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Abstract 

Title 

Adjusting for survivorship bias for neurocognitive and functional outcome 

using propensity score and k-means clustering method 

Description 

In recent years, the number of congenital heart disease survivors has 

increased with cardiac detection and surgery and perioperative care 

improvements. However, some survivors may experience poor 

neurocognitive and functional outcomes after complex cardiac surgery. 

It could be related to underestimating survivor outcomes due to a lack of 

practical statistical methods. We proposed an analytical approach to adjust 

for the severity of illness, using pre-operative and intra-operative differences 

among children to develop a propensity score and k-means clustering. 

The propensity score and k-means clustering were used to assess the impact 

of the severity of illness confounders and compare them with crude results. 

The analysis included n=235 children with single ventricle congenital heart 

disease registered at age ≤ 6 weeks in the Western Canadian Complex 

Pediatric Therapies Follow-up Program between 1997 and 2016. 
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Preoperative, intraoperative, and postoperative variables were collected. The 

severity of illness propensity score was calculated based on selected 

variables. Then, a logistic regression model was set up accordingly. 

 Neurocognitive and functional outcomes’ linear time trends showed that 4.5 

years after surgery, FSIQ scores stayed the same, VMI scores increased, and 

ABAS scores decreased over time in high-risk children. 

Using propensity score adjustment helps clarify the actual trend of 

neurocognitive and functional outcomes in babies with complex conditions. 
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Chapter 1: Introduction 

1.1. Overview 

Congenital heart disease (CHD) is the most frequent congenital 

malformation related to high perinatal, long-term morbidity and mortality 

(1). 

It has been identified as one of Canada's most prevalent and challenging 

anomalies. According to the perinatal health report 2002, 1 in 100-150 

newborns was diagnosed with CHD in Canada, representing significant 

prevalence (2). 

CHD includes structural abnormalities of the heart that develop before birth 

while the fetus grows in the uterus during pregnancy. 

When the heart's chambers, walls, valves, or the blood vessels close to the 

heart don't develop normally before birth, the result is CHD (3,4). 

Single ventricle (SV) condition is considered a type of CHD that might 

happen when one of the two heart ventricles is too small or weak to function 

correctly; in other words, the ventricles may be underdeveloped or missing a 

valve (5). This condition results in one ventricle pumping to the systemic 

and pulmonary circulations. 
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In this situation, several open-heart surgeries must be performed to 

reconstruct the heart anatomy. Three staged surgeries can palliate this 

condition, including: 

1. The Norwood operation 

2. The Glenn or hemi-Fontan operation 

3. The Fontan operation 

Throughout these palliative surgeries, heart and circulatory systems are 

redesigned (6). 

There have been a noticeable number of advancements in the detection and 

treatment of CHD over the past 50 years. These advances include the 

detection of CHD using fetal echocardiography, pulse oximetry, chest X-ray 

and electrocardiogram, magnetic resonance imaging (MRI), and catheter-

based methodologies (7,8). 

Thanks to improvements in detection, surgery, and perioperative care, the 

number of survivors with CHD has increased significantly during the past 

three decades. According to the comprehensive report published in 2017 by 

the Heart and Stroke Foundation of Canada, less than 20% of babies born 

with CHD survived to adulthood sixty years ago, while currently, more than 

90% of babies reach maturity (9). 
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1.2. Statement of the problem 

It is acknowledged that some children with CHD are subjected to 

experiencing difficulties with day-to-day activities and academic performance 

(10), which may last into adulthood (11,12). 

Some babies with CHD have intelligence quotient (IQ) scores lower than 

population norms (13). Some survivors may have a unique neurobehavioral 

signature, which includes difficulties with social interaction, language, 

inattention, impulsive behavior, and executive function (14). Moreover, these 

survivors’ quality of life (QOL) can be negatively impacted (15). 

Given the remarkable improvements in diagnostic technologies, surgical 

management, and postoperative care, considerable attention was paid by 

researchers to neurocognitive trends among the survivors. 

It was expected that with the advent of cutting-edge technology in 

diagnosing and treating CHD and a significant increase in the number of 

survivors, the neurocognitive trends would also show improvement. 

In contrast, improving trends are not always detected with cardiac surgery 

advances, not exhibiting neurocognitive outcomes improvements over time 

among these children. 

This controversial and thought-provoking matter has shifted the focus to 

finding its underlying reasons. 
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The Western Canadian Complex Pediatric Therapies Follow-up Program 

(CPTFP) Registry was founded in Canada due to the importance of assessing 

life-saving treatments' effects on long-term outcomes, especially for 

children's neurodevelopment. 

The CPTFP is a multifaceted program in assessment clinics across western 

Canadian provinces. It provides various services for survivors of life-

threatening diseases and determines their long-term neurodevelopmental, 

neurocognitive, and functional outcomes. 

In this program, research is conducted to determine and distribute results, 

offering survivors of various illnesses different administrations and services 

and then auditing them to determine potentially modifiable predictors of 

outcomes. Neurodevelopmental and childhood school-related outcomes after 

cardiac surgery are a focal interest of this program. 

1.3. Study hypothesis 

The hypothesis to explain the problem states that neurocognitive and 

functional outcome trends must be more accurate due to not deploying an 

optimal method for appraising them. 

An important aspect is that babies who previously did not survive due to the 

complexity of their condition are now entering the outcomes study, 

contributing to lower outcome scores in survivors. Consequently, these 
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survivors may counterbalance improved scores in other survivors and 

cumulatively show unchanged neurocognitive and functional outcomes over 

the years. Higher scores are balanced by lower scores, preserving the 

pattern of unchanged average outcomes over time. 

These distinct differences stem from a limited selection of study participants, 

which poses a bias commonly called survivorship bias. Accordingly, this 

frame of selection bias can result in overly pessimistic judgments. This bias 

arises from including participants with a broad spectrum of baseline 

characteristics (16). 

A thorough examination of the data is necessary for effective decision-

making. Yet, the severity and extent of illness should be considered because 

the bias is hinged on them, and the solution for overcoming this may be 

related to the bias condition. 

To address this problematic insight, randomized control trials (RCT) may 

answer it by minimizing confounder impact and defining a more precise 

trend in results. However, RCTs may only sometimes be viable in biomedical 

and public health studies and are impossible in our study project framework. 

1.4. Study purposes 

Therefore, we suggest a statistical method to deal with this survivorship 

bias, which may prevent us from identifying patterns in post-surgical 
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outcomes. Propensity score (PS) analysis and the K-means clustering (KMC) 

method will be implemented in this regard. 

PS analysis has recently received much attention in observational 

cardiovascular intervention research. We will compare the findings using PS 

adjustment to account for variables affecting post-surgical 

neurodevelopmental outcomes with the crude trends. 

Our specific arguments in this regard can be summarized as follows: 

1.   Use the PS method to gauge how sick the survivors were. 

2.   Evaluate the post-operative outcomes adjusted for PS and weigh them 

against the crude trend. 

1.5. Research question 

Does applying the PS adjustment facilitate alleviating the effects of 

survivorship bias and smooth the appraisal of neurodevelopmental outcomes 

without biased inference? 

1.6. Significance of the study 

Lower neurocognitive and functional outcomes may disrupt educational and 

occupational attainment among survivors. Periodic developmental 

monitoring, screening, assessment, and surveillance throughout childhood 

might aid in identifying severe impairments and enable the proper therapies 
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and instruction to be offered that improve later academic, behavioral, 

psychosocial, and adaptive functioning (17). Therefore, determining the 

trend over time in these outcomes is essential for planning counselling, 

surveillance, and intervention services for these children and their families. 

1.7. Thesis organization 

After the introduction, Chapter 2 thoroughly reflects recent findings and 

other studies connected to the current study. In Chapter 3, research 

techniques and statistical analysis will be covered in full. The outcomes of 

the statistical analysis will be outlined in Chapter 4. The discussion chapter 

will elaborate on the study's core from different perspectives. Chapter 6 will 

provide a conclusion and an outlook for future research. 
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Chapter 2: Literature review 

2.1. Improvement in congenital heart disease treatment 

CHD is a significant structural heart disease that affects the heart's anatomy 

and is either detrimental functionally or has the potential to be so (18).  

Thanks to worthwhile achievements in pediatric healthcare over the previous 

70 years, the number of CHD patients who survive has stunningly surged; 

more than 90% of babies born in the early 1990s reached adulthood (19, 

20). 

The upgrades in diagnostic methods, such as catheter interventions (21), 

surgical treatment of aortic (22) and atrioventricular septal defects (23), 

Mustard and Senning atrial corrections (24,25), the Rastelli procedure (26), 

and several surgical innovations, such as the arterial switch operation (27), 

have all contributed to the betterment (28). 

2.2. The complexity of long-term outcomes in survivors of congenital 

heart disease 

Neurologic impairments are among the most prevalent extracardiac 

consequences in some children with complicated CHD (29,30).  

A body of research has shown that children with SV may have a higher risk 

of adverse neurodevelopmental outcomes than children with other types of 
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CHD. For some SV patients, performance in the areas of cognition and the 

gross motor domain was especially poor (31,32) 

Children surviving CHD may have outcomes including mild cognitive delay, 

difficulties with social interaction, and problems with communication skills. 

In some patients, poor neurodevelopmental outcomes are expected (33). 

2.2.1. Prenatal determinants of brain injury  

Brain development in babies with CHD may differ from that of non-CHD 

infants. Abnormal brain growth may start before birth and be influenced by 

compromised cerebral blood flow. Numerous studies have shown that brain 

abnormalities in neonates and fetuses are derived from altered cerebral 

blood flow. 

Fetuses with CHD may have inadequate cerebral oxygen delivery due to 

circulatory abnormalities. Some have autoregulation of blood flow that 

increases cerebral perfusion and may affect brain growth (34). 

MRI and ultrasonography (US) are safe techniques for assessing brain 

development before and after birth.  

Modern prenatal US imaging technology can observe the mother's uterus to 

study the fetus's brain during pregnancy (35). Clinically, due to its popularity 

for being transparent and user-friendly, the US is the primary imaging 

technique for routine evaluation of the fetal brain during pregnancy (36). 
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However, maternal weight and fetal positioning or some medical conditions 

may reduce the quality of US images (37). Therefore, prenatal US may be 

insufficient without fetal MRI. 

Due to MRI's propensity for discriminating delicate tissue and liquids, MRI is 

the ideal imaging method for the brain compared to the US (38). MRI is 

discussed as more effective at identifying the fundamental intracranial tissue 

in fetuses with CHD and more precise at measuring the fetal brains (39). 

A recent finding in fetal and postnatal MRI has delineated a high frequency 

of white matter damage, stroke, and bleeding among children with CHD 

(40). 

Furthermore, congenital structural anomalies in the central nervous system 

are more common and correlate with complex CHD growth (41). 

