
Reasoning About Interior Building Design,
Grounded on Design Rules

by

Christoph Peter Sydora

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

© Christoph Peter Sydora, 2024

Abstract

Computers have emerged as an invaluable tool in exploring building interior

configurations, before committing to a particular layout. Building Information

Modeling (BIM) enables designers to create digital representations of alterna-

tive interior arrangements and supports computer-automated evaluation of the

arrangements under consideration against a variety of construction, accessibil-

ity, and stylistic guidelines. This process is known as Automated Code Check-

ing (ACC). Domain Specific Languages (DSLs) can help domain experts code

ACC rules in a machine-readable format, focusing only on domain concepts

instead of programming knowledge.

This thesis provides a coherent suite of algorithms for reasoning about

building designs based on RuleDSL, a user-friendly DSL for describing building

spaces, their contents, and the geometric relations among them. The thesis

puts forward algorithms for (i) automatically generating alternative interior

layouts, (ii) evaluating them against a variety of quality metrics, and (iii)

automatically learning RuleDSL rules from example layouts. RuleDSL and the

above algorithms have been developed and evaluated in BIM-kit, a state-of-

the-art software platform that implements and validates the above algorithms

as well as supporting experimentation with a variety of use cases in the broad

area of design automation.

ii

Preface

This thesis is an original work by Christoph Sydora. The research project

described in Chapter 5 received research ethics approval from the University

of Alberta Research Ethics Board, Project Name “Interior Design Layout Data

Collection and Evaluation”, No. Pro00124859, February 28, 2024.

Segments from this thesis have been published in the following literature:

• Sections 2.1, and 2.2, and 2.6 is research done prior to this thesis that

is published in: Christoph Sydora and Eleni Stroulia, “Rule-Based

Compliance Checking and Generative Design for Building Interiors Using

BIM,” In Automation in Construction, 2020. [1]

• Section 2.3 and Chapter 3 is the work presented in the conference publi-

cation: Christoph Sydora and Eleni Stroulia, “Comparative Analysis

of Room Generation Methods Using Rule Language-Based Evaluation

in BIM,” In Proceedings of European Conference on Computing in Con-

struction (EC3) and International CIB W78 Conference, 2023. [2]

• A manuscript on the research presented in Chapters 4 and 5 is being

prepared.

• Section 2.5 and Chapter 6 is the work presented in the conference pub-

lication: Christoph Sydora and Eleni Stroulia, “BIM-kit: An Ex-

tendible Toolkit for Reasoning about Building Information Models,”

In Proceedings of European Conference on Computing in Construction

(EC3), 2021. [3]

Some improvements to the language and figures in these publications have

been made.

iii

Acknowledgements

This thesis does not exist without the guidance and support of my supervisor,

Dr. Eleni Stroulia. From the very beginning, she has and continues to amaze

me with her passion and dedication to research and the positive, fun approach

she has to it. It has truly been an honour to be a part of her lab.

I express my deepest thanks to my supervisory committee Dr. Omid Ar-

dakanian, Dr. Vicente Gonzalez-Moret, and Dr. Nathan Sturtevant. They

have been immensely supportive in helping me shape and improve this work.

I would also like to thank my examining committee Dr. Marek Reformat

and Dr. Robert Amor for their time reviewing this thesis and serving on my

committee; and to Dr. Abram Hindle for much-needed feedback during my

candidacy. I thank the Natural Sciences and Engineering Research Council

(NSERC) and Mitacs Canada for their financial support of this research.

A Ph.D. is a long endeavour, but a good fellowship keeps it from feel-

ing like an eternity. I have been incredibly fortunate to share the lab with

many great labmates, particularly Victor Fernandez-Cervantes, Kalvin Eng,

Mashrura Tasnim, and David Turner, who have been there with me for the

full duration of my Ph.D.

I thank my friends for sharing their time with me to enjoy a life outside

the lab and my family, in particular my siblings Michael, Audrey, Colin, and

Brendan, for keeping my spirits up.

Finally, I thank my parents, Dr. Beate Sydora and Dr. Richard Sydora.

Having their support and help navigating my graduate endeavours has been

immeasurable. Not once did I feel pressured to follow in their steps with a

Ph.D. but still they are examples I will forever aspire towards. I will continue

to strive to make even a fraction of the impact they have made.

iv

Contents

1 Introduction 1
1.1 Domain Specific Languages for Automatic Code Checking . . 2
1.2 Automated Interior Layout Generation 3
1.3 Thesis Objectives . 4
1.4 Thesis Contributions and Structure 5
1.5 Research Methodology . 6

2 Background and Related Research 8
2.1 Model Checking Tools and Workarounds 9
2.2 Model Search and Rule Languages 10
2.3 Automated Layout Generation Rules and Search Algorithms . 13
2.4 Data Driven Layout Synthesis 15
2.5 BIM Reasoning Frameworks 17
2.6 Rule Domain Specific Language (RuleDSL) 19

2.6.1 Vocabulary . 19
2.6.2 Grammar . 20
2.6.3 Layout Quality Measure 22

3 Automated Layout Generation 24
3.1 Introduction . 25
3.2 The Search Algorithms . 28

3.2.1 Grid Search (GS) . 28
3.2.2 Jump Search (JS) . 28
3.2.3 Simulated Annealing (SA) 31
3.2.4 Placement Order . 31

3.3 Experimental Design . 32
3.4 Results . 33
3.5 Discussion . 40
3.6 Conclusion . 41

4 Rule Learning from a Synthetic Layout Dataset 43
4.1 Introduction . 44
4.2 Rule Learning Method . 46

4.2.1 Target Rule Template 47
4.2.2 The Observations Table 48
4.2.3 Forming Rules for an Example Layout 49
4.2.4 Combining Rules from Multiple Example Layouts . . . 53
4.2.5 RuleDSL Conversion 54

4.3 Experimental Setup . 54
4.3.1 Synthetic Layout Creation 55
4.3.2 Learning All Possible Rules 55

4.4 Rule Learner Evaluation . 57

v

4.4.1 Rule Learning Quality 57
4.4.2 Input Training Layout Count 60
4.4.3 Rule Reduction . 61
4.4.4 Initial Template Relation Ablation 63

4.5 Discussion . 64
4.6 Conclusion . 65

4.6.1 Limitations . 66
4.6.2 Future work . 66

5 Rule Learning from User-Generated Example Layouts 68
5.1 Introduction . 68
5.2 User-Created Layout Collection 69

5.2.1 Learnt Layout Generation 72
5.3 Perceived Quality Evaluation Survey 73
5.4 Survey Results . 75
5.5 Conclusion . 75

6 BIM-kit: The BIM Reasoning Toolkit 78
6.1 Introduction . 79
6.2 BIM-kit Data Model & Repository 83

6.2.1 Data Model . 83
6.2.2 BIM-kit Repository . 86

6.3 Use Cases . 86
6.3.1 Building Model Editor 87
6.3.2 Rule Management Service 87
6.3.3 Rule Editors . 88
6.3.4 Rule Leaning Application 90
6.3.5 Model Checking Service 90
6.3.6 Generative Design Service 91
6.3.7 Model Occupancy Simulator 92

6.4 Discussion . 93
6.4.1 Advancing Interoperability 93
6.4.2 Semantic Modeling . 93

6.5 Conclusion . 94

7 Conclusion 95
7.1 Future Work . 99

References 101

Appendix A Background Material 110
A.1 Room Scenarios . 110

A.1.1 Expert Rulesets . 110
A.1.2 Initial Empty Layouts 111
A.1.3 Furnishing Objects . 111
A.1.4 Layout Scenario Dataset 112

vi

List of Tables

4.1 Corresponding observation table from the example bedroom in
Figure 4.1. 48

4.2 Observation table filtered for Wall and Chair object types for
an example layout (Distance relation only for simplicity). . . . 52

4.3 Rules from Table 4.2. 52
4.4 Baseline Correlations for All Room Scenarios 59
4.5 Adjusting Training Input Count For Living Room 3 60
4.6 Rule Reduce Method Comparison for Living Room 3 63
4.7 Rule Template Relation Comparison 64

A.1 Room Scenarios . 113

vii

List of Figures

2.1 Rule structure in the Unified Modeling Language (UML). . . . 21

3.1 Example type dependency graph for a living room. A connec-
tion among object types by two objects both are referenced in
a shared rule (the types in a rule’s existential clauses). 32

3.2 Search method comparison for Small Bathroom 1 scenario. . . 34
3.3 Search method comparison for Large Bedroom 1 scenario. . . . 34
3.4 Search method comparison for Small Bedroom 2 scenario. . . . 35
3.5 Search method comparison for Simple Kitchen 1 scenario. . . . 35
3.6 Search method comparison for Dense Kitchen 2 scenario. . . . 36
3.7 Search method comparison for Simple L-shaped Living Room 1

scenario. 36
3.8 Search method comparison for Dense L-shaped Living Room 2

scenario. 37
3.9 Search method comparison for Simple Rectangular Living Room

3 scenario. 37
3.10 Search method comparison for Dense Rectangular Living Room

4 scenario. 38
3.11 Rooms generated from new JS method. 39

4.1 Example bedroom. 49
4.2 Correlations of layout scores from expert and learn rules on a

testing set of layouts. Each point represents a testing layout. . 59
4.3 Trend of correlation scores and rule counts as the number of

input layouts increases for Living Room 3. 61

5.1 Layout collection User Interface (UI) 70
5.2 Room design difficulty approximation based on average com-

parison of design durations normalized by each participant. . . 71
5.3 Survey website screenshot. 73
5.4 Results of the layout evaluation survey. 75

6.1 BIM-kit client-side data model. 83
6.2 Rule Management Service data storage model. 88
6.3 Blockly Rule Editor. 89
6.4 BIM-kit Model checking extension in the Building Model Editor. 90

A.1 Current State of BIM-kit’s application and service architecture. 115

viii

List of Algorithms

1 The Jump Search Algorithm. 29

2 Algorithm for combining relations from object-pair instances. . 50
3 Algorithm for learning type-pair rules from an example layout. 51
4 Algorithm for combining instances by ID. 52
5 Algorithm for merging rules from a new example layout with the

rules learnt and combined over the previous set of example layouts. 53
6 Algorithm for learning all possible rules from training layout set. 56

ix

Acronyms

ACC

Automated Code Checking

API

Application Programmable Interface

AR

Augmented Reality

BERA

Building Environment Rule and Analysis

BIM

Building Information Modeling

BIMQL

BIM Query Language

BIMRL

BIM Rule Language

BIMRLSS

BIMRL Simplified Schema

BOM

Building Object Model

CAD

Computer Aided Design

CNN

Convolutional Neural Network

DDLS

Data-Driven Layout Synthesis

DSL

Domain Specific Language

x

EDM

Express Data Manager

GA

Genetic Algorithm

GANs

Generative Adversarial Networks

GS

Grid Search

GSA

General Services Administration

GUID

Globally Unique Identifier

ID

Unique Identifier

IFC

Industry Foundation Classes

JS

Jump Search

LLMs

Large Language Models

LOD

Level-of-Detail

MCMC

Markov Chain Monte Carlo

MEP

Mechanical, Electrical, Plumbing

ML

Machine Learning

MVD

Model View Definition

NLP

Natural Language Processing

NN

Neural Network

xi

PSO

Particle Swarm Optimization

QTO

Quantity Take-off

RASE

Requirement, Applicability, Selection, Exception

RDF

Resource Description Framework

SA

Simulated Annealing

SMC

Solibri Model Checker

SQL

Structured Query Language

UI

User Interface

UML

Unified Modeling Language

VAE

Variational Autoencoder

VCCL

Visual Code Checking Language

VPL

Visual Programming Languages

VR

Virtual Reality

xii

Chapter 1

Introduction

Buildings are a vital part of our everyday lives. They serve various func-

tions, from homes for living, offices for work, schools for learning, etc. The

design of our buildings significantly influences how well we, their occupants,

can carry out our activities and perform our tasks within the available space.

Building interiors are one aspect of the design that greatly impacts the ability

of occupants to perform tasks efficiently. A well-designed space complies with

building codes and standards for accessible and green space and meets the aes-

thetic styles and individual preferences of its occupants. In such well-designed

spaces, occupants can live and work more safely, efficiently and happily.

Over the years, experts have researched different design aspects that have

resulted in well-designed interior spaces. Their expertise is often formulated

in the form of rules and guidelines. A rule-compliant design can therefore be

expected to perform better than when not. Naturally, the goal of any designer

is to design a space as best as possible. Toward this goal, a designer should

attempt to comply with the rules pertinent to the relevant codes and occupant

needs for a particular space.

Planning is a vital stage in which a designer can examine multiple possible

layout configurations before making any laborious or financial commitments.

With advancements in computer technology, Computer Aided Design (CAD)

planning tools have emerged, capable of creating 2D and 3D renderings of

building designs. Building Information Modeling (BIM) is the process by

which all building information is digitally created and managed within a 3D

1

CAD model, including specifications about the building components and the

relationships among those components [4]. BIM combines 3D models with a

conceptual representation of the building, its spaces, their geometry, and in-

terior furnishings. By digitizing the building information, visualization and

assessment of proposed layout configurations (and consequently design plan-

ning and optimization) becomes easier.

A key benefit to the organization and standardization of building informa-

tion in BIM is the potential to automate many design tasks. One envisioned

and highly sought-after use case for BIM is the automatic review of designs to

assess the performance of a design, also known as automatic model checking or

Automated Code Checking (ACC). In ACC, a proposed design is assessed au-

tomatically against expert rules to gauge its performance [5]. The expert rules

must be written in a machine-readable format, i.e. computer code, such that

a computer can programmatically check the model. This has been a prevalent

challenge as rule programming to date is often written in general programming

languages that require years to master.

1.1 Domain Specific Languages for Automatic

Code Checking

More recently, efforts have been made to mitigate the challenges of program-

ming expert rules. Domain Specific Language (DSL)s offer one solution. DSLs

are programming languages that use vocabularies that are more high-level and

relevant to the domain in which they are used. In the case of building design

evaluation, several DSLs have been proposed.

Two rule DSL of note are BERA [6], [7] and BIMRL [8], [9]. The Building

Environment Rule and Analysis (BERA) language was developed as a simpli-

fied Java-based rule language with a domain focus on spatial circulation and

paths. BIM Rule Language (BIMRL) is a Structured Query Language (SQL)

approach for performing queries on the BIM data. Similar to the work in this

thesis, both report the use of a simplified BIM data representation; BERA

uses the Building Object Model (BOM) and BIMRL the BIMRL Simplified

2

Schema (BIMRLSS).

However, these works fall short when compared to this thesis is in the do-

mains they are applied to, as neither has been tested on the interior furnishing

arrangement domain, and their use beyond model checking. The RuleDSL

used in this thesis, described in detail in Section 2.6, is a precursor to this

work explicitly conceived to support reasoning about interior design [1]. It has

been tested on rules specifically targeting the geometric relationships among

furnishing objects in different living spaces. Additionally, its feasibility as an

evaluator in generative layout search has been tested and demonstrated to

produce rule-compliant layouts automatically, which is improved through its

ability to scale rule results instead of returning boolean pass or fail results.

1.2 Automated Interior Layout Generation

Two general methodologies have been proposed for interior layout generation.

First are methods that rely on explicitly encoded rules, dating back to Mer-

rell et al. [10], where rules are hard-coded in general-purpose programming

languages within the CAD tool. With these methods, rule coding becomes a

non-trivial and error-prone task as expertise in rule interpretation and pro-

gramming is required to effectively write the rules.

The others are the data-driven layout generation approaches, where plausi-

ble layouts are input and probabilistic models are trained to re-create equally

plausible layouts such as the work in Fisher et al. [11]. Recently, image gen-

eration has also become a useful tool in interior design where layout images

can be created to suggest plausible layouts, such as the works of Betker et

al. [12] and Zhang et al. [13]. In both cases, generated layouts are made to

“look” like the input models but there is no understanding of whether or not

these layouts comply with relevant design rules. Therefore, while useful for

recreating believable and aesthetic layouts, these methods do not guarantee

the creation of rule-compliant designs.

In this thesis, layout generation uses constraints in the form of an easy-

to-use DSL, the RuleDSL, with the explicit goal of generating rule-compliant

3

layouts.

1.3 Thesis Objectives

The goal of this thesis is to develop and evaluate new algorithms relating to

model checking and automated layout generation tasks. The algorithms pre-

sented in this thesis use or create rules in the form of RuleDSL a user-friendly

DSL for describing rules on building components’ geometric relationships. In

particular, I will be pursuing the following research questions throughout this

thesis.

Question 1: Two key criteria for automated layout generation algorithms

are (i) the quality of the layouts in terms of the search goal, in our case the

rule compliance score and (ii) how fast a search algorithm converges on a

high-quality layout configuration i.e. its search efficiency. I have developed

and comparatively evaluated one grid-based methodology and two continuous

random sampling algorithms, based on these two metrics. How do output

layout quality and layout configuration search efficiency trade-offs

differ among the layout generation algorithms?

Question 2: The next question is regarding the creation of rules in the

RuleDSL format. Rules are edited through a special-purpose syntax-aware

editor. Three editors have been developed. One is a form-based editor where

rules are created through a series of dynamic drop-down selection and data in-

put widgets. The others are prototypes for a Visual Programming Languages

(VPL) using BLOCKLY [14] and Natural Language Processing (NLP) text-

to-code tokenizer which are still being tested and evaluated. Coding rules is

difficult and while the focused RuleDSL vocabulary on interior design eases

the coding process, the syntax and semantics behind relation terms can still

cause challenges. A potentially simpler rule creation process might be to only

provide examples where the rules are adhered to and ideally have the rules ex-

tracted automatically. My algorithm approach looks at the object relationship

patterns in the examples and the range of their values, rules can be formulated

4

on the bounds of the relation ranges and converted to the RuleDSL. How well

does the design-rule learning algorithm capture the quality of the

layouts of its input examples?

Question 3: Rule compliance, while arguably the most important, is

not the only metric for whether a layout is good or not. Often users will

have preferences for their arrangements that they may not be able to express

in geometrical terms like the rules. Therefore, in addition to capturing rule

information, the ability of the rule learning algorithm to capture non-trivial

preferences and aesthetics is also of interest to someone who may use the rules

to automatically evaluate or generate layouts similar to a set of examples.

How well is perceived quality captured and recreated using the same

rule learning algorithm?

Question 4: The final question that I explore in this thesis relates to

the synthesis of all BIM reasoning applications as web services, in a coher-

ent software platform. What software architecture can be employed to

support the RuleDSL and other BIM reasoning application Appli-

cation Programmable Interface (API)s?

1.4 Thesis Contributions and Structure

In Chapter 2, I will outline background information regarding previous re-

search relating to the work I present in this thesis and information regarding

the RuleDSL central to this thesis.

The contribution of Chapter 3 is a new continuous space search algorithm,

Jump Search (JS). I describe the algorithm, evaluate its effectiveness in deliv-

ering high-quality layouts in many different problem scenarios, and compare

its search efficiency and output quality against a previous grid-based method,

Grid Search (GS), and a non-greedy continuous space search algorithm based

on Simulated Annealing (SA).

Chapter 4 describes a novel rule learning method and demonstrates its

quality and effectiveness at capturing known rule information through a rule

5

correlations analysis. Chapter 5 details a user study for curating a layout

dataset and evaluating the rule learning algorithm’s ability to capture and

recreate perceived quality.

Chapter 6 first puts forward a well-defined, extendable BIM model; the

model is compatible with IFC, in that it can import a complete IFC model

and create a corresponding set cross-referenced objects. Because the model

consists of several distinct objects that are manipulated through well-defined

APIs, the model can be more easily shared across different tools. Then, it

demonstrates the usefulness of the above model through the implementation

of a variety of interactive and automated tools that, together, cover a wide

range of activities that reason about building models.

Finally, Chapter 7 summarizes my research findings in terms of the ob-

jectives of this thesis, states the contributions of this work, and introduces

potential future research directions.

1.5 Research Methodology

The research methodology employed in this thesis is fundamentally experimen-

tal. Each chapter is organized as a report on a stand-alone research activity

and describes the general motivation of the activity and the specific problem

that it addresses. Then, state-of-the-art approaches related to this activity are

identified, to provide the context against which the contribution of the chapter

should be considered. I have assembled all the related works relevant to all

the thesis activities in Chapter 2.

Chapters 3 and 4 report on new algorithms while Chapter 6 describes the

concise building data model that I have developed to enable the implementa-

tion of these algorithms in an integrated software platform.

The automated layout algorithm of Chapter 3 is comparatively evaluated

against two earlier algorithms to provide statistically significant evidence of

its effectiveness in different room scenarios (See Section A.1 in the Appendix)

and efficiency under computational search budgets. Through this experimental

design, I investigate the performance quality trade-offs of my new algorithm.

6

The experimental evaluation of the rule learning method of Chapter 4 is

conducted in Chapters 4 and 5. Because there is no direct competitor to

our rule learning algorithm, the experimental evaluation design focuses on the

effectiveness of the rule learning algorithm in capturing the design quality in-

formation embedded in the input examples in the above room scenarios. For

rule learning algorithm analysis in Chapter 4, the room scenarios rules rep-

resent the target and the correlation analysis gives a metric of the extent to

which the method achieves the target. Further analysis of the rule learning al-

gorithm is performed in Chapter 5 via a two-part user study, with user-created

layout data collection first followed by user-perceived quality evaluations.

Finally, Chapter 6 validates the concise building information data model

and RuleDSL underlying this thesis by detailing its capability of represent-

ing and organizing the required information for fulfilling important reasoning

tasks.

7

Chapter 2

Background and Related
Research

I will start this chapter with a brief review of automated model checking

(which I use interchangeably with Automated Code Checking (ACC) in this

thesis) and Domain Specific Language (DSL)s that have been proposed for

checking various building rules. Next, automatic layout generation algorithms

are reviewed, looking at their evaluation and search methods separately. As

some methods for layout generation rely on learning or extracting knowledge

from examples, I examine how their methods represent that knowledge. Fi-

nally, software environments for model checking, generative design, and other

reasoning tasks are reviewed.

Segments of this chapter were taken from the following publications with

some modifications and updates:

1. Sections 2.1, and 2.2 are from research prior to this thesis in the publica-

tion: Christoph Sydora and Eleni Stroulia, “Rule-Based Compliance

Checking and Generative Design for Building Interiors Using BIM,” Au-

tomation in Construction, 2020. [1]

2. Section 2.3 relates to the work in Chapter 3 which is published in:

Christoph Sydora and Eleni Stroulia, “Comparative Analysis of Room

Generation Methods Using Rule Language-Based Evaluation in BIM,”

In Proceedings of European Conference on Computing in Construction

(EC3) and International CIB W78 Conference, 2023. [2]

8

3. Section 2.4 belong to the work in Chapters 4 and 5 which has not yet

been published.

4. Section 2.5 is from the publication: Christoph Sydora and Eleni Strou-

lia, “BIM-kit: An Extendible Toolkit for Reasoning about Building Infor-

mation Models,” In Proceedings of European Conference on Computing

in Construction (EC3), 2021. [3]

More in-depth reviews of model-checking solutions can be found in the

BIM Handbook [4] and review papers from Eastman et al. [5], Borrmann et

al. [15], Dimyadi et al. [16], Greenwood et al. [17], Ismail et al. [18], Hjelseth

[19], Pauwels et at. [20], and Solihin et al. [21].

