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A bstract

Maximum-Likelihood (ML) detection problem in communication is known to be 

NP(Non-deterministic Polynomial time)-hard. The computational complexity of solv­

ing ML detection is exponential in the size of the problem with exhaustive search that 

provides optimal solution. Several suboptimum algorithms have been proposed in the 

literature that provide reliable performance with reduced complexity. But still there 

is a large gap between the performance of the sub-optimal detectors and that of the 

optimal detector. Motivating by this, the main objective of this research is to achieve 

near-optimal performance of detector while maintaining computational efficiency.

In this thesis, we look at several metaheuristic optimization methods to get ap­

proximate optimal solution. We improve the performance of (1 +  A) Evolutionary 

Strategy (ES) based multiuser detector for synchronous Direct Sequence Code Divi­

sion Multiple Access (DS-CDMA) system by applying hybrid (1 +  A) ES algorithm. 

We also applied this hybrid method for ML detection in Multicarrier CDMA (MC- 

CDMA) and Multiple Input Multiple Output (MIMO) systems. We proposed Simu­

lated Annealing (SA) algorithm for ML detection and applied to these systems. Based 

on a new type Evolutionary Computation (EC) algorithms named Estimation of Dis­

tribution Algorithms (EDAs), we developed a new detection scheme. We applied an 

EDA approach named Population-based Incremental Learning (PBIL) algorithm and 

also modified. Simulation results are presented to demonstrate the efficacy of the 

proposed algorithms over the existing detectors.
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C hapter 1

Introduction

1.1 Background

1.1.1 W ireless S ystem s

Wireless technology enables high-speed, high-quality communication between mobile 

devices. Potential wireless applications include cell phones, 802.11-based wireless Lo­

cal Area Networks (LANs), Bluetooth, smart homes and appliances, voice and data 

communication over the Internet, and video conferencing. The wireless communica­

tions industry has advanced drastically in the past decade and emerged as one of the 

fastest growing sectors in telecommunications. Although the enormous demand for 

mobile phones has driven the early developments, the latest generations of wireless 

systems are also designed to provide broadband multimedia applications.

The first generation (1G) of mobile telephony systems was introduced in the early 

1980s for voice-only services using analog transmission techniques. 1G cellular sys­

tems include the Advance Mobile Phone System (AMPS) in North America and the 

Total Access Communication System (TACS) in Europe. All 1G standards were based 

on Frequency Division Multiple Access (FDMA). 1G systems frequently suffered from 

busy signals and dropped calls because of the low system capacity.

The second generation (2G) wireless systems introduced in the early 1990s were

1
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based on digital signalling to cope with increased traffic using limited bandwidth. 

These 2G systems were designed mainly for voice transmission. The most popu­

lar 2G wireless technology, known as GSM (Global System for Mobile), was first 

implemented in 1991. The 2G cellular systems enjoyed incredible success and were 

quickly adopted worldwide. The 2G standards include Time Division Multiple Access 

(TDMA), FDMA, Frequency Division Duplex (FDD) and Code Division Multiple Ac­

cess (CDMA). The first 2G CDMA cellular standard is Interim Standard 95 (IS-95). 

2G technology has limited data transmission capabilities such as fax and short mes­

sage service at data rates up to 14.4 kb/s [1]. With the virtual explosion of internet 

usage, users demand data delivery on mobile devices, and hence the 2G standards 

have evolved to 2G+ packet-based technology with data rates up to 384 kb/s.

The Third Generation (3G) of telephone systems provides for both voice and data 

applications. The advantages of 3G systems are universal global roaming, increased 

data rates (up to 2Mb/s), and improved spectral efficiency. International Mobile 

Telecommunications-2000 (IMT-2000) is the global standard for 3G wireless systems 

set by the International Telecommunication Union (ITU). Almost all IMT-2000 radio 

standards are based on CDMA: CDMA2000, wideband CDMA (WCDMA) and time 

division synchronous CDMA (TD-SCDMA) [1]. The first 3G wireless system was 

deployed in Japan in 2001. The global evolution of wireless communication standards 

from 1G to the 3G is summarized in Fig. 1.1 [1].

Research has continued on the improvement of 3G networks while they are being 

deployed. Fourth generation (4G) systems will be super-enhanced versions of 3G, us­

ing the Internet Protocol (IP) technology [2]. 4G systems will support all broadband 

wireless services such as interactive multimedia; high Quality-of-Service (QoS); high 

data rates (up to lOOMb/s); significantly increased spectral efficiency; and low de­

ployment, maintenance, and operation costs. Moreover, the new systems will assure 

universal roaming by using a single handheld device. These features impose demand­

ing technical challenges on the system design. Currently, several possible technologies 

are under consideration to meet these demands for the 4G air interface: Multiple In-

2
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Fig. 1.1. Evolution of wireless communication standards [1].

put Multiple Output (MIMO), Multicarrier CDMA (MC-CDMA), and Orthogonal 

Frequency Division Multiplexing (OFDM).

1.1.2 C ode D iv ision  M ultip le  A ccess

Capacity-enhancing techniques for current digital cellular systems have received much 

interest. The major resource constraints are the spectrum and transmission power. 

Multiple-access communication allows multiple users to share the common spectrum 

efficiently. Efficient spectrum use enables high throughput, integration of services 

and flexibility. Of several multiple access schemes, CDMA has taken a major role in 

cellular and personal communication systems as it can meet these requirements. The 

bandwidth sharing and inter-symbol interference rejection capabilities of CDMA are 

desirable in cellular systems and wireless LANs, making CDMA the basis for both 

second- and third-generation cellular systems as well as second-generation wireless

3
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LANs [3]. In 1990, Qualcomm introduced IS-95 (Interim Standard-95) based on 

CDMA air-interface technology. The CDMA capacity can be 4-6 times that of TDMA 

and is nearly 20 times that of analog networks [4],

In Direct Sequence CDMA (DS-CDMA), each user signal is spread by using a 

unique pseudorandom signature sequence. The transmitted signal is spread over the 

whole frequency band, which is much lower than the minimum bandwidth required 

for a single user. Low cross-correlation among the signature sequences allows different 

users to share the same frequency band with low interference. Thus, CDMA is now 

a driving force behind the rapidly developing wireless telecommunication industry.

MC-CDMA, a multicarrier version of CDMA, is being considered for the 4G wire­

less physical layer [4]. MC-CDMA offers several advantages over single carrier systems 

[5] and combines the advantages of OFDM and DS-CDMA [6]. The available spec­

trum is partitioned into several narrow subchannels (subcarriers), which experience 

flat fading. OFDM sub-channels are overlapping and orthogonal, thus eliminate- 

ing mutual interference. The MC-CDMA transmitter spreads the each user’s data 

over several subcarriers by using a frequency-domain signature sequence. Thus, MC- 

CDMA uses frequency domain spreading while DS-CDMA uses time domain spread­

ing. It is shown in [7] that MC-CDMA outperforms DS-CDMA in multipath channels 

while in an Additive White Gaussian Noise (AWGN) channel, their performances are 

identical.

1.1.3 M u ltip le  Input M ultip le  O utput System

MIMO systems with multiple antennas at both the transmitter and receiver offer 

high-data-rate wireless transmissions without increasing the bandwidth or transmit 

signal power [8]. By using an appropriate MIMO space-time processing technology, 

enormous capacities can be extracted from the rich-scattering multipath channel [9]. 

The MIMO technology is also a leading physical layer candidate for emerging 4G 

w ireless netw orks an d  has a lread y  b een  im p lem en ted  in  c u rren t s ta n d a rd s  such  as th e

4
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IEEE 802.16e (WiMAX) [10]. MIMO systems can achieve diversity gains and multi­

plexing gains. Diversity gains are realized by sending space-time coded information 

signals over multiple antennas and thus improving the performance (bit error rate) at 

the receiver. Multiplexing gains are realized by sending different information signals 

over multiple antennas, resulting in an increase in the information transmission rate.

1.1 .4  M ultiu ser D etection

The conventional CDMA detection uses the single user detection approach. A user’s 

data is detected by correlating the composite received signal with that user’s unique 

signature sequence. Other users’ signals are, in this case, treated as additional 

Gaussian noise [11]. This conventional detector (CD) consists of a bank of matched 

filters. Since the signature sequences are not perfectly orthogonal, this detector suf­

fers from multiple access interference (MAI) and also from the near-far problem [12]. 

That is, if an interferer is significantly stronger than the desired user, then the low- 

power user may be swamped out, and the high-power user can potentially dominate 

performance as even a small amount of correlation will lead to significant interference. 

To avoid this problem, precise power control, which is very difficult to maintain, is 

required in system design. In a mobile environment, multipath fading further aggra­

vates the near-far problem.

The effects of MAI and the near-far problem can be eliminated by multiuser de­

tection (MUD). MUD techniques have been investigated since the mid-1980’s and 

provide different tradeoffs between the bit error rate (BER) performance and com­

putational cost [13]. Reference [14] provides an overview of the most common MUD 

techniques. Verdu proposed the optimal maximum likelihood (ML) detector for MUD 

to mitigate the MAI problem of the conventional single-user detection approach [15]. 

Verdu introduced a A’-user ML sequence detector, which consists of a bank of K  single 

user matched filters followed by a Viterbi algorithm with 2K~l states. The complex­

ity of Verdu’s detector per binary decision is 0(2K). Consequently, this detector is

5
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unfeasible for a large number of users.

Although ML-MUD achieves the minimum probability of error, the ML cost func­

tion must be evaluated over the set of all feasible user data sequences, resulting in 

a non-deterministic polynomial time hard (NP-hard) optimization problem. Since 

computational complexity grows as 0(2K), several suboptimum detectors have been 

developed with reduced (polynomial) complexity. Decorrelating or minimum mean 

square error (MMSE) detectors are introduced in [16] and [17]. These linear sub- 

optimal receivers have linear computational complexity in the number of users, K. 

Suboptimal multistage nonlinear detectors are proposed in [18]. A successive inter­

ference cancelation algorithm is presented in [19]. A nonlinear technique using a 

variant of the decorrelating detector in conjunction with feedback is introduced [20]. 

All these detectors require knowledge of signature sequences and timing information 

about the desired user and interferer, the received amplitudes and other parameters. 

Blind MUD schemes, proposed in [21, 22], require no more knowledge than that re­

quired by a conventional detector, i.e., only the desired user’s signature waveform and 

its timing are required.

In sphere decoding (SD), the closest lattice point to the received signal within a 

hyper-sphere is searched. The sphere decoder has been shown to offer ML perfor­

mance at polynomial complexity in the high signal-to-noise ratio (SNR) region and 

for moderately sized problems [23]. However, the performances of the sphere decoder 

are dependent mainly on the search radius, and the complexity is large when the 

SNR is low or when the problem dimension is high [24]. The semidefinite relaxation 

(SDR) detector uses the cone of semidefinite matrices to obtain a good approximation 

to the ML-MUD problem [25]. Cutting planes are introduced in [25] to strengthen 

the approximation, and the semidefinite programming arising from the relaxation 

is solved by using the interior point method. Clearly, the tighter the relaxation in 

the solution, the more precise result can be obtained. However, the semidefinite 

relaxations encounter difficulty in practice because the cost of solving semidefinite 

programming goes up quickly as the problem dimension increases. Exact methods

6
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such as the branch and bound algorithm have also been proposed for MUD [26], 

To approximately solve the ML-MUD problem, metaheuristic methods can also be 

applied [27]-[29].

