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ABSTRACT 

HER2 receptor tyrosine kinase (encoded by ERBB2 gene) is overexpressed in approximately 

25% of all breast cancer tumors (known as HER2-positive breast cancers). Overexpression of 

HER2 causes overactivation of downstream receptor tyrosine kinase pathways including 

PI3K/Akt and MAPK pathways and is a poor prognosis factor in breast cancer. Trastuzumab 

which is a humanized monoclonal antibody designed to target HER2 receptor is approved by 

FDA to treat patients with early-stage and metastatic HER2-positive breast cancer as an adjuvant 

in combination with other chemotherapy. However, approximately 60-70% of HER2-positive 

breast cancer patients develop de novo resistance to trastuzumab, partially due to the loss of 

HER2 expression on their tumor cells during the treatment. Little is known about the exact mode 

of action of trastuzumab in inhibiting HER2-positive breast cancer cells and the mechanism of 

trastuzumab resistance. The overall aim of this thesis was to study the mechanism of action of 

trastuzumab in inhibiting HER2-positive breast cancer and the mechanism of resistance to 

trastuzumab.  

We found that HER2 overexpression in Chinese hamster ovary (CHO) cells had no major 

effect on the activation of downstream PI3K/Akt and MAPK pathways, however, significantly 

increased the cell growth. These suggest a non-canonical oncogenic function of HER2. Our 

results showed that trastuzumab blocks proteolytic cleavage of HER2, production and nuclear 

localization of a C-terminal truncated HER2 protein with an approximate molecular weight of 85 

kDa (p85HER2). Trastuzumab showed a synergic effect with a proteinase inhibitor in blocking 

HER2 cleavage and production of p85HER2 that led to cell growth inhibition. This is a new 

molecular anti-cancer mechanism of trastuzumab. Immunoprecipitation of nuclear p85HER2 

followed by mass spectrometry analysis showed that p85HER2 directly interacts with the 

spliceosome protein complex and transcription factors and mediates in RNA processing, 

splicing, and gene expression regulation. These results demonstrate that nuclear p85HER2 

mediates in the regulation of RNA processing and gene expression. Gene set enrichment analysis 

of the mass spectrometry results also revealed that most of the nuclear p85HER2 client proteins 

are downstream targets for oncogenic/stemness transcription factors which are master regulators 

of breast cancer stemness and epithelial-mesenchymal transition (EMT). These results 
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demonstrate a novel mechanism of action of trastuzumab in blocking a non-canonical pathway of 

HER2 via nuclear function of p85HER2. 

In this study, we also hypothesized that EMT abrogates HER2 expression by chromatin-

based epigenetic silencing of ERBB2 gene as a mechanism of development of trastuzumab 

resistance. we found positive and negative correlation of HER2 expression levels with epithelial 

and mesenchymal phenotypes respectively. This indicates that epithelial-like cells are HER2-

high, while mesenchymal-like cells are HER2-low. We found that the correlation is due to active 

and inactive chromatin dynamics of ERBB2 gene in epithelial-like and mesenchymal-like cells 

respectively. HER2-low mesenchymal-like breast cancer cell lines revealed less promoter-

enhancer interaction and larger chromatin loops compared to the HER2-high epithelial-like 

breast cancer cell lines. Further, the cell line with higher expression levels of HER2 showed 

higher numbers of chromatin-chromatin interaction, super-enhancers and topologically 

associated domains (TADs) at the chromatin of ERBB2 gene and flanking regions. The lower 

HER2 expression, the higher EMT phenotype, and inactivated chromatin all were found 

correlated with a lower response to lapatinib. We also demonstrated that inducing EMT of 

HER2-positive cancer cells results in the downregulation of HER2 expression and lower binding 

rate of trastuzumab. These results show that the downregulation of HER2 expression in 

mesenchymal-like cells derived from HER2-positive breast cancer cell lines is due to ERBB2 

gene silencing by global epigenetic reprogramming during EMT. 

We strongly suggest further studying the oncogenic function of p85HER2 through 

regulation of coding and non-coding RNA processing as well as transcription co-factor function 

of p85HER2 in breast cancers. We also suggest testing proteinase inhibitors in combination with 

trastuzumab and lapatinib to prevent the non-canonical pathways of HER2 and development of 

de novo trastuzumab resistance in HER2-positive breast cancers. We here strongly recommend 

developing and testing HER2-targeting small molecules inhibitors to inhibit HER2 cleavage as 

an alternative therapy for trastuzumab to use in combination with lapatinib. Further, we propose 

targeting EMT and cancer stem cells as an effective approach to inhibit tumor growth and 

overcome drug resistance in breast cancer. 
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Chapter 1. General introduction 

 

1.1. HER2 RECEPTOR-MEDIATED SIGNALING  

The HER (ErbB) receptor tyrosine kinase (RTK) family consists of four cell surface 

receptors: EGFR (HER1/ErbB1), HER2 (ErbB2), HER3 (ErbB3) and HER4 (ErbB4). Each 

human epidermal growth factor receptor (HER) possesses an extracellular domain that binds 

ligands, a transmembrane region, and an intracellular protein kinase domain with tyrosine kinase 

activity [1]. The extracellular domain is subdivided into four further domains including domains 

I and III the ligand-binding site; domains II and IV the dimerization site. Ligand binding 

promotes conformational rearrangements of the receptors that trigger the association of both 

homodimers and heterodimers (Figure 1.1). HER  receptor dimerization leads to the activation of 

a bunch of cellular signalling like PI3K/Akt, MAPK, and many other pathways to regulate cell 

division, proliferation, survival, migration, differentiation, apoptosis, and cell motility [1] (Figure 

1.1). Like other RTKs, HER receptors are single transmembrane proteins that have an N-terminal 

extracellular domain, a transmembrane helix, and a cytoplasmic domain [2]. The extracellular 

domain contains four subdomains, including the ligand-binding subdomains (domains I and III), 

and receptor dimerization subdomains (domains II and IV). The intracellular domain is 

composed of a tyrosine kinase domain and a C-terminal regulatory domain [3].  

EGFR (epidermal growth factor receptor), a 170 kDa single polypeptide chain, is the 

prototype of the HER family receptor [4,5]. While EGFR and HER4 are fully functional RTKs 

capable of signaling both as homo- and heterodimers following the binding to various ligands, 

the other two members, including HER2 and HER3, are different. HER2 is an orphan receptor 

without a ligand and HER3 is a lack of kinase activity. However, through ligand-induced 

heterodimerization, all HER receptors could be fully activated to mediate cell signaling [6,7]. 

Besides EGF (epidermal growth factor), another ten ligands have been identified to bind to 

and stimulate HER receptors. These ligands form the EGF family of peptide growth factors and 

are subdivided into three groups based on their binding partners (Figure 1.1). EGF, epigen 
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(EPG), amphiregulin (AR), and transforming growth factor (TGF) form one group that 

specifically binds to EGFR. HB-EGF, epiregulin (EPR), and betacellulin (BTC) form the second 

group that neuregulins to both EGFR and HER4. The four neuregulin, including Neuroligin 1 

(NRG1), NRG2, NRG3, and NRG4, form the third group that binds to HER4. However, NRG1 

and NRG2 also bind to HER3 (Figure 1.1) [7,8]. Through the distinctive binding specificity and 

affinity, each ligand contributes in a unique manner to regulate the activation and signaling of the 

four HER receptors [6]. 

 

Figure 1.1. HER receptors and downstream signaling cascades. Four members of HER 

receptors (EGFR, HER2, HER3, and HER4) interact with 11 ligands which results in the 

formation of HER receptor homodimers (as for example HER2/HER2 indicated) and 

heterodimers (as for example EGFR/HER2 indicated). After dimerization, the kinase domain 

of each receptor phosphorylates and activates the couple receptor which results in the 
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activation of PI3K/Akt (mainly by heterodimers) and MAPK (mainly by homodimers) 

signaling pathways leading to cell growth and proliferation. Some graphic elements are 

adapted from [9]. 

Our understanding of HER receptor dimerization has been greatly enhanced due to the 

determination of the structures of the HER receptor extracellular domains. So far, the structures 

of all HER receptors without ligand have been determined. In addition, the structures of ligand-

bound EGFR and HER4 have also been determined. Many structures of HER receptors binding 

to antibodies or antibody mimics have also been revealed [2,10]. With the support of other 

evidence, a comprehensive picture regarding ligand-receptor interaction and HER receptor 

dimerization has emerged. In total, ten different homo- and heterodimers are formed by four 

HER receptors [11]. 

 

Figure 1.2. HER receptor ligands and some downstream client proteins. Figure is adapted 

from [9]. 

Structure studies indicate that the conformations of the receptors can only exist in two 

forms: a tethered form and an extended form. In the tethered form the receptor is unable to 

dimerize due to the buried dimerization element. However, in the extended form the dimerization 

elements of the receptor are fully exposed to allow the receptor dimerization. It has been 
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demonstrated that the rigid nature of the receptor extracellular domains restricted or “clicked” 

the receptors only to these two forms [2,12]. 

It is significant and interesting to find that HER2 extracellular domains are already in 

extended form in the absence of ligands. The subdomains I and III of HER2 extracellular domain 

interact directly to stabilize HER2 to the extended form. The close interaction between 

subdomain I and III leaves no space for a ligand in between, thus, HER2 is an orphan receptor by 

nature [13]. Thus, HER2 maintains a ligand-independent and constitutively activated 

conformation. Indeed, HER2 spontaneously forms homodimers when overexpressed in cells, and 

all the other HER receptors dimerize preferably with HER2 [8,11]. Moreover, the overexpression 

of HER2 (but not the other HER receptors) transforms cells, and HER2 overexpression is 

associated with poor prognosis in breast cancer [13]. On the other hand, HER3 homodimer is 

generally believed as non-functional due to a lack of kinase activity. However, HER3 possesses 

very low kinase activity (1/1000th kinase activity of EGFR) and thus it is still possible that 

HER3 homodimers may be functional [8]. 

Through homo- or heterodimerization, all HER receptors are activated, which induces the 

phosphorylation of multiple tyrosine residues in the C-terminal regulatory region. Various 

studies including large-scale phosphoproteomic screening have identified more than 100 proteins 

that potentially bind to HER receptors (Figure 1.2) [14–16]. Several interesting features are 

revealed through the mapping of these tyrosine phosphorylation residues. Both EGFR and HER4 

bind to many different downstream proteins. EGFR binds to Grb2, Shc, Src, PLC-γ1, Crk, 

STAT5, Ptp-2c, and SHP1. HER4 binds to Syk, RasA1, Abl, Crk and Vav2, and Grb2. However, 

the signaling pathways linked to HER2 and HER3 are very specific and limited. HER3 contains 

multiple phosphor tyrosine residues that bind to p85, and as such, HER3 strongly activates the 

PI3K/Akt pathway. On the other hand, HER2 is mostly engaged in Shc/Grb2-mediated activation 

of MAPK pathway (Ras/Raf/Mek/Erk). Due to the distinctive binding to various downstream 

signaling proteins, the heterodimerization of HER receptors allows the activation of more 

signaling cascades than the homodimer of HER receptors. Based on the binding specificity, it is 

likely that the HER2 homodimer will stimulate the activation of the Ras/Raf/Mek/Erk pathway, 

and the HER2-EGFR heterodimer may function similarly to EGFR homodimer. However, the 

HER2-HER3 heterodimer could be much more powerful than either the HER2 homodimer or 
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HER3 homodimer because the HER2-HER3 heterodimer could fully activate all available HER2 

and HER3 receptors, and the HER2-HER3 heterodimer could strongly activate the PI3K/Akt 

pathway in addition to the Ras/Raf/Mek/Erk pathway. Indeed, much research has linked the 

PI3K/Akt pathway to HER2-HER3 signaling and to HER2-positive breast cancer [14–16]. 

PI3K could be activated by HER receptors either directly through the interaction between its 

p85α subunit and HER receptor or indirectly through the activated Ras [17]. A negative regulator 

of PI3K is the phosphatase and tensin homolog deleted on chromosome 10 (PTEN). The function 

of PI3K in cell survival is mediated by Akt, a serine-threonine (S-T) kinase [18,19]. Akt contains 

an N-terminal Pleckstrin homology (PH) domain, a C-terminal regulatory domain, and a central 

kinase domain. Akt is recruited to the plasma membrane by the interaction of its SH3 domain 

with PIP3 (generated by PI3K), which induces the conformational change of Akt to allow the 

phosphorylation of its T308 by membrane-localized 3-phosphoinositide-dependent kinase 1 

(PDK1). Following the additional phosphorylation of S473 by mammalian target of rapamycin 

complex 2 (mTORC2), Akt is fully activated. Akt controls various cellular functions by 

phosphorylating several intracellular proteins, including the glycogen synthase kinase 3 (GSK3), 

the Bcl-2-associated agonist of cell death (BAD), and forkhead box O (FOXO) transcription 

factors. Akt also activates mTORC1, which protects the cell from undergoing apoptosis [18–20]. 

 

1.2.  BREAST CANCER 

Breast cancer is the most common and deadliest cancer type in women worldwide. It affects 

about 12% of women causes over half a million deaths each year around the world. Breast cancer 

arises from the epithelial compartment of the breast that consists of epithelial cells lining lobules 

and ducts of mammary glands. A breast tumor is a complex tissue containing cancerous cells, 

and various other cell types with different morphological and phenotypic characteristics, 

including genetics, epigenetics, gene expression, metabolism, motility and “stemness” properties. 

Among all subtypes of breast cancers two are more common; invasive ductal carcinoma that 

starts in a milk duct of the breast and invasive lobular carcinoma that starts in the lobules. These 

subtypes are able to undergo metastasis. Breast cancer cells are also classified into several 
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conceptual subtypes based on three individual hormone receptors including estrogen receptor 

(ER), progestin receptor (PR), and HER2. These classes include (i) basal-like tumors that are 

often called triple-negative (ER-, PR- and HER2-) breast cancers (TNBC), (ii) luminal A and B 

breast cancers that are ER+, (iii) HER2-positive breast cancers that express very high HER2 

receptors and are responsive to HER2 targeting adjuvant therapies and (iv) claudin-low breast 

cancers that are often triple-negative showing weak cell-cell adhesion [21]. Triple-negative type 

of tumors is associated with a poor patient prognosis because of the lack of the triple receptors as 

exquisite targets for therapeutic adjuvants. 

 

1.3. HER2 IN BREAST CANCER  

Breast cancers are classified as five intrinsic subtypes based on their gene expression 

profiles revealed by microarray: luminal-like subtypes A and B (expression of hormone receptors 

and luminal cytokeratins 8 and 18), basal-like (also called triple-negative breast cancer (TNBC), 

typically with no expression of estrogen receptors (ER), progestin receptors, and HER2), HER2-

positive (HER2+), and normal-like [22,23]. HER receptors have been implicated in the 

development of many types of human cancers, especially breast cancer. Overactivation of HER 

receptors is mostly due to overexpression driven by gene amplification, but also could be due to 

the truncation of the extracellular domain, a mutation in the kinase domain, or co-expression of 

HER receptor ligands. The overactivation of HER receptors drives cancer development [7,8,24]. 

Overexpression of EGFR is observed in 20–30% of breast carcinoma. While a high 

percentage of HER2-positive breast cancer cells also overexpress EGFR, approximately 50% of 

TNBC cells overexpress EGFR. Overexpression of EGFR has been frequently associated with 

large tumor size and poor clinical outcomes [8,15,25,26]. 

Approximately 20-30% of all diagnosed breast cancers are characterized as “HER2-positive 

breast cancer” [27–29] (Figure 1.3). HER2 genetic mutations are observed in approximately 

1.6% of breast cancer patients [30]. Full-length HER2 is a 1255 amino acid, 185 kDa 

transmembrane epidermal growth factor receptor tyrosine kinase protein encoded by ERBB2 

gene which is located on chromosomal location 17q2 [27,31]. HER2 receptor consists four 
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extracellular domains (ECD; domains I-IV; amino acids 1-641), an extracellular juxtamembrane 

region (EJM; amino acids 642-652) a transmembrane domain (TM; amino acids 653-675), an 

intracellular juxtamembrane region (IJM; amino acids 676-730), an intracellular tyrosine kinase 

domain (TK; amino acids 731-906), and a C-terminal tail (amino acids 907-1255) [32–35]. The 

ECD of HER2, by turn, consists of four subdomains including two leucine-rich domains 

(domains I and III), which are responsible for ligand binding, and two cysteine-rich domains 

(domains II and IV) with disulfide bridges, which are responsible for receptor dimerization [32–

35]. HER2 does not need ligand to be activated and can make dimer with another HER2 (homo-

dimerization) or other HER family receptors (HER1/EGFR and HER3; hetero-dimerization). 

HER2 dimerization activates HER2 kinase domain that, in turn, promotes downstream signaling 

cascades specially PI3K/Akt, PLC-ɣ and MAPK pathways (Figure 1.1). Upregulation of these 

signaling pathways in breast cancer induces tumor cell growth, survival, motility, and invasion 

[11]. Therefore, HER2 overexpression is a poor prognostic factor in breast cancer. HER2 

positive breast cancers either make too many copies of HER2 gene (gene amplification) or too 

many HER2 receptors on the cell surface (protein overexpression), therefore, grow faster and 

spread more aggressively when compared to HER2-negative breast tumors [27–29,36].  

 

Figure 1.3. Immunohistochemistry (IHC) staining of HER2 (brown color) in a HER2-

negative (HER2-), a HER2-normal/+, and two HER2-positive (HER2++ and HER2+++) 

breast tumors. Image source: The Human Protein Atlas. 
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1.4. TRASTUZUMAB AND PERTUZUMAB AS HER2-TARGETING THERAPIES 

In recent years, HER2 has been an important biomarker and target of therapy for breast 

cancer. The main goal of the HER2-targeting approach is to inhibit HER2 receptor activation in 

order to block the HER2-dependent signaling and consequently tumor cell suppression [37,38]. 

Since the 1980s so far, scientists have published data linking the over-activity of HER2 with the 

aggressive and metastatic form of breast cancer. In the past 25 years, HER2 has been exploited 

as a promising target to arrest breast cancers for several reasons. (i) HER2 level is in a 

correlation directly with the breast cancer invasion and prognosis [36,39]. (ii) HER2 is a receptor 

tyrosine kinase with high potency to activate downstream signaling pathways involving tumor 

growth, in particular, PI3K/Akt and MAPK pathways [1,40]. (iii) HER2-positive tumors exhibit 

much more HER2 receptor on the surface that serves a remarkable hallmark useful to 

differentiate from normal cells in pathological characterizing [39,41]. (iv) The extracellular 

domain of HER2 provides very stable epitopes and putative targets to design and test tumor cell-

targeting neoadjuvant [37,42]. 

1.4.1. Trastuzumab 

Trastuzumab (originally known as 4D5 and commercially known as Herceptin®) is an anti-

HER2 fully-humanized monoclonal antibody approved by Food and Drug Administration (FDA) 

for the treatment of HER2-positive breast cancer [43,44]. Trastuzumab binds to HER2 domain 

IV and is thought to block binding pocket for receptor homo-dimerization, thereby blocking 

HER2 homo-dimerization, phosphorylation and consequently inhibition of downstream signaling 

pathways [43,44]. It is believed that; (i) binding of trastuzumab to HER2 suppresses MAPK and 

PI3K/Akt pathways by inhibition of HER2 activation [45]. In this model, trastuzumab binding to 

HER2 may prevent tyrosine kinase Sarcoma (Src) signaling and upregulates PTEN activity 

[46,47]. This inhibition also leads to suppression of PI3K/Akt signaling, activation of p27 and 

suppressing cyclin-dependent kinase 2 (CDK2) thus arresting cell cycle and growth in breast 

cancer cells [48–50]. (ii) Trastuzumab causes endocytosis and degradation of HER2 through 

promoting the activity of tyrosine kinases [51]. (iii) Preclinical and clinical studies revealed that 
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coating HER2 over-expressed tumor cells by trastuzumab is summons more immune cells 

especially natural killer cells to attack the tumor by antibody-dependent cellular cytotoxicity 

(ADCC) mechanism [52,53] (Figure 1.4). Many clinical trial studies have demonstrated the 

effectiveness of trastuzumab in combination with docetaxel in HER2-positive metastatic breast 

cancers [54–57]. However, reports of studies on the molecular mechanism of trastuzumab in 

HER2-positive breast cancer have been conflicting, accordingly, the exact mode of action and 

resistance still remains ambiguous. Clinical trials have shown that trastuzumab ameliorates 

disease-free survival (DFS) and overall survival (OS) in early-stage breast cancers [57–59] and 

also in metastatic breast cancers [54–56,60–62]. Unfortunately, only 30-40% of all HER2-

positive breast cancer patients respond to trastuzumab. This figure is more significant in the case 

of metastatic cancers. Approximately 66–88% of patients with metastatic breast cancer develop 

de novo (primary) resistance against trastuzumab therapy. The response rate for treatment with 

trastuzumab alone is only 10-30% [61,63–66]. However, the exact mechanisms underlying 

resistance to trastuzumab remain obscure. 

 

Figure 1.4. Overview of the mode of action of anti-HER2 monoclonal antibodies 

(trastuzumab and pertuzumab) in blocking HER2-positive breast tumors according to so far 

literature. Some graphic elements were adapted from www.drbhnglatest.com. 
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1.4.2. Pertuzumab 

Pertuzumab (originally known as 2C4 and commercially known as Perjeta
®
) is another 

neoadjuvant which was recently approved by FDA, marketed by Genentech and Roche to be 

used in combination with trastuzumab and docetaxel to treat HER2-positive breast cancer due to 

a better outcome than the combined treatment with trastuzumab and docetaxel alone [44,67,68]. 

Pertuzumab, a fully humanized recombinant monoclonal antibody, represents a new class of 

agents that target HER2 dimerization. Pertuzumab binds to HER2 near the center of domain II, 

sterically blocking a binding pocket necessary for receptor dimerization, thereby blocking both 

the homodimerization of HER2 and the heterodimerization of HER2 with other HER receptors 

[69,70]. Since trastuzumab is only able to block the homodimerization of HER2 there is an 

upregulation of other members of the HER family in order to compensate for the lack of HER2 

ligand-independent signaling [71]. This mechanism generally causes the development of 

resistance against the action of trastuzumab in the majority of patients. Pertuzumab binds to the 

dimerization domain of HER2; therefore, blocking the ability of HER2 to heterodimerize with 

other HER receptors (EGFR and HER3) and initiate HER2 ligand-dependent signaling. It is 

generally believed that the inhibition of dimerization will lead to the inhibition of HER2-

mediated signaling [69,70]. Many clinical trial studies such as CLEOPATRA revealed prognosis 

in the patients who were treated with trastuzumab and pertuzumab combination [67,72–74]. 

Another major mechanism of pertuzumab is provoking the patient’s immunity against the tumor. 

Previous studies have demonstrated immune system-mediated discrimination of HER2-positive 

cells when trastuzumab and pertuzumab bind to the cell providing evidence for the ADCC 

effects of pertuzumab [75–77].  

 

1.5.  BREAST CANCER STEMNESS 

A normal mammary tissue contains mammary stem cells that can self-renew and can 

differentiate into luminal and basal epithelial cell layers including ductal, alveolar and 

myoepithelial cells of the mammary gland. Like basal-like and claudin-low subtypes breast 

cancer, normal mammary stem cells are defined as triple-negative, active stemness signaling 
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such as Notch and Wnt/β-catenin pathways and also a high expression of the epithelial-

mesenchymal transition (EMT) elements warranting that the mammary stem cells may be the 

origin of normal and cancerous breast cells [78,79]. Therefore, transforming normal breast stem 

cells to breast cancer stem cells (BCSCs) with the properties of stem and cancer cells is a major 

factor in breast tumorigenesis. BCSCs synchronously are able to self-renew and differentiate to 

epithelial cancer cells with various gene regulatory networks. BCSCs definition emerged shortly 

after the discovery of only a small fraction of mammary tumor cells being able to form colonies 

or new tumors. In 2003, All-Hajj et al. [80] reported a small fraction of mammary tumor cells 

with self-renewal potency and expressing certain surface markers being able to form colonies or 

new tumors. They found that a small fraction of cells exhibiting CD44+/CD24−/Lineage (Lin)- 

phenotype on the surface had a higher tumor-forming ability in immunocompromised mice and 

self-renewal property in the reiterated passage than CD44+/CD24+/Lin- cells.  

CD44 is a multifunctional transmembrane glycoprotein involved in binding of the cell to 

extracellular matrix hyaluronic acid (HA) and plays role in cell-cell interactions, cell adhesion, 

growth, proliferation, survival, motility, migration, angiogenesis, and differentiation [81,82]. 

CD44 can interact with other ligands, including Osteopontin, Collagens, Fibronectin, Integrin, 

Laminin, matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs) 

and is associated with many malignancies, chronic inflammatory, and autoimmune dysfunctions 

[83]. CD44 is encoded by a highly conserved gene located on chromosomal location 11p13 and 

consists of 20 exons and 19 introns [84]. CD44 gene generates more than 20 isoforms (known as 

“variant”) from extensive RNA alternative splicing of the ten central exons. The CD44v isoforms 

mediate and promote the activation of many signal transduction pathways initiated by HER2, T 

cell receptor (TCR), integrin and other receptor tyrosine kinases [85]. For example, the 

CD44/HER2 signaling increases the activation of Wnt/β-catenin signaling while CD44/EGFR 

signaling leads to the activation of TGF-β [86,87]. It is also well-documented that the cleavage 

of CD44 following ligand binding induces stemness and EMT [88,89].  

CD24 is a heavily glycosylated small transmembrane glycoprotein anchored in the cell 

membrane by glycosyl-phosphatidyl-inositol. Like CD44, in cancer, CD24 is involved in cell-

cell and cell-matrix junction and in cell migration and is a significant marker for tumor prognosis 

as well as diagnosis. CD24 acts as a ligand for P-selectin that is an abundant protein in thrombin-



12 

 

activated platelets and endothelial cells [90]. Therefore, CD24 can promote cancer cell migration 

and metastasis by facilitating the attachment of cancer cells to activated platelets and endothelial 

cells [91,92]. CD24 also interacts with chemokine (C-X-C motif) receptor 4 (CXCR4) and the 

stromal cell-derived factor 1α (SDF1α) receptor [93]. It is a negative regulator of nuclear factor-

kappa B (NF-kB) and MAPK signaling pathways in CD44-positive tumor cells [94], and a 

positive regulator of Src and STAT3 [95].  

In 2007, Ginestier et al. [96] introduced aldehyde dehydrogenases (ALDHs) as additional 

markers for the BCSCs. The ALDH enzymes are a family of conserved enzymes that oxidize 

aldehydes and have 19 isoforms localized to various cellular compartments including cytosol, 

mitochondria, endoplasmic reticulum and the nucleus [97–99]. ALDHs are responsible for the 

oxidation of aldehydes to their corresponding carboxylic acids and catalysis of retinaldehyde to 

retinoic acid. They also mediate the inactivation of alkylating agent cyclophosphamide 

analogous and other xenobiotics. In addition, ALDHs also play roles in detoxification pathways,  

cyclophosphamide metabolism, and biosynthesis of retinoic acid, folate, amino acid, and ethanol 

[97]. Stem cells from a variety of tissues show high levels of ALDH activity, which is a 

characteristic of “stemness”. Normal (hematopoietic and neural) and cancer stem cells are 

enriched in cells with high levels of ALDH expression. ALDH high cells with low side scatter 

are self-renewing and multipotent [100]. ALDH+ cells isolated from breast cancer cell lines were 

highly invasive, exhibited high potency of self-renewal, and resistant to hypoxia and 

chemotherapeutic drugs when compared with ALDH- cells [101]. 

In tumors, CD24 is expressed on more differentiated cells while CD44 is expressed on more 

progenitor-like cells. Normally, CD44+/CD24- phenotype represents undifferentiated 

basal/mesenchymal-like cells whereas the cells with CD44-/CD24+ phenotype are luminal/ 

epithelial-like cells [80,102]. CD44+/CD24- breast cancer cells are highly tumorigenic and are 

correlated with the presence of distant metastases compared to the cells carrying other markers 

[80,103,104]. The majority of tumor cells derived from metastatic sites of breast cancer patients 

were highly enriched for a CD44+/CD24- subpopulation [105–107]. While  CD44+/CD24- cells 

may be sensitive to some inhibitors [108,109], they often drive tumor resistance to traditional 

therapies [110]. Studies with tumor tissues from breast cancer patients who had already received 

chemotherapy revealed an increased percentage of mammosphere-forming cells with 
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CD44+/CD24- phenotype subpopulation [111]. In breast cancer cells, the gene expression profile 

following chemotherapy is very similar to that of CD44+/CD24- cells. This suggests that the 

remaining breast cancer cells could be CD44+/CD24- cells [112]. In addition to these markers, 

high expression of CD133 was also found in BCSCs. Breast cancer cells with phenotypes 

CD44+/CD24−/ALDH+ and CD44+/CD133+/ALDH+ showed increased tumorigenicity and 

metastases when compared with the non-stem cancer cells [113].  

In the study by All-Hajj et al. [80] only cells with CD44+/CD24-/Lin- phenotype 

(approximately 100 cells) were able to grow to form tumors in the animals, whereas tens of 

thousands of cells with other phenotypes failed to form tumors [80]. Hence, there is a positive 

relationship between the size of the subpopulation of BCSCs and tumorigenesis, tumor invasion 

and refractory [80,110,114]. In recent years, many reports have been published focusing on 

BCSCs in different types of breast tumors. Among them, some results suggest a positive role of 

HER2 receptor in the emergence of BCSCs inside breast tumors [80,110,114]. In this paper, we 

review the interaction of HER2 with stemness signaling pathways, which mostly causes HER2-

positive breast cancer cells to attain stem cell properties and trastuzumab resistance.  

 

1.6. EPITHELIAL-MESENCHYMAL TRANSITION (EMT)  

EMT is a complex biologic process by which epithelial cells normally lied on the basement 

membrane undergoes several epigenetic reprogramming and gene expression regulation, leading 

to the loss of cell polarity and cell-cell adherent junctions, and the gain of mesenchymal stem 

cells properties with an ability to migrate (Figure 1.5). EMT is necessary for three physiological 

and pathological processes including (i) embryogenesis, and organ developmental processes (ii) 

tissue regeneration and organ fibrosis, (iii) cancer migration and metastasis [115]. EMT requires 

cooperation of a complex cellular possesses including certain transcriptional regulatory factors 

including Snail1, Snail2 (Slug), Zinc finger E-box-binding homeobox 1 (ZEB1), ZEB2, 

Forkhead box protein C1 (FOXC1), FOXC2, Transcription factor 3 (TCF3) and homeobox 

protein Goosecoid (GSC), activity of tyrosine kinase receptors, a network of several stemness 

signaling pathways such as TGF-β, Wnt/β-catenin, Notch, JAK/STAT, Hedgehog and also 



14 

 

inflammatory pathways such as NF-κB, extracellular and intracellular growth factors such as 

EGFs, Insulin-like growth factor 1 (IGF1), Fibroblast growth factors (FGFs), Platelet-derived 

growth factor (PDGF) and interleukin 6 (IL6) and IL8, cell adhesion transmembrane proteins 

such as E and N-cadherins and filament protein Vimentin. These processes reprogram epithelial 

cells to transition to the cells with the more mesenchymal phenotype (Figure 1.5) [116].  

CD44+/CD24-
 
cells are BCSCs with mesenchymal properties that localized at the tumor 

invasive margins and are migration engines of breast tumors, while ALDH+
 
cells are defined as 

epithelial-like BCSCs located in deeper sites of the tumors and have more differentiation and 

proliferative properties. CD44+/CD24- cells were isolated by fluorescence activated cell sorting 

(FACS) from non-tumorigenic human mammary epithelial cells that have undergone an induced 

EMT, exhibited many properties of BCSCs including mammosphere-formation ability [117]. 

CD44+/CD24-
 
BCSCs isolated from breast tumors show a low level of E-cadherin, but high 

levels of EMT markers including N-cadherin, Vimentin, Fibronectin, ZEB1/2, FOXC2, Snail, 

Slug, and Twist1/2 compared to ALDH+
 
cells [117]. 

 

Figure 1.5. Epithelial-mesenchymal transition (EMT) in breast cancer. EMT of epithelial 

breast cancer cells starts by intensive epigenetic regulation that causes loss of cell-cell and 

cell-matrix junctions. During EMT epithelial cells that lay on the basement membrane also 

lose their epithelial phenotype including shape and expression of epithelial marker proteins 
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(such as E-cadherin, Claudins, Cytokeratins, Mucins, Occludins, Despoplaktin, EpCAM and 

FOXA1), and gain mesenchyme phenotype including round shape and expression of 

mesenchymal marker proteins (such as N-cadherin, Fibronectin, Vimentin, Snail1, Snail2 

(slug), Twist1, Twist2, ZEB1, ZEB2, Collagen I, Collagen III and FOXC1). EMT is a natural 

process that allows cells to migrate. The figure partially adapted from [118]. 

 

1.7.  BREAST CANCER STEMNESS SIGNALING PATHWAYS 

1.7.1. TGF-β/Smad signaling pathway 

Transforming growth factor-β (TGF-β) superfamily signaling plays critical roles in embryo 

development, adult tissue regeneration, and tumorigenesis by regulating cell growth, 

differentiation, apoptosis, cellular homeostasis and other cellular functions [119]. TGF-β proteins 

are encoded by 33 genes that produce different structurally related polypeptides correspond to 

pleiotropic cytokine ligands [120,121]. Signaling by TGF-β is transduced through binding TGF-

β ligands to type II cell surface receptors that are serine/threonine receptor kinase that catalyzes 

the phosphorylation of type I receptors [122,123]. A mammalian cell utilizes seven known type I 

receptors that called activing receptor-like kinases (ALK)1 to 7 and five type II receptors called 

as TGF-β type II receptor (TβRII), Activin type II receptor (ActRII), Activin type II receptor B 

(ActRIIB), BMP type II receptor (BMPRII), and Anti-Müllerian hormone receptor (AMHR). 

Among the ligands, TGF-β activates ALK5, Activin activates ALK4, Nodal activates ALK4 and 

ALK7 and BMPs activate ALK1, ALK2, ALK3 and ALK6 [124]. Activation of type I receptors 

induces phosphorylation of downstream signal transducer receptor-activated Smads (R-Smads). 

Phosphorylated R-Smads form a heteroligomeric complexes with Smad4 (Co-Smad). The Smad 

complexes translocate into the nucleus and regulate the expression of target genes by direct 

binding to the target gene promoter and/or via interaction with various transcriptional cofactors 

depending on the status of the cell [124]. TGF-β can also drive several non-Smad signaling 

pathways including Erk, p38 kinase, c-JUN N-terminal kinase (JNK), PI3K/Akt, RhoA, Rac1, 

and Cdc42 GTPases [125].  
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The role of the TGF-β signaling pathway in growth, apoptosis, self-renewal, and 

differentiation of stem cells/progenitor cells has been strongly demonstrated [119]. It is well 

known that Smad and non-Smad pathways play a critical role in stemness and acts as an inducer 

of EMT of normal mammary epithelial cells [126–128]. TGF-β signaling promotes tumor cell 

proliferation, survival, motility, invasion, metastatic colonization and acquisition of 

mesenchymal markers, such as increased Fibronectin and Vimentin expression, increased 

invasiveness, and exhibiting CD44+/CD24-
 
phenotype toward BCSC progression straits through 

induction of EMT [129–131]. TGF-β/Smad signaling increases the expression of transcription 

factors and transcription regulators involved in EMT, including Snail [132], Slug [133], ZEB1 

[131] ZEB2 [134], High-mobility group A2 (HMGA2) [135] and Ets1 [136]. TGF-β/Smads 

signaling also suppresses E-cadherin by upregulating mesenchymal phenotype and also by 

downregulating the Inhibitor of differentiation (Id)1, 2, and 3 proteins that are the negative 

regulators of the TGF-β-induced ZEB1 and ZEB2 [137,138]. Smad2 can suppress epithelial 

markers E-cadherin, Claudin 4, Kallikrein 10, and Cingulin by activation of DNA 

methyltransferase 1 (DNMT1)-mediated epigenetic silencing of the corresponding genes [139]. 

There is more evidence supporting the epigenetic modification of EMT by TGF-β. The 

microRNA-200 (miR-200) family members have been shown to increase E-cadherin expression 

and to alter the cancer cell morphology to an epithelial phenotype by predominantly 

downregulating TGF-β and ZEBs. In continue, TGF-β-mediated ZEB1 activation inhibits 

transcription of miR-200 family members resulting in suppressed E-cadherin and increased 

Vimentin [140–143]. Additionally, Smad3 can form a complex with Myocardin-related 

transcription factors (MRTFs), which lead to nuclear translocation of MRTFs promoting 

expression of Slug [144].  

In addition to Smads-dependent pathways of TGF-β signaling, non-Smad pathways induced 

by TGF-β such as PI3K/Akt, MAPK [125,145], RhoA, and Cofilin are also involved in 

promoting EMT [146]. TGF-β activates mTORC1 and mTORC2 through PI3K/Akt pathway 

[147–149]. Akt increases the expression level of Snail and MMP9. Akt also upregulates Snail via 

the phosphorylation and inactivation of GSK3, a serine-threonine kinase [150,151]. TGF-β-

induced Akt phosphorylation releases Heterogeneous nuclear ribonucleoprotein E1 (hnRNPE1) 

from the 3′ untranslated regions of Disabled 2 (DAB2) and IL-like EMT inducer mRNA and 
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allows progression of EMT [152]. TGF-β ligands also promote the p38, JNK and MAPK 

signaling pathways [153]. TGF-β-induced MAPK signaling inhibits GSK3, therefore stabilizes 

the activity of Snail [154]. Besides, active oncogenic Ras signaling positively regulates the 

induction of Snail by TGF-β [155]. Cooperation between the TGF-β and MAPK pathways also 

causes emerging CD24- stem cell-like cells from CD24+ differentiated cells, which suggests b a 

role for TGF-β in EMT and the exhibition of CD24- phenotype [156]. In addition, TGF-β 

signaling retains the mesenchymal state of CD44+/CD24-/ALDH+ cells and their tumorigenicity 

after TGF-β-induced EMT [157,158]. Moreover, TGF-β induces JNK phosphorylation, 

transactivation of c-JUN and Activator protein 1 (AP1) complex, which leads to EMT [159]. 

Other studies showed that TGF-β-mediated EMT requires the activation of RhoA, a positive 

regulator of the actin cytoskeleton and cadherin junctions in cell-cell contact [160,161]. 

1.7.2. Notch signaling pathway 

Notch signaling is an evolutionarily conserved pathway that acts as a mediator of short-

range cell-cell communication and is present in most multicellular organisms. Notch signaling 

regulates multiple aspects of invertebrate and vertebrate cell fate determination during 

development and maintains adult tissue homeostasis. Like TGF-β signaling, Notch signaling is 

an essential process for self-renewal, differentiation and is critical in multiple stages of 

development, in lineage-specific differentiation of pluripotent embryonic stem cells, and in 

controlling stem cell population and activity in the context of tissue degeneration, regeneration, 

and malignancy [162]. Notch proteins are cell surface transmembrane-spanning receptors which 

normally activates by ligand binding during direct cell-to-cell contact [163,164]. The 

extracellular domain of all Notch proteins contains 29–36 tandem EGF-like repeats that interact 

with the Delta, Serrate, and Lag2 (DSL) domain of ligands from the neighboring cell [164–166]. 

In mammals, there are four Notch receptors (Notch1-4) and five canonical ligands [162]. 

Interaction between Notch receptor and Notch ligands initiates proteolytic cleavage of the 

receptor by metalloproteinases. The cleavage of the Notch receptor by γ-secretase causes the 

release of the Notch intracellular domain (NICD) [167–169]. Upon intracellular cleavage, the 

NICD translocates to the nucleus and interacts with the CSL (CBF1, Suppressor of Hairless, 

Lag1) family of DNA-binding proteins to form a transcriptional activator complex, which 

regulates the expression of target genes [167–169].  
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Dontu and colleagues [170] have demonstrated the critical role of Notch signaling in 

maintaining normal human mammary stemness by increasing self-renewal efficiency. 

Upregulated Notch signaling increases the self-renewal and transformation of luminal mammary 

stem cells, leading to hyperplasia and tumorigenesis [171]. It is well-demonstrated that the Notch 

signaling has a regulatory role in breast tumorigenesis, metastasis, and resistance. Notch 

signaling maintains breast cancer stemness by promoting the BCSC phenotype and EMT. 

Inhibition of Notch signaling by Notch4 neutralizing antibody or γ-secretase inhibitors (GSIs), 

suppresses BCSC subpopulation and blocks mammosphere-formation effectively [170,172–174]. 