2.1 Model Checking Tools and Workarounds

When researching compliance-checking tools, Solibri Model Checker (SMC)

[22] is frequently mentioned as it is one of the few tools specifically built for

the purpose of checking BIM models. SMC takes as input a building model in

the form of the BIM industry standard of IFC. While the available rulesets,

initially from the Norwegian Statsbygg handbook [23], can be modified by

the end user by combining rule sets and deleting rules, support for editing

individual rules is limited to changing the parameters of the provided rules.

Additionally, there are a few rule templates for creating new rules, however,

full customization of rules can only be done through the SMC Application

Programmable Interface (API), which is not publicly available.

Model-checking tools have been implemented for the purpose of evaluating

the requirements of governing bodies, with differing levels of success. Sin-

gapore’s CORENET ePlanCheck [24] has been noted as the most successful

implementation, since, at one point, it was mandatory as part of the govern-

ment’s building requirement legislation [5], [18]. In Australia, DesignCheck

[25] was built on the Express Data Manager (EDM) Model Server but, to

the best of the authors’ knowledge has since lost support. The General Ser-

vices Administration (GSA) in the United States mandates that their project

9

models be checked with rules implemented within SMC [5].

While not specifically model-checking tools, BIM editors, such as Autodesk

Revit [26] and Graphisoft ArchiCAD [27], provide APIs for add-on develop-

ment, allowing access to the model’s internal structure and object database and

therefore, can, in principle, be used for model checking. This requires a high

level of programming knowledge, even for the simplest checks. To address this

challenge, some tools have been developed to perform the same functionality

in a visual environment. These include tools such as Autodesk Dynamo [28],

which works on the Revit platform, and Rhino Grasshopper [29]. These two

tools are both graph-based visual editors that have some scripting available -

Dynamo’s Python scripting rather than C# as the Revit API. BIMServer [30],

an open-source IFC model repository platform, has a model-checking plugin,

however, it requires direct coding in JavaScript. The scripts are then linked to

the model for execution. This also requires programmatic coding knowledge

and a strong understanding of the IFC vocabulary and syntax.

2.2 Model Search and Rule Languages

Query Languages and Semantic Web Ontologies: As model-checking

is, in theory, a query on a BIM model, and given the emergence of semantic-

web technologies, there have been a number of methods using semantic web

languages as the basis for the checks. Specifically, methods have worked with

extendable IFC-based ontologies of the BIM model to query for design flaws.

Pauwels et al. [31] for instance performed acoustic regulation compliance

checking for BIM models using Resource Description Framework (RDF) graphs

of the building model. The process requires a model to be passed through and

IFC-to-RDF converter which can then be queried by a rule described in the

Notation-3 (N3) syntax. A more general overview of these types of methods

can be found in Pauwels et al. [20]. While this technology can be useful in

extending the data schema, the query languages require a steeper learning

curve and a data converter from IFC to RDF data models which is not a

straightforward task.

10

BIM Query Language (BIMQL) [32] is another query language, built on

the BIMServer platform. The language uses a syntax very similar to SQL

that reads an IFC model, the goal being an easier transition for users more

familiar with query languages as opposed to learning a programming language.

BIMQL has the capability to check the existence of model elements and some

minor model manipulation. Therefore, while query languages can perform the

task of model-checking, they focus on the existing data using complex query

languages and are likely better suited for Quantity Take-off (QTO), that is to

count the number of item instances in a model, than model-checking.

Rule-Checking Languages: The Building Environment Rule and Analysis

(BERA) language [6] was developed as a domain-specific programming lan-

guage for model checking. The concept is built on providing model-checking

capabilities without the need for precise knowledge of general-purpose pro-

gramming languages [7]. However, the language derives heavily from Java

which may be difficult for non-programmers and it is built on SMC as an IFC

engine and therefore is still quite opaque. Although it offers the potential

for extensibility, to my knowledge, it has not been developed outside a few

building circulation rules.

BIM Rule Language (BIMRL) [9], [33] represents another rule language

approach. This method draws influence heavily from SQL, therefore, for a non-

programmer, the language can appear complex. This language does contribute

some key concepts such as the representation of the data from complex IFC

data to simplified shape representations and the use of temporary geometry

for spacial-based evaluations [34]. Like the RuleDSL in this thesis research,

they have designed their DSL with a central focus around a simplified building

data representation.

KBim [35], [36] was built specifically for expressing the Korean Build-

ing Act legislation into commutable form. The method is broken down into

KBimLogic [35], a tool for assisting users in the natural language parsing and

information extraction of the rules based on objects, properties, and high-level

methods stored in SQL database tables, and KBimCode, which then further

11

converts the KBimLogic structured rules into computer executable code [36].

The code-checking system is called KBimAssess-lite [37].

Unlike these previous methods, I will show that my language supports

scaling the results of rules which is beneficial for generative design. Should

a rule fail, my language is able to additionally determine the severity of the

failure. This concept is necessary for the generative design to more intelligently

adjust and improve configurations of the model layout so that a locally optimal

solution can be found.

Visual Programming Languages (VPL): Some approaches have taken

the Rule Languages one step further by adding a visual component to them,

in the same sense that Dynamo is a visual language for Revit’s API. This is

intended to allow for more complex rules to be created without adding the

need to code programming, although, to my knowledge, this has not been

tested for ease of use.

Check-mate [38] first introduced this as a very simple puzzle-based interface

that allowed connecting pieces that together would form a structured rule.

However, the expressiveness of this language was limited. The Visual Code

Checking Language (VCCL) took a node-based approach, calling it a “white-

box” approach with the available nodes to be extendable as the project matures

[39], [40]. The language was then refined to support more complex rules by

modularizing nodes, thus allowing for nodes to build around other predefined

nodes [41]. In similar fashion, KBim has also since implemented a VPL version

of KBimCode to improve ease of use [42].

The RuleDSL used in this thesis has a puzzle like VPL built using BLOCKLY

[14]. The extent to which this editor improves user interaction and experience

is something I will be investigating in future work.

Natural Language Processing (NLP): Attempts have been made to

parse natural language rules from design handbooks and regulation texts.

While such approaches could potentially simplify the rule-creation process,

many of the natural language rules lack the clarity and unambiguity required

12

to be directly parsed without any human intervention or interpretation. One

of the more commonly cited approaches in this vein is that of Hjelseth [43] and

Hjelseth and Nisbet [44] which used a four-sentence component classification

to parse natural language rules, namely Requirement, Applicability, Selection,

Exception (RASE). Another use of NLP has been to identify information from

rules that are missing or may need to be added to models [45]. Such methods

could potentially be antecedent to my method and will be explored in the

future.

2.3 Automated Layout Generation Rules and

Search Algorithms

In this section, I will first review some rule constraint formulation methods that

result in layout evaluation scores used in related automatic layout generation

research. This is because layout evaluations are similar to model checks in that

both score a layout and report a result. Then, I will outline layout optimization

algorithms, specifically the layout modification and action selection algorithms.

A more in-depth survey of automated layout generation (or sometimes Scene

Synthesis) can be found in Zhang et al. [46].

Configuration Evaluation Methods: A common approach is to define

rules in terms of geometrical formulas as in Merrell et al. [10], Akase and

Okada [47], Kan and Haufman [48], Li et al. [49], Liang et al. [50], Yu et al.

[51], and Zhang et al. [52]. The most prominent criticism of this rule definition

approach is the difficulty in defining and testing new rules, specifically for

domain experts lacking the skills to formulate the rules. These approaches are

also not able to be data-driven, i.e. cannot be directly derived from examples.

Relational graph approaches have been proposed by Yeh et al. [53], Xu

et al. [54], Kermani et al. [55], Fu et al. [56], Liang et al. [57], Wang et

al. [58], Zhou et al. [59], Li et al. [60], and Kesharvarzi et al. [61]. Typical

graphs will pre-define a set of possible relational occurrences, such as “next

to” or “facing”, with nodes in the graph representing the objects placed in the

13

layout and edges as the relations. A similar approach is based on statistical

likelihoods of relational occurrences as in Fisher et al. [11], Chang et al. [62],

and Zhang et al. [52]. Both graph and probabilistic models are typically

example-dataset dependent and not intended to be coded by a user.

To make the rule creation more accessible to domain experts, some methods

initially use text-based input (such as Liang et al. [57]), before being converted

to graphical relation models as rules. Other approaches have defined the rules

in terms of actions or activities, rather than classical geometric rules such as

in Fisher et al. [63], Ma et al. [64], Qi et al. [65], and Fu et al. [66]. Thus,

the evaluation scores are determined by simulation or path planning.

Finally, Machine Learning (ML) methods using Neural Network (NN) have

been proposed that determine location or location probabilistic mapping based

on scene feature (such as Wang et al. [58], Zhou et al. [59], Li et al. [60],

Wang et al. [67], Yang et al. [68], Ritchie et al. [69], and Yang et al. [70]).

The rule language described in this thesis supports a user-friendly process

for specifying design rules, in a representation format that maintains textual

descriptions rather than geometrical formulas and supports more complex re-

lations than graph representations.

Configuration Variation and Selection Methods: There are two broad

categories of approaches for placing objects. Either all objects are placed and

then simultaneously moved around in a single action or a single object is moved

per action.

Methods for moving all objects include Genetic Algorithm (GA) (Akase and

Okada [47]), Particle Swarm Optimization (PSO) (Li et al. [49]), or Simulated

Annealing (SA) with Markov Chain Monte Carlo (MCMC) sampling such as

Metropolis-Hastings (Merrell et a. [10], Liang et al. [50], Yu et al. [51], Yeh et

al. [53], Kermani et al. [55], Qi et al. [65], and Kan and Kaufman [71]). The

benefit of moving all objects simultaneously is that objects inherently have

arrangement relations to other objects and moving more objects provides a

more drastic alteration that could improve evaluation scores. On the other

hand, finding more optimal evaluation scores becomes more challenging due

14

to the number of moving pieces.

Placing objects incrementally in the scene has the benefit of finding locally

optimal locations for a single object at a time. The main drawback, however, is

that the earlier placements have no concept of the later object placements and

their evaluations. Some methods that place objects incrementally in the scene

are using probabilistic sampling (Fisher et al. [11], Zhang et al. [52], Xu et al.

[54], Liang et al. [57], Chang et al. [62], Fisher et al. [63], and Ma et al. [64]) or

procedural placement (Kan and Kaufman [48], Kershavarzi et al. [61], Germer

and Schwarz [72], and Kan et al. [73]). Procedural placement generally relies

on prior layout knowledge, while probabilistic sampling methods are paired

with data-driven methods requiring example models.

In Chapter 3, the proposed Jump Search algorithm explores possible place-

ments for individual objects one at a time, which results in converging to a

valid layout faster. To decide which object to place first, it relies on the de-

pendencies among object types and chooses to place first these objects that

depend on objects that are already part of the layout.

2.4 Data Driven Layout Synthesis

With the availability of large interior datasets, such as SUNCG [74] and 3D-

FRONT [75], research into Data-Driven Layout Synthesis (DDLS) methods

has gained much attention [46]. In DDLS, priors are learnt to account for the

non-trivial nature of what makes a scene plausible or not [46].

Common in DDLS is to learn object location probability distributions,

relative to existing objects in the scene (Fisher et al. [11], Liang et al. [50],

Xu et al. [54], Kermani et al. [55], Kershavarzi et al. [61], Chang et al. [62],

Xu et al. [76], and Zhang et al. [77]). Others use graph representations for

binary pairwise object relations (Zhang et al. [52], Kermani et al. [55], Fu et

al. [56], Wang et al. [58], Kershavarzi et al. [61], Chang et al. [62], Fu et al.

[75], Xu et al. [76], Zhang et al. [77], and Ma et al. [78]).

With the advancements of Neural Network (NN), more elaborate methods

of learning location probability distributions, such as Convolutional Neural

15

Network (CNN) in Wang et al. [67] and Ritchie et al. [69] or Variational

Autoencoder (VAE) based methods in Li et al. [60], Zhang et al. [79], Para et

at. [80], and Wei et al. [81], have been developed, outputting location prob-

ability maps. Using these location probability distributions, the furnishing

placements search is then done either procedurally or by selecting the max-

imum likelihood (Kan and Kaufmann [71], Kan et al. [73], Ma et al. [78],

Xie et al. [82]), or using a sampling approach (Merrell et al. [10], Fisher et

al. [11], Liang et al. [50], Yu et al. [51], Kermani et al. [55], Qi et al. [65],

Zhang et al. [77], and Raistrick et al. [83]) to iteratively assemble the layout

arraignment.

Most recently, image generators have been able to create highly detailed

images of buildings and interiors. These generators are either completely text-

driven such as the most well-known generator DALL-E 3 [12] or can have some

control using edges or input “skeletons” of the desired image [13]. A review of

diffusion models can be found in Croitoru et al. [84] and Yang et al. [85]. In

general, while producing impressive visuals of layouts, these image generation

methods do not appear to be able to enforce the geometrical relations within

the layout.

In both ACC and layout synthesis, digital models go through an evaluation.

In this paper, I aim to bridge the research gap between learning priors in DDLS

and rules in ACC as, to my knowledge, ACC rule learning from examples has

not been explored. Learned probability distributions used in layout synthesis

are not used as strict adherence rules, as in ACC, but rather plausibility and

aesthetic approximation functions that are aimed to be optimized through

layout search. Put another way, the learned probabilities are functions that

evaluate how likely a configuration is to appear in the layouts trained from.

The proposed rule learning method is similar to the graph approach, how-

ever, my relationship ranges are expanded through examples as opposed to be-

ing hard-coded binary relationships. Additionally, the proposed rule learning

method supports more expressive rules through the use of existential clauses

to determine the number of objects of a type that must pass as opposed to

just one-to-one graph relationships. This gives them a structure more closely

16

aligned with ACC rules in the form of the RuleDSL.

2.5 BIM Reasoning Frameworks

BIMServer [86] is a well known open source IFC model server, actively main-

tained and regularly updated. It is an IFC model repository that is capable

of performing version control and enforcing access-control rules, checking user

credentials against their authority to access the models they request. The as-

sociated bimviews web app enables users to view the models, and additional

functionalities can be created by developing BIMServer plugins, such as the

example Model Compare and Query Engine Plugins. There have been at-

tempts at developing model-checking plugins for BIMServer, but a complete

solution has yet to be developed.

There are a few additional examples centred around IFC models such as

BIMCloud [87] that focus on the social interaction around the model, and

CloudServerBIM [88] that extended the BIMServer functionality to include

web-based services. By using IFC as the model schema, the above methods

face the IFC related development challenges, such as the model inconsistencies

due to modification. BIM 360 [89] and BIMCloud [90] are some examples of

Cloud-based BIM model servers that do not use IFC but therefore are linked

more directly to a single design software.

Our work shares much of the motivation and some implementation deci-

sions with three recent publications that have proposed, or used, MongoDB

for implementing repositories of BIM models. Ma and Sacks [91] use Mon-

goDB to store IFC files, motivated by the need for a dynamic data schema:

their system uses the IFC schema but also enables dynamic addition of user-

defined properties. The authors have demonstrated the use of their system for

the task of reconstructing reinforced concrete beam models from earthquake-

damaged buildings. Lin et al. [92] focus on the experience of end users query-

ing massive IFC models for data retrieval and develop a tool that translates

natural-language queries to map IFC entities. On the back-end, the tool uses

MongoDB to store the IFC data, with Objects, Relations, Types, Geometry,

17

and Relational Objects. This is closely related to my implementation how-

ever, I use the platform more broadly, allowing for services and applications

to modify the model, as opposed to theirs that only adds information to the

model for query and retrieval purposes. Jiao et al. [93] propose a “logically

centralised but physically heterogeneous” database where non-geometry data

is stored in a relational database and geometric data in a MongoDB database.

From a Revit file [26], the geometry elements are classified, grouped and stored

in HOOPS files collectively, with the non-geometrical information being linked

via a Globally Unique Identifier (GUID) and stored in the relational database.

Our solution, on the other hand, stores the information collectively and is

more intuitive to parse and thus modify.

The most recent and most closely related to my work project is the BIMRL

Simplified Schema (BIMRLSS) from Solihin et al. [9]. They argue for a sim-

ple model representation to promote accessibility, and believe that at its core,

a model should store the “objects, types, their properties, relationships, and

their final geometries”. Additionally, they cite model-checking as the key moti-

vator to their approach and use a rule-language method for deriving the rules;

my rules are being tested on interior design, while their rules relate closely to

building paths and lines of sight. They also consider the benefits of Level-of-

Detail (LOD) for the stored model; however, they focus on the accuracy of

the geometry representations, where I am more interested in the logical orga-

nization of the building model and its constituent elements. BIMRLSS and

BIM-kit differ in two important ways. First, BIMRLSS adopts a traditional

relational storage model for BIM data, i.e., non-geometry data, as opposed

to my document-centric MongoDB. Second, BIMRLSS, similar to BIMServer,

proposes that additional services should be treated as plugins rather than in-

dependent services, which requires a centralized development model of the

overall toolkit, and is less extendible than my API-centric approach.

The majority of the previous research does not examine how each of the

various design activities uses and manipulates the data in the building model.

In this work, I look specifically at the data required for each activity and

I propose APIs as the mechanism for accessing the various building-model

18

elements in a semantically consistent manner.

2.6 Rule Domain Specific Language (RuleDSL)

Central to this thesis is the previously developed RuleDSL outlined in detail

in Sydora and Stroulia [1]. In short, DSLs are higher-level programming lan-

guages that encompass terms relevant to specific tasks making them easier for

non-programmers to interpret and learn, in contrast to general-purpose lan-

guages that can take years to master. This is largely achieved through the use

of domain terms, types, and logical operations relevant to building and interior

design. The language can be broken up into two components that determine

its expressiveness: Vocabulary and Grammar.

2.6.1 Vocabulary

The vocabulary of a language refers to the terms used in the language to convey

meaning. The RuleDSL vocabulary can be categorized into three groups: (1)

object Type classifications, (2) the Property functions (single object) and

Relation functions (pairwise), and (3) the logical Operation functions.

Types: Central to BIM is the use of object types to classify objects. Industry

Foundation Classes (IFC) [94] is the most commonly used type classification,

which RuleDSLs uses as the basis for its types list. Types in the RuleDSL are

organized in a tree structure such that each type must have a single parent

type, up to the Root type. RuleDSL supports new types that can be extended

downward. For instance, table can be extended down to have child types coffee

table and dining table.

Properties and Relations: A vital part of the RuleDSLs vocabulary is

the definition of commonly used object properties and pairwise relations, such

as Width(Object), Distance(Object1, Object2), and Facing(Object1, Object2),

which can be used directly in the language. This is done by associating a

programmed function to each property and relation term. When the rule

19

is compiled, the property or relation term is replaced with the associated

function. When the rule executes, the function is called and the value is

returned which can then subsequently be checked in the rule expression.

Properties are functions on a single object, while relations are on object

pairs. Relation functions on pairs of objects can also be order-dependent or

independent. For instance, Distance(Object1, Object2) is order independent

as the computed value is the same as Distance(Object2, Object1). Functions

such as Facing(Object1, Object2) are order dependent as the computed value

is not always equal to Facing(Object2, Object1).

Operations: The operations are what make up the basic logic and compar-

isons of the rule language. Much like any general programming logic, these are

functions that take in two (or more) values and return a single value between 0

and 1. The operations include the logical operators (AND/OR), the existence

clause (ALL/ANY), and the comparison operators (<, ≤, >, ≥, =, and ! =).

In the RuleDSL, however, the logic is considered on numerical values from 0

to 1 rather than simple 0 or 1 binary. Therefore, the logical operator AND is

a function that takes a list of values between 0 and 1 and returns the mean

value of the list, while the OR operator returns the maximum value of the list.

The existence clause also uses the same logic; the ALL clause is the same as

AND, while the ANY clause is the same as OR.

Derived from Merrel et al.[10], a piece-wise check function is used that

scales the comparison operators’ results to a value between 0 and 1. The key

benefit is that comparison results are scaled from 0 to 1 exclusive is a fail and

only a 1 is a pass, rather than strictly binary pass/fail results. This has major

implications when doing object placement searches.

2.6.2 Grammar

Given the vocabulary, the grammar or syntax of the language is the structure

by which the language terms are ordered. This primarily impacts the readabil-

ity of the language and how the language is parsed. The RuleDSL grammar is

comprised of three main components: (1) the property and relation functions

20

Figure 2.1: Rule structure in the Unified Modeling Language (UML).

or Property/Relation Checks, (2) the Logical Expression, and (3) the

object type filter and pass requirement or together the Existential Clause.

The RuleDSL structure can be seen in Figure 2.1.

Property/Relation Checks: Relation checks are how the value associated

with a relation function is compared against a check value. For example, one

might check if the relation Distance between objects A and B is greater than

a value x. We write this as Distance(A,B) > x. In this case, the function for

Distance is called with objects A and B as input and the value is returned,

which is checked against the value x using the GREATER THAN function.

All relation checks result in a value of 1 if passed or less than 1 but greater

than 0 if failed. As described in the vocabulary for comparison operations, the

farther the returned function value is from the check value, the closer to 0 the

21

check value will be.

Logical Expression: The RuleDSL logically joins property and relation

checks in the logical expression. For instance, two objects might be required

to have a Distance greater than a value AND a Facing value equal to another

value. The logical operations are between property and relation checks and

nested logical expressions. Collectively, the logic expression of the rule results

in an instance of two (or more) objects either passing (score of 1) or failing

(greater than 0 but less than 1).

Existential Clause: The RuleDSL uses types to filter for only the object

instances relevant to a rule. The filtered objects are then tabulated into rule

instances with columns for each existential clause type and a row representing

a unique instance of objects from each existential clause type. As an example,

if a rule checked the relationships among chairs against tables, each column

would be a type (i.e. chairs, tables), and each row would be an instance of

the two types, (i.e. chair1 with table1, chair2 with table1, etc.). Each of

these instances is passed into the logical expression function, returning a 0 to

1 instance result value.

It is common for rules to require either all instances or only one instance

to pass to be satisfied. Therefore, after all instance results are calculated, the

ALL and ANY clause functions check the number of instances for a type that

has passed to determine if the rule passed.

2.6.3 Layout Quality Measure

Layout evaluation (or more generally model checking) is the process of evalu-

ating the layout design against the design rules. This process takes the rules

in the RuleDSL form, compiles them to executable code, and runs the code

with the layout model as input. Rules can have different levels of importance;

they can either be principles (hard constraints) or guidelines/preferences (soft

constraints). When evaluating, layouts are compared first against principle-

level rules. Ties are broken by guideline-level rules, and if still tied, the layouts

22

are compared against preference-level rules. The final quality of a layout is

represented as a percentage of the number of rules that the layout passes over

the total number of applicable rules. For this work, I adopt the percentage of

rules that the design complies with as a measure of layout quality:

Score =
n∑︂

i=1

Rule[i].eval/n ∗ 100% (2.1)

where n is the total number of rules and Rule[i].eval is the rule score in the

range of 0 and 1. In calculating this score, only soft constraints are considered

since a design is not valid if it fails to pass the principle-level rules.

23

Chapter 3

Automated Layout Generation

In this chapter, I present a novel greedy continuous RuleDSL-based layout gen-

eration search algorithm, Jump Search (JS) which is motivated by the need

for a continuous non-grid-based search as was the state-of-the-art in terms

of RuleDSL-based furniture placement search. The greedy continuous ap-

proach of JS is compared against a grid-based search, Grid Search (GS), and a

more conservative continuous approach, Simulated Annealing (SA) search al-

gorithm. The algorithms are compared on different room scenarios in terms of

their efficiency in finding quality layouts under a specified number of search it-

erations. The findings of this chapter suggest the JS algorithm is more efficient

at finding higher quality layouts in fewer iterations.