2.2.2. Surgical-based determinants of brain injury 

Long-term neurological impairment is interwoven with several preoperative, 

intraoperative, and postoperative variables. Marking the modifiable 

predictors at each stage of care is crucial for enhancing long-term brain 

function, and it can significantly affect children’s longevity and raise their 

QOL. 
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2.2.2.1. Preoperative or patient-specific factors 

The impact of these variables on neurodevelopmental outcomes has been 

the subject of extensive research because there is mounting evidence that 

perioperative injury and complications are linked to these outcomes (42). 

Preoperative white matter abnormalities in babies and older children with 

CHD are associated with adverse neurocognitive outcomes (43,44).  

Concurrently, countless explorations are carried out to distinguish 

perioperative factors associated with adverse long-term neurological 

outcomes in these children. For instance, variables such as a genetic 

disease, low birth weight, and the APOE epsilon2 allele were predictors of a 

worse neurodevelopmental outcome at one year (45). 

2.2.2.2. Intraoperative factors 

Evidence reveals that some adverse neurodevelopmental outcomes may be 

associated with intraoperative factors. 

To put it differently, some surgical procedures, on the one hand, 

exponentially raise the number of survivors, and on the other hand, they 

may also increase the risk of adverse neurological outcomes, including brain 

injury. 

For instance, the potentially detrimental effects of prolonged deep 

hypothermic circulatory arrest (DHCA) during heart surgery for newborns 
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and children have been considerably debated in the literature. It is 

commonly believed that the probability of adverse neurological effects will 

increase with more extended, unbroken periods of this method (46,47). 

A notable reverse association between children's IQ and cardiopulmonary 

bypass (CPB) duration was also suggested. In other words, a weak but 

significant negative correlation existed between IQ score and CPB time (48). 

In this regard, some investigations of the neurodevelopmental performance 

of neonates and infants who underwent cardiac surgery have concentrated 

on potentially modifiable risk factors within surgery, namely intraoperative 

management techniques. 

While variation in intra-operative support, such as the conduct of bypass, is 

not an easily modifiable risk factor, many still focus on intraoperative 

management as one mechanism of brain injury that can be accounted for in 

adjusted statistical models (49). 

2.2.2.3. Postoperative factors 

Regarding postoperative variables, it was assessed whether there was a 

relationship between the length of stay (LOS) in hospitals following babies’ 

heart surgery and cognitive outcomes. Compelling findings supported this 

hypothesis. Even when perioperative events, perfusion times, and 
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sociodemographic factors are considered, a longer LOS is associated with 

lower postoperative cognitive performance (50). 

Moreover, it has also been demonstrated that plasma lactate concentrations 

in neonates after cardiac surgery correlate with neurodevelopmental 

prognosis. It can fundamentally predict postoperative survival rates and 

adverse neurological sequelae in survivors (51). 

2.2.3. Other influential determinants of brain injury  

Reportedly, one of the causes of congenital anomalies like atypical prenatal 

brain development in fetuses with CHD may involve epigenetic and 

environmental elements.  

Environmental factors, including chemicals like pesticides, maternal 

metabolic conditions like maternal diabetes, drugs taken by a pregnant 

woman like retinoids, and infection agents like rubella virus and herpes 

virus, may cause teratogenicity and brain malformation (52). 

Besides, epigenetic factors may change brain development during the 

prenatal and postnatal periods. For example, the placenta's epigenetic 

processes effectively mediate the growth of the fetus. Furthermore, changes 

in placental gene expression and signaling during fetal development can 

significantly alter the developmental program, particularly concerning brain 

development (53).  
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2.3. Survivorship bias 

2.3.1. Definition 

Observational cohort studies are applied to measure how treatments affect 

patients and how long it takes to achieve a specific result. Since treatment is 

regularly initiated at various points during a patient's follow-up, it frequently 

has a time-variant nature. Studies in medical literature mainly overlook how 

treatment varies over time. 

Unlike participants in an RCT, patients in an observational study decide 

whether and when to begin treatment. Based on that, patients who live 

longer have more options for choosing a course of treatment; those who die 

earlier could not receive it by default. When the time-dependent character of 

treatment is neglected, a survivor treatment selection bias, or, in short, 

survivorship bias, may develop, severely threatening the validity of the 

results of the observational study. 

This bias impedes the foresight of the natural association between treatment 

and outcomes and is troublesome to gauge or control (54). 

Concerning this, an erroneous association may result from this epidemiologic 

situation. Noticeable group variations may exist when patients are not 

randomly assigned to their treatment, which can indirectly impact study 
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results, and the conclusions drawn from nonrandomized research may be 

distorted due to this bias. 

2.3.2. Survivorship bias and confounding 

From an epidemiological perspective, survivorship bias and confounding are 

two untangled methodological problems that underestimate or overestimate 

the genuine relationship between outcomes and interventions in 

observational studies. 

To be more precise, survivorship bias is characterized when non-random, 

systematic circumstances affect who is enrolled in a study. 

Alternatively, confounding happens when the same factors are associated 

with the treatment and the outcome. 

Regarding these definitions, survivorship bias and confounding should be 

effectively addressed to prevent distorted treatment-outcome associations. 

Even though these two terms are distinct, the term survivorship bias is used 

in the literature to refer to confounding (55). 

Because the participant's selection method can trigger the confounding 

effect, entering confounders into the study may be caused by survivorship 

bias, and consequently, type I error or false positive can occur when the 

results are incorrectly attributed to the treatment rather than to the 

confounding variables (56). 
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To eliminate survivorship bias, emphasis must be placed on confounding. 

In observational research, PS, instrumental variables, and multivariable 

regression modeling are well-known methods used to account for 

confounding. The most popular techniques applied to correct confounding 

are multivariable models employing logistic regression (for binary 

outcomes), Cox proportional hazards models (for survival time), and linear 

regression (for continuous outcomes). 

Regression models track confounding by estimating and describing each 

variable's contribution to the outcome while maintaining the constant values 

of all other variables in the model (57). 

2.4. Propensity score (PS) 

A "propensity score" is the predicted probability of exposure for a particular 

individual based on relevant variables. The presence of confounding can 

threaten the study's validity because patients with specific risk factors for an 

outcome can be systematically directed towards or away from the actual 

result. To avoid distorting the results and balancing risk factors, PS methods 

are an efficient way to control baseline confounding (58). 

By condensing and simplifying the distributions of numerous measured 

confounders into a single score based on the likelihood of receiving 

treatment, researchers can lessen the possibility of selection bias. This 
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method offers a balanced group for better comparison and would assist in 

mitigating selection bias in treatment effect estimation (59). 

PS formulates a condition called pseudo-randomized experiments to parrot 

some features of RCT and make the dataset balanced and comparable, 

making it easier to address bias and draw accurate conclusions (60). 

PS methods are frequently used in cardiovascular clinical research; 

additionally, the effectiveness of various therapies, including hospital-based 

consult services and at-home care management programs, has been chiefly 

evaluated in palliative care using PS (61,62). 

2.4.1. Propensity scores different approaches  

Four PS approaches are matching, stratification, inverse probability 

weighting, and PS as the covariate. Each has advantages and unique 

features, providing circumstances to approximate RCT (63). 

2.4.1.1. Propensity score matching (PSM) 

Forming matched sets of treated and untreated subjects who have similar PS 

values is known as PS matching. One-to-one or pair matching is the most 

popular way to use PSM. In this method, treated and untreated subjects are 

paired up so that their PS values are similar. 



 

18 

 

After creating a matching selection, the treatment effect can be calculated 

by directly comparing the outcomes of treated and untreated subjects in the 

matched sample (64,65). 

2.4.1.2. Stratification of propensity score 

This method groups subjects into mutually exclusive subsets according to 

their estimated PS. The estimated PS is used to rank the subjects. Subsets 

of the subjects are then created based on previously established thresholds. 

Typically, subjects are divided into five groups of equal size based on the 

estimated PS quintiles. 

It is noted that bias reduction may be improved with more strata being used. 

Both treated and untreated subjects will have roughly similar PS values 

within each stratum. The distribution of measured baseline covariates 

between treated and untreated subjects within the same stratum will be the 

same when the PS has been correctly specified (66,67). 

2.4.1.3. Inverse probability weighting (IPW) 

When analyzing the impact of a treatment or exposure, the statistical 

technique known as inverse probability weighting (IPW) is used to construct 

otherwise comparable groups. The IPW procedure employs the complete 

cohort rather than just a subset of variables to match treated and untreated 

people. It can deal with a wide variety of confounding factors. Each cohort 
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member is given a weight based on their chance of experiencing the 

treatment influence under study. When statistical tests or regression models 

are run, the confounders' effect is diminished or mainly discarded by 

applying this weight (68). 

2.4.1.4. Propensity score as a covariate (PSC) 

The other name for this method is PS covariate adjustment. This method 

involves regressing the outcome variable on an indicator variable that 

constitutes the state of the treatment and the estimated PS. The estimated 

regression coefficient from the fitted regression model is used to calculate 

the treatment's impact. The impact is expressed as an adjusted odds ratio 

for a logistic model or an adjusted mean difference for a linear model (69). 

2.5. K-means clustering (KMC) 

Clustering techniques use raw data to create groups of data points based on 

shared characteristics. KMC aims to divide N observations into K clusters. 

Each statement belongs to the cluster with the closest mean, the cluster 

centroid or cluster center, acting as the cluster's prototype. The data space is 

stratified into Voronoi cells (70). 

The KMC process identifies groupings in the data that are implicitly tagged. 

This method can be implemented to find undiscovered groups in large, 

complex data sets or to support assumptions about the kinds of groups 
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present. Any additional data may be readily assigned to the appropriate 

group once the algorithm has been run and the groups have been formed 

(71). 
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Chapter 3: Methods 

3.1. Study setting  

Two hundred sixty-six babies born with CHD and having cardiac surgery at 

the Stollery Children's Hospital (SCH) in Edmonton, Alberta, Canada, 

between 1997 and 2016 were included in this prospective follow-up cohort 

study. They underwent surgery at SCH at six weeks of age or less. When 

they were 4.5 years old, their neurocognitive outcomes were assessed at a 

developmental clinic in their province of birth and for Northern Alberta 

children at the Glenrose Rehabilitation Hospital (GRH), where the CPTFP is 

located. 

GRH is in Edmonton, Alberta, Canada, as one of the Complex Pediatric 

Therapies Developmental Assessment Clinics and is part of the inter-

provincial Western Canadian CPTFP. In collaboration with pediatric divisions 

at SCH and the University of Alberta, this medical center provides 

developmental, functional, language, and cognitive assessments after life-

saving surgeries like complex cardiac surgery, chronic renal dialysis, and 

solid organ transplants. 

These programs aim to assess the child's abilities and provide help if 

needed. 
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Services are offered to help young children reach early developmental 

milestones and help preschool children with school placement and learning.  

This research was conducted in collaboration with a group of experts from 

the Department of Pediatrics at the University of Alberta, working in SCH or 

GRH, including pediatric cardiologists, intensivists, and psychologists. 