Notch3 has also been found as a positive factor in the self-renewal of BCSC mammospheres 

[175,176]. Activated Notch signaling increases ALDH1 activity and promotes breast cancer 

stemness through induction of deacetylase Sirtuin 2 (SIRT2), an enzyme that deacetylates and 

activates ALDH1 [177]. Whereas, inhibiting Notch activity in the cells by glucose functionalized 

nanoparticles containing GSIs reduced pool of ALDH1+ BCSCs [178]. Notch signaling in 

epithelial breast cancer cell line MCF7 reduces the expression of estrogen receptors and 

increases CD44 expression in vitro and in vivo models. Moreover, Notch1 blockade with a GSI, 

DAPT, and shRNA reduces the expression of CD44+/CD24- phenotype, matrigel invasion and 

micro- and macrometastases [179]. [180] Radioresistance of CD44+/CD24- cells derived from 

MCF7 and MDA-MB-231 breast cancer monolayer cultures was correlated with high expression 

of Notch1 in the BCSCs implying association of Notch pathway with stemness-related resistance 

[180]. Recently, it is found that Notch signaling is a critical regulator of breast tumor EMT by 

ionizing radiation. During radiation, induced Notch2 accelerates tumor malignancy by increasing 

mesenchymal markers through IL6/JAK/STAT3 signaling axis [181]. However, Azzam et al. 

[182] reported that CD44+/CD24+ but not CD44+/CD24- cells in TNBC cell lines express 

activated Notch1 intracellular domain (NICD1) and its target genes, GSI reduces mammosphere-

formation and tumor growth of CD44+/CD24+ cells, but not CD44+/CD24-cells [183].  

As pointed out above, the Notch signaling pathway has been known as an important 

regulator of EMT induction. Timmerman et al. [184] demonstrated that Notch signaling activity 

can promote EMT during both cardiac development and oncogenic transformation by 

transcriptional induction of the Snail and repression of E-cadherin expression. Notch signaling-

mediated EMT takes place by downregulation of endothelial markers and upregulation of 
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mesenchymal markers [183]. Slug has been reported as a direct target for the Notch pathway. 

Notch signaling can upregulate the expression of Slug and Snail either directly or indirectly 

through interaction with TGF-β signaling [185–187]. Moreover, during hypoxia-induced EMT, 

NICD1 can activate the expression of Snail directly by regulating Snail mRNA and indirectly via 

the upregulation of lysyl oxidase (LOX) that stabilizes the Snail protein [188].  

1.7.3.  Wnt/β-catenin signaling pathway 

The Wnt/β-catenin pathway is a conserved pathway that regulates crucial aspects of cell fate 

decisions, cell migration, cell polarity, stem cell pluripotency, and neural patterning. Wnt/β-

catenin signaling initiates through binding Wnt ligands to two distinct receptor families; Frizzled 

(Fz) family of transmembrane receptor proteins and lipoprotein receptor-related proteins 5 and 6 

(LRP5/6) [189,190]. In humans, there are seven Fz receptors and nineteen cysteine-rich Wnt 

glycoprotein ligands with highly conserved approximately 350-400 amino acids [191]. Wnt 

receptor activation initiates canonical (β-catenin-dependent) and non-canonical (β-catenin-

independent) pathways. In canonical signaling pathway formation of ligand-receptor complex 

activates kinase domain of the receptor that causes phosphorylation of serine residues in the 

cytoplasmic tail of LRP5/6. Phosphorylated LRP5/6 recruits scaffolding protein Axin. Axin is a 

necessary component of a multi-protein complex that degrades β-catenin [192]. This β-catenin 

destruction complex also includes Adenomatosis polyposis coli (APC), protein phosphatase 2A 

(PP2A), GSK3 and Casein kinase 1α (CK1α) [193–195]. In the absence of Wnt ligand, Axin 

contributes to the formation of the β-catenin destruction complex, which leads to 

phosphorylation of β-catenin on serine and threonine residues near its N-terminus providing β-

catenin a target for ubiquitination and rendering it to ubiquitin-dependent proteosome-mediated 

degradation [193–195]. With active signal, restraining Axin by LRP5/6 prohibits the formation 

of the β-catenin destruction complex and causes an accumulation of β-catenin in the cytoplasm 

and its eventual translocation into the nucleus [192,196]. In the nucleus, β-catenin acts as a 

transcriptional coactivator and forms a complex with members of the T-cell factor/lymphoid 

enhancing factor (LEF/TCF) family of DNA binding proteins that regulates transcription of 

target genes [197,198]. β-catenin is also involved in the regulation and coordination of cell-cell 

adhesion by contributing to the adherens junction complex in association with E-cadherin, an 

essential process for the maintenance of the epithelial cell layer [192]. 
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The driving role of the Wnt/β-catenin signaling pathway has been well-defined in the 

development of many human cancers including breast cancer and appears to be associated with 

cancer stem cell biology. Several studies in mice have revealed that Wnt/β-catenin signaling 

controls mammary gland development and differentiation during embryogenesis and is critical 

for stem cell maintenance inside mammary tissue [199,200]. Wnt/β-catenin signaling determines 

the developmental fate of mammary gland stem cells by regulating mammary epithelium [201]. 

Studies in both mouse models and human breast cancers have shown that active Wnt/β-catenin 

signaling is essential for breast tumorigenesis. Wnt/β-catenin signaling is higher in BCSCs than 

in normal stem cells [202]. Inhibition of β-catenin suppresses stemness activity in patient-derived 

metastatic breast cancer, implicating an important role of the Wnt/β-catenin signaling in BCSCs 

[202,203]. Whereas, activated Wnt/β-catenin signaling is associated with increased stemness 

activity and radiation resistance of BCSCs [204]. 

Expression of Wnt3 in ER- breast cancers increases the mammosphere-forming ability 

[202]. Expression of Wnt3 in trastuzumab-resistant cells also increases the expression of EMT 

markers including N-cadherin, Twist1, Slug, and decreases E-cadherin [205]. In normal 

mammary epithelial cells c-Fos oncogene decreases E-cadherin and induces EMT through 

Wnt/β-catenin signaling [206]. β-catenin itself has been shown to induce EMT via induction of 

LEF1 expression [207]. Wnt receptor LGR5 has been shown to be a stemness marker for the 

mammary gland and essential for postnatal mammary gland organogenesis [208]. BCSCs with 

high-level LGR5 expression form more mammospheres and are more potent to drive breast 

cancer progression and metastasis [209]. Yang et al. [210] reported that LGR5 expression in 

breast cancer increases cell mobility, tumor growth, pulmonary metastasis, mammosphere-

formation and stemness properties of breast cancer cells through Wnt/β-catenin-induced EMT. 

LGR5 potentiates Wnt/β-catenin pathway in BCSCs and is required for the maintenance of 

spheroid-derived CD44+/CD24- BCSCs [210]. During EMT, β-catenin binds to Twist1 to 

increases the transcriptional activity of the β-catenin/TCF4 complex by binding to the promoter 

DNA of ABCG2, a cancer stemness marker [211].  

1.7.4.  JAK/STAT signaling pathway 
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In human mammary tissue, JAK/STAT signaling pathway transmits signals to the nucleus, 

which leads to the transcription of a wide range of genes involved in cell proliferation, 

differentiation, migration, and apoptosis. JAK/STAK signaling controls immunity, 

spermatogenesis, hematopoiesis, and development of the mammary gland and breast tumor. 

JAK/STAT signaling is initiated by binding of various ligands (mostly cytokines) to a Janus 

kinase (JAK) receptor, which induces JAK dimerization and phosphorylation of its tyrosine 

residues [212,213]. This event provides a binding site for the SH2 domain of signal transducer 

and activator of transcription (STAT).  The binding of STATs to the JAK receptors results in the 

phosphorylation of STATs by JAKs. Phosphorylated STATs dimerize with each other and 

migrate to the nucleus where the dimer regulates the transcription of target genes [214–216] 

Activation of JAK/STAT signaling pathway is necessary for growth, proliferation, survival 

and chemo-resistance of CD44+/CD24- BCSCs [89,217,218]. Targeting JAK2 and/or STAT3 

results in a reduction of the CD44+/CD24- subpopulation and in vivo tumorigenicity of breast 

cancer cells, which suggests that JAK/STAT signaling plays important role in BCSC 

maintenance in basal-like tumors [89]. In patient-derived Claudin-low breast cancer cells, 

STAT3 activity is associated with increased mammosphere-forming efficiency and 

tumorigenicity [218]. High STAT proteins level is also found in CD44+/CD24- and ALDH+ 

BCSCs. The inhibition of STAT3 by shRNA reduces the viability and mammosphere-forming 

ability of breast cancer cells [219]. In addition, selective inhibition of STAT3 by small molecule 

inhibitors suppressed CD44+/CD24-/ALDH+ BCSCs, mammosphere-forming efficiency and 

tumor growth in human breast tumor xenograft rodents [220]. Moreover, targeting CD44 in 

basal-like breast cancer cells leads to repression of JAK/STAT signaling as well as invasive 

markers MMPs [221]. In addition, epigenomics analysis of BCSCs derived from mammospheres 

revealed that JAK/STAT signaling is associated with the exhibition of  CD44+/CD24- cancer 

stemness phenotype [222].  

JAK/STAT signaling has been shown to play an important role in breast cancer EMT 

induction. Sullivan et al. [223] showed that IL6 induces the expression of Twist1 via activating 

STAT3 in the MCF7 cell line. Additionally, exposure of JAK to IL6 increases the population of 

CD44+ BCSC through inducing STAT3-mediated EMT of epithelial-like breast cancer cells 

[224]. Oncostatin M (OSM), another inducer of JAK/STAT signaling, is expressed in an 
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autocrine/paracrine fashion during EMT of breast tumor cells. OSM has been shown to enhance 

cell migration and to upregulate the expression of EMT inducers including extracellular matrix 

(ECM) protein and Fibronectin in mammary epithelial cells through STAT3 [225,226]. OSM-

mediated activation of STAT3 is also able to upregulate EMT by downregulating miR-200. 

During breast cancer EMT, STAT3 also promotes the transcription of Lin28, resulting in the 

downregulation of Let7 therefor, upregulation of HMGA2 [227]. EGF-mediated induction of 

JAK/STAT3 signaling is also able to induce breast cancer EMT via upregulating Twist1 [266]. 

Moreover, Transient receptor potential-melastatin-like 7 (TRPM7) channel upregulates the 

expression of Vimentin through increasing EGF-induced STAT3 activation, which suggests the 

importance of EGF-STAT3-TRPM7 in the regulation of calcium-dependent EMT in breast 

cancer [228]. 

1.7.5. Hedgehog signaling pathway 

The Hedgehog (Hh) signaling pathway regulates embryogenesis, organogenesis, and adult 

tissue maintenance by controlling cell proliferation, renewal, differentiation, cell motility and 

adhesion as well as EMT. Aberrant activity of Hh signaling is directly linked to many human 

diseases including cancers. It has been reported that Hh signaling plays a key role in the 

development of breast cancer through the transformation of adult stem cells into cancer stem 

cells [229]. In mammals, the canonical Hh signaling pathway can be initiated by binding of three 

Hh ligands [230][231] to the twelve-pass transmembrane protein receptors Patched1 (Ptch1) and 

Patched2 (Ptch2) [230–232]. The three Hh ligands include Sonic Hedgehog (Shh, the most 

broadly expressed and best-studied Hh molecule) [230], Indian Hedgehog (Ihh, primarily 

involved in bone differentiation) [276] and Desert Hedgehog (Dhh, involved in gonad 

differentiation) [232]. In the absence of Hh, Ptch1 constitutively represses GPCR-like protein 

Smoothened (Smo), a seven-transmembrane domain receptor [233]. Hh binding to Patch1 

relieves the inhibition of Smo, which results in Smo accumulation in cilia and the 

phosphorylation of its cytoplasmic tail [234]. This signal facilitates the release of the Glioma-

associated oncogene (Gli) family of latent zinc-finger (ZF) transcriptional mediators from 

kinesin-family proteins Kif7 and Sufu, leading to the activation and nuclear translocation of the 

Gli transcription factors. Gli transcription factors then regulate the transcription of the target 

genes [235–238]. 
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Growing evidence suggests an important role of Hh signaling pathway in maintain breast 

cancer stemness [239]. Recent clinical studies indicate that high expression of Ptch1 and Gli1 is 

associated with larger tumors, metastasis, pathological progression and with significantly shorter 

OS and DFS in breast cancer patients with CD44+/CD24-
 /
BCSC-enriched tumors [240]. High 

RNA expression levels of Ptch1, Gli1 and Gli2  have been reported in  CD44+/CD24-/Lin- 

BCSCs [241,242]. Activation of Hh signaling increases CD44+/CD24- cell population and 

mammosphere size. However, inhibition of Hh signaling pathway suppresses CD44+/CD24- 

BCSC subpopulation, mammosphere-forming and abrogates drug resistance of BCSCs [242–

245]. Inhibition of Hh signaling also suppresses EMT by inhibiting Snail, Slug and ZEB2 [246]. 

It is recently found that salinomycin that shows selective toxicity in BCSCs, inhibits Shh-

mediated Hh signaling activation through downregulating the expression of Ptch1, Smo, Gli1, 

and Gli2 as well as stemness markers Snail, Nanog, Oct4 and Sox2 [245,247,248]. Therefore, Hh 

signaling induces self-renewal and EMT of breast cancer cells [246,249,250].  

 

1.8.  ENHANCER REGULATORY ELEMENTS 

In pro- and eukaryotes, enhancers are short (200-1500 bp) cis-regulatory region of DNA 

located in upstream or downstream of the gene from the transcription start site (TSS) [251]. The 

term enhancer was first used when SV40 DNA increased ectopic expression of a cloned rabbit β-

globin gene increased [252]. Enhancers harbor recognition elements with multiple binding sites 

for a variety of transcription factors. Binding transcription factors to enhancer activates 

transcription at a distance target gene independently of enhancer sequence orientation by 

formation an intervening chromatin loop [251]. In eukaryotes, Chromatin loop formation brings 

the enhancer to target gene promoter at distance into physical proximity with direct interaction 

which leads to increase the local concentration of chromatin-modifying factors, assembly of 

transcription coactivators including p300, Mediator (MED) complex, Bromodomain-containing 

protein 4 (BRD4), and recruitment of RNA polymerase II (Pol II). This modification of 

chromatin is associated with increased DNA accessibility by enrichment of histone modification 

including Histone 3 lysine 4 mono and tri-methylation (H3K4me1 and H3K4me3) and H3K27 

acetylation (H3K27ac) and other modifications [253]. About 400,000 putative enhancers have 
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been found in the human genome based on analysis of histone modifications and proximity to 

transcription start sites annotated by the ENCODE (Encyclopedia of DNA Elements) project 

[254]. Enhancer activity is largely cell-type specific and is critical for forming cell-type-specific 

gene expression patterns, mentioning cell identity and determining cell fate during development 

[251].  

The structure of the eukaryote gene enhancer is shown in Figure 1.6. Enhancers show high 

enrichment of a broad spectrum of cofactors and chromatin regulators including RNA 

polymerase II, MED1, Nipped-B-like protein (NIPBL), Cohesin, p300, CREB-binding protein 

(CBP), Chromodomain-helicase-DNA-binding protein 7 (CHD7), BRD4, BRG1, LSD1-NuRD 

complexes and long non-coding enhancer RNAs (eRNAs) [255–257]. MED1 is a subunit of the 

Mediator coactivator complex which regulates transcriptional initiation by the RNA polymerase 

II [258]. MED1 facilitates chromatin loop formation by binding to NIPBL which is a Cohesin 

protein and facilitates enhancer-promoter interaction by large spinning [258]. The Cohesin 

protein complex colocalizes with CCCTC-binding factor (CTCF) a transcription factor that 

regulates euchromatic and heterochromatic DNA and loop formation. Colocalization of cohesion 

proteins with CTCF regulates the spatial clustering of enhancer elements and chromatin looping 

[259]. The coactivators p300 and CBP are histone acetyltransferases and facilitate RNA 

polymerase II binding to the promoter [260]. CHD7 is a chromodomain helicase DNA-binding 

domain family of ATP-dependent chromatin remodeling enzymes mediates in enhancer 

chromatin remodeling by interaction with p300 and binding to methylated histones [261]. BRD4 

a member of the bromodomain and extra terminal domain (BET) family binds to MED1, 

acetylates histones and promotes RNA polymerase II by stimulating phosphorylation of its 

carboxy-terminal domain [262]. ATP-dependent chromatin remodeler BRG1 is a member of the 

mammalian SWI/SNF family that modulates the chromatin structure in many pluripotent cells, 

specifically during development [263]. Lysine-specific demethylase 1A (Lsd1) is a subunit of the 

Nucleosome remodeling deacetylase (NuRD) complex which mediates in histone modification 

and occupies enhancers of genes that are critical for maintaining embryonic stem cells (ESC) 

[264]. Enrichment of eRNAs is a mark of highly enhancer-specific activity and has specific roles 

in the expression of genes near the enhancers including stabilizing enhancer-promoter looping by 

cohesin and Mediator complexes [265].  
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Figure 1.6. Structure of promoter-enhancer interaction and transcriptional regulation 

complex. eRNA: enhancer RNA. TF: transcription factor. TSS: transcription start site. The 

figure partially adapted from www.courses.lumenlearning.com 

Enhancers can be characterized by enhancer trap techniques using a reporter gene such as 

LacZ or by comparative sequence analysis and computational genomics to genome-wide cis-

regulatory elements [266]. In traditional method expression level of a reporter gene which is 

integrated into a genomic region near a putative enhancer reflects the activity of the enhancer. 

Thus, cloning of the neighboring regions and subsequent further experiments such as chromatin 

immunoprecipitation (ChIP) and DNA sequencing can characterize the enhancer circumstance in 

terms of epigenetic modification, bound transcription factor complexes, DNA sequences and 

genomic map [251]. Densely positioned nucleosomes (closed chromatin) restrict access of 

transcription complex to enhancer while open (nucleosome-free) chromatin of enhancer region 

makes enhancer accessible for the transcription factors and co-activators [251]. Chromatin 

accessibility is controlled by certain chromatin modification signature which is crucial for 

packaging and interpreting the genome that governs the gene expression profile of each cell. This 

signature contains a wide board of processes that exert histone modifications, DNA methylation, 

non-coding RNA-based modifications, and chromatin architecture and acts as “gatekeeper” of 

cis-regulatory elements across the genome. Open chromatin is associated with nucleosomes 

containing histone variants H3.3 and H2A.Z. H3.3/H2A.Z histones co-occurrence relaxes 

nucleosome and unstrings DNA twist [267]. These nucleosomes that flank TSS and active 
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enhancers and other transcription factor binding regions are often marked by specific histone 

modifications including, but not limited to, H3K4me1 and H3K27ac [268,269]. In addition, 

chromatin regions with these two modifications are highly sensitive to DNA nucleases such as 

DNase I (DNase I hypersensitivity) due to the high accessibility of the DNA to the enzymes 

[270]. Taking together, enhancers are distinguished from non-regulatory genomic DNA by (1) 

transcription factor binding signature (2) chromatin modification signature and (3) level of 

sensitivity to DNase I. These three criteria allow discovering novel enhancer as tree principle of 

enhancer discovery platforms 

Development of genome and epigenome-wide analyzing technologies such as NGS (next-

generation sequencing), ChIP-seq (chromatin immunoprecipitation followed by NGS), DNase-

seq, ATAC-seq (assay for transposase-accessible chromatin with high throughput sequencing) 

[271], IM-PET (integrated methods for predicting enhancer targets), SIF-seq (site-specific 

integration fluorescence-activated cell sorting followed by sequencing) [272], HiC (high-

throughput sequencing of chromosome conformation capture), and ChIA-PET (analysis by 

paired-end tag sequencing) which is combination of HiC and ChIP-seq methods allowed 

researcher identify wide-scale putative enhancers based the three criteria. ChIP-seq is a powerful 

tool to determine the 2D genome structure and for enhancer discovery based on histone 

modifications (methylation, acetylation, and ubiquitination) also based on binding of general and 

specific transcription factors as well as co-activators [255,256,273–275]. Typically, 

approximately 10,000 to 150,000 putative enhancer elements can be identified in a specific cell 

by using ChIP-seq [268,276]. HiC is used to determine 3D chromatin interactions that can reveal 

trans-acting regions in addition to cis-acting regions. ChIA-PET which is a combination of HiC 

and ChIP-seq methods is another useful method to determine chromatin looping and chromatin-

chromatin interaction sites based on a cross-linked transcription factor [277,278]. 

In 2013, Whyte et al. [256] described clusters of enhancer elements called “super-enhancer” 

in murine ESC that are exclusively occupied by three master pluripotency transcription factors 

Oct4, Sox2 and Nanog. The super-enhancer regulated expression of genes, which control cell 

identity of ESCs including Oct4, Sox2 and Nanog themselves. Super-enhancers increase 

expression of linked gene with higher efficiency than typical enhancers. A super-enhancer differs 

from a typical enhancer by higher enrichment by specific and general transcription factors, 
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mediators (such as MED1 and BRD4), eRNAs, active chromatin histone marks (such as 

H3K4me and H3K27ac) and forming larger chromatin loop (> 50 kbp) [255,256,279,280]. super-

enhancers are highly associated with topologically associating domains (TADs) which are 

clusters of self-interacting chromatin regions and a part of forming 3D chromosome structure 

and chromosome packaging in the nucleus [281]. TADs are found associated with several 

diseases by altering 3D organization of the chromosome that disrupts gene regulation [281].  

Using high-throughput chromatin ChIP-Seq for histone marks and/or transcription factors, 

over 75,000 super-enhancers have been found in human genome that make up to about 15% of 

the genomic DNA [282]. Super-enhancers can be located upstream or downstream of the TSS of 

the corresponding gene and are essential for maintaining cell identity and specificity [256,264]. 

Investigation of super-enhancers in cancer led to identify many genes which play important role 

in cancer biology. Association of super-enhancers with oncogenes was found in several cancer 

types including colon [255,283], breast [255,283], cervical [282], lung [255,279,284], prostate 

[255], pancreas [255], glioblastoma [279], medulloblastoma [285], neuroblastoma [284], and 

various leukemias [255,274,285,286]. About 20,000 super-enhancers are identified in different 

human cancer cell types [282]. 
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Chapter 2. Aims and hypothesis 

 

Recent preclinical and clinical studies show the association of nuclear HER2 fragments with 

poor prognosis and increased tumor cell growth and invasion. Nuclear HER2 fragments are 

described as C-terminal truncated HER2 fragments possessing intracellular parts with kinase 

activity but without extracellular part. Nuclear HER2 usually arises by alternative splicing of 

ERBB2 mRNA leading to initialing of translation from the intracellular part. In addition, 

cleavage of full-length HER2 (p185HER2) from intracellular juxtamembrane regions, just 

bellow the transmembrane domain can produce free C-terminal truncated HER2 fragments with 

80-90 kDa molecular weight (called p85HER2) with the ability to traffic inside the cytoplasm 

and translocate into the nucleus since it possesses nuclear localization signal (NLS) sequences. In 

this case, the extracellular part of the HER2 can still remain at the plasma membrane due to 

possessing the transmembrane domain. However, cleavage from the extracellular juxtamembrane 

region that occurs majorly by matrix metalloproteinases (MMPs), results in shedding of the 

extracellular part and production of 95 kDa HER2 (called p95HER2) which remains encored at 

the plasma membrane since it still possesses the transmembrane domain. Both the HER2 

cleavage mechanisms and production of p85HER2 and p95HER2  fragments have been reported 

to be associated with trastuzumab resistance, higher rate of tumor growth, poor clinical outcome, 

and have been suggested to be used as poor prognosis and predictive trastuzumab resistance 

markers in clinical investigations.  

 

2.1. TO STUDY THE EFFECTS OF TRASTUZUMAB ON HER2 RECEPTOR 

ACTIVATION 

Despite striking clinical outcome of trastuzumab, the exact mode of action and resistance 

mechanisms remain ambiguous. It showed strong antitumor effects in both the mouse model and 

HER2-positive breast cancer patients [1,2]. While many mechanisms have been proposed for the 

antitumor activity of trastuzumab, including both extracellular and intracellular actions [1,2], 

little is known about the exact mechanisms of action. The extracellular action is through 
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immune-mediated response. When bound to the target cells, the Fc portion of trastuzumab will 

be recognized and attacked by the Fc receptorS of cytotoxic immune cells and initialing ADCC. 

There is solid evidence to support ADCC as a major mechanism for trastuzumab action [3–10]. 

On the other hand, the data regarding the intracellular mechanisms are either controversial at the 

beginning or challenged by the recent data [11]. initial studies report that binding trastuzumab to 

HER2 inhibits RTK signaling pathways bu blocking HER2 receptor activation. However, several 

other studies disprove this conclusion and suggest that trastuzumab has no major effect of HER2 

receptor activation and subsequently its canonical downstream pathways [1,2].  

The aim of this part of our study was to investigate the effects of trastuzumab on 

homodimerization and tyrosine residue phosphorylation of HER2 receptor as well as on the 

activation of Pi3K/Akt and MAPK pathways. We also studied whether treating  the HER2-

positive cells with trastuzumab activates the ADCC of the cells. To achieve our objective, we 

adopted a Chinese hamster ovary (CHO) cell model. Besides the parental CHO cell line that does 

not express any detectable HER receptors, three stable CHO cell lines that stably express only a 

single HER receptor including EGFR (CHO-EGFR), HER2 (CHO-K6), and HER3 (CHO-

HER3) were employed in this research.  

 

2.2. TO STUDY THE EFFECTS OF PERTUZUMAB AND ITS COMBINATION WITH 

TRASTUZUMAB ON HER2 RECEPTOR ACTIVATION AND GENE EXPRESSION 

Pertuzumab another fully-humanized recombinant anti-HER2 monoclonal antibody is 

approved by the FDA to be used as neoadjuvant in combination with trastuzumab and docetaxel 

for the treatment of early-stage and metastatic HER2-positive breast cancer [12–14]. In addition 

to induction ADCC, pertuzumab also showed to inhibit HER2-positive cancer cell proliferation 

in the absence of immune cells, implicating the anti-cancer effects of the pertuzumab through 

alteration of HER2-mediated signaling pathways [15–17]. Pertuzumab binds to the dimerization 

pocket in the domain II of the extracellular part of HER2 that is believed to inhibit HER2/EGFR 

[18] and HER2/HER3 heterodimerizations [19–22]. Since the heterodimerization between HER2 
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and EGFR/HER3 is induced by ligand-binding, pertuzumab is believed to blocks ligand-

dependent activation of HER2 and downstream signaling [18,21–23]. 

Adding pertuzumab to trastuzumab and docetaxel has produced better outcomes than 

treatment with trastuzumab and docetaxel alone, including a significant improvement in 

progression-free and overall survival rates [24–26]. The aim of this part of our study was to 

assess the effects of pertuzumab and its combination with trastuzumab on HER2 receptor 

homodimerization and activation phosphorylation using CHO cell line models described is the 

previous section. We also aimed to investigate the whole transcriptome profile of the CHO-K6 

cells under treatment with pertuzumab, trastuzumab and their combination to examine the effects 

of the monoclonal antibodies on cell cycle, survival, and apoptosis. This study will allow us to 

understand and whether the monoclonal antibodies exert their antiproliferative effect via 

blocking HER2 activation or not. 

 

2.3. TO STUDY THE EFFECT OF TRASTUZUMAB ON HER2 NON-CANONICAL 

PATHWAY 

Recent preclinical and clinical studies show the association of nuclear HER2 fragments with 

poor prognosis and increased tumor cell growth and invasion. Nuclear HER2 fragments are 

described as C-terminal truncated HER2 fragments possessing intracellular parts with kinase 

activity but without extracellular part. Nuclear HER2 usually arises by alternative splicing of 

ERBB2 mRNA leading to initialing of translation from the intracellular part. In addition, 

cleavage of full-length HER2 (p185HER2) from intracellular juxtamembrane regions, just 

bellow the transmembrane domain can produce free C-terminal truncated HER2 (ctHER2) 

fragments with 80-90 kDa molecular weight (called p85HER2) with ability to traffic inside the 

cytoplasm and translocate into the nucleus since possesses nuclear localization signal (NLS) 

sequences. In this case, extracellular part of the HER2 can still remain at the plasma membrane 

due to possessing the transmembrane domain. However, cleavage from the extracellular 

juxtamembrane region that occurs majorly by matrix metalloproteinases (MMPs), results in 

shedding of the extracellular part and production of 95 kDa HER2 (called p95HER2) which 
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remains encored at the plasma membrane since it still possesses the transmembrane domain. 

Both the HER2 cleavage mechanisms and production of p85HER2 and p95HER2 have been 

reported to be associated with trastuzumab resistance, higher rate of tumor growth, poor clinical 

outcome, and have been suggested to be used as poor prognosis and predictive trastuzumab 

resistance markers in clinical investigations.  

ctHER2 is a client for heat shock protein 90 (HSP90) chaperone protein which is important 

for HER2 trafficking [27]. HER2 is shown to translocate to the nucleus, enrich at the chromatin 

and regulate transcription (Figure 2.1A). It has been demonstrated that HER2 binds to a promoter 

chromatin of PTGS2 gene (coding for COX2 protein) and increase the transcription of COX2 

[28]. Another  study showed that HER2 regulates the promoter activity of the CCND1 gene 

(coding for Cyclin D1) in a complex with STAT3, the regulation which is associated with poor 

clinical outcome [29,30]. In addition, nuclear HER2 increases the transcription of microRNA-21 

[31], ribosomal RNA [32] and RNA polymerase I [32] by enriching at the promoter chromatin of 

the genes. Further, HER2 stabilizes the mRNA of Na
+
-HCO3

-
 co-transporter SLC4A7 mRNA, an 

oncogenic protein in breast cancer, by direct binding to 3′UTR sequence of the mRNA that 

results in increased protein synthesis of  SLC4A7
 
[33]. Cohort studies showed association of C-

terminal truncated HER2 proteins with breast cancer poor prognosis, metastasis, worse therapy 

outcome and trastuzumab resistance [34–37]. Overexpressing ctHER2 increased tumor growth 

and trastuzumab resistance, however, inhibition of ctHER2 nuclear localization by blocking 

HSP90 and deleting HER2 NLS resulted in reduced tumor growth, invasion and overcame 

trastuzumab resistance [30,38]. 

In this part of our study, we aimed to study the effect of trastuzumab on HER2 cleavage, 

production and nuclear localization of ctHER2 as well as the function of nuclear HER2 in 

HER2-positive breast cancer cells. We hypothesize that (i) Binding trastuzumab to HER2 

prevents cleavage of full-length HER2 and inhibits translocation of ctHER2 (Figure 2.1B) and 

(ii) nuclear HER2 mediates in the regulation of gene expression by contributing to the 

transcription complex. 
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Figure 2.1. Model showing mechanism of cleavage and transcription co-factor function of 

p85HER2. (A) Full-length membranous HER2 (p185HER2) can be cleaved from the 

juxtamembrane region by metalloproteinases or intracellular proteinases that results in 

releasing p85HER2 from the membrane. p85HER2 can bind to 3’UTR of SLC4A7 mRNA 

and stabilize the mRNA that leads to increased expression of SLC4A7 protein. By engaging 

heat shock protein 90 kDa (HSP90) or some other chaperons, p85HER2 can translocate to the 

nucleus wherein it makes a complex with actin that binds to RNA polymerase I (Pol I) 

resulting in increased synthesis of ribosomal RNA (rRNA). Nuclear p85HER2 can also make 

a complex with STAT3 which can regulate the expression of CCND1 (coding for Cyclin D1) 

and MIR21 (coding for microRNA-21) genes. p85HER2 can also bind to the promoter of the 

PTGS2 gene (coding for COX2) and increase the expression of COX2 protein. This 
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regulation can lead breast tumor cells to more growth and proliferation. (B) Model of our 

hypothesis. Binding trastuzumab to domain IV of the extracellular part of p185HER2 changes 

its confirmation burying the juxtamembrane cleavage site that prevents cleavage of HER2 by 

client proteinases. 

 

2.4. TO STUDY THE EPIGENETIC MECHANISM OF TRASTUZUMAB RESISTANCE 

Over 60% of all HER2-positive breast cancers develop resistance to HER2-targeting agents 

lapatinib and trastuzumab. This is mainly due to the loss of expression of HER2 on the tumor 

cells. A potential mechanism of HER2 downregulation is epigenetic regulations including 

chromatin remodeling of ERBB2 gene. A drastic global epigenetic reprogramming of epithelial 

cells happens during EMT which is characterized by wide-scale chromatin remodeling of genes 

involved in the emergence of epithelial and mesenchymal phenotypes. Many studies demonstrate 

that HER2-high cells mostly show epithelial phenotype, whereas HER2-low cells exhibit 

high  mesenchymal phenotype, therefore mesenchymal-like cells are intrinsically resistant to 

HER2-targeting therapies. For example, JIMT-1 cell line is a HER2+ breast cancer cell line that 

can quickly develop resistance to trastuzumab. Studies showed that JIMT-1 was composed of 

approximately 10% CD44+/CD24- BCSC in initial cultures. This level rose to 85% at the late-

passages [39]. Concurrently, the level of HER2 expression significantly reduced in late-passage 

cultures when compared to the early cultures. This regulation was associated with the 

development of trastuzumab-resistance. High passage JIMT-1 cells that were enriched 

mesenchymal CD44+/CD24- BCSCs expressing a lower level of HER2 also exhibited a highly-

migratogenic phenotype and produced pro-invasive/metastatic proteins more than low-passage 

JIMT-1 cells culture. This phenomenon may explain the resistance of HER2-high breast tumors 

to trastuzumab due to an increased population of HER2-low CD44+/CD24 mesenchymal cells at 

the late-passages. Further, the CD44+/CD24- cells escape from trastuzumab-mediated ADCC. 

The cells could survive the immunoselection process in breast cancer cells co-cultured with NK 

cells and trastuzumab. This resistance may be attributed to the reduced HER2 expression levels 

on their surface [40]. Overall, this evidence suggests that EMT of HER2-high breast cancer cells 
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may lead to the development of trastuzumab resistance by increasing the population of HER2-

low  mesenchymal cells.  

In this part of our study, we suggest EMT as an authentic mechanism of trastuzumab 

resistance in breast cancer. We hypothesize that epigenetic reprogramming during EMT of 

trastuzumab-responsive HER2-high epithelial-like breast cancer cells results in the inactivation 

of ERBB2 chromatin, downregulation of HER2 expression and emergence of trastuzumab-

refractory HER2-low mesenchymal-like breast cancer cells. To investigate this hypothesis, we 

aimed to study the chromatin architecture of ERBB2 gene and its association with HER2 

expression as well as epithelial and mesenchymal phenotypes in breast cancer.  
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Chapter 3. The effects of trastuzumab on HER2 receptor activation 

 

3.6. SUMMARY 

Targeted therapy with trastuzumab has become a mainstay for HER2-positive breast cancer 

without a clear understanding of the mechanism of its action. While many mechanisms have 

been suggested for the action of trastuzumab, most of them are not substantiated by experimental 

data. It has been suggested that trastuzumab functions by inhibiting intracellular signaling 

initiated by HER2, however, the data are very controversial. A major issue is the different 

cellular backgrounds of various breast cancer cell lines used in these studies. Each breast cancer 

cell line has a unique expression profile of various HER receptors, which could significantly 

affect the effects of trastuzumab. To overcome this problem, in this research we adopted a cell 

model that allows us to specifically examine the effects of trastuzumab on a single HER receptor 

without the influence of other HER receptors. Three CHO cell lines stably expressing only 

human EGFR (CHO-EGFR), HER2 (CHO-K6), or HER3 (CHO-HER3) were used. Various 

methods including cytotoxicity assay, immunoblotting, indirect immunofluorescence, cross-

linking, and ADCC were employed in this research. We showed that trastuzumab did not bind 

EGFR and HER3, and thus did not affect the homodimerization and phosphorylation of EGFR 

and HER3. However, overexpression of HER2 in CHO cells, in the absence of other HER 

receptors, resulted in the homodimerization of HER2 and the phosphorylation of HER2 at all 

major pY residues. Trastuzumab bound to HER2 specifically and with high affinity. 

Trastuzumab inhibited neither the homodimerization of HER2 nor the phosphorylation of HER2 

at most phosphotyrosine residues. Moreover, trastuzumab did not inhibit the phosphorylation of 

Erk and Akt in CHO-K6 cells and did not inhibit the proliferation of CHO-K6 cells. However, 

trastuzumab induced strong ADCC in CHO-K6 cells. We concluded that, in the absence of other 

HER receptors, trastuzumab exerts its antitumor activity through the induction of ADCC, rather 

than the inhibition of HER2-homodimerization and phosphorylation. 

 

3.7. INTRODUCTION 



71 

 

While many recent publications claim that early studies support the role of trastuzumab in 

inhibiting HER2 phosphorylation [15,16], many data indicate that trastuzumab either has no 

effect or stimulates HER2 phosphorylation [15–19]. The data regarding the effects of 

trastuzumab on the dimerization of HER2, activation of major signaling pathways including Akt 

and Erk [20,21], and HER2 endocytosis/downregulation [22–24] are all controversial. The data 

regarding the role of trastuzumab on DNA repair [25], proteolytic cleavage of HER2 

extracellular domain [26], and angiogenesis [27,28] are very limited. The most controversial 

mechanism regarding trastuzumab function is its effect on the inhibition of HER2 activation. A 

major reason behind this controversy is the different cellular backgrounds of various breast 

cancer cell lines used in those studies. Each breast cancer cell line has a unique expression 

profile of various HER receptors, which could significantly affect the effects of trastuzumab. To 

overcome this problem, in this research we adopted a cell model that allows us to specifically 

examine the effects of trastuzumab on a single HER receptor without the influence of other HER 

receptors.  

The aim of this study was to investigate the effects of trastuzumab on induction of ADCC of 

the HER2+ cells, homodimerization and tyrosine residue phosphorylation of HER2 receptor as 

well as on the activation of Pi3K/AKT and MAPK pathways. In this study, we used CHO cell 

lines stably expressing high levels of HER2, or EGFR or HER3 that allow us to investigate 

HER2 receptor activity avoiding interaction of other HER receptor which functionally and 

structurally resemble to each other. 

 

3.8. RESULTS 

3.8.1.  Stable CHO cell lines expressing EGFR, HER2, and HER3 

HER2 heterodimerizes with EGFR and HER3 in response to ligand stimulation [29–31]. 

HER2 also homodimerizes and activates in cells with over-expressed HER2 [32–34]. Most 

HER2-positive breast cancer cells also express either EGFR, HER3 or both, which makes it 

difficult to explain the observed effects of trastuzumab. Thus, to understand the effects of 

trastuzumab on HER2-mediated cell signaling in breast cancer cells, we plan first to study the 

effects of trastuzumab in CHO cells that selectively express a single HER receptor. The results 
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from these CHO cells will unambiguously define the role of trastuzumab on HER2-mediated cell 

signaling under various expression profiles of HER receptors. Thus, these data could be used to 

accurately interpret observation in breast cancer cells. We have established CHO cell lines stably 

expressing EGFR (CHO-EGFR) [35]. CHO cells expressing HER2 (CHO-K6) or HER3 (CHO-

HER3) were obtained from other labs [36,37]. Parental CHO cells were used as control. We 

confirmed the expression of HER receptors in these cell lines by immunoblotting and 

immunofluorescence. As shown in Figure 3.1, CHO-K6 cells expressed high level of HER2. 

CHO-EGFR cells expressed high level of EGFR. CHO-HER3 cells expressed high level of 

HER3 and the CHO parental cells did not express detectable HER2, EGFR and HER3. 

 

Figure 3.1. The expression of HER receptors in CHO cells stably transfected with a single 

HER receptor including CHO-EGFR, CHO-K6, and CHO-HER3. (A) Immunoblotting. The 

lysates of various CHO cells were separated by gel electrophoresis and immunoblotted with 
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antibodies to HER receptors as indicated. The parent CHO cells (CHO) were used as control. 

(B) Immunofluorescence. Various CHO cells were fixed and stained with antibodies to HER 

receptors as indicated. The expression of HER receptor was revealed by the FITC-conjugated 

secondary antibody (green). Cell nuclei were counterstained with DAPI. Scaled size of each 

picture width: 100 μm. 

3.8.2. Binding of trastuzumab to HER receptors 

While trastuzumab is an antibody to HER2, it is possible that it may weakly interact with 

EGFR and HER3 due to the sequence homology among these receptors. Thus, we next examined 

the binding of trastuzumab to HER2, EGFR, and HER3. We showed by immunofluorescence 

that trastuzumab only bound to HER2, but not EGFR and HER3 (Figure 3.2). As shown in 

Figure 3.2 at the dosage ranging from 0.1 μg/ml to 10 μg/ml, trastuzumab showed strong binding 

to HER2 in CHO-K6 cells. HER2 was localized to the plasma membrane in CHO-K6 cells under 

all conditions as expected. Trastuzumab was also located to plasma membrane, co-localizing 

with HER2, which indicates the binding of trastuzumab to HER2 (Figure 3.2A). Plasma 

membrane localization of trastuzumab was increased with the increased dosage. We also 

determined the time course of trastuzumab binding to HER2 in CHO-K6 cells. As shown in 

Figure 3.2B at 5 minutes following trastuzumab addition, trastuzumab had already been well 

localized to the plasma membrane, indicating a rapid binding between trastuzumab and HER2. 

Longer incubation only partially increased the plasma membrane localization of trastuzumab. 