This chapter contains the work presented in the conference publication:

Christoph Sydora and Eleni Stroulia, “Comparative Analysis of Room Gen-

eration Methods Using Rule Language-Based Evaluation in BIM,” In Pro-

ceedings of European Conference on Computing in Construction (EC3) and

International CIB W78 Conference, 2023. [2]

Abstract: Automated layout generation can improve interior designs by sug-

gesting constraint-compliant design alternatives. Persistent issues relate to in-

tuitive and explainable constraint formulation and efficiency of layout search

that result in highly compliant, diverse alternatives. This chapter proposes a

Domain Specific Language for rule representation and evaluation, along with

a continuous layout-configuration search, Jump Search. The proposed method

is compared against a previous grid-based layout search method and a Sim-

24

ulated Annealing approach, under rule-based evaluation budgets for different

room-type scenarios. Our experimental results demonstrate that Jump Search

is able to generate higher-quality layouts more efficiently, while also exploring

a larger variety of layouts.

3.1 Introduction

Automation offers the potential for significant improvements in building de-

sign and construction, from eliminating repetitive routine tasks, such as stud

placement, to automatically generating high-quality building designs. The

last stage in design is the arrangement of furnishings in the available interior

spaces of the building, a task that arguably has the largest impact on the

occupants, as a poor arrangement can lead to inaccessible objects, have neg-

ative ergonomic effects on occupants, and generally make a space unpleasant

that could otherwise be better utilized. Because of the variety of furnishing

types and the complexity of the relevant ergonomic constraints and aesthetic

preferences, the potential placement options and arrangement configurations

are vast. Therefore, automatic layout design could greatly benefit individuals

who might lack the skills and know-how to design practical and functionally

efficient layouts.

3D digital representations of layouts can provide visualizations of design

options prior to design commitment; in fact, it is a tool often used by vendors

and decorators. Building Information Modeling (BIM), an emerging tool for

building digitization, integrates specifications of the building architecture with

3D object models annotated with conceptual type, property, and relationship

data. In this work, we adopt a BIM-based methodology to ensure that our

layout representations fit in the broader building design life cycle and evaluate

our algorithms by implementing and evaluating them in the context of BIM-

kit [3] (Chapter 6), a toolkit that supports a broad range of BIM management

use cases, including model storage, model checking against design rules, visual

representation and editing, and automated design generation.

Design rules are computational representations of the ergonomic and aes-

25

thetic constraints and guidelines as well as user preferences applicable to the

placement of the objects inside a space. The evaluation of these rules supports

the assessment of the quality of an existing layout, and, embedded in a design-

space search algorithm, it enables the automatic generation of valid layouts.

An important question then arises regarding the language in which these rules

should be represented. Earlier work, such as Merrel et al. [10] and Yu et

al. [51], proposed rules as geometric formulas, based on shapes, angles, and

distance, and many subsequent approaches since have followed suit ([47]–[50],

[52]). Such representations are not easy to explain to occupants who tend to

think in terms of furnishings, and, for the same reason, they are also difficult

for interior design experts to express. This is why, in previous work, a Do-

main Specific Language (DSL) for rules was designed, that includes furnishing

types, properties, and relationships as elements.

Automated design generation is typically formulated as a systematic search

through a design space, toward a high-quality design. Numerous such algo-

rithms have been proposed, reporting different metrics on their performance

[46]; however, comparing them against each other is quite challenging. Run-

time metrics are difficult to standardize since they depend on the underlying

hardware, and the design-generation problem is formulated differently across

different algorithms, that rely on different representations of layouts and rules.

A possible metric that could serve as a standard for comparison is the number

of rule evaluations during the search.

In our previous work, we designed a simple generate-and-test design method,

where the list of possible locations and orientations for object placement was

pre-generated based on a grid defined relative to the walls of the space [1]. At

each iteration, one object was placed at the location and orientation producing

the current highest evaluation score, then repeated with the remaining objects.

Furnishing object placements were evaluated based on the rule-language eval-

uation score (as a proof of concept of the rule language as a viable evaluation

method). From our experiments, we were able to show that the approach was

able to re-create input kitchen layouts by removing all objects and placing

them back in following the input design rules for kitchens (although the input

26

kitchens were not implicitly created with the same rules). Then, interpreting

the rules from Merrell et al. [10] into their rule language and running liv-

ing room experiments, we demonstrated that our algorithm could successfully

create functional (relative to the design rules) room designs.

In this chapter, we propose a continuous space search method, the Jump

Search method. At a high level, the new method places one object at a time,

starting with objects subject to more dependency based on the rules. The

furnishing object potential next placements are sampled from an incrementally

decreasing probability distribution, each evaluated against the rule language

evaluator, then greedily selects the highest scoring location and orientation for

the movement and repeats until the number of moves is exhausted.

We have evaluated the two methods and a simple Simulated Annealing

(SA) method in terms of, first, how efficiently they find layouts of desired

quality, and second, how good the layouts they produce are, given the same

“budget” of rule checks. Furthermore, we have evaluated their relative per-

formance under different room types, which have different layout rules and

furnishing types.

The contribution of this chapter is a new continuous space search algo-

rithm, Jump Search (JS). We have demonstrated the good performance of

this novel algorithm, and its effectiveness in delivering high-quality layouts in

many different problem scenarios, by comparing it against a previous grid-

based method, Grid Search (GS), and a basic continuous space search algo-

rithm based on Simulated Annealing (SA).

The remainder of the chapter is organized as follows. Section 3.2 will

describe the previous GS generative design algorithm followed by our new JS

generative design algorithm and the SA method. We outline the experimental

design for a comparative evaluation of the three methods in Section 3.3 followed

by a summary of results in Section 3.4 and discussion points in Section 3.5.

Finally, we conclude with a summary of our contributions and our future

plans in Section 3.6. Related work for this Chapter can be found in Chapter

2, Section 2.3.

27

3.2 The Search Algorithms

In this section, we describe the three automatic layout generation search al-

gorithms. Each algorithm uses the same room scenario setup (see Appendix

Section A.1). All three algorithms rely on placing a single object at a time

which makes the resulting generated layout depend heavily on the order by

which the objects are placed. Therefore, all methods will use the same object

type placement order which is described at the end of this section in Section

3.2.4.

3.2.1 Grid Search (GS)

Our previous generative design method relies on a grid, defined based on the

initial room walls. For the grid creation, lines are created outward parallel to

each of the wall lines at regular intervals; the intersections among the grid lines

define the possible locations where objects can be placed. This allows control

of the spacing between furnishing objects and between the furnishing and wall

objects, at the expense of more limited control of the number of points.

In this algorithm, for which the pseudocode is provided in Sydora and

Stroulia [1], objects can only be placed on the grid-intersection points, in four

(or more) possible orientations. For each object, one at a time, the location and

orientation combination with the highest resulting evaluation score is selected

as the decision action for that iteration. For subsequent object placements,

possible locations are removed if they are under an existing object. The process

is repeated with the remaining objects until either all objects have been placed

or the highest possible evaluation score is reached.

In this chapter, object placement ordering is introduced based on the rules,

which was predetermined in the previous work. The significance of order

placement in these methods will be explored in future work.

3.2.2 Jump Search (JS)

The intuition behind the new layout-generation algorithm is to shift one fur-

nishing object at a time into a position that adheres to the relevant layout

28

design rules. Each object begins near the center of the floor and, through it-

eratively smaller moves, reaches its final location either when a valid location

is found or when a maximum number of moves has occurred. The process

repeats until each of the selected objects has been placed in the layout.

Algorithm 1: The Jump Search Algorithm.

1 Function GenerateSampleLayout(Layout,Objects,Rules):
Input:

Layout - The initial layout
Objects - The to-be-added objects
Rules - The rules
tMAX - The number of iterations
N - The the number of moves per iteration
M - The number of orientations per move
s0 - The initial sample radius standard deviation

Output:
Layout - The initial layout with the added objects

2 Objects←ReorderByRuleTypes(Objects, Layout,Rules)
3 Orientations← GetOrientations(M)
4 foreach obj ∈ Objects do
5 Moves←GetMoves(1, Layout.Center, 1)
6 xyTop, oTop ←Moves[0], Orientations[0]
7 scoreTop ←Eval(obj, xyTop, oTop, Layout,Rules)
8 t← 0
9 s← s0

10 while t < tMAX do
11 xyPre, oPre, scorePre ← xyTop, oTop, scoreTop

12 Moves←GetMoves(N, xyTop, s)
13 foreach xy ∈Moves do
14 foreach o ∈ Orientations do
15 score←Eval(obj, xy, o, Layout,Rules)
16 if score > scoreTop then
17 xyTop, oTop, scoreTop ← xy, o, score
18 end

19 end

20 end
21 if SA == TRUE AND scoreTop > scorePre then
22 P = 1− e(scorePre−scoreTop)/(1−t/tMAX)) if

P < Random.Sample(0, 1) then
23 xyTop, oTop, scoreTop ← xyPre, oPre, scorePre

24 end

25 end
26 t← t+ 1
27 s← s0 − t ∗ s0/tMAX

28 if scoreTop == Rules.Count then
29 break
30 end

31 end
32 Layout ← PutObject(Layout, obj, xyTop, oTop)

33 end

29

The JS algorithm is shown in pseudo-code in Algorithm 1. It takes as

input the empty room (Layout), the applicable ruleset (Rules), the list of to-

be-placed furnishing objects (Objects), and the following parameters: tMAX :

the number of iterations exploring different placements before an object is

placed in its final position; N : the number of moves in a single iteration; M :

the number of orientations attempted for each object placement attempt (The

orientations are in the order of π/M Radians); and s0: the initial standard

deviation for sampling movements in the first iteration.

Looking at the rule dependencies, the process determines the order of ob-

ject types that must be placed in the room, given the existing types already in

the room (Wall/Floors/etc.) (Line 2). All possible orientations are calculated

based on the input M value (Line 3). This object type order initialization

phase is the same for all three algorithms compared in this chapter (See Sec-

tion 3.2.4).

Starting with the first object in the queue, the object is placed in the center

of the room, with a slight offset randomly generated from a normal distribution

with a mean value of 0 and standard deviation of 1m (Line 5). Then, N move

locations are sampled in each iteration, each with an X and Y move value

sampled from a normal distribution of mean = 0 and iteratively decreasing

standard deviation = s (Line 12), initially set to s0 (Line 9). If the locations

generated are outside the room floor, re-sampling occurs.

The potential object placements in each of theN moves andM orientations

and compared against each other (Lines 13-20). Because only one object moves

at a time, the layout evaluation process is only required to re-evaluate the

subset of rules that relate to the moving object, and not the full ruleset, which

contributes to the JS algorithm’s performance.

The move with the best layout score is selected for the next placement

(using the layout evaluation described earlier) (Lines 16-18). t is then increased

which reduces the next iteration move amount variation, s (Lines 26-27).

Once the object has been placed at a location with a score equal to the

maximum possible score for that object (which is equal to the number of rules

relating to that object, i.e., all rules passed) or the maximum number of moves

30

is completed (tMAX has been reached), the current object is locked into its final

location (Line 32). The next object in the queue is selected and the process

repeats until the object queue is empty.

3.2.3 Simulated Annealing (SA)

A simpler variant of the above algorithm, based on an implementation of

the well-known Simulated Annealing algorithm (Kirkpatrick et al. [95]), was

implemented as a competitor. It uses nearly the same sequence as the above,

however, rather than testing N moves (Algorithm 1, Line 12), it only attempts

one move at each iteration (taking the best of theM orientations). It evaluates

the move and if the move has a higher evaluation score, it uses the following

formula to determine the move acceptance probability (Algorithm 1, Lines

21-25):

P = 1− e(Qprevious−Qcurrent)/(1−t/tMAX)) (3.1)

As the iteration count increases, t→ tMAX , the likelihood of accepting the

move increases, while earlier on, exploration is favoured if the move does not

drastically improve the current evaluation score.

3.2.4 Placement Order

An important factor in the search methods is the placement order. Early-

placed objects greatly impact the downstream placement options, dictating

how well the final generation can score. Through the dependencies among the

various object types as captured in the design rules (the types in the rules ex-

istential clauses), a hierarchy of object types is implied. The least constrained

object type (i.e., the object type that is placed without consideration for the

placement of other object types) is at the root of the hierarchy. The object

types that depend on the root type through rules are children of the root, and

so on, until the leaves of the hierarchy that correspond to the object types

with the most dependencies to other object types that must have already been

placed. This hierarchy guides the order in which the various objects are placed

31

in the space, similar to Kan et al. [73].

Figure 3.1: Example type dependency graph for a living room. A connection
among object types by two objects both are referenced in a shared rule (the
types in a rule’s existential clauses).

Consider for example the object type hierarchy of Figure 3.1. Its root is

the wall that is already placed in the model and does not depend on any other

furnishings. Children of the wall are the shelf, the TV stand, and the plant

that are typically placed against a wall. The couch is also a child of the wall

since it is typically placed parallel to awall, but also a child of the TV stand,

since the couch must face the TV stand. According to this hierarchy, the

resulting type order is Wall, TV Stand, Couch, Plant, Side table, Coffee table,

and Armchair.

3.3 Experimental Design

To comparatively evaluate the three above algorithms, we focus on three ques-

tions of interest.

1. How long does it take each algorithm to deliver a layout of a desired

quality?

2. How does each algorithm perform in different types of rooms, with dif-

ferent functionalities, different sets of layout rules, and different types of

furnishings?

3. How does each algorithm perform at different levels of scenario density?

32

Performance and Quality Measures: To comparatively evaluate the per-

formance of the three algorithms, we run all three on our experimental room

scenarios (described in detail in Section A.1) with the same “budget” of rule

checks and we compare the quality of the solutions produced by each of the

three algorithms for the same number of checks. For this work, we adopt

the percentage of rules that the design complies with as a measure of layout

quality (described in Section 2.6.3). The intuition is that the algorithm that

produces layouts that meet all the applicable rules with the smallest number

of rule checks is best. Thus, embedded in each algorithm implementation is

a counter for the number of times a rule-evaluation check is invoked and all

algorithms are invoked with a check budget as a parameter.

Because the number of evaluation checks is dependent on the room shape

for GS, which is difficult to determine beforehand, the evaluation check budget

is calculated for the GS (which is based on the number of grid points) method

first. The parameters that result in closely matching evaluation check budget

for the JS and SA methods are then calculated. For the JS the tMAX and N

are both set to the square root of the number of location points created in

the GS grid, while for the SA method, tMAX is set to the number of location

points as N is set to 1.

3.4 Results

Figures 3.2 to 3.10 report the performance of the three algorithms on each of

the room scenarios. For density reference, Kitchen 2 adds more objects and

rules than Kitchen 1. Living Rooms 1 and 2 are L-shaped rooms while Living

Rooms 3 and 4 are Rectangular. Living Rooms 2 and 4 have the same rules

but additional objects to Living Rooms 1 and 3.

Each experiment was run 30 times for each generation method and each

rule check budget. Figure 3.11 shows some of the outputs from the JS method.

For a runtime benchmark: on an Intel(R) Core(TM) i7-7700HQ CPU @

2.80GHz processor with 16.0 GB RAM, 10 iterations with 5 moves and 4 orien-

tations for the rectangular living room scenario (14 objects total: 6 initial ob-

33

Figure 3.2: Search method comparison for Small Bathroom 1 scenario.

Figure 3.3: Search method comparison for Large Bedroom 1 scenario.

jects and 8 added furnishing objects) resulted in a compliance score of 96.78%,

required 1616 evaluation checks (not all rules checked each evaluation), and a

34

Figure 3.4: Search method comparison for Small Bedroom 2 scenario.

Figure 3.5: Search method comparison for Simple Kitchen 1 scenario.

runtime of 23.3083559 seconds.

Let us now revisit the three evaluation questions above, in light of the

35

Figure 3.6: Search method comparison for Dense Kitchen 2 scenario.

Figure 3.7: Search method comparison for Simple L-shaped Living Room 1
scenario.

experimental results.

36

Figure 3.8: Search method comparison for Dense L-shaped Living Room 2
scenario.

Figure 3.9: Search method comparison for Simple Rectangular Living Room
3 scenario.

37

Figure 3.10: Search method comparison for Dense Rectangular Living Room
4 scenario.

Q: How long does it take each algorithm to deliver a layout of a
desired quality?

The answer to this is largely dependent on the room size, type, objects, and

rules, however, our experiments show some trends for different room scenarios.

The most prominent difference between the grid-based search method (GS)

and the continuous search methods (JS and SA) is notable consistency in the

correlation between the check budget and final evaluation score. As evident

by the jagged lines, the GS method suffers from heavy reliance on the grid

spacing parameter, thus making the final evaluation less predictable and more

dependent on parameter tuning.

All three methods have a general trend of increasing the number

of evaluations increases final layout quality. The JS method’s final

layout quality is equal to or higher than both GS and SA for nearly

all evaluation budgets. The continuous search methods follow a more

predictable curve, while Grid-based methods are less predictable.

38

Figure 3.11: Rooms generated from new JS method.

Q: How does each algorithm perform in different types of rooms,
with different functionalities, different sets of layout rules, and
different types of furnishings?

The strength of the GS method is the ability to place objects directly

against a wall, as typically found in many rooms. Therefore, GS performed

comparably well in kitchens and bathrooms where nearly all objects are against

the wall but performed poorly in living rooms where objects were less wall

dependent. Conversely, SA suffers due to the lack of motion of the objects

because of the probability of rejecting potential better movements, making

39

moving towards the walls of the rooms less likely.

The grid-based method performs better for room scenarios where

objects are generally placed on the wall than when objects are spread

out and closer to the center. The opposite is true for the continuous

methods, more prominently for SA.

Q: How does each algorithm perform at different levels of sce-
nario density?

On the comparison of layout density, when more of the same objects are

added to the layout, as in the living room case, all methods perform consis-

tently poorer than their less dense counterpart, meaning density inherently

makes the search for high-quality layouts more difficult. Evidently, adding ad-

ditional objects and rules that do not overlap in the kitchen density scenario

does not have an effect on final quality, only that more check iterations are

required due to the addition of objects.

When density is increased, efficiency drops for all methods but

only when presented with more of the same objects. More objects

of different variety and different rules may not affect efficiency.

3.5 Discussion

When looking at result variance, the GS method can randomly select over tie

breaks, however, these are less frequent given the rule score quantification.

Thus, the same result (usually scoring moderately high) is often reproduced.

JS and SA, on the other hand, produce more variety in results, although some

early selections result in lower local optima. When looking at strictly the

maximum of all produced layouts from each of the 10 runs for each experiment,

one variant of the JS always produced the highest result.

One area where the JS could have been improved, and more prominently

in the SA, would have been a more intelligent sampling method. SA for in-

stance is often paired with sampling methods such as Metropolis–Hastings

(Metropolis et al. [96]), which samples from unknown sampling distributions.

In this case, sampling could be prioritized closer to higher evaluation scoring

40

locations, making the location sampling more efficient. However, the JS does

this to a minor extent by sampling nearer to the current location, which is

also the highest-scoring location. Finally, adjusting the SA to more greedily

accept the next location may have improved its results.

Overall, the JS method should be considered the stronger of the compared

algorithms as it:

1. Produces equal or better layout quality, given a reasonable check budget

2. Has minimal reliance on the input room shape and size as the only impact

is on the initial move amount, thus making the quality more predictable

based on budgetary check requirements

3. Is more flexible when more challenging layout experiments are presented

4. Gives more variation in the final layouts, as the locations explored are

more random

Some of the limitations of the JS algorithm include the fact that objects

start near the center of the room, making movement closer to walls more chal-

lenging than the GS. Making no assumptions about any object relationships

makes the solution general and fully customizable to the rules. However, in-

tuitively some objects are usually placed relative to each other, for example,

couches relative to walls or nightstands relative to beds. In its current form, JS

does not take advantage of this domain knowledge. Thus, while JS supports

generality, having some procedural placement, like “snapping” would improve

runtime in practice if applicable.

3.6 Conclusion

Automation offers the potential for significant improvements in building design

and construction. More specifically, the configuration of the layout of furnish-

ings and appliances in the available interior spaces of the building can have

a significant impact on the comfort of the occupants, as a poor arrangement

can lead to inaccessible objects, have negative ergonomic effects on occupants,

41

and generally make a space unpleasant when it could have been better utilized

otherwise. Automated interior layout generation has been a highly researched

problem over the last 10 years. However, previous algorithms suffer from two

important shortcomings. First, they tend to rely on non-intuitive and difficult-

to-explain formulation of the rules that drive the generation of the candidate

layouts, and second, they are difficult to compare against each other to analyze

their relative merits and shortcomings.

In this chapter of the thesis, we propose a novel layout-configuration algo-

rithm, Jump Search (JS), that searches through a continuous design space. JS

relies on a Domain Specific Language for rule representation and a correspond-

ing method for rule evaluation, which was first embedded in a simple grid-based

search algorithm. Relying on the “number of rule evaluations” as a metric,

we have conducted a comparative evaluation of JS against a Grid Search (GS)

algorithm and a simple Simulated Annealing (SA) search algorithm, in nine

different design scenarios of varied difficulty. Our results demonstrate that

JS outperforms both other algorithms in terms of layout quality relative to

computational density, while also exploring a bigger variety of layouts.

The contributions of this chapter are the presentation of a new continuous

search-based algorithm, JS, and the comparison of the search efficiencies of one

grid-based search (GS) and two continuous search methods, one more greedy

(JS) and the other more conservative (SA).

Potential improvements to the algorithm can be made by improving the

location sampling. The significance of object ordering and determining the

optimal placement order that yields the highest layout quality is still to be

investigated. A limitation of this study is the limited number of room scenarios

and the lack of Mechanical, Electrical, Plumbing (MEP) detail of the rooms, as

other features such as electrical and plumbing fixtures have not been included.

The creation of higher detailed room scenarios will be tested in future work.

42

Chapter 4

Rule Learning from a Synthetic
Layout Dataset

In this chapter, I describe an approach to extracting expert knowledge, in the

form of rules, from interior layout examples. In particular, the method uses

key relations among objects in the layout and learns the range of values of

those relations observations gleaned from the input examples, which I assume

represent the set of all possible rule-compliant layouts. I evaluate the quality of

the rule learning algorithm through a correlation analysis among the quality

scores assigned to layouts by the learnt rules and the expert rules used to

generate these synthetic layout examples. After testing the rule learning on

datasets from nine room scenarios (Appendix Section A.1), the findings of this

chapter indicate that the rule learning algorithm works, as there is a moderate

to high rule score correlation depending on the room scenario and the quality

of the layout rules are learnt from.

The research in this chapter has not been published, however, a manuscript

is being prepared together with the next chapter, Chapter 5.

Abstract: Building Information Modeling (BIM) has become an invaluable

tool in the planning and design of buildings, including interior spaces. Thanks

to the digitization, organization, and standardization of building components

and their information, the ability to automate building evaluations has gained

substantial interest due to the potential benefit of building designers wishing to

verify and improve their designs. Automated Code Checking (ACC) involves

43

formulating machine-readable rule code for checking software to run and report

rule results. Coding rules, however, is still a challenge for non-experts and

while Domain Specific Language (DSL)s can help, one step further would be

automatically generating rule code.

