
AHL: A Toolkit for Model-Driven Engineering of
Android Applications

by

Pedram Veisi

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c⃝ Pedram Veisi, 2017

Abstract

With the rise of smartphones and the increasing impact of mobile applications

on everyday life, mobile software engineering has become a popular research

topic. A desired outcome of these research efforts is efficient application devel-

opment with lower cost, but with high-quality software products. A combina-

tion of domain-specific languages and code-generation techniques is a potential

solution to this problem. In this thesis, we define a generic model for Android

applications that work with peripheral devices, such as activity trackers, and

propose a framework, namely AHL (Android Health Language), that imple-

ments our model and enables easy and rapid development of the core elements

of a typical application reporting data collected from these peripheral devices.

Our framework includes a domain specific language (DSL), AHL, that allows

developers to describe their applications with an easy-to-use syntax. Then,

the framework takes it from there and generates most of the code for the

complicated components of a standard application falling into the domain of

our problem. The generated code is functional and does not need any mod-

ifications. That will save developers from dealing with complicated Android

concepts. Therefore, AHL can save time and reduce the cost of Android ap-

plication development for developers. We explain the AHL framework, its

models, the included DSL and the methodology we used to design and im-

plement it. We also evaluate our work with two functional applications and

compare them to the existing ones developed from scratch.

ii

To my lovely parents and beautiful sister

For their endless love and support.

iii

If you focus your mind on the freedom and community that you can build by

staying firm, you will find the strength to do it.

– Richard M. Stallman

iv

Acknowledgements

I am using this opportunity to express my gratitude to everyone who supported

me throughout this work. My supervisor Dr. Eleni Stroulia and my committee

members Dr. Ken Wong and Dr. Marek Reformat, my dear family and friends,

and everyone who has taught me something in my life.

v

Table of Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 4
1.3 Thesis Outline . 6

2 Literature Review 7
2.1 Model-Based Code-Generation

Environments . 7
2.1.1 Domain Specific Languages 7
2.1.2 DSL Designing Tools 8
2.1.3 Code Generators . 9

2.2 Code Generation for Android 10

3 Background 13
3.1 Android Related Technologies 13

3.1.1 Bluetooth Low Energy 14
3.1.2 Android Content Providers 17
3.1.3 Android Services . 20
3.1.4 Android Alarms and Broadcast Receivers 21

3.2 Generic Architecture of BLE Applications 21
3.2.1 Device Scanner . 23
3.2.2 Service . 23
3.2.3 Data Storage . 24
3.2.4 BLE . 25

4 The AHL Application Construction Framework 26
4.1 Android Content Provider Generator 26
4.2 JetBrains Metaprogramming System (MPS) 28
4.3 Designing AHL in MPS . 31

4.3.1 AHL Concepts . 33
4.4 The Application Specification Plugin 35
4.5 The Process of Code Generation 35

4.5.1 Creating Concepts and Writing AHL Code 36
4.5.2 Running MPS and AHL Wrapper 36

4.6 AHL Wrapper . 38

5 Developing an Application with AHL Framework 39
5.1 What is Redliner? . 39
5.2 Generating the Redliner Application with AHL 40

vi

6 Evaluating the AHL Framework 47
6.1 Redliner vs. AHL Redliner . 47

6.1.1 Functionality Comparison 49
6.1.2 LOC Comparison . 51

6.2 Estimote Reader vs. AHL Estimote Reader 51
6.2.1 Functionality Comparison 52
6.2.2 LOC Comparison . 53

7 Conclusion and Future Work 55

Bibliography 58

vii

List of Tables

6.1 Redliner vs. AHL Redliner in Terms of Functionality 50
6.2 Redliner vs. AHL Redliner in Terms of Line of Code (LOC) . 51
6.3 Estimote Reader vs. AHL Estimote Reader in Terms of Func-

tionality . 53
6.4 Estimote Reader vs. AHL Estimote Reader in Terms of Line of

Code (LOC) . 54

viii

List of Figures

1.1 Smartphone OS Market Share [1] 2
1.2 Wearbale Market Growth Over the Next Few Years 4

3.1 Process of a BLE Communication 14
3.2 Common Components of Android Applications Working with

BLE Devices . 22
3.3 Sequence of Events Happening During Reading and Storing

BLE Data in Our Architecture 23
3.4 Sequence of Events When Pairing a BLE Device With a Phone 24