The compiled dataset for the study had a registration with the CPTFP, 

consisting of prospectively recorded numerous variables, including the 

patient's baseline characteristics and surgery-related components and their 

outcome information. 

3.2. Study design and participants 

To start, we inspected all the participants’ presence in the study. We found 

that the advent of cutting-edge medical techniques paved the way for all 

babies to enter the research and have the chance to be treated, regardless 

of the extent of their illnesses. 

Considering all the aspects, we tabled the idea that the association between 

advancement in cardiac surgery over time and neurocognitive outcomes may 

be confounded due to surviving participants with different severities of 

illness. Hence, the severity of heart disease must be effectively controlled to 

deal with survivorship bias. 
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The complexity of the disease is a time-varying variable and acts as a 

confounding factor in the study. 

Therefore, we confined our attention to lifting the survivorship bias by 

evaluating the PS's adjustment impact on determining the severity of the 

babies' illnesses. And then dichotomize the babies based on the severity of 

the disease to examine the neurocognitive outcomes in each stratum. 

The study participants were two hundred sixty-six infants born with SV at 

fewer than six weeks old. These high-risk babies underwent Norwood 

surgery conducted under CPB. 

Initially, 22 children were excluded from the study because they had 

chromosomal abnormalities, of whom died due to the severity of their 

condition. 

The rationale for this exclusion is that multiple studies show that babies with 

chromosomal abnormalities often have lower neurocognitive scores. 

Therefore, their inclusion could affect the results, and because of the small 

number, the adjustment would be inappropriate (72). 

Additionally, two babies were lost to follow-up. 

Furthermore, seven children did not undergo the neurocognitive assessment 

for many reasons, including the child who attended the GRH clinic but was 
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too tired or ill on the day to do the testing or the parents could not stay for 

the duration of testing. 

So, altogether, 31 cases were excluded from the study. 

Therefore, the study's final population was 235 individuals without 

chromosomal abnormalities who underwent Norwood surgery with CPB. For 

a flowchart of the inclusion/exclusion criteria, please see Figure 1. 

3.3 Children’s neurocognitive assessment 

The following tests were applied to the children to determine outcomes: 

3.3.1. The Wechsler preschool and primary scales of intelligence, 

third edition (WPPSI-III) 

An established, individually administered, norm-referenced test of 

intelligence for young children aged four to seven years and three months is 

the WPPSI-III. The test embodies seven subtests, and the findings all reveal 

a full-scale intelligence quotient (FSIQ) containing a performance intelligence 

quotient (PIQ) and a verbal intelligence quotient (VIQ) (73). 

Block design, information, matrix reasoning, vocabulary, picture concepts, 

word reasoning, coding, symbol search, receptive vocabulary, and picture 

naming were among the WPPSI-III subtests administered (74). 
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3.3.2. The Beery-Buktenica developmental test of visual-motor 

integration, fifth edition (Beery VMI-V) 

Especially in school-based practice, this exam determines eligibility for 

occupational therapy services. However, visual motor integration (VMI) is 

used not only as a screening or assessment tool but also as an outcome 

measure to determine improvements in visual-motor integration skills after 

handwriting interventions. The VMI is intended to examine a person's ability 

to integrate visual and motor skills and to provide appropriate treatment 

(75).  

The Beery VMI investigates the participants' capability to combine their 

visual and motor skills by having them replicate progressively complicated 

geometric patterns. Children between the ages of two and eight can 

complete the short and full-format tests by copying drawings of geometric 

shapes placed in increasing order of complexity (76). 

3.3.3. The Adaptive behavior assessment system second edition 

(ABAS-II) 

A thorough norm-referenced rating scale, the ABAS-II, checks adaptive 

behavior and skills in people from birth to 89 years. Based on the 

participant's age bracket, there are three different rating forms: 
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1. For children ages 0 to 5, a parent/primary caregiver form and a 

teacher/daycare provider form. 

2. A parent form and a teacher form for children ages 5 to 21 

3. Adult forms are all available for ages 16–89. 

Regarding gender, race/ethnicity, and parental education, the 

standardization sample is sizable (>4,000) and representative of United 

States data from 1999 to 2000. 

The ABAS-II includes ten skills comprising communication, community use, 

functional pre-academics, home living, health and safety, leisure, self-care, 

self-direction, social, and motor skills across four domains consisting of 

conceptual, social, practical, and the general adaptive composite (GAC) 

score, a complete overall indicator of adaptive abilities. The GAC score was 

chosen as the target variable to quantify how well children can adapt (77) 

since children's adaptive functioning (78,79) is the destination of this test.  

The GAC compares a person’s global adaptive skills to the adaptive skills of 

others in the same age group from the standardization sample (80). 

Therefore, FSIQ, VMI, and ABAS GAC were our neurocognitive and functional 

outcomes in this study. 
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Benchmarks for each metric have a population mean of 100 and a standard 

deviation (SD) of 15. These test scores are calculated based on the norms of 

the general population. 

From a statistical perspective, an SD of 15 means 68% of the general 

population has scored between 85 and 115. Also, 95% of the general 

population has a score within 2 SD, representing 95% of the individuals who 

have a score between 70 and 130.  

Accordingly, data that does not fall between +2 SD and -2 SD from the 

mean is considered an outlier, occurring in 2.5% of the normative 

population. 

However, from a clinical point of view, we use ½ SD for clinical results 

interpretation because, based on the minimal clinically important difference 

(MCID), using the one-half SD represents the minimally important difference 

in the clinical outcomes. In other words, the smallest change in the results 

would be identified as clinically significant (81). 

Concerning MCID, any changes equal to 7.5 in any of these tests will be 

considered clinically significant. 

To ensure the accuracy and reliability of the test results, the test information 

was precisely documented, and the calculation of the score results of each 
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test was double-checked with the skilled pediatric psychologist working in 

the GRH. 

3.4. Statistical analysis for logistic regression 

3.4.1. Predictor variables in the PS model building. 

The given dataset consisted of many variables presenting each child’s 

baseline characteristics. For a table of the variables, please see Table 1. 

To decide whether to keep or discard a variable, we consulted with an expert 

pediatric cardiologist and intensivist at the first step. The potential predictors 

were chosen based on the time of measurement, being clinically significant, 

and not having a missing value, a small sample size, or an unbalanced 

group. 

Therefore, birth year, year of initial surgery, weight less than 2500 grams at 

surgery, sepsis, and extracorporeal membrane oxygenation (ECMO) were 

dropped from the list of variables. 

The remaining variables, including age at surgery, gestational age, birth 

weight, weight at surgery, inotrope score, serum lactate, base deficit, 

arterial pH, total mechanical ventilation (MV) days, CPB time, cross-clamp 

time, DHCA time, creatinine level, total days chest open, sex, prenatal 

diagnosis, cardiopulmonary resuscitation, convulsion, and dialysis, were 
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noted as the variables to investigate their presence in the model. For the 

table of the variables considered, please see Table 2. 

3.4.2. Propensity score mechanism 

PS uses a predicted probability of group membership based on observed 

predictors, often determined through logistic regression. 

The estimated PS e(xi) for subject i (i = 1,..., N) is the conditional probability 

of being assigned to a treatment given covariate xi. 

PS is the probability of receiving the treatment of interest (Z = 1), 

conditional on observed baseline characteristics. 

We can calculate a PS conditional on observed pre-operative and intra-

operative variables that reflect the severity of illness and, therefore, likely 

influence post-surgical outcomes. 

3.4.3. Determining the outcome for logistic regression  

We had to consider an outcome variable among the abovementioned factors 

to perform PS model building in a logistic regression model. On the one 

hand, the chosen variable had to serve as a standard for evaluating the 

complexity and severity of CHD. Additionally, it had to have a significant 

impact on the neurocognitive outcome. 
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In the first step, we reviewed many papers to find the best option. In this 

regard, we found two salient predictors in our dataset that can meet the 

above criteria: total MV days and intensive care unit (ICU) LOS. 

LOS, used for department management, quality assurance, and hospital 

planning, is the total number of days a patient is hospitalized. Additionally, it 

might infer the efficiency and efficient use of the hospital's resources (82). 

We found a direct connection between illness severity, LOS, and patients' 

outcomes following ICU discharge. It has been empirically proven that sicker 

babies with more complex conditions after surgery have extended ICU stays 

(83). 

In addition, some patients who leave the ICU are at high risk of developing 

persistent cognitive impairment and having low QOL. Worse cognition and 

QOL scores are linked to poor baseline patient characteristics and ICU events 

(84). 

A study has shown that positive cognitive stimuli are decreased while risk 

factors for cognitive impairment are multiplied during ICU time intervals 

(85,86). 

Furthermore, some ICU survivors are at risk of having new or deteriorating 

impairments in various cognitive functions and common psychiatric disorders 

like depression, anxiety, and post-ICU syndromes (87). 



 

31 

 

One study showed that hospital design, fear of pain, and the uniformed staff 

were cited as stress-inducing factors by the patients discharged from the 

ICU. Furthermore, impairments in memory, executive function, social 

interactions, and neuropsychiatric morbidities have also been connected to 

deprived environments, such as hospitals or institutions (88). Psychological 

stress and potential cognitive difficulties are also linked to MV time, surgical 

interventions, sedation, and pain medication (89). 

Besides, in terms of MV, one of the most crucial clinical variables determining 

how well pediatric cardiac surgery will turn out is the length of MV. Following 

cardiac surgery, the MV remains prolonged for multiple reasons—the more 

complex the baseline baby characteristic, the more extended the MV time 

(90). 

Therefore, total MV days and ICU LOS were the best options for the logistic 

regression's outcome. 

In the second step, we presented our options to the pediatric cardiologist 

and intensivist experts, who advised us to choose ICU LOS. Therefore, the 

ICU LOS was regarded as the outcome of the regression. 

However, we were also advised to include death by 30 days as another 

outcome for the regression. Since the PS regression reflected the 

perioperative severity of illness, early death (which could occur even with 

short ICU LOS) was considered significant. 
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Death within 30 days is the standard time surgeons consider for surgical 

mortality, and this measure is applied to assess, evaluate, and compare 

hospital quality (91). 

We maintained that the ICU LOS for the first surgery or death within 30 days 

after the first surgery would represent the children's severity of illness and 

can be used as the outcome for logistic regression to estimate a PS for 

perioperative seriousness of the disease. 

3.4.4. Assigning a cut-point for the logistic regression outcome 

We considered all pre- and intra-operative available variables, potentially 

influencing post-surgical outcomes to start formulating the regression. 

ICU LOS was labeled a continuous variable in our dataset, so we had to 

convert it into a binary variable to run logistic regression. Therefore, we 

needed a cut-off value. 

The best cut-off value for clinical applications can be chosen using receiver 

operating characteristic (ROC) curves, which graphically plot true positives 

versus false positives across a range of cut-offs. The trade-off between 

sensitivity and specificity facilitates determining the best cut-offs. 