However, even at the high dosage of 10 μg/ml, no binding of trastuzumab to EGFR and HER3 

was detectable in CHO-EGFR and CHO-HER3 cells, respectively (Figures 2.2C and D). These 

results indicate that trastuzumab binds to HER2 specifically with high affinity. 
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Figure 3.2. Binding of trastuzumab to HER receptors in CHO-K6, CHO-EGFR and CHO-

HER3 cells as revealed by immunofluorescence. (A and B) The binding of trastuzumab to 

HER2 in CHO-K6 cells. CHO cells were treated with trastuzumab at various concentrations 

as indicated for 1 hour (A) or at various time periods as described at 10 μg/ml (B) as 

indicated. The membrane localization (binding) of trastuzumab was revealed by TRITC-

conjugated donkey anti-human IgG. The localization of HER2 was revealed by the rabbit 

anti-HER2 antibody followed by FITC-conjugated donkey anti-rabbit IgG. The cell nuclei 

were counterstained with DAPI. Yellow indicated the co-localization of trastuzumab and 

HER2. (C) The binding of trastuzumab to EGFR in CHO-EGFR cells. The membrane 

localization (binding) of trastuzumab was revealed by TRITC-conjugated donkey anti-human 

IgG. The localization of EGFR was revealed by the rabbit anti-EGFR antibody followed by 

FITC-conjugated donkey anti-rabbit IgG. The cell nuclei were counterstained with DAPI. (D) 
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The binding of trastuzumab to HER3 in CHO-HER3 cells. The membrane localization 

(binding) of trastuzumab was revealed by TRITC-conjugated donkey anti-human IgG. The 

localization of HER3 was revealed by the rabbit anti-HER3 antibody followed by FITC-

conjugated donkey anti-rabbit IgG. The cell nuclei were counterstained with DAPI. Scaled 

size of each picture width: 100 μm. 

3.8.3. The effects of trastuzumab on the homodimerization of HER2 

So far, the reports are controversial regarding the effects of trastuzumab on the dimerization 

or HER2. Here we examined the effects of trastuzumab on the homodimerization of HER2 by 

crosslinking and immunoblotting (Figure 3.3). As shown in Figure 3.3, the overexpression of 

HER2 by itself resulted in a high level of HER2 homodimerization. Clearly, trastuzumab did not 

block the homodimerization of HER2. Interestingly, with the increase of the dosage from 0.1 to 

10 μg/ml, trastuzumab induced the dimerization of HER2 (Figure 3.3A). The induction of the 

homodimerization of HER2 by trastuzumab was even more visible in the time course 

experiments (Figure 3.3B). 

 

Figure 3.3. The effects of trastuzumab on HER2 homodimerization in CHO-K6 cells as 

revealed by crosslinking. Following trastuzumab treatment as indicated, CHO-K6 cells were 

treated with BS3 and the homodimerization of HER2 was revealed by immunoblotting as 

described in Materials and Methods. (A) CHO-K6 cells were treated with trastuzumab at 

various concentrations of 0.1, 1, and 10 μg/ml for 1 hour. (B) CHO-K6 cells were treated with 
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10 μg/ml trastuzumab for 15, 30, 60 and 120 minutes. Cells treated with normal human IgG 

(10 μg/ml) were used as control. The level of HER2 homodimerization was quantitated by 

densitometry and expressed as the ratio of dimer/total HER2. Each value is the average of at 

least three experiments and the error bar is the standard error. **: P < 0.01, ***: P < 0.001. 

3.8.4. The effects of trastuzumab on the phosphorylation of HER2 

Activated HER2 phosphorylates multiple tyrosine (Y) residues at its C-terminus. We have 

examined the phosphorylation of the following six tyrosine residues including Y1005, Y1112, 

Y1127, Y1139, Y1196, and Y1248 (Figures 2.4, 2.5 and 2.6). As shown by immunoblotting, for 

the control cells treated with normal IgG, HER2 was well phosphorylated in all of the pY 

residues examined (Figures 2.4A and B). The phosphorylation is likely due to the 

homodimerization induced by the overexpression of HER2. Treatment with trastuzumab at the 

dosage ranging from 0.1 μg/ml to 10 μg/ml did not significantly alter the phosphorylation levels 

of most phosphotyrosine residues including Y1005, Y1127, Y1196, and Y1248. However, 

trastuzumab partially inhibited the phosphorylation of Y1139. Similar to normal IgG, EGF did 

not have any effects on the phosphorylation of all the pY residues of HER2, which is not 

surprising as HER2 does not bind to EGF (Figures 2.4A and B). These results were confirmed by 

time-course experiments (Figure 3.4C). Treatment from 15 minutes up to 2 hours, did not change 

the phosphorylation levels of all pY residues except for pY1139 that is partially inhibited (Figure 

3.4C). 

As controls, we have examined the effects of trastuzumab on EGFR phosphorylation in 

CHO-EGFR cells. As shown in Figure 3.5, EGFR was not phosphorylated in CHO-EGFR cells, 

and the addition of EGF stimulated the phosphorylation of EGFR. Treatment with trastuzumab 

was not able to inhibit EGF-induced EGFR phosphorylation. Moreover, trastuzumab by itself did 

not have any detectable effects on EGFR phosphorylation in CHO-EGFR cells. We also examine 

the effects of a chemical inhibitor of HER2, CP-724714 on HER2 phosphorylation in CHO-K6 

cells. As shown in Figure 3.5B, various concentrations of CP-724714 ranging from 1 - 100 μM 

significantly block the phosphorylation of HER2 at Y1005, which is in stark contrast from 

trastuzumab as shown in Figure 3.4. Furthermore, CP-724714 also significantly inhibited the 

phosphorylation of HER2 pY1139, however, trastuzumab only partially inhibited pY1139. These 
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results indicated that trastuzumab has little if any, inhibitory effects on HER2 activation/ 

phosphorylation. 

We further examine the effects of trastuzumab on the phosphorylation of HER2 by indirect 

immunofluorescence (Figure 3.6). CHO-K6 cells either treated with trastuzumab or control IgG 

were double-stained for both trastuzumab (TRITC, red) and phospho-HER2 (FITC, green). 

Antibodies specific to six HER2 pY residues including Y1005, Y1112, Y1127, Y1139, Y1196, 

and Y1248 were used to determine the effects of trastuzumab on HER2 phosphorylation. As 

shown in Figure 3.6, HER2 was well phosphorylated on all of these six pY residues in the 

absence of trastuzumab, indicating the autophosphorylation due to overexpression. Treatment 

with trastuzumab at the concentration ranging from 0.1 - 10 μg/ml had no effects on the 

phosphorylation levels of these HER2 pY residues including Y1005 (Figure 3.6A), Y1112 

(Figure 3.6B), Y1127 (Figure 3.6C), Y1196 (Figure 3.6E), and Y1248 (Figure 3.6F). However, 

for pY1139, trastuzumab at 1 - 10 μg/ml showed some inhibitory effect (Figure 3.6D). 

Together, our results indicated that overexpression of HER2 resulted in strong HER2 

phosphorylation in all its pY residues studied here. The addition of trastuzumab, in general, did 

not inhibit the phosphorylation of HER2. The only possible exception is that trastuzumab at 

higher dosage (1 - 10 μg/ml) partially reduced the phosphorylation of HER2 at pY1139. 

 

Figure 3.4. The effects of trastuzumab on HER2 phosphorylation in CHO-K6 cells by 

immunoblotting. (A) CHO-K6 cells were treated with trastuzumab at concentrations of 0.1, 1 

and 10 μg/ml for 1 hour. The phosphorylation of HER2 at Y1005, Y1127, Y1139, Y1196, and 
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Y1248 were then examined by immunoblotting as described in Materials and Methods. Cells 

treated with normal human IgG (10 μg/ml) or EGF (50 ng/ml) were used as controls. The 

phosphorylation level of each HER2 pY residue was normalized against the expression level 

of tubulin. (C) Time-course experiments. CHO-K6 cells were treated with trastuzumab (10 

μg/ml) for 15, 30, 60 and 120 minutes. The phosphorylation of various HER2 pY residues 

was examined by immunoblotting. 

 

Figure 3.5. Control experiments to show the effects of trastuzumab on EGFR 

phosphorylation in CHO-EGFR cells and the effects of CP-724714 on HER2 phosphorylation 

in CHO-K6 cells. (A) The effects of trastuzumab on EGFR phosphorylation or EGF-induced 

EGFR phosphorylation in CHO-EGFR cells. Cells were treated with EGF (50 μg/ml) and/or 

trastuzumab (0.1, 0.5, 1, 5 and 10 μg/ml) for 1 hour. The phosphorylation of EGFR was 

determined by immunoblotting with antibody to EGFR pY1068. (B) The effects of a chemical 

inhibitor of HER2, CP-724714 on HER2 phosphorylation (at Y1005 and Y1139 residues) in 

CHO-K6 cells. Cells were treated with CP-724714 (1, 10, 20, 40 and 100 μM) for 1 hour. The 

phosphorylation of HER2 was examined by immunoblotting with antibodies against HER2. 
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Figure 3.6. The effects of trastuzumab on HER2 phosphorylation in CHO-K6 cells by 

immunofluorescence. CHO-K6 cells were treated with trastuzumab at concentrations of 0.1, 1 

and 10 μg/ml for 1 hour. The phosphorylation of HER2 at Y1005 (A), Y1112 (B), Y1127 (C), 
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Y1139 (D), Y1196 (E), and Y1248 (F) were then examined by immunofluorescence staining. 

The localization of trastuzumab was revealed by TRITC-conjugated donkey anti-human IgG. 

The localization of HER2 was revealed by the rabbit anti-phosphoHER2 antibody followed 

by FITC-conjugated donkey anti-rabbit IgG. The cell nuclei were counterstained with DAPI. 

Yellow indicated the co-localization of trastuzumab and pHER2. The cells treated with 

normal human IgG (10 μg/ml) were used as negative controls. Scaled size of each picture 

width: 100 μm. 

3.8.5. The effects of trastuzumab on the activation of PI3K/Akt and MAPK pathways 

We finally examined the activation of Erk and Akt. The Erk and Akt activation was 

measured by their phosphorylation. As shown in Figure 3.7A, the Erk phosphorylation level is 

higher in CHO-K6 cells than the control CHO cells, which suggests that overexpression of 

HER2 increased Erk activation. However, we did not observe the increase in Akt 

phosphorylation, which is not surprising as HER2 homodimer has very limited effects on the 

activation of PI3K/Akt pathway. We next examined the effects of trastuzumab on the 

phosphorylation of Erk and Akt in CHO-K6 cells. As shown in Figure 3.7B, treatment with 

trastuzumab did not block the phosphorylation of Erk and Akt. 

 

Figure 3.7. The effects of trastuzumab on the phosphorylation of Erk and Akt in CHO-K6 

cells. The phosphorylation of Erk and Akt was revealed by immunoblotting. (A) The 

phosphorylation of Erk and Akt in CHO parental cells and in CHO-K6 cells. (B) The effects 

of trastuzumab on the phosphorylation of Erk and Akt in CHO-K6 cells. The cells were 
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treated with trastuzumab at concentrations of 0.1, 1 and 10 μg/ml for 7 hours. Cells treated 

with normal human IgG (10 μg/ml) was used as negative control and cells treated with CP-

714724 (10 μM) was used as a positive control. 

3.8.6. Trastuzumab induces ADCC 

The above results suggest that trastuzumab did not inhibit HER2 dimerization and 

phosphorylation. Thus, it is interesting to find out if trastuzumab can induce ADCC in cells 

overexpressing HER2. Trastuzumab-induced ADCC in CHO-K6 and CHO-EGFR cells was 

determined by using Promega ADCC Bioassay kit. As shown in Figure 3.8, trastuzumab induced 

very strong ADCC in CHO-K6 cells, but not in CHO-EGFR cells. 

 

Figure 3.8. Trastuzumab-induced ADCC in CHO-K6 and CHO-EGFR cells. Trastuzumab-

induced ADCC was examined in both CHO-K6 and CHO-EGFR cells by using Promega 

ADCC Bioassay kit. 

3.8.7. The effects of trastuzumab on the proliferation of CHO-K6 cells 

We next determined if trastuzumab inhibits the proliferation of cells with overexpressed 

HER2. MTT cell proliferation kit was used to assess the proliferation of various CHO cells 

including CHO parental cells, CHO-EGFR, CHO-K6, and CHO-HER3 cells. Untreated cells 

were used as negative controls, and the cells treated with vinorelbine (an anticancer drug) were 

used as positive controls. 
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We first determined if overexpression of HER2 in CHO cells stimulates cell proliferation by 

comparing CHO-K6 cells with the parental CHO cells. As shown in Figure 3.9A, the 

proliferation rate of CHO-K6 cells is much higher than that of CHO parental cells, which 

indicates that overexpression of HER2 stimulates cell proliferation. We next examined the 

effects of trastuzumab on cell proliferation. It is not surprising that treatment with trastuzumab 

for either 24 or 48 hours had no effects on the proliferation of CHO, CHO-EGFR and CHO-

HER3 cells as these cells did not express HER2 (Figures 2.9B-D). Interestingly, even for CHO-

K6 cells that overexpressed HER2, trastuzumab at high dosage did not have any effect on their 

proliferation (Figure 3.9E). However, vinorelbine significantly inhibited the proliferation of all 

these CHO cells following 24 or 48 hours incubation (Figures 2.9B-E). Moreover, HER2 kinase 

inhibitors including lapatinib and CP-714724 significantly inhibited the proliferation of CHO-K6 

cells when at high dosage (Figure 3.9F). Our data indicated that trastuzumab did not inhibit the 

proliferation of CHO-K6 cells that overexpressed HER2. 

 

Figure 3.9. The effects of trastuzumab on the proliferation of CHO parental cell line, CHO-

EGFR, CHO-K6, and CHO-HER3 cells. The cell proliferation was examined by MTT assay. 

(A) The effects of HER2 overexpression on the proliferation of CHO parental cells. Cell 

proliferation of both CHO parental cells and CHO-K6 cells was examined. (B-E) The effects 
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of trastuzumab on the proliferation of CHO, CHO-EGFR, CHO-K6 and CHO-HER3 cells. 

Cells were treated with trastuzumab (1 and 10 μg/ml) as indicated for 24 and 48 hours. 

Untreated cells were used as negative control and the cells treated with 10 μM of vinorelbine 

(VR) were used as positive controls. (B) CHO cells. (C) CHO-HER3 cells. (D) CHO-EGFR 

cells. (E) CHO-K6 cells. (F) The effects of other HER2 inhibitors on the proliferation of 

CHO-K6 cells. CHO-K6 cells were treated with HER2 kinase inhibitors lapatinib (20 μM) 

and CP-714724 (1 μM). Each value is the average of at least three experiments and the error 

bar is standard error. ***: P < 0.001. ****: P < 0.0001. 

 

3.9. DISCUSSION 

The most controversial mechanism regarding trastuzumab function is its effect on the 

inhibition of HER2 activation. A major reason behind this controversy is the different cellular 

backgrounds of various breast cancer cell lines used in those studies. Each breast cancer cell line 

has a unique expression profile of various HER receptors, which could significantly affect the 

effects of trastuzumab due to the heterodimerization among HER receptors. In this research, we 

adopted a CHO cell model. Besides the parental CHO cells that do not express any detectable 

HER receptors, three stable CHO cell lines that stably express only a single HER receptor 

including EGFR (CHO-EGFR), HER2 (CHO-K6), and HER3 (CHO-HER3) were employed in 

this research. Our cell model system avoided the interference of other HER receptors and is very 

suitable to study the effects of trastuzumab on the homodimerization of HER2 and the 

phosphorylation of HER2 homodimers. We aim to conclusively determine if trastuzumab 

specifically binds only to HER2, and blocks HER2 homodimerization and activation. 

We showed that trastuzumab only bound to HER2 specifically and with high affinity. 

Trastuzumab did not bind to EGFR and HER3 even at a high dosage (10 ng/ml) (Figure 3.2). 

Most HER2-positive breast cancer cells also express EGFR and HER3, our finding suggests that 

any trastuzumab effects on these cells must be initiated through the interaction between 

trastuzumab and HER2. 

We next examined the effects of trastuzumab on HER2 dimerization. HER2 is an orphan 

receptor and does not have a ligand. However, HER2 is heterodimerized with EGFR in response 
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to EGF stimulation and heterodimerized with HER3 in response to HRG [38]. HER2 is also 

homodimerized when overexpressed in cells. CHO-K6 cells only express a single HER receptor 

HER2, not EGFR, HER3 or HER4. Thus, our results are regarding the effects of trastuzumab on 

the homodimerization of HER2. 

We showed that in CHO-K6 cells HER2 was mostly dimerized, likely due to the 

overexpression (Figure 3.3). This is not surprising. As revealed by crystal structures of the HER2 

extracellular region, HER2 adopts an extended configuration, which resembles the configuration 

of EGFR seen in each molecule of an EGFR dimer. Thus, HER2 possesses a constitutive, or 

ligand-independent, activated conformation, which allows the HER2 homodimerization when 

overexpressed [4,38,39]. 

We also showed that trastuzumab did not block the homodimerization of HER2 (Figure 3.3). 

While it is originally proposed that trastuzumab acts to block HER2 dimerization, so far, no 

research has been done to determine the effects of trastuzumab on the homodimerization of 

HER2. Given the fact that trastuzumab binds to the juxtamembrane region of HER2 [39], which 

is not essential for HER2 dimerization, our results are not surprising. What surprising is that our 

data suggest that trastuzumab at high dosage actually enhanced the homodimerization of HER2 

(Figure 3.3). While we are not certain how trastuzumab stimulates the homodimerization of 

HER2, it is possible that it functions through the HER2 transmembrane domain. Many data 

support the role of HER2 transmembrane domain in HER2 dimerization and activation [39]. 

Parts of the juxtamembrane region has also been implicated in HER2 dimerization and activation 

[40–42]. As trastuzumab binds to the extracellular juxtamembrane region of HER2, it will likely 

affect the function of HER2 transmembrane domain and juxtamembrane region in terms of 

HER2 dimerization. It is possible that somehow the specific effects of trastuzumab enhanced the 

interaction between two HER2 transmembrane domains and thus increased HER2 

homodimerization as we observed here. 

It has been believed that trastuzumab functions to inhibit HER2 activation/phosphorylation 

and HER2-mediated cell signaling [1,15,16]. However, our data indicated that trastuzumab only 

had very limited effects on HER2 phosphorylation. Among the six pY residues examined in this 

research, HER2 had no effects on the phosphorylation of pY1005, pY1112, pY1027, pY1196, 

and pY1248 (Figures 2.5 and 2.6). While HER2 decreased the phosphorylation of pY1139, 
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which is a much weaker inhibition when compared with CP-724714 (Figures 2.5-2.7). In 

general, this is consistent with our observation regarding the role of trastuzumab in HER2 

dimerization. Trastuzumab did not block HER2 dimerization, thus it did not block HER2 

phosphorylation. It is not clear how the effects of HER2 transmembrane domain on HER2 

dimerization affect the phosphorylation of HER2. Some research indicated the presence of an 

alternative dimerization mode of HER2. In this mode, HER2 dimerization is mediated by both 

the transmembrane domain and the cytoplasmic juxtamembrane region of HER2. Such a 

dimerization mode exerts inhibiting effects on the HER2 kinase activity [40–42]. Thus, in theory, 

the enhanced dimerization through the interaction of the transmembrane domain and the 

juxtamembrane region could result in the inhibition of certain HER2 phosphorylation including 

pY1139. Recently, some researches with various breast cancer cell lines have shown that 

trastuzumab did not significantly alter HER2 phosphorylation [16–19,43]. Moreover, there is one 

research shows the enhanced phosphorylation of pY1248 in response to trastuzumab [15]. 

Our results suggest that trastuzumab has if any, limited effects on HER2-mediated 

intracellular signaling. Indeed, when we examined the effects of trastuzumab on the 

phosphorylation of Erk and Akt, we showed that trastuzumab did not block the phosphorylation 

of both Erk and Akt in CHO-K6 cells (Figure 3.7). Together, our data indicate that trastuzumab 

did not significantly alter HER2 activation and HER2 mediated intracellular signaling in the 

absence of other HER receptors. However, we need to be cautious to apply these findings to 

breast cancer cells. CHO cell is derived from hamster ovary, thus the expressed human HER2 

may not be coupled well with downstream signaling cascades. 

We then examined if trastuzumab induces ADCC in CHO-K6 cells. We showed that 

trastuzumab indeed induces strong ADCC in CHO-K6 cells (Figure 3.8). This is specifically due 

to the expression of HER2 in CHO-K6 cells as there is no ADCC observed in CHO-EGFR cells 

(Figure 3.8). The role of trastuzumab in the induction of ADCC in HER2-positive breast cancer 

cells has been consistently well supported by many pieces of research [8–14]. Our results 

confirmed the role of trastuzumab in the induction of ADCC in a simple but specific cell setting. 

We also showed that trastuzumab did not affect cell proliferation in CHO-K6 cells (Figure 

3.9). Some reports indicated that trastuzumab had little effect on proliferation and survival 

[21,44]. However, other reports indicated that trastuzumab inhibited HER2 activation, and 
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decreased the activation of Erk and PI3K/Akt pathways, which leads to reduced cell proliferation 

[20]. Given that trastuzumab has little effects on the phosphorylation of HER2, it is likely that 

trastuzumab has no effects on HER2-mediated cell signaling leading to cell proliferation. 

Although trastuzumab induces ADCC in CHO-K6 cells, under the culture conditions used for the 

MTT assay, no effector cells were present and no ADCC response is expected. It is interesting to 

note that our above finding is different from the observation by Ghosh [45]. Ghosh et al. reported 

that trastuzumab inhibited HER2 homodimer-mediated Erk phosphorylation and cell growth. 

The difference could be due to the different model systems used in these two studies. The HER2 

receptor used in the research by Ghosh et al. is fused with FKBP, and the receptor 

homodimerization is induced by a chemical linker AP1510 that dimerizes the receptor 

intracellularly through the fused FKBP. 

It should be noted that while we observed strong inhibition of HER2 phosphorylation by CP-

724714 at 1 μM (Figure 3.5B). We only observed the inhibition of CHO-K6 cell proliferation at 

much higher CP-724714 concentration (Figure 3.9F). We are not sure what causes this 

discrepancy, however, there are several possible explanations. Firstly, at 1 μM CP-724714 may 

not completely inhibit HER2 phosphorylation, we can see weak phosphorylation of Y1139 in 

Figure 3.5B. There could be weak phosphorylation of HER2 at other pY residues that were not 

examined. Weak HER2 phosphorylation may still be sufficient to support cell growth. Secondly, 

there could be the existence of kinase-independent effects of HER2 receptors. There are many 

reports supporting the existence of kinase-independent cell signaling of various receptor tyrosine 

kinases including EGFR and insulin receptors [46–49]. 
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Chapter 4. The effects of pertuzumab on HER2 receptor activation 

 

4.1. SUMMARY 

In the previous chapter we demonstrated that trastuzumab alone had not significant effect on 

HER2 receptor activation and downstream pathways. Adding pertuzumab (Perjeta
®
) to 

trastuzumab and docetaxel ameliorated therapy outcomes and improved survival rates of breast 

cancer patients compared to single agent treatment. Pertuzumab is an anti-HER2 monoclonal 

antibody that is used for the treatment of HER2-positive breast cancers in combination with 

trastuzumab and docetaxel and showed promising clinical outcomes. Pertuzumab is suggested to 

block the heterodimerization of HER2 with EGFR and HER3 that abolishes the canonical 

function of HER2. However, evidence on the exact mode of action of pertuzumab in the 

homodimerization of HER2 is limited. In this study, we investigated the effect of pertuzumab 

and its combination with trastuzumab on HER2 homodimerization, phosphorylation, and whole 

gene expression profile in CHO cells stably overexpressing human HER2 (CHO-K6). CHO-K6 

cells were treated with pertuzumab, trastuzumab, and their combination, and then HER2 

homodimerization and phosphorylation at seven pY sites were investigated. The effects of the 

monoclonal antibodies on the expression of genes involved in cell cycle stages, apoptosis, 

autophagy, and necrosis were studied by cDNA microarray. Results showed that pertuzumab had 

no significant effect on HER2 homodimerization, however, trastuzumab increased HER2 

homodimerization. Interestingly, pertuzumab increased HER2 phosphorylation at Y1127, 

Y1139, and Y1196 residues, while trastuzumab increased HER2 phosphorylation at Y1196. 

More surprisingly, a combination of pertuzumab and trastuzumab blocked the phosphorylation of 

Y1005 and Y1127 of HER2. Our results also showed that pertuzumab, but not trastuzumab, 

abrogated the effect of HER2 overexpression on cell cycle in particular G1/S transition, G2/M 

transition, and M phase, whereas trastuzumab abolished the inhibitory effect of HER2 on 

apoptosis. Our findings confirm that pertuzumab is unable to inhibit HER2 homodimerization 

but induces HER2 phosphorylation at some pY sites that abolishes HER2 effects on cell cycle 

progression. These data suggest that the clinical effects of pertuzumab may mostly through the 

inhibition of HER2 heterodimers, rather than HER2 homodimers and that pertuzumab binding to 
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HER2 may inhibit non-canonical HER2 activation and function in the non-HER-mediated and 

dimerization-independent pathway(s). 

 

4.2. INTRODUCTION 

Given the better outcome of pertuzumab treatment in combination with trastuzumab, there 

seems to be a synergism between the two therapeutics [20]. Adding pertuzumab to trastuzumab 

and docetaxel showed better outcomes and improved progression-free and overall survival rates 

of breast cancer patients compared to treatment with trastuzumab and docetaxel alone (Baselga 

et al., 2012; von Minckwitz et al., 2017; Swain et al., 2013). So far evidences on the exact mode 

of action of pertuzumab, particularly its role in blocking HER2 homodimerization and HER2-

mediated cell cycle progression and cell death still remain controversial. In addition, in the 

previous chapter, we demonstrated that trastuzumab alone had no significant effect on HER2 

receptor activation and downstream pathways. The aim of this part of our study was to study the 

effects of pertuzumab and its combination with trastuzumab on homodimerization and tyrosine 

phosphorylation of HER2. We also found that overexpression of HER2 did not increase 

PI3K/Akt and MAPK signaling pathways activation. We also found that overexpression of 

HER2 did not increase PI3K/Akt and MAPK signaling pathways activation in CHO cells. In the 

current study, we also investigated the gene expression profiles of parental CHO and CHO-K6 

cells to understand the potential effects of HER2 overexpression in the CHO cells. Moreover, to 

study the effect of the monoclonal antibody on the biology of CHO-K3 cells, we examined the 

gene expression profile of CHO-K6 cells under treatment with trastuzumab, pertuzumab as well 

as a combination of trastuzumab and pertuzumab.  

 

4.3. RESULTS 

4.3.1. Specific binding of pertuzumab to HER2 

In this study, we used CHO cells stably expressing human HER2 (HER2-K6 [24,25]) as 

HER2 overexpressing cell model. The expression level of HER2 in CHO-K6 cells was detected 

significantly higher than that of breast cancer cell lines including SKBR3, BT474, MCF7, and 
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MDA-MB-231, as well as another clone of HER2-overexpressing CHO cell line HER2-K13 

cells [24,25] (Figure 4.1A). To examine the binding of pertuzumab to HER receptors, we treated 

CHO cells stably overexpressing EGFR (CHO-EGFR), HER2 (CHO-K6) and HER3 (CHO-

HER3) with 10 µg/ml pertuzumab for 1 hour. As shown in Figure 4.1B, pertuzumab specifically 

bound to HER2 in cell membranes, but not to EGFR and HER3. Dose-response experiments 

(0.1, 0.5, 1, 5 and 10 µg/ml for 60 minutes) indicated that pertuzumab strongly bound to HER2 

even at a low concentration of 0.1 µg/ml (Figure 4.1C). Moreover, time-course (10 µg/ml for 5, 

15, 30 and 60 minutes) treatment of CHO-K6 cell showed that 5 min incubation is enough to 

result in strong binding between pertuzumab and HER2. Longer incubation did not increase the 

binding significantly (Figure 4.1D). Together, these results confirm that pertuzumab specifically 

binds to the HER2 receptor with high affinity. 
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Figure 4.1. Pertuzumab specially binds to HER2. (A) The expression levels of HER2 in CHO 

cell lines stably overexpressing HER2 (CHO-K13 and CHO-K6), two HER2-positive 

(SKBR3 and BT474) and two HER2-low (MCF7 and MDA-MB-231) breast cancer cell lines. 

(B) Double-immunofluorescence staining of EGFR, HER2, and HER3 (green) and 

pertuzumab (red) in CHO-EGFR, CHO-K6, and CHO-HER3 cell lines. Pertuzumab binds 

specifically to HER2 but not to EGFR and HER3. (C and D) Double-immunofluorescence 

staining of HER2 (green) and pertuzumab (red) in the cells (C) treated with 0.1, 0.5, 1, 5 and 

10 μg/ml pertuzumab for 60 minutes (dose-course treatment) and (D) treated with 10 μg/ml 
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pertuzumab for 5, 15, 30 and 60 minutes (time-course treatment). Treatment with 10 μg/ml of 

human IgG for 60 minutes was used as a mock control. 

4.3.2. The effects of the pertuzumab on the HER2 homodimerization  

We next examined the effects of pertuzumab, trastuzumab and their combination on the 

homodimerization of HER2. We previously showed the specific binding of trastuzumab to HER2 

[24]. For dose-response experiments, the CHO-K6 cells were treated with 0.1, 1, and 10 µg/ml 

pertuzumab, trastuzumab, or their combination for 120 minutes. For time-course treatment, the 

cells were treated with 10 µg/ml pertuzumab for 15, 30, 60 and 120 minutes. Ten µg/ml human 

IgG and 20 µM HER2 tyrosine kinase inhibitor agent CP-724714 were used as mock and 

positive controls respectively. HER2 monomer and homodimer were assessed by BS
3
-based 

protein cross-linking assay. As result, the mean ratio of quantified HER2 homodimer to HER2 

monomer in the cell treated with CP-724714 was under 1, significantly lower than that of the 

cells treated with IgG in the dose-response experiments (Figure 4.2A) and the time-course 

experiments (Figure 4.2B). This indicates a higher level of monomer HER2 than homodimer 

HER2, confirming that CP-724714 significantly inhibited HER2 homodimerization. In contrast, 

there was no significant difference between HER2 dimer/monomer ratio of IgG treated cells and 

that of the cells treated with single-agent pertuzumab in both dose- and time-course treatment 

experiments. While the cells treated with trastuzumab as well as those treated with a combination 

of pertuzumab and trastuzumab showed higher HER2 dimer/monomer ratios compared to IgG 

treated cells (Figure 4.2A). These results implicate that pertuzumab had no considerable effect 

on HER2 homodimerization. However, trastuzumab increased HER2 homodimerization, which 

is consistent with our previous observation [24]. 
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Figure 4.2. The effect of pertuzumab on HER2 homodimerization. (A) Immunoblot 

expression of monomer (185 kDa) and dimer (360-380 kDa) HER2 and quantified 

dimer/monomer ratios in CHO-K6 cells treated 0.1, 1 and 10 μg/ml pertuzumab, 10 μg/ml 

trastuzumab or their combination of for 120 minutes (dose-course treatment). (B) Time-

course treatment of CHO-K6 with 10 μg/ml pertuzumab for 15, 30, 60 and 120 minutes. Ten 

μg/ml human IgG and 20 μM CP-724714 were used as mock and HER2 inhibitor controls. 

CP-724714 reduced dimer HER2. Trastuzumab increased dimer HER2 and pertuzumab had 

no significant effect on HER2 homodimerization. *: P < 0.05, **: P < 0.01, ***: P < 0.001. 

4.3.3. The effects of the pertuzumab on the HER2 phosphorylation 

We have shown previously that HER2 is strongly phosphorylated in CHO-K6 cells [24]. 

Here, to examine whether the pertuzumab inhibits HER2 phosphorylation, we investigated the 

phosphorylation of seven pY sites on HER2 C-terminal including Y1005, Y1112, Y1127, 

Y1139, Y1196, Y1221/1222, and Y1248. CHO-K6 cells were treated with pertuzumab at final 

concentrations of 0.1, 1 and 10 µg/ml, 10 µg/ml trastuzumab, and a combination of 10 µg/ml 

pertuzumab and trastuzumab for 120 minutes, and then the levels of total HER2 and the 
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phosphorylated HER2 were analyzed by western blotting. A final concentration of 10 µg/ml 

human IgG and 20 µM CP-724714 were used as mock and positive controls respectively.  

As shown in Figure 4A, none of the treatments showed a change in the protein expression 

levels of total HER2. However, CP-724714 dramatically reduced the phosphorylation of HER2 

at all the pY sites (Figure 4.3). Surprisingly, the cells treated with 10 µg/ml pertuzumab showed 

an increased level of HER2 phosphorylation at Y1127 (Figure 4.3C), Y1139 (Figure 4.3D) and 

Y1196 (Figure 4.3E), but not at other pY sites. On the other hand, treatment with 10 µg/ml 

trastuzumab only increased HER2 phosphorylation at pY1196 (Figure 4.3E), but not at any other 

pY sites. More interestingly, the treatment with combined pertuzumab and trastuzumab reduced 

the phosphorylation of HER2 at pY1005 (Figure 4.3B) and pY1127 (Figure 4.3C). 

 



99 

 

Figure 4.3. Immunoblot expression of pHER2 in pertuzumab treated CHO-K6 cells. CHO-K6 

cells were treated with 0.1, 1 and 10 μg/ml pertuzumab, 10 μg/ml trastuzumab and their 

combination for 120 minutes. Ten μg/ml human IgG and 20 μM CP-724714 were used as 

mock and positive controls respectively. The expression of (A) total HER2, (B) pY1005, (C) 

pY1127, (D) pY1139, (E) pY1196, (F) pY1221/1222 and (G) pY1248 HER2 was monitored 

by immunoblotting. *: P < 0.05, **: P < 0.01, ***: P < 0.001, ****: P < 0.0001. 

The effects of pertuzumab on the phosphorylation of HER2 were further examined by 

immunofluorescence. CHO-K6 cells were treated with 0.1, 1 and 10 µg/ml pertuzumab for 120 

minutes. The phosphorylation of HER2 at Y1005, Y1112, Y1122, Y1139, Y1196, and Y1248 

was examined by immunofluorescence with specific antibodies as indicated. As shown in Figure 

4.4, CP-724714 treatment dramatically decreased HER2 phosphorylation at all the pY sites. 

Similar to the western blotting results, pertuzumab increased HER2 phosphorylation at pY1127 

(Figure 4.4C), pY1139 (Figure 4.4D) and pY1196 (Figure 4.4E) compared to IgG treated cells. 

Pertuzumab had no significant effects on HER2 phosphorylation at other pY sites (Figure 4.4). 

Taken together, pertuzumab did not inhibit HER2 phosphorylation, but induced phosphorylation 

of HER2 at Y1127, Y1139 and Y1196 residues. 
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Figure 4.4. Double-immunofluorescence staining of pHER2 in pertuzumab treated CHO-

K6 cells. CHO-K6 cells were treated with 0.1, 1 and 10 μg/ml pertuzumab for 2 hours then 

pHER2 at (A) pY1005 (B) pY1112, (C) pY1127, (D) pY1139, (E) pY1196, and (F) 

pY1248 HER2 (all green) and pertuzumab (red) were stained. Ten μg/ml human IgG and 

20 μM CP-724714 (CP) were used as mock and HER2 positive controls respectively. 

4.3.4. The effect of pertuzumab on the gene expression profile of HER2 overexpression cells 

To investigate the effect of pertuzumab on the gene expression profile of HER2 

overexpressing cells, we treated CHO-K6 and parental CHO (CHO-K1) cells with 10 µg/ml 

pertuzumab, or 10 µg/ml trastuzumab for 24 hours and then examined the whole transcriptome 

by microarray analyzing 30,934 unique cDNA. Results showed a minimum of 2-fold changes in 

the mRNA levels of 606 (1.96%) genes between CHO-K6 and CHO-K1. Of the 606 genes, 427 

(1.38%) and 179 (0.58%) genes were respectively upregulated and downregulated in the CHO-

K6 cells compared to the CHO-K1 cells (Figure 4.5A). Comparison of the pertuzumab treated 
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with the untreated CHO-K6 cells revealed a minimum of 2-fold changes in the mRNA levels of 

171 (0.55%) genes, of which the expression levels of 19 (0.06%) and 152 (0.49%) genes were 

respectively upregulated and downregulated in the result of pertuzumab treatment (Figure 4.5B). 

In the CHO-K6 cells treated with trastuzumab the expression of 27 (0.09%) genes were altered, 

of which 14 (0.05%) and 13 (0.04%) genes were respectively upregulated and downregulated 

compared to the untreated cells (Figure 4.5C). Treatment with a combination of pertuzumab and 

trastuzumab resulted in an altered expression of 35 (11%) genes including 10 (0.03%) 

upregulated and 25 (0.08%) downregulated genes in the cells compared to the untreated cells 

(Figure 4.5D). These results suggest that overexpression of HER2 and in CHO cells dramatically 

changes the gene expression profile of the cells. Also, both pertuzumab and trastuzumab have 

major effects on the gene expression profile of CHO-K6 cells. 

4.3.5. The effect of pertuzumab on cell cycle progression 

To examine the effect of pertuzumab on the cell cycle we analyzed the expression of the 

genes that are highly expressed in each stage of the cell cycle in CHO-K6 cells treated with 

pertuzumab, trastuzumab, and their combination. The result showed a different expression levels 

of G1/S transition, S phase and DNA replication, G2/M transition and M phase marker genes 

between untreated parental CHO (CHO-K1) cells and untreated CHO-K6 cells regard the 

(Figures 4.5E-H). The different expression profiles most likely due to overexpression of HER2 

in CHO-K6 cells. The expression levels of G1/S transition marker genes in the pertuzumab 

treated CHO-K6 cells were different from those of untreated CHO-K6 cells but similar to those 

of CHO-K1 cells (Figure 4.5E). However, trastuzumab treated CHO-K6 cells were similar to 

untreated CHO-K6 cells in terms of the expression of G1/S transition marker genes. These 

results indicate that pertuzumab but not trastuzumab abrogated the effect of HER2 

overexpression on the expression of G1/S transition marker genes. Interestingly, the expression 

pattern of G1/S transition marker genes in CHO-K6 cells treated with the combination was very 

similar to those in untreated as well as trastuzumab treated CHO-K6 cells (Figure 4.5E). 

CHO-K6 cells showed lower expression levels of S phase marker genes compared with 

CHO-K1 cells, which suggests that HER2 overexpression inhibits the expression of S phase 

marker genes. Treatment of CHO-K6 cells with pertuzumab did not change the expression 

profile of the S phase marker genes. In contrast, the treatment of CHO-K6 cells with trastuzumab 
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stimulated the expression levels of the S phase marker genes, making similar to those of CHO-

K1 cells. Moreover, the expression levels of S phase marker genes in CHO-K6 cells treated with 

a combination of pertuzumab and trastuzumab were low and similar to those of untreated as well 

as pertuzumab treated cells (Figure 4.5F). These results indicate that trastuzumab, but not 

pertuzumab was able to abrogate the effect of HER2 overexpression on the expression of the S 

phase marker genes.   

The expression levels of G2/M transition marker genes in CHO-K1 and CHO-K6 was 

different, which suggests the role of HER2 overexpression. Pertuzumab changed the expression 

of some G2/M transition marker genes in CHO-K6 cells. The expression of G2/M transition 

marker genes in trastuzumab treated cells was very similar to that of untreated CHO-K6 (Figure 

4.5G).  

Similarly, HER2 overexpression also affects the expression profile of the M phase marker 

genes as there were significant differences between CHO-K1 and CHO-K6 cells in terms of the 

expression of M phase marker genes. Hierarchical clustering showed a resemblance between the 

expression profile of M phase marker genes in the untreated CHO-K6, trastuzumab treated and 

the cells treated with a combination of trastuzumab and pertuzumab (Figure 4.5H). Whereas, the 

expression of M phase marker genes in pertuzumab treated CHO-K6 cells was similar to that of 

CHO-K1 cells, however, this similarity was not significant (Figure 4.5H). Taken together, in 

CHO-K6 cells, pertuzumab abrogated the effect of HER2 overexpression on the expression of 

G1/S transition, G2/M transition and M phase genes. Whereas, trastuzumab inhibited the HER2 

effect on S phase genes. More interestingly, the effect of combination treatment of pertuzumab 

and trastuzumab was different compared to the effect of treatment with single-agent pertuzumab 

or trastuzumab on cell cycle of CHO-K6. 
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Figure 4.5. The effects of pertuzumab on the gene expression profile of HER2 

overexpressing cells. The whole transcript levels were evaluated by microarray for 

untreated CHO-K1, untreated CHO-K6 and CHO-K6 treated with 10 μg/ml pertuzumab 

(P), 10 μg/ml trastuzumab (T), and their combination for 24 hours. (A-D) Scatter plot 

showing the whole gene expression profile of (A) untreated CHO-K6 (K6) vs untreated 
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CHO-K1 (K1) cell lines, (B) pertuzumab treated vs untreated CHO-K6 cells, (C) 

trastuzumab treated vs untreated CHO-K6 cells and (D) CHO-K6 cells treated with the 

combination of the monoclonal antibodies vs untreated cells. The values with a minimum 

of 2-fold change are illustrated in red (upregulated) and green (downregulated) dots. (E-L) 

Hierarchal heatmap illustrating Z-score expression of selected marker genes for (E) G1/S 

transition, (F) S phase and DNA replication, (G) G2/M transition, (H) M phase of cell 

cycle, (I) apoptosis, (J) anti-apoptosis, (K) autophagy and (L) necrosis.  