1.1.5 M etah eu ristics

For NP-hard problems, complete methods may have exponential time complexity in 

the worst-case. In the last 20 years, such problems have been attacked by using 

metaheuristics. The fundamental idea is to combine basic heuristic methods with 

higher level frameworks aimed at exploring the search space by using the concepts 

derived from artificial intelligence and the biological, neural and physical sciences [30]. 

A heuristic is a method that finds near-optimal solutions in a short time without being 

able to guarantee either feasibility or optimality [31]. Heuristic methods have been 

widely investigated for combinatorial problems [31].

Metaheuristic algorithms include Evolutionary Computation (EC) algorithms com­

prising Genetic Algorithm (GA), Evolutionary Programming (EP) and Evolutionary 

Strategy (ES); Tabu search (TS); and Ant Colony Optimization (ACO) have pre­

viously been employed for solving the ML-MUD problem [27]-[33]. Neighborhood 

search methods like 1 -opt, k-opt local search have already been introduced to solve 

the ML-MUD problem [34]-[36]. A GA-based detection strategy was used in [27] for 

a multiuser receiver, highlighting the feasibility of using GA as a powerful solution 

for MUD. EP converges to an optimal solution with a small number of generations 

and has lower complexity than GA [28]. Wang, Zhu and Kang proposed a new MUD 

algorithm based on (1 +  A) ES for an asynchronous DS-CDMA system in [29], They 

showed that their algorithm performed better when the number of users was large, 

while other evolutionary MUD algorithms performed poorly. In [37], a heuristic al­

gorithm based on a nonlinear nonconvex programming relaxation for the CDMA ML 

problem is presented. The BER performance of this heuristic detector is similar to 

th a t  of th e  SDR d e te c to r, but has lower average CPU time. R eference [32] com pares

7
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relaxations, exact and heuristic search methods and shows that when the number of 

users increases, the heuristic search methods such as TS and Iterated Local Search 

(ILS) are more effective than the SDR approach.

1.2 Contributions

The full potential of DS-CDMA, MC-CDMA and MIMO can be realized only with 

increased hardware cost due to the significantly more complex signal processing algo­

rithm in the receiver (and also in the transmitter side in the case of MIMO). Signal 

detection algorithms for these systems have thus been heavily researched. Much of the 

recent research has focused on the appropriate trade-offs between complexity and per­

formance. In this thesis, we focus on computationally efficient detection algorithms 

that can achieve near-optimum performance with low computational complexity. Sev­

eral metaheuristic detection methods are developed for DS-CDMA, MC-CDMA and 

MIMO systems. The key contributions of this thesis can be summarized as follows:

1. In [29], it is shown that the (1 +  A) ES-based detector outperformed other 

EC-based detectors. Inspired by this result, we develop a (1 +  A) ES-based 

detector for MC-CDMA and MIMO systems. We also propose a hybrid (1 +  A) 

ES algorithm for synchronous DS-CDMA, MC-CDMA, MIMO systems. This 

hybrid algorithm employs a (1 +  A) ES for the basic search, directing the search 

process towards an elitist solution space. A simple 1 -opt local search is applied 

for a thorough search in the elitist region. The simulation results demonstrate 

the efficiency of the proposed algorithm as for a large number of users, it offers 

a near optimal bit-error rate (BER) performance with lower computational 

complexity compared to the maximum-likelihood (ML) detector.

2. The SA algorithm is proposed for ML detection in DS-CDMA, MC-CDMA and 

MIMO systems. The average computational cost is significantly reduced in com­

parison to that of the optimal ML detector but degrades the BER performance.

8
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3. A new type of EC algorithms named Estimation of Distribution Algorithms 

(EDAs) [38] eliminate the drawbacks of typical EC algorithms. We develop a 

novel ML detection scheme based on the PBIL algorithm (one of the first EDAS) 

for DS-CDMA, MC-CDMA and MIMO systems. We also propose a modified 

PBIL algorithm which employs simple PBIL with 1 -opt local search to provide a 

better performance. Computer simulation reveals that these detection methods 

achieve near-optimal performance with low computational complexity.

1.3 Outline o f the Thesis

Chapter 2 introduces the DS-CDMA, MC-CDMA and MIMO systems. ML detection 

for these systems and the existing MUD techniques are reviewed.

Chapter 3 discusses the metaheuristic optimization methods used in this thesis 

for ML detection.

Chapter 4 applies these metaheuristic methods to the ML-MUD problem for the 

CDMA system, and the ML problem for the MIMO system. This chapter focuses on 

the efficient detection algorithms based on these metaheuristic methods for different 

systems. Numerical results are presented to show the BER and complexity of these 

proposed detectors.

Chapter 5 concludes the thesis and outlines future works.

9
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C hapter 2 

S ystem  M odels and M axim um  

Likelihood D etection

This chapter describes the DS-CDMA, MC-CDMA and MIMO systems, reviews MUD 

for CDMA and mathematically formulates the ML detection problem. Section 2.1 de­

scribes the CDMA mathematical model and several multiuser detectors. MC-CDMA 

systems and ML detection are introduced in Section 2.2. Section 2.3 discusses MIMO 

systems and ML detection.

2.1 Synchronous D S-C D M A  System s

We consider a synchronous single carrier DS-CDMA system in which K  users simulta­

neously transmit BPSK signals (Fig. 2.1). Each user signal is multiplied by a distinct 

signature sequence, s*, (t) (which is also called a spreading code, spreading sequence, 

or chip sequence). The k-th signature sequence can be expressed as

L —l

3 k ( t )  = ' £ c k V ) p ( t - j T c) t (0 < t < T s), (2.1)
j=o

where {ck (j ) : (0 < j  < L — 1)} is a code sequence of L chips that take value {±1}, 

and p(t) is a pulse of duration Tc, where Tc is the chip interval, and Ts is the symbol

10
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interval. The spreading gain is L = Ts/T c. Without loss of generality, all K  signatures

are normalized to the unit energy [11].

The data sequence of the fc-th user is denoted by {bk(m)}, where bk(m) G {±1}.

All data sequences are equally probable. We consider a block of M  transmitted data

symbols. The received signal for synchronous transmission may be expressed as
K  M

- ' W - E v ^ E  bk{m)sk( t)+ n(t) ,  (2.2)
k=l m=1

where ek is the k-th user signal energy, n(t) is an AWGN process with mean zero and 

power spectral density N 0/ 2 [11].

The received signal r (t ) (2.2) consists of the sum of all user signals and is demod­

ulated by using a bank of matched filters. The sampled output of the matched filter 

of the fc-th user is given by

f TaVk= r(t)sk(t)dt, (1 < k < K ) .  (2.3)
J o

By using (2.2) in (2.3), yk can be expressed as

Vk = \/£kbk( 1) +  y/Fik(l)pik(0) +  nk, (2.4)
k^l

where the cross-correlation term pik(0) =  / 0T“ si(t)sk(t) dt, and the noise term nk = 

JqS n(t)sk(t) dt. Arranged in vector format for all K  users, the matched filter outputs 

can be expressed as

y  =  R E b  +  n, (2.5)

where the matched filter outputs are y =  [j/i, j/2, ....Vk Y ■> ^  symmetric positive

definite correlation matrix with elements pik(0), E  =  diag(v/ei, ^ £ 2 , ........., the

information vector b =  [bi,b2,  b x Y  , and n  =  [n i,n2,  ,Uk]t  is a noise vector

of zero mean Gaussian random variables whose covariance matrix is I?(nnT) =  q^R.

2.1.1 M ultiu ser D etectors

MUD performs joint detection to achieve a higher system capacity than is currently 

achieved with the conventional single-user matched filter detector. Fig. 2.2 illustrates

11
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Fig. 2.1. Synchronous DS-CDMA system.

a generic multiuser detector. K  matched filters at the receiver front-end match to 

the users’ signature sequences. The multiuser detection algorithm will process the 

matched filter outputs yk and provide K  data decisions. A wide variety of multiuser 

detection algorithms has been investigated in the literature.

Sync 1 Decisions
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Matched 
Filter 2
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Filter 1

Matched 
Filter K

Algorithm

Multiuser

Detection

Fig. 2.2. A generic multiuser detector.
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Conventional detector

The conventional single-user detector is a special case of the generic multiuser detector 

in Fig. 2.2. The data decisions are simply the signs of the matched filter outputs:

b cd =  sign(y), (2.6)

where sign(x) returns 1 if x  is greater than zero, 0 if it equals zero, and —1 if it 

is less than zero. The CD is optimal only if the spreading sequences of all users 

are orthogonal to each other. However, non-zero cross-correlations among spreading 

sequences lead to MAI, which, in general, increases with the number of users.

Optim um  detector

The optimum multiuser detector proposed by Verdu in [15] minimizes the probability 

of error. The transmitted data vector b  is estimated by minimizing the log-likelihood 

function. The decision criterion is then given by

b =  argmax p ( y  | b), (2.7)
b e t- i.+ i} ^

where b is the maximum-a-posteriori (MAP) estimate of b given the received vector 

y. When all possible vectors b E { — 1,+1}K are equally probable, MAP and ML 

are equivalent. The received signal y has a K  dimensional Gaussian PDF with mean 

R £ b  and covariance R:

^ 1 b) = 7 P O T 1  exp[- >  -  R E b ) rR “ (y -  R S b )] ' (28)

Taking the logarithm and ignoring the constant terms, we obtain the ML detector of 

b:

b opt = argmin bT£ TR £ b  — 2yT£ b . (2.9)
be{-i,+ i}K

Since (2.9) is a discrete CO problem, an exhaustive search involves all 2K possible 

combinations. Thus, the computational complexity grows exponentially with the 

number of users, K. Because of this increased complexity, it is critical to develop 

suboptimum but computationally efficient multiuser detectors.

13
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Decorrelator

One of the most popular classes of suboptimal multiuser detectors is the linear de­

tector, which has significantly lower computational complexity than that of the ML 

detector. Two common types of linear detectors are the decorrelating detector (decor­

relator) and the minimum mean square error (MMSE) detector.

The decorrelator operates in two steps [16]. First, (2.9) is ’’relaxed” by elimination 

of the discrete constraint, and the relaxed solution b = R _1y is computed. Second, 

the relaxed solution is mapped onto the binary constraint set via

'decor sign(b) =  sign(R 1y). (2.10)

The decorrelator completely eliminates the MAI but causes noise enhancement. De­

spite this drawback, the decorrelator provides substantial performance gains over the 

CD [39],

M M SE detector

The MMSE detector [17] minimizes the mean square error between the true symbol 

value and the linear estimate b =  My. The linear operator M is found via the 

following optimization criterion:

2 '

M = argmin E 
MeRKxK

b - b (2 . 11 )

The solution to (2.11) is given by

M =  (R  +  cr2S -2) _1, (2.12)

where a2 is the Gaussian noise power [13]. The MMSE detector output is then

b M M S E  = sign(b) =  s ign ((R +  cr2E  2) *y). (2.13)

Since the MMSE detector takes into account both the background noise and the

received signal powers, it performs better than the decorrelator. As the background

14
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noise goes to zero, the MMSE detector converges to the decorrelator. Although linear 

multiuser detectors outperform single-user detectors, their performance is significantly 

worse than the ML performance.

M ultistage detector

Another popular class of suboptimal detectors is the nonlinear detector formed by 

decision-driven multiuser detectors including the multistage detector [18], successive 

interference cancelation (SIC) detector [19], and decision feedback (DF) detector [20]. 