Maximizing the sum of sensitivity and specificity as a diagnostic threshold 

criterion is formally equivalent to minimizing the sum of false negative and 

false positive misclassification likelihoods. In ROC curve analysis, the ideal 
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limit has the clinically desirable property of maximizing the correct diagnosis 

rate and minimizing the overall misdiagnosis rate, so ten days were coined 

as an appropriate threshold for ICU LOS (92,93,94), with the highest 

accuracy (83.1%), sensitivity (84.9%), and specificity (54.1%), the highest 

area under the curve (AUC) (73.3%), and clinical relevance. 

3.4.5. Model building for propensity scores. 

Initially, we started model building by sticking to the defining groups based 

on the ICU LOS, so code for group 1 as babies who had an ICU LOS longer 

than ten days or died within 30 days and code for group 0 as babies who 

stayed in the ICU for fewer than ten days and did not experience death 

within 30 days. 

Then, we tracked the purposeful variable selection method and entered all 

the predictor variables one by one in the logistic regression to end up with 

their corresponding p-values and unadjusted odds ratios. Based on the 

results of this univariate analysis in the unadjusted logistic regression, if the 

p-value was less than 0.1, we kept the variable in the model. Otherwise, the 

variable was discarded from the model. 

In the next stage, we sought multivariate analysis. All selected variables 

from the previous univariate analysis were entered into the model 

simultaneously. Based on the adjusted odds ratio and corresponding p-value 

among the remaining variables, the ones with a significant p-value less than 
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0.05 were chosen to stay in the final logistic model. We finalized the 

adjusted logistic regression and best-fit model equations, including age at 

surgery, total MV days, DHCA time, and total chest open days. 

For our data, simply, the systematic part of the logistic regression model can 

be written as follows: 

 

Z represents ICU LOS for more than ten days or death within 30 days after 

the first surgery. X constitutes a set of age at surgery, total MV days, DHCA 

time, and total chest open days. 

3.4.6. Calculating the propensity score  

Then, we placed the values related to each baby in the formula to calculate 

each patient's predicted probability of Z. 

 

By plugging each number for each patient into the above formula, we 

computed a predicted probability for each patient separately. Afterward, as 
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mentioned above, the calculation results provided us with 235 scores for all 

the babies. 

3.4.7. K-means clustering on the propensity score. 

Clustering is an unsupervised statistical procedure where data points are 

grouped into different sets based on their degree of similarity. In contrast to 

the supervised system, clustering does not use labeled data. One of the 

various types of clustering is partitioning clustering, subdivided into K-means 

clustering and Fuzzy C-means clustering. 

In KMC, the features are compared, and all objects having similar 

characteristics are clustered together. 

These methods have been used previously for assigning subjects with a 

similar distribution of PS to the same group (95). 

In Fuzzy C-means clustering, each point has the probability of belonging to 

more than one cluster, while in KMC, a single object cannot apply to two 

different groups.  

The partitioning clustering procedure has indispensable types of algorithms. 

One of the famous ones is centroid-based clustering, which organizes the 

data into non-hierarchical clusters. KMC is the most widely used centroid-

based clustering method. This design is efficient but sensitive to primary 

conditions and outliers (96). 
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3.4.8. Determining the optimal number of clusters 

Therefore, we utilized the K-means center-based clustering method on PS to 

find infants with a similar distribution of observed covariates. These methods 

helped us discriminate between babies with severe and non-severe 

conditions.  

In this regard, we emphasized the Silhouette method to find the optimal 

number of clusters and interpret and validate consistency within data 

clusters. This process computes Silhouette coefficients for each point that 

measure how much a topic is similar to its group compared to other sets by 

providing a concise graphical representation of how well each object has 

been classified. The Silhouette coefficients were rated for each point, and the 

average was taken for all the samples to get the Silhouette score. 

Silhouette width is generally recognized as an index for assessing the 

individual's fit in the classification, the quality of clusters, and the entire 

category (97). 

3.4.9. Defining the clusters 

The results of KMC stratified babies into two clusters. In each cluster, some 

babies had ICU LOS of more than ten days, and some had ICU LOS of less 

than ten days. Then, we traded off the clustering results with the PS 

outcome variable (ICU LOS or death within 30 days) by making a two-by-
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two table. In each cluster, we focused on the babies with the highest 

proportion. The two concordant pairs of two-by-two tables included the 

babies with the higher percentage, which facilitated categorizing infants into 

severe and non-severe groups. Based on the findings, we drew our attention 

to the severe group allegedly prone to inefficient neurocognitive outcomes. 

3.5. Statistical analysis for linear regression 

3.5.1. Predictor variables for neurocognitive and functional 

outcomes 

The given dataset had some variables related to neurocognitive outcomes. 

To decide whether to keep a variable, we separately set up purposeful 

variable selection through univariate analysis for each outcome: FSIQ, VMI, 

and ABAS GAC. Variables with a p-value less than 0.1 were selected for the 

next step. Additionally, we took advantage of the expert cardiologist and 

intensivist team's and psychologists’ ideas, and they confirmed the clinically 

significant contribution of the following variables: 

1. Socioeconomic status (SES) 

This factor was assessed using the Blishen index. SES measures an 

individual's standing in the community. It refers to a person's social status 

determined by wealth, occupation, and social class. Typically, it focuses on 

wealth, education, and income. 
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SES has been associated with functioning across various neurocognitive 

domains, covering language, memory, executive functioning, and social-

emotional processing. Extensive research has documented socioeconomic 

disparities in academic performance (98). 

2. Maternal education level (MEL) 

It is readily acknowledged that parents' educational level is a critical 

predictor of cognitive, language, and motor outcomes in every age bracket 

of the babies' life span, ranging from preterm infants to older ages. For 

instance, evidence has shown that as MEL increased from less than high 

school to university or higher, cognitive and language scores were higher for 

infants born at 29 weeks gestation (99). 

The maturation of the human brain during early development necessitates 

the coordinated growth of all brain regions over time. Both lower MEL and 

lower levels of cognitive development were found to be associated with 

highly coordinated brain volume growth. These variations were most 

noticeable in older kids (100,101). 

3. Total hospital days at SCH after the first admission. 

In much of the literature covering cardiac research results, the number of 

days a baby stays at the hospital was cited as an influential factor for 

determining future cognitive outcomes. 
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This factor can act as a marker of the many challenges babies struggle with 

during hospitalization. 

A more extended postoperative stay is associated with worse later cognitive 

function, even when adjusted for perioperative events, perfusion times, and 

sociodemographic variables; however, more research is required to figure 

out the mechanisms underlying this relationship. Postoperative LOS after 

infant heart surgery may be a simple surrogate for various events resulting 

in later adverse cognitive outcomes (102). 

3.5.2. Assessing collinearity among the selected variables 

As we know, the correlation between predictor variables causes them to be 

unable to predict the dependent variable's value independently. 

Consequently, the statistical significance of an independent variable will be 

undermined, so we assessed the collinearity among the named variables. 

Based on that, the MEL and SES were correlated, so the MEL was discarded 

from the analysis. 

We also included the birth year as a variable that can elaborate on each 

trend’s changes over time, a significant aim of this study. 

Therefore, the final multiple linear regression for each neurocognitive 

outcome consisted of three variables: SES, all hospital days, and birth years 

as time. 
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3.5.3. Different neurocognitive models implementing PS adjustment.  

We recruited the calculated PS once in the context of a covariate and once as 

a weight in the multiple linear regression model to adjust for the baseline 

severity of perioperative illness (using clinical and patient characteristics) 

and estimate the neurocognitive outcomes (103,104). 

In IPW, fitted probability values were grounded on the participant group 

number. For group 1, where Z = 1, or the infants with ICU LOS longer than 

ten days or those who died within 30 days, it was calculated in this way: 

(1/predicted probabilities). 

For group 0, where Z = 0, or for the infants with ICU LOS lower than ten 

days or who did not die before 30 days, PS was calculated in this way: 

(1/(1-predicted probability)). 

In PSC, the calculated predicted probability will be entered as a covariate in 

the final multiple linear models to adjust for the baseline clinical and patient 

characteristics reflecting the perioperative severity of illness. 

The multiple linear regression was implemented as all the outcomes were 

continuous; here is the neurocognitive trend. 

To simplify, the systematic part of our multiple linear regression model can 

be written as follows: 

E[Y|X] =β0+β1X1 
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Y is the outcome variable (here: FSIQ, VMI, or ABAS GAC), and X constitutes 

the set of SES, all hospital days at SCH after the first admission and birth 

year.  

The estimation of the effect size or coefficient in the simple linear regression 

could be obtained from this formula: 

 

Likewise, for the IPW simple linear regression, the formula would be as 

follows: 

 

Wi specifically represents the PS calculated from a multiple logistic 

regression for each participant that influences the coefficient as a weight. 

Concerning these formulas, the effect sizes for three different multiple linear 

regression models, including adjusted, IPW-adjusted, and PSC-adjusted, 

were calculated, considering 0.05 as the significance level. Although some of 

the three variables did not achieve the assigned statistical significance to be 

retained, they were kept in the model due to their clinical significance. 
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Adjusted multiple linear regression only had SES, all hospital days, and birth 

year, not including the PS.  

While IPW- and PSC-adjusted multiple regression models covered the same 

list of variables plus the calculated PS.  

We compared IPW- and PSC-adjusted models with the Akaike information 

criterion (AIC) and Bayesian information criterion (BIC) as the two ordinary 

penalized goodness of fit criteria (105). The aim was to find out which 

approach would better provide results. The model with the smaller AIC and 

BIC frames was more suitable, and all statistical analysis was performed 

using R software version 4.0.4. 
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Chapter 4: Results 

4.1. Description of the cohort study 

The study group consisted of 266 children with SV admitted at the SCH in 

Edmonton, Alberta, Canada, between 1997 and 2016 who underwent the 

Norwood procedure. Figure 1 depicts the levels of screening and population 

selection.  
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Figure 1: Flowchart of analysis of cohort.  
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4.2. Description of the predictor variables in the preoperative and 

intraoperative stages of palliative surgeries  

The fundamental description of the study population is tabulated in Table 1. 

It incorporated patient and procedure-related features and some continuous 

and categorical variables for 235 participants. The mean of each variable 

was reported separately. 20 (8.5%) of the 235 infants weighed less than 

2500 grams at surgery, and the average (SD) of the birth weight z-score and 

age at surgery were, respectively, -0.12 (1.0) and 10.5 (6.9) days. 90 

(38.3%) of the children were female. 