4.1 A Simple Concept Editor . 32
4.2 Effect of the Concept Editor 32
4.3 AHL Metamodel . 33
4.4 Creating Models in IntelliJ IDEA 36
4.5 Available AHL Models . 36

5.1 Creating a New Android Project 40
5.2 Android Java Library Module Configuration 41
5.3 Adding a MPS Module to the Project 42
5.4 MPS Module Configuration 43
5.5 Project Structure After the Setup 44
5.6 AHL Configuration File . 45
5.7 Redliner Database Configuration 45
5.8 Redliner BLE Configuration 46

6.1 Redliner Activities . 48
6.2 AHL Redliner Activities . 49
6.3 AHL Redliner Database . 50
6.4 AHL Estimote Reader Database 52

ix

Chapter 1

Introduction

Portability, from a customer’s point of view, was the only difference between

landline telephones and mobile devices for years. However, during the recent

years with the help of powerful hardware and various sensors, smartphones

have become a replacement for desktop and laptop computers, digital cam-

eras, navigation devices, health and fitness gadgets, etc. All these functions

in a single portable device have made smartphones irresistible to users. Ob-

viously, these features are only possible with the support of mobile platforms

for applications and the business models that allow third parties, including

software companies and independent developers, to develop applications, im-

prove the platform and generate revenue. Hence, many developers are drawn

to mobile applications development.

The size of the target market, especially for independent developers and

small businesses, is a significant factor considered in choosing a platform to de-

velop applications for. Android, which currently dominates the world market

of smartphones with nearly 83% share of the market [1], is a primary choice

for businesses and independent developers. Figure 1.1 shows changes in smart-

phone OS market share over a three years period, from the second quarter of

2012 to the same period in 2015.

Although cross-platform technologies, such as PhoneGap 1 provide the pos-

sibility of developing applications for major platforms (including Android and

iOS) at the same time, native applications offer a far better user experience

1http://phonegap.com

1

and performance since the overhead is minimum in native code compared

to cross-platform code. Therefore, most developers focus on a single plat-

form, and native application development is far more popular. According to a

cross-platform tools benchmarking study by research2guidance, ”in the USA

11.8% (iOS) and 14.9% (Android) of the top 2,000 apps are developed with a

CP[cross-platform] Tool” [2].

Figure 1.1: Smartphone OS Market Share [1]

1.1 Motivation

Despite all the efforts of Google engineers to make Android development easier,

many developers, especially inexperienced ones, face major challenges during

development. The complexity of the platform in the competitive market calls

for tools to make the process easier and faster. Such tools can save time and

money and increase the efficiency of development teams.

Developers work to create applications for different purposes. Among all,

one stands out and has many users: health and fitness. Applications in this

field are divided into two main categories: those that rely on pre-installed

sensors and components on smartphones such as accelerometer and GPS, and

the others that come with an accompanying physical device such as Fitbit,

2

Garmin, and smart watches. The former are limited to tracking a few kinds of

activities like walking, running or biking. Google Fit on Android and Apple

Health on iOS fall under this category. They usually have a significant impact

on battery consumption and in some cases their accuracy depends on the way

that users carry their phones. In contrast, accompanying physical devices do

not have these limitations for tracking the same activities and enable providers

to focus on tracking ones that are not trackable with smartphones like sleeping,

using wheelchairs, etc. Most of these devices are produced as wearables that

are very convenient for users to use. They also take advantage of Bluetooth

for communication with smartphones. Most of these devices can store activity

data for a few days, and can usually work for more than a week on a single

charge.