This chapter describes a novel method that learns rules from interior layout

examples. The rule learning method leverages a rule DSL, a programmable

code for ACC. We constructed a dataset of highly compliant layouts through

the automated layout generation method (described in Chapter 3) based on a

set of expert design rules. This dataset was used as input to our rule-learning

algorithm which outputs newly learnt rules. An indication of the rule learner’s

ability to create rules with similar coverage can be achieved by comparing the

expert rule scores and rule scores from the learnt rules on variable expert

rule-compliant layouts. The findings suggest that the expert and learnt rule

correlation is highest when many high expert rule quality layouts are pro-

vided. Aspects of the learner that influence the quality of the rule learner in

terms of rule correlation scores and rule counts were further analyzed with

certain parameters found to both reduce rule scores and increase rule score

correlations.

4.1 Introduction

Buildings and in particular interior spaces are constantly evolving over the

years. New room shapes, more furnishing object variety, and a generally better

awareness of accessibility and sustainability are some of the factors why designs

are ever-changing. Rules for arranging furniture are often used to communicate

best practices that result in functionally efficient spaces. However, too often

the rules are vaguely defined or difficult to transfer from one space to the next.

And due to the many objects, and thus many interdependence relationships,

it remains challenging to rigorously explore configuration alternatives. The

result is the increasingly laborious task for home designers, both professional

and amateur, of configuring novel spaces that maximize layout functionality.

Furnishing objects in particular can be large and expensive, thus, fixing design

44

mistakes can be strenuous, time-consuming, and costly.

In recent years, computers have helped in mitigating many of the chal-

lenges associated with design. Computer Aided Design (CAD) tools represent

layouts digitally to design and more accurately visualize potential layouts.

Building Information Modeling (BIM) [4] is an extension of CAD that in-

cludes specifications of building components and their relationships. With the

advancements of these technologies, CAD and BIM have become increasingly

accessible and numerous design operations can be performed automatically.

One such operation of significant value to designers is automated layout rule

checking and evaluation, which is the process of scoring a digitized layout 3D

model against a set of coded design rules [5]. A persistent challenge in auto-

mated rule checking is formulating machine-readable design rules accurately

and more easily.

In this chapter, we aim to automate the process of creating rules that can be

used in automated layout checking. We utilize rule-compliant example layout

datasets to learn relationship constraints to which all furnishing objects in the

examples adhere. The constraints are then converted to machine-readable and

executable rule code for checking a layout configuration.

The machine-readable rule code we utilize is the Rule Domain Specific

Language (RuleDSL) described in Chapter 2, Section 2.6 and in detail in

Sydora and Stroulia [1]. This allows for employing the RuleDSL supporting

workflow, including its rule editors, automated model-checking evaluation, and

automated layout generation.

The proposed rule learner approach offers (1) an increased understanding of

layout designs and identifying object-wise relationship patterns within groups

of layouts through the RuleDSL, (2) a method to evaluate other layouts’ com-

pliance with the learnt rules via the model-checking, and (3) the ability to

automatically generate new rule compliant layouts.

The contributions of this chapter are the description of a novel rule learn-

ing method and the demonstration of the rule learning methods’ quality and

effectiveness at capturing known rule information through a rule correlations

analysis. The method is further analyzed by investigating the impact of input

45

training layout count, the impact of rule limiting, and verifying the impor-

tance of the selected relations. Therefore, four questions are proposed in the

validation and analysis of the rule learning:

1. What is the rule learning quality, measured by the correlation

scores among expert and learnt rules, for each of our room

scenarios?

2. How does the amount of training layouts impact rule learning

quality?

3. How does limiting the number of rules to be learnt affect the

rule learning quality?

4. How does the target rule template impact rule learning quality?

The remainder of this chapter is structured as follows: The proposed

method for learning the rules in the RuleDSL format is outlined in Section

4.2. Section 4.3 contains the experimental setup including the synthetic lay-

out generation and rule learning experiment. The validation and analysis of

the rule learning method are described in Section 4.4. Findings are discussed

in Section 4.5 followed by conclusions, contributions, and future directions in

Section 4.6. Chapter 2, Section 2.4 provides an overview of previous work in

the realm of learning interior design knowledge from layout examples.

4.2 Rule Learning Method

The general approach of the proposed rule learning algorithm is inspired by

Concept Learning [97], a field of Machine Learning (ML) used to determine

which features from a feature set are relevant to a concept. For example, given

a concept such as rainy day and recorded instances with boolean features such

as clouds, high temperature, and high humidity, the idea is to learn which of

these features are relevant and irrelevant using many observed concept-feature

instances. Learning which features, either by their presence or absence, can

predict the concept or which have no apparent correlation to the concept.

46

Similar to Concept Learning, our approach focuses on features (in our case

pairwise relations) that are consistently present throughout the observed lay-

out examples. However, rather than using categorical features, our approach

takes advantage of the numerical nature of the relation values. Therefore, our

approach expands the relation ranges each time a new layout example is ob-

served. The output of the proposed algorithm (which is in tabular format) is

converted to the RuleDSL to utilize the RuleDSL tools including the RuleDSL

editor, automated layout checker, and automated layout generator.

The rule learning algorithm is broken up into five key steps:

1. Deciding on the target rule relations, i.e. the rule template.

2. Extracting object-pair instances for each training layout example.

3. Combining object-pair instances into type-pair rules within a training

layout.

4. Combining type-pair rules from multiple training layouts.

5. Reconstructing rules in RuleDSL format from the type-pair rules.

4.2.1 Target Rule Template

Central to rule learning are the geometric relationships among the objects

in the layout arrangement. Relation functions calculate pairwise relationship

values between two objects based on the two objects’ mesh representations,

locations, and orientations. The most basic and common relationship is the

mesh distance between two 3D objects placed in the layout.

The relations we selected for the rule learning in this chapter are based on

commonly occurring relationships based on literature and rules. The selection

of these relations dictates the expressiveness of the output learnt rules as

information that cannot be encompassed by these functions is unlikely to be

covered by the expert rules in the examples. The goal is that the selected

relations cover much of the expert rules’ information and thus will increase

the likelihood that our learnt rules correlate to the expert rules. The selection

of these relations significantly impacts the rule learning ability.

47

To provide a rough analysis of how well we selected the relations and how

important each relation is for a particular room scenario, a relation ablation

experiment is performed which we describe in Section 4.4.4.

The following are the relations we believe are most common in rules and

can broadly cover a majority of the rules:

• Distance: using the length of the shortest line between the two meshes.

• Facing : the angle between the forward direction vector of the first object

and the vector pointing to the center of the second object.

• Alignment : the angle between the forward direction vectors of two ob-

jects.

Distance and Alignment are independent of the order of the input meshes,

however, Facing is order-dependent. Therefore, we use Facing(A, B) and

Facing(B, A) as separate relations.

4.2.2 The Observations Table

Table 4.1: Corresponding observation table from the example bedroom in
Figure 4.1.

A B D(A,B) F(A,B) F(B,A) A(A,B)

Bed1 Chair1 1m 90deg 90deg 180deg
Bed1 Desk1 0.7m 90deg 90deg 0deg
Bed1 Door1 1.75m 45deg 135deg 0deg
Bed1 Wall1 1.5m 20deg 20deg 180deg
Bed1 Wall2 0m 45deg 45deg 90deg
Bed1 Wall3 0m 135deg 45deg 0deg
Bed1 Wall4 1.5m 80deg 10deg 90deg
Bed1 Window1 1m 110deg 60deg 0deg
Chair1 Desk1 0.5m 0deg 0deg 180deg
...

* D(A,B): A distance to B, F(A,B): A facing angle to B, F(B,A): B facing angle to A,
A(A,B): A alignment with B.

Once we have determined the relations of interest, an observation table is

extracted for each example layout. For a particular rule creation regarding

two object types, all relation values among all pairs of objects of the two types

are calculated. An example of an observation table used for learning rules

extracted from the example in Figure 4.1 can be seen in Table 4.1.

48

Figure 4.1: Example bedroom.

4.2.3 Forming Rules for an Example Layout

It is possible that, within one example layout, multiple objects of the same

type are present. For instance, in Figure 4.1 there are multiple walls in a room

that have different relationship values with each object. Often, rules will

indicate that only one object-pair instance relationship satisfying a constraint

is sufficient for the encompassing rule to be satisfied. A simple example is a

desk needing only one chair in front of it, as opposed to every chair. In other

rule cases though, every object of a type must satisfy the constraints, such as

every shelf must be against a wall.

The presented rule learning method addressed this by supporting the dis-

tinction between requiring all objects of the same type to satisfy the rule or

if it is sufficient for just one object of a particular type to meet the rule re-

quirement, i.e. the ALL and ANY clauses. For rules with two object types, as

with our template, there are four possible combinations of existential clauses:

49

ALL/ALL, ALL/ANY, ANY/ALL, and ANY/ANY. Importantly, an existen-

tial clause pair can result in several possible rule outcomes for one example

layout.

Algorithm 2: Algorithm for combining relations from object-pair
instances.
1 Function CombineInstances(inst1, inst2, RuleTemplate):

Input:
inst1, inst2 - Two object-pair instances that contain the relation (upper
and lower) values
RuleTemplate - The template the contains the list of relations

Output:
combinedInstance - The output combined instance with new (upper and
lower) relation values

2 combinedInstance ← {}
3 foreach relation ∈ RuleTemplate.Relations do
4 relLower = Min(inst1[relation].Lower, inst2[relation].Lower)
5 relUpper = Max(inst1[relation].Upper, inst2[relation].Upper)
6 combinedInstance[relation] ← {relLower,relUpper}
7 end
8 return combinedInstance

9 end

Algorithm 2 shows the process of combining relation values of two object-

pair instances (inst1 and inst2), i.e. rows in the example layout observation

table. For each of the relations in the input rule template (RuleTemplate), it

takes the maximum of the upper range values (Line 4) and the minimum of

the lower range values (Line 5) and sets them as the new combined instance

relation range values (Line 6). Thus, the range’s bounds are expanded as

additional object-pair instances are seen.

Algorithm 3 shows the steps for the four existential clause combinations

for two set object types. The function takes in the existential clause of the two

types (ec1and ec2) and the observation table (observationTable). The general

rule of thumb is for ALL cases, the relation instances for the same object types

are combined using the CombineInstances function in Algorithm 2, while ANY

cases result in each instance producing an additional rule. The ALL/ANY case

(Lines 3-6) uses the InstanceCombineByID function described in Algorithm 4

to determine the new rules. The InstanceCombineByID function recursively

goes through all combinations of instances where the first object IDs are differ-

50

Algorithm 3: Algorithm for learning type-pair rules from an example
layout.

1 Function LearnExampleRules(ec1, ec2, observationTable):
Input:

ec1, ec2 - The two existencial clauses of the two types
observationTable - The list of object-pair instances and relation values

Output:
Rules - The learnt rules (in tabular form)

2 Rules ← {}
3 if ec1 == “ALL” AND ec2 == “ANY” then
4 idList ← GetUniqueFirstIds(observationTable)
5 InstanceCombineByID(0, idList, observationTable, {}, Rules)
6 end
7 if ec1 == “ALL” AND ec2 == “ALL” then
8 combinedInst ← {}
9 foreach inst ∈ observationTable do

10 combinedInst ← CombineInstances(combinedInst,inst,RuleTemplate)
11 end
12 Rules.Add(combinedInstance)

13 end
14 if ec1 == “ANY” AND ec2 == “ANY” then
15 foreach inst ∈ observationTable do
16 Rules.Add(inst)
17 end

18 end
19 if ec1 == “ANY” AND ec2 == “ALL” then
20 idList ← GetUniqueFirstIds(observationTable)
21 foreach id ∈ idList do
22 combinedInst ← {}
23 idInstances ← GetInstancesWithFirstId(id,observationTable)
24 foreach inst ∈ idInstances do
25 combinedInst ←

CombineInstances(combinedInst,inst,RuleTemplate)
26 end
27 Rules.Add(combinedInst)

28 end

29 end

30 end

ent and creates a rule for each. The ALL/ALL case returns a single rule which

is the combining of all instances (Lines 7-13). The ANY/ANY case returns

each table instance as a rule (Lines 14-18). And finally, the ANY/ALL case

combines all instances where the first IDs are the same (Lines 19-29).

The outputs of the LearnExampleRules function are the type-pair rules

from a single example layout that all hold for that layout. Table 4.3 shows an

example of the rules formed from the observation table in Table 4.2.

51

Algorithm 4: Algorithm for combining instances by ID.

1 Function InstanceCombineByID(i, idList, observationTable, combinedInst,
Rules):

Input:
i - The index of the ID combining by
idList - The list of unique IDs
observationTable - The list of object-pair instances and relation values
combinedInst - Reference to the combined instance thus far
Rules - Reference to the learnt rules list

2 if i > idList.Length then
3 Rules.Add(combinedInst)
4 else
5 currentId ← idList[i]
6 currentIdInstances ←

GetInstancesWithFirstId(currentId,observationTable)
7 foreach inst ∈ currentIdInstances do
8 nextCombinedInst ←

CombineInstances(combinedInst,inst,RuleTemplate)
9 InstanceCombineByID(i+1, idList, observationTable,

nextCombinedInst, Rules)
10 end

11 end

12 end

Table 4.2: Observation table filtered for Wall and Chair object types for an
example layout (Distance relation only for simplicity).

A B Distance(A,B)
Wall1 Chair1 0.1m
Wall1 Chair2 0.3m
Wall2 Chair1 0.2m
Wall2 Chair2 0.5m

Table 4.3: Rules from Table 4.2.
Distance(A,B)

EC1 Type1 EC2 Type2 Lower Upper

ALL Wall ALL Chair 0.1m 0.5m
ANY Wall ALL Chair 0.1m 0.3m
ANY Wall ALL Chair 0.2m 0.5m
ALL Wall ANY Chair 0.1m 0.2m
ALL Wall ANY Chair 0.1m 0.5m
ALL Wall ANY Chair 0.2m 0.3m
ALL Wall ANY Chair 0.3m 0.5m
ANY Wall ANY Chair 0.1m 0.1m
ANY Wall ANY Chair 0.3m 0.3m
ANY Wall ANY Chair 0.2m 0.2m
ANY Wall ANY Chair 0.5m 0.5m

52

Algorithm 5:Algorithm for merging rules from a new example layout
with the rules learnt and combined over the previous set of example
layouts.

1 Function CombineRules(NewRules, OldRules, N):
Input:

NewRules - The newly learnt rules from the new example
OldRules - The rules learnt from the previous examples
N - The limit on the number of rules maintained in the learning

Output:
CombinedRules - The learnt rules combined from the old and new rules

2 CombinedRules ← {}
3 foreach old ∈ OldRules do
4 foreach new ∈ NewRules do
5 combined ← CombineInstances(old,new,RuleTemplate)
6 CombinedRules.Add(combined)

7 end

8 end
9 CombinedRules ← RemoveDuplicatesAndBroadRules(CombinedRules)

10 CombinedRules ← RuleReduceOptions(CombinedRules, N)

4.2.4 Combining Rules from Multiple Example Layouts

Each example layout will result in type-pair rules that are satisfied for that

layout. Combining rules from all observed training layouts generalizes the rules

over a wider range of examples. Because each layout can result in multiple

rules, each existential clause (ALL/ANY combination type-pair) rule from

an additional example layout must be combined with each rule of the same

existential clause found from the previously observed layouts. This means that

if N rules of a specific existential clause combination existed previously from

the training set and M rules of the same existential clause combination from

an additional example layout are learnt, NxM new rules will be formed for

that existential clause combination. Algorithm 5 shows the rule combining

(Lines 3-8).

Noteworthy is that all learnt rules are valid and do not conflict with each

other. Put another way, if you ran these rules over all the examples they are

trained on, all rules would return true for each layout which is a property that

will always hold for every new example shown as well. Some rules however are

arguably more interesting or meaningful than others. The more interesting

rules are those that have narrow relation ranges implying more strict object

53

type relationships. The less interesting rules are those that contain wide re-

lation ranges and are easily satisfied as they restrict placement to a lesser

effect.

A few operations can be performed to reduce the total number of rules.

This benefits when manually parsing through all output rules and reducing

computation when performing the automated model checks. The more basic

rule reduction operations include checking if all ranges of one rule are equal to

or fit within the ranges of another rule. In this case, the broader rule can be

discarded (Algorithm 5, Line 9). This is because if the first, more restricting

narrow rule is satisfied, the broader rule will always be satisfied.

Additional, more elaborate rule reduction operations, were created to fur-

ther reduce the total number of rules created that can be used (Algorithm

5, Line 10). The description and effects of these options will be explored in

Section 4.4.3.

4.2.5 RuleDSL Conversion

To utilize the RuleDSL and supporting tools, the last step is to take all the

rules learnt from the examples, which up to this point are in tabular format,

and convert them to the executable RuleDSL format. The final rule for an

object-type pair will take the following RuleDSL structure by creating relation

checks from the relationship upper and lower bounds:

{ALL/ANY} x ∈ Type1
{ALL/ANY} y ∈ Type2
(Distance(x,y) ≥ ? AND Distance(x,y) ≤ ? AND
Facing(x,y) ≥ ? AND Facing(x,y) ≤ ? AND
Facing(y,x) ≥ ? AND Facing(y,x) ≤ ? AND
Alignment(x,y) ≥ ? AND Alignment(x,y) ≤ ?)

4.3 Experimental Setup

The experimental design consists of two steps. First is the creation of synthetic

layouts used to train and evaluate the learnt rules. The other is the process

by which all possible rules are learnt from an input set of examples, as the

54

rule learning algorithm as described in Section 4.2 is for learning rules for two

specified types and existential clauses.

4.3.1 Synthetic Layout Creation

Synthetic layouts are layouts that are furnished using the automatic layout

generation which utilizes the Jump Search (JS) method described in Chapter

3 and the room scenarios described in Section A.1. JS uses expert rules in the

RuleDSL format to evaluate placement options. As a result, generated layouts

have an associated expert rule score which describes their quality in terms of

rule compliance.

The synthetic dataset can be further split into two datasets, a training set

and a testing set. Having high-quality training layouts that follow the rules

is important; if the layouts do not follow the expert rules, then attempting to

learn the expert rules is not realistic. Therefore, the training dataset of layouts

is generated automatically with very high search and evaluation budgets, such

that they score as high as possible on the expert rules. Full compliance,

however, may not be possible if the rules conflict or if there are layout space

limitations.

The testing set is generated using the same method and room scenario

inputs, however, unlike the training set, the testing set layouts’ generation

budget is variable, resulting in layouts that have a variety of expert rule scores.

Because using either the expert rules or learnt rules as constraints might bias

these results, we opted for one-third of the testing layout set to use the expert

rules, one-third using the learnt rules, and one-third using no rules and thus

random placements. This means layout scores can be compared when layouts

are on a spectrum of expert rule quality. For each room scenario, a total of 20

training layouts and 150 testing layouts were used.

4.3.2 Learning All Possible Rules

The existential clauses (ALL/ANY and Types) for a rule are manually deter-

mined ahead of time for learning a single rule. However, if learning all possible

55

Algorithm 6: Algorithm for learning all possible rules from training
layout set.

1 Function LearnAllRules(Layouts, RuleTemplate, N):
Input:

Layouts - The input example layouts
RuleTemplate - The template the contains the list of relations
N - The limit on the number of rules maintained in the learning

Output:
Rules - The learnt rules in the RuleDSL format

2 types ← GetUniqueTypes(Layouts)
3 ECTypes ← {“ALL”,“ANY”}
4 Rules ← {}
5 foreach t1,t2 ∈ types do
6 foreach ec1,ec2 ∈ ECTypes do
7 typeRules ← {}
8 foreach layout ∈ Layouts do
9 observationTable ← ExtractRelations(layout, t1, t2,

RuleTemplate)
10 layoutRules ← LearnExampleRules(ec1, ec2, observationTable)
11 typeRules ← CombineRules(layoutRules, typeRules, N)

12 end
13 convertedRules ← ConvertToRuleDSL(typeRules)
14 Rules.AddMany(convertedRules)

15 end

16 end

17 end

rules, the existential clauses are iterated over each possible clause/type com-

bination. For the experiments in the evaluation methodology in the following

sections, all possible rules are learnt.

The full rule learning process, where all rules relating to all object type

pairs, can be seen in Algorithm 6. First, all object types in the layouts are

collected (Line 2). Going through each pair of types and each pair of existential

clauses, rules are created from the layouts (Lines 5-6). Going over each layout,

an observation table is extracted in the format of Table 4.2 which is specific to

only the types t1 and t2 and the relations from the template (Line 9). Next,

the rules within the layout are learnt based on the two existential clauses (Line

10, Algorithm 3). The rules are then combined with the rules learnt thus far

from the previously observed layouts, which include the rule reduction steps

(Line 11, Algorithm 5). Once all layouts have been covered, the rules’ relations

ranges are converted into the final RuleDSL template structure and added to

56

the list of all rules to be returned by the rule learner (Line 13).

4.4 Rule Learner Evaluation

This section describes the evaluation of rule learning in terms of its quality in

producing rules that capture the information of the expert rules in the training

layouts. Then, an in-depth analysis is done on various parameters affecting the

rule learning quality: The effect of input training layout count on rule score

correlations is investigated. Then the options for rule limiting are analyzed.

Finally, the relations of interest are tested to roughly inform us how vital each

relation is for capturing rule information.

4.4.1 Rule Learning Quality

Q: What is the rule learning quality, measured by the correla-
tion scores among expert and learnt rules, for each of our room
scenarios?

When trained on layouts that strictly follow expert rules, i.e. they score

(near) perfect on expert rules, a high-quality rule learner should create learnt

rules that provide scores similar to those expert rules. If considering a layout

that scored well on the expert rules but did not on the learnt rules, or visa

versa, there must have been some aspect of that layout configuration that

was not accounted for equally in both rules, which is considered a flaw or

shortcoming of the rule learner. This motivated us to look at the correlation

among expert and learnt rule scores over various layout configurations as an

approximation for the frequency and severity of the rule learning quality flaws.

Because the output learnt rules will result in many more rules, some of which

are less meaningful (i.e. always pass due to large check ranges), a correlation

analysis is done as opposed to a direct score percentage comparison.

The challenge of evaluating the rule learner is that, given a collection of

layouts, the precise rules that the layouts follow are often implicit. Even when

explicit, there is no guarantee they accurately follow those rules if no rule

evaluation is provided. Using our synthetic layouts mitigates these challenges.

Generated layouts have evaluation criteria that guide the generation toward

57

the final designs. In the case of our synthetic training layouts, they are pre-

cisely the expert rule scores. The learnt rules share the same property; they

provide a single evaluation score for the layout configuration relative to its

rules. The formula for a layout rule score as a percentage of rules passed is

shown in Equation 2.1.

After learning the rule from the training layout set, the testing set of syn-

thetic layouts is used for the evaluation score comparison. The testing set

layouts are generated using varying expert rule quality and evaluated against

both the expert and learnt rules. Each testing layout is plotted with the X

axis representing the expert rule scores, and the Y axis the learnt rule scores.

A line of best fit is then created:

a =

∑︁n
i=1(xi − xmean) ∗ (yi − ymean)∑︁n

i=1(xi − xmean)2

b = ymean − a ∗ xmean

f(x) = a ∗ x+ b

A standard correlation metric is the R2 score:

R2 =

∑︁n
i=1(yi − f(xi))

2∑︁n
i=1(yi − ymean)2

The R2 is a metric for measuring how well a model (in this case the linear

model) fits the data. Or more generally, the R2 value describes how well the

data, in our case the two rule scores, are linearly correlated. In our case, rule

learning quality is approximated by this value; a score closer to 1 indicates a

high correlation and thus high rule learning quality while a 0 score indicates

no correlation and low rule learning quality.