Table 1: Baseline and clinical characteristics of the study population(n=235) 

from the palliative surgery 

 

Continuous Variables N Mean (SD) 

Age at surgery 235 10.49 (6.9) 

Gestational age, weeks 235 38.77 (1.7) 

Birth weight, Z-score 235 -0.12 (1) 

Weight at surgery 235 3.28 (0.6) 
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Highest mod inotrope score, 

mcg/kg/min 
235 7.7 (20.5) 

Highest serum lactate, 

mmol/L 
235 3.42 (2.7) 

Lowest base deficit, mmol/L 235 -5.04 (4.5) 

Lowest arterial pH 235 7.26 (0.1) 

Total ventilation days pre-op 235 6.91 (6.6) 

Cardiopulmonary bypass 

time 

235 123.5 (54.3) 

Cross-clamp time 235 48.51 (22.4) 

Deep hypothermic 

circulatory arrest (DHCA) 

time 

235 25.06 (17.7) 

Day 1 Highest inotrope 

score, mcg/kg/min 

235 15.85 (16) 

Day 1 Highest serum lactate, 

mmol/L 

235 7.42 (4) 
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Day 1 Lactate time to <2 

mmol/L, hours 
235 19.29 (15.4) 

Day 1 Lowest base deficit, 

mmol/L 
235 -2.73 (4.9) 

Day 1 Lowest arterial pH 235 7.27 (0.1) 

Day 1 Highest creatinine, 

umol/L 
235 61.19 (20.8) 

Day 2-5 Highest inotrope 

score, mcg/kg/min 
234 16.28 (36.5) 

Day 2-5 Highest serum 

lactate, mmol/L 

234 3.98 (4.1) 

Day 2-5 Lowest base deficit, 

mmol/L 

234 -2.26 (4.4) 

Day 2-5 Lowest arterial pH 234 7.3 (0.1) 

Day 2-5 Highest creatinine, 

umol/L 

234 70.91 (31.9) 

Total days chest open 235 6.1 (6.3) 
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Categorical Variables N % 

Sex, female 90 38.30% 

Birth year   

1997-1998 19 8.10% 

1999-2000 23 9.80% 

2001-2002 21 8.90% 

2003-2004 23 9.80% 

2005-2006 22 9.40% 

2007-2008 28 11.90% 

2009-2010 30 12.80% 

2011-2012 25 10.60% 

2013-2014 29 12.30% 

2015-2016 15 6.40% 

Year of initial surgery   

1997-1998 19 8.10% 
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1999-2000 23 9.80% 

2001-2002 20 8.50% 

2003-2004 24 10.20% 

2005-2006 22 9.40% 

2007-2008 28 11.90% 

2009-2010 30 12.80% 

2011-2012 25 10.60% 

2013-2014 29 12.30% 

2015-2016 15 6.40% 

Weight <2500g at 

surgery 20 8.50% 

Prenatal diagnosis, 

antenatal diagnosis 149 63.40% 

Re- Cardiopulmonary 

bypass, yes 50 21.30% 

Sepsis, positive bc 36 15.30% 
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Convulsions anytime, 

yes 23 9.80% 

Cardiopulmonary 

resuscitation anytime, 

yes 33 14% 

Dialysis anytime, yes 65 27.70% 

Extracorporeal 

membrane oxygenation 

(ECMO), includes ECPR, 

yes 29 12.30% 

Death by 30 days  17 7.20% 

Death by 4.5 years 78 33.20% 

 

4.3. Description of the propensity score model 

Table 2 splits the variables nominated to assess their presence in the 

multiple logistic regression. The pre-, intra-, and early post-operative 

variables were recorded in the CPTFP registry database. For each, the 

number of participants who spent less or more than ten days in the ICU or 

died within 30 days of surgery was delineated. The corresponding 
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unadjusted and adjusted odds ratios and p-values were calculated at each 

level.  

To be more precise, to achieve the final multiple logistic regression, two 

prominent screening stages were conducted: first, based on the unadjusted 

odds ratio, we selected the variables with a significant p-value, which was 

less than 0.1, encompassing age at surgery, the highest mod inotrope score, 

the lowest base deficit, the lowest arterial PH, total MV days, DHCA time, 

day 2–5 highest inotrope score, day 2–5 lowest base deficit, day 2–5 highest 

creatinine, and total days with the chest open. 

Secondly, based on the adjusted odds ratio, the variables with a significant 

p-value less than 0.05 were assigned to be kept in the model, the remaining 

ones comprising age at surgery, total MV days pre-operative, DHCA time, 

and whole days with the chest open. 
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Table 2: Logistic regression for propensity score(n=235). 

 

Variables 

ICU LOS 

<10d and 

survived 

within 30 

days 

[N=16, 

6.81%] 

ICU LOS 

≥10d or died 

within 30 

days 

 [N=219, 

93.19%] 

Unadjusted OR 

(95%CI) 

Adjusted OR 

(95%CI) 

Continuous  Mean (SD) Mean (SD) 

Age at surgery 

13.94 (10.3) 10.24 (6.6) 

0.95 (0.9, 1) * 

P-value= 0.048 

0.85 (0.8, 0.9)  

P-value= 0.002 

Gestational age, weeks 

38.88 (1.8) 38.76 (1.7) 

0.96 (0.7, 1.3) 

P-value= 0.793 

-- 

Birth weight, Z-score 

-0.11 (0.8) -0.12 (1) 

0.99 (0.6, 1.7) 

P-value= 0.979 

-- 

Weight at surgery 

3.23 (0.5) 3.28 (0.6) 

1.18 (0.5, 2.9) 

P-value= 0.718 

-- 
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Highest mod inotrope 

score, mcg/kg/min 
1.62 (3.2) 8.14 (21.1) 

1.16 (1, 1.4) * 

P-value= 0.048 

NS 

P-value= 0.657 

Highest serum lactate, 

mmol/L 
2.75 (2.1) 3.47 (2.8) 

1.17 (0.9, 1.7) 

P-value= 0.308 

-- 

Lowest base deficit, 

mmol/L 
-1.94 (3.7) -5.27 (4.5) 

0.77 (0.7, 0.9) * 

P-value= 0.002 

NS 

P-value= 0.272 

Lowest arterial pH 

7.34 (0.1) 7.25 (0.1) 

6.7e-6 (3.3e-9, 

4.6e-3) * 

P-value= 0.001 

NS 

P-value= 0.935 

Total ventilation days pre-

op 
2.56 (3.2) 7.23 (6.7) 

1.29 (1.1, 1.5) * 

P-value= 0.002 

1.34 (1.1, 1.7)  

P-value= 0.004 

Cardiopulmonary bypass 

time 
117.81 (45) 123.92 (55) 

1 (1, 1) 

P-value= 0.664 

-- 

Cross-clamp time 

47.19 (16.5) 48.6 (22.8) 

1 (1, 1) 

P-value= 0.807 

-- 
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Deep hypothermic 

circulatory arrest (DHCA) 

time 

12.12 (10.7) 26.01 (17.7) 

1.07 (1, 1.1) * 

P-value= 0.004 

1.09 (1, 1.2)  

P-value= 0.004 

Day 1 Highest inotrope 

score, mcg/kg/min 
10.69 (6.4) 16.23 (16.4) 

1.06 (1, 1.1) 

P-value= 0.122 

-- 

Day 1 Highest serum 

lactate, mmol/L 
5.89 (1.9) 7.53 (4.1) 

1.18 (1, 1.5) 

P-value= 0.103 

-- 

Day 1 Lactate time to <2 

mmol/L, hours 
16.53 (8.7) 19.49 (15.8) 

1.02 (1, 1.1) 

P-value= 0.457 

-- 

Day 1 Lowest base deficit, 

mmol/L 
-1.89 (5) -2.79 (4.9) 

0.96 (0.9, 1.1) 

P-value= 0.475 

-- 

Day 1 Lowest arterial pH 

7.27 (0.1) 7.27 (0.1) 

1.28 (0, 317.3) 

P-value= 0.935 

-- 

Day 1 Highest creatinine, 

umol/L 
52.94 (12) 61.79 (21.2) 

1.03 (1, 1.1) 

P-value= 0.1 

-- 

Day 2-5 Highest inotrope 

score, mcg/kg/min 
6.81 (4.6) 16.98 (37.7) 

1.15 (1, 1.3) * 

P-value= 0.017 

NS 

P-value= 0.877 
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Day 2-5 Highest serum 

lactate, mmol/L 
2.58 (1.2) 4.08 (4.2) 

1.33 (1, 2.1) 

P-value= 0.132 

-- 

Day 2-5 Lowest base 

deficit, mmol/L 
-0.52 (4.4) -2.39 (4.3) 

0.89 (0.8, 1) * 

P-value= 0.086 

NS 

P-value= 0.278 

Day 2-5 Lowest arterial pH 

7.32 (0) 7.3 (0.1) 

0.01 (0, 11.2) 

P-value= 0.283 

-- 

Day 2-5 Highest 

creatinine, umol/L 
51.12 (16.1) 72.36 (32.3) 

1.04 (1, 1.1) * 

P-value= 0.011 

NS 

P-value= 0.510 

Total days chest open 

3.25 (0.9) 6.31 (6.5) 

1.42 (1.1, 1.8) * 

P-value= 0.005 

2.02 (1.3, 3.4) 

P-value= 0.003 

  

Categorical N (%) N (%) OR (95%CI)  

Sex, female 

4 (25%) 86 (39.27%) 

1.94 (0.7, 7.1) 

P-value= 0.264 

-- 

Prenatal diagnosis, 

antenatal diagnosis 

10 (62.5%) 
139 

(63.47%) 

1.04 (0.3, 2.9) 

P-value= 0.938 

-- 
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Convulsions anytime, yes 

1 (6.25%) 22 (10.05%) 

1.68 (0.3, 31) 

P-value= 0.625 

-- 

Cardiopulmonary 

resuscitation anytime, yes 

1 (6.25%) 32 (14.61%) 

2.57 (0.5, 47.2) 

P-value= 0.369 

-- 

Dialysis anytime, yes 

3 (18.75%) 62 (28.31%) 

1.71 (0.5, 7.6) 

P-value= 0.414 

-- 
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The results for determining the optimal cut point for ICU LOS based on the 

sum of specificity and sensitivity are illustrated in Figure 2.  

 

Figure 2: Optimal cut-point for ICU LOS based on the sum of sensitivity and 

specificity (n=235) 
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4.4. Description of clustering method on propensity score 

Figure 3 resonates with using the unsupervised clustering method through 

the Silhouette procedure to regulate the optimal number of clusters for the 

study. Following this method led us to two clusters.  

 

Figure 3: Optimal number of clusters using the Silhouette method for PS 

(n=235) 

 

Table 3 reports a two-by-two table based on the clustering results, giving us 

the insight to label the population under study into the severe condition 

group and the non-severe one. The two-by-two table based on PS outcome, 

ICU LOS and early mortality stratified all the participants, marking two 
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concordant pairs that paved the way for categorizing infants into severe and 

non-severe groups. 

In cluster 1, the most significant proportion, 60%, belongs to babies with 

less than ten days of ICU stay, while in cluster 2, babies with more than ten 

days grabbed the 95% proportion. 