These detectors use decisions on the bits of interfering users in the detection of the 

bit of interest.

The multistage detector employs multiple stages in detecting the user bits and 

canceling out the interference. In the first stage, the conventional bank of MFs is 

used to detect all data bits in parallel:

b (0) =  h CD = sign(y). (2.14)

In the next stage(s), SIC is used. The &th decision of the m th stage is based on the 

decisions of the (m — l)th  stage,

£*im) =  sign ( y k ~ V ^ i P i k i O p r A  ■ (2.15)
V jjtk )

Alternatively, the decorrelating detector can serve as the first stage, and each stage 

improves upon the previous stages’ estimation [13]. In the multistage detector, differ­

ent detectors can be applied each stage, but noise and data become more and more 

correlated with the increasing number of stages.

SIC detector

The SIC detector is based on the idea of canceling interfering signals from the re­

ceived signal, one at a time as they are detected. Thus, user data bits are detected 

successively, one after another. The order in which the data bits are detected affects

15
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the performance of SIC detector as the reliability of all the successive decisions de­

pends on the previous decisions. The data bits can be detected in order of decreasing 

received powers; i.e., the data bit of the user with the strongest received signal is 

detected first, and this detected data bit is used in SIC (2.16). In K -user SIC, the 

/cth user data bit is detected on the assumption that the decisions of users k + 1,..., K  

are correct and the presence of users 1 ,....,/c — 1 are neglected. Therefore, the A;th 

user decision is

where yk is the fcth user’s MF output [11]. SIC suffers from error propagation: sub­

tracting an incorrect detected symbol will double the interference, and the delay in 

detecting the weakest user increases linearly with the number of users.

DF detector

The DF detector detects user data bits sequentially, one at a time. This detector 

is analogous to the decision-feedback equalizers used for inter-symbol interference 

suppression in the single-user case [40]. Here, the feed-forward filter is the Cholesky 

factorization of the correlation matrix R, which yields a lower-triangular matrix L 

as LTL =  R. As R  is nonsingular, so is L. Thus MF outputs (2.6) can be written 

equivalently to get whitened MF outputs as

where L -T denotes the upper triangular matrix; i.e., the inverse of LT and n =  L - r n 

is a zero mean white Gaussian noise with the covariance matrix a21 [13]. The DF 

detector outputs are:

In the detector (2.18), a linear combination of previous decisions is subtracted from 

the whitened MF outputs. The performance of this DF detector depends solely on 

the detection order. The optimal user ordering is given in Theorem 1 of [41].

'y "j y/EjPjkifybj (2.16)

y =  L r y =  LEd +  n, (2.17)

(2.18)

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



SAGE detector

In [42], a new iterative multiuser receiver is proposed by using the expectation- 

maximization (EM) algorithm. The EM algorithm provides an iterative approach 

to estimate likelihood-based parameters when direct estimation may not be feasible. 

Since the EM algorithm updates all estimated parameters simultaneously, it has slow 

convergence. The space-alternating expectation-maximization (SAGE) algorithm up­

dates the parameters sequentially. The convergence of the likelihood function is sig­

nificantly faster, and the maximization step is often simplified [43]. Each iteration of 

this algorithm involves the following steps:

D e fn  — step : Let k =  1 : (i mod K ). (2.19)

M(maximization)  — step : b%k l =  sign(yfc (2.20)

b f ^ b ) ,  Vj 7̂  k, (2.21)

where i is the number of iterations. This method is similar to that of the multistage 

detector, except that bits are updated sequentially rather than in parallel. The in­

terfering user data bits are treated as probabilistic missing data while updating the

estimate for a given user’s bit. Reference [42] showed that the SAGE detector with

an M-step hard decision yielded a good performance with the following soft-decision 

decorrelator initialization:

b°k = tanh ^ [R ~V]fc^ > k =  >#■ (2-22)

Fig. 2.3 demonstrates the BER performance of different multiuser detectors. The 

SAGE detector outperforms other suboptimal detectors for a DS-CDMA system with 

10 users. The SIC detector performs better than conventional detector but worse 

than other detectors. The SAGE and DF detectors achieve better BER performance 

than the linear detectors.

17
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Conventional Detector 
e —  Decorrelator 
b—  SAGE detector 
*—  MMSE detector 

M ulti-stage detector
0—  DDF detector 

Optimal detector
1—  SIC detector

6
SNR (dB)

Fig. 2.3. Average BER of some existing multiuser detectors in synchronous DS- 

CDMA for 10 users, 105 monte carlo runs.

2.2 M C -C D M A  System s

MC-CDMA was first proposed in [6] as a multicarrier multiple access/digital mod­

ulation technique, which is a variation of OFDM. OFDM has recently gained much 

interest because it can provide higher data rates and is currently used in wireless 

LAN and metropolitan area network (MAN) applications, including IEEE 802.11a/g 

and WiMAX. MC-CDMA is essentially an OFDM technique where each data symbol 

is spread over multiple narrowband subcarriers with a user-specific signature code. 

The MC-CDMA spreads the data stream by using a spreading code and then modu­

lates different sub carriers with each chip, i.e., by spreading the chips in the frequency 

domain. The spreading code associated with MC-CDMA helps in interference sup­

pression  in  a d d itio n  to  p rov id ing  high d a ta  ra te s .

18
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We consider a synchronous K -user MC-CDMA system of N  narrowband subcar­

riers. The block diagram is shown in Fig. 2.4. At time t, the data symbol bk(t) 

of the user k, from the signal constellation B is spread by the signature sequence 

C/t =  (c/d,...., Ckw)- These signature sequences must have low cross-correlations. In 

this thesis, an orthogonal Walsh-Hadamard set of size N  is used as signature se­

quences. In this case, the maximum number of active users K max that can be sup­

ported in the MC-CDMA system is equal to the signature sequence length N ; i.e., 

^max = N.  The resultant N  chips after spreading the symbol bk(t) are modulated on 

the N  different subcarriers using the IFFT operator and then transmitted through 

the channel. The propagation channel is described by the complex coefficients hkn(t), 

k = 1,...., K  and n = 1,...., N.  The combination of spreading and channel coefficients 

for all users can be expressed by the N  x K  matrix as

D  (t) =

cn hn (t) cmAfnOO

\ C l N h i N ( t )  . . C K N h K N ( t ) j

(2.23)

Ckl
AWGN

Interfering 
user signals

Y n

P/S S/P

Fig. 2.4. Schamatic diagram of synchronous MC-CDMA system.

At the receiver side, an FFT operation is performed on the received samples. At
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time t, the received vector can be written as

y (t) = D(f)b(f) +  77(f), (2.24)

where the received signal vector, y(f) =  [yi(t), ...., yjv(f)]T; the data vector containing 

AT transmitted data symbols, b(f) (fq(f), ....,f?/r (f)]T; and 7 7 (f) =  [ri1(t),....,rjff(t)]T 

is an AWGN vector with zero mean and variance of er2 per dimension. In the downlink, 

all users share the same channel defined by H(f) =  diag[/ii(f),...., [?]. Thus,

D(f) =  H(<)Db , where all users’ signature sequences are placed in the N  x K  matrix 

D D =  [ci,c2, ...,C K] where ck =  [cn,ci2, ■■■,c1N]T for k = 1,2,

The complex system model described in (2.24) can be transformed into the fol­

lowing equivalent real-valued system:

yr =  D^b,. +  r)r, (2.25)

where
^{y} 3?{b} $t{r)}

Yr =
^{y}

,br =
»{b}

, V r  =
%{r)}

and D = r K{D} - 3 { D }  '

Q{D} &{D}

The rank of the matrix D r is generally 2 x min(IV, K)  so the columns of D r formed 

a basis vector of a lattice lying in a 2fGdimensional space.

2.2 .1  M C -C D M A  D etec tio n  A lgorithm s

The MC-CDMA system enables the realization of powerful detectors due to the avoid­

ance of ISI and inter-carrier interference (ICI) in the detection process. These detec­

tors can also be classified as either single-user detection or multiuser detection. With 

MC-CDMA in a multiuser environment, different users share the same subcarriers 

at the same time. Hence, MC-CDMA also suffers from MAI. With MAI, the single- 

user detector is suboptimal. To overcome this suboptimality, optimal MUD has been
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proposed where the a priori knowledge about the signature sequences of the inter­

fering users is exploited in the detection process [44], Linear MUD strategies such as 

decorrelation and MMSE and nonlinear MUD strategies such as SIC, multistage, and 

decision feedback and other strategies proposed for DS-CDMA can also be adopted 

to MC-CDMA.

In optimal ML-MUD, all user data symbols are detected jointly to minimize the 

effects of MAI. The optimal solution of (2.25) is given by the ML detector as

bopt =  argmin ||yr -  Drbr||2 , (2.26)
breBZK

where ||.|| denotes the Euclidean norm. For instance, if the data vector b is taken from 

the 4-quadrature amplitude modulation (QAM) signal constellation, then Br belongs 

to { —1,+1}. Thus, optimal detection via exhaustive search implies a complexity 

growth of 0 (2 2K), which is exponential in K.

2.3 M IM O System s

Multiple antenna systems promise to play a key role in future high-speed wireless ap­

plications such as wireless cellular systems and wireless LAN. MIMO systems provide 

high data rates by using limited bandwidth when used for spatial multiplexing.

Consider a spatial multiplexing MIMO system equipped with N t transmit anten­

nas and Nr receive antennas (subject to Nt < N r ) as in Fig. 2.4. At the transmitter, 

data bits are mapped into complex symbols from a finite constellation S.  The com­

plex symbol stream is demultiplexed into Nt substreams, and each substream is sent 

through a different transmit antenna. We assume a rich scattering flat-fading chan­

nel [45]. Each receive antenna receives signals from all Nt transmit antennas. The 

discrete baseband received signal vector can be expressed as

y =  H s +  n, (2.27)

where y =  [j/i, y2,  Hn, t  is an Ay x 1 received signal vector of complex numbers, s =

[si, s2,  sNt]T is an Nt x 1 transmitted signal vector where Si G <S, i = 1 ,2 ,....., Nt,

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



H  =  [hk,i] (k =  1, 2, ,...Nr and Z — 1, 2, ....Nt) is a complex Nr x Nt channel matrix,

and n =  [ni,ri2 ,  , n,\rr}'1 is an N r x 1 additive zero mean circularly symmetric

complex Gaussian (ZMCSCG) noise vector with variance of a2, Efnir^] =  a2Ijvr . The 

elements of H  are independent and identically distributed (i. i. d.) complex Gaussian, 

denoted hk,i ~  CM{0, 1), as for the classical i. i. d. frequency-flat Rayleigh fading 

MIMO channel. The channel, H, is perfectly known to the receiver. The components 

of the input data vector are statistically independent and are selected from the finite 

constellation S  with an average unity power, so that E[ssH] =  Ijvt , and each symbol 

in S  has equal a priori probability. For simplicity, throughout this thesis, we choose 

N t = Nr = M.

Fig. 2.5. Nt x Ay MIMO spatial multiplexing system.

With complex constellations for data transmission such as QAM, the complex 

system model described in (2.27) can be transformed into an equivalent real-valued 

system by considering the real and imaginary parts separately:

y r =  H rsr +  n r , (2.28)

where

^{y}
)

SR{s}
,n r =

3?{n}

_ 9 {y }  _ 9 {s} 9{n }
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and H =  r H} -3 { H }

3{H } 5ft{H}

Note that Hr € ]g>2Mx2M> an(j  ̂K2M.