Table 4.4 shows the baseline correlations for each layout scenario. The

baseline evaluation used all 20 training layouts as input and used the overlap

reduction with a rule limit of 10 after each new training example. (Details of

this will be explained in Section 4.4.3). Each room scenario presents a different

level of layout arrangement and rule compliance which in turn affects the rule

learning ability. For instance, kitchens are very challenging to learn the rules

58

Table 4.4: Baseline Correlations for All Room Scenarios
Room

Scenario
Mean Training
Expert Score

Learnt
Rules

Rule Correlation
Score Total

Bathroom 99.405 ± 0.194 118.000 ± 0.000 0.867 ± 0.021
Bedroom 1 97.398 ± 0.175 109.800 ± 1.796 0.753 ± 0.022
Bedroom 2 99.744 ± 0.075 138.400 ± 0.784 0.749 ± 0.028
Kitchen 1 94.418 ± 0.171 139.000 ± 1.640 0.492 ± 0.053
Kitchen 2 94.612 ± 0.217 209.000 ± 1.640 0.410 ± 0.040

Living Room 1 97.382 ± 0.379 254.200 ± 2.867 0.487 ± 0.031
Living Room 2 95.820 ± 0.226 314.400 ± 0.999 0.614 ± 0.035
Living Room 3 98.965 ± 0.142 169.000 ± 4.204 0.812 ± 0.011
Living Room 4 97.513 ± 0.261 228.600 ± 3.539 0.867 ± 0.018

with low correlation values, however, they also have the lowest mean training

layout expert rule scores making them the least compliant with the rules.

There is a general trend that the more rule-compliant the training samples,

the higher the rule-learning quality; a small dip in expert rule compliance

results in a significant dip in rule-learning quality.

Figure 4.2: Correlations of layout scores from expert and learn rules on a
testing set of layouts. Each point represents a testing layout.

To give a depiction of one baseline correlation evaluation, the correlation

plot of Living Room 3 can be seen in Figure 4.2. The training layouts scored

an expert rule compliance score of 98.856, meaning they followed the rules

59

well. The correlation is moderate to high with an R2 of 0.7984, indicating a

moderately strong correlation exists. The positive trend shows higher input

scores result in higher learnt scores, as expected. The learnt rules scores are

very high in general (from 91.685% to 99.689%) because many rules are easy

to follow and thus they could potentially be discarded or ignored. These could

be rules with large range values or are likely related to pairs of static layout

objects (Walls, Doors, and Floors).

The evaluation suggests that the proposed rule learning is capable

of learning highly correlated rules, however, the extent to which

the learnt rules are correlated depends on the scenario and to a

considerable extent the training layout quality.

4.4.2 Input Training Layout Count

Q: How does the amount of training layouts impact rule learning
quality?

This question looks at how many layouts are required to reach a certain

level of rule learning quality. In theory, when more training layouts are con-

tinued to be observed, the rule learner will plateau in the information it has

seen as presumably all possible variations of the rules will be observed. Our

question here is to roughly identify how many training layouts to provide be-

fore each new layout no longer adds value. Naturally, this is dependent on

how variable a layout generator you are using.

Table 4.5: Adjusting Training Input Count For Living Room 3

Training
Layout Count

Mean Training
Expert Score

Learnt Rules
Rule Correlation

Score Total

1 99.706 ± 0.046 225.600 ± 0.701 0.420 ± 0.019
3 99.621 ± 0.049 214.800 ± 2.902 0.589 ± 0.026
5 99.544 ± 0.053 197.600 ± 7.654 0.686 ± 0.029
10 99.358 ± 0.087 177.200 ± 3.735 0.768 ± 0.021
20 98.856 ± 0.306 171.400 ± 3.661 0.818 ± 0.010

Table 4.5 shows the results of increasing the number of training layouts.

When selecting the training layouts, the layouts were first ordered and then

60

Figure 4.3: Trend of correlation scores and rule counts as the number of input
layouts increases for Living Room 3.

the top N layouts were used. Therefore, additional training samples will al-

ways bring down the average expert rule score, which is recorded. As the

number of training layouts increases two effects happen which can be seen in

Figure 4.3. First, the number of rules significantly decreases. And second, the

rule correlation does show a steady increase, even as average training scores

decrease slightly.

The results verify that as the number of training layouts in-

creases, the rule learning quality increases and the rule counts de-

crease but with diminishing returns.

4.4.3 Rule Reduction

Q: How does limiting the number of rules to be learnt affect the
rule learning quality?

As outlined in Section 4.2, when the next example layout is presented, rules

are first created for that new layout, and then combined with all learnt rules

from the previous training layouts. Because of this, there is the possibility

that the number of rules grow exponentially if no new rules are duplicates or

broad rules of the existing rules. While it appears inefficient to combine all

61

training layout rules exhaustively, in practice the relations are specific enough

that the rules remain tightly bound and many broad rules are discarded early.

However, even then, as with the case of lots of visually diverse layouts, many

rules can potentially still be created. While this is not necessarily a negative

effect in terms of rule quality, it does add more computation when computing

the learnt rule scores. It also results in much more rule parsing when trying

to understand the layout relationships and can make modification difficult.

Rule-limiting options can be introduced to mitigate this; the trade-off being

that they can potentially affect rule learning quality in terms of correlation

scores.

The first rule-limiting option is a check that can be performed if the range

bounds of the two observed rules overlap. If they do, the overlapping bounds

can be saved as a new rule and the two overlapping rules can be discarded, as

they are now broader than the new overlapping rule. This is optional as now

two separate rules that could be satisfied by separate objects are forced to be

combined which could potentially affect the rule learn quality.

The other rule-limiting option is to keep only the tightest bounding rule

for each type and clause (ALL/ANY) pair. In general, a rule with tighter

bounds implies that the object type-pair has more strict relationships than if

rules had more broad ranges. In this option, all relation ranges (upper minus

lower) are summed together to create a rule ranking for each type and clause

pair. A note here is that all distance units are in meters and degrees are in

radians, giving both 1 meter and 1 radian equal weight, making it only an

approximate ranking. This ranking followed by capping the rules can either

be performed during the learning process, only at the end once all rules have

been learnt, or a combination of the two.

The rule-limiting options can affect the rule learning quality because rules

are removed in favour of smaller rules. In rare cases, the larger ones could

downstream lead to smaller ranges than an early small range that is forced

to expand later. Therefore, the results with the settings both on and off are

compared to highlight their impact on both learning quality and output rule

count.

62

Table 4.6: Rule Reduce Method Comparison for Living Room 3

Reduce With
Overlap

Keep Only Best
Rule at End

Rule
Cap

Learnt
Rules

Rule Correlation
Score Total

FALSE FALSE 100 1868.200 ± 28.166 0.606 ± 0.017
TRUE FALSE 100 230.200 ± 04.163 0.720 ± 0.012

FALSE FALSE 100 1868.200 ± 28.166 0.606 ± 0.017
FALSE TRUE 100 134.800 ± 00.351 0.831 ± 0.017

FALSE FALSE 1 134.800 ± 00.351 0.838 ± 0.009
FALSE FALSE 10 435.800 ± 13.996 0.725 ± 0.013
FALSE FALSE 100 1868.200 ± 28.166 0.606 ± 0.017

Table 4.6 shows the results of the rule-limiting options. In addition to

reducing the number of rules substantially, each option appears to improve

the rule correlation. The most likely reason for this is because the broad rules

that are kept will always pass making the correlation worse than if they are

removed.

From the tests, we see that the rule reduction methods can sig-

nificantly reduce the final rule count and improve the correlation

scores.

4.4.4 Initial Template Relation Ablation

Q: How does the target rule template impact rule learning qual-
ity?

The relation checks in the template for the rule learner were selected based

on the relation functions deemed likely to be relevant based on frequency in

research and literature. To individually test the relevance of the four key

relations (Distance(A,B), Facing(A,B), Facing(B,A), and Alignment(A,B)),

the rule learning was performed with each of the relations functions removed.

An expected result is the rule quality might differ when certain relations are

removed; a decrease in the correlation would indicate the removed relation

was relevant. An unaffected correlation would indicate that the relation check

could be removed to save computation.

Table 4.7 shows the results of removing one of the relations for Living

Room 3. The correlation value decreases most significantly when facing is

63

Table 4.7: Rule Template Relation Comparison

Relations Learnt Rules
Rule Correlation

Score Total

D, FAB , FBA, A 171.400 ± 3.661 0.818 ± 0.010
FAB , FBA, A 189.000 ± 2.147 0.718 ± 0.018

D, A 176.000 ± 2.479 0.638 ± 0.026
D, FAB , FBA 175.400 ± 2.965 0.789 ± 0.008

* D: Distance, FAB : A Facing B, FBA: B Facing A, A: Alignment

removed, then distance, and alignment only slightly. This implies that in

order of relation importance of living room arrangement are facing, distance,

and alignment. Therefore, to save computation, alignment could be removed

for the living room scenarios.

The effect of removing relations on rule learning quality gives

insight into which relation functions are more important for that

particular room scenario.

4.5 Discussion

Overall the results of the correlation analysis show that the proposed rule

learning algorithm can capture a significant amount of information from the

expert rules. Put another way, the algorithm can learn a collection of rules

that collectively share the same rule intention as the expert rules that guided

the training layouts. From the results, it is evident that the ability of the rule

learner, and thus the quality of the learnt rules, is highly dependent on the

quality of the training layouts. This intuitively makes sense since it is easier

to learn rules from layouts that follow the rules, as opposed to trying to learn

rules from layouts that only vaguely follow the rules.

We hypothesized that rule learning quality can be affected by the number

of input training layouts. To test this, we increased the number of training lay-

outs which increases the likelihood of diverse layouts. In our experiments, we

found that providing more training layouts (of high expert-rule compliance),

results in increased learning quality. The interpretation being more diverse

positive examples of the rules improves rule learning.

64

An issue with the rule learning algorithm is that a potentially large num-

ber of rules, all being valid, are output. This can make checking against

the rules more computationally expensive and more time-consuming to parse

through. We analyzed the effects of potential rule-reducing methods. For

all rule-reducing options, we found the final rule counts are reduced signifi-

cantly. Perhaps somewhat surprising is that the rule correlations significantly

improve as well. The most likely explanation is that when the broad rules are

discarded, the more meaningful rules that better capture the interesting rela-

tions are isolated. This suggests that not only does the rule reduction reduce

rules but also it should be employed to improve the rule correlations.

Lastly, we experimented with the effect of removing individual relations

from the target rule template. This was done by removing one relation and

calculating the score without that relation in the template. The results show

that different room scenarios are dependent on different relations being present

or not. It is naturally safest to include all relations, however, removing a

relation that is likely to be less influential for capturing the rules in that room

scenario can reduce rule computation when checking the rule score.

4.6 Conclusion

This research aims to make positive strides toward an understandable and

user-friendly rule-code creation process. The rule learning algorithm is out-

lined and its quality is demonstrated through in-depth analysis and experimen-

tation. Using the proposed algorithm, rules can be learnt from relatively few

compliant examples which in turn can be used for design evaluations that can

be performed more quickly and thus more frequently to approximately verify

compliance. This will in turn increase automated code compliance checking

adoption leading to more well-designed layouts.

Through the work presented in this chapter, our contributions are as fol-

lows:

1. A novel algorithm for automated rule learning by expanding type-pair

relation ranges. The algorithm learns rules that are interpreted into the

65

RuleDSL, supporting the use of its automated checking and layout gen-

eration. The rule learning algorithm has been evaluated via a correlation

analysis among expert and learnt rule layout scores. The algorithm is

general having been tested and evaluated on a variety of room scenarios.

Rule learning parameters have been analyzed that affect the rule learn-

ing quality, can reduce the learnt rule count, and inform specific relation

importance.

2. A new synthetic layout dataset of rule-compliant training layouts with

rules and associated compliance scores.

4.6.1 Limitations

We acknowledge a bias for the learnt rules matching the expert rules closely,

given that both are in the RuleDSL format and have similar relation functions

and structure. The evaluation method could, however, be used to correlate the

learnt RuleDSL rule scores with any expert layout evaluation format, provided

the other expert evaluation code also returns a single evaluation score.

Second, kitchens performed very poorly in all our experiments. This is

mainly due to the design technique used, where cabinets are individual ob-

jects moved around as furniture. In practice, kitchen appliances are placed

based on electrical and plumbing fixtures with cabinets constructed around

the appliance locations. Thus, we believe the cabinet placement should be

automated using a more procedural placement after appliance placement, as

opposed to using a placement search as we did for these experiments.

4.6.2 Future work

An interesting direction would be exploring ways to iteratively build this

template (semi-)automatically, including the logical expression and existen-

tial clauses. This would address the fact that the output rules all follow the

same template and that that template is not as expressive as the rule language.

Fine-tuning the rule learning method was also left to future work as this

would be user-dependent on what object types and rules they are interested in

66

learning. For this paper, all possible rules were found, regardless of whether

the objects were static in the training layouts or not. Simply removing rules

where all rule objects type that have no location change from layout to layout

would reduce the total number of rules significantly. Further rule reduction

could also be achieved by removing ALL/ANY rule combinations that are less

meaningful than other combinations for the same object type rules, especially

in the common case where a type pair only contains a single instance.

67

Chapter 5

Rule Learning from
User-Generated Example
Layouts

In the previous chapter, synthetic layouts were used to evaluate the quality of

the rule learning. In particular, rule learning was evaluated on its ability to

capture rule knowledge from layouts that were known to follow a particular

set of rules. This study examines the case when input layouts do not explicitly

follow rules but rather have a level of perceived quality. Because expert knowl-

edge is not known, the comparison is made between the perceived quality of

the layouts that went into the rule learning and the perceived quality of lay-

outs generated using the learnt rules. The contribution of this chapter is a case

study on the effectiveness of the rule learning algorithm described in Chap-

ter 4, Section 4.2 assessing its ability to capture and recreate user-perceived

quality in layouts.

5.1 Introduction

Non-experts design their layouts based on perceived quality, or the perceived

ability of the layout configuration to fulfil tasks. Plausibility, or perceived

quality, refers to the apparent functional validity of a layout, and by association

its object relationships. Perceived quality is difficult to learn because it is

subjective to the user and how they envision the space being used even if the

configuration is less efficient at performing the envisioned room functions or

68

tasks.

In the majority of related Data-Driven Layout Synthesis (DDLS) research,

perceived quality, or the perceived ability of the space to fulfil occupant needs,

is the benchmark to which their methods are assessed. The reason for this

is that the layouts in the most common datasets are created by human de-

signers and there is no enforcement on the layouts created, meaning no rules

are strictly followed or measured for that matter. Simply put, DDLS often

assumes that the layouts learnt from are perceived as good and the goal of

these methods is to learn new layouts that are also perceived as good.

This chapter looks at how well our rule-learning algorithm, described in

Chapter 4, performs when the input layouts do not follow any particular rules

but have some degree of perceived quality because they were created by people.

The learnt rules from the user-created training layouts are used to guide the

generation of new layouts, or learnt-rule generated layouts. The perceived

quality of the input user-created training layouts and learnt-rule layouts is

determined by way of a layout perception scoring survey. This chapter assumes

that the generative designer can generate layouts that score high on the learnt

rules which is backed by the results of the automated layout comparison finding

in Chapter 3.

The chapter is organized as follows: First, the user layout collection process

is described in Section 5.2 with a brief analysis of the layout creation data.

Section 5.3 describes the survey for collecting the perceived quality scores of all

layouts created. The results of the survey are presented in Section 5.4 followed

by the conclusion in Section 5.5.

5.2 User-Created Layout Collection

To test and evaluate our proposed rule learner’s ability to learn and recreate

perceived quality, a dataset of layouts was collected1. For the collection of

perceived quality layouts, participants were recruited using the university-

1This research received research ethics approval from the University of Alberta Research
Ethics Board, Project Name “Interior Design Layout Data Collection and Evaluation”, No.
Pro00124859, February 28, 2024.

69

Figure 5.1: Layout collection User Interface (UI)

wide weekly email postings. The only exclusion criterion was age-related;

participants were required to be over the age of 18. Participants were invited

for one 1 hour in-person session and received a $15 gift card for participating.

In the layout editor, they were shown an initial empty room and various

furnishing objects on the right side of the room in random order as seen in

Figure 5.1. Their task was to place all furnishing objects in the available space

to complete the layout; the layout could not be submitted until all objects were

placed. Each move action was recorded, including the action time beginning

from when they opened the scenario, the Unique Identifier (ID) of the object

moved, its object type, its new location, and its new orientation.

Participants were given all nine room scenarios (described in Section A.1)

to complete in random order. They were encouraged to do one as a test to

understand the controls, i.e. open one scenario, and test out the controls

without submitting this test scenario. During the session, they were asked to

create as many layouts as they could in the session time.

Each layout in the dataset contained two files: (1) The 3D layout file

containing the geometry of each object as well as the object specifications such

as unique ID and type. (2) A metadata file with a designer score which was a

self-evaluation of the expertise level of the layout creator, an action sequence

70

list, and a compiled list of object relations from the verbal descriptions.

20 participants were recruited for the layout collection. Data from two

participants were excluded after taking over 10 minutes to complete at least

one layout, with one of the two participants unable to complete all 9 layouts

in the allotted session time. The remaining 18 participants created one of each

of the 9 room scenarios for a total of 162 layouts.

Figure 5.2: Room design difficulty approximation based on average comparison
of design durations normalized by each participant.

An interesting piece of information that our dataset provided that is not

available in other layout datasets is the sequence of actions taken. This pro-

vided insight into the degree of difficulty a room scenario was relative to the

other scenarios for an individual participant. One observation was that some

participants did many moves in short periods, i.e. lots of minor edits, while

others did few but longer, thought-out moves. Therefore, action times were

considered more meaningful than the number of moves. To compare scenario

difficulty, each participant’s layout data was considered individually and the

total creation time for each layout was normalized among their created layouts.

This meant that a time of 0 was given to the layout that took that participant

the fastest to create, and a time of 1 was given to the layout that took them

the longest, with all other layout times being a time relative to the two. Then

71

all normalized creation times were averaged over all participants, the results

of which can be seen in Figure 5.2.

Evidently, the bedroom scenarios were the fastest to create, followed by the

bathroom, kitchens and the “easy” living room, followed by the “challenging”

living rooms. The challenging living rooms were living rooms that had either

more objects (higher density), were L-shaped, or both (Living Room 2). As

anticipated, difficulty was very closely correlated to the number of objects. A

note here is that it is likely that some objects were not as easy to identify or

understand how they operated. This was particularly evident with the shower

in the bathroom scenario as some participants were unclear about where the

access side of the shower was.

5.2.1 Learnt Layout Generation

The process of creating the learnt layouts consits of two steps. First, rules

are learnt by passing the user-created layouts into the rule learning method.

In our experiments, learnt rules could have either 2, 5, or all of the 18 user-

created layouts used as input. This enabled investigation of the effect of the

input layout count on the ability of rule learning to capture perceived quality.

Next, layouts were generated using the Jump Search (JS) method described

in Chapter 3. Layouts could either use learnt rules as input, no rules (random),

or expert rules from the room scenario. For the learnt rule layouts, rather than

using the placement order described in Section 3.2.4, the placement order is

created based on the average observed object type placements from the training

layouts. The reason for this is twofold. For one, the placement order is recorded

along with each layout. Second, the number of learnt rules is inconsistent

making the dependency order less meaningful. All generated layouts were

given a high search iteration budget such that layouts in terms of their input

rule quality were maximal.

72

Figure 5.3: Survey website screenshot.

5.3 Perceived Quality Evaluation Survey

Perceived quality can vary from person to person. Someone with extensive

knowledge of interior design might be able to identify a layout that functions

better than another while others may not be able to explain exactly why a

particular layout is good or bad. It is also possible that a design error can

be deemed more significant to one person than to another who may consider

it only a minor flaw. To get an approximate numerical representation of how

good a layout looks i.e. to evaluate the perceived quality of the layout, a

survey was created where participants evaluate a layout’s quality on a scale

from 1 (a poor design) to 5 (an excellent design)2.

Survey participants were recruited using the University of Alberta university-

wide weekly email postings and the Department of Computing Science Grad-

uate Student Slack channel. Potential survey participants self-identified and

registered in the survey through the survey website, linked in the recruitment

post. A complete survey was expected to take no longer than 30 minutes,

assuming they spend 10 to 15 seconds per layout, and participants were able

2This research received research ethics approval from the University of Alberta Research
Ethics Board, Project Name “Interior Design Layout Data Collection and Evaluation”, No.
Pro00124859, February 28, 2024.

73

to exit and return to the survey at any time. Participants who have created

layouts as part of the layout collection portion of the study were excluded

from the layout evaluation survey portion of the study, although we could not

enforce this given the anonymous nature of the survey. As an incentive to

improve participant recruitment, we offered the option to enter a draw for one

of three $50 gift cards.

To manage the number of models shown to the users, the survey contained

only five room scenarios of varying difficulty: Bedroom 1, Bathroom, Kitchen

2, Living Room 2 (Hard), and Living Room 3 (Easy). The total number

of layouts compared was 215: 5 room scenarios each with 18 user-created, 5

random, 5 expert-rule, and 5 learnt of each 2-, 5- and 18-learnt-rule layouts.

The survey required participants to score 100 layouts of the possible 215

layouts to fully participate. Survey participants were each asked to score

layouts one at a time based on perceived quality on a scale from 1 (a poor

design) to 5 (an excellent design); the survey UI can be seen in Figure 5.3.

Participants would not see the same layout twice and duplicates were not

shown but rather given the same score (although there was only 1 duplicate

layout). To evenly distribute the layouts, such that all layouts received a

roughly equal number of evaluations, the number of times a layout was eval-

uated was recorded. When the next layout to evaluate was “fetched”, the

layouts that that user had not evaluated yet were given a probability to be

selected based on their previous evaluation frequency from all participants.

This meant a layout that the user had not seen and had few total evaluations

was given a very high probability of being shown next. The probabilities were

given a soft minimum or:

p(Layout) =
e−l∑︁k
i=1 e

−li

Where l is the number of times the layout has been scored by all participants

and k is the number of layouts not evaluated by the participant.

74

Figure 5.4: Results of the layout evaluation survey.

5.4 Survey Results

A total of 153 participants registered for the survey. 120 of those fully com-

pleted the survey and all participants had score average variance values greater

than 0.1 meaning they did not give the same score to all layouts. The minimum

total number of participant scores received by a layout was 56.

Figure 5.4 shows the average scores for each of the room scenario layouts

grouped by the different creation methods. User layouts scored the highest,

consistently above 3.0 on average, while unsurprisingly, random layouts scored

below 1.5. Expert-rule-created layouts scored moderately well for bathrooms,

bedrooms, and easy living rooms, while hard living rooms and kitchens scored

low, the latter significantly low. Layouts that were created learning from two

layouts performed well for all scenarios except the kitchen scenario. Learning

from 5 and 18 layouts had moderate performance for bathrooms, bedrooms,

and easy living rooms, while hard living rooms and kitchens again scored low.

5.5 Conclusion

This study provided insight into the ability of the rule learning algorithm to

transfer perceived quality from the input user-created layouts to the output

learnt-rule generated layouts. From these results, we can deduce that in terms

of perceived quality, the rule learning performance is stronger for the easier

75

room scenarios and when fewer training layouts are provided.