4.3.6.The effect of pertuzumab on cell death pathways 

To study the effect of the pertuzumab on cell death pathways we investigated the expression 

of selected marker genes for apoptosis, autophagy, and necrosis in the cells treated with 

pertuzumab, trastuzumab, or their combination. Similar to the cell cycle marker genes, there 

were opposite expression profiles of cell death marker genes between CHO-K1 and CHO-K6 

cells, implicating the significant effects of HER2 overexpression on the cell death pathways 

(Figures 5I-L). The expression profiles of apoptotic (Figure 4.5I), anti-apoptotic (Figure 4.5J), 

autophagy (Figure 4.5K) and necrosis (Figure 4.5L) marker genes in pertuzumab treated CHO-

K6 cells were similar to those in untreated CHO-K6, which suggests that pertuzumab does not 

inhibit HER2 function in regulating cell apoptosis. In contrast, trastuzumab inhibited the function 

of HER2 in regulating cell apoptosis as on apoptosis and anti-apoptosis gene expression profiles 

of CHO-K6 cells treated with trastuzumab were very different from untreated CHO-K6 cells, but 

similar to CHO-K1. Similar results were observed for the expression profile of autophagy and 

necrosis marker genes (Figures 4.5J-L). Furthermore, the CHO-K6 cells treated with the 

combination of trastuzumab and pertuzumab were similar to untreated CHO-K6 cells from the 

point of view of all the cell death expression profiles (Figures 4.5I-J). Taken together, the results 

suggest that pertuzumab treatment did not have significant effects on the cell death pathways of 

CHO-K6 cells. However, trastuzumab treatment inhibited the expression of apoptosis, but not 

autophagy and necrosis marker genes in CHO-K6 cells. 

4.3.7. The effect of pertuzumab on cell proliferation 

We next investigated the effects of pertuzumab on cell proliferation in CHO-K6 cells. We 

cultured CHO-K1, CHO-K6, CHO-K13, CHO-EGFR and CHO-HER3 cells in the presence of 
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10 µg/ml pertuzumab or 10 µg/ml trastuzumab or their combination for 72 hours and then 

evaluated viable cells by MTT assay. Human IgG (10 µg/ml) was used as mock control for the 

monoclonal antibodies. CP-724714 (10 µM) was used as a positive control of HER2 inhibition. 

Paclitaxel (5 µM) was used as a positive control of cell proliferation inhibition. 

The results showed that the proliferation rates of all the paclitaxel treated cell lines were 

significantly lower than that of relevant untreated cells. Among the cell lines treated with CP-

724714, CHO-K1, CHO-K6, and CHO-EGFR but not CHO-K13 and CHO-HER3 cells showed 

lower proliferation rates compared to the relevant untreated cells (Figure 4.6). None of the cells 

treated with pertuzumab, trastuzumab, and their combination showed a significant change in the 

proliferation rates in comparison with relevant IgG treated cells (Figure 4.6). These results 

indicate that treatment with pertuzumab, trastuzumab, and their combination did not have a 

significant effect on the proliferation of HER2, HER3 and EGFR overexpressing CHO cells.  
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Figure 4.6. The effect of pertuzumab on the proliferation of cells overexpressing EGFR, 

HER2 and HER3. (A) CHO-K1, (B) CHO-K6, (C) CHO-K13, (D) CHO-EGFR and (E) 

CHO-HER3 cell lines were treated with 0.1, 1 and 10 μg/ml pertuzumab, 10 μg/ml 

trastuzumab and their combination for 72 h, and then the living cell mass was evaluated by 

MTT assay. Five µM paclitaxel, 10 μg/ml human IgG and 20 μM CP-724714 were used as 
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respectively antiproliferative, mock and HER2 inhibitor controls. *: P < 0.05, **: P < 0.01, 

****: P < 0.0001. 

 

4.4. DISCUSSION 

In this study, we investigated the effect of pertuzumab on the function of HER2 

homodimers. We also compared the effects of pertuzumab with trastuzumab and the combination 

of pertuzumab and trastuzumab. Three CHO cell lines stably overexpressing human HER2 

(CHO-K6), human EGFR (CHO-EGFR) and human HER3 (CHO-HER3), as well as parental 

CHO (CHO-K1) cells, were used in our study. The parental CHO cell line dose did not express 

any of HER family receptors per se. CHO-K6 provides an appropriate model cell to study HER2 

receptor function that allows monitor HER2 function without interaction by other HER 

receptors. Although pertuzumab specifically binds only to HER2, studying HER2 

homodimerization and its subsequent effects on cellular biology are not quite feasible in breast 

cancer cell lines. This is because HER2-positive breast cancer cell lines express also other HER 

receptors particularly EGFR and HER3 in addition to HER2 [26–28]. Endogenous EGFR and 

HER3 could mediate in HER2 heterodimerization and significantly affect the HER2 

phosphorylation. On the other hand, the CHO cell lines allow us to study each HER receptor 

independently. CHO-K6 cells show high rates of HER2 homodimerization and phosphorylation 

that can be inhibited by CP-724714. Despite canonical downstream signaling pathways of HER2 

(PI3K/Akt and MAPK pathways) do not work in CHO-K6 cells, the cell proliferation rate is 

higher than that of parental CHO cells (CHO-K1) [24]. This HER2-mediated increased 

proliferation can be inhibited by lapatinib and CP-724714. Moreover, we showed that the 

monoclonal antibodies changed the gene expression profile of the cells. These confirm that the 

CHO-K6 cell line is sensitive to anti-HER2 agents. This sensitivity is revealed by the 

inhabitation of HER2 dimerization, phosphorylation and CHO-K6 cell proliferation in response 

to treatment with the agents. These results further confirm that CHO-K6 is a suitable cell model 

for studying HER2 homodimerization and phosphorylation but is not an appropriate model for 

studying HER2-mediated PI3K/Akt and MAPK pathways. Furthermore, CHO-K6 cells provide a 

valuable cell model for studying the oncogenic function of HER2 via non-canonical 
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mechanism(s) independently of PI3K/Akt and MAPK signaling pathways that deserve paying 

more attention.   

We showed that pertuzumab specifically bound to HER2 with high affinity on CHO-K6 

cells. No pertuzumab binding was detected on CHO-EGFR and CHO-HER3 cells. Pertuzumab 

binds at the dimerization pocket of HER2 located in its extracellular domain II [16], while 

trastuzumab binds to a site located in extracellular domain IV [29]. Thus, it is suggested that the 

binding of pertuzumab but not trastuzumab to HER2 disrupts its heterodimerization with EGFR 

[14] and HER3 [15–18,20]. However, there is no independent research focusing on the effect of 

pertuzumab on HER2 homodimerization, phosphorylation, and gene expression profile. 

Structurally, the conformation of monomer HER2 resembled the ligand-bound EGFR receptor. 

Therefore HER2, when overexpressed, is able to form a homodimer in the absence of ligand, 

which also resulted in the phosphorylation of HER2 [16,24,29]. In the present study, HER2 was 

highly dimerized in CHO-K6 cells, most likely due to the overexpression. We showed that 

pertuzumab does not significantly affect HER2 homodimerization, while trastuzumab and a 

combination of pertuzumab and trastuzumab increase HER2 homodimerization. 

Homodimerization of HER2 takes place through the interaction of domain II of one HER2 

receptor with the C-shaped pocket formed by domain I, II and III of the adjacent HER2 receptor 

[30]. A previous study shows that pertuzumab but not trastuzumab inhibits HER2 

homodimerization and increases the antiproliferative effect of trastuzumab on HER2-positive 

breast cancer cells in combination with trastuzumab [31]. In another research Hu et al. [30] 

report that pertuzumab binding to its epitope on domain II of HER2 prevents interaction of C-

shaped pocket from adjacent HER2 with dimerization arm of HER2 by masking the dimerization 

pocket [30]. According to this study, pertuzumab abolishes HER2 homodimerization in COS-7 

cell expressing extracellular domains of HER2, however, trastuzumab had negligible effect of 

the HER2 homodimerization [30]. However, our results do not support these reports. We found 

that pertuzumab has no significant effect on HER2 homodimerization. In contrast, trastuzumab 

and the combination treatment increase homodimerization of HER2. In addition, pertuzumab is 

not able to abrogate the positive effect of trastuzumab on HER2 homodimerization. There are 

some reasons that show our results are more reliable compared to previous opposite results. 

Firstly; in this study we used an originally HER2-negative cell line that stably expresses full-

length human HER2, while Hu et al. [30] used a partial extracellular domain of HER2 (residues 
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1–624). It is quite possible that partial HER2 has a structure distinct from the structure of full-

length HER2. Aberrant conformation of partial HER2 most likely effects the binding and 

function of the monoclonal antibody on HER2. Second; Diermeier-Daucher et al. [31] used 

BT474 and SKBR3 cell lines to study homodimerization. Both of the cell lines express EGFR, 

HER3, and HER4 in addition to HER2. The HER receptors have a similar molecular size and can 

form 10 different dimers with each other. The distinction of HER2 homodimer form 

heterodimers and homodimers of the other three HER receptors based on molecular weight may 

be highly erroneous.  

We showed that trastuzumab increases HER2 homodimerization which is consistent with 

our previous results [24]. The epitope of trastuzumab is located near the transmembrane domain 

of HER2 [29]. Several experimental and molecular dynamics simulation studies support the 

critical role of transmembrane and juxtamembrane domains in HER2 homo- and 

heterodimerization [32–40]. HER2 transmembrane has two GXXXG-like motifs, one in the N-

terminal close to the extracellular domain and one in the C-terminal close to the intracellular 

domain [34,39,40]. The N-terminal GXXXG-like motif mediates in heterodimerization, whereas 

the C-terminal motif had a role in the formation of homodimer [40]. It has been shown that 

mutation at valine 664 such as Val664Glu which is located in the transmembrane domain 

between the GXXXG-like motifs leads to constitutive HER2 activation by enhancing the 

tendency to dimerize [41]. Moreover, the substitution of isoleucine 655 of HER2 transmembrane 

with valine is found to increase breast cancer risk. This mutation changes the conformation of the 

receptor that causes constitutive activation of the HER2 tyrosine kinase domain [42]. Further, 

phosphorylation of threonine 677 in the juxtamembrane domain of HER2 in shown to inhibit 

HER2/EGFR heterodimerization [43]. These results demonstrate that conformation change in 

HER2 transmembrane can alter HER2 receptor dynamics resulting in an altered tendency for 

dimerization. Indeed, binding of trastuzumab [29] and pertuzumab [16] majorly changes HER2 

conformation. It is possible that somehow trastuzumab binding confers a new conformation that 

facilitates homodimerization of HER2, a function that pertuzumab is not able to perform.  

We showed that pertuzumab did not inhibit HER2 phosphorylation but induced 

phosphorylation of HER2 at Y1127, Y1139, and Y1196 residues. Trastuzumab did not have a 

significant effect on HER2 phosphorylation expect at Y1196. This result is consistent with our 
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previous reports that show trastuzumab does not affect HER2 phosphorylation at any pY sites 

[24]. We showed that the combination of pertuzumab and trastuzumab inhibits pY1005 and 

pY1127. Lack of inhibitory effect of pertuzumab on phosphorylation is expected since it had no 

inhibitory effect on dimerization. The function of pY1127 is not described yet. pY1005 have 

been shown to bind Shc [44]. pY1139 is an important pY for HER2 function. pY1139 is a 

binding site for EGFR and PI3K [45,46]. Phosphorylation of Y1139 activates RAS through 

GRB2 and increases the transcriptional activity of STAT3 [47,48]. Phosphorylation of Y1196 

enhances activation of Erk through a Ras-independent pathway and increases the binding affinity 

of HER2 to Crk which is a member of an adapter protein family. Crk is required for HER2 to 

increase Rac-dependent cell motility and HER2-mediated inhibition of apoptosis [49–51].  

Phosphorylation of HER2 at canonical pY sites takes place by HER receptor tyrosine 

kinases following homo- and heterodimerization. HER2 is not phosphorylated only by HER 

family receptor tyrosine kinases, but it can be also phosphorylated by other kinases in a 

dimerization-independent manner at tyrosine residues. For example, Src phosphorylates HER2 at 

tyrosine 877 located in the P-loop of the kinase domain and increases the kinase activity of 

HER2 [52]. It is possible that pertuzumab has a ligand-like function that confers HER2 a new 

confirmation providing Y1127, Y1139 and Y1196 residues binding sites for non-HER family 

tyrosine kinases. However, there is no evidence yet supporting or abrogating this hypothesis. 

Taken together we suggest that pertuzumab may have roles in non-canonical HER2 activation in 

a dimerization-independent manner. To test this hypothesis, the effect of pertuzumab and 

trastuzumab on phosphorylation of non-canonical HER2 phospho-sites, and identity of potential 

kinases involved in pertuzumab-induced phosphorylation will be investigated in the future 

research.  

Our results showed that HER2 overexpression altered the expression levels of 606 different 

genes (1.96% of all analyzed transcript) in the CHO cell line. Most of the altered genes (N = 427; 

70.46%) were upregulated. These numbers are significant enough to conform the huge impact of 

HER2 overexpression on cellular biology. A microarray study analyzing 5,184 unique transcripts 

in HER2 overexpressing breast cancer cells and tumors revealed different expression levels of 

136 (2.62%) and 151 (0.03%) genes in respectively HER2 overexpressing cell line and HER2-

positive tumor tissues compared to low HER2 levels cell lines and tumors [53]. In another 
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analysis of 6,000 cDNA array, expression of 61 (1.02%) genes were found altered du to 

overexpression of HER2 [54]. In our study, pertuzumab treatment changed the expression levels 

of 171 genes in CHO-K6 that most of them (N = 152; 88.89%) were downregulated. However, 

trastuzumab only altered the expression levels of 27 genes of which 14 were upregulated and 13 

were downregulated. The different effects of pertuzumab and trastuzumab may be due to 

different mode of action of these two monoclonal antibodies.  

We also showed that expression profiles of G1/S transition, G2/M transition and M phase 

marker genes in pertuzumab treated HER2 overexpressing cells resembled those of HER2-

negative cells. This is strong evidence confirming that pertuzumab inhibits HER2-mediated cell 

cycle progression. However, pertuzumab does not induce cell death pathways including 

apoptosis, autophagy, and necrosis. In contrast, trastuzumab has no major effect on the cell cycle 

but induces apoptosis. These results are supported by numerous previous reports that show 

pertuzumab inhibits cell cycle progression but not apoptosis and trastuzumab effects as vice 

versa [11,55–58]. HER2 kinase inhibitors lapatinib and CP-724714 significantly inhibit CHO-K6 

cell proliferation, however, we did not observe the inhibitory effect of pertuzumab and 

trastuzumab on cell proliferation. This is probably because pertuzumab was unable to abrogate 

the HER2 effects on the cell cycle progression completely. Basically, the CHO-K6 cell line 

grows faster than the CHO-K1 cell line, due to the positive effect of HER2 overexpression on 

cell cycle progression of CHO-K6 cells [24]. As discussed above, the gene expression profile of 

almost all the 48 cell cycle regulators between CHO-K6 and CHO-K1 cell lines was 

considerably opposite. Pertuzumab treatment caused a change in the expression levels of several 

cell cycle regulators but not all of them and had no major effect on some other important cell 

cycle regulators. For example, the expression levels of the G1/S transition regulatory genes 

Ccna1, Ccnd1, Cdc7, and the G2/M transition regulator genes Sertad1 and Birc5 in pertuzumab 

treated CHO-K6 cells were still higher than those of CHO-K1 cells. Also, compared to CHO-K1 

cells, the expression levels of the G1/S transition regulator gene Cdc25a, the G2/M transition 

regulator genes Cdc25a, Ccnb1, Cdk7, and the M phase regulator genes Cdk1, Ccnb2, Stmn1, 

and Cdc16 were still lower in pertuzumab treated CHO-K6 cells similar to untreated CHO-K6 

cells. Probably, regulation of these genes by HER2 is sufficient for induction of cell cycle 

progression. Furthermore, this result shows that HER2 affects cell cycle progression and gene 

expression through different pathways which pertuzumab can block. While, we observed that 
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CP-724714 inhibited the proliferation of CHO-K6 and CHO-EGFR cells. This effect is 

correlated with the inhibitory effect of CP-724714 on HER2 dimerization and phosphorylation. 

These results strongly support the notion that kinase activity of HER2 is critical for its 

stimulatory effects on cell cycle particularly via its canonical pathways. Despite the minor 

inhibitory effect of pertuzumab on HER2 homodimer-mediated cell cycle progression, lack of 

inhibitory effects of pertuzumab and trastuzumab on cell proliferation is likely due to their 

inability to inhibit HER2 phosphorylation. Surprisingly, treatment with combination of 

pertuzumab and trastuzumab showed distinct effect on the expression of cell cycle and death 

marker genes compared to single agent treatment. This result suggests that not only binding of 

single agent pertuzumab and trastuzumab, but dual binding of the monoclonal antibodies to 

HER2 have unique effects on HER2-mediated cell cycle progression and apoptosis inhibition.  
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Chapter 5. Trastuzumab inhibits cleavage and nuclear localization of HER2  

 

5.1. SUMMARY 

In the previous chapters, we showed that overexpression of HER2 had major effects on the 

gene expression profile of CHO cells and increased the cell proliferation, however had no major 

effects on activation of PI3K/Akt and MAPK pathways. We also found that trastuzumab has no 

major effect on the activation of PI3K/Akt and MAPK pathways, but inhibits cells cycle 

progression and survival, and induces apoptosis. These results suggest that HER2 exerts 

important oncogenic function via a non-canonical pathway. Interestingly several previous studies 

have demonstrated nuclear function of C-terminal truncated HER2 fragments (ctHER2) in breast 

cancer. ctHER2 can arise by proteolytic cleavage of full-length HER2 (p185HER2), localizes in 

the nucleus and mediates in the regulation of transcription. Inhibiting ctHER2 resulted in 

significant inhibition of tumor growth and invasion and overcame trastuzumab resistance. Based 

on these findings, we hypothesized that trastuzumab may block HER2 cleavage and nuclear 

function of ctHER2. In the current chapter, we found that trastuzumab induces ADCC of HER2+ 

breast cancer cells, does not inhibit HER2 receptor activation (homo- and heterodimerization, 

and phosphorylation), but inhibits activation of EGF-induced PI3K/Akt and MAPK pathways. 

We found expression and nuclear localization of a ctHER2 with an approximate size of 85 kDa 

(p85HER2) in the HER2+ breast cancer. However, trastuzumab treatment reduced the level of 

nuclear p85HER2 in a dose-dependent manner. We also found a synergism between trastuzumab 

and a proteinase inhibitor (TAPI-2) in the inhibition of HER2 cleavage, p85HER2 production 

and the cell growth, suggesting that trastuzumab binding to HER2 inhibits cell growth by 

blocking HER2 cleavage. Further studies showed that trastuzumab inhibits nuclear localization 

of p85HER2 as well. These results demonstrate that HER2 cleavage and nuclear localization of 

p85HER2 may be important factors for tumor growth as well as a target for trastuzumab. To 

investigate the function of p85HER2 we performed mass spectrometry analysis of p85HER2 

protein samples pull down from nuclear fraction by immunoprecipitation (IP). Result revealed 

direct interaction of nuclear p85HER2 with proteins involved in spliceosome and RNA 

processing. In addition, interaction of p85HER2 with 9 transcription factors was found. These 

results indicate a novel function of HER2 in the regulation of RNA splicing, processing and gene 
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expression in the nucleus. Further gene set enrichment analysis showed the expression of the 

nuclear p85HER client proteins under the regulation of oncogenic/stemness transcription factors. 

Majority of the upstream transcription factors were found as positive regulators of mesenchymal 

maintenance involved in induction of EMT of breast cancer. Overall, our findings indicate a 

novel mechanism of action of trastuzumab through blocking HER2 cleavage and production, 

nuclear localization and regulatory function of p85HER2 in the nucleus. Our results shed further 

light on the roles of HER2 oncogene, EMT and cancer stemness in the breast cancer growth, 

invasion and therapy resistance.  We also suggest that blocking HER2 cleavage and nuclear 

p85HER2 by proteinase inhibitor or chemical inhibitors mimicking trastuzumab function is a 

promising approach to target HER2-positive breast cancer. 

 

5.2. INTRODUCTION 

Growing pieces of evidence have uncovered direct nuclear signaling of HER2. Cohort 

studies on breast tumors conclusively showed a correlation of ctHER2 expression with breast 

cancer poor prognosis and trastuzumab resistance warranting ctHER2 expression as a prognostic 

factor for metastasis, worse outcome and also a predictive marker of trastuzumab resistance [1–

4]. A study on breast tumor models overexpressing ctHER2 showed a direct relationship between 

ctHER2 expression and the emergence of resistant to antitumor effects of trastuzumab, whereas, 

inhibition of ctHER2 nuclear localization significantly inhibited breast cancer tumor cell growth 

[5,6]. ctHER2 is well demonstrated to migrates to the nuclear compartment, where it acts as a 

transcription co-factor. Wang et al. [7] identified icHER2 fragments in the nucleus of both tumor 

tissue and cultured tumor cells and found that it binds to a specific nucleotide sequence of 

PTGS2 (coding for COX2) promoter and regulates gene expression. Chen et al. [8] found a 

nuclear localization signal (NLS) sequence KRRQQKIRKYTMRR (amino acids 655-668) 

located in the juxtamembrane region of HER2 which is essential for HER2 nuclear trafficking. 

Recent studies showed that in HER2-positive breast cancer cells ctHER2 can translocate to the 

nucleus wherein make a complex with the transcription factor STAT3 and regulate the promoter 

activity of the CCND1 gene (coding for Cyclin D1), the regulation which is associated with poor 

clinical outcome [6,9]. Venturutti et al. [10] revealed a novel function of nuclear HER2 as a 
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regulator of miRNAs expression in the promotion of breast cancer metastasis. Nuclear HER2 

interacts with the promoter of MIR21 (coding for microRNA-21) an oncogenic microRNA 

which, by turn downregulated the expression of PDCD4 gene [10]. Li et al. [11] reported nuclear 

HER2 functions as a regulator of ribosomal RNA synthesis. Nuclear HER2 also enhances 

cellular translation by association with β-actin and RNA polymerase I thereby contributes to 

tumor progression [11]. A more recent study addressed the function of ctHER2 in post-

transcriptional regulation of the Na
+
-HCO3

-
 co-transporter SLC4A7 (NBCn1( which is known 

associated with breast malignancy. In breast cancer, ctHER2 increases the expression of 

SLC4A7 protein by binding to 3′UTR, stabilizing and protecting of  SLC4A7 mRNA against 

degradation [12]. These shreds of evidence suggest non-canonical oncogenic pathways of 

nuclear HER2 warranting an independent role of nuclear HER2 in breast cancer development, 

metastasis and its resistance to trastuzumab.  

Several pieces of evidence show that HSP90 is an important regulator of HER2 trafficking. 

Inhibition of HSP90 has been shown to reduce HER2 levels in preclinical models of breast 

cancer [13]. HSP90 inhibitor also blocked icHER2 function and suppressed the growth of 

trastuzumab-resistant breast tumors [5]. In a recent study, Cordo Russo et al. [6] reported that 

inhibition of HER2 nuclear localization by deleting NLS sequence of HER2 abrogated breast 

cancer cell growth and overcame trastuzumab resistance through blockade of Akt signaling and 

Cyclin D1 expression. This evidence suggests non-canonical oncogenic pathways of nuclear 

HER2 warranting an independent function of nuclear HER2 in breast cancer development, 

metastasis and its resistance to trastuzumab. Taken together, targeting nuclear HER2 is suggested 

to be a useful strategy to arrest breast tumor growth and overcome trastuzumab resistance in 

breast cancer patients.  

In addition, our previous results showed that HER2 overexpression had major effect on the 

gene expression profile of CHO cells, however, did not change the activation of canonical 

downstream pathways PI3K/Akt and MAPK. We also found that trastuzumab has no major 

effect on the activation of PI3K/akt and MAPK pathways, but inhibits cells cycle progression 

and survival, and induces apoptosis. This evidence suggests that trastuzumab may blocks a non-

canonical pathway of HER2 (probably via nuclear ctHER2) in HER2-overexpressing cells. 

Based on shreds of evidence reviewed above, we hypothesize that (1) Binding trastuzumab to 
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HER2 prevents cleavage of full-length HER2 and inhibits nuclear expression of C-terminal 

HER2; (2) nuclear HER2 mediates in the regulation of gene expression by contributing in the 

transcription complex. The aim of this study was to investigate the effect of trastuzumab in 

blocking HER2 cleavage and nuclear HER2 localization as well as the function of nuclear HER2 

in HER2-positive breast cancer cells.  

 

5.3. RESULTS 

5.3.1. Trastuzumab specifically binds to HER2 

Using CHO cells stably expressing human EGFR, HER2, and HER3, we previously showed 

that trastuzumab specifically binds to HER2 but not to EGFR or HER3 (see Figure 3.2) [14]. 

Here, we further confirmed the binding of trastuzumab to HER2 in breast cancer cell lines 

SKBR3, BT474, MCF7 and MDA-MB-231 by double immunofluorescence staining of HER2 

and trastuzumab (Figure 5.1). We also examined trastuzumab binding in CHO-K6 and CHO-K13 

cells as a positive control as well as in MCF10A cells as HER2-negative cell line. To this end, 

the cells were treated with 10 μg/ml trastuzumab for 1 hour and then HER2 was stained using a 

monoclonal antibody against the N-terminal end of HER2 (9G6) and a FITC-conjugated 

secondary antibody. Trastuzumab was stained by a TRITC-conjugated anti-human IgG antibody. 

Results showed very specific co-localization of trastuzumab and HER2 in all the HER2-

expressing cells indicating specific binding of trastuzumab to HER2 (Figure 5.1). 

5.3.2. Trastuzumab inhibits proliferation of HER2-positive breast cancer cells 

To investigate whether binding of trastuzumab to HER2 inhibits the proliferation of HER2-

positive breast cancer cells, we treated SKBR3 and BT474 cell lines with 10 μg/ml trastuzumab 

for 5 days and then monitored the cell proliferation levels by MTT assay. Cells treated with non-

specific human IgG (10 μg/ml), cell cycle inhibitor vinorelbine (10 μM), and HER2 kinase 

inhibitor CP-714724 (10 μM) were used as respectively mock control, anti-proliferative control, 

and HER2 inhibitor control. we also tested the effect of pertuzumab (10 μg/ml) alone as well as 

in combination with trastuzumab. In addition, we examined all the treatments in 293T cells as 

HER2-negative cell control. As shown in Figure 5.2, trastuzumab (P < 0.0001) as well as other 

HER2-targeting agents CP-714724 (P < 0.0001) and pertuzumab (P < 0.0001) significantly 
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inhibited the proliferation of SKBR3 and BT474 cells but not 293T cells. These results show that 

the binding of trastuzumab to HER2 inhibits cell proliferation of HER2-positive breast cancer 

cell lines probably via blocking HER2 function.  

 

Figure 5.1. Trastuzumab binding to HER2 in breast cancer cell lines. Binding of trastuzumab 

to HER2 in transgenic high-level HER2 expressing CHO cell lines (CHO-K6 and CHO-K13), 

breast cancer cell lines with high HER2 expression levels (SKBR3 and BT474), low HER2 

expression levels (MCF7 and MDA-MB-231), and HER2-negative breast cell line (MCF10). 



123 

 

The cells were treated with 10 μg/ml trastuzumab for 1 hour prior to immunofluorescence 

staining. HER2 (9G6, N-terminal) was stained by FITC (green). Trastuzumab was stained by 

TRITC (red). Scale bar: 25 μm. The gradient bar indicates HER2 expression level. 

 

Figure 5.2. Trastuzumab inhibits the proliferation of HER2-positive breast cancer cell lines. 

SKBR3, BT474, and 293T cells were treated with 10 μg/ml trastuzumab, pertuzumab or their 

combination for 5 days, and then the living cell mass was evaluated by MTT assay 

(absorbance at 540-nanometer wave-lengths. Ten μg/ml human IgG, 10 µM vinorelbine, and 

10 μM CP-724714 were used as respectively mock, anti-proliferative, and HER2 inhibitor 

controls. ****: P < 0.0001. 

5.3.3. Trastuzumab induces ADCC 

I previously showed that trastuzumab induces strong in vitro ADCC in CHO-K6 cells but not 

in CHO-GFFR (see Figure 3.8) [14]. We here examined whether trastuzumab induces ADCC in 

HER2-positive breast cancer cells. To this end, we treated BT474, MCF7 and MDA-MB-231 

cells with increasing consecrations of trastuzumab (0, 0.005, 0.015, 0.05, 0.15, 0.5, 1, 1.5 and 2 

μg/ml), and then investigated ADCC using ADCC Reported Bioassay kit as the method 

described in section 6.6. As shown in Figure 5.3, trastuzumab induced ADCC in a concentration-

depending manner in all the cells. The ADCC levels in BT474 cells were significantly higher 
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than those in MCF7 and MDA-MB-231 cells. This may be due to a higher level of trastuzumab 

binding to the BT474 cell line compared to MCF7 and MDA-MB-231 cell lines.  

 

Figure 5.3. Trastuzumab induces ADCC of breast cancer cell lines. BT474, MCF7 and MDA-

MB-231 cells were treated with different concentrations of trastuzumab (0, 0.005, 0.015, 0.05, 

0.15, 0.5, 1, 1.5, and 2 μg/ml) and then in vitro ADCC was investigated.    

5.3.4. Trastuzumab induces HER2 homo- and heterodimerization 

To investigate the effect of trastuzumab on HER2 homodimerization, we treated CHO-K6 

cells which is HER2-positive, EGFR-negative, HER3-negative, and HER4-negative, with 0.1, 

0.5, 1, 5, and 10 μg/ml trastuzumab for 2 hours and then HER2 homodimers were cross-linked 

using BS
3
 and were detected by immunoblotting using a monoclonal antibody against C-terminal 

end of HER2 (A2). The cells treated with IgG (10 μg/ml) were used as mock control for 

trastuzumab. As shown in Figure 5.4A, trastuzumab treatment increased HER2 dimer and 

reduced HER2 monomer in a dose-dependent manner. This result shows that binding 

trastuzumab to HER2 increases HER2 homodimerization.  

To examine the effect of trastuzumab on HER2 heterodimerization, we treated MDA-MB-231 

cells with 10 μg/ml trastuzumab for 2 hours and then monitored the HER2/EGFR heterodimer 

levels. Cells treated with human IgG (10 μg/ml) and EGF (50 ng/ml) were used as mock control 

for trastuzumab and positive HER2 dimerization inducer control respectively. HER2 protein 

complexes were pulled down by protein IP using A2 antibody, and EGFR levels in IPed and total 

lysate were detected by immunoblotting. The result showed increased levels of EGFR in EGF 
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treated as well as in trastuzumab treated cells (Figure 5.4B). This result shows that the binding of 

trastuzumab increases HER2/EGFR heterodimerization.  

5.3.5. Trastuzumab has no effect on HER2 phosphorylation 

To investigate the effect of trastuzumab on HER2 phosphorylation, we treated MCF7 and 

MDA-MB-231 cells with increasing concentrations of trastuzumab (0.1, 1, and 10 μg/ml) for 2 

hours and then levels of total HER2 (using A2 antibody) and phosphorylated HER2 at Y1005, 

Y1127, and Y1139 were studied by immunoblotting. Treatment with human IgG (10 μg/ml) was 

used as a mock control. The result showed no significant difference in phosphorylated HER2 

levels between the cells treated with trastuzumab and those treated with human IgG (Figure 

5.4C). Overall, these results indicate that trastuzumab binding to HER2 neither increase nor 

inhibit HER2 phosphorylation.  

5.3.6. Trastuzumab inhibits EGF-induced PI3K/Akt and MAPK pathways 

Since trastuzumab has no effect on HER2 receptor activation, we examined the effect of 

trastuzumab on activation of HER2 downstream pathways PI3K/Akt and MAPK. For this, 

BT474, MCF7, MDA-MB-231, and COS7 (HER2-negative cell line) cells were treated with 10 

μg/ml trastuzumab for 2 hours and then the level of phosphorylated Akt (S473) and Erk 

(T202/Y204) proteins were investigated by immunoblotting. Phosphorylation of Akt at S473 and 

Erk at T202/Y204 are the key modification and indicators of activated PI3K/Akt and MAPK 

pathways respectively. Treatment with human IgG (10 μg/ml) and EGF (50 ng/ml) were used as 

mock and positive controls.  

Results showed that EGF treatment increased the levels of phosphorylated Akt and Erk in all 

the cell lines. Trastuzumab treatment had no effect on phospho-Akt and phospho-Erk levels in 

the absence of EGF in all the cell lines (Figure 5.4D). However; MCF7 and BT474 cells treated 

with a combination of trastuzumab and EGF showed lower levels of phospho-Akt and phospho-

Erk compared to the cells treated with EGF alone. This regulation was not observed in COS7 

(HER2-negative) cells (Figure 5.4D). These results indicate that trastuzumab inhibited EGF-

induced PI3K/Akt and MAPK pathways in HER2+ breast cancer cells but not in HER2-negative 

cells. In addition, our results suggest that trastuzumab blocks the oncogenic function of HER2 
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not via inhibiting HER2 receptor activation, but maybe through blocking a non-canonical 

function of HER2 in HER2-positive breast cancer. 

 

Figure 5.4. The effect of trastuzumab on HER2 dimerization, phosphorylation, and its 

downstream signaling pathways. (A) Immunoblotting result of HER2 monomer and 

homodimer CHO-K6 cells treated with increasing concentrations of trastuzumab (0.1, 0.5, 1, 

5, and 10 μg/ml) for 2 hours and cross-linked by BS
3
. (B) Immunoblotting (IB) result of 

EGFR in HER2-immunoprecipitated protein sample (IP) and total lysate from MDA-MB-231 

cells treated with trastuzumab (10 μg/ml) for 2 hours. (C) Immunoblotting result of the 

expression of total and phosphorylated HER2 (Y1005, Y1127, and Y1139) in MCF7 and 

MDA-MB-231 cells treated with increasing concentrations of trastuzumab (0.1, 1 and 10 

μg/ml) for 2 hours. (D) Immunoblotting result of the expression of phosphorylated Akt (S473) 

and Erk (T202/Y204) in BT474, MCF7, MDA-MB-231, and COS7 cells treated with 
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trastuzumab (10 μg/ml) for 2 hours. Treatment with human IgG (10 μg/ml) and EGF (50 

ng/ml) were used as mock and positive controls. UT: Untreated. 

5.3.7. Trastuzumab inhibits proteolytic cleavage of HER2 

In the previous chapters, we showed that overexpression of HER2 had major effects on the 

gene expression profile of CHO cells (see Figure 4.5A) and increased the cell proliferation (see 

Figure 3.9A), however had no major effects on activation of PI3K/Akt and MAPK pathways (see 

Figure 3.7A). Based on these findings, we hypothesized that trastuzumab blocks a non-canonical 

function of HER2. HER2 (A2) immunoblotting result of CHO-K6 cells treated with trastuzumab 

for 2 hours revealed decreased levels of two different truncated HER2 with an approximate size 

of 85 kDa (p85HER2) and 45 kDa (p45HER2) in response to trastuzumab treatment (Figure 

5.5A). To confirm this, we treated SKBR3 and BT474 cells with trastuzumab (10 μg/ml), 

pertuzumab (10 μg/ml) and human IgG (10 μg/ml) each for 6 hours and then immunoblotted 

HER2 using another antibody against C-terminal end of HER2 (C18). As a result, both the cell 

lines treated with human IgG showed significant levels of truncated HER2 fragment with a size 

of smaller than 185 kDa (Figure 5.5B). The levels of p85HER2 fragments were significantly 

higher than those of other size fragments. Interestingly, trastuzumab treatment decreased HER2 

fragmentation in SKBR3 and BT474 cell lines; however, pertuzumab exerted the same effect in 

BT474 cells but not in SKBR3 cells (Figure 5.5B). To validate this and to investigate whether 

the HER2 fragments are N-terminal or C-terminal truncated, we stained HER2 in BT474 cells by 

double-immunofluorescence staining of HER2 using C18 (FITC) and 9G6 (TRITC) antibodies. 

As a result, the C18 antibody but not 9G6 antibody stained intracellular HER2 localized majorly 

in the nucleus; however, 9G6 antibody stained only plasma membrane HER2 (Figure 5.5C). 

Taken together, these results demonstrate that trastuzumab binding to HER2 inhibits HER2 

protein fragmentation and production of C-terminal truncated HER2 fragments (ctHER2). 

ctHER2 can arise by proteolytic cleavage of full-length HER2 [4,15–23]. To examine whether 

trastuzumab blocks HER2 cleavage, we treated SKBR3 and BT474 cells with trastuzumab (10 

μg/ml), metalloproteinases (ADAMs and MMPs) inhibitor TAPI-2 (10 μM), and combination of 

trastuzumab and TAPI-2 for 6 hours, and then immunoblotted HER2 using A2 antibody. As 

shown in Figure 5.5D, the levels of ctHER2 in the cells treated with TAPI-2 as well as in 

trastuzumab treated cells were lower compared to control cells. More interestingly, the rate of 



128 

 

HER2 fragments in the cells treated with a combination of TAPI-2 and trastuzumab was lower 

than those in the cells treated with TAPI-2 or trastuzumab alone (Figure 5.5D). This reveals a 

synergic effect of trastuzumab and TAPI-2 in blocking proteolytic HER2 cleavage. These results 

indicate that ctHER2 fragments are produced through metalloproteinases-mediated cleavage of 

full-length HER2 and that trastuzumab binding to HER2 inhibits proteolytic HER2 cleavage and 

production of C-terminal HER2 fragments. 

To investigate the effect of HER2 cleavage on cell growth and proliferation, we treated 

SKBR3 cells with TAPI-2 (10 μM), trastuzumab (10 μg/ml), and their combination for 72 hours 

(3 days) and then investigated cell proliferation by MTT assay. A combination of 1 μl DMSO 

(TAPI-2 vehicle) and human IgG (10 μg/ml) was used as vehicle/mock control, and 5 μM 

paclitaxel (cell cycle inhibitor agent) was used as anti-proliferative control. The result showed 

inhibited cell proliferation in the cells treated with TAPI-2 (P < 0.05) and those treated with 

trastuzumab (P < 0.01) compared to control cells (Figure 5.5E). Treatment with a combination of 

TAPI-2 and trastuzumab inhibited the cell proliferation with higher efficiency (P < 0.0001) 

compared to the TAPI-2 or trastuzumab alone (Figure 5.5E). These results indicate that HER2 

cleavage is a positive factor for SKBR3 cell growth and proliferation and suggest a new 

mechanism of anti-cancer action of trastuzumab in HER2-positive breast cancer via blocking 

proteolytic cleavage of HER2 and probably an oncogenic effect of HER2 cleavage and ctHER2. 
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Figure 5.5. Trastuzumab inhibits proteolytic HER2 cleavage. (A) HER2 (A2 antibody) 

immunoblotting result of CHO-K6 cells treated with trastuzumab (0.1, 0.5, 1, 5, and 10 

μg/ml) human IgG (10 μg/ml) and EGF (50 ng/ml) for 2 hours. UT: untreated. (B) HER2 

(C18 antibody) immunoblotting result of SKBR3 and BT474 cells treated with trastuzumab 

(10 μg/ml), pertuzumab (10 μg/ml) and human IgG (10 μg/ml) for 6 hours. (C) 

Immunofluorescence staining of HER2 by C18 (FITC) and 9G6 (TRITC) antibodies in the 

BT474 cell line. Scale bar: 25 μm. (D) HER2 (A2 antibody) immunoblotting result of SKBR3 

and BT474 cells treated with trastuzumab (10 μg/ml), TAPI-2 (10 μM), the combination of 

trastuzumab and TAPI-2 and combination of human IgG (10 μg/ml) and DMSO (10 μl/ml) for 

6 hours. (E) MTT cell proliferation assay result of SKBR3 cells under treatment described in 

(C) for 72 hours (3 days). Paclitaxel (5 μM) was used as an anti-proliferative agent control. *: 

P < 0.05, **: P < 0.01, ****: P < 0.0001. 



130 

 

HER2 can be cleaved from its juxtamembrane domain by zinc-containing metalloproteinases 

particularly ADAMs [4,15–23]. For further confirmation, we investigated the effect of 

trastuzumab binding to HER2 on proteolytic cleavage of HER2 by computational protein-protein 

binding simulation. For this, we used crystal structures the extracellular part of rat HER2 

(ecHER2; PDB ID: 1N8Y [24]), catalytic domain of ADAM17 (PDB ID: 1BKC [25]) and the 

extracellular domain of human HER2 complexed with trastuzumab Fab (PDB ID: 1N8Z [24]) 

available from RCSB PDB. ADAM17 was virtually blind docked to the HER2 as well as to 

HER2-trastuzumab fab complex using  ZDOCK server [26] without a pre-defining binding site.  