The equivalent real-valued data vector sr is an i. i. d. symbol vector. This case is 

typical if the complex symbols are uniformly drawn from a decoupable constellation, S  

such as a squared QAM. Thus, a complex-valued system with statistically independent 

and uniformly drawn 4-QAM symbols can be rearranged as a real-valued system of 

double the size with statistically independent and uniformly drawn BPSK symbols;

i.e., then sr € { —1, + 1}2M.

2.3.1 D etec tio n  Strateg ies for M IM O  S ystem s

MIMO receivers have been studied both for single-user and multiuser systems. This 

thesis focuses on MIMO single-user systems. Despite its optimality, the ML detector 

has large computational complexity (depending on the number of antennas and the 

size of the signal constellation), which limits its applications. Several suboptimum 

detectors have thus been proposed to achieve close-to-optimum performance with 

moderate complexity. A popular reduced-complexity MIMO detector is the V-BLAST 

(Vertical Bell Laboratories Space Time) [46]. Linear receivers such as zero-forcing 

(ZF) and MMSE have also been designed for BLAST [47]. Although they have very 

low complexity, their performance is significantly inferior to that of the ML detector 

and may even lead to numerical instability as they need to compute the pseudo-inverse 

of the channel gain matrix. When a low-complexity receiver such as ZF or MMSE 

is applied, the high diversity gain available from the MIMO channel is not realized. 

The difference in complexity and performance between the linear detector and the 

optimum ML detector has motivated the development of suboptimum alternatives 

that exhibit better performance/complexity tradeoffs. The BLAST-ordered decision- 

feedback (DF) detector, which uses a nonlinear detection strategy, can significantly 

outperform the linear detector by using optimal ordering [48]. Several modifications
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have been done to obtain optimal ordering in the DF detector with low complexity 

[49], [50]. Lattice-reduction (LR) is introduced in [51] for a small (2 x 2) system. In 

[52], the LR algorithm is replaced by the basis-reduction algorithm given by A. K. 

Lenstra, H. W. Lenstra, L. Lovasz (“LLL algorithm” , [53]) using an equivalent real­

valued MIMO channel model. This technique can be applied to MIMO systems with 

an arbitrary number of antennas. Reference [54] developes a complex LLL algorithm 

for MIMO detection, which nearly halves the complexity compared to the real LLL 

algorithm without sacrificing performance.

The optimum ML detector for (2.28) decides on sr by using the ML criterion that 

minimizes the average error probability:

For the signal constellation 4-QAM, the size of the search space is |<S2M| =  22M, 

so a search is required over all 22M possible combinations. Thus, the computational 

complexity of the optimum detector grows exponentially with the number of antennas.

ML detection can be efficiently implemented by using sphere decoding. In wireless 

communication, sphere decoding was first introduced in [55] for lattice code decoding. 

Sphere decoding achieves ML performance (or a close to approximation to it) with an 

average complexity in polynomial time at high SNR. Sphere decoding is proposed for 

multi-antenna systems and space-time codes in [56], for the CDMA system in [57], 

and for the MIMO system over dispersive channels in [58]. Several improvements also 

have been made on sphere decoding [59].

The main idea of the sphere decoding algorithm is to reduce the number of can­

didate symbols to be considered for (2.29) without eliminating the ML solution in­

advertently. To achieve this goal, the search is constrained to only those noiseless 

received lattice points Hrsr that lie inside a hypersphere V  of radius d around the 

received signal y r . This inequality is referred to as the sphere constraint:

s -  argmin ||yr -  H,.sr||2 .
s r e  s?M

(2.29)

d2 > ||yr — Hrsr||2 . (2.30)
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If d ~  oo, this algorithm, which is exactly the same as exhaustive search, does not 

reduce the complexity. The complexity can be actually reduced if radius d is appro­

priately chosen, d should be small enough to limit the number of candidate vectors 

but not so small that the hypersphere is empty. The lattice point that achieve the 

smallest value of ||yr — H rsr ||2 inside the hypersphere is the ML solution. If the hy­

persphere is empty, the initial search radius d should be increased, and the search 

continued with the new radius. The worst-case complexity for the sphere decoding 

is still exponential [23]. However, the performances, i.e., the time complexity of this 

algorithm are largely dependent on the search radius, and the complexity can become 

large when the SNR is low or when the problem dimension is high. Thus, the vari­

ability of its time complexity can be undesirably high. These considerations motivate 

the development of alternate near optimal detectors with constant time complexity.

2.4 Summary

In this chapter, some MUD strategies for DS-CDMA were analyzed. The ML criteria 

for synchronous DS-CDMA, MC-CDMA and MIMO systems were developed. The 

computational complexity of the ML detection grows exponentially with the problem 

size. This thesis aims to find low-complexity high-performance detectors.
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C hapter 3 

M etaheuristic A lgorithm s

This chapter discusses metaheuristic algorithms with an emphasis on EC algorithms 

for CO problems. Several EC algorithms are applied to ML detection for synchronous 

DS-CDMA, MC-CDMA and MIMO systems. An introduction to metaheuristics is 

given in Section 3.1. In Section 3.2, local search methods are described. Section 3.3 

presents different types of EC algorithms. A new type of EC algorithm called EDA 

is introduced in Section 3.4, and the hybridization of metaheuristics is discussed in 

Section 3.5.

3.1 Introduction

Chapter 2 mentions that the optimum ML detection problem is an NP-hard CO prob­

lem. The complete methods for solving it often lead to computation times too high for 

practical purposes, even with the advent of new computer technologies and parallel 

processing. Thus, the use of approximate methods has received much attention in the 

last 30 years. Metaheuristics are the most recent development in approximate search 

methods for CO problems. The field of metaheuristics has become an important and 

rapidly growing area of research and applications. New technologies in telecommuni­

cations networks lead to NP-hard problems of large size, and metaheuristics can play 

an important role in their solutions [60].
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3.1 .1  C om binatorial O ptim ization

The domain of CO is optimization problems where the set of feasible solutions is 

discrete or can be reduced to discrete ones. The objective is to find a solution s* € S  

with a minimum objective function value; i.e., f(s*) < f( s )  for all s € S  where S  is 

the set of all feasible solutions.

3.1 .2  M etah eu ristics

Metaheuristics are approximate algorithms that guide and modify a subordinate 

heuristic to efficiently produce high-quality solutions. The term heuristic is defined 

by Reeves as follows: “A heuristic is a technique which seeks good (i.e. near optimal) 

solutions at a reasonable computational cost without being able to guarantee either 

feasibility or optimality, or even in many cases to state how close to optimality a 

particular feasible solution is” [31].

Metaheuristic is defined by Osman and Laporte as follows: “A metaheuristic is for­

mally defined as an iterative generation process which guides a subordinate heuristic 

by combining intelligently different concepts for exploring and exploiting the search 

space, learning strategies are used to structure information in order to find efficiently 

near-optimal solutions” [30]. In short, metaheuristics are high level approaches for 

guiding search processes by using concepts derived from artificial intelligence, biolog­

ical, mathematical, neural and physical sciences. An overview of metaheuristics and 

conceptual comparison is given in [61].

Two very important concepts in metaheuristics are intensification and diversifica­

tion, which enable metaheuristic applications to achieve a high performance. Diver­

sification generally refers to the investigation of the search space; i.e., it allows the 

process to search other parts of the solution space whenever search is being trapped 

in a local optimum. Intensification refers to the utilization of the accumulated search 

experiences, so that diversification and intensification are both contrary and comple­

mentary. A dynamic balance between diversification and intensification is essential
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since on one side intensification helps to quickly identify regions in the search space 

with high-quality solutions and on the other side diversification does not waste too 

much time in regions of the search space which either have been already explored or 

which do not provide high-quality solutions.

Metaheuristics can be classified according to the number of solutions used per 

instance: a search can be either single-point- or population-based. A single-point 

search, known as the trajectory method [61], considers a single solution at a time 

and encompasses local search-based metaheuristics, such as Iterative Improvement, 

Simulated Annealing (SA), TS, ILS, Guided Local Search (GLS), Variable Neighbor­

hood Search (VNS), and Greedy Randomized Adaptive Search Procedure (GRASP). 

Population-based metaheuristics consider a set of solutions as a population concur­

rently and encompass EC algorithms such as GA, EP, ES, and Genetic Programming 

(GP), ACO, Particle Swarm Optimization (PSO), and Scatter Search (SS). EC al­

gorithms are artificial intelligence methods for optimization which uses mechanisms 

based on biological evolution: selection, recombination, mutation, reproduction and 

others.

3.2 Trajectory M ethods

In trajectory methods, the search process is characterized by a trajectory in the search 

space. The algorithm starts from an initial state and moves in a state space trajectory. 

In this section, two trajectory methods used in the thesis are explained.

3.2.1 Itera tive  Im provem ent

Iterative improvement is the basic local search algorithm where a subset of the fea­

sible solutions is discovered by continually moving from the current solution to a 

neighborhood solution. Neighborhood solutions are generated by a move strategy.

A solution can be specified by a vector s. The set of all feasible solutions is 

denoted by S , and the cost of the solution is denoted by / ( s), which is often called as
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objective function. Each solution s e <S has an associated set of neighbors JV’(s) C <S 

that are in the vicinity of S.  The set J\f(s) is called the neighborhood of s, and 

each solution § G M(s)  is called a neighbor of s that can be reached directly from 

s by a move operation [62]. A local search procedure starts from a feasible solution 

Si € S.  At each step p, a new solution sp+i G J\f(sp) can be reached directly from 

sp by a move operation. Generally, two types of move strategies can be used in the 

local search: first improvement and best improvement [61]. The former evaluates 

the neighborhood M(sp) and takes the first improved solution sp+i G M(sp) that is 

better than sp. The latter one evaluates all neighbors of sp and selects the improved 

neighborhood solution sp+1 with the best objective function value.

For a minimization problem, the traditional form of local search is equivalent to 

a steepest descent strategy, in which each move is performed only if the resulting 

solution has a lower cost than that of the current solution. An optimal solution could 

be found as a solution or a set of solutions at the minimum possible cost in a feasible 

neighborhood solution space of the problem. This form of local search is also known 

as hill-climbing. The most general way for selecting the next solution sp+i is to pick 

the best one in the neighborhood of sp,

/ (Sp+ i)  <  ./(Sp), V sG jV (S p) .  (3.1)

The search process terminates when no better solution is found in the neighborhood. 

Both strategies of moving often result in a convergence to a local rather than a global 

optimum. The performance of this search method depends on the defining criterion 

of the neighborhood A/”(s), the move strategy, the speed of evaluation of the objective 

function and the starting solution.

The neighborhood of a solution characterized by binary variables can be defined 

on the basis of the Hamming distance (dH) between two binary vectors. Therefore, 

the neighborhood of a solution symbolized by a binary vector can be defined by the 

solutions that can be obtained by flipping a single or multiple elements in the binary 

vector simultaneously.
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1 -opt local search

The simplest form of local search is the 1 -opt local search. In each step of the search 

process, a solution with a better fitness value in the neighborhood of the current 

solution is obtained. The 1 -opt neighborhood of (s) contains all solutions with a 

Hamming distance of 1 to (s), i.e.,

M-opt(s) =  { s £  S\dH(s, s) =  1} , (3.2)

where dn{s,s) denotes the hamming distance between s and s. For example, if 

s G {—1, +1}^, K  =  4, and s =  (+1, +1, +1, +1), the A/"i-0pt(s) are (—1, +1, +1, +1), 

(+1, —1, +1, +1), (+1, +1, —1, +1) and (+1, +1, +1, —1). The pseudocode of the 1- 

opt local search algorithm for the minimization problem is given in Fig. 3.1.