Indeed, of 235 infants, 210 were dichotomized into babies who struggled 

with the severity of their disease, and 25 were not confronted with the 

severe degree of sickness. 

 

Table 3: Labeling the clusters based on PS to discriminate the severe from 

the non-severe group (n = 235). 

After omitting 78 children due to death by 4.5-year assessments, 157 babies 

remained in the study for the final analysis of neurocognitive outcomes. Of 

the 157 participants, 21 (13.37%) were classified as non-severe and 136 

(86.63%) as severe. 
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In Figure 4, scatter plots A, B, and C independently visualize the distribution 

of 157 babies into each cluster for each neurocognitive and functional 

outcome. As it is represented, there is no overlapping among the clusters. 

Figure 4: Descriptive plots for each cluster and each neurocognitive 

outcome(n=157) 

 

4.5. Description of multiple linear regression for neurocognitive 

outcome  

Table 4 describes the neurocognitive and functional outcomes and their 

potential predictors for 157 survivors. The average (SD) scores of FSIQ, 

VMI, and ABAS GAC for the entire cohort were 89.6 (16.1), 87.02 (13.9), 

and 88.59 (19.0), respectively. The average (SD) scores for the Blishen 
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Index and all hospital days were 44.49 (13.8) and 40.72 (72.1), 

respectively.  

Table 4: Neurocognitive criteria tested and potential variables (n=157). 

 

Neurocognitive and Functional Outcomes Mean (SD)/ N (%) 

WPPSI-III Full-Scale Intelligence 

Quotient (FSIQ) 

89.6 (16.1) 

Beery Visual-Motor Integration (VMI) 87.02 (13.9) 

The Adaptive Behavior Assessment 

System ‐ Second Edition (ABAS-II) 

General Adaptive Composite (GAC) 

88.59 (19.0) 

  

Predictor Variables Considered   

SES(Blishen Index) 44.49 (13.8) 
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All hospital days (associated with CPB) 

at SCH after the first admission 

40.72 (72.1) 

  

 

Table 5 features the goodness-of-fit appraisal results for fitted models. As a 

result, the PSC-adjusted model presented less value in AIC and BIC than the 

IPW-adjusted model, which means it can show the detailed trend better than 

the IPW-adjusted model. 

Table 5: Goodness of fit criteria for fitted model (n=157)  

 

Outcomes AIC BIC 

FSIQ   

Multiple Linear Regression-IPW adjusted 

[Red Line] 

1316.44 1331.69 

Multiple Linear Regression-PSC adjusted 

[Green Line] 

1302.68 1320.98 
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VMI   

Multiple Linear Regression-IPW adjusted 

[Red Line] 

1265.87 1281.12 

Multiple Linear Regression-PSC adjusted 

[Green Line] 

1261.90 1280.20 

   

ABAS-II GAC   

Multiple Linear Regression-IPW adjusted 

[Red Line] 

1376.22 

 

1391.47 

 

Multiple Linear Regression-PSC adjusted 

[Green Line] 

1359.93 

 

1378.23 

 

AIC: Akaike information criterion, BIC: Bayesian information criterion 
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Tables 6 and 7 summarised multiple linear regression effect sizes yielded for 

each outcome. The results for the entire sample and the severe group were 

embedded in the table. 

 

Table 6: Multiple linear regression effect size for study outcomes based on 

the entire sample (n=157) 

 

Outcome Variables 

Adjusted  

Effect Size 

IPW#- Adjusted 

Effect Size 

PSC#-Adjusted 

Effect Size 

FSIQ 

Blishen Index 

0.15 (-0.03, 0.33) 

P_Value= 0.105 

0.13 (-0.05, 0.32) 

P_Value= 0.148 

0.18 (-0.01, 0.36) 

P_Value= 0.057 

All Hospital 

Days 

-0.04 (-0.08, -0.01) 

P_Value= 0.014 

-0.04 (-0.08, -0.01) 

P_Value= 0.012 

-0.04 (-0.07, -0.005) 

P_Value= 0.026 

Birth year 

(Time) 

0.26 (-0.23, 0.76) 

P_Value= 0.29 

0.16 (-0.33, 0.66) 

P_Value= 0.512 

0.01 (-0.52, 0.53) 

P_Value= 0.988 

     

VMI 
Blishen Index 

0.1 (-0.06, 0.26) 

P_Value= 0.224 

0.09 (-0.06, 0.25) 

P_Value= 0.244 

0.11 (-0.04, 0.27) 

P_Value= 0.157 
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All Hospital 

Days 

-0.03 (-0.06, 0.003) 

P_Value= 0.083 

-0.03 (-0.05, 

0.003) 

P_Value= 0.08 

-0.02 (-0.05, 0.01) 

P_Value= 0.123 

Birth year 

(Time) 

0.51 (0.08, 0.93) 

P_Value= 0.02 

0.45 (0.03, 0.87) 

P_Value= 0.037 

0.34 (-0.12, 0.8) 

P_Value= 0.147 

     

ABAS-II GAC 
Blishen Index 

0.08 (-0.14, 0.3) 

P_Value= 0.486 

0.06 (-0.16, 0.28) 

P_Value= 0.598 

0.10 (-0.12, 0.32) 

P_Value= 0.361 

All Hospital 

Days 

-0.05 (-0.09, -0.01) 

P_Value= 0.014 

-0.05 (-0.09, -0.01) 

P_Value= 0.012 

-0.05 (-0.09, -0.01) 

P_Value= 0.023 

Birth year 

(Time) 

-0.31 (-0.89, 0.28) 

P_Value= 0.300 

-0.41 (-1.01, 0.19) 

P_Value= 0.178 

-0.55 (-1.19, 0.08) 

P_Value= 0.086 
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Table 7: Multiple linear regression effect size for study outcome based on the 

severe group (n=136) 

 

Outcome Variables 

Adjusted  

Effect Size 

IPW#- Adjusted 

Effect Size 

PSC#-Adjusted 

Effect Size 

FSIQ 

Blishen 

Index 

0.15 (-0.05, 

0.34)  

P_Value= 0.137 

0.14 (-0.05, 0.34)  

P_Value= 0.140 

0.14 (-0.05, 0.33)  

P_Value= 0.145 

All Hospital 

Days 

-0.04 (-0.08, -

0.01)  

P_Value= 0.025 

-0.04 (-0.08, -

0.01)  

P_Value= 0.024 

-0.04 (-0.07, -

0.002)  

P_Value= 0.035 

Birth year 

(Time) 

0.04 (-0.49, 

0.57)  

P_Value= 0.879 

0.02 (-0.51, 0.56)  

P_Value= 0.938 

-0.14 (-0.69, 0.41)  

P_Value= 0.611 

     

VMI Blishen 

Index 

0.1 (-0.06, 

0.26)  

0.1 (-0.06, 0.27)  

P_Value= 0.211 

0.09 (-0.07, 0.25)  

P_Value= 0.247 
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P_Value= 0.233 

All Hospital 

Days 

-0.02 (-0.05, 

0.01)  

P_Value= 0.133 

-0.02 (-0.05, 0.01)  

P_Value= 0.141 

-0.02 (-0.05, 0.01)  

P_Value= 0.189 

Birth year 

(Time) 

0.41 (-0.04, 

0.86)  

P_Value= 0.073 

0.39 (-0.07, 0.84)  

P_Value= 0.093 

0.2 (-0.26, 0.65)  

P_Value= 0.398 

     

ABAS-II 

GAC 
Blishen 

Index 

0.06 (-0.17, 

0.3)  

P_Value= 0.605 

0.06 (-0.17, 0.3)  

P_Value= 0.602 

0.06 (-0.18, 0.29)  

P_Value= 0.629 

All Hospital 

Days 

-0.05 (-0.1, -

0.01)  

P_Value= 0.015 

-0.05 (-0.1, -0.01)  

P_Value= 0.016 

-0.05 (-0.09, -0.01)  

P_Value= 0.020 

Birth year 

(Time) 

-0.54 (-1.19, 

0.1)  

P_Value= 0.099 

-0.55 (-1.2, 0.1)  

P_Value= 0.098 

-0.7 (-1.37, -0.03)  

P_Value= 0.042 
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Table 8 shows that despite the influential effect of MEL on the neurocognitive 

outcome, it was dropped from the study due to collinearity with SES.  

 

Table 8: Result of collinearity among variables 

 SES MEL 

SES 1  

MEL 0.48 

P_value<0.001 

1 
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In addition to the various multiple linear regressions defined beforehand to 

facilitate the comparison for each group of the severity condition, a crude or 

unadjusted linear regression was designed, containing neither the SES, all 

hospital days, nor the PS. 

Therefore, each plot portrays four lines at the same time. 
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Figure 5 shows all the neurocognitive and functional trends for the 21 babies 

in the not-severe group over the birth year; estimates are unstable because 

of sparse data, including data that started from the 2005-2006 birth year. 

In plot B for the VMI score, the black line for multiple linear regression-

adjusted and the green line for multiple linear regression-PSC-adjusted 

overlapped. 
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Figure 5: Linear trends of outcomes for the not-severe group, A for FSIQ, B 

for VMI, and C for ABAS GAC 
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Figures 6, 7, and 8 display the linear trends of neurocognitive and functional 

outcomes over the birth year based on crude, adjusted, IPW-adjusted, and 

PSC-adjusted models. 

Each figure consists of two plots: plot A, the fitted lines over the entire 

sample, and Plot B, the matched lines over the severe group, which 

encountered more challenges. 

Figure 6 denotes the FSIQ score trend: 

1. FSIQ score trend for the entire sample: 

In Plot A on the entire sample, the PSC-adjusted model captures a slight 

downward trend from 1997–1998 to 2001–2002, followed by a plateau trend 

to 2005–2006, and then an upward trend until 2011–2012, experiencing a 

period of stability until 2015–2016. The time trend of this model has the 

corresponding P-value= 0.988. 

In plot A on the entire sample, the IPW-adjusted model portrays a stable 

trend from 1997–1998 to 2001–2002, followed by a slight increase until 

2007–2008 and another steady drift until 2015–2016. P-value = 0.512 for 

the time trend of this model. 

For the time trend, a P-value=0.29 was reported for the multiple linear 

regression-adjusted models. 
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2. FSIQ score trend for the severe group: 

However, for the severe group in Figure 6 Plot B, the FSIQ score trend in the 

PSC-adjusted model shows a slight decrease from 1997–1998 to 2005–

2006, followed by a slightly upward trend till 2015–2016. The time trend of 

this model has the corresponding P-value= 0.611. 

For the IPW-adjusted model, the trend is very close to a flat line until 2003–

2004, followed by a small increase till 2015–2016. The time trend of this 

model has the corresponding P-value= 0.938. 

The multiple linear regression adjusted model for the severe group 

represented the time trend with the P-value=0.879. 
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Figure 6: Linear trends of FSIQ score over birth years. 