As shown in Figure 5.6A, ADAM17 was appropriately bound to the juxtamembrane region of 

the HER2, and the cleavage site of the HER2 was perfectly located in the zinc endopeptidase 

active site of ADAM17. In contrast, the docking of ADAM17 to HER2 complexed with 

trastuzumab fab was aberrant. ADAM17 could not bind to the juxtamembrane region of the 

HER2, and the zinc endopeptidase active site of ADAM17 was too far to the HER2 cleavage site 

(Figure 5.6A). This is due to the binding of the trastuzumab fab to domain IV of the HER2 where 

is very close to the ADAM17 target site. There are two possible mechanisms explaining how 

binding trastuzumab to HER2 prevents enzymatic interaction of ADAM17 with HER2; (1) 

directly by burying HER2 juxtamembrane, and (2) indirectly by disrupting 3D protein 

conformation of HER2. Both of the mechanisms can inhibit HER2 cleavage by preventing 

accessibility of HER2 cleavage site to ADAM17 enzymatic active site. However, the exact 

mechanism is still to be studied by further analysis examination. Taken together computational 

simulation supports the hypothesis that trastuzumab inhibits proteolytic cleavage of HER2. 
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Figure 5.6. Crystal structure of extracellular HER2 in complex with ADAM17 and 

trastuzumab Fab. (A) Crystal structure of extracellular HER2 (ecHER2; PDB ID: 1N8Y; 

cyan) in the complex with the catalytic domain of ADAM17 (PDB ID: 1BKC; pink). The 

structures were docked using ZDOCK server. Zn indicates the endopeptidase enzymatic 

active site of ADAM17. Inset shows a region of ADAM17 enzymatic active site (pink) 

interacted with a juxtamembrane region of HER2 (cyan). Yellow connections represent 

chemical bonds (B) Crystal structure of ecHER2 complexed with trastuzumab fab (PDB ID: 

1N8Z; ecHER2 in cyan; trastuzumab fab in yellow), and the catalytic domain of ADAM17 

(PDB ID: 1BKC; pink). (C and D) Schematized of ecHER2/ADAM17 (C), and 

ecHER2/trastuzumab Fab/ADAM17 (D) structures shown in (A) and (B) respectively. 

5.3.8. Trastuzumab inhibits nuclear localization of HER2 

To confirm whether trastuzumab blocks HER2 cleavage and nuclear localization of C-

terminal truncated HER2, we treated MCF7, SKBR3, and BT474 cell lines with trastuzumab (10 

μg/ml) for 6 hours, and then stained HER2 using C18 antibody. As shown in Figures 4.8A-C, the 

cells treated with human IgG (10 μg/ml) showed strong HER2 localization in the nucleus. 

However, nuclear p85HER2 were not seen in the trastuzumab treated cells.  
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To further confirm nuclear p85HER2 and the effect of trastuzumab on nuclear localization of 

p85HER2, we monitored HER2 separately in the plasma membrane, cytosolic and nuclear 

fractions of SKBR3 and BT474 cells treated with trastuzumab. To this end, the cells were treated 

with trastuzumab (10 μg/ml) or human IgG (10 μg/ml) for 6 hours and then plasma membrane, 

cytosolic and nuclear proteins were isolated by subcellular fractionation. The HER2 content of 

each fraction was investigated by immunoblotting using the C18 antibody. As result, 

trastuzumab treated SKBR3 and BT474 cells showed lower levels of p85HER2 in the plasma 

membrane fraction compared to the relevant IgG treated cells (Figure 5.7D). No major difference 

was detected between the cytosolic fraction of trastuzumab treated cells and that of the cells 

treated with human IgG in terms of p85HER2 content (Figure 5.7E). Nuclear fractions from both 

IgG and trastuzumab treated cells revealed full-length as well as several different sized HER2 

fragments. However, the levels of p85HER2 in trastuzumab treated cells were significantly lower 

than that in the cells treated with human IgG (Figure 5.7F).  

We validated these results by investigating the effect of trastuzumab on production and 

nuclear localization of transgene HER2. For this, we transfected pEGFP-ERBB2 plasmid 

(coding full-length HER2 with green fluorescence protein (GFP) flag fused to its C-terminal end) 

into COS7 cells and then treated the cells with trastuzumab (10 μg/ml) or human IgG (10 μg/ml) 

for 6 hours. C-terminal HER2 localization was studied by immunofluorescence staining of HER2 

using C18 antibody. In addition, the cells were subjected to subcellular fractionation, and 

truncated HER2 fragments were then investigated in the plasma membrane, cytosolic and 

nuclear fractions by immunoblotting using C18 antibody. As result, GFP was detected in the 

nucleus of the cells treated with human IgG. The cells treated with trastuzumab showed GFP 

localization only at the plasma membrane fraction and no nuclear GFP was detected in the 

nucleus (Figure 5.8A). Trastuzumab treated cells also showed lower rates of p85HER2 fragments 

in the nuclear fraction that was confirmed by immunoblotting using antibodies against C18 and 

GFP flag (Figure 5.8B). Results showed localization of full-length HER2 in the cytosol as well 

as in the nucleus. The cytosolic full-length HER2 might be the nascent HER2 proteins not yet 

localized in the plasma membrane. There is no documented evidence regarding the localization 

of full-length HER2 in the nucleus. The most possible explanation for presence of full-length 

HER2 in the nucleus is the contamination of nuclear fraction by plasma membrane. 
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Our previous results showed that HER2 phosphorylated at Y1005 and Y1139 but no other pY 

sites majorly localized in the nucleus (see Figure 4.4). This result suggests that phosphorylation 

of HER2 at Y1005 and Y1139 may be required and specific modifications for HER2 cleavage 

and nuclear localization. To examine this and as further evidence supporting our hypothesis, we 

immunofluorescence stained phosphorylated HER2 at Y1005 and Y1139 in BT474 cells treated 

with trastuzumab. Results revealed strong nuclear localization of pY1005 and pY1139 HER2 in 

human IgG treated cells. Whereas, nuclear pY1005 and pY1139 HER2 disappeared in the cells 

treated with trastuzumab (Figure 5.9). Since trastuzumab does not inhibit HER2 phosphorylation 

(see Figure 5.4C), absence of pY1005 and pY1139 HER2 in the nucleus of trastuzumab treated 

cells, should be due to inhibition of HER2 nuclear translocation by trastuzumab. This evidence 

strongly supports our hypothesis on this function of trastuzumab. Taken together, these results 

demonstrate that trastuzumab binding to HER2 inhibits proteolytic cleavage of full-length HER2 

and nuclear localization of p85HER2 fragments. 
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Figure 5.7. Trastuzumab inhibits nuclear localization of endogenous HER2 in breast cancer 

cell lines. (A-C) Immunofluorescence staining of HER2 (C18; FITC) and trastuzumab 

(TRITC) in MCF7 (A), SKBR3 (B), and BT474 (C) cells treated with trastuzumab (10 μg/ml) 

or human IgG (10 μg/ml) for 6 hours. Arrowheads indicate nuclear HER2. Scale bar: 25 μm. 

(D-F) Immunoblotting of HER2 (C18) in the plasma membrane (D), cytosolic (E) and nuclear 

(F) fractions of SKBR3 and BT474 cells treated with trastuzumab (10 μg/ml) or human IgG 

(10 μg/ml) for 6 hours. Na⁺/K⁺-ATPase, α-tubulin, and lamin A proteins were used as specific 

makers and loading controls for the plasma membrane, cytosolic and nuclear fractions 

respectively.  
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Figure 5.8. Trastuzumab inhibits nuclear localization of transgene HER2. (A) Fluorescence 

image of GFP flag and immunofluorescence staining of trastuzumab (TRITC) in COS7 cells 

transfected by pEGFP-ERBB2 plasmid and treated with trastuzumab (10 μg/ml) or human 

IgG (10 μg/ml) for 6 hours. UT: Untransfected. Scale bar: 25 μm. (B) Immunoblotting of GFP 

flag and HER2 (C18) in untransfected and transfected COS7 by pEGFP-ERBB2 plasmid 

treated with trastuzumab (10 μg/ml) for 6 hours. 
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Figure 5.9. Trastuzumab inhibits nuclear localization of pY1005 and pY1139 HER2. 

Immunofluorescence staining of phosphorylated HER2 (Y1005 and Y1139) BT474 cells 

treated with human IgG (10 μg/ml) or trastuzumab (10 μg/ml) for 6 hours. Scale bar: 20 μm. 

5.3.9. HER2 cleavage at the IJM and nuclear localization signal (NLS) are essential for 

nuclear localization of p85HER2 

We investigated the cleavage site of HER2 required for HER2 nuclear localization. To this 

end, we constructed expression vectors of full-length HER2 (FL; amino acids 1-1255), HER2 

with deleted extracellular part (TM+IC; amino acids 648-1255), icHER2 (IC; amino acids 672-

1255), and icHER2 with deleted NLS sequence (IC_ΔNLS; amino acids. 693-1255). The 

schematic structure and initial amino acid sequence of the truncated HER2 proteins are shown in 

Figure 5.10A. The open reading frames (ORFs) of truncated ERBB2 genes were amplified from a 

previously constructed expression vector possessing full-length human ERBB2 ORF by 

polymerase chain reaction (PCR) using specific primer pairs. The sequence of PCR primers is 

shown in Table 6.1. We cloned the ORFs into pcDNA3.1/Myc-HisA(-) plasmid vector (Figure 

5.10B). This vector confers a Myc epitope and 6x histidine (6xHis) protein flags both fused to 

the C-terminal end of the HER2 proteins and allows expressing HER2-Myc-H6 fusion proteins. 
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We also cloned the ORFs into pEGFP-N3 plasmid vectors (Figure 5.10B) in order to tag a GFP 

flag at the C-terminal end of HER2 proteins that express HER2-GFP fusion proteins.  

 

Figure 5.10. Structures and initial amino acid sequences of transgene HER2 proteins. (A) 

Schematic structures and truncation start sites of full-length HER2 (FL; amino acids 1-1255), 

HER2 with deleted extracellular part (TM+IC; amino acids 648-1255), icHER2 (IC; amino 

acids 672-1255), and icHER2 with deleted NLS sequence (IC_ΔNLS; amino acids. 693-

1255). Gray highlights indicate helix regions (TM and a pert of Domain IV). (B) Structural 

map of pcDNA3.1/Myc-HisA(-) and pEGFP-N3 vectors.  

We transfected the HER2-GFP and HER2-His expression plasmid constructs as well as empty 

vectors into 293T cells using calcium phosphate gene transfer method as described in section 

6.13 and then monitored GFP and 6x histidine by immunofluorescence staining assay. The result 

showed cytosolic localization of the flags (GFP and 6xHis) in the cells transfected with empty 
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vectors. The cells transfected with FL and TM+IC showed the flags at the plasma membrane and 

in the cytosol but not in the nucleus. Importantly, the cells transfected with IC revealed the 

localization of the flags in the cytosol as well as in the nucleus but not at the plasma membrane. 

However, only cytosolic localization of flags was detected in the cells transfected with IC_ΔNLS 

(Figure 5.11A). Due to the higher transfection rate of ERBB2-His constructs than that of 

ERBB2-EGFP constructs, we used ERBB2-His constructs in the next experiments. 

We confirmed the immunofluorescence staining results by immunoblotting detection of 

HER2 (A2) and 6xHis flag in the plasma membrane, cytosolic and nuclear fractions from 293T 

cells transfected by the ERBB2-His expression constructs. As result shown in Figure 5.11B, high 

levels of full-length HER2, as well as the same size 6xHis flag, were detected only in the plasma 

membrane fraction of the cells transfected with FL. Low levels of 185 kDa endogenous HER2 

were detected in the membrane fraction from untransfected cells, the cells transfected with empty 

vector as well as the cells transfected with truncated HER2 constructs. The cells transfected with 

TM+IC showed 95 kDa truncated HER2 and the same size 6xHis flag majorly in the plasma 

membrane fraction and at a lower level in the cytosolic fraction. The cells transfected with IC 

showed approximately 85 kDa truncated HER2 and the same size 6xHis flag in the plasma 

membrane fraction, the cytosolic fraction as well as high in the nuclear fraction. However, the 

cells transfected with IC_ΔNLS showed truncated HER2 and the same size 6xHis flag in the 

plasma membrane fraction and in the cytosolic fraction but not in the nuclear fraction. Despite 

the lack of TM domain, IC and IC_ΔNLS HER2 proteins were detected in the plasma membrane 

fraction. This may be due to the binding of the truncated HER2s to membranous protein(s) that 

lets the HER2s localize in at the plasma membrane; however, the exact reason for this 

observation is still unclear.  

Taken together, these results indicate that only HER2 without TM domain but possessing 

NLS sequence can get into the nucleus confirming that cleavage at the IJM region is required for 

HER2 nuclear localization.  

5.3.10. Nuclear p85HER2 contributes to RNA processing and mRNA spicing 

To study the function of nuclear p85HER2 in the nucleus, we pulled down HER2 from 

nuclear fractions of 293T cells transfected with IC, as well as SKBR3 and BT474 cell lines by IP 
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using A2 antibody. We then, analyzed whole IP protein samples by mass spectrometry to 

identify the protein content. The schematic work follow is shown in Figure 5.12A.  

Immunoblotting of HER2 (C18) showed nuclear p85HER2 in the IP protein samples from 

SKBR3, BT474 and the 293T cells transfected with IC. We also detected full-length HER2 in the 

nuclear fraction of BT474 cells. Heavy (50 kDa) and light (25 kDa) chains of A2 antibody were 

also detected (Figure 5.12B). These results show successful HER2 pull-down from the nuclear 

fractions and further validate p85HER2 localization in the nucleus. 

To identify client proteins of p85HER2 in the nucleus, their functions and involved pathways, 

we profiled protein content of the HER2 pull-down protein samples by mass spectrometry 

analysis, and then performed a gene set enrichment analysis (GSEA) of the identified proteins in 

terms of Gene Ontology molecular and biological functions, ENCODE and ChIP Enrichment 

Analysis (ChEA) Consensus transcription factors from ChIP-X as well as KEGG pathways by 

using Enrichr tool [27,28].  

Mass spectrometry profiling of HER2 pull-down protein samples from nuclear fraction 

revealed 265 proteins in 293T-IC (Figure 5-13A), 157 proteins in SKBR3 (Figure 5-13B), and 

120 proteins in BT474 cells (Figure 5-13C). Of all detected proteins, 76 proteins were common 

in the three cell lines (Figure 5-13D).  

As shown in Figure 5.14, gene ontology analysis of the gene sets in terms of the molecular 

function showed that a big majority (208 proteins) of identified proteins have RNA binding 

activity. Next top 9 found enriched functional terms of the proteins ranked by combined score of 

P-value and Z-score were as follow: mRNA binding (34 proteins), cadherin binding (35 

proteins), double-stranded RNA binding (13 proteins), mRNA 5'-UTR binding (9 proteins), 

ATP-dependent helicase activity (14 proteins), mRNA 3'UTR binding (12 proteins), poly-

pyrimidine tract binding (8 proteins), RNA helicase activity (12 proteins), and ATP-dependent 

RNA helicase activity (14 proteins).  

As shown in Figure 5.15, gene ontology analysis of the gene sets in terms of biological 

process revealed top 10 enriched biological functions terms as follow:  gene expression (81 

proteins), RNA splicing via transesterification reactions with bulged adenosine as nucleophile 

(53 proteins), mRNA splicing via spliceosome (68 proteins), mRNA processing (68 genes), SRP-
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dependent cotranslational protein targeting to membrane (45 proteins), nuclear-transcribed 

mRNA catabolic process, nonsense-mediated decay (50 proteins), cotranslational protein 

targeting to membrane (45 proteins), protein targeting to ER (45 proteins), viral transcription (46 

proteins), and viral gene expression (45 proteins).  

As shown in Figure 5.16. enrichment analysis of KEGG pathways showed that the majority 

of identified proteins were involved in spliceosome pathways (46 proteins). The next top 9 

enriched KEGG pathway terms were found as follow: ribosome pathway (45 proteins) 

Huntington disease (17 proteins), pathogenic Escherichia coli infection (10 proteins), Parkinson 

disease (14 proteins), RNA transport (11 proteins), mRNA surveillance pathway (10 proteins), 

protein processing in endoplasmic reticulum (10 proteins), Alzheimer disease (9 protein), and 

Salmonella infection (8 proteins). 

In all the cell lines, 9 transcription factors inclusing BCLAF1, FUS, KHDRBS1, LIMA1, 

MYBBP1A, SND1, TAF15, THOC2, and THRAP3 were detected interacted with nuclear 

p85HER2, of which FUS and KHDRBS1 were common in the three cell lines (Figure 5-13E). 

Gene ontology analysis of the identified transcription factors in terms of the biological function 

revealed top 5 functions of the transcription factors as follow: 

BCLAF1: positive/negative regulation of transcription initiation, positive regulation of 

apoptotic signaling pathway, positive regulation of response to DNA damage stimulus, positive 

regulation of protein complex assembly. 

FUS: RNA splicing via transesterification reactions with bulged adenosine as nucleophile, 

mRNA splicing, via spliceosome, mRNA processing. 

KHDRBS1: positive regulation of nucleobase-containing compound transport, positive 

regulation of RNA export from nucleus, positive regulation of nucleocytoplasmic transport, cell 

cycle G2/M phase transition, negative regulation of nucleic acid-templated transcription. 

LIMA1: regulation of actin filament depolymerization, ruffle organization, negative 

regulation of protein depolymerization, negative regulation of cytoskeleton organization, 

negative regulation of supramolecular fiber organization. 
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MYBBP1A: regulation of anoikis, nuclear transport, cellular response to starvation, intrinsic 

apoptotic signaling pathway by p53 class mediator, positive regulation of cell cycle arrest.  

SND1: RNA catabolic process, nucleobase-containing compound catabolic process, cellular 

macromolecule catabolic process, RNA metabolic process. 

TAF15: transcription elongation from RNA polymerase II promoter, regulation of signal 

transduction by p53 class mediator, regulation of intracellular signal transduction, positive 

regulation of nucleic acid-templated transcription, positive regulation of gene expression. 

THOC2: termination of RNA polymerase II transcription, termination of DNA-templated 

transcription, RNA transport,  mRNA export from nucleus, neuron development. 

THRAP3: positive regulation of mRNA splicing via spliceosome, regulation of alternative 

mRNA splicing via spliceosome, mRNA stabilization, steroid hormone-mediated signaling 

pathway, initiation of DNA-templated transcription.  

For further understanding of the pathways of nuclear p85HER2, we investigated the 

enrichment of upsteam transcription factors regulating the transcription of HER2 client protein 

identified by mass spectrometry. To this end, we analyzed the enrichment of consensus 

transcription factors whose target genes are profiled by ChIP-X experiments and are present in 

ENCODE and ChEA. The analysis result showed enrichment of 97 transcription factors in the 

gene set identified in SKBR3 cell line (Figure 5.17A), 96 transcription factors in the gene set 

identified in BT474 cell line (Figure 5.17B), and 100 transcription factors in the gene set 

identified in 293-IC cells (Figure 5.17C). Of the transcription factors, 88 were common in the 

three cell lines (Figure 5.17D). Analysis of KEGG pathways enrichment in the transcription 

factors gene sets revealed that most of them are associated with cancer development and are 

positive regulators of stemness and EMT including but not limited to transcriptional 

misregulation in cancer (17 transcription factors), acute myeloid leukemia (9 transcription 

factors), chronic myeloid leukemia (8 transcription factors), prostate cancer (8 transcription 

factors), Thyroid cancer (4 transcription factors), breast cancer (8 transcription factors), 

panceratic cancer (5 transcription factors) and other cancer types, signaling pathways regulating 

pluripotency of stem cells (9 transcription factors), cell cycle (8 transcription factors), as well as 

in many oncogenic/stemness signaling pathways including TGF-β signaling pathway (4 
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transcription factors) TNF signaling pathways (5 transcription factors), Wnt signaling pathways 

(5 transcription factors), PI3K/Akt signaling pathways (6 transcription factors) MAPK signaling 

pathways (7), Notch signaling pathways (2 transcription factors), Estrogen signaling pathways (5 

transcription factors), Hippo signaling pathways (4 transcription factors), and JAK/STAT 

signaling pathways (3 transcription factors). These results show that nuclear HER2 interacts with 

downstream elements of oncogenic/stemness transcription factors.  

Taken together, these results indicate that HER2 regulates RNA processing including RNA 

export from the nucleus, mRNA splicing by interaction with RNA helicases, RNA transporters, 

and spliceosome complex proteins. The Client proteins of nuclear p85HER2 are downstream 

targets of master oncogenic/stemness regulators, suggesting the oncogenic function of nuclear 

p85HER2 in HER2-positive breast cancer cells.  

 

Figure 5.11. Subcellular localization of full-length and C-terminal truncated HER2 proteins. 

(A) immunofluorescence staining of GFP and 6x histidine (6xHis) flags in 293T cells 

transfected with the ERBB2-EGFP and the ERBB2-His constructs. UT: Untreansfected. 
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Plasmid: empty pcDNA3.1/Myc-HisA(-) or pEGFP-N3 vectors. FL: constructs coding full-

length HER2 ORF, TM+IC: constructs coding HER2 ORF with deleted extracellular. IC: 

constructs coding icHER2 ORF, IC-ΔNLS: constructs coding icHER2 ORF with deleted NLS 

sequence. Arrows show nuclear HER2. Scale bar: 10 μm. (B) Immunoblotting of HER2 (A2) 

and 6x histidine flag (6xHis) in the plasma membrane, cytosolic and nuclear fractions from 

293T cells transfected with the HER2 constructs. Na⁺/K⁺-ATPase, α-tubulin, and lamin A 

proteins were used as specific makers and loading controls for the plasma membrane, 

cytosolic and nuclear fractions respectively.  

 

Figure 5.12. Functional analysis of nuclear p85HER2. (A) The schematic illustrating the 

workflow of the identification of nuclear p85HER2 client proteins in the nucleus. SKBR3, 

BT474 and the 293T transfected with IC (293T-IC) were subjected to subcellular 

fractionation. HER2 was pulled down from the nuclear fractions by IP using A2 antibody. 

The IP protein samples were then subjected to proteomic profiling by mass spectrometry to 

identify the p85HER2 client proteins in the nucleus. The mass spectrometry identified 
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proteins was subjected to gene set enrichment analysis (GSEA) in terms of functional gene 

ontology, KEGG pathway analysis and upstream ENCDE/ChEA transcription factors. (B) 

Immunoblotting results of HER2 (C18) in total lysate, supernatant (SN) and IP samples from 

the nuclear fractions of the cells. 

 

Figure 5.13. The list of proteins detected in p85HER2 pull-down IP samples from the nuclear 

fractions by mass spectrometry. (A-C) Word could diagram illustrating the gene names of all 

detected proteins in SKBR3 (A), BT474 (B) and 293T-IC (C) cells. The size of words 

indicates a mass spectrometry score. Colors peaked randomly and are not informative. (D and 

E) Venn diagram illustrating the number (D) and gene name (E) of proteins detected in each 

cell samples and detection overlaps.  
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Figure 5.14. Molecular functions of nuclear p85HER2 client proteins. Gene Ontology 

molecular functions of proteins detected in HER2 pull-down IP samples from nuclear 
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fractions. Clustergram of top 30 enriched molecular functions of proteins detected in 

p85HER2 pull-down IP samples from nuclear fractions of (A) SKBR3, (B) BT474, and (C) 

293T-IC cells. Enriched functions are the columns, input genes are the rows, and cells in the 

matrix indicate if a gene is associated with a function. The functions are ranked based on the 

combined enrichment score of P-value and  

. 
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Figure 5.15. Biological functions of nuclear p85HER2 client proteins. Gene Ontology 

biological function of proteins detected in HER2 pull-down IP samples from nuclear 

fractions. Clustergram of top 30 enriched Gene Ontology biological functions of proteins 
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detected in p85HER2 pull-down IP samples from nuclear fractions of (A) SKBR3, (B) 

BT474, and (C) 293T-IC cells. Enriched functions are the columns, input genes are the rows, 

and cells in the matrix indicate if a gene is associated with a function. The functions are 

ranked based on the combined enrichment score of P-value and Z-score. 
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Figure 5.16. Pathways that nuclear p85HER2 client proteins are involved in. KEGG 

pathways of proteins detected in p85HER2 pull-down IP samples from nuclear fractions. 

Clustergram of top 30 enriched KEGG pathways of proteins detected in p85HER2 pull-down 
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IP samples from nuclear fractions of (A) SKBR3, (B) BT474, and (C) 293T-IC cells. 

Enriched pathways are the columns, input genes are the rows, and cells in the matrix indicate 

if a gene is associated with a pathway. The pathways are ranked based on the combined 

enrichment score of P-value and Z-score. 

 

Figure 5.17. Oncogenic/stemness transcription factors regulate nuclear p85HER2 client 

proteins. (A-C) Word cloud diagram showing upstream transcription factor regulators of 

nuclear p85HER2 client proteins identified in p85HER2 pull-down IP samples from nuclear 

fractions of SKBR3 (A), BT474 (B) and 293T-IC (C) cells. The size of words indicates a 

mass spectrometry score. Colors peaked randomly and are not informative. (D) Venn diagram 

illustrating the number of upstream transcription factors of nuclear p85HER2 client proteins 

detected in each cell sample and overlaps between them. Clustergram showing top 30 

enriched KEGG pathways of 100 upstream transcription factor regulators of nuclear 

p85HER2 client proteins identified in p85HER2 pull-down IP samples from nuclear fractions 

of 293T-IC. Enriched pathways are the columns, input genes are the rows, and cells in the 
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matrix indicate if a gene is associated with a pathway. The pathways are ranked based on the 

combined enrichment score of P-value and Z-score. 

 

5.4. DISCUSSION 

Clinical studies showed that trastuzumab successfully enhanced the survival rate of 

metastatic and non-metastatic HER2-positive breast cancer patients. Unfortunately, only 30-40% 

of patients respond to trastuzumab. Translational medicine researchers and clinicians intensively 

sought the exact mode of action of trastuzumab and its resistance factor(s) to improve patients’ 

response to trastuzumab as well as HER2 targeting approach. This information is important for 

some reasons. It will help us to understand the molecular mechanism of trastuzumab therapy 

which by turn, will shed light on this question why some patients show resistance to trastuzumab 

and who should or not receive this drug (personalized medicine). Trastuzumab is an effective but 

also expensive drug because of its production procedure. This information will also lead us to 

design cheaper chemical drugs acting like trastuzumab and will also shed light on more detail of 

HER2 proto-oncogene function to understand molecular pathology, strengths and Achilles’ heel 

of breast cancer. 

Our previous studies using CHO cell line stably overexpressing human HER2 showed that 

trastuzumab does not inhibit HER2 receptor activation and downstream pathways, however, it 

inhibits cell cycle progression and survival, and induces apoptosis of the cells. We also found 

that overexpression of HER2 in the CHO cells does not induces RTK downstream pathways 

PI3K/Akt and MAPK pathways but increases cell growth of the cells. By taking these results 

together, we hypothesize that trastuzumab inhibits a non-canonical pathway(s) of HER2 rather 

than its RTK pathways. Some previous studies show proteolytic cleavage of HER2 and 

production of ctHER2 with the ability and nuclear localization and contribution in the regulation 

of gene expression as a transcription co-factor. HER2 cleavage and nuclear ctHER2 in HER2-

positive breast cancer tumors are reported to be associated with fast tumor growth, high invasion, 

poor prognosis and worse response to trastuzumab treatment. production of ctHER2 via cleavage 

of full-length HER2 by metalloproteinases (ADAMs and MMPs) is well-documented. The 

upregulation of the metalloproteinases is a poor prognosis factor and is commonly seen in 
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mesenchymal-like breast cancer cells. Interestingly, several metalloproteinases including 

ADAMs 9, 10, 12, 15, 17, 28 [29–34] as well as MMPs 1, 2, 7, 9 11, 12, 13, 14 and -16 are 

reported overexpressed in breast cancers and potential target for treatment of breast cancer [35–

38]. ADAMs 10 and 17 and are the major sheddase enzymes involved in HER2 cleavage 

shedding [19]. Recent studies showed that ADAMs 10 and 17 is associated with poorer relapse-

free survival in HER2-positive breast cancer patients and inhibition of them by chemicals 

overcame trastuzumab resistance in both naïve and trastuzumab-resistant HER2-positive cell 

lines [18,39,40]. These data suggest ADAMs 10 and 17 as key drivers of trastuzumab resistance 

and potential targets to overcome trastuzumab resistance in HER2-positive breast cancer [41]. 

Moreover, a preclinical study revealed that inhibitors of MMPs 1, 2, 3 and 9 may suppress HER2 

shedding [42]. Despite poor outcomes of chemical inhibitors of MMPs in clinical trials, this 

approach may still be a significant way to prevent HER2 shedding and production of C-terminal 

truncated HER2 fragments in breast cancer [43]. HER2 cleavage can explain why secondary 

metastatic tumors with a high percentage of mesenchymal-like cancer stem cells are mostly 

resistant to trastuzumab but still sensitive to lapatinib which targets HER2 kinase domain. These 

pieces of evidence demonstrate the oncogenic function of icHER2 through its canonical pathway 

as well as maybe a non-canonical pathway.  

Nuclear HER2 is shown to interact with several transcription factors that resulted in 

transcriptional upregulation of target genes leading to more cell growth and proliferation. These 

reports suggest the transcription co-factor function of HER2. In this chapter, we examined the 

hypothesis that trastuzumab binding to HER2 may inhibit proteolytic cleavage and therefore 

nuclear localization of ctHER2 as a novel mechanism of trastuzumab action. First of all, we 

confirmed that trastuzumab binding to HER2 induces ADCC, and inhibits in vitro proliferation 

of HER2-positive breast cancer cells in the absence of immune cells. However, it did not inhibit 

HER2 receptor homo- and heterodimerization and phosphorylation but partially inhibited 

downstream PI3K/Akt and MAPK pathways. This result suggests that the molecular mechanism 

of anti-cancer function of trastuzumab still remain unknown. Further investigations revealed that 

trastuzumab reduced the level of an 85 kDa C-terminal HER2 protein (called p85HER2). Results 

also showed a synergic effect between trastuzumab and metalloproteinase inhibitor TAPI-2 on 

blocking HER2 cleavage, suggesting that trastuzumab inhibits metalloproteinase-mediate 

cleavage of HER2. Protein docking simulation analysis confirmed that binding trastuzumab to 
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domain IV of HER2 blocks enzymatic binding of ADAM17, a HER2-targeting 

metalloproteinase, to HER2 cleavage site at its extracellular juxtamembrane region. It is not clear 

whether metalloproteinase-mediated HER2 cleavage results in releasing p85HER2 from the 

membrane, however cytoplasmic and nuclear localization of p85HER2 had been demonstrated 

by independent studies. The role of intracellular proteases/sheddases such as calpain4, the 

common subunit of cysteine protease isoforms calpain1 and calpain 2 in HER2 pathway has been 

shown. Kulkarni et al. [44] showed that calpain4 is activated in HER2-positive breast cancer and 

is required for the activation of HER2. Calpain4 was also associated with the worse response of 

HER2-positive breast cancer to trastuzumab treatment. In addition, cleavage and nuclear 

localization of HER4 by calpains and transmembrane proteinase γ-secretase have been 

demonstrated [45–48], but there is no clear evidence showing HER2 cleavage by intracellular or 

transmembrane proteinases.   

Since trastuzumab blocks nuclear localization of HER2, we were interested in understanding 

the function of p85HER2 in the nucleus. In order to validate our results, and to investigate 

whether cleavage of HER2 is essential for p85HER2 nuclear localization, we generated two 

different  expression plasmid constructs (one series tagged by GFP flag, and other series tagged 

by 6x histidine flag) of 4 different length HER2 including full-length HER2 (FL), HER2 deleted 

extracellular part but possessing transmembrane domain and intracellular part (TM+IC), 

intracellular HER2 (IC), and intracellular HER2 with deleted nuclear localizing signal (NLS) 

sequence (IC_ΔNLS). We transfected the construct to 293T cell line (HER2-negative) and then 

isolated a nuclear fraction of the cells to investigate which variant of HER2 can be localized in 

the nucleus. Results showed that only IC (p85HER2) localized in the nucleus that was detected 

by immunofluorescence staining and blotting. To investigate the function of nuclear p85HER2, 

we pull-down C-terminal HER2 from nuclear fractions of IC transfected 293T cells (called 

293T-IC) as well as SKBR3 and BT474 by protein IP using a monoclonal antibody specific for 

C-terminal end of HER2. Immunoblotting of HER2 in the pull-down samples showed the 

presence of p85HER2 in the nucleus of all the three cell lines. We then studied the protein profile 

of the p85HER2 pull-down IP samples by mass spectrometry to identify client proteins of 

nuclear p85HER2. Mass spectrometry identified 157, 120 and 265 proteins in SKBR3, BT474, 

and 293T-IC cells respectively. Of the identified proteins, 76 proteins were common in the 3 cell 

lines. 
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To understand the function of the proteins as well as nuclear p85HER2, the identified 

proteins were subjected to GSEA applying Gene Ontology-molecular and biological functions 

(to determine functions of the proteins), KEGG pathways (to determine pathways that the 

proteins are involved in) and ENCODE and ChEA Consensus transcription factors from ChIP-X 

(to determine upstream transcription factor regulators of the proteins). Gene Ontology and 

pathway analysis showed that a big majority of the proteins possess RNA binding activity and 

contribute to spliceosome complex, ribosome assembly, RNA processing, RNA trafficking, 

mRNA splicing, and non-coding RNA processing. In total, 9 transcription factors were detected 

interacted with nuclear p85HER2. Transcription factor enrichment analysis revealed that 

expression of the proteins are directly under regulation  of oncogenic/stemness transcription 

factors such as MYC, MAX, ATF2/3, E2F1/4/6, YY1, ETS1, FOXM1, FOXA1, OCT4, SOX2, 

FOS, STAT3, SMAD4, BCL3, ZEB1, GATA1/2, and other oncogenic/stemness transcription 

factors. These transcription factors are negative regulators of epithelial maintenance, positive 

regulators of mesenchymal maintenance and have pivotal roles in the induction of EMT of breast 

cancer. On the other hand, many pieces of evidence support a negative feedback regulation 

between activation of stemness pathways (including TGF-β, Wnt/β-catenin, JAK/STAT, and 

Notch pathways) and HER2 expression. HER2 is also a positive regulator of cell junction and 

adhesion [49,50]. HER2 cross-talks with the stemness pathways that results in the upregulation 

and activation of EMT mediators including metalloproteinases leading to increased cleavage of 

HER2. A well-documented example of negative feedback between HER2 and stemness is 

crosstalk between HER2 and Wnt/β-catenin pathway. HER2 can upregulate the Wnt/β-catenin 

pathway, whereas β-catenin activation induces EMT that decrease HER2 expression leading to 

development of trastuzumab resistance [51]. The decreased response to trastuzumab can be due 

to proteolytic cleavage of HER2 cleavage as well as ERBB2 gene silencing by epigenetic 

reprogramming during EMT that will be studied in the next chapter. Thus, we suggest that HER2 

cleavage is a consequence of activation of EMT demonstrating a negative feedback between 

HER2 expression and EMT. Though, further study is needed to address the mechanism of the 

regulation.    
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Chapter 6. EMT-mediated epigenetic mechanism of trastuzumab resistance 

 

6.1. SUMMARY 

There are several studies indicating that mesenchymal-like breast cancer cells with high 

stemness properties are HER2-low and trastuzumab-refractory, while epithelial-like 

differentiated breast cancer cells are HER2-high and trastuzumab-sensitive cells. Some other 

reports demonstrate a negative feedback regulation loop between HER2 expression and 

activation of stemness pathways. This regulation reflects also as negative feedback between 

trastuzumab response and EMT of breast cancer. In chapter 4, we showed that trastuzumab 

prevents nuclear localization of HER2 by blocking proteolytic cleavage of HER2. Cleavage and 

nuclear function of HER2 seem to be a part of EMT-mediated cell reprogramming. HER2 can 

upregulate EMT of HER2-positive breast cancer cells by crosslinking with the stemness 

pathways that result in the increased subpopulation of HER2-low/negative and proteinase-high 

mesenchymal cells (such as CD44+/CD24- BSCSs) which are trastuzumab-resistant. 

Downregulation of extracellular HER2 by EMT-mediated proteinases in trastuzumab-

resistant/lapatinib-sensitive cells has been shown by limited studies, however, the mechanism of 

ERBB2 gene silencing during EMT and in the mesenchymal-like cells derived from trastuzumab-

resistant/lapatinib-resistant HER2-positive breast tumors was entirely unknown. In this chapter, 

we found HER2 expression is positively and negatively correlated with the expression of 

epithelial and mesenchymal phenotype marker genes respectively. We found that chromatin of 

ERBB2 gene in HER2-high epithelial-like breast cancer cells is active while the chromatin is 

inactive in HER2-low mesenchymal-like cells. HER2-low breast cancer cell line also revealed 

less promoter-enhancer interaction small chromatin loops, super-enhancers and less topologically 

associating domains (TADs) compared to the HER2-high cell lines. The lower HER2 expression, 

the higher EMT phenotype, and inactivated chromatin all were found correlated with a lower 

response to lapatinib. The higher EMT phenotype was found correlated with a lower response to 

lapatinib. We also found that induction of EMT of HER2-positive cells results in downregulated 

HER2 expression and lower binding rate of trastuzumab. These results show that the 

downregulation of HER2 in mesenchymal-like cells in the culture of HER2-positive breast 

cancer cell lines was due to ERBB2 gene silencing by epigenetic reprogramming of the cells 
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during EMT. These results indicate that ERBB2 gene silencing by epigenetic regulation during 

EMT is the main mechanism of resistance of HER2-positive breast cancer cells to trastuzumab 

and lapatinib. 

  

6.2. INTRODUCTION 

Development of de novo resistance to HER2-targeting agents lapatinib and trastuzumab still 

remain a big challenge in the treatment of HER2-positive breast cancer. As discussed before, one 

suggested mechanism of trastuzumab resistance is cleavage and shedding of HER2. Cleavage 

from EJM region will result in shedding of the extracellular part of HER2 and production of 

p95HER2 still encored at the plasma membrane. While, in the case of cleavage from IJM region, 

the intracellular part of HER2 will shed and the extracellular part will remain at the plasma 

membrane. In both the cleavage cases that can take place by EMT-mediated proteinases, the cell 

would be resistant to trastuzumab but still sensitive to lapatinib. Notably, the exact mechanism of 

lapatinib resistance in HER2-positive breast cancer is still to be identified. One suggested 

mechanism is downregulation of HER2 expression by epigenetic-mediated ERBB2 gene 

silencing. We believe that wide-scale epigenetic reprogramming during EMT could be the mechanism 

of ERBB2 gene silencing.  

HER2 cleavage Generally, epithelial-like cells highly express HER2, whereas mesenchymal 

cells are majorly HER2-negative or HER2-low. This shows that mesenchymal-like cells show 

resistance to trastuzumab, suggesting that trastuzumab- resistance may link to EMT. JIMT-1 cell 

line is HER2+ breast cancer cells that quickly develop resistance to HER2. Studies showed that 

JIMT-1 was composed of approximately 10% CD44+/CD24- BCSC in initial cultures. This level 

rose to 85% at the late-passages [1]. Concurrently, the level of HER2 expression significantly 

reduced in late-passage cultures when compared to the early cultures. This regulation was 

associated with the development of trastuzumab-resistance. High passage JIMT-1 cells that were 

enriched mesenchymal CD44+/CD24- BCSCs expressing a lower level of HER2 also exhibited a 

highly-migratogenic phenotype and produced pro-invasive/metastatic proteins more than low-

passage JIMT-1 cells culture [104]. This phenomenon may explain the resistance of HER2-high 

breast tumors to trastuzumab due to an increased population of HER2-low CD44+/CD24 
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mesenchymal cells at the late-passages. Further, the CD44+/CD24- cells escape from 

trastuzumab-mediated ADCC. The cells could survive the immunoselection process in breast 

cancer cells co-cultured with NK cells and trastuzumab. This resistance may be attributed to the 

reduced HER2 expression levels on their surface [2]. In addition, our previous results showed 

that HER2 can be cleaved by metalloproteinases which are hallmark regulators of breast cancer 

EMT. We also showed that in the nucleus, cleaved HER2 interacts with proteins whose 

expression is under control of stemness transcription factors. These results suggest the 

downregulation of membranous HER2 during EMT. These pieces of evidence show that 

downregulated HER2 and therefore decreased response to trastuzumab are parts of the intrinsic 

regulation of mesenchymal breast cancer cells. However, the mechanism of this regulation is not 

yet studied.  

In the previous chapter, we discussed that the upregulation of metalloproteinases during 

EMT results in proteolytic cleavage of HER2 warranting the role of EMT in HER2 protein 

downregulation and development of trastuzumab resistance. In the current chapter, we test the 

hypothesis that EMT of HER2-positive breast cancer cells causes chromatin-based epigenetic 

silencing of ERBB2 gene that abrogates HER2 expression and leads to resistance against 

trastuzumab and lapatinib. In this chapter, we study the mechanism of ERBB2 gene silencing 

during EMT.   