Wearables market is a growing one. Tractica, a market intelligence firm

that focuses on human interaction with technology, published a white paper

in the third quarter of 2015 with the title of ”Wearables: 10 Trends to Watch”

and predicted that the wearable market will experience a big growth over the

next few years (Figure 1.2) [3]. In another report, CCS Insight, an industry

analyst firm focusing on mobile communications and the Internet, stated that

wearables market will be worth $25 Billion by 2019 [4].

However, in this case, the convenience of the user means more work on

the development side. Developers working on the related applications have

to spend more time and resources to manage Bluetooth communications and

data storage in the background that includes implementing low-level Blue-

tooth communication functions and services for handling these communica-

tions, reading from the physical device and storing it in a database. The

common set of functionalities in this family of applications can be reused for

development efficiency and lower costs and for reusing good-quality code.

Applications that work with wearables or other peripheral physical devices

have a few modules in common: Bluetooth communication, data storage on

the phone, a background service and some UI components such as pairing

devices and visualizations.

This work provides a tool which generates most of the code for all of the

3

Figure 1.2: Wearbale Market Growth Over the Next Few Years

four modules common in this family of applications. A developer fills in a con-

figuration file, and the provided tool generates the code required for database

management using Android Content Providers, an Android service and all the

other classes related to periodic task scheduling, and all the necessary classes

for Bluetooth communication that are not device specific.

1.2 Contributions

Our framework offers support for a systematic development of applications

working with wearable, activity trackers and other kinds of BLE related de-

vices. We propose an abstract model that describes such applications and

provides a toolset that enables Android developers to generate all the required

source code for the challenging parts of them.

To generate the source code, the developer must provide some information

including hardware information required for Bluetooth communications, data

packet structure transmitted by the device and other information about the

application itself such as the package name, desired name for the database

file, etc. The user fills out a configuration file using a domain specific language

4

we have designed to provide this information. A plugin for JetBrains IntelliJ

IDEA, the IDE that Android Studio is based on, takes it from there and

generates the source code based on the provided configuration and the models

designed for this purpose as part of our framework. At last, an accompanying

Java class, that is run by the developer, finishes the work by creating Java

packages and moving all the generated and pre-written Java classes to the

right place.

The generated components are as follows:

• Bluetooth Communication: using the information provided by the

user, the framework will generate the code to handle searching for BLE

devices and pairing with them. The code for reading from these devices

should be implemented by the developer since it is hardware dependent.

• UI: this component provides an interface for the Bluetooth Communica-

tion component. UI requirements for listing Bluetooth devices, pairing

with them and removing them from paired devices are included in the

produced code by our framework.

• Data Storage: the framework generates an Android content provider

for data and database management. Content providers manage access

to data by the application that implements them and other application

that might be given access to by the developer in a standard way.

• Service: for such application, an Android service should be generated

to link Bluetooth communication and data storage. The service will be

activated at specific periods of time and is in charge of calling specific

methods from the Bluetooth communication component for initiating

the connection and reading the data from the device and then sending

the data to the data storage component for storing it in the database.

This component also includes other necessary classes, namely broadcast

receivers, required for periodic task scheduling in Android.

In summary, our work makes the following contributions:

5

• First, it proposes a modeling language to describe applications that

work with a peripheral BLE device.

• Second, it offers an easy and step by step environment for developers

using an IntelliJ IDEA plugin to create their applications.

• Third, it evaluates this methodology by creating an example application

for a wheelchair usage tracking device (i.e. Redliner) and a BLE Sticker

Reader application (i.e. Estimote Stickers) and comparing them with

their respective applications developed from scratch.

1.3 Thesis Outline

The remaining of this thesis is organized as follows. Chapter 2 is dedicated

to the literature review and related work. Chapters 3 and 4 discuss the back-

ground of our work, related concepts and definitions, and technologies that

are used to design and implement the framework. In chapter 3, we describe

our frameworks architecture and each of its components in details and discuss

related technologies such as Android Content Providers. Then in Chapter 4,

we discuss MPS, introduce our models and describe how they work and discuss

the process of code generation. Following that discussion, we demonstrate the

process of generating all of the components for the Redliner application in

details using a step by step approach in chapter 5. After that, we evaluate our

work in chapter 6 by comparing the Redliner and Estimote Reader applica-

tions created from scratch with the ones with generated components. At last,

we conclude with a discussion about the possible future work in chapter 7.