Plot A for the entire sample and plot B for the severe group. 

 



 

75 

 

Figure 7 displays the VMI score trend: 

1. VMI score trend for the entire sample. 

Plot an on the whole sample captures a steady increase in IPW-adjusted and 

PSC-adjusted models. The time trend for multiple linear regression adjusted 

with P-value=0.02 and IPW-adjusted with p-value=0.037 was significant. 

Additionally, the P-value=0.147 for the time trend over the entire sample for 

the PSC-adjusted model. 

2. VMI score trend in the severe group. 

Plot B for the PSC-adjusted model frames a negligible decrease from 1997–

1998 to 2001–2002, followed by a stable trend till 2005–2006 and 

experiencing a period of an upward trend, representing a P-value=0.398 for 

the time trend. 

The IPW-adjusted model reveals a constant increase in the VMI score with 

the corresponding P-value=0.093 for the trend time. 

The multiple linear regression adjusted model for the VMI score in the 

severe group showed a time trend with a P-value=0.073. 
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Figure 7: Linear trends of VMI score over birth years. 

Plot A for the entire sample and plot B for the severe group. 
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Figure 8 shows the ABAS GAC trend: 

1. ABAS GAC score trend for the whole of the sample 

Plot A on the whole sample depicts the gradual decrease in the trend of the 

score for both the PSC-adjusted and IPW-adjusted models; their 

corresponding P-values are 0.086 and 0.178, respectively. 

Furthermore, the multiple linear regression adjusted model for the ABAS 

GAC score in the entire group showed a time trend with the P-value=0.3. 

2. ABAS GAC score trend in the severe group 

Plot B portrays the constant decrease in the trend of the ABAS GAC score 

after adjusting for PS in both IPW-adjusted and PSC-adjusted models. 

However, the PSC-adjusted model had a significant time trend, with the 

corresponding P-value=0.042. The P-value=0.098 for the IPW-adjusted 

model was reported for the time trend, while the multiple linear regression 

adjusted model had a P-value=0.099. 

 

 

 

 

 



 

78 

 

Figure 8: Linear trends of ABAS-II score over birth years. 

Plot A for the entire sample and plot B for the severe group. 
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Chapter 5: Discussion 

5.1. Overview of our study 

The heart pumps blood to the brain to grow and develop; this flow is 

enriched with nutrients and oxygen; Hence, inefficient blood circulation and 

low oxygen concentration may hinder brain development. Given this 

evidence-based fact, it should be no surprise that any cardiac issue may be 

interwoven with brain malfunction. 

Accordingly, heart problems may pose problems for brain development, and 

consequently, newborns may mature neurologically later than healthy 

babies, which, in turn, might lead to delayed neurodevelopment. 

In the last four to five decades, the prognosis for infants born with CHD has 

significantly improved, moving from a condition that, in most cases, resulted 

in death without diagnosis or treatment to one with an expected high 

survival rate (106,107). 

Concerning these outstanding survival rates, it was anticipated that the 

neurocognitive trends would be similarly affected and there would be an 

improvement of delay in neurodevelopment. 

Therefore, it created the false impression that brain function could be 

corrected concurrently with heart healing, reducing the prevalence of 
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adverse neurocognitive outcomes. The lack of changed neurocognitive 

outcomes dispelled this misunderstanding, though. 

Hence, the increasing number of babies who survive CHD doesn't necessarily 

ensure improved neurological development. 

It is possible that brain function, particularly in the neurocognitive aspect, 

will be indirectly affected according to the severity of the heart problem and 

illness due to survivorship bias. 

Survivorship bias is a fallacy that clouds our perception of the true 

association between the effects of cardiac survival advances and 

neurocognitive outcomes. It arises when we need to consider prior failures 

and presume past success. It is critical to understand the whole narrative to 

dismiss this wrong estimation. 

An initiative must be taken to lessen its impact on the relationship between 

the intervention and the outcome (108). 

The gold standard for evaluating the influence of therapies, methods, and 

interventions in clinical trials is the RCT. However, RCTs are not always 

tractable because of various barriers, such as ethical concerns, financial 

constraints, and requirements for sample size and time (109). 

To achieve balanced groups, reduce the number of variables in the model, 

mimic some features of RCT studies, address survivorship bias, and assess 
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the effectiveness of the intervention or treatment on the outcome while 

controlling for observed confounding variables, it may be helpful to 

summarise all confounding variables into one covariate, based on the PS 

analysis (110,111). 

With the advent of the PS method, many confounders and selection biases 

can be tackled statistically. 

5.2. Summary of our findings 

This work investigates IPW and PSC techniques to diminish survivorship bias 

when evaluating neurocognitive and functional outcomes among CHD 

patients after cardiac surgery. 

ICU LOS and death within 30 days were the surrogates for the PS calculation 

result. This time interval was identified in several studies as a substantial 

risk factor for adverse neurocognitive outcomes among children following 

heart surgery (112). 

We also divided the infants into groups with a high and low degree of 

sickness, applying the KMC approach to PS. We discovered that deploying 

clustering analysis to PS can show more significant deviations of the trend 

from a flat line and provide a clearer picture of the neurocognitive and 

functional outcomes time trends. 
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Comparing trend lines on the entire sample with those in the severe group 

indicated that discriminating infants based on PS and clustering made trend 

lines clear to judge the overall trend. 

Our results showed that between 1997 and 2016, for newborns distributed 

as having severe conditions, FSIQ scores overall showed a plateau trend, 

VMI scores steadily climbed, and ABAS GAC scores declined. 

Although the overall trend in both the PSC-adjusted and IPW-adjusted 

models is the same, the PSC-adjusted model discloses more in-depth 

information about the volatility of the trend over time than the IPW-adjusted 

model. This model's underlying reason is smaller AIC and BIC than the IPW-

adjusted model. 

5.3. Reviewing other studies 

5.3.1. Supporting studies 

Regarding survivorship bias in a cohort study, the debate will arise about the 

existence of the healthy worker survivor effect (HWSE). 

By definition, HWSE describes a biased selection process in which those who 

remain in the study tend to be healthier and face the most exposure than 

those who leave the study. In other words, those who leave the study sooner 

are sicker (113). 
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The HWSE can be conceptualized as bias due to time-varying confounding or 

selection bias leading to differences between baseline characteristics of the 

exposed and unexposed groups. 

It is noted that changing HWSE over time may threaten an inference's 

validity (114). 

Multiple methods have been implemented to overcome the HWSE and 

ensure the study's reliability. 

Sometimes, it is advised to consider the first half of the cohort study or an 

early period to deal with the time-varying confounder because the study 

sensitivity may worsen or change in later periods. This would be efficient in 

the case of a large sample size. 

However, there are statistical approaches to make sure that the time-

dependent confounder or selection bias is appropriately addressed. 

One of the highly recommended initiatives noted in lots of literature was an 

IPW approach that reweights observed data. It uses weights inversely 

proportional to the likelihood that each subject received the exposure, 

creating a pseudo-population in which time-dependent confounders no 

longer predict exposure (115,116). 
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In our study, the complexity and severity of the illness of CHD as the focal 

predictor had a time-varying nature. Thereby, the results might have been 

threatened by the presence of HWSE. 

As we had to assign a PS to each person, using only an early cohort was not 

appropriate for our study because the study population was small, and just 

considering the first part of the cohort could result in losing some 

participants, so it was not feasible. Additionally, our team affirmed the list of 

predictors for developing the PS, which are pre-operative, intraoperative, 

and early post-operative; therefore, it addresses the issue of using early 

measurements to calculate the PS. 

To take advantage of statistical methods for dealing with HWSE, the IPW was 

chosen because, on the one hand, it is widely used for calculating PS, and on 

the other hand, it can mask the effect of time-varying confounders; 

therefore, the influence of HWSE on changing the study reliability was 

potentially controlled. 

The fact that we can only debug phenomena that arise after birth, like 

confounding factors, but not those that consolidate within the pregnancy, 

can have a sizable impact on brain development. 

Multiple fetal imaging explorations have demonstrated that infants with CHD 

confront brain growth anomalies during gestation, primarily in the third 

trimester (117,118). 
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SV fetuses face lower maturation of grey matter as well (119). 

Indisputably, the placenta plays a crucial role in fetal brain development. 

Otherwise, an impaired placenta can easily mask the oxygen flow, resulting 

in lower cerebral oxygen levels than other organs. 

As a result, a normal placenta eases and accelerates cerebral blood flow and 

fosters proper brain development (120). 

Despite the placenta's pivotal role in fetal brain evolution, a range of 

prenatal, surgical, and post-surgical components may disturb normal brain 

development in these target groups, entailing prolonged postnatal hypoxia 

before surgery (121,122), uneven anesthetic exposure (123), the time of 

CPB during surgery, postoperative complications during recovery, and 

lengthy hospitalization (124). 

These aspects can negatively impact brain development and cause adverse 

long-term cognitive and functional outcomes. 

Alton GY et al. conducted a study in 2010 that focused on the adaptive skill 

domains of six-month-old infants or younger who underwent Norwood and 

vascular procedures. They noted that the survivors of these palliative care 

efforts had delays in ABAS GAC scores over four times higher than the 

predicted rate for the general population. This study suggests that these 
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surgeries may be associated with a greater risk of experiencing 

developmental impediments measured using ABAS GAC (125). 

In 2020, Atallah J. et al. undertook research that warned that children 

eligible for challenging three-stage surgical palliation for hypoplastic left 

heart syndrome after staying alive had VMI and ABAS GAC scores within 1 

SD of the population mean. Their exploration also confirmed that 13% of the 

children had FSIQ scores below 70, and 25% had ABAS GAC scores below 

70, designating a high-risk group (126). 

Ricci M.F. et al. pursued an examination in 2018, which discussed that after 

the Norwood procedure for SV CHD, babies attained a decline in their ABAS 

II scores over time. Their work put forward the finding that children who had 

survived the surgery and were assessed when they were 4.5 years old or 

older showed a delay of 25% in their ABAS II scores, representing a 

deterioration in their functional abilities. This finding contradicts the widely 

held belief that children undergoing the Norwood procedure improve their 

practical skills as they age (127). 

In 2015, Robertson C.M.T. et al. argued that the level of education attained 

by a child's mother might indicate their social context, and coping with this 

issue could lead to a better trajectory of neurocognitive skills. Moreover, the 

study highlighted preoperative lactate levels as a potentially modifiable 
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variable and stressed the importance of early diagnosis and aggressive 

resuscitation in young infants with CHD (128). 

A body of research by Gaynor J.W. in 2014 examined the cognitive abilities 

of SV children at the age of six months. The investigation proposed that 

infants who had experienced more prolonged CPB and Norwood surgeries 

had lower FSIQ scores than those who had not. This result implied that the 

procedures' duration must be restricted; otherwise, it can even affect 

infants' cognitive outcomes (129). 