Procedure: 1 -opt local search () 
s <— Generate Initial Solution 
begin 

repeat
choose s€JV,_0fl(s)
if / ( s ) < / ( s )  
then s <— s 
endif

until / ( s) > / ( s),Vs e A ^ ,(s )  
return s 

end

Fig. 3.1. Algorithm: 1-opt local search.

A larger neighborhood can be obtained by flipping up to k elements in the current 

solution vector simultaneously; this search process is known as the k-opt local search. 

The neighborhood of size k can be defined as

Nk-apt (s) =  { s e  S\dH(s,s) < k} , (3.3)

where 1 < k < K,  and K  is the length of s. The size of the neighborhood grows 

exponentially with k and so does the complexity.
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3.2 .2  S im ulated  A nnealing

Local search methods run the risk of being trapped in local optima. Then numer­

ous approaches suggested to avoid this problem are known as global search tech­

niques. One of them is SA, which is capable of escaping local optima by accepting 

up-hill/down-hill moves.

SA is an effective heuristic approach to solve a large number of problems where 

a neighbor of current solution is continually selected and then the difference of cost 

function of these solutions is compared to a threshold in order to identify any improve­

ment. If the cost difference is below the threshold, the current solution is replaced by 

the improved neighbor solution, and the process is repeated. Otherwise, the search 

continues with the current solution being considered as an approximation of the op­

timum. SA uses a uniform randomized threshold. Each neighbor solution can be 

accepted with a positive probability to substitute the current solution [63].

The difference between SA and the descent algorithm is that here, the neighbors 

which give rise to an increase in the cost function may be accepted, and this ac­

ceptance depends on a control parameter and the magnitude of increase of the cost 

function. The idea of SA derives from an analogy with the physical annealing process. 

Annealing is a thermodynamic process by which solids are heated to a high temper­

ature and cooled gradually until they solidify into a low-energy state. The control 

parameter of the SA algorithm is equivalent to the temperature of the annealing 

process [63].

At each step p of the SA process, a solution s in AZ’(s) is generated from the current 

solution s. If s has a lower cost function than s, a new solution is accepted uncondi­

tionally, but even if s has a higher cost function value, then s will be accepted with 

a probability which is a function of the control parameter; the temperature, denoted 

as T; and the difference between two cost functions, / ( s) — / ( s). The probability is 

usually computed by following the Boltzman distribution. At step p, the probability
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Pr(p) is chosen as
d / \ [ A fpFr{p) = exp (3.4)

Tip) J ’
where A f p =  J/(s) — /(s ) |,  and T(p) is the temperature at step p.

At first, the temperature is kept high to increase the probability of accepting 

uphill moves, so that almost any move is accepted, allowing us to explore the solution 

space. The higher the temperature, the higher the probability of accepting the move. 

Thus, SA allows diversification. Hence, the probability decreases as the temperature 

decreases. Then, gradually, the temperature is decreased to make the process more 

selective in accepting new solutions. The temperature is reduced according to a 

“cooling schedule” , which specifies the initial temperature and the rate at which the 

temperature decreases. The most common cooling schedule is the geometric function 

used in this thesis to reduce the temperature T  by a constant factor a  by using 

T  = a T  after each iteration where 0 < a  < 1. The pseudocode of the standard SA 

algorithm for minimization problem is given in Fig. 3.2.

Procedure: Simulated Annealing () 
s Generate Initial Solution 
T T0 (Initial Temperature) 
while termination conditions not met do 

choose s' e N(s) randomly 
if / ( s )  < / ( s )  
then s s
else accept s' as new solution with probability Pr(T,s, s') 
endif
Update ( T ) 

endwhile

Fig. 3.2. Algorithm: Simulated Annealing.

The SA algorithm was originally used to solve a unconstrained binary quadratic 

pro g ram m in g  p rob lem . In  th is  thesis, we ap p ly  th e  SA b ased  m e ta h e u ris tic  [64],
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which is a simple extension of standard SA. The l-opt local search is applied once at 

the end of the standard SA in order to provide a better performance.

3.3 Evolutionary C om putation

EC algorithms use population-based metaheuristic optimization techniques to solve 

a large class of problems. These techniques originate from the natural process of 

biological evolution, by mimicking some theories on how species evolve and adapt to 

their environment. Although the convergence of EC algorithms is possible to a global 

optimum only in a weak probabilistic sense, they have successfully been used to solve 

various complex CO problems.

EC algorithms maintain a population of structures that evolve by using operators 

such as selection, recombination and mutation. Each individual in the population 

is evaluated by using a fitness function, and individuals with high fitness values are 

selected. The recombination operator recombines two or more individuals to pro­

duce new individuals, and mutation causes a self-adaption of individuals. In the EC 

algorithm, the use of a recombination operator is the intensification strategy that ex­

plicitly guides the search areas of elite individuals, i.e., that intensively explores areas 

of the search space with high-quality solutions. As well the use of a mutation operator 

is the diversification strategy that performs the perturbation of an individual to move 

to unexplored areas of the search space. The search method is terminated by using a 

predefined criterion. The main advantages of EC algorithms are their simplicity, as 

they are relatively cheap and quick to implement, and their ability to cope well with 

noisy, inaccurate data in general [65]. For the ML detection problem, the (1 +  A) ES 

algorithm is shown to perform better than GA, EP in [29]. In this thesis, we consider 

(1 + A) ES.
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3.3.1 E volu tionary  S trategy

ES is a probabilistic optimization technique with several variations such as (1 +  1) 

ES, (1 +  A) ES, (fi +  A) ES, (/x, A) ES [66]. ES emphasizes the behavioral change at 

the level of individuals. (1 +  A) ES uses a parent population size of 1 and creates 

A individuals/offsprings in each generation by mutation. Reproductive selection or 

recombination is not used in this algorithm, making ES simpler than other EC algo­

rithms, but reproductive variation is accomplished via a standard bit flip mutation 

operator that flips each bit of an individual independently of the other bits with some 

mutation probability. The basic (1 +  A) ES [67] has two main steps:

1. Mutation of the current solution to produce offsprings.

2. Selection of the best offspring for the next generation by using the fitness func­

tion.

For the minimization problem, in the selection step, the parent is replaced by an 

offspring with minimum fitness if and only if the offspring’s minimum fitness is less 

than or equal to the parent’s fitness. The process is repeated to get better and better 

solutions and until some stopping condition is fulfilled. The pseudocode of the (1 +  A) 

ES algorithm for the minimization problem is given in Fig. 3.3.

3.4 Estim ation of D istribution A lgorithm s

The parameters of EC algorithms (crossover and mutation operators, probabilities 

of crossover and mutation, size of population etc., which control the creation of new 

individuals) need to be tuned correctly to obtain a good result. The task of making the 

best choice of those parameters is itself an optimization problem [68]. Moreover, the 

prediction of the movements of the populations in the search space of the EC algorithm 

is extremely difficult. In [69], the author mentions that considering the interactions 

among the variables that represent individuals can be useful for an intelligent search
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Procedure: (1 + X) Evolutionary Strategy () 
s <— Generate Initial Solution (parent) 
while termination conditions not met do

For each i e A}: do mutation to generate A individuals {s[} 
with mutation probability p m . 

if min { / ( s , / ( s * ) }  < / ( s) 
then s e -  s,>min
endif

endwhile

Fig. 3.3. Algorithm: (1 +  A) Evolutionary Strategy.

through the solution space. This idea, together with the drawbacks of typical EC 

algorithms, inspired the development of a new type of EC algorithms named EDAs.

ED As were introduced in [38] and require no mutation or crossover operations. In­

stead, better solutions are selected from the current population, and global statistical 

information about the search space is extracted explicitly from the selected solutions. 

A probabilistic model of the promising solutions is developed. New solutions are sam­

pled from the model thus built. After each iteration, the probability model is updated 

until the stopping conditions are met. Several EDAs have been proposed for global 

optimization problems [68]. One of the first EDAs is Population-based Incremental 

Learning (PBIL), which was proposed for solving CO problems [70]. We develop two 

PBIL-based detectors.

3.4 .1  P op u lation -b ased  Increm ental Learning

The PBIL algorithm is a combination of evolutionary optimization and hill climbing. 

The objective is defined in the binary space D =  {0,1}", where n is the size of the 

problem. PBIL generates a real-valued probability vector to sample the search space. 

The probabilistic vector is initialized with entries set to 0.5. A number of random 

solution vectors are generated by using this probability vector. The set of solutions is
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evaluated according to the problem-specific fitness function. The probability vector 

is pushed towards the selected solutions depending on the parameter of the learning 

rate. After the probability vector is updated, the cycle is repeated. The search stops 

when a termination condition is satisfied. The PBIL pseudocode for the minimization 

problem is given in Fig. 3.4.

Procedure: Population-based Incremental Learning () 
p 0(s) : Generate Initial Probability Vector 
while termination conditions not met do

Using p g (s) , obtain A individuals as sf ,...,s£,...,s®
Evaluate and rank individuals according to ascending order 
Select the N ( N  < A) best individuals: sfA,...,sf 
Update the probability vector:

1 N
Pg+l (s) = (1 -  a)Pg (s) + a —  X  s gk:X

tv k=l
where a e  (0,1] is the learning rate of the algorithm 

endwhile

Fig. 3.4. Algorithm: Population-based Incremental Learning.

3.5 Hybrid M etaheuristics

Although EC is a tremendously growing field, some form of domain knowledge must be 

incorporated into EC algorithms to make them competitive with other domain-specific 

optimization techniques [71]. There are several ways to achieve this incorporation. A 

simple and promising way is hybridization with other domain-specific heuristics. One 

of the most popular methods of hybridization involves the use of local search-based 

methods with population-based methods. EC algorithms that apply a local search 

algorithm to each individual of a population are called memetic algorithms [72]. To 

identify a highly effective search space, the combination of EC algorithms with a local 

search has been shown to be promising.
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The strength of EC algorithms is based mainly on the concept of recombining 

or mutating solutions, which allows for guided steps in the search space, which are 

usually larger than the steps made by local search-based methods. The advantage 

of using local search methods results from how they explore a promising region in 

the search space. In short, EC methods are better in identifying promising areas in 

the search space, whereas local search methods are better in exploring the promising 

areas in the search space. The hybridization of EC and local search algorithms are 

thus successful, as with these methods, the local search is the driving component, and 

a promising region in the search space is searched in a more structured way. The use 

of local search techniques in the EC algorithms is an intensification strategy which 

helps to quickly identify ’’good” areas in the search space. Thus, combining a local 

search with EC algorithms increases the efficiency of EC, since a problem’s attributes 

can be exploited in the local search to speed up the neighborhood search process. 

In this thesis, several hybridized algorithms are developed to solve the ML detection 

problem efficiently.

