proof tree. Another way
to look at this problem is that unless the proof has a sequent of the form ` q⊥I , . . . ,qF
as its root, it is not a model of (any stage of) a computation of the machine.

To further illustrate the problem, let us assume that we add a new state q4 to M1.
The new state has two outgoing arrows, one pointing to q4 itself with a label b−1, the
other pointing to q3 with a label b = 0. Our new machine M′1 is equivalent in terms
of acceptance to M1. However, there is a proof of the sequent ` q⊥4 ,b

⊥,b⊥,b⊥,qF ,
given its theory. The state q4 — by design — is not accessible from qI , which means
that in M′1 there is no computation that involves q4. But it is true that if we picture
the machine as a special graph (like M1 in Figure 3), then there is a path between
q4 and qF . And starting in state qF , and by performing the inverses of the machine’s
instructions, it is possible to reach state q4 with 3 in the second counter.

[26] and [21] number the final state with 0, which gives the appearance (at first) that
a proof starts at an initial state (q0). The latter paper models computation by getting
from the 0th state (called PC value) to the 1st state.

Kopylov [29] noted that provable sequents (in the normal fragment) of CLL can
be given two computational readings. Similarly, the provable sequents of CLL may
be given two computational interpretations. The emptiness of the counters at halting,
and halting in a unique final state are essential for the construction of sequent calculus
proofs. In other words, proofs starting with ` q⊥F ,qF ’s that contain forking cannot be
replaced by proofs that start from ` q⊥I ,qI (while proving the same sequent). However,
the “non-traditional” interpretation means that there are no zero-tests in the machine
that is modeled, and the decrement and increment instructions are swapped. Accord-
ing to this interpretation, that we think is the correct one, every subtree in a proof
tree is a model of a step in reverse computation; that is, it is a model of “running”
the machine backward. (This also means that the machine may get “stuck” in a state
when the subtraction cannot be performed and there is no branch that takes care of the
counter’s emptiness.) In view of our decidability result, we think that the machines
that emerge from this interpretation — reverse ACMs and reverse Minsky machines,
etc. — do not have an undecidable halting problem. In other words, our decidabil-
ity result supports the conjecture that the halting problem for reverse computation in
ACMs and various counter machines, in general, is decidable.

To summarize, we think that each published “proof,” most prominently, that by
Lincoln et al. [35] and that by Kanovich [27], has gaps in it. Moreover, we think that
there is a real reason to believe that some of those gaps cannot be filled to complete the
proofs of the undecidability of LCLL, because there is a conceptual mismatch between
(forward/normal) computational steps and steps in a sequent calculus proof in LCLL.
Furthermore, our proofs demonstrate that LCLL is decidable.

8. CONCLUSION

This paper scrutinized the issue of modalities in lattice-R. To start with, the Ack-
ermann and Church constants (hence, modalities defined from those constants) do not
interfere with the decidability of lattice-R. The addition of primitive modal operators
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with some usual rules does not lead to undecidability either. If (modalized) versions of
structural rules are added (or omitted) from LLR♦�, then the properties of modalities
vary. Nonetheless, the decidability of the resulting logics — no matter with however
unusual modalities — stays provable. We have also proved that classical propositional
linear logic is decidable, and we have explained where the proofs of earlier undecid-
ability claims in [35], in [28] (also, [27]) and in [21] are lacking.
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AFTERWORD

The first six and a half sections of this paper were written in 2015, and they re-
mained basically the same since then. The last several “fault-finding” pages were
rewritten and expanded several times to appease referees who repeated again and again
that propositional linear logic is well known to be undecidable, and first of all, we
should demonstrate mistakes in published proofs. It should be noted that no referee
— in all those 6–7 years of refereeing — pointed out a mistake in our paper.
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