While we showed in Chapter 4 that the rule learner is capable of learning

rules that correlate with the expert rules that guided the creation of its train-

ing layouts, the rule learning ability with non-rule-guided perceived-quality

training layouts was unclear. To test this, we trained with layouts that had

a high level of perceived quality, because they were created by participants,

and ran them through the rule learner. Then generated layouts based on the

output learnt rules. This was an interesting case as unlike before, the rules of

the layouts are unknown or more importantly do not explicitly follow a guid-

ing layout ruleset because participants were given free creative range. The

test was to see if the rule learner and automated layout generator could create

layouts of equally high perceived quality as the input training layouts.

Through a survey of layout perceived quality, our findings suggest that

for certain scenarios, layouts of high perceived quality can be created when a

few training layouts are provided. More user-created training layouts reduce

the learnt-rule layouts’ perceived quality. At first glance, this may appear

counter to the correlation experiment which shows that more training layouts

improve performance, however, the user-created layouts did not concretely

follow any rulesets. The difference between the two experiments is that there

are fewer (or possibly no) patterns in the user-created training layouts, which

is more pronounced as the training count increases. Conversely, the expert-rule

training layouts all follow the same expert rules and thus contain some intrinsic

design patterns which are better captured as the training count increases.

This case study not only evaluates the rule learning algorithm’s ability to

capture perceived quality but also gives some insight into the variability of

user-created layouts and how the perceived quality of a layout differs from

person to person.

In addition to the algorithm limitations in Chapter 4, a limitation of this

study is that the participants who created the layouts did not self-identify

as experts, i.e. they all rated their expertise in interior design at a score

of 3 or lower out of 5. Therefore, the quality of the user-generated layouts

may have been higher had we recruited interior designers. It is possible that

76

experts would have followed more similar guidelines and thus we could have

potentially gotten higher quality learnt layouts as well. The quality of the

layouts was also not known at the time when the layouts were input into the

rule learner, as the quality survey was only once all layouts were collected, both

user and computer-generated. A better approach may have been to first collect

the layouts, then score the layouts through the survey, then use the top-scored

layouts only and eliminate layouts with lower perceived quality. Having higher

perceived quality layouts as input may have also resulted in higher perceived

quality layouts being learnt. Finally, we will implement and compare DDLS

algorithms to see how our algorithm compares to state-of-the-art methods on

different datasets.

77

Chapter 6

BIM-kit: The BIM Reasoning
Toolkit

In this chapter, I describe BIM-kit, our in-house toolkit for developing rea-

soning software applications. This project was built out of the necessity for a

more easy-to-use and interoperable set of tools and libraries for building and

testing the research in this thesis. The core of BIM-kit is the lightweight BIM

data model. It contains few components yet is expressive enough to perform

the reasoning tasks I have developed and tested it on. In this chapter, I de-

scribe the BIM-kit data model and the reasoning use cases for which it has

been developed. I anticipate BIM-kit will continue to be an invaluable toolkit

for continued development and testing of future research and application.

This chapter contains the work presented in the conference publication:

Christoph Sydora and Eleni Stroulia, “BIM-kit: An Extendible Toolkit for

Reasoning about Building Information Models,” In Proceedings of European

Conference on Computing in Construction (EC3), 2021. [3]

Abstract: Since 2010, research on cloud-based Building Information Mod-

eling (BIM) has been receiving increased attention, motivated by the need

to increase productivity through interoperability in the construction industry.

To date, Industry Foundation Classes (IFC) is the de-facto standard for data

exchange among tools in this domain. However, IFC is too large and not

sufficiently specific to effectively support the management of a single building

model by multiple tools. This paper proposes BIM-kit, a collaborative BIM

78

platform based on a simple, modular data schema. In this research, we demon-

strate how multiple task-specific tools can be used collectively and efficiently

in a shared cloud-based BIM environment to support a variety of use cases,

across the overall building-design activity.

6.1 Introduction

The construction industry is increasingly being digitized and a variety of tools

are being developed to support design-and-construction activities, from build-

ing design, materials procurement, construction project management, inte-

rior design, and building usage simulation. Collectively, these tools and the

process of constructing digital building models are known today as Building

Information Modeling (BIM). Towards enabling the interoperability of these

BIM tools, the industry developed the Industry Foundation Classes (IFC) [94]

interchange format.

IFC is a structured textual format that supports the representation of a

BIM model, i.e., most information about a building, including its structural

elements, i.e., walls, floors, doors etc., their relations, such as adjacency for

example, and their geometries. An essential first step towards interoperability,

IFC suffers from a number of shortcomings. First, the complexity of the in-

formation required by the potentially many building-construction tools makes

the IFC schema quite large. In IFC2x3 (2006), there are 653 entities and 327

types (117 defined types, 164 enumeration types, and 46 select types). By

2015, when IFC4 [98] was released, the numbers had grown to 766 entities and

391 types [8]. In effect, the IFC representation of a building is a quite verbose

textual representation of everything that a tool knows about the building at a

specific point in time. Because of the size and complexity of the IFC schema,

Model View Definition (MVD)s were created to filter the schema into subsets

of types and entities relevant to different activities. As a result, even the tools

that import and export IFC models are unlikely to understand and use all

their elements; instead, they only work with the partial subset of IFC data

that is covered by their domain-specific MVD, possibly causing ambiguities

79

and inconsistencies in the overall model. Finally, large as the IFC may be, it

cannot include all the information required by all the tools that may consume

it, since the level of detail required by each tool for each IFC element depends

on the tool functionality. As a result, each tool tends to add to it additional

proprietary information that is not meaningful to, and gets ignored by, other

tools.

As long as one uses IFC as an archival representation of the work-product

of a tool, these shortcomings are not particularly problematic. They become

much more pronounced, however, when one considers the opportunity of a

number of users working on different aspects of a building on their own pre-

ferred tools, as envisioned, for example, by cloud-based BIM [99]. Current

solutions offer shared repositories of IFC building models and a set of Ap-

plication Programmable Interface (API)s through which third-party tools can

download the most recent state of the model or upload their modifications to

it. As we discussed above, the inconsistencies and ambiguities that each tool

introduces as they modify their own MVD-specific model subsets make this

visionary workflow practically impossible.

A number of recent publications, which we discuss in detail in the next

section, recognize the shortcomings of IFC’s one-(big)-size-fits-all approach.

In this Chapter, we describe BIM-kit1, our research collaborative platform

that relies on a different type of model sharing: instead of requiring that

each tool exports and consumes a complete IFC model, the shared BIM-kit

repository is organized around small cohesive elements, cross-referenced with

each other. At the core of this organization are a set of well-defined basic

geometry properties and relations, applicable to an extendible hierarchy of

object types.

As we will demonstrate, this approach supports commonly sought after

use cases of cloud-based BIM, such as model-checking applications, building

simulation, viewing and editing applications, and automated design, that are

at best challenging to achieve using the standard practice of IFC-centric cloud

repositories. In fact, there is no demonstration of IFC seamlessly supporting

1BIM-kit code can be found at: https://github.com/csydora/BIMkit

80

https://github.com/csydora/BIMkit

all these tasks. Therefore, BIM-kit is targeted towards both designers that

wish to utilize multiple automated cloud-based BIM services, and the devel-

opers of BIM services such that standardized and comprehensive models are

maintained.

The BIM-kit repository is implemented in MongoDB, a document-centric

NoSQL database that naturally supports this kind of representation. To ensure

the consistent manipulation of the repository objects, BIM-kit implements a

number of APIs to ensure that the objects are correctly updated by the tools

integrated with it.

The key elements of the BIM-kit repository are the building models, a

catalogue of objects which are referenced in the building models, a list of

properties and relations, and a taxonomy of object types. To date, BIM-

kit integrates six different tools, all of which exchange data with the central

repository. Some of them support users to visually experience and manipulate

the models and others implement completely automated model-manipulation

services. At a high level, the currently available BIM-kit tools are the following:

1. The Building Model Editor, implemented in the Unity Game Engine, en-

ables users to select items from a catalogue of available and pre-designed

objects and place them in the building model.

2. The Rules Management Service manages a design-rules repository, which

stores building codes in a structured format, such that they can be in-

terpreted and executed on a building model.

3. Three Rule Editors, each of which enables users to create and modify

design rules and to store them in the Rules Management Service. Each

editor offers a different user experience allowing end users to use the

editor that best suits their abilities or preferences.

4. A Rule Learning Service which learns and produces rules from an exam-

ple layout dataset (see Chapter 4).

5. The Model Checking Service takes as input a set of building code rules

from the Rules Management Service and the building model from the

81

BIM-kit repository and returns as output a set of references to model

elements that relate to the code rules.

6. The Generative Design Service takes the functionality of the Model

Checking Service one step further: using a set of rules from the Rules

Management Service and an initially empty building design from the

central BIM-kit repository, it returns a model that includes a set of de-

sired objects, placed in a manner that respects all relevant rules. The

service offers three algorithms, Jump Search (JS), Grid Search (GS), and

Simulated Annealing (SA), which have varying degrees of layout search

to rule quality efficiency trade-offs (see Chapter 3).

7. Finally, the Model Occupancy Simulator takes as input a building model,

and given a configuration of occupants and their access to the building

spaces, it simulates the occupants’ activities in the building and returns

a set of interesting usage indicators.

The objective of this research is to describe a cloud-based BIM solution

that supports a number of use cases, which include automated design and its

supporting model evaluations. We argue that this work makes the following

two contributions to the state-of-the-art. First, it puts forward a well-defined,

extendible BIM model; the BIM-kit model is compatible with IFC, in that

it can import a complete IFC model and create a corresponding set cross-

referenced objects. At the same time, because the model consists of a number

of distinct objects that are manipulated through well-defined APIs, the model

can be more easily shared across different tools. The repository design enables

the extension of the model with additional objects, all of which are supported

by a core set of geometrical definitions. Second, it demonstrates the useful-

ness of the above model through the implementation of a variety of interactive

and automated tools that, together, cover a wide range of activities that rea-

son about building models. We envision BIM-kit will be a valuable research

testbed for building design applications with reduced training overhead.

The remainder of this chapter is organized as follows. Section 6.2 outlines

the BIM-kit data model, storage, and access APIs. Following this description,

82

the tools currently available on BIM-kit, their functionalities and their imple-

mentation status are reviewed in Section 6.3. In Section 6.4 we elaborate on

our experiments to date with these tools, and Section 6.5 concludes with a

summary of the lessons learned through the BIM-kit development process and

our plans for future development.

Chapter 2 Section 2.5 reviews the related work and highlights the advan-

tages of BIM-kit relative to similar efforts.

6.2 BIM-kit Data Model & Repository

6.2.1 Data Model

Figure 6.1: BIM-kit client-side data model.

BIM-kit data is stored in MongoDB as document classes, in BSON, a

format similar to JSON. The MongoDB schema contains five core element

83

classes, namely Model, Object, Material, Type, and User. Client applications

“see” the client-side schema, diagrammatically depicted in Figure 6.1.

The Model class is the root of the building model, identified by a unique

ID and a name. It contains two types of objects, which are the items inside

a building: CatalogueObjects and ModelObjects. On the client side, both will

appear to be the same, however, CatalogueObjects in the MongoDB Model are

merely references to the elements in the MongoDB object catalogue. Thus, on

the client side CatalogueObjects contain the additional CatalogueID field, but

when stored in the MongoDB Model, only contain information about where

they should be placed in the space, i.e., (Location and Orientation). Mode-

lObjects, on the other hand, are objects that cannot be found in the catalogue,

either because they have been constructed for the specific building, or because

they do not have a fixed geometry but rather one that depends on the geometry

of other objects. These would generally include Walls, Floors, and Ceilings,

but can also include what we define as Virtual Objects such as Rooms/Spaces,

Paths, and Floor Levels. For this reason, ModelObjects must store the actual

geometrical shape representations in both client-side and the MongoDB Model

as a list of Components along with object Type. The Model, CatalogueObjects,

and ModelObjects all have a Properties collection associated with them.

MongoDB catalogue objects are independent of specific building Models ;

their internal structure is similar to that of the custom ModelObjects since

they describe a geometrical shape, basic geometrical properties, and the ob-

ject’s Type. However, each MongoDB catalogue object may be associated with

a number of shape representations (also known as MeshRep), which are a list

of Components for different LODs. When a model is requested and MongoDB

catalogue objects are reinserted back into the client-side Model, the user spec-

ifies the LOD those objects in the model will be in. This LOD is particularly

important for applications that are restricted to the size of the model due

to performance limitations. For example, an automated design method may

first reason about very coarse objects, such as bounding boxes, and switch

to displaying the objects in high resolution when a final output solution is

determined.

84

The idea of separating objects from a catalogue from building Models is

motivated by three reasons. The first is storage efficiency: a single catalogue

object can be referenced, instead of being cloned, in multiple models. At the

same time, computational efficiency is supported by the multiple LOD for each

object. The second reason is the need to standardize object usage as much as

possible. Having a catalogue can streamline the model-checking process, by

reducing the need to recalculate common object geometric properties repeat-

edly, reducing searches by geometry and eliminating the need for redundant

recalculation. Finally, this design decision aligns with objects in the real world,

and could potentially increase the relevance of such a tool to product retailers.

In addition to the objects, Models also include a list of Relations between

two related objects. They contain a reference to the two objects, that can

be either CatalogueObjects or ModelObjects, and a set of geometric relations

that hold true between the two. Two common property examples would be

a relation between two objects with a distance property, or a property that

indicates one is an aggregate of another object [100].

The next two element types are meant to standardize the way items are

labelled. Types define a tree structure, or a taxonomy, meaning each Type has

a parent Type. Ideally, ModelObjects and CatalogueObjects should only use

the leaf Types, with intermediate Types only being used for search.

TheMaterial element standardizes the material names, such that rendering

applications can expect certain material values and properties for display, while

also having a list of properties for physical attributes.

User documents exist in order to restrict model access, by storing own-

ership and accessibility. For now, only users with administration access can

add new CatalogueObjects, although in the future this can be changed such

that CatalogueObjects, like models, have owners. Additionally, private ob-

jects could be used to save ModelObjects for each user, thus increasing object

reusability.

85

6.2.2 BIM-kit Repository

The BIM-kit Repository is the service in charge of the storage and retrieval of

data to and from the MongoDB store. While the data is stored in five separated

document classes, the models and objects being sent to and received from the

BIM-kit Repository take client-side schema in Figure 6.1. This is where the

references to the MongoDB catalogue objects in the model are replaced with

the actual stored objects, but only using the shape representation LOD defined

in the request. Therefore, the BIM-kit Repository receives the model ID and

LOD in the request and reconstructs the data to form what is then returned

to the client.

The BIM-kit Repository is also responsible for validity in the model. For

instance, if a model is uploaded that does not satisfy the structure, or invalid

ID references, then the BIM-kit Repository will rectify those mistakes to the

best of its ability or else it will not perform the request.

In its current state, the Building Model Editor in BIM-kit is not able to

create walls and floors. Therefore, models in BIM-kit initially come from IFC

files, exported from other BIM tools and converted to the BIM-kit client side

data structure using the Data Conversion tool. Once a model is uploaded,

BIM-kit provides a number of services and tools specific to the tasks of stake-

holders. A key functionality of the BIM-kit Repository is the ability to reason

about the model and add an additional layer of information to the model in the

form of properties, relations, and Virtual Objects. This additional information

layer can then be further used by other BIM-kit services to form a common

semantic basis for performing a variety of tasks. This is achieved through a

shared geometrical library which contains methods for adding property, rela-

tion, and Virtual Object information to a model.

6.3 Use Cases

Figure A.1 shows the current state of the BIM-kit architecture and the flow

of data between the repository, and integrated services, and applications. The

following subsections describe each of the components of the ecosystem around

86

the BIM-kit Repository, and the task(s) they perform.

6.3.1 Building Model Editor

A key functionality for any design tool is a visual editor for users to interact

with the design artifact. For building designs, editing is typically done in

a 3D environment, and we constructed our editor using Unity [101] taking

advantage of the out-of-the-box features such as 3D rendering (and in future

iterations Augmented Reality (AR)/Virtual Reality (VR) and physics). The

editor uses the BIMKitApi library, containing methods for sending requests to

the BIM-kit Repository, for data retrieval from the BIM-kit Repository. Edits

to the model are made locally and only once the model is saved is it uploaded

to the BIM-kit Repository. Currently, the model editor is only able to add

catalogue objects to an existing model.

The model editor will over time add plugins for accessing external services.

We will also implement VR and AR features such as the work done in our

previous work - see [102].

6.3.2 Rule Management Service

The Rule Management Service is responsible for managing sets of rules, rel-

evant to building designs. It relies on a rule repository, also implemented in

MongoDB, accessible to three different editors for users to specify rules. The

schema of the Rule Management Service repository, derived from Sydora and

Stroulia [1], can be seen in Figure 6.2.

Rules store all the information needed to compile into executable code

that can be invoked by the BIM-kit Model Checking Service. Rulesets are

collections of references to Rules: meaning if a rule changes, all the rulesets

that include this rule are automatically updated to point to the latest version

of that rule. This ensures that as building codes evolve or the experts’ under-

standing of ergonomics deepens, changes to individual rules are propagated in

all sets that consider this rule as relevant, thus enabling consistency. When a

ruleset is requested, the Rule Management Service constructs the ruleset by

finding and linking with referenced rules. For the Rule Management Service

87

Figure 6.2: Rule Management Service data storage model.

prototype security is limited to only a username, and only the user’s public

name is saved in the model. The Rule Management Service provides RESTful

API calls for making changes to individual rules and rulesets. Additionally, it

performs validity checks to ensure proper authorization and completeness.

As with the BIM-kit Repository, the Rule Management Service has a cor-

responding client-side RMSApi library which provides methods for sending

rule requests and parsing the results. Also included is the Rule Administra-

tion Application which is an application for managing the Rule Management

Service.

6.3.3 Rule Editors

There are currently three Rule Editors (RE) available in BIM-kit for creating

rules, to be used for model checking and generative design: a visual editor

based on [14] (BlocklyRE), a textual editor based on a domain-specific struc-

88

tured language (DslRE), and an editor based on natural language processing

(NlpRE). All three editors create and edit rule objects in the Rule Manage-

ment Service, but each one was designed to support a different user-interaction

model, to appeal to different types of users with different types of technical

backgrounds.

Figure 6.3: Blockly Rule Editor.

The BlocklyRE, as seen in Figure 6.3, uses puzzle-like pieces, each one

corresponding to an element of the rule object schema, to construct the rules.

The DslRE is a .NET WindowsForm application that guides users’ actions

by only providing a selectable list of valid options to develop a textual rep-

resentation of the rules. Finally, the NlpRE enables a user to describe in (a

restricted) natural language a rule and automatically parses this description

into a rule object, as expected by the Rule Management Service. The user can

then make modifications to the parsed rule to better reflect the input text’s

intended meaning. The comparison of these three editors is left to a future

study, however, each has the same overall functionality in creating, editing,

and uploading rules.

Each rule editor communicates directly with the BIM-kit Repository to

retrieve the available object Types so that they can be included in the speci-

fication of the objects to which the edited rules may apply.

89

6.3.4 Rule Leaning Application

The rule learning application is developed using the rule learning algorithm

from Chapter 4 of this thesis. The workflow is an input dataset is selected and

passed through the rule learner. The user then specified the rules to be learnt,

either a specific set of rules for two object types or the set of all possible rules

for all type pairs in the examples. Rules in the RuleDSL format are learnt and

returned to the user which can be used in any RuleDSL supporting tool: the

Rule Editors, Model Checking, and Generative design.

6.3.5 Model Checking Service

Figure 6.4: BIM-kit Model checking extension in the Building Model Editor.

The Model Checking Service is an automated service that can be invoked by

any tool in the BIM-kit ecosystem, or by other third-party client applications.

The invoking application must provide a user’s credentials as access tokens, in

order to ensure that the end user of the invoking application is authorized to

access the requested building model and validate it against the chosen ruleset.

The Model Checking Service retrieves the model from the BIM-kit Repository

and the rules from the Rule Management Service, which it then compiles into

executable methods. As a result of executing these methods on the building

90

model, a check result is created and returned to the invoking client. The check

result is a list of rule results, which includes a reference to the rule and to the

object(s) in the building model that is responsible for the rule result. As

an example, Figure 6.4 shows the results from a rule, with the yellow objects

being objects relevant to the rule, and the green objects indicating an instance

of the rule that has passed the rule check. The interested reader can find an

in-depth description of the model-checking method in Sydora and Stroulia [1].

A key feature of the Model Checking Service is that, in order to evaluate

the rules in the context of the building model, it typically calculates the values

of a variety of geometrical properties and relations, namely these properties

and relations of interest to the invoked rules. These values are stored with

the building model, and cross-referenced with their associated objects. In this

manner, they can be reused by subsequent model checks. If, at any point, the

model objects on which these properties and relations depend move or change,

the values become obsolete and are, therefore, deleted.

6.3.6 Generative Design Service

Relying on the Model Checking Service, we also developed an automated Gen-

erative Design Services that automates the placement of BIM-kit catalog ob-

jects in a building model such that the placements validate all the relevant

design rules. As with the Model Checking Service, the Generative Design Ser-

vice acts as a proxy for the client application and also accesses the model and

rules from the BIM-kit Repository and Rule Management Service. In addi-

tion, the end user provides as input a list of desired objects from the MongoDB

catalogue to be included in the building model.

The Generative Design Service included in the BIM-kit contains the three

generation algorithms described in Chapter 3 of this thesis. When a con-

figuration solution is found, a copy of the model with the object placement

configuration is created by the Generative Design Service and shared with the

user. The user can then save the configuration over the existing model or

discard the Generative Design Service solution.

91

6.3.7 Model Occupancy Simulator

In 2014, Wong et al. [103] reported that very few CloudBIM projects focused

on operation and facility management. In addition to design, building models

can be used to manage buildings and simulate activity. In that vein, we

recently developed a prototype building-occupancy simulator, based on BIM-

kit models. The simulator uses the model data to construct a set of spaces

and paths that are accessible to the simulation agents. In our case, the goal

was to simulate the risks associated with an infectious pathogen under different

building operation scenarios, such as restricting room or floor access or limiting

building occupancy capacity. More generally, however, the simulator acts as

an additional evaluation in which time is a factor as elements of the model

and the use of the spaces are dynamically changing due to the movements of

building occupants.

The simulator is a Unity [101] application that accesses a building model

from the BIM-kit Repository and renders the scene, using the same method-

ology as the Building Model Editor. A navigation mesh (NavMesh), which

represents the walkable areas of the building is constructed based on the floor

components in the model. Paths can be generated by a combination of the

NavMesh and adjacency relations extracted from the model, as the NavMesh

alone is unable to recognize level-to-level transitions such as elevators. Finally,

the simulator takes as input a series of time-stamped agent activities, gener-

ated by a special-purpose agent-trace generation tool given a start location

and an end location, and simulates the agent’s behaviour. During the simula-

tion, the simulator records a variety of interesting indicators, including agent

interactions, and occupancy levels at the individual room and zone levels.

A case study on the occupancy simulator for predicting occupant infectious

disease risks can be seen in Sydora et al. [104].

92

6.4 Discussion

6.4.1 Advancing Interoperability

BIM-kit is conceived to address the challenge of maintaining a consistent rep-

resentation of a building model, while at the same time, making it available

to a variety of tools for different types of reasoning and design activities. This

is a primary problem with IFC, which oftentimes is referred to as a “view

only” version of all building information; modification of an IFC file has to

be requested from the designer rather than done directly on the model. On

the other hand, BIM-kit allows direct modification of the model, ensuring its

integrity through its well-defined modular schema. At the same time, the

BIM-kit Repository can ingest and export IFC models, thus ensuring a degree

of interoperability with current IFC-based software.