6

Chapter 2

Literature Review

In this chapter, we start with discussing Domain Specific Languages (DSLs)

(Section 2.1.1) and the tools that are available to design and implement them

(Section 2.1.2). Then we introduce code generation tools created to generate

code based on models (Section 2.1.3). Finally we finish this chapter but re-

viewing research works dedicated to automatic code generation for Android

applications.

2.1 Model-Based Code-Generation

Environments

In this section, first, we explain Domain Specific Languages (DSLs), DSL

designing tools and Model to Text Transformation. Then, we discuss a few

popular environments such as Acceleo, Xpand, Xtext and JetBrains’s MPS

and explain how they transform models to source code.

2.1.1 Domain Specific Languages

General-purpose modeling languages such as Unified Modeling Language (UML),

as the name suggests, are generic and general. Even though they can be uti-

lized for many applications, in some cases they are not enough, and a tailored

engineering tool is required. Domain Specific Languages (DSLs) try to ad-

dress this issue. They focus on a particular domain and provide a high-level

abstraction and tools for developing solutions for problems in that domain.

Mernik et.al. [5] carry out an in-depth survey of when and how to develop

7

DSLs. SQL, HTML, Verilog, Unix shell scripts, Make and MATLAB, are a

few examples of domain specific languages.

DSLs have many applications, but despite all their advantages, they also

have some disadvantages. For instance, it takes time to learn them as a new

language given their limited applicability. Additionally, designing, implement-

ing and modify them require expertise, time and capital.

2.1.2 DSL Designing Tools

Designing a DSL requires a deep analysis of the domain and its features. After

defining the system, one of the several available tools is used to develop the

language. All of these tools are provided in two forms of graphical or textual

editors. Graphical editors provide a GUI for modeling a system and defining

components. On the other hand, models are defined and written in text in

textual editors. Either way, both kind of editors serve the same purpose of

defining models for a language.

Xtext [6], EMFText [7] and JetBrain’s MPS [8] are a few examples of

popular textual tools. Developed as plugins for major IDEs (Xtext and EMF-

Text for Eclipse and MPS for IntelliJ IDEA), they allow developers to define

text syntax for a DSL described by metamodels such as Ecore [9]. Each of

these tools has unique features, but all of them offer some standard ones, such

as code completion, syntax coloring, quick fixes, etc., that make designing a

language easier.

Many graphical tools are also available for designing DSLs. Some of the

major ones include GMP [10], AToM3 [11], MetaEdit+ [12] and Visual Stu-

dio DSL Tools [13]. Each of these tools has their benefits and shortcomings.

AToM3 and MetaEdit+ are standalone applications whereas GMF, and Vi-

sual Studio DSL Tools are designed as plugins for Eclipse and Visual Studio

respectively. MetaEdit+ is a proprietary tool and available with a paid license

that makes it more suitable for industrial purposes. However, all other three

are free (Visual Studio DSL Tools for Visual Studio users) that makes them

a better choice for many researchers and independent developers. There are

a few research works comparing these tools and investigating their similarities

8

and differences.

In [14], Pelechano et.al. compare Microsoft DSL tools and Eclipse mod-

eling plugins. To evaluate these two, they divided a group of 48 last year

undergraduate students of computer science into two groups and each group

was asked to develop a DSL (including code generation) with a different tool.

After that, they conducted a survey about the experience of working with

these tools. The survey includes questions about ease of use, usability and

quality of graphical designers, complexity in defining the code generator, etc.

Their results show that Eclipse DSL tools have been better accepted than DSL

tools and respondents find it more simple, robust and stable.