 

6.3. RESULTS 

6.3.1. Mesenchymal breast cancer cells show lower ERBB2 gene expression 

To investigate whether expression level of ERBB2 gene is correlated with the expression of 

EMT marker genes, we analyzed the RNA-seq expression of ERBB2 gene, 12 epithelial marker 

genes (ELCAM, CD24, CDH1, F11R, FOXA1, KRT7, KRT8, KRT18, KRT19, MUC, NECTIN2, 

NECTIN4) as well as 12 mesenchymal marker genes (CD44, CTNNB1, FOXC1, MYC, NOTCH1, 

NOTCH2, SNAI2, SOX10, TWIST2, VIM, ZEB1, ZEB2) in 1,904 breast cancer tumor samples  

studied by METABRIC study [3]. We used cBioPortal portal [4] to investigate correlations 

between the mRNA levels of ERBB2 and the EMT markers in each tumor sample. The result 

showed a significant positive correlation between the expression of ERBB2 and all the epithelial 
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marker genes (Figure 6.1) and a negative correlation between ERBB2 and all the mesenchymal 

marker genes (Figure 6.2).  

We also analyzed the expression of ERBB2, epithelial marker gene MUC1, mesenchymal 

marker gene VIM, and GAPDH in 38 breast cancer cell lines (AU565, BT-20, BT474, BT-549, 

CAL-51, CAMA-1, DU4475, HCC-1143, HCC-1187, HCC-1395, HCC-1419, HCC-1428, HCC-

1500, HCC-1569, HCC-1599, HCC-1806, HCC-1937, HCC-1954, HCC-202, HCC-2218, HCC-

3, HCC-38, HCC-70, Hs578T, MCF7, MDA-MB-175-VII, MDA-MB-231, MDA-MB-361, 

MDA-MB-436, MDA-MB-453, MDA-MB-468, SKBR3, T47D, UACC-812, UACC-893, ZR-

75-1, ZR-75-30, ZRT) to study the correlation between mRNA expression levels of ERBB2 and 

EMT marker genes. For this, two normalized microarray expression datasets (GEO accession 

numbers: GSE50811 [5] and GSE66071 [6]) available from NCBI GEO (Gene Expression 

Omnibus) database were analyzed. As shown in Figure 6.3, comparatively, the expression of 

ERBB2 was positively and negatively correlated with the expression of respectively MUC1 and 

VIM in most of the cell lines.  

These results show positive coloration between ERBB2 gene expression and epithelial 

phenotype, and a negative correlation between ERBB2 gene expression and mesenchymal 

phenotype in breast cancer. This suggests that the expression of ERBB2 gene in epithelial-like 

breast cancer cells is higher than that in mesenchymal-like breast cancer cells, suggesting that 

mesenchymal cells mostly show low ERBB2 gene expression compared to epithelial-like breast 

cancer cells.  
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Figure 6.1. Correlation between mRNA expression of ERBB2 and epithelial-like cell markers 

in breast cancer tumors. The expression value is presented by Z-score fold changes RNA-seq 

expression (v2 RSEM). Data source: normalized RNA-seq data from 1,904 breast tumors 

studied by METABRIC study [3] and available from cBioPortal portal [4] available at 

“https://cbioportal.org”.  
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Figure 6.2. Correlation between mRNA expression of ERBB2 and mesenchymal-like cell 

markers in breast cancer tumors. The expression value is presented by Z-score fold changes 

RNA-seq expression (v2 RSEM). Data source: normalized RNA-seq data from 1,904 breast 

tumors studied by METABRIC study [3] and available from cBioPortal portal [4] available at 

“https://cbioportal.org”. 
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Figure 6.3. mRNA expression levels of ERBB2, MUC1, VIM and GAPDH in breast cancer 

cell lines. Data source: Microarray expression profiling (GEO accession numbers: GSE50811 

[5] and GSE66071 [6] available from GEO database. 

6.3.2. Promoter CpG islands methylation signature of ERBB2 in epithelial-like and 

mesenchymal-like breast cancer cells 



169 

 

Transcription of genes is highly under control of promoter epigenetic regulation in DNA 

(CpG island methylation) and chromatin (histone protein modification) levels. To study the 

mechanism of low ERBB2 gene expression we investigated promoter CpG island methylation 

signature of ERBB2 gene in breast cancer cell lines with high ERBB2 expression (BT474, HCC-

1954, MDA-MB-453, SKBR3), and those with low ERBB2 expression (BT20, MCF7, MDA-

MB-231, MDA-MB-468, SUM-159PT, T47D). Array expression and genome tiling array 

methylation data of the cells were obtained from GEO database (Accession number: GSE44838 

[7]) 

The mRNA expression levels of ERBB2 in the cells are shown in Figure 6.4A. The result 

showed a positive correlation between the expression of ERBB2 and FOXA1 (epithelial-like cell 

marker), and the negative correlation between ERBB2 expression and the expression of FOXC1 

(mesenchymal-like cell marker) in all cell lines except HCC-1954 (Figure 6.4A-C). Despite the 

different ERBB2 expression levels of the cell lines, no significant difference was found between 

the cell lines in terms of the CpG island methylation (Figure 6.4D). These results show that low 

ERBB2 expression levels in the mesenchymal-like cells are not due to promoter CpG island 

methylation.   
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Figure 6.4. CpG island methylation profiles of ERBB2 promoter in 10 breast cancer cell lines. 

(A) mRNA expression levels of ERBB2, FOXA1, and FOXC1 genes in breast cancers. (B) 

Methylation levels of promoter CpG islands in the cell lines. Data source: Array expression 

profiling and genome tiling array methylation profiling (GEO Accession number: GSE44838 

[7]) available from GEO database. The color gradient bar indicates HER2 expression level. 

Genomic coordinate: chr17:37,834,978-37,897,500 (GRCh37/hg19 assembly). 

6.3.3. EMT regulator transcription factors bind to ERBB2 regulatory elements  
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Since DNA level epigenetic regulation (promoter CpG island methylation) has no role in the 

expression of ERBB2, we hypothesized that chromatin level epigenetic regulation (promoter and 

enhancer histone protein modification) may control different levels of ERBB2 expression in the 

breast cancer cells. To examine this, we first studied transcription factors that directly bind to 

ERBB2 chromatin identified by the ChIP-seq experiment. Result identified enrichment of a 

totally 82 transcription factors at the region of 10 kbp upstream and 10 kbp downstream of 

ERBB2 gene motif Y in 3,740 human biological samples (Figure 6.5A). Of 82 transcription 

factors 8 (CDX2, FOXA1, FOXA2, KLF9, MBD3, MXI1, RUNX3, SP1) were epithelial status 

maintenance regulators, and 31 (ATF2, E2F1, E2F6, E2F7, EGR1, ELF2, ETS1, ETV1, FOS, 

FOXM1, FOXP1, FOXP2, GATA1, GATA2, GATA3, GATA6, HOXC9, JUNB, JUND, 

KDM5A, MAX, MAZ, MYC, MZF1, NANOG, RELA, SMAD4, STAT4, STAT5A, TEAD6, 

ZBTB7A) were EMT inducers which are master regulators of mesenchymal status maintenance 

(Figure 6.5B).  

We then investigated chromatin accessibility/activity of ERBB2 regulatory elements 

(promoter and enhancer) by analyzing ATAC-seq and DNase hypersensitivity data of MCF7 and 

MDA-MB-231 cell lines to explore the mode of correlation of ERBB2 expression with 

accessibility/activity of ERBB2 regulatory element chromatin. The result showed higher ATAC-

seq (Figure 6.5A) and DNase I hypersensitivity (Figure 6.5B) signals at ERBB2 promoters and 

enhancer chromatin of MCF7 cell lines compared to MDA-MB-231 cell line. These results show 

that ERBB2 promoter and enhancer chromatin of cells with higher ERBB2 expression level is 

more accessible/active than that of cells with a lower level of ERBB2 expression.  

To examine whether higher ERBB2 expression is also correlated with higher enrichment of 

epithelial (FOXA1) and mesenchymal (E2F1) phenotype inducer transcription factors at 

regulatory regions of ERBB2. The normalized ChIP-seq values were obtained from Cistrome 

Data Browser [8] and the enrichment peaks were visualized by using WashU Epigenome 

Browser [9]. Results revealed higher enrichment of FOXA1 at promoter and enhancer chromatin 

of the MDA-MB-453 cell line compared to the MDA-MB-231 cell line (Figure 6.5C). In 

contrast, the enrichment of E2F1 at promoter chromatin of ERBB2 gene in the MA-MB-231 cell 

line was higher than that in MCF7 cell line (Figure 6.5D). These results demonstrate that higher 

ERBB2 expression is correlated with higher enrichment of epithelial phenotype inducer 
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transcription factors as well as with lower enrichment of mesenchymal phenotype inducer 

transcription factors at regulatory elements of ERBB2 gene.  

 

Figure 6.5. ERBB2 gene binding transcription factors identified by ChIP-seq. (A) Word cloud 

diagram of transcription factors (TFs) detected bound to ERBB2 gene at 10 kb upstream and 

downstream of motif Y.  The different number of binding sites for each TF at the query region 

is illustrated as a different word size. TFs promoting epithelial and mesenchymal phenotypes 

are illustrated in orange and green colors respectively. (B) The number of the identified TFs 

based on their function in EMT procedure. Data obtained from ChIPbase v2.0 database 

available at “http://rna.sysu.edu.cn/chipbase/index.php”.  

 



173 

 

 

Figure 6.6. ERBB2 chromatin accessibility/activity and enrichment of FOXA1 and E2F1. (A)  

ATAC-seq and (B) DNase I hypersensitivity value peaks of ERBB2 gene and upstream 

regions in MCF7 and MDA-MB-231 cell lines. (C) ChIP-seq enrichment value peaks of 

FOXA1 at ERBB2 gene and upstream regions in MDA-MB-452 and MCF7 cell lines. (D) 

ChIP-seq enrichment value peaks of E2F1 at ERBB2 gene and upstream regions in MCF7 and 

MDA-MB-231 cell lines. Genomic coordinate: chr17:39,643,771-39,735,523 (GRCh38/hg38 

assembly).  

6.3.4. Histone modification of ERBB2 chromatin in epithelial-like and mesenchymal-like 

breast cancer cells 

To investigate whether different ERBB2 expression in epithelial-like and mesenchymal-like 

cells is due to different ERBB2 chromatin architecture, we studied the ERBB2 chromatin 

dynamics in HER2-high (AU565, BT474, HCC-1954, MDA-MB-361, SKBR3) and HER2-low 

(MCF7, MDA-MB-231, MDA-MB-468) breast cancer cell lines. To this, we analyzed 

enrichment of open/active gene body chromatin histone marks (H2BK120ub, H3K39me3, 

H3K79me2), open/active promoter chromatin histone marks (H3K4me1, H3K4me3), 
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open/active enhancer chromatin histone marks (H3K9ac, H3K27ac, H4K8ac), as well as 

closed/inactive promoter and enhancer chromatin histone marks (H3K9me, H3K27me3) at 

ERBB2 gene chromatin in the cells. The normalized ChIP-seq values were obtained from 

Cistrome Data Browser [8] and the enrichment peaks were visualized by using WashU 

Epigenome Browser [9]. Used datasets are shown in chapter 10. The cell lines were selected 

according to ERBB2 expression levels shown in Figure 6.3A. The mRNA expression levels of 

the ERBB2, MUC1, VIM, and GAPDH genes are also shown in Figure 6.7A-C. 

As result, AU565, BT474, HCC-1954, MDA-MB-361 and SKBR3 cell lines showed higher 

MUC1 mRNA expression compared to. In contrast, MCF7 and MDA-MB-231 but not MDA-

MB-468 cell lines showed higher VIM expression compared to AU565, BT474, HCC-1954, 

MDA-MB-361 and SKBR3 cell lines (Figures 6.7A-C). These results further approve that 

ERBB2 expression is correlated positively with epithelial phenotype and negatively with 

mesenchymal phenotype suggesting that mesenchymal-like breast cancer cells show low ERBB2 

expression. 

ChIP-seq data of histone marks showed higher enrichment of H2BK120ub (Figure 6.7E), 

H3K39me5 (Figure 6.7F) and H3K79me3 (Figure 6.7G) at ERBB2 gene body in the HER2-high 

cell lines compared to that in the HER2-low cell lines. Results also showed that enrichment of 

open/active promoter chromatin marks H3K4me2 (Figure 6.8A) and H3K4me3 (Figure 6.8B) at 

promoter chromatin of ERBB2 gene in EHR2-high cell lines were significantly higher than that 

in HER2-low cell lines. The HER2-high cell lines showed relatively higher enrichment levels of 

open/active enhancer chromatin histone marks H3K9ac (Figure 6.9A), H3K27ac (Figure 6.9B) 

and H4K8ac (Figure 6.9C) at enhancer chromatin of ERBB2 gene when compared with the 

HER2-low cell lines. In addition, enrichment levels of closed/inactive promoter and enhancer 

chromatin histone marks H3K9me (Figure 6.9A) and H3K27me3 (Figure 6.9B) at ERBB2 gene 

were relatively low in HER2-high as well as in HER2-low cell lines.  

Taken together, these results suggest that (1) Chromatin activity of the ERBB2 gene governs 

ERBB2 gene expression in breast cancer. ERBB2 chromatin activity (2) Epithelial-like breast 

cancer cells express higher levels of ERBB2 in comparison with mesenchymal-like breast cancer 

cells due to open chromatin of ERBB2 promoter and enhancer regions in the epithelial-like breast 

cancers. ERBB2 chromatin activity is correlated with the enrichment of epithelial phenotype 
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transcription factors and open/active chromatin histone modifications. (3) Whereas 

mesenchymal-like cells show negligible ERBB2 expression. This is because of closed/inactive 

ERBB2 promoter and enhancer chromatin that is correlated with the absence of epithelial 

phenotype transcription factors as well with higher enrichment of mesenchymal phenotype 

transcription factors at their ERBB2 chromatin. (4) Closed/inactive status of ERBB2 chromatin in 

mesenchymal-like cells is not due to inactivator histone modifications, but maybe because of the 

absence of activator histone modifications at ERBB2 chromatin.   
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Figure 6.7. mRNA expression and open/active gene body chromatin histone marks of ERBB2 

gene in breast cancer cell lines. (A-D) mRNA expression levels of ERBB2 (A), epithelial 

marker MUC1 (B), mesenchymal marker (VIM) and GAPDH in HER2-high (HCC-1954, 

BT474, SKBR3, AU464, MDA-MB-361) and HER2-low (MCF7, MDA-MB-231, MDA-MB-

468) breast cancer cell lines. Data obtained from GEO database with accession numbers 

GSE50811 [5] and GSE66071 [6]). (E-G) ChIP-seq enrichment of open/active gene body 

chromatin histone modification marks H2BK120ub (E), H3K39me3 (F), and H3K79me2 (G) 

at the chromatin of ERBB2 gene and upstream region in the cells lines. Color gradient bars 

indicate the HER2 expression level. Genomic coordinate: chr17:39643771-39735523 

(GRCh38/hg38 assembly).  

 

Figure 6.8. Open/active promoter histone marks of ERBB2 gene in breast cancer cell lines. 

ChIP-seq enrichment of (A) H3K4me1 and (B) H3K4me3 at the chromatin of ERBB2 gene 

and upstream region in HER2-high (HCC-1954, BT474, SKBR3, AU464, MDA-MB-361) 

and HER2-low (MCF7, MDA-MB-231, MDA-MB-468) breast cancer cell lines. Color 

gradient bars indicate the HER2 expression level. Genomic coordinate: chr17:39,643,771-

39,735,523 (GRCh38/hg38 assembly).  
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Figure 6.9. Open/active enhancer histone marks of ERBB2 gene in breast cancer cell lines. 

ChIP-seq enrichment of (A) H3K9ac, (B) H3K27ac and (C) H4K8ac at the chromatin of 

ERBB2 gene and upstream region in HER2-high (HCC-1954, BT474, SKBR3, AU464, 

MDA-MB-361) and HER2-low (MCF7, MDA-MB-231, MDA-MB-468) breast cancer cell 

lines. Color gradient bars indicate the HER2 expression level. Genomic coordinate: 

chr17:39,643,771-39,735,523 (GRCh38/hg38 assembly).  
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Figure 6.10. Closed/inactive promoter and enhancer histone marks of ERBB2 gene in breast 

cancer cell lines. ChIP-seq enrichment of (A) H3K9me and (B) H3K27me3 at the chromatin 

of ERBB2 gene and upstream region in HER2-high (HCC-1954, BT474, SKBR3, AU464, 

MDA-MB-361) and HER2-low (MCF7, MDA-MB-231, MDA-MB-468) breast cancer cell 

lines. Color gradient bars indicate the HER2 expression level. Genomic coordinate: 

chr17:39,643,771-39,735,523 (GRCh38/hg38 assembly).  

6.3.5. 3D genome organization of ERBB2 chromatin in HER2-high and HER2-low breast 

cancer cell lines 

Our ChIP-seq histone modification analysis results revealed that ERBB2 chromatin in 

HER2-high epithelial-like breast cancer cell lines is open/active, while HER2-low mesenchymal-

like breast cancer cell lines showed closed/inactive ERBB2 chromatin. HER2-low mesenchymal-

like cells also showed lower chromatin-chromatin interactions and lower 3D genome structures 

including topologically associating domains (TADs). It is expected that the interaction of ERBB2 

promoter with canonical and non-canonical enhancers is lower in HER2-low mesenchymal-like 

cells. To examine this, we performed a 4D genome organization analysis of ERBB2 gene by 

analyzing interactions between ERBB2 chromatin and upstream and downstream chromatin 

regions in HCC-1954 and MCF7 cell lines. To this objective, we analyzed experimental IM-PET 
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(Integrated Methods for Predicting Enhancer Targets) and ChIA-PET (Chromatin Interaction 

Analysis by Paired-End Tag Sequencing) data from the cell lines by using 4Dgenome database 

[10]. Results showed the interaction of ERBB2 promoter with 240 target enhancer regions in 

HCC-1954 cell line (Figures 6.11A and B). Of 240 target enhancers, 134 were at upstream and 

106 were at downstream of ERBB2 promoter. The chromatin loop size of 106 interactions was 

found smaller than 50 kb and 18 interactions formed a chromatin loop larger than 500 kb 

(Figures 6.11A and B). While MCF7 cell line showed the interaction of ERBB2 promoter with 

11 target enhancers which all were at upstream region of ERBB2 promoter. Of 11 interactions, 

10 had a chromatin loop size of fewer than 50 kb, and 1 interaction had a loop size of 

approximately 244 kb (Figures 6.11C and D).  

We also analyzed ChIP-seq H3K27ac enrichment profile of the ERBB2 interaction sites in 

HCC-1954 and MCF7 in order to examine whether ERBB2 promoter interaction with the target 

enhancer depends on chromatin activity of ERBB2 promoter or target enhancer. The result 

showed higher H3K27ac enrichment at ERBB2 chromatin in HCC-18954 cells in comparison 

with MCF7 cell lines. Whereas, MCF7 cell line showed higher H3K27ac enrichment at non-

ERBB2 chromatin than that in HCC-1954 cell lines. These results show the association of 

number and loop size of ERBB2 chromatin interaction with the H3K27ac signature of ERBB2 

chromatin but not non-ERBB2 chromatin. This suggests that ERBB2 promoter interaction with 

enhancers depends on the accessibility/activity of ERBB2 promoter chromatin but not target 

enhancer chromatin. Overall, these results show that the number and size of promoter-enhancer 

interactions of ERBB2 gene in HER2-high epithelial-like breast cancer cells are higher than that 

in HER2-low mesenchymal-like breast cancer cells. This is due to the accessibility/activity of 

ERBB2 chromatin in HER2-high epithelial-like cells, and inaccessibility/inactivity of ERBB2 

chromatin in HER2-low mesenchymal-like cells.  

For more confirmation. we studied also 3D genome organization of ERBB2 and flanking 

chromatin (2 Mb upstream and 2 Mb downstream from ERBB2 TSS) using HiC data of MCF7 

(HER2-low) and MCF10A (HER2-negative) cell lines. ERBB2 (Chr17:37,844,336-37,884,915) 

gene was used as bait. The data was analyzed by using 3DIV (3D-Genome Interaction Viewer) 

database [11]. As result, MCF7 cell line showed higher numbers of chromatin interactions and 

TADs at the quiry region compared to MCF10A cell line. The MCF7 cell line also showed 5 
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super-enhancers located at downstream of ERBB2 TSS, however no super-enhancer was detected 

at the same chromatin of MCF10A cell line (Figures 6.11E and F). These results show a higher 

and a lower chromatin organization and topology of ERBB2 gene and flanking chromatin in 

MCF7 and MCF10A cell lines respectively. suggesting that different ERBB2. These results also 

further confirm that the ERBB2 expression levels and ERBB2 chromatin accessibility/activity 

idepends to global chromatin architecture of the cells. 

Taken together, these results indicate higher 3D chromatin interaction of ERBB2 gene in the 

HER2-high breast cancer cells compared to the HER2-low breast cancer cells. HER2-high 

epithelial-like breast cancer cells show a higher number of chromatin interactions between 

ERBB2 promoter and target enhancers. Whereas the number of ERBB2 promoter-enhancer 

interactions in HER2-low mesenchymal cells is lower. In addition, accessibility/activity of 

ERBB2 chromatin was the main factor in the formation of ERBB2 chromatin interaction with 

distance enhancer regions. This indicates the epigenetic role of breast cancer EMT regulators in 

the chromatin dynamics of ERBB2 that controls HER2 expression in breast cancer cells.  
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Figure 6.11. 3D genome organization of ERBB2 gene in breast cancer cell lines. (A) Circle 

plot of IM-PET promoter-enhancer interaction of ERBB2 gene in HCC-1954 cell lines. (B) 

Scatter plot illustrating chromatin loop size of the ERBB2 promoter-enhancer interactions 

divided by location of target enhancers (upstream or downstream from ERBB2 TSS). (C) IM-

PET promoter-enhancer interaction of ERBB2 gene in MCF7 cell lines. (D) Scatter plot 

illustrating chromatin loop size of ERBB2 promoter-enhancer interactions divided by location 

of target enhancers (upstream or downstream from ERBB2 TSS). ERBB2 TSS is indicated by 

arrowhead. Data was obtained from 4Dgenome database [10]. (E and F) HiC heatmap plot 

and chromatin interactions of ERBB2 gene in MCF7 (HER2-low; E) and MCF10A (HER2-

negative; F) cell lines. Data were analyzed by using 3DIV database [11]. HiC heatmap 

resolution: 20 kbp. TAD identification method: TopDom (window size: 20 kb). Genomic 

coordinate: chr17:35,844,336-39,844,336 (GRCh37/hg19 assembly).  
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6.3.6. Downregulated ERBB2 expression and upregulated EMT in lapatinib resistance 

To investigate the role of EMT in development of resistance of HER2-positive breast cancer 

cells to anti-HER2 drugs, we studied mRNA expression of ERBB2, epithelial phenotype markers 

CDH1, ALCAM, FOXA1, NECTIN2 and OCLN, mesenchymal phenotype markers CDH2, FN1, 

FOXC1, SNAI2 and VIM, as well as matrix metalloproteinase MMP1, MMP2, MMP3, MMP9, 

MMP10 and MMP28 in lapatinib sensitive and acquired lapatinib resistant BT474 cells. The 

array expression profiling data obtained from GEO database (Series GSE16179 [12]).  

As result, lapatinib resistant cells showed lower expression levels of ERBB2 (Figure 6.12A) 

and epithelial marker genes (Figure 6.12B) and higher expression levels of mesenchymal marker 

genes (Figure 6.12.C) and MMPs (Figure 6.12D) when compared with the lapatinib sensitive 

cells. These results indicate that lapatinib sensitive cells are HER2-high and epithelial-like cells, 

while lapatinib resistance cells are HER2-low and mesenchymal-like cells, suggesting that EMT 

induces lapatinib resistance via downregulating HER2 expression.  

 

Figure 6.12. Downregulated ERBB2 expression and upregulated EMT in lapatinib resistance. 

mRNA expression levels of (A) ERBB2 and housekeeping genes, (B) epithelial phenotype 

marker genes, (C) mesenchymal phenotype marker genes and (D) matrix metalloproteinases 

in lapatinib sensitive and resistant BT474 cells. Data obtained from GEO database (Series 

GSE16179 [12]).  

6.3.7. EMT reduces HER2 expression and decreases trastuzumab binding to HER2-positive 

breast cancer cells 
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To examine whether induction of EMT in HER2-positive epithelial cell reduces HER2 

expression, we analyzed mRNA expression of ERBB2, epithelial phenotype markers CDH1, 

EPCAM, MUC1 and OCLN, mesenchymal phenotype markers CDH2, FN1, SNAI2 and VIM, 

matrix metalloproteinase MMP1, MMP2, MMP3, MMP9, MMP10 and MMP28, as well as 

ADAM10, ADAM17 and ADAM19 in A549 cell line (HER2-high human lung cancer epithelial 

cell line) subjected to EMT induction by treatment with 5 ng/ml TGF-β for 0, 0.5, 1, 2, 4, 8, 16, 

24, and 72 hours. The array expression profiling data obtained from GEO database (Series 

GSE17708 [13]). Results showed significantly decreased mRNA expression of the epithelial 

marker genes (Figure 6.13B) and increased mRNA expression of the mesenchymal marker genes 

(Figure 6.13C), MMPs (Figure 6.13D) as well as ADAMs (Figure 6.13E), demonstrating EMT 

induction in the cells. Downregulated epithelial marker genes and upregulated mesenchymal 

marker genes were correlated with significant reduction of ERBB2 expression (P < 0.001) at 72 

hours after TGF-β treatment started (Figure 6.13A).  

To investigate whether EMT reduces trastuzumab binding to HER2 we induced EMT in 

BT474 by treatment with EMT inducing media supplements cocktail (containing Wnt-5a, TGF-

β1, anti-human E-Cadherin antibody, anti-human sFRP1 antibody, and anti-human Dkk1 

antibody) for 15 days. Induction of EMT was confirmed by monitoring cell morphology (Figure 

6.14.A) and immunofluorescence staining of Vimentin (Figure 6.14B). After the majority of cells 

gained mesenchymal phenotype, the cells were treated with 10 μg/ml trastuzumab for 1 hour and 

then trastuzumab was stained by immunofluorescence staining. Results showed lower binding of 

trastuzumab to HER2 in the cells underwent EMT compared to control cells. These results 

confirm that EMT downregulates HER2 expression that causes a decreased rate of trastuzumab 

binding to HER2-positive breast cancer cells. 
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Figure 6.13. EMT reduces ERBB2 expression. mRNA expression levels of (A) ERBB2 and 

housekeeping genes, (B) epithelial phenotype marker genes, (C) mesenchymal phenotype 

marker genes and (D) MMPs and (E) ADAMs in TGF-β-mediated EMT-induced A549 cells. 

Data obtained from GEO database (Series GSE17708 [13]). 
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Figure 6.14. EMT decreases trastuzumab binding to HER2. (A) Epithelial morphology of 

PBS-treated BT474 cells and mesenchymal morphology of EMT-induced BT474 cells. (B) 

Immunofluorescence staining of Vimentin and trastuzumab in PBS-treated and EMT-induced 

BT474 cells treated with trastuzumab (10 μg/ml) for 1 hour.  

 

6.4. DISCUSSION 

HER2 is an important target for the treatment of HER2-positive breast cancers. Several 

HER2-targeting agents such as trastuzumab have been approved by the FDA to treat HER2 

positive breast cancer. However, the resistance to these HER2 targeting agents has become a 

huge obstacle for the treatment of HER2-positive breast cancer patients. It is not clear why many 

HER2-positive tumors develop resistance to anti-HER2 neoadjuvant trastuzumab. In this chapter, 

we studied the chromatin signature of ERBB2 gene in epithelial-like HER2-high and 

mesenchymal-like HER2-low breast cancer cells and the role of EMT-mediated epigenetic 

regulation in ERBB2 chromatin organization by analyzing genomics and epigenomics data from 

publicly available databases. We found that the expression of EMT marker and inducer is 

negatively correlated with HER2 expression, and positively correlated with trastuzumab and 
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lapatinib resistance. HER2 expression in epithelial-like breast cancer cells is significantly higher 

than that in mesenchymal-like breast cancer cells. This is due to open/active chromatin of 

ERBB2 gene in epithelial-like cells, as well as closed/inactive chromatin of ERBB2 gene in 

mesenchymal-like breast cancer cells. This figure is also correlated with enrichment levels of 

EMT regulator transcription factor at the cis-regulatory regions of ERBB2 gene. We also showed 

downregulated HER2 expression and upregulated EMT in BT474 cells resistance to lapatinib 

compared to lapatinib-sensitive cells. Induction of EMT in HER2-high epithelial-like breast 

cancer cells resulted in the downregulation of HER2 and decreased rate of trastuzumab binding 

to the cells. Our results suggest that EMT of HER2-positive breast cancer cells results in 

abrogation of HER2 expression by chromatin-base epigenetic silencing of ERBB2 gene that leads 

to emergence of resistance to trastuzumab (Figure 6.15).   

 

Figure 6.15. Schematic summary of findings described in chapter 6. EMT of HER2-positive 

breast cancer cells increases trastuzumab resistance by chromatin-based epigenetic 

downregulation of HER2 expression. Increased EMT and mesenchymal phenotype is 

correlated with decreased expression of epithelial phenotype (including tight junctions and 

cell-cell junction proteins) and increased mesenchymal phenotype, decreased enrichment of 

open/active chromatin marks (H3K4me and H3Kac as examples), increased enrichment of 

closed/inactive chromatin marks (H3K9me and H3Kdac as examples), decreased HER2 

expression and increased trastuzumab resistance. 
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Liu et al. [92] demonstrated that CD44+/CD24-
 
cells are mesenchymal-like BCSCs that 

localized at the tumor invasive margins and are correspond to migration and metastasis, whereas 

ALDH+
 
cells are defined as epithelial-like BCSCs that are located in deeper sites of the tumors 

and exhibit more proliferative property. CD44+/CD24- cells were isolated by FACS from non-

tumorigenic human mammary epithelial cells that have undergone an induced EMT, exhibited 

many properties of BCSCs including mammosphere-formation ability [14]. On the other side, 

CD44+/CD24-
 
BCSCs isolated from breast tumors expressed a low level of E-cadherin, but high 

levels of EMT markers including N-cadherin, Vimentin, Fibronectin, ZEB1/2, FOXC2, Snail, 

Slug, and Twist1/2 [14]. Clinical studies revealed that HER2-positive metastatic breast cancers 

were associated with EMT [15,16]. HER2 signaling in human mammary epithelial cells results 

in increased expression of Vimentin, N-cadherin, and Integrin-α5, as well as the loss of E-

cadherin and Desmoplakin. However, some recent study suggests that loss of E-cadherin is not 

essential for HER2-induced EMT [17,18]. It is shown recently that overexpression of HER2 in 

epithelial breast cancer cell line D492 induces EMT and maintains the mesenchymal phenotype 

in the absence of EGFR [19]. There are also many reports revealing crosstalk of HER2 receptor 

and its downstream pathways with the stemness signaling pathways to prone mammary epithelial 

cells towards EMT.  

 We hypothesized that response to trastuzumab in luminal cells and resistance to 

trastuzumab in basal/mesenchymal cells may link to EMT. Trastuzumab-resistant tumors are 

thought to be enriched for EMT features. Basal breast cancer cell line JIMT-1 which is HER2-

positive, trastuzumab-refractory, ER-negative, and Vimentin-positive is a best cell model to 

explain the link between HER2, EMT and trastuzumab resistance. De novo resistance of JIMT-1 

cells to trastuzumab can be explained by the emergence of trastuzumab-resistance BCSCs due to 

the dynamic interaction between HER2 and EMT [1,20–25]. The subpopulation of 

CD44+/CD24- BCSC in the early culture of the JIMT-1 cell line is reported around 10%. 

However, this rate was increased to 85% at the late-passages which was also associated with a 

dramatic decline in HER2 expression levels [1]. Treatment of CD44+/CD24- BCSCs derived 

from breast tumor tissues treated with formestane, an aromatase inhibitor, resulted in a 16% 

decrease (P < 0.01) in the cell proliferation in response to single-agent trastuzumab and 50% 

decrease (P < 0.001) in response to treatment with trastuzumab combined with formestane. The 

combined treatment also inhibits the expression of EGFR, HER2, aromatase and Cyclin D1 in 
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CD44+/CD24- cells, which suggests that targeting HER2 by trastuzumab may inhibit the growth 

of CD44+/CD24- BCSCs through the inhibition of cell cycle progression [23]. Some other 

reports suggest that preferential killing of the putative CD44+/CD24- BCSCs might be sufficient 

to overcome primary resistance to trastuzumab. The CD44+/CD24- BCSCs derived from 

trastuzumab-refractory JIMT-1 cells were 10-fold more sensitive to cell growth inhibitory effects 

of metformin than the other cells [25]. JIMT-1 cell line is highly enriched with the mesenchymal 

phenotype CD44+/CD24- fraction in late passages [1,26,27]. Indeed, treatment of JIMT-1 

tumors with trastuzumab failed to exhibit significant reductions in tumor volume but when 

trastuzumab was combined with metformin, the tumor size was significantly smaller than those 

of the groups treated with single-agent trastuzumab or metformin [25]. These results suggest that 

BCSCs inside JIMT-1 tumor escape from trastuzumab effects, that support the hypothesis that 

mesenchymal cell subpopulation is responsible for resistance of the tumor against trastuzumab. 

It is further revealed that trastuzumab-resistant HER2-positive cells show spontaneous EMT 

and predominant exhibition of CD44+/CD24- phenotype [28]. There is a synchronous increase in 

CD44 and elements of Wnt/β-catenin signaling and a decrease in CD24 expression in 

mesenchymal colony clusters of SKBR3 cells. SKBR3 cell line is characterized as HER2-

positive, trastuzumab-sensitive liminal cell line. The CD44+/CD24- mesenchymal colonies of 

SKBR3 also show significantly upregulated EMT markers including Vimentin, N-cadherin, 

Twist1 and Fibronectin. The colonies were highly resistant to trastuzumab and lapatinib while 

the luminal/epithelial SKBR3 cells remained trastuzumab-sensitive. Similar to previous reports, 

HER2 expression levels in mesenchymal colonies were negatively correlated with trastuzumab 

resistance [28]. Thus, lapatinib which is recently approved to treat trastuzumab-resistant breast 

cancers, may not be a useful therapeutic option in targeting CD44+/CD24- mesenchymal cell-

rich tumors due to the negative regulation of HER2 during EMT.  

Furthermore, the expression of the EMT-driving transcription factors Slug, Twist1 and 

ZEB1 are higher in trastuzumab-refractory basal HER2-positive JIMT-1 cells than that in the 

trastuzumab-responsive SKBR3 cells. The knockdown of the transcription factors in parental 

JIMT-1 cells reduced the subpopulation of CD44+/CD24- BCSC by 5, 5 and 2-fold, 

respectively. Interestingly, depletion of the EMT-driving transcription factors increased the 

trastuzumab-refractory in JIMT-1 tumors due to sensitized CD44+/CD24- BCSCs inside the bulk 
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JIMT-1 tumors [24]. HER2-positive basal epithelial BCSCs are susceptible to change in their 

expression signature during EMT. This phenomenon may explain the resistance of some HER2-

positive breast tumors to HER2-targeting agent including trastuzumab. Further, CD44+/CD24- 

BCSC subpopulation of HER2-positive cell lines or tumors may escape from trastuzumab-

mediated ADCC. BCSCs could survive the immunoselection process in breast cancer cells co-

cultured with NK cells and trastuzumab. This resistance may be attributed to the reduced HER2 

expression levels on their surface [2]. Overall, our results demonstrate that EMT of HER2-

positive breast cancer cells causes the emergence of a mesenchymal-like cell subpopulation 

which are HER2-low/negative and highly resistant to trastuzumab and lapatinib. The significant 

depletion of HER2 in the mesenchymal-like cells inside the tumor can take place by chromatin-

based epigenetic silencing of ERBB2 gene during EMT. Thus, we suggest that EMT and 

mesenchymal-like cells can be major mechanism of and responsible for de novo resistance to 

HER2-targeting therapeutics including trastuzumab and lapatinib and serve as potential effective 

targets for therapy and to overcome drug resistance in breast cancers.  
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Chapter 7. Overall discussion  

 

HER2 (ErbB2/Neu) is a 185 kDa transmembrane receptor belongs to the tyrosine kinase 

epidermal growth factor receptor family including other receptors EGFR (HER1/ErbB1), HER3 

(ErbB3) and HER4 (ErbB4) [1–3] Dimerization of HER receptors leads to activation of their 

intracellular tyrosine kinase domains leading to the phosphorylation of both receptors [3]. 

Phosphorylated HER receptor dimers initiate multiple signaling pathways including PI3K/Akt, 

PLC-ɣ, and MAPK signaling pathways, which promote cell growth, division and motility [3]. 

Activation of HER2 tyrosine kinase domain takes place after homodimerization and 

heterodimerization with either EGFR, HER3, or HER4. HER2 is encoded by ERBB2 gene which 

is known as an oncogene and amplification causes overexpression of HER2 receptor in the cells. 

Overexpression of HER2 mostly due to gene amplification is a common oncogenic phenomenon 

in many cancer types and is associated with poor clinical outcome [4]. HER2 is overexpressed 

more than 10 times in tumor cells than that in normal cells in 15-30% of all breast cancers [2,5–

7], 2-66% of all ovarian cancers [8,9], and 4-35% of all lung adenocarcinoma [10,11]. The 

cancers with HER2 overexpression which are known as “HER2-positive cancers” grow faster 

due to more HER2 signaling but are vulnerable to anti-HER2 targeting therapies including 

trastuzumab and pertuzumab. 

Trastuzumab and pertuzumab bind to domains IV and II of the extracellular part of HER2 

respectively. Trastuzumab is reported to block the homodimerization of HER2, and to inhibit 

ligand-independent HER2-mediated signaling as HER2 is an orphan receptor, but could 

homodimerize when overexpressed [12–14]. Pertuzumab is known to block the 

heterodimerization of HER2 and to inhibit ligand-dependent HER2-mediated signaling. 

However, we showed that trastuzumab and pertuzumab have no effect on HER2 

homodimerization, phosphorylation and downstream signaling [15]. So far evidence on the exact 

mode of action of trastuzumab and resistance mechanism still remains controversial.  

 

7.1. INHIBITING p85HER2 AS A MECHANISM OF TRASTUZUMAB ACTION 
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Trastuzumab binds to domain IV of HER2 and is thought to block binding pocket for 

receptor homo-dimerization, thereby blocking HER2 homo-dimerization, phosphorylation and 

consequently inhibition of downstream signaling pathways [16,17]. The following mechanisms 

have been suggested for the tumor inhibitory effects of trastuzumab. (i) Trastuzumab binding to 

HER2 suppresses PI3K/Akt and MAPK pathways by inhibition of HER2 activation [13]. In this 

model, trastuzumab binding to HER2 may prevent tyrosine kinase Src signaling and upregulates 

the activity of the tumor suppressor PTEN [18,19]. This inhibition also leads to suppression of 

PI3K/Akt signaling, activation of the tumor suppressor p27 and suppression of CDK2 thus 

arresting cell cycle and growth in breast tumor cells [20–22]. (ii) Trastuzumab causes 

endocytosis and degradation of HER2 through blocking the activity of tyrosine kinases [23]. (iii) 

Preclinical and clinical studies revealed that coating HER2 overexpressed tumor cells by 

trastuzumab summons more immune cells especially natural killer cells to attack the tumor by 

ADCC mechanism [24,25]. Many clinical trial studies have demonstrated effectiveness of 

trastuzumab in combination with docetaxel in metastatic HER2-positive breast cancers [26–29]. 

However, the exact mode of action and resistance mechanism still remain ambiguous. 

In chapters 3 and 5 we showed that trastuzumab induces ADCC of HER-positive cells but 

does not inhibit HER2 receptor activation and canonical downstream pathways. We showed that 

trastuzumab blocks proteolytic cleavage, production and nuclear localization of ctHER2 which is 

a novel molecular mechanism of action of trastuzumab. ctHER2 fragments are truncated HER2 

proteins characterized by the lack of extracellular domain, but still possessing tyrosine kinase 

activity [30–34]. According to previous studies, ctHER2 with an approximately 95 kDa in 

weight (also known p95HER2) arise by two different mechanisms: (i) proteolytic 

shedding/cleavage of p185HER2 by zinc-containing metalloproteinases, including ADAMs and 

MMPs family members [33,35,36]; and (ii) Alternative splicing of ERBB2 mRNA that initiate 

protein translation of HER2 from methionines located near the transmembrane domain of the 

full-length molecule [37]. Breast cancer patients expressing p95HER2 are more likely to develop 

nodal metastasis [32,38,39] and have worse prognoses than those predominantly expressing the 

full-length receptor [38]. Our results showed a synergism effect between trastuzumab and 

metalloproteinase inhibitor in blocking HER2 cleavage and shedding.  