Compared with previous cloud-based BIM approaches, the underlying BIM-

kit schema is concise in its representation, but as demonstrated, not limited

to a single application and use case.

6.4.2 Semantic Modeling

The underlying semantic enrichment and rule-checking follow much of the same

motivations as the work of Pauwels and Zhang [20], Sacks et al. [105], and

Hagedorn and König [106]. BIM-kit has been designed with the expectation

that models have little to no information outside of geometrical information.

Therefore, the power of BIM-kit is to support the enrichment of the models

with semantically meaningful information, such as, for example, the evaluation

of interesting geometric relationships between model objects. Such relation-

ships, e.g., alignment, distance in different dimensions, etc, are useful to users

exploring the models through the editor and necessary to the model-checking

service evaluating the rulesets to which the model may adhere.

In BIM-kit, the Rule Management Service, the Rule Editors, and the Model

Checking Service provide key functionality, essential for building-model man-

agement, namely the definition of logical and geometrical constraints and their

validation against building models. This set of tools, in effect, supports the

93

specification of operational semantics behind the model representation.

6.5 Conclusion

In this Chapter, we discussed our work on BIM-kit, a set of tools supporting a

number of reasoning tasks about building models. The BIM-kit set of federated

tools relies on a central repository of building models, represented in a well-

defined modular and extendible schema.

The BIM-kit schema covers the same information as Industry Foundation

Classes (IFC) but is fundamentally different from IFC because it is modular,

i.e., it defines a set of simple, highly cohesive classes, cross-referenced with each

other. The modular nature of building representation in BIM-kit supports the

management of the overall consistency of the models: because the repository

contents are manipulated through well-defined APIs, building models can be

more easily shared across different tools. Also because of its modularity, the

BIM-kit schema supports extendibility. At the same time, the BIM-kit model

is compatible with IFC, in that it can import a complete IFC model and create

a corresponding set cross-referenced objects, and it can export an IFC model

by collecting the relevant classes corresponding to a single model.

The variety of tools we have developed around the BIM-kit Repository

constitutes strong and persuasive evidence of the effectiveness of the underlying

representation. The six interactive and automated tools around the BIM-

kit Repository cover a wide range of design activities, across the building

lifecycle, from interactive manipulation, to rule-based validation, to automatic

generation of design alternatives, to usage simulation.

94

Chapter 7

Conclusion

The goal of this thesis is to develop and evaluate new algorithms for automat-

ing a variety of reasoning tasks around interior building design, from model

checking to automated layout generation, to learning design rules. The algo-

rithms presented in this thesis use or create rules in the form of RuleDSL a

user-friendly DSL for describing rules on building components’ geometric re-

lationships. Specifically, this thesis investigated and addressed the following

research questions.

Question 1: Two key criteria for automated layout generation algorithms

are (i) the quality of the layouts in terms of the search goal, in our case the

rule compliance score and (ii) how fast a search algorithm converges on a high-

quality layout configuration i.e., its search efficiency. One grid-based method-

ology and two continuous random sampling algorithms are compared based on

these two metrics. How do output layout quality and layout configura-

tion search efficiency trade-offs differ among the layout generation

algorithms?

Answer 1: In Chapter 3 of this thesis, I present a new search algorithm

called Jump Search (JS). Unlike the grid-based algorithms, such as the pre-

vious GS algorithm, JS does not depend on a predefined grid but rather uses

random samples from a user-specified radius for its potential placement loca-

tions. A Simulated Annealing (SA) alternative is also tested as it selects loca-

tions more cautiously as opposed to the greedy selection in JS. To compare,

95

each algorithm is given a budget of search iterations and the final layout they

produced is evaluated for rule compliance. The experimental results demon-

strate that, given the same budget, the JS algorithm produced equal to or

better rule-compliant layouts than the GS and SA algorithms. Additionally,

because of its grid reliance, GS is found to provide little variation in layouts

which may be considered a negative aspect.

Contribution: The contribution of Chapter 3 is a new continuous space

search algorithm, Jump Search (JS). I have demonstrated the good perfor-

mance of this novel algorithm, and its effectiveness in delivering high-quality

layouts in many different problem scenarios, by comparing it against a previ-

ous grid-based method, Grid Search (GS), and a non-greedy continuous space

search algorithm based on Simulated Annealing (SA).

Question 2: Design rules are typically edited through a special-purpose

syntax-aware editor. To date, three RuleDSL editors have been developed.

One is a Windows form-based editor where rules are created through a series

of dynamic drop-down and data-input widgets. The others are prototypes for

a VPL using BLOCKLY and NLP text-to-code tokenizer which are still being

tested and evaluated. Coding rules is difficult and while the focused RuleDSL

vocabulary on interior design eases the coding process, the syntax and meaning

behind relation terms can still be the root of some challenges. A potentially

simpler rule creation process might be to only provide examples where the

rules are adhered to and ideally have the rules extracted automatically. My

algorithm approach looks at the relation patterns in the examples and the

range of their values, rules can be formulated on the bounds of the relation

ranges and converted to the RuleDSL. How well does the design-rule

learning algorithm capture the quality of the layouts of its input

examples?

Answer 2: The answer to this question is the focus of Chapter 4. In this

chapter, a rule-learning algorithm is presented, using relation value ranges as

96

the basis for learning patterns in the examples. To evaluate how well the

proposed algorithm captures expert knowledge, a dataset of synthetic layouts

of different room scenarios is used. The advantage of using synthetic layouts

is that the synthetic layouts follow known expert rules. This leads to the

intuition that a high-quality rule learner would be able to learn rules whose

check scores are highly correlated to the check scores of the expert rules that

the input examples followed. In short, a high rule score correlation implies the

rule learner can create rules that capture expert rule information. From the

rule correlation analysis, the rule learning algorithm can capture much of the

expert rule information. Performance is dependent on the variety and room

scenario of the input.

Contribution: The contribution of Chapter 4 is a novel rule learning

algorithm whose quality and effectiveness at capturing known rule information

is evaluated through a rule correlations analysis.

Question 3: Rule compliance is not the only metric for evaluating the

quality of a room layout. Often users will have preferences for their arrange-

ments that they may not be able to express in geometrical terms like the

rules. Therefore, in addition to capturing rule information, the ability of the

rule learning algorithm to capture the implicit non-trivial user preferences and

aesthetics is also of interest to someone who may use the rules to automat-

ically evaluate or generate layouts similar to a set of examples. How well

is implicit user-perceived quality captured and recreated using the

same rule learning algorithm?

Answer 3: To answer this question, user-created layouts are used as input

to the rule learning algorithm from Chapter 4. The learnt rules are then used in

the automated layout generation for their respective room scenarios to create

new learnt-rule layouts. A survey is developed to evaluate the perceived quality

of the original layouts and the learnt-rule layouts for each room scenario. The

results show that the perceived quality of the learn layouts is generally lower

97

than that of the user-created layouts but the extent of which depends on the

room scenario and how many user-created layouts went into the rule learning.

Contribution: The contribution of Chapter 5 is an evaluation of how well

the rule learning algorithm in Chapter 4 performs at capturing and recreating

perceived quality.

Question 4: The final contribution of this thesis relates to the synthe-

sis of all BIM reasoning applications as web services, in a coherent software

platform. What software architecture can be employed to support

the RuleDSL and other BIM reasoning application Application Pro-

grammable Interface (API)s?

Answer 4: Chapter 6 outlines the development environment I created

to address some of the issues regarding interoperability and resource sharing

among BIM reasoning applications. IFC is a verbose format meaning inges-

tion from one application to another can be inconsistent. I address this by

using a basic model representation that relies only on key model components

and relationships. Through multiple use cases, I show that the lightweight

representation contains enough information to perform meaningful tasks.

Contribution: Chapter 6 makes the following two contributions to the

state-of-the-art. First, it puts forward a well-defined, extendable BIM model;

the model is compatible with IFC, in that it can import a complete IFC model

and create a corresponding set of cross-referenced objects. At the same time,

because the model consists of a number of distinct objects that are manipu-

lated through well-defined APIs, the model can be more easily shared across

different tools. The repository design enables the extension of the model with

additional objects, all of which are supported by a core set of geometrical defi-

nitions. Second, it demonstrates the usefulness of the above model through the

implementation of a variety of interactive and automated tools that, together,

cover a wide range of activities that reason about building models. I envision

BIM-kit will be a valuable research testbed for building design applications

98

with reduced training overhead.

7.1 Future Work

The body of research on this topic is far from complete. Many more interesting

questions and applications remain which each take this work in new construc-

tive directions. First, the expressiveness of RuleDSL itself can be extended.

New rules and new application domains offer a unique opportunity to push the

boundary of how far the RuleDSL can be used in practice. The RuleDSL, with

only some new type and relation definitions, has been used in a case study on

highway code checking [107]. This shows promise for the RuleDSL to be used

outside the interior domain of this thesis and is evidence of the usefulness of

the software and APIs in developing new prototypes in a short time.

The layout generation algorithms are only some of the possible methods

that could be used for the placement of objects. I specifically use sequen-

tial object placement due to the higher likelihood of converging on results

faster. Multi-object placement search algorithms could have some potential to

improve results (likely as a higher budget) which might be worth comparing

against. Alternatively, hierarchically grouping objects to form rule-compliant

object clusters that can be added and moved as a group could improve this

further. Parallel evaluations and better sampling would also improve algo-

rithm efficiency. In short, there are a seemingly endless number of alternative

search methods that could be tested with the RuleDSL as the evaluation step.

Next, the rule learning algorithm relies on a template of pre-selected rela-

tions which are deemed most likely to be relevant to furniture arrangement.

This significantly limits the learnt rule expressiveness which is far from the full

expressiveness the RuleDSL affords. An interesting problem would be how to

build the learnt rule structure as opposed to limiting the structure. Possible

approaches to this problem could be found in the research area of Program

Synthesis [108].

The emergence of Large Language Models (LLMs) has drastically changed

the research landscape in the last few years. The ability and usage of these

99

tools are still being heavily investigated but their ability to generate code

based on natural language prompts has major implications for the work in this

thesis. In effect, these tools may soon be able to drastically help designers write

Automated Code Checking (ACC) code, however, to understand the code, a

DSL would still provide explainability and readability to the user. Therefore,

investigating an LLM’s ability to generate DSL code will be investigated in

the future.

Image generators have also improved drastically over the last few years

thanks to Generative Adversarial Networks (GANs) [109] and more recent

diffusion models [85]. These tools have been shown to generate high-quality

building and interior images and as they continue to improve, their use in

design evaluation and layout generation will continue to be analyzed in the

future.

Finally, BIM-kit is an ongoing development project but its applicability

to research projects and usage outside of interior reasoning has been growing.

I believe that BIM-kit’s simple data model and growing vocabulary of BIM

terms could be of great value to anyone who is learning, testing, and validating

their new and exciting BIM-related research.

100

References

[1] C. Sydora and E. Stroulia, “Rule-based compliance checking and gen-
erative design for building interiors using bim,” Automation in Con-
struction, vol. 120, p. 103 368, 2020.

[2] C. Sydora and E. Stroulia, “Comparative analysis of room generation
methods using rule language-based evaluation in bim,” in European
Conference on Computing in Construction (EC3), European Council
on Computing in Construction, vol. 4, 2023.

[3] C. Sydora and E. Stroulia, “Bim-kit: An extendible toolkit for reason-
ing about building information models,” in European Conference on
Computing in Construction (EC3), 2021, pp. 107–114.

[4] R. Sacks, C. Eastman, G. Lee, and P. Teicholz, BIM handbook: A guide
to building information modeling for owners, designers, engineers, con-
tractors, and facility managers. John Wiley & Sons, 2018.

[5] C. Eastman, J.-m. Lee, Y.-s. Jeong, and J.-k. Lee, “Automatic rule-
based checking of building designs,” Automation in construction, vol. 18,
no. 8, pp. 1011–1033, 2009.

[6] J. K. Lee, “Building environment rule and analysis (bera) language and
its application for evaluating building circulation and spatial program,”
Doctoral dissertation, Georgia Institute of Technology, 2011.

[7] J.-K. Lee, C. M. Eastman, and Y. C. Lee, “Implementation of a bim
domain-specific language for the building environment rule and anal-
ysis,” Journal of Intelligent & Robotic Systems, vol. 79, pp. 507–522,
2015.

[8] W. Solihin and C. Eastman, “A simplified bim model server on a big
data platform,” in Proceedings of the 33rd CIB W78 Conference, 2016.

[9] W. Solihin, J. Dimyadi, Y.-C. Lee, C. Eastman, and R. Amor, “Sim-
plified schema queries for supporting bim-based rule-checking applica-
tions,” Automation in Construction, vol. 117, p. 103 248, 2020.

[10] P. Merrell, E. Schkufza, Z. Li, M. Agrawala, and V. Koltun, “Interactive
furniture layout using interior design guidelines,” ACM Transactions on
Graphics (TOG), vol. 30, no. 4, 87:1–10, 2011.

101

[11] M. Fisher, D. Ritchie, M. Savva, T. Funkhouser, and P. Hanrahan,
“Example-based synthesis of 3d object arrangements,” ACM Transac-
tions on Graphics (TOG), vol. 31, no. 6, pp. 1–11, 2012.

[12] J. Betker, G. Goh, L. Jing, et al., “Improving image generation with
better captions,” 2023.

[13] L. Zhang, A. Rao, and M. Agrawala, “Adding conditional control to
text-to-image diffusion models,” in Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, 2023, pp. 3836–3847.

[14] Google blockly, Accessed: August 15, 2024. [Online]. Available: https:
//developers.google.com/blockly.

[15] A. Borrmann, M. König, C. Koch, and J. Beetz, Building informa-
tion modeling technology foundations and industry practice: Technology
foundations and industry practice, 2018.

[16] J. Dimyadi and R. Amor, “Automated building code compliance checking–
where is it at?” Proceedings of the 19th CIB World Building Congress,
pp. 172–185, 2013.

[17] D. Greenwood, S. Lockley, S. Malsane, and J. Matthews, “Automated
compliance checking using building information models,” in The Con-
struction, Building and Real Estate Research Conference of the Royal
Institution of Chartered Surveyors, 2010.

[18] A. S. Ismail, K. N. Ali, and N. A. Iahad, “A review on bim-based au-
tomated code compliance checking system,” International Conference
on Research and Innovation in Information Systems (ICRIIS), pp. 1–6,
2017.

[19] E. Hjelseth, “Bim-based model checking (bmc),” Building Information
Modeling–Applications and Practices, pp. 33–61, 2015.

[20] P. Pauwels and S. Zhang, “Semantic rule-checking for regulation com-
pliance checking: An overview of strategies and approaches,” Proceeding
of the 32rd international CIB W78 conference, 2015. [Online]. Avail-
able: http://hdl.handle.net/1854/LU-6890589.

[21] W. Solihin, J. Dimyadi, and Y.-C. Lee, “In search of open and practi-
cal language-driven bim-based automated rule checking systems,” Ad-
vances in Informatics and Computing in Civil and Construction Engi-
neering, pp. 577–584, 2019.

[22] Solibri, Accessed: August 15, 2024. [Online]. Available: https://www.
solibri.com/.

[23] Statsbygg bim manual, version 1.2.1(sbm1.2.1), 2013. [Online]. Avail-
able: https://dok.statsbygg.no/wp-content/uploads/2020/06/
statsbyggs-bim-manual-1-2-1_en_20131217.pdf.

[24] Nova group, corenet eplancheck, Accessed: August 15, 2024. [Online].
Available: https://www.nova-hub.com/e-government/.

102

https://developers.google.com/blockly
https://developers.google.com/blockly
http://hdl.handle.net/1854/LU-6890589
https://www.solibri.com/
https://www.solibri.com/
https://dok.statsbygg.no/wp-content/uploads/2020/06/statsbyggs-bim-manual-1-2-1_en_20131217.pdf
https://dok.statsbygg.no/wp-content/uploads/2020/06/statsbyggs-bim-manual-1-2-1_en_20131217.pdf
https://www.nova-hub.com/e-government/

[25] L. Ding, R. Drogemuller, M. Rosenman, D. Marchant, and J. Gero,
“Automating code checking for building designs-designcheck,” Clients
Driving Innovation: Moving Ideas into Practice, pp. 1–16, 2006.

[26] Autodesk, revit, Accessed: August 15, 2024. [Online]. Available: https:
//www.autodesk.com/products/revit/overview.

[27] Graphisoft, archicad. Accessed: August 15, 2024. [Online]. Available:
https://graphisoft.com/solutions/archicad.

[28] Autodesk, dynamo, Accessed: August 15, 2024. [Online]. Available: https:
//dynamobim.org/.

[29] S. Davidson, Grasshopper, Accessed: August 15, 2024. [Online]. Avail-
able: https://www.grasshopper3d.com/.

[30] Bimserver, Accessed: August 15, 2024. [Online]. Available: http://
bimserver.org/.

[31] P. Pauwels, D. Van Deursen, R. Verstraeten, et al., “A semantic rule
checking environment for building performance checking,” Automation
in Construction, vol. 20, no. 5, pp. 506–518, 2011.

[32] W. Mazairac and J. Beetz, “Bimql–an open query language for building
information models,” Advanced Engineering Informatics, vol. 27, no. 4,
pp. 444–456, 2013.

[33] S. Wawan, “A simplified bim data representation using a relational
database schema for an efficient rule checking system and its associ-
ated rule checking language,” Doctoral dissertation, Georgia Institute
of Technology, 2016.

[34] W. Solihin, J. Dimyadi, Y.-C. Lee, C. Eastman, and R. Amor, “The crit-
ical role of the accessible data for bim based automated rule checking
system,” Proceedings of the Joint Conference on Computing in Con-
struction (JC3), vol. 1, pp. 53–60, 2017.

[35] H. Lee, J.-K. Lee, S. Park, and I. Kim, “Translating building legisla-
tion into a computer-executable format for evaluating building permit
requirements,” Automation in Construction, vol. 71, pp. 49–61, 2016.

[36] S. Park, Y.-C. Lee, and J.-K. Lee, “Definition of a domain-specific lan-
guage for korean building act sentences as an explicit computable form,”
Journal of Information Technology in Construction (ITcon), vol. 21,
pp. 422–433, 2016.

[37] J. Choi and I. Kim, “A methodology of building code checking system
for building permission based on openbim,” Proceedings of the 34th
International Symposium on Automation and Robotics in Construction
(ISARC), vol. 34, pp. 945–950, 2017.

[38] R. Niemeijer, B. De Vriès, and J. Beetz, “Check-mate: Automatic con-
straint checking of ifc models,” Managing IT in construction/Managing
construction for tomorrow, pp. 479–486, 2009.

103

https://www.autodesk.com/products/revit/overview
https://www.autodesk.com/products/revit/overview
https://graphisoft.com/solutions/archicad
https://dynamobim.org/
https://dynamobim.org/
https://www.grasshopper3d.com/
http://bimserver.org/
http://bimserver.org/

[39] C. Preidel and A. Borrmann, “Automated code compliance checking
based on a visual language and building information modeling,” Pro-
ceedings of the 32nd International Symposium on Automation and Robotics
in Construction and Mining (ISARC), vol. 32, pp. 1–8, 2015.

[40] C. Preidel and A. Borrmann, “Towards code compliance checking on
the basis of a visual programming language,” Journal of Information
Technology in Construction (ITcon), vol. 21, no. 25, pp. 402–421, 2016.

[41] C. Preidel and A. Borrmann, “Refinement of the visual code checking
language for an automated checking of building information models
regarding applicable regulations,” ASCE International Workshop on
Computing in Civil Engineering, pp. 157–165. 2017.

[42] H. Kim, J.-K. Lee, J. Shin, and J. Choi, “Visual language approach
to representing kbimcode-based korea building code sentences for auto-
mated rule checking,” Journal of Computational Design and Engineer-
ing, vol. 6, no. 2, pp. 143–148, 2019.

[43] E. Hjelseth, “Converting performance based regulations into computable
rules in bim based model checking software,” In book: eWork and eBusi-
ness in Architecture, Engineering and Construction, pp. 461–469, 2012.

[44] E. Hjelseth and N. Nisbet, “Capturing normative constraints by use
of the semantic mark-up rase methodology,” Proceedings of CIB W78-
W102 Conference, pp. 1–10, 2011.

[45] J. Zhang and N. M. El-Gohary, “Extending building information mod-
els semiautomatically using semantic natural language processing tech-
niques,” Journal of Computing in Civil Engineering, vol. 30, no. 5,
p. C4016004, 2016.

[46] S.-H. Zhang, S.-K. Zhang, Y. Liang, and P. Hall, “A survey of 3d indoor
scene synthesis,” Journal of Computer Science and Technology, vol. 34,
no. 3, pp. 594–608, 2019.

[47] R. Akase and Y. Okada, “Automatic 3d furniture layout based on in-
teractive evolutionary computation,” Seventh International Conference
on Complex, Intelligent, and Software Intensive Systems, pp. 726–731,
2013.

[48] P. Kán and H. Kaufmann, “Automatic furniture arrangement using
greedy cost minimization,” in IEEE Conference on Virtual Reality and
3D User Interfaces (VR), 2018, pp. 491–498.

[49] Y. Li, X. Wang, Z. Wu, G. Li, S. Liu, and M. Zhou, “Flexible indoor
scene synthesis based on multi-object particle swarm intelligence opti-
mization and user intentions with 3d gesture,” Computers & Graphics,
vol. 93, pp. 1–12, 2020.

104

[50] Y. Liang, S.-H. Zhang, and R. R. Martin, “Automatic data-driven room
design generation,” in Next Generation Computer Animation Tech-
niques: Third International Workshop7, 2017, pp. 133–148.

[51] L.-F. Yu, S. K. Yeung, C.-K. Tang, D. Terzopoulos, T. F. Chan, and
S. Osher, “Make it home: Automatic optimization of furniture arrange-
ment,” ACM Transactions on Graphics (TOG)-Proceedings of ACM
SIGGRAPH, vol. 30, no. 4, 86:1–12, 2011.

[52] S.-K. Zhang, W.-Y. Xie, and S.-H. Zhang, “Geometry-based layout gen-
eration with hyper-relations among objects,”Graphical Models, vol. 116,
p. 101 104, 2021.

[53] Y.-T. Yeh, L. Yang, M. Watson, N. D. Goodman, and P. Hanrahan,
“Synthesizing open worlds with constraints using locally annealed re-
versible jump mcmc,” ACM Transactions on Graphics (TOG), vol. 31,
no. 4, pp. 1–11, 2012.

[54] W. Xu, B. Wang, and D.-M. Yan, “Wall grid structure for interior scene
synthesis,” Computers & Graphics, vol. 46, pp. 231–243, 2015.

[55] Z. S. Kermani, Z. Liao, P. Tan, and H. Zhang, “Learning 3d scene
synthesis from annotated rgb-d images,” in Computer Graphics Forum,
vol. 35, 2016, pp. 197–206.

[56] Q. Fu, X. Chen, X. Wang, S. Wen, B. Zhou, and H. Fu, “Adaptive syn-
thesis of indoor scenes via activity-associated object relation graphs,”
ACM Transactions on Graphics (TOG), vol. 36, no. 6, pp. 1–13, 2017.

[57] Y. Liang, F. Xu, S.-H. Zhang, Y.-K. Lai, and T. Mu, “Knowledge graph
construction with structure and parameter learning for indoor scene
design,” Computational Visual Media, vol. 4, pp. 123–137, 2018.