In terms of deploying PS and KMC, there are countless kinds of research; 

here are some of them that support our hypothesis of using these methods 

to minimize survivorship bias and other confounding in observational 

studies: 

It is common practice to estimate the causal effects of treatment on 

outcomes using observational studies. However, the distribution of baseline 

traits between participants who received treatment and those who did not 

frequently show systematic differences. As a result, outcomes between 

treatment groups cannot be directly compared. 

Causal inference based on PS techniques was introduced to estimate causal 

effects in observational studies without the crucial role of RCT (130). 
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When comparing interventions across treatment areas, this technique 

reduces bias by accounting for the conditional probability of the treatment 

(131). 

In logistic regression, the sample size is conceptualized as events per 

variable (EPV). The number of variables that should be included in a 

prediction model is not predetermined and frequently depends on several 

factors. The 'one in ten rules' limits the number of variables or parameters 

estimated from data, a common practice in traditional clinical prediction 

modeling. This rule states that a model can consider one variable for every 

ten events (132). 

1996 Peduzzi P. et al. suggested multiple regression may yield inaccurate 

coefficients or effect sizes when the EPV numbers are less than 10. The one 

in ten rule states that if the EPV values decrease, it is more likely to impose 

biased coefficients in regression models. The analysis will be threatened by 

overfitting. Hence, combining multiple variables into one variable through PS 

can push the boundaries. It is feasible when the sample size is insufficient 

for each covariate to have at least ten samples (133). 

Elze, M.C. et al., in a study published in 2017, compared the four approaches 

to PS. The results revealed that in most PS approaches, data from all study 

participants were retained, providing excellent covariate balance in most 

circumstances (134). 
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Cepeda M.S. (2003), by assigning a new cut-off point for EPV, advocated the 

PS method and stated that analysis data based on the PS technique provides 

a more unbiased and precise perspective with more empirical power than 

conventional logistic regression when the number of EPV is not enough to 

meet the cut point of seven because, for achieving accurate and reliable 

results by setting up logistic regression, we need at least eight events per 

confounder, which is not possible all the time (135). 

A practical extension to PS was proposed by Imbens (2000), named 

generalized propensity score (GPS), to expand the PS methodology for 

binary treatments to multivalued and continuous treatments since all the 

treatment variables mentioned beforehand were binary (136). 

By taking advantage of the GPS concept, Chunhao T (2013) discovered 

differences in the performance of four clustering methods. KMC, model-

based clustering, Fuzzy C-means clustering, and partitioning around medoids 

were put into practice. The conclusion suggested that the KMC algorithm 

outperformed the other three methods. Therefore, applying the KMC 

algorithm to similar groups of subjects based on their transformed GPS is 

recommended (137). 

D'Attoma et al. (2019) pointed out that both PS and cluster-based methods 

can effectively achieve unbiased results in quasi-experimental studies and 

undermine the effect of selection bias in non-randomized investigations. 
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Combining these methods provides a means of examining bias reduction, 

case retention, and covariate balance—the cluster-based technique narrows 

at least as much bias as the PS methods. While the PS method can deal with 

preferences better than the cluster-based method under certain conditions, 

the cluster-based approach is more advantageous under other circumstances 

(138). 

Amoah et al. (2020) researched to compare PS and traditional regression 

analysis efficacy in estimating causal effects in the observational study. The 

results suggest PS analysis is more advantageous than traditional regression 

analysis. However, PS analysis cannot address the wrong study design or 

data inaccuracy (139). 

5.3.2. Opposed studies. 

However, some studies are against exploiting PS and express no benefit from 

PS adjustments. They are as follows: 

Stürmer T. (2006) argued that although PS methods have become more 

dominant and widespread, there is limited evidence that these methods can 

produce distinct differences and unprejudiced forecasts compared to 

conventional multivariable methods. This study has not found any advantage 

in using PS adjustments over conventional regression methods in reducing 

bias or improving precision in nonrandomized studies (140). 
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Shah, B. R. (2005) claimed that the findings of observational studies were 

similar, regardless of whether conventional regression or PS were used to 

adjust for confounding. (141) 

Even in research published in peer-reviewed surgical journals, several 

studies report their PS methodology insufficiently, which may result in a lack 

of accuracy and validity in the study's conclusion, according to a study by 

Grose E et al. (2020) that also revealed the presence of publication bias 

(142). 

Cook et al. (1989) proposed that analyzing data by stratifying subjects 

based on a PS is less influenced by the strong correlation between exposure 

and confounding variables than analyzing data using a multivariate 

confounding score (143). 

5.4. Strength and limitation 

5.4.1. Strengths 

In addition to the many merits mentioned before for applying PS in all the 

non-randomized control studies, this method has more advantages. 

1. Missing data may be addressed with this method. Complete case  

analysis, 

the missing indicator method, multiple imputations, and combining multiple 
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imputations and the missing indicator method are some approaches for 

handling missing values through PSM and IPW (144). 

2.  PS can produce accurate estimates of treatment effects in 

small study sample sizes or low treatment prevalence while 

including the true confounders (the variables related only to the 

outcome).  

Besides, this application reduces the list of variables to a single score and 

only needs one degree of freedom for all the covariates in the model; it can 

be helpful in situations with small sample sizes and poor power to detect 

differences between groups (145). 

3. Since PS attempts to mimic randomization, this novel method 

Helps analyze rare outcomes and exposure. Traditional covariate adjustment 

fails to produce enough data in the case of rare outcomes to ensure the 

validity of the results (146). 
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5.4.2. Limitations 

We built our hypothesis on two assumptions. 

First, confounding variables have been measured, and there are no 

unmeasured confounders. 

Second, each participant has a nonzero probability of receiving each 

treatment. Regarding the named assumption, the concern  

may arise around the following aspect of holding or violating it (147). 

There might be a better way to form a PS analysis to account for 

survivorship bias if all the following questions are answered precisely. 

1. How were the variables for running the regression selected for the PS  

model? 

There needs to be more said regarding the issue of variable selection for PS  

models in the epidemiology literature. To our knowledge, no proper  

guidelines exist for selecting factors relevant to PS calculations. 

Some studies suggested that it would be better to include variables 

unrelated to the exposure but linked to the outcome when selecting the 

variable for PS modelling. Including these factors will reduce the estimated 

exposure effect's variance and decrease bias (148). 
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2. How much could unmeasured or residual confounding have influenced the  

results? 

From an epidemiologic point of view, residual confounding stems from the  

measurement error of a covariate, while unmeasured confounding refers to  

confounding that was mistakenly dropped from the model. 

Lots of studies have highlighted that PS methods, such as the traditional  

multivariable regression method cannot mask the effect of unmeasured or  

incorrectly measured covariates (149). 

The study results may need to be more balanced due to  

unobserved confounding variables that need to be investigated more (150). 

Incorrect PS model specification could prohibit attaining an adequate  

balance, resulting in residual confounding bias. Employing proper diagnostics  

to evaluate the PS and make sure that it has adequately minimized.  

confounding bias is a crucial component of PS deployment (151,152). 

Using diagnostics in the PS is the way to trust the result more. Applying the  

proper diagnostics may show the balance of potential confounders attained  

by the PS (153,154). 
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Based on this extension, there might be a better initiative on PS to control  

the survivorship bias. 

3. How much did the treatment groups overlap? 

While the conventional IPW we used and other PS strategies, such as  

matching can account for disparities in measured attributes, these  

techniques may have drawbacks regarding the target population, balance,  

and precision (155). 

Areas of non-overlap in covariate distributions can be found by comparing  

PS distributions between treatment groups, which is frequently missed when  

using the PS (156). 

Overlap weighting is a PS technique that tries to replicate key RCT  

characteristics. Similar patient features across treatments are referred to as  

balance, and this is a crucial requirement to prevent bias. Precision is the  

confidence interval (CI) in assessing the relationship between the  

intervention and the outcome; more accurate estimates have a narrower CI  

and higher statistical power. Therefore, adjusting based on conventional IPW  

might not precisely control for survivor bias. 
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4. How was balance assessed? 

Lack of similarity in the covariate distributions between treatment groups  

frequently makes estimating the average treatment effects difficult. Because  

this may produce inaccurate estimates (157). 

To ensure that the covariate balance across the treatment groups is  

accomplished, trimming the tails of the PS distribution is strongly advised to  

develop the IPW estimators and also reduce bias by unmeasured  

confounders (158,159). 
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Chapter 6: Conclusion 

6.1. Summary 

Based on the database made available for this study, which was a part of the  

Western Canadian CPTFP, after applying PS adjustment, the results 

revealed that in babies with severe CHD, over time, FSIQ scores overall 

remained the VMI scores steadily climbed, and ABAS GAC scores declined in 

some models. 

Although it can be discussed that the FSIQ score followed a period of  

instability over time, its overall trend shows no changes.  To ensure a 

genuine trend with an in-depth outlook. It can be seen that the  

changes in FSIQ scores over time in each discrete period are not more than  

½ SD, so the ups and downs in trends cannot be considered clinically 

significant changes. The results remained plateaued, and we witnessed a 

lack of improvement or declined in the FSIQ score. 

It would be good news if no declining trends in the FSIQ score were adjusted 

for the PS over time. It means that, despite sicker patients, there was  

no deterioration in the FSIQ score. 

Furthermore, an improving trend for VMI scores over time was reported  



 

98 

 

after adjusting for the PS, which is good news, which means in the  

domain and skills covered by the VMI score, these babies had better  

performance. 

Regarding the trends in FSIQ and VMI scores, it can be said that palliative  

surgical cardiac surgery helped them survive heart problems and positively 

influenced these neurocognitive domains. 

However, there was a trend of decreasing ABAS GAC scores over time, which 

is concerning and requires future study to determine modifiable variables 

that may be particularly associated with the ABAS GAC score.  

To find the significance of trend lines over time, we include the birth year or  

time in the linear regression model to ensure an independent  

association between the period and PS to find the significance of trend lines 

over time. In other words, these two are not collinear. In addition, by 

including the time variable in the linear regression models, the constant 

sensitivity of the analysis over time was statistically supported. 

The PS adjustment methods with clustering have the advantage of more 

accurate estimations, more explicit trends showing more significant 

deviations from a flat slope, and, therefore, improved interpretations of 

outcome time trends. 
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Ultimately, this study's findings will provide new knowledge for future  

targeted treatments that seek to lessen the burden of illness before children  

enter school. 

6.2. Future research and recommendations 

We know from our prior work on disseminating the findings for the  

advancement of statistical methods that software codes alone are insufficient  

to effectively reach and assist many scientists, thereby putting this named  

approach into practice through divergent study populations like adults, with  

different sample sizes, totally different predictors, and contrasting biases are  

highly recommended. 

Without a doubt, these modified techniques can be used in various  

biomedical studies where longitudinal outcomes are of interest, adding  

different extensions to them, like diagnostics, trimming, etc. 
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