196 

 

Interestingly, the upregulation of the metalloproteinases is a hallmark of EMT and 

mesenchymal cells [40–43]. Several metalloproteinases including ADAMs 9, 10, 12, 15, 17, 28 

[44–49] and also MMPs 1, 2, 7, 9 11, 12, 13, 14 and 16 are reported as overactivated in many 

breast cancers [50–53]. ADAMs 10 and 17 are the major sheddase enzymes involved in HER2 

shedding [54]. Recent studies show that the metalloproteinases are also associated with poorer 

relapse-free survival in HER2-positive breast cancer patients and the inhibition of 

metalloproteinases by chemicals overcame trastuzumab resistance in both naïve and 

trastuzumab-resistant HER2-positive cell lines [55–57]. These data suggest ADAMs 10 and 17 

as key drivers of trastuzumab resistance and potential targets to overcome trastuzumab resistance 

in HER2-positive breast cancers [58]. Moreover, a preclinical study revealed that inhibitors of 

MMPs 1, 2, 3 and 9 suppress HER2 shedding [59]. Many cohort studies conclusively show the 

correlation of p95HER2 expression with poor prognosis and trastuzumab resistance in breast 

cancer, corroborating p95HER2 as a prognostic factor for metastasis and a predictive marker of 

trastuzumab resistance [38,60–63]. Taking together, HER2 cleavage is a result of increased 

metalloproteinases activity during EMT that is associated with upregulated stemness signaling 

pathways.  

To understand the biological function of trastuzumab through blocking HER2 cleavage, we 

studied the consequence of HER2 cleavage and the function of the cleaved form of HER2. 

Results revealed that after cleavage, HER2 migrates to the nucleus wherein contributes to 

spliceosome and regulation of RNA processing. It seems that nuclear HER2 promotes 

tumorigenesis and metastasis of HER2-positive breast cancer cells, as a part of stemness 

regulation of the cells. We suggest not only by canonical function but also by its nuclear 

function, HER2 can promote breast cancer stemness. Some limited reports show that 

trastuzumab reduces the BCSC subpopulation of HER2-positive tumors. A retrospective analysis 

revealed that chemotherapy combined with trastuzumab reduced cancer relapse in 5 of 18 (27%) 

patients with BCSC-enriched HER2-positive tumors compared to the patients who received only 

chemotherapy (P = 0.019). This result indicates that trastuzumab therapy reduces metastasis by 

2.4-fold in these patients. Trastuzumab also improved the OS rate of patients with BCSC-

enriched HER2-positive breast cancer (by 2.9-fold; P = 0.008) [64]. Further, trastuzumab 

decreases the percentage of CD44+/CD24- phenotype, ALDH+ cells, and mammosphere counts 

in luminal mammary carcinoma cell but not in basal/claudin-low cells. Injection of HER2-
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positive BCSCs to NOD/SCID mice generated bigger tumors in a shorter period compared with 

HER2-negative BCSCs mice group. Interestingly, treating the HER2-positive tumors with 

single-agent trastuzumab immediately after tumor inoculation (early-treatment), result in a 

significant decrease in tumor size when compared with administration after the establishment of 

tumors (late-treatment). These data indicate that trastuzumab may inhibit tumor growth by 

targeting cancer stem cells [65]. The combination of these results with our mass-spectrometry 

and GSEA results indicates that nuclear HER2 is a positive factor for breast cancer stemness and 

ENT. Therefore, we suggest that blocking nuclear HER2 by trastuzumab results in inhibition of 

breast cancer stemness and consequently, inhibition of metastasis. However, the investigation of 

this hypothesis is needed. 

 

7.2. WHAT ABOUT PERTUZUMAB?! 

As a fully humanized recombinant monoclonal antibody, pertuzumab represents a new class 

of agents that inhibit HER2 dimerization. Pertuzumab specifically interacts with the subdomain 

II of HER2 extracellular domain, sterically blocking a binding pocket necessary for receptor 

dimerization, thus blocking HER2 dimerization mediated by the HER2 dimerization domain 

[66]. Indeed, the same research showed that pertuzumab blocked heregulin-induced 

heterodimerization between HER2 and HER3 [66]. Inhibition of dimerization will lead to the 

blocking of HER2 activation and HER2-mediated downstream signaling [67]. This 

understanding is mostly based on important early research [68]. This research showed that 

pertuzumab blocks the association of HER2 and HER3 diminishes ligand-activated HER2 

signaling including Erk activation and inhibits the growth of human breast cancer cell lines only 

in the presence of ligand (heregulin) [68]. This research was conducted with breast cancer cell 

lines that co-express both HER2 and HER3 in the context of heregulin stimulation. Subsequent 

brief research suggests the synergistic effect of trastuzumab and pertuzumab on breast cancer 

survival, but showed that pertuzumab alone is less effective in blocking Akt phosphorylation 

than trastuzumab and both antibodies have no effect on Erk phosphorylation in BT474 cells [69]. 

It was further reported that pertuzumab disrupts EGF-induced heterodimerization of HER2 and 

EGFR in ovarian cancer cells, expressing both EGFR and HER2. Pertuzumab also inhibits in 

vitro and in vivo growth of the same ovarian cancers [70]. Moreover, pertuzumab can abrogate 
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the inhibitory effect of HER2 on the degradation of HER3 [71]. A recent study showed that both 

trastuzumab and pertuzumab inhibit NRF2 function in ovarian cancers and the combination of 

the antibodies produces more potent effects than a single antibody alone [72]. In summary, while 

the data regarding the mode of action of pertuzumab is quite limited, the available data mostly 

support the role of pertuzumab in blocking the heterodimerization of HER2, which in turn blocks 

the activation of HER2- and HER3-mediated signal transduction pathways leading to cancer cell 

proliferation and survival. 

In chapter 4 we showed that pertuzumab does not inhibit HER2 homodimerization and 

phosphorylation. Instead, pertuzumab induces phosphorylation of HER2 at Y1127, Y1139 and 

Y1196 phospho-sites independent of HER2 homodimerization. Moreover, pertuzumab did not 

block HER2 homodimer-induced cell proliferation. These data suggest that pertuzumab may 

exert its function by inhibition of HER2 heterodimers, rather than HER2 homodimers. Our data 

suggest that pertuzumab may suppress HER2 function activated through the non-canonical 

pathway(s) rather than its canonical downstream pathways (PI3K/Akt and MAPK). One of the 

candidate oncogenic mechanisms of HER2 independently of PI3K/Akt and MAPK is proteolytic 

cleavage of HER2 and production of C-terminal HER2 fragments which is able to translocate to 

the nucleus and act as transcription co-factor [73]. 

 

7.3. STEMNESS/EMT AS MECHANISM OF HER2 CLEAVAGE/SILENCING, AND 

TRASTUZUMAB ACTION/RESISTANCE 

Many mechanisms have been suggested for the resistance of HER2-positive breast cancer to 

trastuzumab and pertuzumab. The resistance may arise due to the altered HER2 expression status 

of the cancer cells [74,75]. The resistance may also arise due to the alteration of HER2 molecule 

structures, such as proteolytic truncation of HER2 extracellular domain, which prevents the 

binding of trastuzumab to the truncated but constitutively activated HER2 [62,76]. Activation of 

other HER receptors such as EGFR, which compensate the lost HER2 signaling due to 

trastuzumab inhibition [77,78], or activation of HER2 through a mechanism that is not sensitive 

to trastuzumab [79,80]. Constitutive activation of downstream signaling pathways due to 

mutations is also a major mechanism for trastuzumab resistance. The most prominent case is the 
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constitutive activation of the PI3K/Akt/mTOR pathway due to the gain of function mutation of 

PI3K, and the loss of function of PTEN [18,81–86]. As HER2/HER3 heterodimer-mediated 

activation of PI3K/Akt/mTOR has been considered the most important signaling pathway 

driving the development of breast cancer, combined inhibition of both HER2 and 

PI3K/Akt/mTOR has been explored to overcome trastuzumab resistance [69,87]. Most research 

has demonstrated that additional inhibition of PI3K/Akt/mTOR could overcome trastuzumab 

resistance in HER2-positive breast cancers [87–90]. Some other mechanisms are also reported, 

including Fcγ receptor polymorphism [91,92], miRNAs [93,94], and Mucin 4 expression induced 

by TNFα [95]. 

In chapter 6 we showed that epithelial-like breast cancer cells are HER2-high, while 

mesenchymal-like breast cancers are HER2-low. This is due to different chromatin regulation of 

ERBB2 gene in the two types of cells. The chromatin of ERBB2 gene which is active in 

epithelial-like cells can turn to inactive after EMT of the cells. This regulation takes place by the 

global epigenetic reprogramming during EMT. On the other hand, HER2 overexpression can 

exert a positive effect on the activation of stemness pathways and thus, induction of EMT in 

HER2-positive breast cancer cells. This suggests a negative feedback regulation between HER2 

and EMT. In Chater 5, we addressed one side of the negative feedback loop showing how EMT 

can suppress HER2 in HER2-positive breast cancer cells by epigenetic silencing. here we review 

the other side of the negative feedback loop indicating how HER2 can contribute to the induction 

of HER2-positive breast cancer cells. 

Some evidence suggests that HER2 may be a novel regulator of BCSCs. It is found that 

ALDH+ BCSC-enriched tumors were associated with HER2 overexpression [96]. Korkaya et al. 

[97] showed that HER2 overexpression was positively correlated with an increased 

subpopulation of mammosphere-forming ALDH+ BCSC in breast cancer cell lines as well as 

xenograft tumors. Overexpression of HER2 is also correlated with the increased expression of 

stem cell markers Oct3/4, Notch1, Notch2, Jagged1, and Gli1 and with the activation of 

PI3K/Akt pathway. Moreover, targeting HER2 with trastuzumab led to significant decline in 

ALDH+ cell subpopulation [97]. Injecting HER2 overexpressing ALDH+ cells into the 

mammary fat pads of NOD/SCID mice generated tumors with 4-fold more BCSCs than the 

tumor that developed from ALDH+ cells with normal HER2 expression. In addition, ALDH and 
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HER2 were found co-expressed in invasive cells of luminal breast tumors [65]. Several clinical 

and preclinical studies demonstrated that HER2 blockade could reduce CD44+/CD24-  and 

ALDH+ BCSC subpopulation inside the tumors [64,65,98,99]. A preclinical study revealed that 

HER2 expression in mammosphere-forming breast cancer with high levels of the stem cell 

markers Oct4 and Bmi1 is 2 to 7-fold higher than other groups of the cells from the same origin. 

This suggests that high HER2 expression is finally associated with BCSC properties. In parallel 

with HER2 expression in these cells, they also reported a higher level of Notch signaling in the 

cells. The depletion of Notch1 led to a significant decrease in HER2 expression in the 

mammosphere-forming cells. Treatment of mice bearing tumors raised from these cells with 

trastuzumab resulted in a significant regression in tumor growth. The cells derived from these 

tumors were unable to generate new tumors in the next in vitro tumor passage [100].   

On the other hand, HER2 is also highly expressed in undifferentiated human embryonic 

stem cells (ESCs). The evidence that HER2 has pleiotropic effects on multiple cell types and 

organs suggests that HER2 crosstalks with a variety of signaling pathways that are essential in 

the maintenance and/or differentiation of ESCs [101,102]. Interestingly, HER2 has been 

suggested to be a positive factor in the development of the normal mammary gland and breast 

tumor by interaction with stemness signaling pathways. For example, HER2-mediated activation 

of PI3K/Akt signaling led to the enrichment of ALDH+ BCSCs in breast cancer cell culture and 

tumor xenografts through upregulating Wnt/β-catenin [97].  

7.3.1. HER2 crosstalks with stemness/EMT pathways 

HER2 crosstalks with TGF-β pathway 

Accumulating evidence also indicates functional crosstalk between HER2 tyrosine kinase 

and the TGF-β signaling. In HER2-overexpressing breast cancer, this crosstalk results in 

increased cancer cell proliferation, survival, and invasion, accelerated cancer progression and 

metastasis in animal models, as well as resistance to chemotherapy and HER2-targeted therapy. 

HER2 crosstalks with TGF-β pathway by several ways including; (i) suppression of Smad-

dependent transcriptional regulation and its downstream target genes by HER2; (ii) activation of 

HER2 downstream pathways (PI3K/Akt and MAPK pathways) by TGF-β in a Smad-

independent manner and (iii) modification of the tumor microenvironment by secretory 
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mediators that are regulated by both downstream mediators of HER2 and TGF-β receptors [103]. 

Ueda et al. [104] showed that exogenous TGF-β ligand and ectopic expression of TGF-β type I 

receptor ALK5 activated TGF-β signaling and induced motility in HER2-overexpressing 

MCF10A cells. Moreover, inhibition of HER2, PI3K/Akt, MAPK, and Integrin β1 all abrogate 

TGF-β-induced motility in MCF10A/HER2 cells. In addition, trastuzumab blocks TGF-β-

stimulated Rac1 activation in the HER2-overexpressing cells, which suggests that HER2 and 

TGF-β crosstalk with each other regulate tumor cell motility [104]. Overexpression of either 

TGF-β1 or ALK5 in HER2-positive breast cancer xenograft tumors reduces apoptosis but 

increases survival, angiogenesis, local invasion, metastasis [105–107]. The ability of HER2 to 

cooperate with TGF-β was correlated with higher levels of active Smad2, AKT, MAPK, and p38, 

as well as Vimentin [106,107]. As TGF-β can activate PI3K/Akt and MAPK pathways 

independent of Smad, it seems that HER2 and TGF-β utilize common paths to promote tumor 

cell invasion. 

Moreover, the interaction between HER2 and TGF-β regulates DNA repair and the 

resistance to DNA-damaging chemotherapy in cancer cells. TGF-β/Smad signaling requires p53 

to regulate MutS homolog 2 (MSH2), a key component of the DNA mismatch repair (MMR) 

system. Obviously, this function of TGF-β is impaired in the absence of p53, a frequent mutation 

in breast cancers. On the other hand, through the PI3K/Akt pathway, HER2 downregulates p53 

signaling by inducing nuclear translocation of MDM2, an E3 ubiquitin ligase that targets p53 

[108]. Yu et al. [109] reported that HER2 can also abrogate p53-mediated transcriptional 

regulation of MSH2 in p53-proficient breast cancer cells by increasing the expression level of 

miR-21 via TGF-β. The blockade of HER2-TGF-β crosstalk may enhance the efficiency of 

conventional therapies in breast cancer patients with HER2 overexpression [110]. In summary in 

HER2-overexpressing breast cancer, crosstalk between HER2 and TGF-β results in increased 

cancer cell proliferation, survival, and invasion, accelerated EMT and metastasis in animal 

models, resistance to chemotherapy and HER2-targeted therapy and perhaps upregulation of 

BCSCs.  

HER2 crosstalks with Notch pathway 

Notch signaling may support breast tumorigenesis by promoting cell growth and survival 

and inhibiting differentiation. Cooperation of Notch1 and HER2-mediated PI3K/Akt and MAPK 
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pathways has been demonstrated in the development of breast cancer [111,112]. It seems that 

Notch upregulates HER2 but HER2 downregulates Notch signaling. Osipo et al. [113] showed 

that HER2-positive breast cancer cells have low Notch signaling activity and inhibition of HER2 

by trastuzumab increases nuclear localization of Notch1 and expression of Notch pathway target 

genes. The mechanism by which HER2 downregulates Notch signaling is not clear. A study 

shows that HER2/MAPK pathway suppresses the activity of the γ-secretase complex thus 

resulting in reduced levels of Notch1 cleavage and NICD1 expression [114]. Pandaya et al. [115] 

recently showed that HER2 may limit ubiquitinylation of Jagged1, by suppressing the expression 

of Mindbomb1 (Mib1), an E3 ligase, and by activating Protein kinase C-α (PKCα) that 

negatively regulates the interaction between Mib1 and Jagged1. Finally, since trastuzumab-

resistant cells show a high level of Notch activity, inhibition of Notch pathway by GSIs 

overcame trastuzumab resistance in the cells [113] may be due to inhibition of HER2 cleavage. 

Moreover, trastuzumab treatment induces activation of Notch signaling thus a combined 

inhibition of HER2 and Notch signaling (trastuzumab plus GSIs) has a better outcomes in both 

trastuzumab-resistant and sensitive HER2-positive breast cancer tumors [113,115,116].  

HER2 crosstalks with Wnt/β-catenin pathway 

Some reports suggest a friend and foe relationship of HER2 with Wnt/β-catenin signaling 

pathway in breast tumor cells. Schroeder et al. [117] reported that HER2 makes a complex with 

both membranous and cytoplasmic β-catenin protein to induce phosphorylation of β-catenin in 

ductal breast cancer tissues but not in normal mammary tissues. Wang et al. [118] showed that 

the destabilization of HER2 receptor by HSP90 inhibitor geldanamycin disrupts the association 

of HER2 with β-catenin and suppresses Wnt/β-catenin signaling pathway. HSP90 is shown as 

the main chaperon icHER2 translocation into the nucleus. Geldanamycin-mediated inhibition of 

HER2 also attenuates HER2-positive breast cancer cell proliferation and motility via suppression 

of Wnt/β-catenin [118]. These suggest nuclear localization of HER2 is a positive factor for 

Wnt/β-catenin pathway activation. HER2 also influences Wnt/β-catenin signaling through its 

downstream regulators Akt and MAPK. These regulators can inhibit GSK3 that leads to 

translocation of β-catenin to the nucleus to promote transcription of β-catenin-TCF target genes 

[119]. Expression of nucleocytoplasmic β-catenin is significantly abundant in HER2 expressing 

node-positive breast carcinomas when compared with HER2-low node-positive tumors. 



203 

 

Nucleocytoplasmic β-catenin expression was also higher in transgene HER2-positive murine 

mammary ductal carcinoma in situ (DCIS) tumors [120]. 

Wnt3 ligand-mediated activation of the Wnt/β-catenin pathway induces EMT and reduces 

sensitivity to trastuzumab in HER2-positive breast cancer cells [121]. According to this report, 

approximately 95% (22 genes) of Wnt/β-catenin signaling genes were regulated in trastuzumab-

resistant HER2-positive breast cancer. Of 22 genes, 11 genes were upregulated and 11 genes 

were downregulated, which suggests that Wnt/β-catenin/TCF axis may drive trastuzumab 

resistance via regulating EMT [121]. As mentioned above one of the characteristics of EMT is 

the upregulation of MMPs. Thus, it is likely that the resistance to trastuzumab is due to HER2 

cleavage and loss of HER2 extracellular part by EMT-related MMPs. We here suggest that it is 

also due to the epigenetic silencing of ERBB2 gene in the result of the activated Wnt/β-catenin 

pathway. These results suggest a negative feedback loop between HER2 and Wnt/β-catenin 

pathway through EMT. However, some other studies showed that upregulated expression and 

localization of β-catenin are more common in HER2-low breast cancer cells compared to HER2-

positive cells [122,123].  

HER2 crosstalks with JAK/STAT pathway 

HER2 regulates STAT-mediated induction of breast cancer EMT and stemness. Olayioye et 

al. [124] reported that the heterodimerization between HER2 and HER4 leads to the activation of 

Src kinase, which stimulates JAK/STAT5 signaling pathway. HER2 dimerization induces 

phosphorylation, dimerization and nuclear translocation of STAT3 in an Src-dependent fashion 

[125]. HER2 exerts some other functions through JAK/STAT3 signaling. The HER2-mediated 

activity of Src further activates STAT3 that upregulates the transcriptional expression of p21
Cip1

, 

a CDK inhibitor [126]. Silencing STAT3 in HER2-positive breast cancer cells reduces tumor 

invasion suggesting cooperation between HER2 and STAT3 in tumorigenesis [127]. In HER2-

positive breast cancer, HER2 increases STAT3 activation and expression of STAT3 target genes 

including MMPs in an autocrine fashion by inducing IL6 secretion [128]. It is possible that the 

HER2/IL6/STAT3 signaling axis drives EMT by upregulating MMPs. Phosphorylated STAT3 in 

HER2-overexpressing breast cancer cell lines promotes the mesenchymal-like cell and EMT 

phenotype by upregulating Oct4, Sox2, CD44, and Slug. Activation of STAT3 in HER2 

overexpression cells also increases the mammosphere-formation efficiency while inhibition of 
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HER2 and/or STAT3 abolishes BCSC and EMT phenotype. These data suggest the cooperation 

of HER2 with JAK/STAT signaling in the emergence of trastuzumab-resistant mesenchymal 

cells [129].   

HER2 crosstalks with Hedgehog pathway 

It is recently reported that high-level expression of Shh and Gli1 is correlated with HER2 

expression. Inhibition of Hedgehog acyltransferase, a key enzyme for Shh synthesis, reduced 

HER2-positive breast cancer growth [130–132]. The data regarding the crosstalk between HER2 

and Hh signaling in breast cancer are very limited. However, It is reported that HER2 

downstream pathways PI3K/Akt and MAPK interact with Hh signaling pathway in regulating 

tumorigenesis and stemness in chronic lymphocytic leukemia [133], ovarian [134], pancreatic 

[135] and esophageal [136] cancers.  

7.3.2. Inhibition of HER2 kinase activity prevents stemness/EMT-mediated trastuzumab 

resistance 

Lapatinib is a small molecule dual inhibitor of the tyrosine kinase activity of HER2 and 

EGFR. It is used in combination with trastuzumab to treat advanced or metastatic HER2-positive 

breast cancers and is currently under phase III clinical evaluation [137,138]. Lapatinib inhibits 

HER2-positive breast cancer growth both in preclinical and clinical studies and improves the 

survival rate of patients. lapatinib in combination with trastuzumab showed complementary 

effects of HER2 blockade and improved response in patients with HER2-positive breast cancer 

[139]. In addition to dual targeting advantage of lapatinib, it can cross the blood-brain barrier, 

therefore being an effective treatment option for patients with brain metastases [140]. Lapatinib 

targets cancer stem cells as well. In a study, treatment with lapatinib inhibited mammosphere-

formation of CD44+/CD24- BCSCs isolated from HER2-positive breast cancer cell lines [98]. It 

also decreased the percentage of ALDH+ cells by approximately 10–100-fold. Treatment with a 

combination of lapatinib and doxorubicin increased the cell death rate from 27.8% at single-

agent treatment to 75.1% after combined treatment [98]. Li et al. [99] examined the post-

chemotherapeutic CD44+/CD24- BCSC subpopulation in 31 breast cancer patients with HER2-

negative tumor who received docetaxel or doxorubicin and cyclophosphamide for 12 weeks at 

standard doses (group 1) and in 21 patients with locally advanced HER2-positive breast cancer 

who received lapatinib for 6 weeks followed by docetaxel and trastuzumab for 12 weeks at 
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standard doses (group 2). Seven of 31 (23%) patients from the first group showed the 

pathological complete response for conventional chemotherapy, while the pathological complete 

response rate in the patients from the second group was 62%. The percentage of CD44+/CD24- 

cancer stem cell in bulk tumor of the first group was increased from a mean of 4.7% at baseline 

to 13.6% (P < 0.001) after 12 weeks of chemotherapy. In addition, an increased mammosphere-

formation efficiency (MSFE) from 13.3% at baseline to 53.2% (P < 0.001) was observed in the 

MSFE assay of tumor biopsies from these patients after conventional chemotherapy. 

Interestingly, the baseline CD44+/CD24- cell BCSC population in the HER2-positive breast 

cancers was higher than in the HER2-negative tumors (10.0% versus 4.7%). This further 

approves that HER2 expression is a positive factor for BCSC self-renewal. More interestingly, 

the post-chemotherapeutic percentage of CD44+/CD24- cancer stem cell in HER2-positive 

tumors reduced from 10% at baseline to under 8% after 6 weeks of lapatinib therapy [99]. These 

results demonstrate the role of HER2 in breast tumor invasion and chemoresistance through 

upregulating EMT inside the tumor and the hypothesis that mesenchymal cells are major 

responsible to tumor resistance and post-therapeutic cancer relapse.  

In a preclinical study, treatment with 2.5 μM lapatinib significantly inhibited mammosphere-

forming ability of CD44+/CD24-/Lin-
 
phenotype BCSCs more than 80% (P < 0.03) and reduced 

the subpopulation of the BCSCs from 16% to 3% (P < 0.002). In addition, treatment with 1 μM 

lapatinib dramatically reduced (by 5-fold less; P < 0.04) mammosphere-forming frequency of 

bulk cells in the second passage. In parallel with the inhibitory effect of lapatinib on BCSCs, 

lapatinib therapy also restrained the growth of xenograft breast tumors in mice. Twice daily oral 

gavage treatment by lapatinib for 14 days, resulted in a significant decline in tumor progression 

to 3.5-fold less (P < 0.001) in tumor size than vehicle-treated tumors. Moreover, tumors from 

lapatinib treated mice had 50% less (P < 0.02) BCSCs. These mice generated 6-fold less new 

tumors in secondary in vivo transplantation. Lapatinib-mediated reduction of BCSC 

subpopulation was correlated with the inhibition of phosphorylated HER2 inside the tumors by 

40% [141]. Lapatinib also reduced mammosphere-formation and proliferation of BCSCs in both 

HER2-positive and HER2-normal DCIS cell lines as well as in DCIS cells derived from patient 

samples. Lapatinib also reduced the acini size of HER2-positive DCIS cells in 3D matrigel 

culture via suppressing cell proliferation [142]. A recent study reported that a lapatinib-resistant 

oral squamous cell carcinoma cell line SAS developed sensitivity to lapatinib during sphere-
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formation through the activation of HER2/Akt/Cyclin D2 pathway [143]. Induced lapatinib 

resistance in HER2-positive breast cancer cells also shows an upregulated Snail and Vimentin 

and downregulated E-cadherin, therefor increasing intrinsic EMT capability [144]. 
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Chapter 8. Overall conclusion 

 

We found that overexpression of HER2 in CHO cells did not increase the activation of 

PI3K/Akt and MAPK pathways, whoever majorly changed the gene expression profile and 

increased growth of the cells. This shows that HER2 increased the cell growth not by induction 

of its canonical downstream pathways. We conclude that HER2 exerts an oncogenic effect 

through a non-canonical pathway(s). Our results also showed neither trastuzumab not 

pertuzumab had major effect on HER2 receptor dimerization, phosphorylation and PI3K/Akt and 

MAPK pathways. However, trastuzumab but not pertuzumab abrogated the positive effect of 

HER2 overexpression on the cell cycle progress and survival and induced apoptotic pathway. 

Based on these findings, we conclude that anti-cancer effect of trastuzumab is not through 

blocking the canonical pathway of HER2 including HER2 receptor activation and HER2-

mediated PI3K/Akt and MAPK pathways. Instead, it may inhibit a non-canonical pathway of 

HER2. 

As discussed in the previous chapters, proteolytic cleavage of HER2, shedding, production 

and nuclear localization of ctHER2 are reported as poor prognosis marks and are associated with 

tumor growth, invasion, reoccurrence, and drug resistance of HER2-positive breast cancers. It 

was shown that ctHER2 can directly bind to mRNA, translocate to the nucleus and exert a 

transcription co-factor function. As discussed in chapter 5, we found that trastuzumab blocks 

proteolytic cleavage of HER2, production and nuclear localization of p85HER2 protein. We also 

found that After proteolytic cleavage from the IJM region, the p85HER2 translocates to the 

nucleus and contributes to spliceosome and regulates non-coding small RNA processing, mRNA 

alternative splicing and maybe regulation of gene expression as a transcription co-factor. Based 

on previous results we suggest that nuclear HER2 has a positive factor in the activation of breast 

cancer stemness. In conclusion, we introduce a novel anti-cancer mechanism of trastuzumab by 

abrogating the nuclear function of p85HER2 via blocking full-length HER2 cleavage and nuclear 

translocation of p85HER2 (Figure 8.1).  

We discussed the hypothesize of a negative feedback between HER2 and stemness signaling 

pathways and EMT that leads to trastuzumab resistance. According to our hypothesize, HER2 
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receptor indirectly induces EMT of HER2-positive breast cancer cells through crossrtalks and 

activation of stemness signaling pathways. The stemness pathways increases the expression of 

proteinases and shesdase that are essential for cleavage of adhesion and cell-cell junction 

proteins and progression of EMT processes. The proteinases are also able to cleave HER2 

receptors and shedding of extracellular and intracellular parts of HER2, the processes that leads 

to trastuzumab Resistance. In addition, during EMT, the cells undergo global epigenetic 

reprogramming including chromatin remodelling that causes inactivation of ERBB2 gene 

chromatin and ERBB2 gene silencing resulting in development of resistance to trastuzumab 

(Figure 8.1).  

As overall conclusion, we found that HER2 overexpression can induce cell cycle progression 

and increase survival pathways via a non-RTK pathway, probably via the nuclear function of 

p85HER2. In this thesis we discovered a novel mechanism of action of trastuzumab in inhibition 

of HER2-positive breast cancer growth. Contrary to previous reports, trastuzumab does not 

inhibit HER2 receptor activation and its downstream RTK pathways. Instead, we found that 

trastuzumab abrogates the effect of HER2 overexpression of cell cycle progression and survival 

via inhibiting the non-canonical pathways of HER2. Trastuzumab binding to HER2 blocks 

HER2 cleavage and nuclear localization of p85HER2 (Figure 8.1). We also demonstrated that a 

negative feedback loop between HER2 and EMT explains the de novo resistance of HER2-

positive breast cancer to trastuzumab and lapatinib (Figure 8.1). According to our finding EMT 

is the main mechanism of HER2 cleavage, p85HER2 proportion and downregulation of HER2 

via two mechanism including cleavage/shedding and gene silencing, that all results in more 

growth, invasion and resistance of HER2-positive breast cancer to HER2 targeting therapy. We 

suggest targeting EMT and cancer stem cells in the general level and targeting HER2 cleavage 

and chromatin regulators involving in epigenetic reprogramming of mesenchymal-like cells in 

specific level, can be a promising approach to inhibit tumor growth and prevent drug resistance. 
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Figure 8.1. Schematic pathways illustrating the mechanism of action of trastuzumab in 

blocking p85HER2 pathway and the mechanims of trastuzumab resistance. In HER2-positive 

breast cancer cell, HER2 crosslinking with the stemness pathways (TGF-β, Wnt/β-catenin, 

JAK/STAT, Notch and Hedgehog pathways) which induce the expression of EMT regulators 

including stemness mesenchymal transcription factors, mesenchymal cytoskeleton, and 

proteinases. The proteinases cleave plasma membrane HER2 that causes shedding and 

profuction p85HER2of. HER2 shedding leads to trastuzumab resistance. The p85HER2 

translocates into the nucleus and contributes in spliceosome, RNA processing and probably 

transcriptional regulation. The p85HER2-mediated regulation may upregulate the stemness 

pathways in a positive feedback fasion. The EMT-mediated transcription regulators also 

induces the expression of nuclear p85HER2 client proteins, and inhibits ERBB2 chromatin 

activity that results in ERBB2 gene silencing, abrogation of HER2 expression and 

development of resistance to trastuzumab and lapatinib. Trastuzumab binding to HER2 blocks 
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proteolytic cleavage of plasma membrane HER2, intracellular shedding and nuclear 

localization of p85HER2.  
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Chapter 9. Limitations and future directions 

 

9.1. LIMITATIONS 

We here used CHO cell lines stably overexpressing human HER2. CHO-K6 cells showed 

high HER2 dimerization and phosphorylation as expected due to HER2 overexpression, 

however, HER2 overexpression and receptor activation had no significant effect on the 

activation of downstream PI3K/Akt and MAPK pathways. The CHO cell line is intrinsically 

negative for the expression of HER receptors. Although this property provides CHO cell line a 

good cell model to investigate the dynamics of each HER receptor independently, it seems that 

the cells do not use HER-mediated RTK signaling. This is a limitation of this study. CHO cell 

line is non-human and non-cancerous cell line and has different molecular biology than that of 

human breast cancer cells. Our results showed that CHO-K6 cells are a good model for studying 

HER2 receptor homo-dimerization and phosphorylation, but it is not an appropriate model to 

assess HER2 kinase activity and HER2-mediated downstream RTK pathway. To overcome this 

limitation, we tested trastuzumab on HER2 receptor activation and downstream RTK pathways 

in breast cancer cell lines. 

Another limitation is that the crosslinking assay for studying dimerization is not specific and 

sensitive enough to detect HER2 dimerization in the presence of trastuzumab. Since trastuzumab 

strongly binds to HER2, the crosslinker reagent links also trastuzumab to HER2 that increases 

the molecular weight of HER2 homodimers in blotting. In addition, crosslinking assay is not able 

to distinguish HER2 homodimers form heterodimers in using breast cancer cell lines. For 

example, SKBR3 cell line which is HER2-positive expresses also high levels of EGFR, HER3, 

and HER4. In addition to HER2, BT474 cell line expresses EGFR and HER3. In the case of 

using SKBR3 cells, the crosslinking assay can detect all HER2 homodimer, HER2-EGFR, 

HER2-HER3, and HER2-HER4 heterodimers in the same size even using a specific antibody 

against HER2 in blotting. However, this method is reliable to assess HER2 homodimer in CHO-

K6 cells, since CHO-K6 cells express only HER2. To overcome this limitation, we studied 

HER2 heterodimerization by co-IP method.  
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We studied the effect of trastuzumab binding to HER2 on ADAM17-mediated HER2 

cleavage from EJM region by computational simulation. Results showed that docking 

trastuzumab fab to domain IV of extracellular HER2 blocks appropriate docking and enzymatic 

attack of ADAM17 to the cleavage site at HER2 EJM. In this model, HER2 cleavage results in 

shedding of the extracellular part of HER2 and production of p95HER2. Due to several 

limitations, we could not study HER2 cleavage from the IJM region. One of the limitations is 

that there is no crystal structure of full-length HER2 at the PDB database. Thus, we were able to 

use the crystallography structures currently available from the databases. In addition, we were 

not able to study HER2 cleavage by experimental crystallography analysis due to financial 

restrictions. However, the current bioinformatic simulation gives general information on the 

mechanism of trastuzumab in blocking proteolytic cleavage of HER2 by metalloproteinases.  

Finally, to investigate the function of nuclear p85HER2 we performed proteomic analysis to 

determine the client proteins of p85HER2. These experiments revealed the contribution of 

p85HER2 in spliceosome, RNA splicing and regulation of transcription. Although, this evidence 

gives reliable information about the nuclear function of p85HER2, further investigations 

focusing on each function of p85HER2 are needed as future directions.   

  

9.2. FUTURE DIRECTIONS 

Previous studies and we here found that HER2 cleavage is an important phenomenon for 

HER2 nuclear function. HER2 cleavage is shown to be associated with tumor growth, invasion 

and poor response to therapy. We found that trastuzumab blocks HER2 cleavage and inhibits cell 

growth. Investigating the molecular mechanism of HER2 cleavage and identifying which 

proteinases are responsible for HER2 cleavage is necessary and worth to be investigated in future 

studies. Knocking-down the proteinases by shRNA, and then monitoring the production of 

p85HER2 is a good approach to finding candidate proteinase. We recommend analyzing the 

conformation change of full-length HER2 in complex with trastuzumab by crystallography can 

provide valuable information to understand how trastuzumab blocks HER2 cleavage. This 

information will also allow us to design small molecules targeting HER2 and mimicking 
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trastuzumab function on blocking HER2 cleavage as an alternative therapy for trastuzumab to 

use for HER2-positive breast cancer therapy in combination with trastuzumab and lapatinib. 

Small chemical inhibitors have several advantages including lower side effects and ability to 

pass through the blood-brain barrier and reach metastatic tumors in the brain. Another advantage 

of small chemical inhibitors is lower production cost that makes affordable availability of the 

drug for patients. In addition to HER2 targeting small molecules, testing proteinase inhibitors in 

combination with trastuzumab and lapatinib would be a promising approach for treatment of 

HER2-positive breast cancer and to prevent development of trastuzumab resistance.  

We also strongly suggest further studying the oncogenic function of HER2 through 

regulation of coding and non-coding RNA processing as well as transcription co-factor function 

of p85HER2 in breast cancers. Most importantly, the interaction of p85HER2 with the proteins 

detected by this study is to be validated by experimental ChIP analysis. Since nuclear p85HER2 

is found to interact with transcription factors and contributed to RNA processing, the interaction 

of nuclear HER2 with target RNA and DNA is to be investigated by electrophoretic mobility 

shift assay (EMSA) and ChIP-seq (by using a HER2 antibody). Wang et al. [1] identified that 

HER2 forms a complex at a specific sequence of the PTGS2 gene (coding for COX2) promoter 

(ATAAACTTCAAATTTCAGTA) and is able to stimulate its transcription. As future direction, 

studying transcriptional regulation function of p85HER2, identifying further p85HER2 client 

transcription factor and target genes is highly recommended. We here recommend to validate 

interaction of p85HER2 with the client protein by co-IP.  In addition, we suggest that 

investigating RNA binding activity of p85HER2, the mode of interaction of p85HER2 with 

spliceosome, client RNAs, the role of p85HER2 in processing of non-coding RNA including 

shRNAs and microRNAs and oncogenic consequences of the regulations. These experiments 

will provide very precious pieces of evidence to understand the non-canonical oncogenic 

pathway(s) of HER2 in breast cancer. Furthermore, our results showed that phosphorylation of 

HER2 at Y1005 and Y1139 of HER2 seems to be specific for nuclear p85HER2. Investigation of 

HER2 regulatory phospho-sites and their roles in nuclear function of p85HER2 is also important 

to understand the non-canonical function of HER2.  

It has been demonstrated that HER2 itself induces EMT of breast cancer cells via 

upregulating stemness pathways. This suggests a negative feedback loop between HER2 and 
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EMT that gives important clue about the trastuzumab-responsive HER2-positive breast cancer 

develops resistance to trastuzumab. Our results also suggest that ERBB2 gene silencing by 

epigenetic regulation during EMT is an authentic mechanism of downregulated HER2 in the 

mesenchymal-like cells and the main mechanism of resistance of HER2-positive breast cancer 

cells to trastuzumab and lapatinib. As a future direction, we recommend investigating that 

mechanism of the negative feedback loop to understand how HER2 overexpression induces 

EMT, how EMT causes ERBB2 gene silencing, and the whether p95HER2 induces stemness. 

Finally, we strongly recommend validating all our results, and testing the suggested 

investigation as future directions, particularly testing small molecule inhibitors in rodent models 

of breast tumors. 
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Chapter 10. Materials and methods 

 

10.1. BUFFERS AND SOLUTIONS 

1% agarose gel: 1 g agarose in 100 ml TAE buffer. 

10 % running SDS-PAGE gel: 1.25 ml 1.5 M Tris-HCl (pH 8.8), 0.025 ml 20% SDS, 1.25 

ml 40% acrylamide, 0.05 ml ammonium persulfate, 0.005 ml TEMED, 2.50 ml dH2O. 

4% stacking SDS-PAGE gel: 1.25 ml 1.5 M Tris-HCl (pH 8.8), 0.025 ml 20% SDS, 0.50 ml 

40% acrylamide, 0.025 ml ammonium persulfate, 0.005 ml TEMED, 3.57 ml dH2O. 

7.5% running SDS-PAGE gel: 1.25 ml 1.5 M Tris-HCl (pH 8.8), 0.94 ml 40% acrylamide, 

0.05 ml ammonium persulfate, 0.005 ml TEMED, 2.81 ml dH2O. 

Acetonitrile solution: 2% acetonitrile, 1% formic acid, 97% dH2O. 

Buffer EB (DNA elution buffer): 10 mM Tris-HCl, pH 8.0. 

Buffer N3 (neutralization buffer for DNA binding): 4.2 M guanidine hydrochloride 

(GuHCl), 0.9 M potassium acetate, pH 4.8. 

Buffer P1 (resuspension buffer): 50 mM Tris-HCl, 10 mM EDTA, pH 8.0 (25ºC), 50-100 

µg/ml RNase A. 

Buffer P2 (lysis buffer): 200 mM NaOH, 1% SDS. 

Burffer PE (wash buffer): (100ml for making 500ml 1x PE Buffer) 80 mM NaCl, 8 mM 

Tris-HCl, pH 7.5, ethanol added to 80% before use. 

Coverslip blocking buffer: 1% BSA in TBS. 

DNA loading buffer (6x): 30% (v:v) glycerol, 0.25% (w/v) bromophenol blue, 0.25% (w/v) 

xylene cyanol FF. 

HBS (2x): 50 mM HEPES, 280 mM NaCl, 1.5 mM Na2HPO4, pH 7.0. 

Laemmli Buffer (4x; Protein loading buffer),  4.4 ml 0.5 M Tris base (pH 6.8), 4.4 ml 

Glycerol, 2.2 ml 20% SDS, 0.5 ml 1% Bromophenol Blue , 0.5 ml 2-mercaptoethanol. 

Nitrocellulose blocking Buffer: 5% BSA or 5% skimmed milk in TBS. 

NP40 cell lysis solution: 20 mM HEPES-KOH (pH 7.9), 0.42 M KCl, 25% glycerol, 0.1 

mM EDTA (pH 8.0), 5 mM MgCl2, 0.2% NP40. 
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PBS: 8 g NaCl, 0.2 KCl, 1.44 g Na2HPO4, 0.24 g KH2PO4 in 1 L dH2O, pH 7.4. 

Protein running Buffer: 3 g Tris base, 14.4 g Glycine, 1 g SDS in 1 L dH2O (pH 8.3). 