In [15], De Smedt compares three graphical DSL editors: AToM3, MetaEdit+

and Poseidon for DSLs in terms of speed of development, documentation,

platform (Windows, Linux, Mac OS), price, availability of APIs, etc. He con-

cludes that MetaEdit+ does better in their comparison than the other two.

It is available for all three major operating systems and provides an extensive

transformation and generation tool. However, MetaEdit+ is not free and the

price of a standard license is high. He also argues that AToM3 offers almost

the same functionality as MetaEdit+ free of cost. When it comes to Poseidon

for DSLs, he finds its functionality very limited.

2.1.3 Code Generators

DSLs define a high-level model of a system, and code generators such as Xtend

[16], Acceleo [17] and MPS Generator [18] use that model to generate source

code. Users use the editor provided with these tools to write down DSL code,

and they translate this code to actual source code in the target language.

Xtend is specific to Java. The Xtend language is an extension on top of Java

and generates Java code behind the scenes. Therefore, its basic syntax is Java

and it provides additional features such as extension methods and operator

overloading with a new syntax. Xtend is used in Xtext DSL projects to define

language aspects including typing rules and generators. All generator rules

are defined in Xtend language and then, the DSL code is transformed into

Java code. Acceleo and MPS on the other hand, are more general and can

9

generate code in any format (Java, XML, HTML, JSON, plain text, etc.). This

flexibility comes with the cost of writing more code. Using these tools, the

user defines generator rules for every line of the generated code. Other than

the mentioned features, MPS also enables developers to extend an existing

language. This feature offers a great deal of flexibility to DSL designers, and

it can be used to add new features to programming languages like Java or

another DSL.

2.2 Code Generation for Android

Most of the research works targeting code generation for Android focus on

Java code that is responsible for functionality rather than UI. One reason for

that is the availability of code generators for Java that can be adopted and

used to generate Android code.

In [19], a model-driven approach for developing Android applications is

proposed. To produce Android code based on defined models, Abilio G Parada

et al. extend GenCode [20] tool that generates Java code based on UML and

sequence diagrams. GenCode uses UML diagrams to generate the classes and

sequence diagrams to generate function calls and the program flow. Their

approach is general and does not target any specific family of applications.

To demonstrate their work, the authors use one of the available Android SDL

samples (Snake), define its behavior using UML and sequence diagrams and

generate the Java code for it.

In [21], the authors target high-performance image processing as their do-

main. They propose a code generator for RenderScript 1, a framework for run-

ning computationally intensive tasks on Android, and FileScript, a stricter ver-

sion of RenderScript that provides wider compatibility with various CPUs and

GPUs. They extend Heterogeneous Image Processing Acceleration (HIPAcc)

Framework 2 that includes a DSL based on C++ for defining images and fil-

ter masks, and integrate a generator for RenderScript and FileScript into the

1https://developer.android.com/guide/topics/renderscript/compute.html
2http://hipacc-lang.org

10

framework. For evaluation, they apply image processing filters and opera-

tors (e.g. Sobel and Laplace operators for edge detection and Gaussian blur

filter) on a 2048 × 2048 image using their generated code and compare the

results on CPU and GPU with the results from applying the same functions

using OpenCL on GPU and OpenCV on CPU. They use an Arndale Board3

with a Samsung Exynos 5250 running Android 4.2 as their testbed. In [22],

the authors discuss an approach that uses ATL and Acceleo to generate code

for heterogeneous Android applications. They use ATL to define model-to-

model transformation specifications and transform models created by the user

into pre-defined intermediate models and then use Acceleo to generate source

code from the intermediate models. To demonstrate their work, they gener-

ate the code for the Snake sample application included in the Android SDK

with some improvement (more directions for movements and new obstacles

and entertainment elements) and call it Snake Plus. In [23], the same au-

thors make their work platform- independent and propose sample models for

Android and Windows Phone application development. The process of code

generation from models is the same as their previous work.

There are also some works dedicated to generating GUI code for the An-

droid platform. In [24], the authors take a model-driven approach for gen-

erating GUI code for multiple platforms. Their code generation happens in

three steps. First, the system’s GUI is modeled in class and object diagrams.