[58] K. Wang, Y.-A. Lin, B. Weissmann, M. Savva, A. X. Chang, and D.
Ritchie, “Planit: Planning and instantiating indoor scenes with rela-
tion graph and spatial prior networks,” ACM Transactions on Graphics
(TOG), vol. 38, no. 4, pp. 1–15, 2019.

[59] Y. Zhou, Z. While, and E. Kalogerakis, “Scenegraphnet: Neural message
passing for 3d indoor scene augmentation,” in IEEE/CVF International
Conference on Computer Vision, 2019, pp. 7384–7392.

[60] M. Li, A. G. Patil, K. Xu, et al., “Grains: Generative recursive au-
toencoders for indoor scenes,” ACM Transactions on Graphics (TOG),
vol. 38, no. 2, pp. 1–16, 2019.

[61] M. Keshavarzi, A. Parikh, X. Zhai, M. Mao, L. Caldas, and A. Y. Yang,
“Scenegen: Generative contextual scene augmentation using scene graph
priors,” arXiv preprint arXiv:2009.12395, 2020.

[62] A. Chang, M. Savva, and C. D. Manning, “Learning spatial knowledge
for text to 3d scene generation,” in Conference on empirical methods
in natural language processing (EMNLP), 2014, pp. 2028–2038.

105

[63] M. Fisher, M. Savva, Y. Li, P. Hanrahan, and M. Nießner, “Activity-
centric scene synthesis for functional 3d scene modeling,” ACM Trans-
actions on Graphics (TOG), vol. 34, no. 6, pp. 1–13, 2015.

[64] R. Ma, H. Li, C. Zou, Z. Liao, X. Tong, and H. Zhang, “Action-driven
3d indoor scene evolution,” ACM Transactions on Graphics (TOG),
vol. 35, no. 6, pp. 1–13, 2016.

[65] S. Qi, Y. Zhu, S. Huang, C. Jiang, and S.-C. Zhu, “Human-centric
indoor scene synthesis using stochastic grammar,” Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 5899–
5908, 2018.

[66] Q. Fu, H. Fu, H. Yan, B. Zhou, X. Chen, and X. Li, “Human-centric
metrics for indoor scene assessment and synthesis,” Graphical Models,
vol. 110, p. 101 073, 2020.

[67] K. Wang, M. Savva, A. X. Chang, and D. Ritchie, “Deep convolu-
tional priors for indoor scene synthesis,” ACM Transactions on Graph-
ics (TOG), vol. 37, no. 4, pp. 1–14, 2018.

[68] B. Yang, L. Li, C. Song, Z. Jiang, and Y. Ling, “Automatic furniture
layout based on functional area division,” in 2019 international confer-
ence on cyberworlds (CW), 2019, pp. 109–116.

[69] D. Ritchie, K. Wang, and Y.-a. Lin, “Fast and flexible indoor scene syn-
thesis via deep convolutional generative models,” in IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2019, pp. 6182–
6190.

[70] B. Yang, L. Li, C. Song, Z. Jiang, and Y. Ling, “Automatic interior
layout with user-specified furniture,” Computers & Graphics, vol. 94,
pp. 124–131, 2021.

[71] P. Kán and H. Kaufmann, “Automated interior design using a genetic
algorithm,” in Proceedings of the 23rd ACM symposium on virtual re-
ality software and technology, 2017, pp. 1–10.

[72] T. Germer and M. Schwarz, “Procedural arrangement of furniture for
real-time walkthroughs,” Computer Graphics Forum, vol. 28, no. 8,
pp. 2068–2078, 2009.

[73] P. Kan, A. Kurtic, M. Radwan, and J. M. L. Rodriguez, “Automatic
interior design in augmented reality based on hierarchical tree of pro-
cedural rules,” Electronics, vol. 10, no. 3, p. 245, 2021.

[74] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser,
“Semantic scene completion from a single depth image,” Proceedings of
30th IEEE Conference on Computer Vision and Pattern Recognition,
2017.

106

[75] H. Fu, B. Cai, L. Gao, et al., “3d-front: 3d furnished rooms with lay-
outs and semantics,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 10 933–10 942.

[76] K. Xu, K. Chen, H. Fu, W.-L. Sun, and S.-M. Hu, “Sketch2scene:
Sketch-based co-retrieval and co-placement of 3d models,” ACM Trans-
actions on Graphics (TOG), vol. 32, no. 4, pp. 1–15, 2013.

[77] S.-H. Zhang, S.-K. Zhang, W.-Y. Xie, C.-Y. Luo, Y.-L. Yang, and H.
Fu, “Fast 3d indoor scene synthesis by learning spatial relation priors of
objects,” IEEE Transactions on Visualization and Computer Graphics,
vol. 28, no. 9, pp. 3082–3092, 2021.

[78] R. Ma, A. G. Patil, M. Fisher, et al., “Language-driven synthesis of 3d
scenes from scene databases,” ACM Transactions on Graphics (TOG),
vol. 37, no. 6, pp. 1–16, 2018.

[79] Z. Zhang, Z. Yang, C. Ma, et al., “Deep generative modeling for scene
synthesis via hybrid representations,” ACM Transactions on Graphics
(TOG), vol. 39, no. 2, pp. 1–21, 2020.

[80] W. R. Para, P. Guerrero, N. Mitra, and P. Wonka, “Cofs: Controllable
furniture layout synthesis,” in ACM SIGGRAPH 2023 Conference Pro-
ceedings, 2023, pp. 1–11.

[81] Q. A. Wei, S. Ding, J. J. Park, et al., “Lego-net: Learning regular rear-
rangements of objects in rooms,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2023, pp. 19 037–
19 047.

[82] H. Xie, W. Xu, and B. Wang, “Reshuffle-based interior scene synthesis,”
in Proceedings of the 12th ACM SIGGRAPH International Conference
on Virtual-Reality Continuum and Its Applications in Industry, 2013,
pp. 191–198.

[83] A. Raistrick, L. Mei, K. Kayan, et al., “Infinigen indoors: Photoreal-
istic indoor scenes using procedural generation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2024, pp. 21 783–21 794.

[84] F.-A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah, “Diffusion
models in vision: A survey,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 45, no. 9, pp. 10 850–10 869, 2023.

[85] L. Yang, Z. Zhang, Y. Song, et al., “Diffusion models: A comprehensive
survey of methods and applications,” ACM Computing Surveys, vol. 56,
no. 4, pp. 1–39, 2023.

[86] J. Beetz, L. van Berlo, R. de Laat, and P. van den Helm, “Bimserver.
org–an open source ifc model server,” in Proceedings of the 27th CIP
W78 conference, 2010.

107

[87] M. Das, J. C. Cheng, and S. Shiv Kumar, “Bimcloud: A distributed
cloud-based social bim framework for project collaboration,” in Inter-
national Conference on Computing in Civil and Building Engineering,
2014, pp. 41–48.

[88] S. Logothetis, E. Karachaliou, E. Valari, and E. Stylianidis, “Open
source cloud-based technologies for bim,” in International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sci-
ences, vol. 42–2, 2018, pp. 607–614.

[89] Autodesk bim 360, Accessed: August 15, 2024. [Online]. Available: https:
//www.autodesk.com/bim-360/.

[90] Graphisoft bimcloud, Accessed: August 15, 2024. [Online]. Available:
https://graphisoft.com/solutions/products/bimcloud.

[91] L. Ma and R. Sacks, “A cloud-based bim platform for information
collaboration,” in 33rd International Symposium on Automation and
Robotics in Construction (IAARC), 2016, pp. 581–589.

[92] J.-R. Lin, Z.-Z. Hu, J.-P. Zhang, and F.-Q. Yu, “A natural-language-
based approach to intelligent data retrieval and representation for cloud
bim,” Computer-Aided Civil and Infrastructure Engineering, vol. 31,
no. 1, pp. 18–33, 2016.

[93] Y. Jiao, Y. Wang, S. Zhang, Y. Li, B. Yang, and L. Yuan, “A cloud
approach to unified lifecycle data management in architecture, engi-
neering, construction and facilities management: Integrating bims and
sns,” Advanced Engineering Informatics, vol. 27, no. 2, pp. 173–188,
2013.

[94] Buildingsmart ifc, Accessed: August 15, 2024. [Online]. Available: https:
//technical.buildingsmart.org/standards/ifc.

[95] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[96] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of state calculations by fast computing machines,”
The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[97] T. Mitchell, Machine Learning. McGraw Hill, 1997.

[98] Buildingsmart industry foundation classes release 4 (ifc4) documenta-
tion, Accessed: August 15, 2024. [Online]. Available: https://standards.
buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/.

[99] K. Afsari, C. M. Eastman, and D. R. Shelden, “Cloud-based bim data
transmission: Current status and challenges,” in Proceedings of the In-
ternational Symposium on Automation and Robotics in Construction
(ISARC), 2016.

108

https://www.autodesk.com/bim-360/
https://www.autodesk.com/bim-360/
https://graphisoft.com/solutions/products/bimcloud
https://technical.buildingsmart.org/standards/ifc
https://technical.buildingsmart.org/standards/ifc
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/

[100] C. Sydora and E. Stroulia, “Towards rule-based model checking of
building information models,” in Proceedings of the International Sym-
posium on Automation and Robotics in Construction (ISARC), vol. 36,
2019, pp. 1327–1333.

[101] Unity technologies, Accessed: August 15, 2024. [Online]. Available: https:
//unity.com/.

[102] C. Sydora and E. Stroulia, “Augmented reality on building information
models,” 9th International Conference on Information, Intelligence,
Systems and Applications (IISA), pp. 1–4. 2018.

[103] J. Wong, X. Wang, H. Li, G. Chan, and H. Li, “A review of cloud-
based bim technology in the construction sector,” Journal of Informa-
tion Technology in Construction, vol. 19, pp. 281–291, 2014.

[104] C. Sydora, F. Nawaz, L. Bindra, and E. Stroulia, “Building occupancy
simulation and analysis under virus scenarios,” ACM Transactions on
Spatial Algorithms and Systems (TSAS), vol. 8, no. 3, pp. 1–20, 2022.

[105] R. Sacks, L. Ma, R. Yosef, A. Borrmann, S. Daum, and U. Kattel,
“Semantic enrichment for building information modeling: Procedure for
compiling inference rules and operators for complex geometry,” Journal
of Computing in Civil Engineering, vol. 31, no. 6, p. 04 017 062, 2017.

[106] P. Hagedorn and M. König, “Rule-based semantic validation for stan-
dardized linked building models,” in International Conference on Com-
puting in Civil and Building Engineering, 2020, pp. 772–787.

[107] F. Momeni Rad, C. Sydora, and K. El-Basyouny, “Leveraging gener-
ative design and point cloud data to improve conformance to passing
lane layout,” Sensors, vol. 24, no. 2, p. 318, 2024.

[108] S. Gulwani, O. Polozov, R. Singh, et al., “Program synthesis,” Founda-
tions and Trends in Programming Languages, vol. 4, no. 1-2, pp. 1–119,
2017.

[109] I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative adver-
sarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–
144, 2020.

109

https://unity.com/
https://unity.com/

Appendix A

Background Material

A.1 Room Scenarios

Different room types present different layout challenges. Each room type is

associated with different objects, variable room and object dimensions, and

unique rules governing furnishing arrangements. In this thesis, I have selected

the following four room types: living rooms, kitchens, bedrooms, and bath-

rooms. While there are many other categories of room types (offices, game

rooms, etc.), I believe these four also represent a range of features such as de-

pendency amount on movable objects (furnishing) versus dependency amount

on static objects (walls) and room layout density. Of course, many more pos-

sible room scenarios could and should be tested in the future.

A.1.1 Expert Rulesets

Different publications consider different sets of rules for the above room types.

In this thesis, the four rule sets were developed based on my examination of

numerous examples I observed from design websites and general intuition of

where the objects should be placed (against the wall, away from doors, etc.).

The expert rules used depend on the room scenario but in practice could vary

significantly depending on the room furnishing designer. Multiple rules can

be related to the same object types and there is no guarantee that rules do

not conflict with one another or that the space provided is large enough to

perfectly accommodate all rules. Therefore, note that a perfect evaluation

score may not be achievable in all cases.

110

A.1.2 Initial Empty Layouts

The initial layout includes all static objects in the scene, which in practice are

objects that moving or altering require drastic renovation. The most basic of

these object types are the floor, walls, windows, and doors which I include in

my initial models. All initial rooms have one door with some rooms contain-

ing windows while others do not. In general, there are Mechanical, Electrical,

Plumbing (MEP) factors of room design, such as electrical outlets and plumb-

ing fixtures, that would affect design choices which were not included in my

layout models. I aim to include these in future iterations.

My experiments contain two different shapes of living rooms: Rectangular

or L-shaped. The rectangular rooms are further broken up into small and

large rooms. L-shaped rooms pose a more challenging layout problem as the

number of walls and the curved shape of the room make furnishing placement

less intuitive. As a room can take many shapes and sizes, a challenge is in

creating compliant arrangements for all possibilities.

A.1.3 Furnishing Objects

For the research presented in this thesis, the furnishing types for each are

based on common objects tested in prior research and commonly found in

each room type. The precise number and type of movable furnishing objects

were selected based on standard room types and what would reasonably fit

in the space. Specific object selection was also based on publicly available

furnishing objects 3D models.

All furnishing objects are described in terms of their 3D shapes (or mesh

representations) and various associated metadata, including type and facing

orientation. Without the rules, furnishing objects have no inherent restriction

on how and where they can be placed in the layout model (i.e. no location

“snapping”). I also assume that all object sizes are fixed and cannot be ex-

panded.

One caveat is that kitchens in practice are constructed based on appliance

location with cabinets filling in the gaps between and around appliances. In my

111

case, standard cabinet-sized blocks were used to represent where the cabinets

might go. A more realistic cabinet generation for Kitchens and Bathrooms is

left to future work.

A.1.4 Layout Scenario Dataset

To evaluate my proposed methods’ adaptability to higher constrained layout

problems, I conducted a variety of room types as well as separated living

rooms and kitchens into easy and hard scenarios. The basic assumption here

is that higher density makes the scenario harder, while less density makes the

problem “simple”. I assume this because, with more objects and less available

space, there are more decisions to be made and more variable outcomes with

potentially different quality.

The difference between the simple and dense living room scenarios is the

dense living room problems have additional objects, namely one extra side

table and two extra armchairs. The dense kitchen contains an additional two

chairs and a table with additional rules for both.

In summary, I evaluated the proposed methods in this thesis on nine lay-

out scenarios: Bathroom 1 (Small), Bedroom 1 (Large), Bedroom 2 (Small),

Kitchen 1 (Simple), Kitchen 2 (Dense), Living room 1 (L-Shape, Simple), Liv-

ing room 2 (L-Shape, Dense), Living room 3 (Rectangular, Simple), Living

room 4 (Rectangular, Dense). Table A.1 describes each of the layout scenarios

by their initial layouts, movable furnishing objects, and briefly the expert rules

used.

112

Table A.1: Room Scenarios
S
ce
n
ar
io

In
it
ia
l
L
ay
ou

t
O
b
je
ct

L
is
t

R
u
le

L
is
t

B
at
h
ro
om

1
(S
m
al
l)

S
m
al
l
re
ct
an

gu
la
r

w
in
d
ow

ed
ro
om

S
in
k

S
h
ow

er
T
oi
le
tt
e

B
at
h
tu
b

D
is
tr
ib
u
ti
o
n
E
le
m
en
ts

aw
ay

fr
o
m

D
o
o
rs
.

N
o
th
in
g
in

fr
o
n
t
o
f
D
is
tr
ib
u
ti
o
n
E
le
m
en
ts
.

S
a
n
it
a
ry

T
er
m
in
a
ls

a
g
a
in
st

W
a
ll
.

S
h
ow

er
in

C
o
rn
er
.

T
o
il
et

in
C
o
rn
er
.

B
ed
ro
om

1
(L

ar
ge
)

L
ar
ge

re
ct
an

gu
la
r

w
in
d
ow

le
ss

ro
om

L
ar
ge

b
ed

C
ab

in
et

A
rm

ch
a
ir

S
id
e
ta
b
le

(x
2
)

A
rm

ch
a
ir

in
C
o
rn
er

fa
ci
n
g
b
ed
.

B
ed

L
o
ca
ti
o
n
C
en
te
r.

C
a
b
in
et

fa
ci
n
g
B
ed
.

C
a
b
in
et
s
a
g
a
in
st

W
a
ll
.

F
u
rn
is
h
in
g
aw

ay
fr
o
m

D
o
o
rs
.

S
id
e
ta
b
le

n
ex
t
to

B
ed
.

B
ed
ro
om

2
(S
m
al
l)

S
m
al
l
re
ct
an

gu
la
r

w
in
d
ow

ed
ro
om

D
es
k

C
h
a
ir

S
m
al
l
b
ed

S
id
e
ta
b
le

S
h
el
f

K
it
ch
en

1
(S
im

p
le
)

L
ar
ge

re
ct
an

gu
la
r

w
in
d
ow

le
ss

ro
om

B
as
e
co
rn
er

ca
b
in
et

B
as
e
ca
b
in
et
s
(x
3
)

F
ri
d
g
e

O
ve
n
/R

a
n
g
e

S
in
k

C
a
b
in
et
s
a
ga
in
st

W
a
ll
.

C
a
b
in
et
s
o
n
si
d
es

o
f
C
o
rn
er

C
a
b
in
et
.

C
o
rn
er

C
a
b
in
et

in
C
o
rn
er
.

D
is
tr
ib
u
ti
o
n
E
le
m
en
ts

a
g
a
in
st

W
a
ll
.

D
is
tr
ib
u
ti
o
n
E
le
m
en
ts

a
li
gn

ed
w
it
h
C
o
rn
er

C
a
b
in
et
.

D
is
tr
ib
u
ti
o
n
E
le
m
en
ts

n
ex
t
to

C
a
b
in
et
.

D
is
tr
ib
u
ti
o
n
a
n
d
F
u
rn
is
h
in
g
E
le
m
en
ts

aw
ay

fr
o
m

D
o
o
rs
.

N
o
th
in
g
in

fr
o
n
t
o
f
C
a
b
in
et
.

O
ve
n
F
ri
d
g
e
D
is
ta
n
ce
.

O
ve
n
S
in
k
D
is
ta
n
ce
.

S
in
k
F
ri
d
g
e
D
is
ta
n
ce
.

K
it
ch
en

2
(D

en
se
)

L
ar
ge

re
ct
an

gu
la
r

w
in
d
ow

le
ss

ro
om

B
as
e
co
rn
er

ca
b
in
et

B
as
e
ca
b
in
et
s
(x
3
)

F
ri
d
g
e

O
ve
n
/R

a
n
g
e

S
in
k

D
in
in
g
ta
b
le

C
h
ai
r
(x
2
)

113

S
ce
n
ar
io

In
it
ia
l
L
ay
ou

t
O
b
je
ct

L
is
t

R
u
le

L
is
t

L
iv
in
g
ro
om

1
(L

-S
h
ap

e,
S
im

p
le
)

L
-s
h
ap

e
w
in
d
ow

ed
ro
om

C
o
u
ch

T
V
st
a
n
d

C
o
ff
ee

ta
b
le

A
rm

ch
a
ir

S
id
e
ta
b
le

S
h
el
f
(x
2
)

P
la
n
t

S
id
e
ta
b
le

N
ex
t
to

C
o
u
ch
.

C
o
u
ch

F
a
ci
n
g
T
V
.

S
h
el
f
a
g
a
in
st

W
a
ll
.

C
o
ff
ee

T
a
b
le

In
fr
o
n
t
o
f
C
o
u
ch
.

A
rm

ch
a
ir

C
o
ff
ee

ta
b
le
.

T
V

S
ta
n
d
A
g
a
in
st

W
a
ll
a
n
d
C
en
te
re
d
.

A
rm

ch
a
ir

C
o
u
ch

R
u
le
.

S
h
el
f
in

C
o
rn
er
.

A
rm

ch
a
ir

N
ex
t
to

S
id
e
T
a
b
le
.

P
la
n
t
in

C
o
rn
er

o
r
B
es
id
e
C
o
u
ch
.

F
u
rn
is
h
in
g
aw

ay
fr
o
m

D
o
o
rs
.

L
iv
in
g
ro
om

2
(L

-S
h
ap

e,
D
en
se
)

L
-s
h
ap

e
w
in
d
ow

ed
ro
om

C
o
u
ch

T
V
st
a
n
d

C
o
ff
ee

ta
b
le

A
rm

ch
a
ir

(x
3
)

S
id
e
ta
b
le

(x
2
)

S
h
el
f
(x
2
)

P
la
n
t

L
iv
in
g
ro
om

3
(R

ec
ta
n
gu

la
r,

S
im

p
le
)

L
a
rg
e
re
ct
an

g
u
la
r

w
in
d
ow

le
ss

ro
o
m

C
o
u
ch

T
V
st
a
n
d

C
o
ff
ee

ta
b
le

A
rm

ch
a
ir

S
id
e
ta
b
le

S
h
el
f
(x
2
)

P
la
n
t

L
iv
in
g
ro
om

4
(R

ec
ta
n
gu

la
r,

D
en
se
)

L
a
rg
e
re
ct
an

g
u
la
r

w
in
d
ow

le
ss

ro
o
m

C
o
u
ch

T
V
st
a
n
d

C
o
ff
ee

ta
b
le

A
rm

ch
a
ir

(x
3
)

S
id
e
ta
b
le

(x
2
)

S
h
el
f
(x
2
)

P
la
n
t

114

Figure A.1: Current State of BIM-kit’s application and service architecture.

115

	Introduction
	Domain Specific Languages for Automatic Code Checking
	Automated Interior Layout Generation
	Thesis Objectives
	Thesis Contributions and Structure
	Research Methodology

	Background and Related Research
	Model Checking Tools and Workarounds
	Model Search and Rule Languages
	Automated Layout Generation Rules and Search Algorithms
	Data Driven Layout Synthesis
	BIM Reasoning Frameworks
	Rule Domain Specific Language (RuleDSL)
	Vocabulary
	Grammar
	Layout Quality Measure

	Automated Layout Generation
	Introduction
	The Search Algorithms
	Grid Search (GS)
	Jump Search (JS)
	Simulated Annealing (SA)
	Placement Order

	Experimental Design
	Results
	Discussion
	Conclusion

	Rule Learning from a Synthetic Layout Dataset
	Introduction
	Rule Learning Method
	Target Rule Template
	The Observations Table
	Forming Rules for an Example Layout
	Combining Rules from Multiple Example Layouts
	RuleDSL Conversion

	Experimental Setup
	Synthetic Layout Creation
	Learning All Possible Rules

	Rule Learner Evaluation
	Rule Learning Quality
	Input Training Layout Count
	Rule Reduction
	Initial Template Relation Ablation

	Discussion
	Conclusion
	Limitations
	Future work

	Rule Learning from User-Generated Example Layouts
	Introduction
	User-Created Layout Collection
	Learnt Layout Generation

	Perceived Quality Evaluation Survey
	Survey Results
	Conclusion

	BIM-kit: The BIM Reasoning Toolkit
	Introduction
	BIM-kit Data Model & Repository
	Data Model
	BIM-kit Repository

	Use Cases
	Building Model Editor
	Rule Management Service
	Rule Editors
	Rule Leaning Application
	Model Checking Service
	Generative Design Service
	Model Occupancy Simulator

	Discussion
	Advancing Interoperability
	Semantic Modeling

	Conclusion

	Conclusion
	Future Work

	References
	Appendix Background Material
	Room Scenarios
	Expert Rulesets
	Initial Empty Layouts
	Furnishing Objects
	Layout Scenario Dataset