Protein transfer Buffer: 3 g Tris base, 14.4 g Glycine, 200 ml Methanol in 1 L dH2O. 

SDS-PAGE gel coomassie destaining solution: 40% (v:v) methanol, 10% (v:v) glacial acetic 

acid, 50% (v:v) dH2O. 

SDS-PAGE gel protein coomassie staining solution: 0.1% (w:v) Coomassie Brilliant Blue, 

50% (v:v) isopropanol, 10% (v:v) acetic acid, 40% (v:v) dH2O.  

SDS-PAGE gel protein fixation solution: 50% (v:v) methanol, 10% (v:v) glacial acetic acid, 

40% (v:v) dH2O. 

SDS-PAGE gel protein storage solution: 5% (v:v) glacial acetic acid, 95% (v:v) dH2O 

TAE buffer (DNA running buffer): 40 mM Tris base, 20 mM glacial acetic acid, 1mM g 

EDTA.2dH2O, pH 8.0. 

TBS: 1.21 g Tris base, 8.77 g NaCl in 1 L dH2O, pH 7.4. 

TBST: 1.21 g Tris base, 8.77g NaCl, 1 ml Tween-20 in 1 L dH2O, pH 7.4. 

 

10.2. CHEMICAL INHIBITORS AND ANTIBODIES 

Paclitaxel (cat# T7402), Vinorelbine tartrate (cat# V2264), TAPI-2 (cat# SML0420), and 

recombinant human EGF (cat# E5036), goat anti-mouse IgG-agarose antibody (cat# A6531), 

isotype human IgG (cat# 56834) other chemicals and reagents were purchased from Sigma-

Aldrich (St. Louis, MO, USA). CP-724714 (cat# S1167) was purchased from Selleckchem 

(Houston, TX, USA). Pertuzumab (Perjeta
®
) and trastuzumab (Herceptin

®
) were purchased from 

Roche (Basel, Switzerland). Mouse monoclonal antibodies against HER2 (9G6; cat# sc-08), 

HER2 (A2; cat# sc-393712), EGFR (A-10; cat# sc-373746), HER3 (RTJ.2; cat# sc-415), 

Na
+
/K

+
-ATPase-α (H-3: cat# sc-48345), Vimentin (V9; cat# sc-6260), α-tubulin (B-7; cat# sc-

5286), GFP (B-2; cat# sc-9996), rabbit polyclonal antibodies against HER2 (C18; cat# sc-284), 

pY1248 HER2 (cat# sc-12352-R), Akt1/2 (H-136; cat# sc-8312), Erk1 (k-23; cat# SC-94), 

pT202/Y204 Erk1/2 (cat# sc-16982), Lamin A (H-102; cat# 20680) and anti-histidine probe 

antibody (H-15; cat# sc-803) were purchased from Santa Cruz Biotechnology Inc. (Dallas, TX, 

USA). Rabbit polyclonal anti-human pY1005, pY1112, pY1127, pY1139, and pY1196 and 
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pY1248 HER2 were purchased from FroggaBio (Toronto, ON, Canada). Rabbit monoclonal 

pS473 Akt (cat# 4060) and mouse monoclonal anti-human pY1221/1222 HER2 (6B12) (cat# 

2243) were from Cell Signaling Technology (Danvers, MA, USA). Anti-rabbit and anti-mouse 

RDye
®
 800CW and RDye

®
 650 secondary antibodies were purchased from LI-COR 

biotechnology Inc. (Lincoln, NE, USA). Isotype human IgG and all other chemicals were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). 

 

10.3. CELL LINES AND CULTURE 

COS7, MCF7, MDA-MB-231, SKBR3, BT474 cell lines were purchased from American 

Type Culture Collection (ATCC; Manassas, VA, USA). 293T and CHO (CHO-K1) cell lines 

were obtained as gifts from Dr. Luc Berthiaume (University of Alberta). CHO-K6 cells (stably 

overexpressing human HER2) [1], CHO-K13 (stably expressing human HER2) [1], and CHO-

HER3 (stably expressing human HER3) [2] were obtained as gifts from Drs. Marry Hitt and 

Holger Buchholz (University of Alberta). CHO-EGFR (stably expressing human EGFR) was 

previously generated [3]. The cells were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM) medium supplemented with 10% fetal bovine serum (FBS) and antibiotics including 

penicillin (100 U/ml) and streptomycin (100 μg/ml) and were maintained at 5% CO2 atmosphere 

at 37°C. The transgenic selection was maintained by adding G418 (200 µg/ml) for CHO-K6, 

CHO-K13, and CHO-EGFR, and hygromycin (200 µg/ml) for CHO-HER3 to the culture 

medium. The cells were starved overnight (16 hours) at DMEM containing 1% FBS before the 

treatments. 

  

10.4. EMT INDUCTION 

Induction of EMT in BT474 was done by culturing the cells for 15 days in the presence of 

1x StemXVivo EMT inducing media supplement containing recombinant human Wnt-5a, 

recombinant human TGF-β1, anti-human E-cadherin, anti-human sFRP-1 and anti-human Dkk-1 

antibodies (cat# CCM017; R&D Systems; Minneapolis, MN, USA). Successful EMT induction 

was studied by investigating cell morphology and Vimentin expression.  
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10.5. MTT PROLIFERATION ASSAY 

A number of 10
4
 cells were seeded as per 96-well plates and cultured in 100 µl DMEM 

medium containing 10% FBS. After 24 hours of culture, the medium was replaced with fresh 

DMEM containing 1% FBS and the cells were left to starve overnight. The starvation medium 

then replaced with medium supplemented with 10% FBS and containing treatment agent. The 

cells were incubated for 3 or 5 days. At the end of the treatment time, 10 μl of 12 mM MTT 

solution (Sigma-Aldrich, St. Louis, MO, USA) was added to the wells and then the plates were 

incubated at 37°C for 4 hours until the blue formazan crystals form. Afterward, the medium was 

removed and replaced with 50 μl DMSO. The plates then were incubated at 37°C for 10 minutes 

until the crystals dissolve and blue color develops. The color intensity was measured at 540 nm 

wavelength using a microplate reader. The absorbance values were normalized to those of blank 

wells. 

 

10.6. ANTIBODY-DEPENDENT CELLULAR CYTOTOXICITY (ADCC) ASSAY 

ADCC was determined by using ADCC Reporter Bioassay kit (cat# G7015; Promega; 

Madison, WI, USA) according to Manufacturer’s instruction. Cultured cells were plated at the 

density of 15,000 cells per well in complete culture medium overnight before bioassay. On the 

day of bioassay, the series of concentrations of trastuzumab was added to the cells, followed by 

the addition of ADCC Bioassay Effector Cells by 5:1 ratio. After 6 hours of induction at 37 °C, 

Bio-Glo™ Luciferase Assay Reagent was added and then luminescence signals were determined. 

 

10.7. TOTAL PROTEIN EXTRACTION 

The cells were washed by adding 10 cm pre-chilled PBS and 0.5 ml (for 10 cm plate culture) 

NP40 cell lysis solution added to cells and the cells were incubated on ice for 5 minutes. The 

cells were then collected into an ice-cold microcentrifuge tube and were incubated at 4°C with 

rocking for 15 minutes. Afterward, the lysate was centrifuged at 14,000 g for 15 minutes at 4°C, 
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and then the supernatant was collected into a new ice-cold microcentrifuge tube and stored at -

80°C.  

 

10.8. SUBCELLULAR PROTEIN FRACTIONATION  

Proteins from membrane, cytosol and nuclear fractions were isolated by using Subcellular 

Protein Fractionation Kit (cat# NBP2-47659; Novus Biologicals, Centennial, CO, USA) 

following the manufacturer’s instruction. The culture medium was discarded and the cells (5-10 

× 10
6
) were washed with PBS and trypsinized. The cells collected into a 15 ml tube pelleted by 

centrifugation at 200 g for 5 minutes. The cell pellet was washed with ice-cold PBS and pelleted 

again by centrifugation at 200 g for 5 minutes. The pellet resuspended in 400 µl of ice-cold 

Cytosol Extraction Buffer-Mix (CEB-Mix) containing 2 mM dithiothreitol (DTT) and protease 

inhibitor cocktail by gentle pipetting and incubated at 4°C with rocking for 20 minutes. The cells 

were then centrifuged at 700 g for 10 minutes. The supernatant was collected to a new tube as 

cytosolic protein fraction. The pellet was resuspended in 400 µl of ice-cold Membrane 

Extraction Buffer-A Mix (MEB-A Mix) containing 2 mM DTT and protease inhibitor cocktail 

by vigorous vortexing for 20 seconds. Then, 22 µl of Membrane Extraction Buffer-B was added 

to the mixture and mixed by vortexing. The mixture was incubated on ice for 1 minute and then 

centrifuged at 1000 g for 10 minutes. The supernatant was collected to a new tube as membrane 

protein fraction and stored at -80°C. The pellet was resuspended in 200 µl of ice-cold Nuclear 

Extraction Buffer Mix (NEB-Mix) containing 2 mM DTT and protease inhibitor cocktail by 

vortexing and was incubated at 4°C with rocking for 40 minutes. Afterward, the mixture was 

centrifuged at 14,000 g for 10 minutes and then the supernatant was collected into a new tube as 

nuclear protein fraction and stored at -80°C. All centrifugations were done at 4°C.  

 

10.9. TOTAL RNA EXTRACTION 

The cells were washed by PBS and 3 ml (for 10 cm plate culture) TRizol
®
 (guanidinium 

thiocyanate; cat# 15596018; Thermo Fisher Scientific; Waltham, MA, USA) was added to the 

cells and then the cells were collected to a new microcentrifuge tube and were lysed by vigorous 
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vortexing. Then, 1.5 ml chloroform added to the mixture and mixed by inverting several times. 

The mixture was incubated for 5 minutes at room temperature and then centrifuged at 12,000 g 

for 10 minutes at 4°C. Afterward, the upper aqueous phase was collected into a new ice-cold 

tube and the RNA was precipitated by adding 1.5 ml (70% of aqueous phase volume) 

isopropanol and incubation at room temperature for 10 minutes. The mixture was then 

centrifuged at 12,000 g for 15 minutes at 4°C. The supernatant was discarded, and the RNA 

pellet resuspended in 1 ml of 70% ethanol. Then, the RNA mixture was centrifuged at 14,000 g 

for 5 minutes at 4°C. The supernatant was discarded, and the RNA pellet was left to air-dry. The 

RNA was eluted in 50 µl RNase-free DEPC dH2O and stored at -80°C. 

 

10.10. PLASMID EXTRACTION 

Bacterial culture suspension was centrifuged at 8,000 g for 5 minutes at room temperature. 

The supernatant was discarded, and the pellet was resuspended in 250 μl (for 5 ml culture) 

Buffer P1 by vigorous vortexing. Then, 250 μl Buffer P2 was added to the mixture and mixed by 

inverting the tube 5 times, and then 350 μl Buffer N3 was mixed in the mixture by inverting the 

tube 5 times. The bacterial mixture was centrifuged at 18,000 g for 10 minutes and then the 

supernatant was applied to QIAprep 2.0 spin column (QIAGEN, Hilden, Germany). The column 

was centrifuged at 8,000 g for 1 minute. The flow-through solution was discarded, and the 

column was washed by adding 0.7 ml Buffer PE and centrifugation at 8,000 g for 1 minute. 

Then, 50 μl buffer EB was added and the column and plasmid were collected into a new 

microcentrifuge tube by centrifugation at 8,000 g for 1 minute and stored at -20°C.  

 

10.11. PLASMID CONSTRUCTION 

Truncated HER2 cDNA ORFs were amplified by PCR using previously constructed EGFP-

N3-ERBB2 as a PCR template. The sequences of the PCR overhang oligonucleotide primers are 

shown in Table 8.1. PCR reaction was done using ACCUZYME™ DNA Polymerase kit (cat# 

BIO-21052; Bioline; Memphis, TN, USA) following the manufacturer’s instruction. The PCR 

cycling was as shown in Table 8.2. The PCR products were blunt-end cloned into pDrive cloning 
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vector by using QIAGEN PCR Cloning Kit (cat# 231124; Hilden, Germany). The ligation mixes 

were then transformed into competent E. coli by the heat shock method. The bacteria were 

cultured overnight on agar plates containing ampicillin. Twenty colonies were separately 

expanded by culturing in Lysogeny broth (LB) culture, and then the plasmid contents were 

extracted and run in 1% agar gel by DNA electrophoresis. The colonies possessing pDrive-

ERBB2 plasmids were expanded and high volume pDrive-ERBB2 plasmid was extracted.  

ERBB2 ORFs were sub-cloned from pDrive-ERBB2 plasmids into pcDNA3.1/Myc-HisA(-) 

and pEGFP-N3 vectors. For this, the empty target plasmids and pDrive-ERBB2 plasmids were 

digested by Xho1 (cat# R0146S) and HindIII (cat# R0104S) restriction enzymes to provide 

sticky ends. The digested pDrive-ERBB2 (containing sticky ended ERBB2 ORFs) mixture were 

mixed with digested pcDNA3.1/Myc-HisA(-) mixtures or empty digested pEGFP-N3 plasmids 

and T4 DNA ligase (cat# M0202S) was added to the mixture. All enzymes were purchased from 

New England Biolab; (Ipswich, MA, USA). The ligation mixtures were transformed into 

competent E. coli and the bacteria were cultured overnight on an agar plate containing ampicillin 

(for pcDNA3.1/Myc-HisA(-) vector) or kanamycin (for pEGFP-N3 vector). After the culture, 20 

colonies from each transformation were separately expanded by culture in LB overnight and the 

plasmids were extracted. Successful colonies were selected based on plasmid size after 

electrophoresis run into 1% agarose gel and were expanded by culture to extract a high volume 

of pcDNA-ERBB2 and pEGFP-ERBB2 plasmids. Successful cloning was confirmed by PCR 

amplification of ERBB2 ORFs as described above.  

Table 10.1. The sequence of used oligonucleotide primer for HER2 ORFs. RE: restriction 

enzyme. Restriction enzyme recognition sequences as underlined. Start codons are shown as 

lower case. 

Oligo Strand Sequence RE 

TM+IC  Sense 3’-AAACTCGAGAAAatgGCCAGCCCTCTGACGTCCA-5’ XhoI 

IC Sense 3’-AAACTCGAGAACatgGGGATCCTCATCAAGCGACGG-5’ XhoI 

IC-ΔNLS Sense 3’-AAACTCGAGAAAatgGAAACGGAGCTGGTGGAGCC-5’ XhoI 

R_HER2 Antisense 3’-CCCAAGCTTCACTGGCACGTCCAGACCC3’-5’ HindIII 
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Table 10.2. PCR cycling protocol. 

Step Temperature Time Cycle 

Initial denaturation 97°C 1 minutes 1 

Denaturation 97°C 15 seconds 

35 Annealing 66°C 15 seconds 

Extension 72°C 3 minutes 

Complementary extension 72°C 10 minutes 1 

 

10.12. PLASMID TRANSFECTION (LIPOFECTAMINE
®
 2000) 

A number of 10
6
 COS7 cells were plated 24 hours prior to transfection. Three hours prior 

transfection the culture medium was replaced with 0.5 ml (for 24-well culture) or 7.5 ml (for 10 

cm plate culture) of antibiotic-free Opti-MEM medium. Amount of 0.5 µl (for 24-well culture) 

or 5 µl (for 10 cm plate culture) Lipofectamine
®
 2000 (cat# 11668027; Thermo Fisher Scientific) 

were mixed in 50 µl (for 24-well culture) or 750 µl (for 10 cm culture) of Opti-MEM medium 

and the lipofectamine solution were incubated in room temperature for 5 minutes. 

Approximately, 1 µg (for 24-well culture) or 10 µg (for 10 cm culture) plasmid DNA were 

mixed in 50 µl (for 24-well culture) or 750 µl (for 10 cm culture) of Opti-MEM medium. Then, 

the DNA solution was added to the lipofectamine solution by drop-wise. The transfection 

mixture was then mixed by pipetting and was left to incubation at room temperature for 30  

minutes. Afterward, the transfection mixture was added to the cells by drop-wise and the cells 

left to incubation for 6 hours at culture condition. After incubation, the medium was replced with 

fresh DMEM medium supplemented with 10% FBS and antibiotics including penicillin (100 

U/ml) and streptomycin (100 μg/ml), and the cells were left to culture for overnight.  

 

10.13. PLASMID TRANSFECTION (CALCIUM PHOSPHATE METHOD) 

A number of 10
6
 cells were cultured 24 hours prior to transfection. Three hours prior to 

transfection, the culture medium was replaced with 350 µl (for 24-well culture) or 10 ml (for 10 

cm plate culture) of fresh antibiotic-free culture medium. Plasmid solution was prepared by 

mixing 2 µg plasmid, 2.4 µl 2M CaCl2 and dH2O (up to 10 ul) for 24-well culture, or 20 µg 
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plasmid, 72 µl 2M CaCl2 and dH2O (up to 600 ul) for 10 cm plate culture. The plasmid solution 

was added to 10 µl (for 24-well culture) or 600 µl (for 10 cm plate culture) of 2x HSB by drop-

wise and the solution was mixed by pipetting and incubated at room temperature for 30 minutes. 

The transfection mixture was then added to the cell cultures by drop-wise, and after mixing by 

gentle rocking, the cells were incubated for 24 hours at standard culture condition.  

 

10.14. DNA AGAROSE GEL ELECTROPHORESIS 

To make 100 ml of 1% agarose gel, 1 g agarose powder was dissolved and boiled in 100 ml 

of TAE buffer using a microwave oven.  After the liquid gel chilled-down to about 50-60°C, 10 

µl (1 µl per 10 ml gel) SYBR™ Safe DNA gel stain (cat# S33102; Thermo Fisher Scientific) 

was mixed to the liquid gel. The gel was then poured into a cassette and left for solidifying at 

room temperature. Afterward, the gel placed in the electrophoresis tank filled by TAE buffer. 

Approximately 1 µg DNA was mixed with 6x DNA loading buffer by 3:1 ration and then, the 

mixture loaded to well. The DNA sample was run into the gel at an electric current of 120 V 

electric potential for 1 hour. After running the gel was monitored under UV using a gel imaging 

system.  

 

10.15. PROTEIN SDS-PAGE GEL ELECTROPHORESIS 

The SDS-PAGE gel was placed in a vertical electrophoresis tank filled by protein running 

buffer. Protein samples were boiled in 4x Laemmli Buffer by 1:1 ratio for 5 minutes and then 

loaded into the SDS-PAGE gel wells. The protein samples were then run into the gels at an 

electric current of 120 V electric potential for 1 hour.  

 

10.16. COOMASSIE BLUE PROTEIN STAINING  

The protein samples were run into SDS-PAGE as described above. The gel was removed 

from the cassette and rinsed with dH2O 3 times gently. The gel was then incubated in protein 

fixation solution for 1 hour at room temperature with gentle agitation. The gel was washed with 
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dH2O 3 times and was then incubated in coomassie blue solution at room temperature for 1 hour 

with gentle agitation. Afterward, the gel was destained by overnight incubation in destaining 

solution at room temperature with gentle agitation until the background color is removed and the 

protein bands have appeared.  

 

10.17. WESTERN BLOTTING 

Protein samples were run into SDS-PAGE gel as described above. The protein was then 

transferred onto nitrocellulose membrane at 15 V electric potential for 90 minutes using a semi-

dry protein transfer system (Bio-Rad Laboratories, Berkeley, CA, USA). The membrane was 

blocked by incubation in 5% BSA (RDye
®
 antibodies) in TBS or 5% skimmed milk (HRP-

conjugated antibodies) in TBS solution for 60 minutes and was then incubated overnight in 0.2 

µg/ml primary antibody solution. After washing with TBST, the membranes were incubated in 

25 ng/ml RDye
®

 infrared fluorescent dye-conjugated secondary antibody solution or 0.2 µg/ml 

HRP-conjugated secondary antibody solution both in protein blocking buffer for 60 minutes. 

After washing with TBST, the BSA blocked membranes were blotted by RDye
®
 dye for 1 hour 

and monitored using Odyssey
®

 CLx imaging system (LI-COR biotechnology Inc., Lincoln, NE, 

USA). The membranes blocked by skimmed milk were blotted with an HRP-conjugated 

antibody for 1 hour and were treated with enhanced chemiluminescence (ECL) substrate solution 

(cat# 32106; Thermo Fisher Scientific) for 5 minutes. The membranes were then monitored by 

development signals on X-ray film using an X-ray developer machine. Query protein band's 

intensity was quantified and normalized to the intensity of relevant loading control protein bands.  

 

10.18. IMMUNOFLUORESCENCE STAINING ASSAY 

The indirect double-immunofluorescence staining was done as described previously [4]. Cell 

coverslips were washed with ice-cold PBS and the cells were fixed by incubation in -2ºC 

methanol for 5 minutes. The coverslips were then washed with TBS and blocked in coverslip 

blocking buffer (1% BSA solution in TBS) for 1 hour. After blocking, the coverslips (except 

those treated with isotype human IgG, pertuzumab and trastuzumab) were incubated in 2 µg/ml 
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primary antibody solution for 1 hour. The coverslips were washed and then incubated in 1 µg/ml 

FITC-conjugated and/or 1 µg/ml TRITC-conjugated secondary antibodies solutions for 1 hour in 

dark. Afterward, the coverslips were washed with TBS and were then incubated in 1 µg/ml DAPI 

solution for 5 minutes. The coverslips were mounted on microscope slides, sealed by nail polish 

and observed under a fluorescence microscope.   

 

10.19. RECEPTOR DIMERIZATION ASSAY 

HER2 receptor dimerization assay was done by using a cross-linking reagent as described 

previously [5]. The cells were cultured in standard culture condition for 24 hours and were then 

starved overnight in 1% FBS culture medium. After treatment, the cells were collected and 

suspended in 0.5 ml of 1 mM bissulfosuccinimidyl suberate (BS
3
) solution in PBS. The cells 

were then incubated on ice for 2 hours for a cross-linking reaction. To terminate the reaction 5 µl 

of 10 mM Tris solution (pH 7.5) was added, and the mixture was incubated on ice for 15 

minutes. After centrifugation at 200 g for 3 minutes, the cross-linking solution was removed, and 

the cells were lysed by adding NP40 lysis buffer and incubating on ice for 1 hour. The lysate was 

run on 4% polyacrylamide gel and HER2 monomer and homodimer were analyzed by western 

blotting as described above.  

 

10.20. PROTEIN IMMUNOPRECIPITATION ASSAY 

Eight µg (20 μl) anti-mouse goat IgG-agarose beads were transferred into a microcentrifuge 

tube and washed by dissolving in 1 ml ice-cold PBS and centrifugation at 14,000 g for 15 

minutes at 4ºC. The supernatant was discarded, and the IgG-agarose bead pellet was stored at 

4ºC. Two µg (10 μl) primary antibody (anti-HER2 mouse monoclonal IgG) was added to 400 µl 

of total protein lysate and the mixture was incubated overnight at 4ºC with rocking. The 

antibody-lysate mixture was then added to the IgG-agarose beads and the IP mixture was 

incubated overnight at 4ºC with rocking. Afterward, the IP mixture was centrifuged at 14,000 g 

for 15 minutes at 4ºC and the supernatant was collected. The IP pellet was washed by dissolving 

in 0.5 ml ice-cold lysis buffer followed by centrifugation at 14,000 g for 15 minutes at 4ºC. The 
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washing step was repeated 5 times by centrifugation at 14,000 g for 15 minutes at 4ºC. The IP 

pellet was resuspended in 50 µl lysis buffer and stored at -80ºC. 

 

10.21. MICROARRAY cDNA PROFILING ASSAY 

Total RNA from cells was isolated using TRIzol
®
 reagent as described above. Samples for 

microarray hybridization were prepared according to the Affymetrix Manual Target Preparation 

for GeneChip
®
 Whole Transcript Expression Arrays (Affymetrix Inc., Santa Clara, CA, USA). 

An amount of 100 ng of total RNA was used to make double-stranded cDNA following cRNA 

synthesis. After purification, 15 µg cRNA was subjected to reverse transcription into sense-

strand (SS) cDNA when unnatural dUTP residues were incorporated. SScDNA was purified and 

5.5 µg of each SScDNA was fragmented using uracil DNA glycosylase (UDG) and 

apurinic/apyrimidinic endonuclease 1 (APE1) at the unnatural dUTP which breaks the DNA 

strand. Fragmented SScDNA were terminal labeled with biotin and 3 µg from each sample was 

hybridized to Affymetrix GeneChip
®
 CHO Gene 2.0 ST array (format 100) for 16 hours at 45ºC 

with rotation at 60 rpm in an Affymetrix GeneChip
®
 Hybridization Oven 645. After 

hybridization, the arrays were washed and stained in an Affymetrix GeneChip
®
 Fluidics Station 

FS450. The fluorescent signals were measured with an Affymetrix GeneChip
®
 Scanner 3000 7G. 

Row data was analyzed by Affymetrix Transcriptome Analysis Console (TAC) 3.0 software 

(Affymetrix Inc., Santa Clara, CA, USA) using GeneChip
®
 CHO Gene 2.1 ST Array annotation 

library (GEO platform ID GPL24076). Normalized microarray cDNA expression values 

uploaded to GEO database by accession number GSE110189 for public use. 

 

10.22. MASS SPECTROMETRY 

Mass spectrometry experimental analysis of proteins in SDS-PAGE gel was done by Alberta 

Proteomics and Mass Spectrometry Facility at the University of Alberta. In-gel trypsin digestion 

was performed on the samples. Briefly, excised gel bands were destained twice in 100 mM 

ammonium bicarbonate/acetonitrile (50:50). The samples were then reduced (10 mM 2-

Mercaptoethanol in 100 mM bicarbonate) and alkylated (55 mM iodoacetamide in 0.1 M 
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bicarbonate). After dehydration, enough trypsin (6 ng/µl, Promega Sequencing grade) was added 

to just cover the gel pieces and the digestion was allowed to proceed overnight (16 hours) at 

room temperature.  Tryptic peptides were first extracted from the gel using acetonitrile solution 

followed by a second extraction using 50% of the first extraction buffer and 50% acetonitrile. 

Fractions containing tryptic peptides were resolved and ionized by using nanoflow HPLC 

(Easy-nLC II, Thermo Fisher Scientific) coupled to an LTQ XL-Orbitrap hybrid mass 

spectrometer (Thermo Fisher Scientific). Nanoflow chromatography and electrospray ionization 

were accomplished by using a PicoFrit fused silica capillary column (ProteoPepII, C18) with 100 

μm inner diameter (300Å, 5μm; New Objective Woburn, MA, USA). Peptide mixtures were 

injected onto the column at a flow rate of 3000 nl/min and resolved at 500 nl/min using a 60 

minutes linear gradient from 0 to 35% v:v aqueous acetonitrile (ACN) in 0.2% v/v formic acid. 

The mass spectrometer was operated in data-dependent acquisition mode, recording high-

accuracy and high-resolution survey Orbitrap spectra using external mass calibration, with a 

resolution of 30,000 and m/z range of 400-2000. The fourteen most intense multiply charged 

ions were sequentially fragmented by using collision-induced dissociation, and spectra of their 

fragments were recorded in the linear ion trap; after two fragmentations all precursors selected 

for dissociation were dynamically excluded for 1 minute. Data were processed using Proteome 

Discoverer 1.4 (Thermo Fisher Scientific) and a human proteome database (UniProt) available at 

https://uniprot.org/ was searched using tandem mass spectrometry data analysis program 

SEQUEST. Search parameters included a precursor mass tolerance of 10 ppm and a fragment 

mass tolerance of 0.8 Da. Peptides were searched with carbamidomethyl cysteine as a static 

modification and oxidized methionine and deamidated glutamine and asparagine as dynamic 

modifications.     

 

10.23. BIOINFORMATIC ANALYSIS 

10.23.1. Protein docking analysis 

Crystal structures of the extracellular region of rat HER2 (PDB ID: 1N8Y) [6], extracellular 

domain of human HER2 complexed with Herceptin Fab (PDB ID: 1N8Z) [6] and catalytic 

domain of ADAM17 (PDB ID: 1BKC) [7] were obtained from Protein Data Bank (PDB) 
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available at https://rcsb.org. Docking of 1BKC to 1N8Y and to 1N8Z was done using ZDOCK 

online software [8] available at http://zdock.umassmed.edu.  

10.23.2. Gene set enrichment analysis 

Gene set enrichment analysis, gene ontology molecular and biological functional analysis 

and KEGG pathway analysis were done by using Enrichr web server [9] available at 

https://amp.pharm.mssm.edu/Enrichr/#.  

10.23.3. cBioPortal cancer genomics database  

RNA-seq and expression Z-scores of 1,904 breast cancer tumors studied by METABRIC 

study were obtained from and analyzed using cBioPortal cancer genomics database [10,11] 

available at http://cbioportal.org/index.do. 

10.23.4. Gene Expression Omnibus (GEO) 

All mRNA expression and methylation data from cell lines were obtained from GEO 

database available at https://www.ncbi.nlm.nih.gov/geo. GEO series and samples accession IDs 

of analyzed data are shown in Table 6.3.  

10.23.5. ChIP-seq chromatin enrichment 

ChIP-seq data were obtained from Cistrome Data Browser [12] available at 

http://cistrome.org/db/# and GEO database. ChIP-seq data were visualized by using WashU 

Epigenome Browser [13] available at “https://epigenomegateway.wustl.edu”. Cistrome DB and 

GEO samples accession IDs of analyzed ChIP-seq data are shown in Table 6.4. 

10.23.6. 3D and 4D genome data 

IM-PET promoter-enhancer interaction data were obtained from 4Dgenome database [14] 

available at https://4dgenome.research.chop.edu. HiC data were obtained from and virtualized by 

3DIV (3D-Genome Interaction Viewer) database [15] available at http://kobic.kr/3div.  

10.23.7. Statistical analysis and data visualization  

http://zdock.umassmed.edu/
https://amp.pharm.mssm.edu/Enrichr/
https://4dgenome.research.chop.edu/
http://kobic.kr/3div
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GEO array expression data were analyzed by Affymetrix Transcriptome Analysis Console 

(TAC) 3.0 software (Affymetrix Inc., Santa Clara, CA, USA). Heatmap and circus plots created 

by Heatmapper online tool [16] and Circa software respectively. Digitally imaged data were 

quantified using ImageJ software. Word could diagrams were generated using 

https://wordart.com web tool. All figure layouts were prepared using Adobe Photoshop CS6 (San 

Jose, CA, USA). Data were statistically analyzed by two-tailed student’s t-test and analysis of 

variance (ANOVA) using Prism v.6 software (GraphPad Software, La Jolla, CA, USA). Data 

were presented as mean and SD. P < 0.050 was considered as statistically significant. 

Table 10.3. GEO series and samples accession IDs of expression and methylation arrays data 

analyzed in this thesis. 

GEO series GEO Samples  Data type Reference 

GSE110189 

GSM2981936  Untreated CHO-K1 cells 

[17] 

GSM2981937 
CHO-K1 cells treated with 

trastuzumab+pertuzumab 

GSM2981938  Untreated CHO-K6 

GSM2981939 
CHO-K6 treated with 

trastuzumab 

GSM2981940 
CHO-K6 treated with 

pertuzumab 

GSM2981941 
CHO-K6 treated with 

trastuzumab+ pertuzumab 

GSE50811 

GSM1229992, GSM1229993, GSM1229994, 

GSM1230001, GSM1230002, GSM1230003, 

GSM1230010, GSM1230011, GSM1230012, 

GSM1230019, GSM1230020, GSM1230021, 

GSM1230028, GSM1230029, GSM1230030, 

GSM1230037, GSM1230038, GSM1230045, 

GSM1230046, GSM1230047, GSM1230054, 

GSM1230055, GSM1230056, GSM1230063, 

GSM1230064, GSM1230065, GSM1230072, 

GSM1230073, GSM1230074, GSM1230081, 

GSM1230082, GSM1230083, GSM1230090, 

GSM1230091, GSM1230092, GSM1230099, 

GSM1230100, GSM1230101, GSM1230108, 

GSM1230109, GSM12301, GSM1230117, 

GSM1230118, GSM123011910, 

GSM1230126, GSM1230127, GSM1230134, 

Expression profiling of 

breast cancer cell lines by 

array  

[18] 

https://wordart.com/
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GSM1230135, GSM1230136, GSM1230143, 

GSM1230144, GSM1230145, GSM1230152, 

GSM1230153, GSM1230154, GSM1230161, 

GSM1230162, GSM1230163, GSM1230170, 

GSM1230171, GSM1230172, GSM1230179, 

GSM1230180, GSM1230181, GSM1230188, 

GSM1230189, GSM1230190, GSM1230197, 

GSM1230198, GSM1230199, GSM1230206, 

GSM1230207, GSM1230208, GSM1230215, 

GSM1230216, GSM1230217, GSM1230224, 

GSM1230225, GSM1230226 

GSE44838 

GSM1092241, GSM1092242, GSM1092251, 

GSM1092253, GSM1092255, GSM1092259, 

GSM1092260, GSM1092261, GSM1092263, 

GSM1092264,  

Expression profiling 

of breast cancer cell 

lines by array 

[19] 
GSM1092267, GSM1092268, GSM1092277, 

GSM1092279, GSM1092281, GSM1092285, 

GSM1092286, GSM1092287, GSM1092289, 

GSM1092290 

Methylation 

profiling of breast 

cancer cell lines by 

genome tiling array 

GSE16179 

GSM799168, GSM799169, GSM799170 
Lapatinib-sensitive  

BT474 cell lines 
[20] 

GSM799174, GSM799175, GSM799176  
Lapatinib-resistant  

BT474 cell lines 

GSE17708 

GSM442026, GSM442027, GSM442028 Untreated A549 

[21] 

GSM442029, GSM442030, GSM442031 
A549 treated with 

TGFβ1 for 0.5 hour 

GSM442032, GSM442033, GSM442034 
A549 treated with 

TGFβ1 for 1 hour 

GSM442035, GSM442036 
A549 treated with 

TGFβ1 for 2 hours 

GSM442037, GSM442038, GSM442039 
A549 treated with 

TGFβ1 for 4 hours 

GSM442040, GSM442041, GSM442042  
A549 treated with 

TGFβ1 for 8 hours 

GSM442043, GSM442044, GSM442045  
A549 treated with 

TGFβ1 for 16 hours 

GSM442046, GSM442047, GSM442048 
A549 treated with 

TGFβ1 for 24 hours 
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GSM442049, GSM442050, GSM442051 
A549 treated with 

TGFβ1 for 72 hours 

 

Table 10.4. Cistrome DB and GEO accession IDs of ChIP-seq data analyzed in this thesis. 

Factor X-seq Cell line Cistrome DB ID GEO sample ID Reference 

Tn5 ATAC-seq MCF7 79676 GSM2714245 [22] 

Tn5 ATAC-seq MDA-MB-231 65718 GSM2439559 [23] 

DNase DNase-seq MCF7 40995 GSM1008581 [24] 

DNase DNase-seq MDA-MB-231 78267 GSM2242137 [25] 

FOXA1 ChIP-seq MDA-MB-453 36842 GSM1099031 [26] 

FOXA1 ChIP-seq MCF7 2320 GSM659787 [27] 

E2F1 ChIP-seq MCF7 2281 GSM699986 [28] 

E2F1 ChIP-seq MDA-MB-231 75043 GSM2501567 [25] 

H2BK120ub ChIP-seq HCC-1954 85603 GSM2258929 [29] 

H2BK120ub ChIP-seq SKBR3 82286 GSM2258950 [29] 

H2BK120ub ChIP-seq AU565 85597 GSM2258923 [29] 

H2BK120ub ChIP-seq MDA-MB-361 81479 GSM2258935 [29] 

H2BK120ub ChIP-seq MCF7 86405 GSM2258947 [29] 

H2BK120ub ChIP-seq MDA-MB-231 81472 GSM2258932 [29] 

H2BK120ub ChIP-seq MDA-MB-468 86411 GSM2258941 [29] 

H3K39me3 ChIP-seq HCC-1954 88403 GSM2258835 [29] 

H3K39me3 ChIP-seq SKBR3 87169 GSM2258798 [29] 

H3K39me3 ChIP-seq AU565 88152 GSM2258816 [29] 

H3K39me3 ChIP-seq MDA-MB-361 81935 GSM2258762 [29] 

H3K39me3 ChIP-seq MCF7 74303 GSM2483406 [29] 
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H3K39me3 ChIP-seq MDA-MB-231 2408 GSM425485 [30] 

H3K39me3 ChIP-seq MDA-MB-468 82822 GSM2258889 [29] 

K3K79me2 ChIP-seq HCC-1954 85976 GSM2258841 [29] 

K3K79me2 ChIP-seq SKBR3 84023 GSM2258805 [29] 

K3K79me2 ChIP-seq AU565 84313 GSM2258823 [29] 

K3K79me2 ChIP-seq MDA-MB-361 81942 GSM2258769 [29] 

K3K79me2 ChIP-seq MCF7 86291 GSM2258733 [29] 

K3K79me2 ChIP-seq MDA-MB-231 88654 GSM2258858 [29] 

K3K79me2 ChIP-seq MDA-MB-468 87026 GSM2258894 [29] 

H3K4me1 ChIP-seq HCC-1954 88402 GSM2258836 [29] 

H3K4me1 ChIP-seq SKBR3 84019 GSM2258801 [29] 

H3K4me1 ChIP-seq AU565 88154 GSM2258818 [29] 

H3K4me1 ChIP-seq MDA-MB-361 81941 GSM2258764 [29] 

H3K4me1 ChIP-seq MCF7 82432 GSM2258728 [29] 

H3K4me1 ChIP-seq MDA-MB-231 68383 GSM2036932 [29] 

H3K4me1 ChIP-seq MDA-MB-468 87022 GSM2258890 [29] 

H3K4me3 ChIP-seq HCC-1954 8399 GSM721134 [31] 

H3K4me3 ChIP-seq SKBR3 82540 GSM2258803 [29] 

H3K4me3 ChIP-seq AU565 84311 GSM2258821 [29] 

H3K4me3 ChIP-seq MDA-MB-361 81939 GSM2258766 [29] 

H3K4me3 ChIP-seq MCF7 86289 GSM2258731 [29] 

H3K4me3 ChIP-seq MDA-MB-231 68122 GSM1700393 [32] 

H3K4me3 ChIP-seq MDA-MB-468 54526 GSM1429760 [33] 

H3K9ac ChIP-seq HCC-1954 84601 GSM2258842 [29] 

H3K9ac ChIP-seq SKBR3 84020 GSM2258806 [29] 
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H3K9ac ChIP-seq AU565 84254 GSM2258824 [29] 

H3K9ac ChIP-seq MCF7 86292 GSM2258734 [29] 

H3K9ac ChIP-seq MDA-MB-231 58110 GSM1619768 [34] 

H3K9ac ChIP-seq MDA-MB-468 87027 GSM2258897 [29] 

H3K27ac ChIP-seq HCC-1954 88400 GSM2258830 [29] 

H3K27ac ChIP-seq SKBR3 87173 GSM2258794 [29] 

H3K27ac ChIP-seq MDA-MB-361 85478 GSM2258758 [29] 

H3K27ac ChIP-seq MCF7 82438 GSM2258722 [29] 

H3K27ac ChIP-seq MDA-MB-231 61914 GSM1855992 [35] 

H3K27ac ChIP-seq MDA-MB-468 82828 GSM2258884 [29] 

H4K8ac ChIP-seq HCC-1954 81475 GSM2258931 [29] 

H4K8ac ChIP-seq SKBR3 82288 GSM2258952 [29] 

H4K8ac ChIP-seq AU565 85599 GSM2258925 [29] 

H4K8ac ChIP-seq MDA-MB-361 81477 GSM2258937 [29] 

H4K8ac ChIP-seq MCF7 86413 GSM2258949 [29] 

H4K8ac ChIP-seq MDA-MB-231 81478 GSM2258934 [29] 

H4K8ac ChIP-seq MDA-MB-468 86409 GSM2258943 [29] 

H3K9me3 ChIP-seq HCC-1954 84600 GSM2258845 [29] 

H3K9me3 ChIP-seq SKBR3 84024 GSM2258808 [29] 

H3K9me3 ChIP-seq AU565 84308 GSM2258826 [29] 

H3K9me3 ChIP-seq MDA-MB-361 84978 GSM2258772 [29] 

H3K9me3 ChIP-seq MCF7 86294 GSM2258736 [29] 

H3K9me2 ChIP-seq MDA-MB-231 58111 GSM1619769 [34] 

H3K9me3 ChIP-seq MDA-MB-468 87019 GSM2258898 [29] 

H3K27me3 ChIP-seq HCC-1954 88398 GSM2258832 [29] 



246 

 

H3K27me3 ChIP-seq SKBR3 87171 GSM2258796 [29] 

H3K27me3 ChIP-seq AU565 88150 GSM2258814 [29] 

H3K27me3 ChIP-seq MDA-MB-361 81936 GSM2258761 [29] 

H3K27me3 ChIP-seq MCF7 82436 GSM2258724 [29] 

H3K27me3 ChIP-seq MDA-MB-231 88660 GSM2258850 [29] 

H3K27me3 ChIP-seq MDA-MB-468 82827 GSM2258887 [29] 
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