Then, these models are transformed into platform-independent XMI files using

JDOM API4. Finally, they adopt a model-driven architecture (MDA) approach

to transform the models into GUI source code specific to a platform. The trans-

formation rules in the last step are defined using ATL (Atlas Transformation

Language). Also, their MDA approach takes scripts that describe the target

platform as input. They evaluate their work by demonstrating the process of

generating Android GUI code using their framework. Related platform scripts

for Android are also provided. Mohamed Lachgar, et al. [25], take the same

approach of model driven code generation, but they provide a DSL, designed

3http://www.arndaleboard.org/wiki/index.php/Main Page
4http://www.jdom.org/

11

using Xtext, for defining the application and generating the UI code. The sys-

tem is defined in their DSL and this definition is transformed into intermediate

models specific to a platform using Xtend. Then, the source code is generated

from intermediate models using Xtend generator. Their framework covers a

wide range of platforms including web and mobile operating systems. They

apply their approach to the Android platform and Server Faces Framework

and generate GUI for two sample application to demonstrate their work.

12

Chapter 3

Background

We start this chapter with a discussion of Android related technologies that are

used in this work including Bluetooth Low Energy (BLE), Android Content

Providers, Android services and Android alarms and broadcast receivers. After

the first section that lays out the Android technologies used in this work, we

introduce a general architecture for applications that work with BLE devices

and describe all of the important components that are common among them

(Section 3.2).

3.1 Android Related Technologies

In this section, we discuss Android related technologies and components that

are, or should be, implemented in every application that works with an external

physical device. We will briefly talk about Bluetooth Low Energy (BLE)

and its key concepts in Android (Section 3.1.1), Android content providers;

what they are and how they work (Section 3.1.2), Android services, which are

the components provided by the Android platform to support long-running

operations (Section 3.1.3) and Android alarms and broadcast receivers (Section

3.1.4).

13

3.1.1 Bluetooth Low Energy

Bluetooth Low Energy (BLE, Bluetooth LE or Bluetooth Smart) 1 is a new

Bluetooth technology specifically designed for considerably lower energy con-

sumption. BLE is natively supported on all major desktop and mobile oper-

ating systems including Android (version 4.3 and above). Even though there

are studies that show BLE is not as energy efficient as expected [26], but it

is still more efficient than older Bluetooth protocols. For that reason, it is

widely adopted by the industry, especially for health and fitness devices that

are expected to have a lower power consumption.

Figure 3.1: Process of a BLE Communication

Figure 3.1 shows an example of a communication between a phone and a

BLE device. The BLE devices, which can be an activity tracker, heart rate

monitor, etc., gathers data and stores them in packets and provides them when

there is a request from the phone. Each packet has a unique ID that identifies

that packet. To read the packets, the phone needs to specify the packet IDs.

1https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-
basics/low-energy

14

The important BLE concepts that are related to our work are explained by

referring to this example.

• Characteristic: A characteristic is a data container. Each characteristic

has at least two attributes: descriptor which is metadata about the data

and value which is the actual data. Value is not typed and is considered a

non-typed container that can be cast to any type but it has a limit on its

length which is 512 bytes. Our example BLE device has two characteristics:

packet that stores the packet data and desired packet that stores the ID of

the requested packet by the phone.

Each characteristic supports four operations: read, write, notify and indi-

cate. Read and write are requested by the Bluetooth client (the phone in

our example) and, as the names suggest, are used for reading the current

values and writing a new one. Notify, on the other hand, is initiated by the

server (the external BLE device) to notify clients that new data is written to

a characteristic. So, if a client subscribes to notifications on a characteristic

it receives a notification from the server when new data is available. Indicate

works in the same way as notify except for one crucial difference: indications

are acknowledged by the client, while notifications are not. Obviously, the

decision of using notifications or indications for tracking a characteristic de-

pends on the required level of reliability and power consumption restrictions.