3.6 Summary

An overview of metaheuristic algorithms, focusing on EC, were provided in this chap­

ter. Three metaheuristics, iterative improvement, SA, and (1+A) ES, for CO problems 

were described. A new type of EC algorithm, EDA was introduced. PBIL, one of 

the first EDA approaches to CO, was described. The hybridization of metaheuristics 

was studied. This promising approach is designed to overcome a typical problem in 

metaheuristics: being trapped in local optima.
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C hapter 4 

M etaheuristics for M axim um  

Likelihood D etection

In this chapter, hybrid (1 +  A) ES, SA, PBIL, Modified PBIL are proposed for ML 

detection. These algorithms are then evaluated through numerical experiments based 

on synchronous DS-CDMA, MC-CDMA and spatial multiplexing MIMO systems. 

These algorithm-based detectors provide near-optimal or optimal BER performances. 

For large systems, all these algorithms also perform better in terms of computational 

complexity compared to existing detectors.

4.1 Hybrid (1 + A) ES for ML D etection

Since the (1 +  A) ES algorithm has no recombination operator, we develop a hybrid 

(1 +  A) ES that uses an intensification strategy in the search process. This hybrid 

algorithm employs (1 +  A) ES for the basic search which directs the search process 

towards an elitist solution space. A simple 1 -opt local search is applied for a thorough 

search in the elitist region. When this algorithm is used for ML-MUD for DS-CDMA, 

the following fitness/objective function is used to evaluate offsprings:

/(b )  =  b TS TR S b  -  2yr Eb. (4.1)
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For a K -user synchronous DS-CDMA system using BPSK modulation, the hybrid ES 

MUD algorithm detector can be described as follows:

• The output of the single-user MF receiver is taken as the initial solution (par­

ent): bp =  b initial =  b CD = Sign(y).

•  The population size of the offspring is set as A =  [A'lnATj, where is the 

largest integer less than x.

• For iteration m  — 1, 2, ......, Ng; Ng is the number of generations,

1. For each I = 1 ,2 ,.... , A, b; € {—1, -Tl}^ is created by copying bp and

independently flipping each bit with mutation probability Pm.

2. For each individual of the A population, the 1 -opt local search is performed, 

representing all individuals in the population as local minima. For each

b i,l = 1 ,2 ,...... , A, the best neighbor b i^est in the 1 -opt neighborhood N(h[)

is searched by evaluating the objective function. If f ( h i tbest) < /(b()> then 

b; <- h lMst else b ; <- b ;.

3. Each locally minimized individual of the current population is then eval­

uated by using the fitness function, and the individual with the minimum 

fitness value is determined as b(imin.

^  /(b/,rnin) — ,/(bp), then bp < b^mjn else bp < bp.

• The whole search process is terminated after Ng generations, giving bp as the 

best solution.

When the hybrid (1 +  A) ES is applied to ML-MUD for MC-CDMA, the following 

fitness/objective function is used to evaluate the offsprings:

/ (b ,)  =  ||yr - D rb r ||2 . (4.2)

For a A'-user synchronous MC-CDMA system using 4-QAM, the hybrid ES MUD 

algorithm can be described as follows:

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



• The output of the matched filter is taken as the initial solution which is the 

parent: b r(p) =  b r(ZF) =  sign((D^Dr)_1D ^yr).

• The population size of the offspring is set as: A =  \_2K\n2K\.

• For iteration m  = 1 ,2 ,......, Ng; Ng is the number of generations,

1. For each 1 = 1 ,2 ,  , A, b r^  £ {—1, +1}2K is created by copying b r(p) and

independently flipping each bit with mutation probability Pm.

2. For each individual of the A population, the 1 -opt local search is performed, 

representing all individuals in the population as local minima. For each

bj.((),f =  1 ,2 ,...... , A, the best neighbor b r(i,best) in the 1 -opt neighborhood

J\f(br(i)) is searched by evaluating the objective function. If / ( b r(/,feest)) < 

/'(br(/))i then b r^̂  < b r{i,best) else b r^̂  < b r^p

3. Each locally minimized individual of the current population is then eval­

uated by using the fitness function, and the individual with the minimum 

fitness value is determined as b r(£,mm)-

4. If /(br(£,min)) 5: /(br(p))i then b r(p) < br(£,min) else b r(p) < b r(p).

• The whole search process is terminated after N g generations, giving b r(p) as the 

best solution.

When the hybrid (1 +  A) ES is applied to ML problem for a spatial multiplex­

ing MIMO system, the following fitness/objective function is used to evaluate the 

offsprings:

/(Sr) =  ||yr - H rsr||2 . (4.3)

For an M  x M  single-user MIMO system using 4-QAM, the hybrid ES algorithm for 

the ML detector can be described in the same way as for the MC-CDMA system, 

where K  should be replaced by M,  b r should be replaced by sr and D r should be 

replaced by H r .
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Janson, Jong and Wegner [67] analyzed the effect of the offspring population size 

A. The influence of this parameter on the ES search performance is high because 

the computation cost of the fitness evaluation depends largely on this parameter and 

function evaluation is the main computation cost for the ML detection problem. If A is 

too small, the convergence is slow, and if A is too high, the computational complexity 

is high. The number of fitness function evaluations in different instances for ML-MUD 

is also investigated in [29]. In [67] and [29], it is found that the computation cost 

is the least if A is approximately K  In K,  providing a better convergence rate, where 

K  is the number of users when mutation is the only operator exploring the search 

space. Although several papers have suggested that mutation probability for the ES 

algorithm should be 1/n, where n is the problem size, mutation probability Pm is 

chosen in this thesis for simulation, as recommended in [29], where it is shown that 

setting Pm =  0.2 makes the ES algorithm escape from local optima efficiently.

4.2 Sim ulated A nnealing for ML D etection

The SA-based MUD algorithm for a A-user synchronous DS-CDMA system using 

BPSK modulation can be outlined as follows:

• The output of the single-user matched filter is taken as the initial solution: 

bi =  b cd =  sign(y). Temperature T  is initialized to a suitably high value, and 

the constant factor a  is chosen as 0 < a < 1 for temperature reduction.

• The best objective value /* of /  and the corresponding solution b* are initialized 

as /* <— / ( bi) and b* bi , where

/ ( b 0  =  b f S TR S b ! -  2yT£ b 1. (4.4)

• For step p = 1,2,....; bp denotes the current solution, and b  denotes the solution 

in Afi-opt(bp) for which /(b )  =  / .
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1. A position k is chosen randomly from the current solution vector such 

that it has not been picked up before, and then the bit of that position is 

flipped.

2. I f / ( b )  < / ( b p) , t h e n b p ^ b .

3. If /(b )  < / ( b*), then b* <- b  and /* <- / .

4. If /(b )  > /(bp), a random number r  is drawn from [0,1]. If r  < Pr(p), 

then bp <— b, or else, the bit of kth from the solution vector is again flipped 

to reset.

5. If all positions of the solution vector have been chosen for flipping, and 

a better new solution is found, then bp+i <— bp, else bp <— bp and T  is 

reduced as T  = aT,  which is a common cooling schedule.

• The whole search process is terminated after the stopping condition is fulfilled, 

giving b* as the best solution.

• Then simple 1 -opt local search is performed with this best solution b*.

Here, for the neighborhood structure, a simple 1 -opt neighborhood is used to reduce 

the complexity of function evaluation, and local search is used to intensify the search 

process.

The SA-based MUD algorithm for a K -user synchronous MC-CDMA system using 

4-QAM can be outlined as follows:

• The output of the matched filter is taken as the initial solution: b r(i) =  b r (ZF) = 

s ign((D /D r)“ 1D ^yr). Temperature T  is initialized to a suitably high value, and 

the constant factor a  is chosen as 0 < a < 1 for temperature reduction.

• The best objective value /* of /  and the corresponding solution b* are initialized 

as /* / (br(i)) and b* <— b r(p , where,

/(br(i)) =  ||yr(i) -  Dr(i)br(i)||2 . (4.5)
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• For step p = 1,2,....; b r(p), where b r(p) E { -1 ,+ 1 } 2K denotes the current 

solution, b r denotes the solution in A/i-opt(br(p)) for which / ( b r) =  / .

1. A position k is chosen randomly from the current solution vector such 

that it has not been picked up before, and then the bit of that position is 

flipped.

2. If / ( b r) < / ( b r(p)), then b r(p) <- br.

3. If f (br) < f  (b*), then b ; <- br and f* <- / .

4. If f (br) > / ( b r(p)), a random number r  is drawn from [0,1]. If r  < Pr(p),

then b r(p) «— br , or else, the bit of kth from the solution vector is again

flipped to reset.

5. If all positions of the solution vector have been chosen for flipping and 

better new solution is found, then b r(p+i) <— b r(p) or else, b r(p) <— b r(p), 

and T  is reduced as T  =  aT.

• The whole search process is terminated after the stopping condition is fulfilled, 

giving b* as the best solution.

• A simple 1 -opt local search is performed with this best solution b*.

When SA is applied to MIMO ML detection, the following fitness/objective func­

tion is used to evaluate the offsprings:

/ (® r ( l ) )  | |yr( l)  ~  Hr(l)Sj-(l) || • (^-6)

For an M  x M  single-user MIMO system using 4-QAM, the SA algorithm for the ML 

detector can be described in the same way as for the MC-CDMA system, where b r 

should be replaced by s r and D, should be replaced by H r .

The performance of SA depends on some implementation choices such as the initial 

temperature, the cooling schedule to reduce the temperature, the stopping criterion 

and the conditions for reaching the thermal equilibrium at each temperature. The
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initial temperature should be large enough in order to guarantee the independence of 

the final solution from the starting solution. This thesis uses Tiniuai — 0.3K , where 

K  is the number of user, as recommended in [63]. The temperature reduction rate 

a  is set to 0.99 as in [63], but it could be varied in the range from 0.8 to 0.99 for 

different optimization problems [31]. The stopping criteria is chosen as the number 

of iterations exceeding a given maximum.

4.3 PBIL for ML D etection

When the PBIL algorithm is applied to the ML-MUD problem for a K  user synchro­

nous DS-CDMA system using BPSK modulation, this algorithm uses the following 

real-valued probability vector to represent the attributes of the population:

Pg(h ) =  \Pg(h)-Pg{bm)...pg(bK)], (4.7)

where pg{bm) refers to the probability of getting a value of 1 in the m th variable of 

the gth generation of the population. The PBIL MUD algorithm can be described as 

follows:

1. The probability vector is initialized as po(b) =  [0.5...0.5...0.5].

2. The population size of individual is set as A =  [AlnATj.

3. For iteration <7 =  1 ,2 ,......, Ng, Ng is the number of generations.

(a) By using pg(h), A individuals are generated: b f ,..., bj(,..., b®. Here, indi­

viduals are represented by {0,1} instead of {—1,1}.

(b) Each individual of the current population is then evaluated by using (4.1), 

and the individuals are ranked according to ascending order of fitness value.

(c) N  (N  <  A) best individuals are selected from the ranked population: 

b 9 b 9 b 91: A ’ A;:A ’ •**’ U 7V;A-
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(d) The probability vector is updated based on these selected individuals by 

using a Hebbian-inspired rule:

1 N
P g + i(b ) =  ( 1 ~  a ) P g (h ) +  a J a  (4-8)

fe=1

where a  G (0,1] is the learning rate of the algorithm.

(e) A new population is generated by sampling using the updated probability 

vector.

4. As the search advances, the entries in the probability vector converge to either

0.0 or 1.0.