In Figure 3.1, the phone subscribes to notifications on the packet character-

istic and if there is new data available, the BLE device sends a notification

to the phone. After receiving a notification, the phone writes the desired

packet ID on the desired packet characteristic using the write operation and

then issues a read command for the packet characteristic. The target packet

will be returned back to the phone. If there are multiple packets available

the process of writing a packet ID and reading a packet must be done one

by one.

• Service: A BLE service is a collection of related characteristics. In our

example, the data service includes packet and desired packet characteristics.

On an activity tracker device, a data service can contain characteristics such

15

as the number of available packets, the actual packet data, etc. A device

information service on a device can include information such as battery level,

temperature, etc.

• Profile: Profile is a pre-defined collection of services. It does not exist on the

BLE device; rather it is a concept for grouping services. A device supports a

profile based on its application (heart rate sensors, movement sensors, etc.).

Two BLE devices that are compatible with each other support the same

profile.

• GATT: GATT stands for Generic Attribute Profile, and defines the protocol

to exchange profile and user data over a BLE connection using character-

istics and services.

• GATT Server: In a BLE setup, the server is the peripheral device that

has data, characteristic and service definitions on it.

• GATT Client: Client is the device (a phone, tablet, etc.) that sends

requests for data to the server.

• UUID: A Universally Unique Identifier is a 128-bit identifier that is globally

unique (with a high probability). One of its applications is identifying BLE

elements such as characteristics and services. Each element is assigned a

UUID that is used to access that element. This approach makes it possible

to access each characteristic independently from the others.

Android 4.3 (API Level 18) introduced built-in support for BLE [27]. Even

though APIs for scanning for devices, establishing connections, reading char-

acteristic and writing them are provided by Android platform, synchronization

for reading or writing multiple characteristics at the same time must be han-

dled by the developer. Communicating data of various characteristics must

be done in a serial fashion. More specifically, characteristicRead, which is

the function that handles read operation on Android, executes synchronously

and the client must wait for the results before issuing another call. Common

16

synchronization techniques such as synchronous queues, locks, condition vari-

ables, etc. can be used to implement the serial communication and overcome

this issue.

3.1.2 Android Content Providers

Content providers are the standard way of handling data access and storage

on Android. They provide a layer of abstraction between the underlying data

storage and rest of the code. In this way, the application code is independent

of the underlying data persistence approach, and this provides flexibility to

developers. Data persistence can be implemented using a common Database

Management System (DBMS) such as SQLite, or REST APIs.

Content providers offer data encapsulation based on URI’s. These URIs

can be used to perform create, read, update and delete operations in appli-

cations. Additionally, implementing content providers makes it possible to

share data with other applications in a standard and secure fashion. Access to

content providers and possible operations can be managed using Android per-

mission system that works in the same way as requesting access to resources

or hardware. So, an application that has the right permissions for accessing or

updating the content provider can perform the operation using the designated

URI.

The concepts related to content providers that are used or mentioned in

this work are as follows.

• Authority: Authority is a string that identifies a provider and is used to

access it. For that reason, it must be unique, and it is a good practice to

use the reverse domain name notation, the same naming convention used

for Java packages, to define it.

• Content URIs: A content URI identifies specific data in a provider. Au-

thority plus a name that points to a table, identifies a table in a provider.

In general, a table is accessed using a URI in the following format:

content :// authority/table -name

17

• Cursors: Cursors are sets of data returned by a database query. They

provide various methods for accessing records and iterating through them.

As a storage management system, Android content providers use cursors for

data access and modification.

• Content Resolvers: ContentResolver class provides client objects that

can be used to access data in content providers. A Content Resolver client

object has methods that call corresponding methods in a provider object

(an instance of the Content Provider class or its subclasses) to perform

the desired operations. These methods provide create, query, update, and

delete operations. When a content resolver is used, all of the inter-process

communications between a provider and its client are automatically handled

by Android.