5. The whole search process is terminated after Ng generations.

6. With the last updated probability vector, the best solution b is generated.

When the PBIL algorithm is applied to ML detection for an M  x M  MIMO system 

using 4-QAM, the following real-valued probability vector represents the attributes 

of the population:

P g M  = \Pg{sr{l)) ■ ■■Pg(sr(m)) ■ ■■Pg(sr(2M))]i (4-9)

where pg(sr(m)) refers to the probability of getting a value of 1 in the m th variable of

the gth generation of the population. The PBIL algorithm for the MIMO ML detector 

can thus be described as follows:

1. The probability vector is initialized as po(sr) — [0.5...0.5...0.5].

2. The population size of individual is set as A =  [2M ln2M j.

3. For iteration 5 =  1 ,2 , ,N g; Ng is the number of generations.

(a) By using pg(sr), A individuals are generated: s®^, ..., s®(A). Here,

in d iv id u a ls  arc rep resen ted  by  {0, 1} in s te a d  of { — 1, 1}.
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(b) Each individual of the current population is then evaluated by using (4.3),

(d) The probability vector is updated based on these selected individuals by 

using a Hebbian-inspired rule:

fc=1

where a  € (0,1] is the learning rate of the algorithm.

(e) A new population is generated by sampling using the updated probability 

vector.

4. As the search advances, the entries in the probability vector converge to either

0.0 or 1.0.

5. The whole search process is terminated after Ng generations.

6. With the last updated probability vector, the best solution sr is generated.

When PBIL is applied to a K  user synchronous MC-CDMA system, the objective 

function which will be used for evaluating the offsprings is (4.2). The whole process 

is the same as for the MIMO system, where M  should be replaced by K , sr should 

be replaced by br and Hr should be replaced by D r.

The population size and learning rate are used to control PBIL algorithms. The 

size of the offspring population A has the same impact on the search process as in 

(1 +  A) ES. Increasing the population size will increase the chance of finding the global 

optimum solution while increasing the number of function evaluations required. So 

A is kept same as in hybrid (1 +  A) ES. The effect of the learning rate a  is analyzed 

by Baluja [70]. If a  is high, the algorithm will not fully explore the search space 

and may converge to a local optimum; i.e., the probability of premature algorithm

and the individuals are ranked according to ascending order of fitness value,

(c) N  (N  < A) best individuals are selected from the ranked population:

(4.10)

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



convergence increases. A lower learning rate will allow for greater exploration and 

escape from local optima. The learning rate lies in the range 0 to 1. In this thesis, 

we set a — 0.15 for simulation. This parameter is chosen empirically.

4.4 M odified PBIL for ML D etection

An efficient EC algorithm must utilize both the local and global information. Global 

information can guide the search for exploring promising areas whereas the local 

information can be useful for exploiting the search. The search in PBIL is based 

mainly on global information, so to enhance performance, we propose a modified 

PBIL-based MIMO detector by combining PBIL as in [73] with a simple 1-opt local 

search [35]. In [73], the probability vector is learnt, i.e., pushed towards only the 

best solution instead of towards a set of better solutions. Thus, the algorithm keeps 

searching in only the most promising region. And 1 -opt local search helps to make a 

thorough search in this elitist region. Here, local search performs as an intensification 

strategy of metaheuristic.

For the modified PBIL algorithm, steps (1) and (2) and steps (4), (5), and (6) 

are the same as for the PBIL-based multiuser detector for a synchronous K  user 

DS-CDMA system using BPSK modulation. Only step (3) is modified. In step (3), 

steps (a), (6), and (c) are the same as for the PBIL-based ML-MUD detector. The 

modified PBIL ML-MUD detector can be described as follows:

3. For iteration g — 1 ,2 ,......, Ng; Ng is the number of generations.

(d) For each individual of the selected N  population, 1 -opt local search is

performed representing all individuals in the population as local minima. 

For each b9k, k — 1 ,2 ,......, N. the best neighbor h9k best in the 1 -opt neigh­

borhood M ih'l) is searched by evaluating the fitness function of (4.1). If 

fiK best) < /(b2). then bfc <- bfc,best or else, b9k «- b9k.

(e) Each locally minimized individual of the current selected population of size
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N  is then evaluated by using (4.1), and the individual with the minimum 

fitness value is determined as bj(min.

(f) The probability vector is updated based on this best solution b^min:

Ps+i(b) =  (1 -  a)pg(b) +  ab 9k (4.11)

where a  € (0,1] is the learning rate of the algorithm.

(g) A new population is generated by sampling using the updated probability

For the modified PBIL algorithm, steps (1) and (2) and steps (4), (5), and (6) are 

the same as for an M  x M PBIL-based MIMO detector using 4-QAM. Only step (3) 

is modified. In step (3), steps (a), (b), and (c) are the same as for the PBIL-based 

MIMO detector. The modified PBIL MIMO detector can be described as follows:

3. For iteration g = 1 ,2 ,......, Ng; Nfl is the number of generations.

(d) For each individual of the selected N  population, 1 -opt local search is

N  is then evaluated by using (4.3), and the individual with the minimum 

fitness value is determined as s^ fc minj .

(f) The probability vector is updated based on this best solution s9̂ kminy

where a  G (0,1] is the learning rate of the algorithm.

(g) A new population is generated by sampling using the updated probability

vector.

performed representing all individuals in the population as local minima.

1U1 Cdoii  ,JV, tne  ueai, iieigiiuui »r (fci()es4) m  unc L-upu

neighborhood A/"(s®^) is searched by evaluating the fitness function of 

(4.3). If f ( s 9r{kbest)) < ./(s9r{k)), then s9{k) e- s9r[kbest) or else, s®(fc) <- s®(fc).

(e) Each locally minimized individual of the current selected population of size 

For each sgr k̂y k  = 1 ,2 ,...... , AT, the best neighbor s9̂ kbest  ̂ in the 1 -opt

Pg+l (®r) =  (1 ~ a)Pg(Sr) +  «S;A 9  
r(fc,min) ’ (4.12)

vector.
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When the modified PBIL is applied to a K  user synchronous MC-CDMA system, 

the objective function used for evaluating offsprings is as in (4.2). The whole process 

is the same as for the MIMO system where M  should be replaced by K , sr should be 

replaced by b r and H r should be replaced by D r .

4.5 Perform ance Evaluation

This section studies the BER performance and complexity of metaheuristic detec­

tors. Numerical experiments are conducted for DS-CDMA, MC-CDMA and MIMO 

systems. We compare the performances of the proposed detectors to several existing 

detectors. The simulations are done in a MATLAB environment on a 2.4 GHz Intel 

(R) Xeon (TM) personal computer with 2 Gb of RAM.

In these simulations, a R'-user synchronous DS-CDMA system with perfect power 

control using BPSK transmission over the AWGN channel is considered. All users are 

assumed to have equal average signal energy. Randomly generated binary signature 

sequences of length 31 are used for the DS-CDMA system. A AT-user synchronous 

MC-CDMA system using 4-QAM transmission over a Rayleigh fading channel is also 

considered. Orthogonal Walsh-Hadamard signature codes are used, and the number 

of subcarriers is kept the same as the number of users for simulations of the MC- 

CDMA system. Finally, an M  x M  MIMO system using 4-QAM transmission over 

the Rayleigh fading channel is also considered.

The stopping condition for the metaheuristic detectors is chosen as the maximum 

number of iteration (Ng). For (1 +  A) ES, 1 -opt local search, (1 +  A) ES with 1 -opt 

local search, SA, PBIL and PBIL with 1 -opt local search, the maximum number of 

iteration is kept the same as the problem size, so that for the DS-CDMA system, 

N g = K] for the MC-CDMA syste, Ng = 2K] and for the MIMO system, Ng — 2M.
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4.5 .1  B E R  P erform ance C om parison

For the 20-user DS-CDMA system, the average BER versus SNR of the proposed 

hybrid (1 +  A) ES detector is plotted in Fig. 4.1. The BER performances of the CD, 

the 1 -opt local search [35], the SA [64] and the optimal detector [26] are also plotted. 

The BER of the proposed hybrid ES detector offers near optimal performance and 

also outperforms CD, 1-opt local search, (1 +  A) ES, and SA detectors. SA shows a 

worse performance than that of 1 -opt local search and (1 +  A) ES. This result may be 

due to accepting uphill climbing in the search space of SA algorithm. This acceptance 

makes the SA algorithm getting solution more far away from the optimal solution. 

Fig. 4.2 shows the same comparison of the BER performance for a 25-user system.

For the 20-user DS-CDMA system, the average BER versus SNR of the proposed 

PBIL and the modified PBIL detector is plotted in Fig. 4.3. The BER performances 

of the CD, the 1 -opt local search, and the optimal detector are also plotted. The 

proposed modified PBIL detector offers an optimal performance and also outperforms 

the CD, the PBIL and the 1 -opt local search detectors. Original PBIL algorithm 

performs poorly compared to even the 1 -opt local search. Fig. 4.4 shows the same 

comparison of the BER performance for a 25-user system.

The BER performances of the proposed (1 +  A) ES, the hybrid (1 +  A) ES and 

the SA detectors for a 12-user synchronous MC-CDMA system with 12 subcarriers 

are presented in Fig. 4.5, which includes comparisons to those of the ZF, the 1 -opt 

local search detector, and the sphere decoder (SD). The proposed (1 +  A) ES with 

1 -opt local search detector achieves a worse performance for a MC-CDMA system 

than that of a DS-CDMA system. This result may be due to the structure of the 

code sequences used for each user. In a DS-CDMA system, random binary signature 

sequences are used, whereas in a MC-CDMA system, a orthogonal Walsh-Hadamard 

code is used. Fig. 4.6 shows the same comparison of the BER performances for a 

16-user system with 16 subcarriers.

The BER performances of the proposed PBIL and the modified PBIL detectors for
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Fig. 4.1. Average BER of CD, Optimal Detector, 1 -opt local search, (1 +  A) ES, 

(1 +  A) ES with 1 -opt local search, SA detectors for synchronous DS-CDMA 

system of 20 users.

a 12-user synchronous MC-CDMA system with 12 subcarriers are presented in Fig. 

4.7, which includes comparisons to those of the ZF, the 1 -opt local search detector, 

and the SD. The PBIL detector performs worse than even the ZF. Fig. 4.8 shows the 

same comparison of the BER performances for a 16-user system with 16 subcarriers.

The simulation in Fig. 4.9 considers a 12 x 12 uncoded MIMO system. The average 

symbol error rate (SER) versus the SNR of the proposed (1 +  A) ES and (1 +  A) ES 

with 1 -opt local search and SA detectors is plotted. The SER performances of the 

ZF, 1 -opt local search detector, and the optimal SD are also given. The hybrid (1 +  A) 

ES detector shows a better performance than those of all other proposed algorithms. 

The SA detector also outperforms the (1 +  A) ES detector for the MIMO system. 

Fig. 4.10 shows the same comparison of the SER performance for a 16 x 16 MIMO 

system. For a large MIMO system, the hybrid (1 +  A) ES detector offers almost the 

same performance as that of the SA detector.

The simulation in Fig. 4.11 considers the SER performances of the proposed PBIL 

and modified PBIL-based detector for a 12 x 12 uncoded MIMO system, and includes
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Fig. 4.2. Average BER of CD, Optimal Detector, 1 -opt local search, (1 +  A) ES, 

(1 +  A) ES with 1 -opt local search, SA detectors for synchronous DS-CDMA 

system of 25 users.

comparison to those of the ZF, the 1 -opt local search detector, and the optimal SD. 

Although the PBIL algorithm performs poorly, the SER performance of the modified 

PBIL, i.e., the PBIL with 1-opt local search is very close to that of the SD and 

also outperforms the ZF and 1-opt local search detectors. The same performance 

comparison is shown in Fig. 4.12 for a 16 x 16 MIMO system.
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Fig. 4.3. Average BER of CD, Optimal Detector, 1 -opt local search, PBIL, PBIL 

with 1 -opt local search detectors for synchronous DS-CDMA system of 20 users.
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Fig. 4.4. Average BER of CD, Optimal Detector, 1 -opt local search, PBIL, PBIL 

with 1 -opt local search detectors for synchronous DS-CDMA system of 25 users.
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Fig. 4.5. Average BER of ZF, SD, 1 -opt local search, (1 +  A) ES, (1 +  A) ES with 

1 -opt local search, SA detectors for synchronous MC-CDMA system of 12 users 

with 12 subcarriers.
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Fig. 4.6. Average BER of ZF, SD, 1 -opt local search, (1 +  A) ES, (1 +  A) ES with 

1 -opt local search, SA detectors for synchronous MC-CDMA system of 16 users 

with 16 subcarriers.
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Fig. 4.7. Average BER of ZF, SD, 1 -opt local search, PBIL, PBIL with 1 -opt 

local search detectors for synchronous MC-CDMA system of 12 users with 12 

subcarriers.
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Fig. 4.8. Average BER of ZF, SD, 1 -opt local search, PBIL, PBIL with 1 -opt 

local search detectors for synchronous MC-CDMA system of 16 users with 16 

subcarrierss.
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Fig. 4.9. Average BER of ZF, SD, 1 -opt local search, (1 +  A) ES, (1 +  A) ES with 

1 -opt local search, SA detectors for 12 x 12 MIMO system.
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Fig. 4.10. Average BER of ZF, SD, 1 -opt local search, (1 +  A) ES, (1 +  A) ES with 

1 -opt local search, SA detectors for 16 x 16 MIMO system.
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Fig. 4.11. Average BER of ZF, SD, 1 -opt local search, PBIL, PBIL with 1 -opt local 

search detectors for 12 x 12 MIMO system.
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Fig. 4.12. Average BER of ZF, SD, 1 -opt local search, PBIL, PBIL with 1 -opt local 

search detectors for 16 x 16 MIMO system.
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Fig. 4.13. Number of objective function evaluations required to implement the 

algorithms for exhaustive search, (1 +  A) ES, (1 +  A) ES with 1 -opt local search, 

PBIL, PBIL with 1 -opt local search, SA, 1 -opt local search for different number 

of users in synchronous DS-CDMA system.

4 .5 .2  C om p lex ity  A nalysis

The computational cost for evaluating the objective function as in (4.1) is considered 

for a DS-CDMA system. The (1 +  A) ES-based detector evaluates the objective 

function (4.1) (A+l) times; the hybrid (1+A) ES evaluates (4.1) iL(A(AT+l)+l) times; 

the 1 -opt local search evaluates (4.1) K (K  + 2) times; the SA evaluates K (K  + 2) + K  

times; the PBIL evaluates (4.1) KX( K  +  1) times; and the modified PBIL evaluates 

K (A +  N ( K  +  1)) times where N  =  [ |J .  All these algorithms are in polynomial 

time complexity in the number of users, K.  An exhaustive search requires 2K times 

function evaluation (4.1). Fig. 4.13 shows that the proposed detectors reduce the 

complexity of the optimum ML detector efficiently for large number of users. The 

SA and 1 -opt local search algorithms have lower complexity than that of the other 

methods.

The complexity is quantified for the MC-CDMA and MIMO systems by counting
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Fig. 4.14. Average Number of (Multiplications+Squares) required per symbol detec­

tion to implement the algorithms for SD, (1 +  A) ES, (1 +  A) ES with 1 -opt local 

search, PBIL, PBIL with 1 -opt local search, SA, 1 -opt local search detectors for 

12 user synchronous MC-CDMA system with 12 subcarriers.

the number of multiplications and squaring operations required per symbol detection. 

Fig. 4.14 compares the complexities of the SD and the proposed detectors for the 

12-user MC-CDMA system with 12 subcarriers. Fig. 4.15 performs the same com­

parison a for 16-user MC-CDMA system with 16 subcarriers. The average number of 

multiplications and squaring operations for the hybrid (1 +  A) ES and modified PBIL 

detectors are always higher compared to that of the SD for all SNR. For the SA and 

1 -opt local search detectors, the average number of multiplication and squares are 

always lower than that of the SD.

Fig. 4.16 shows that up to 3dB SNR, the modified PBIL-based detector is less 

complex than the SD, and that at OdB, the complexity in SD is 2.9 times higher 

than that of the modified PBIL detector for a 12 x 12 MIMO system. The hybrid 

(1 +  A) ES detector has less complexity than the SD up to only 1 dB SNR. All other 

algorithm-based detectors are less complex than the SD for all SNR. Fig. 4.17 shows 

the complexity comparison curve for a 16 x 16 MIMO system. Fig. 4.17 shows that
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Fig. 4.15. Average Number of (Multiplications+Squares) required per symbol detec­

tion to implement the algorithms for SD, (1 +  A) ES, (1 +  A) ES with 1 -opt local 

search, PBIL, PBIL with 1 -opt local search, SA, 1 -opt local search detectors for 

16 user synchronous MC-CDMA system with 16 subcarriers.

up to 5dB SNR and 7 dB SNR, the proposed hybrid (1 +  A) ES detector and the 

modified PBIL detector, respectively, have less complexity than the SD, and that at 

0 dB, the modified PBIL is about 21 times less complex than the SD. All the other 

algorithms always have less complexity than the SD.

— ©—  Sphere Decoder (SD)
□  PBIL

2 • — 6— (1+lambda) ES
— I—  (1+lambda) ES with 1 -opt local search 
— * —  PBIL with 1 -o p t local search 
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1 -
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Fig. 4.16. Average Number of (Multiplications+Squares) required per symbol detec­

tion to implement the algorithms for SD, (1 +  A) ES, (1 +  A) ES with 1 -opt local 

search, PBIL, PBIL with 1 -opt local search, SA, 1 -opt local search detectors for 

12 x 12 MIMO system.
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Fig. 4.17. Average Number of (Multiplications+Squares) required per symbol detec­

tion to implement the algorithms for SD, (1 +  A) ES, (1 +  A) ES with 1 -opt local 

search, PBIL, PBIL with 1 -opt local search, SA, 1 -opt local search detectors for 

16 x  16 M IM O  system .
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4.6 Summary

In this chapter, local search based SA algorithm was described for MUD for a DS- 

CDMA system, and ML detection for MC-CDMA and MIMO systems. A new de­

tector based on PBIL was also introduced for those systems. To obtain better BER 

performances, the hybridization of (1 +  A) ES and PBIL was performed. Hybrid 

algorithms employ a simple local search with 1 -opt neighborhood. The BER/SER 

performances and computational complexity of all these metaheuristic detectors were 

analyzed for comparison with optimal and conventional detectors. All the metaheuris­

tic detectors have polynomial time complexity in the size of problem. The simulation 

results showed the superiority of the modified PBIL approach for approximating the 

BER/SER performance of the ML detector. As well in a low SNR region, this ap­

proach outperformed the SD in terms of computational complexity.
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C hapter 5

C onclusion

It is well known that the ML detection problem is NP-hard. Most of the research 

has focused on developing an improved suboptimal detection strategy that would be 

feasible to implement. The research into efficient detector design has played an im­

portant role in the communications industry. Thus, this thesis has been motivated by 

the need to develop low-complexity detectors, concentrating on developing algorithms 

able to find near-optimal solutions with moderate computational complexity. This 

chapter includes the summary and key contributions of this thesis and also provides 

suggestions for potential future research.

5.1 Thesis Summary

Several metaheuristic algorithms were proposed for ML detection. Local search-based 

metaheuristic named the SA algorithm and EC-based metaheuristic were applied 

in DS-CDMA, MC-CDMA and MIMO systems. Although metaheuristics cannot 

guarantee an optimal solution, these algorithms show much promise. Metaheuristics 

provide significantly lower computational complexity for large size of problems and 

produce high-quality solutions. To obtain a better performance, the hybridization of 

EC-based metaheuristics was proposed. An introduction to the ML detection problem 

for DS-CDMA, MC-CDMA and MIMO systems was provided in Chapter 2. Chapter
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3 provided the background of metaheuristic algorithms, and applications of these 

methods in ML detection was investigated for different systems in Chapter 4.

The numerical results in Chapter 4 were used to evaluate the performances of 

the proposed algorithms applied in ML detection for different systems. A hybrid 

evolutionary strategy (ES) employing 1 -opt local search in the (1+A) ES was proposed 

for solving the ML problem. Hybrid ES algorithm-based detector was found to offer 

the near-optimal BER performance for a DS-CDMA system, but for MC-CDMA and 

MIMO systems, some performance gaps were found in the high SNR region.

The hybrid (1 +  A) ES detector was able to significantly reduce the detection 

complexity in terms of function evaluation compared to the optimum ML detector 

when the number of users wass higher than 20. The gain in complexity reduction 

increases with the number of users. The complexity in terms of the average number 

multiplications and squaring operations required per symbol detection to implement 

the algorithm was considered for MC-CDMA and MIMO systems. For both systems, 

the hybrid (1 +  A) ES algorithm performed poorly in terms of complexity compared 

to the SD and other metaheuristics.

The proposed SA and PB1L algorithms for all systems offered inferior BER/SER 

performances compared to other metaheuristics, but in terms of complexity they 

showed better performances.

The modified PBIL algorithm employing PBIL with 1 -opt local search showed a 

superior performance for all systems. This algorithm-based detector achievd almost 

ML BER/SER performances for all systems. In terms of complexity, this algorithm 

is better than the SD in the low SNR region for the MIMO system, but for the MC- 

CDMA system, none of the metaheuristics was able to reduce complexity, whereas 

the SD was able to do so.

For large systems, all the proposed metaheuristic algorithms outperformed an ex­

haustive search in terms of complexity. This gain in complexity reduction increased 

with the size of problem. The simulation results showed that the modified PBIL al­

gorithm was competitive and better for all systems in terms of error rate performance
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and computational complexity.

The major contributions of this thesis are summarized below:

1. Extended the (1 +  A) ES-based detector for the synchronous MC-CDMA system 

and the MIMO system and also proposed a hybrid (1 +  A) ES algorithm for the 

synchronous DS-CDMA, MC-CDMA, MIMO systems.

2. Proposed the SA algorithm for ML detection in synchronous DS-CDMA, MC- 

CDMA and MIMO systems.

3. Developed a new ML detection scheme based on the PBIL algorithm for DS- 

CDMA, MC-CDMA and MIMO systems and also proposed a modified PBIL 

algorithm to provide a better performance.

5.2 Future Work

Several issues and possible directions for further research are considered here.

1. This thesis assumed that the receiver has perfect knowledge of the channel. In 

practice, the receiver must estimate the channel, resulting in estimation errors. 

The effect of imperfect channel estimation on detection performance could be 

studied.

2. This thesis discusses efficient data detection for uncoded systems only. All the 

proposed detectors may be extended for coded systems.

3. Multipath fading is a fundamental factor that limits the performance of wire­

less systems. How the proposed detectors perform in fading channels can be 

investigated.
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