• Access Permissions: As discussed before, content providers can be used

to share data between apps. This raises many security concerns about ille-

gitimate access and modifications. To address this issue, Android extends

its permission system to content providers. A provider’s application speci-

fies a permission that other applications should request to access or modify

data in a content provider. A usual permission is defined like this:

ca.redliner.READ_REDLINER_PACKETS

The client requests the permission in AndroidManifest.xml like any other

permissions (such as access to the Internet or location, reading contacts,

etc.):

<uses -permission android:name="ca.redliner.

READ_REDLINER_PACKETS">

As a result, the end user will see the permission while installing the appli-

cation and will be informed what data is being accessed.

In summary, implementing and accessing a content provider happens in

18

this order:

1. The provider implements a subclass of ContentProvider class.

2. The provider implements query, insert, update and delete methods.

3. The provider declares the content provider in the AndroidManifest.

4. The provider specifies a unique authority and paths to data tables.

5. The client requests the permissions required for accessing the provider’s

data.

6. The client creates a ContentResolver object and uses content URIs to

access the data or modify it.

Even though we discussed the general application of content providers, i.e.

provider being one application and client being another one, both provider

and client can be one Android application.

Implementing a content provider is complicated and requires expertise and

experience. A developer needs extensive knowledge of how they work and how

they operate within the Android platform. Also, the amount of written code is

high and extensive testing is required to ensure that implemented components

are working properly. For those reasons, many developers neglect to implement

one and write plain SQL in their application code for handling data storage

and end up with non-scalable software. Content providers are essential to the

scalability of an application and quality data management in Android.

To generate a content provider, we integrated Android Content Provider

Generator2 tool into our framework. Other than a content provider, this tool

creates a Content Resolver that is a single and global instance in Android

applications providing access to content providers.

Android Content Provider Generator also generates helper and wrapper

methods for creating structured data and inserting them into the database,

selections, projections, etc. This tool requires at least two JSON files to func-

tion. One is for defining application-specific configurations that include entries

2https://github.com/BoD/android-contentprovider-generator

19

such as package names, database file name, database related class names, etc.

It also needs at least one table definition. If the database designed for an

application has more than one table, each table must be defined in a separate

file. All constraints for a table are also defined in the same file as the table

definition.

3.1.3 Android Services

Some long-running operations such as network transmissions or data commu-

nications with external hardware devices should be done in the background

and do not need a user interface. Android services are implemented to per-

form this kind of operations, and by using them, the life cycle of the operation

does not depend on the application’s life cycle. So, when the user is not using

the application or when it is closed, the background operation can continue

performing its task. Also, when Android is low on memory, some processes

are killed by the system so that their resources can be reclaimed. To deter-

mine which processes should be killed, Android puts each running process in

an importance hierarchy based on the application’s running components and

their status. The process types based in order of importance are: foreground

processes, visible processes, service processes and background processes. Fore-

ground processes have the highest priority. An application running an activity

at the top of the screen that the user is interacting with or a service that is cur-

rently executing code in the background are considered foreground processes.

When a service is not executing code, it is a service process. In both cases,

the chances of a service being killed are very low [28]. That is one of the main

reasons for considering Android service for long-running operations. However,

in cases that the work needs to be done only while the user is interacting with

the app a simple thread is sufficient.

Since periodic data transfers are required between a BLE device and a

smartphone, an Android service is the perfect tool for handling communica-

tions. Since, BLE supports notifications from the device when data is available,

notifications set on different characteristics can wake the application which in

turn runs the service to read the data, store it in the database and update the

20

application.

3.1.4 Android Alarms and Broadcast Receivers

For scheduling and managing periodic tasks in Android, alarms and broadcast

receivers are used on top of services. Android alarms are designed for running

time-based operations outside the lifetime of an application. Developers set

an alarm and when it goes off a message is sent to a corresponding broadcast

receiver that is defined for that alarm. Broadcast receivers are Android com-

ponents that let applications register for application or system-wide events.

For periodic tasks such as reading data from a BLE device, an alarm is set

that sends a message to a broadcast receiver which in turn runs a service. The

service will take it from there and starts the reading operation.

3.2 Generic Architecture of BLE Applications

To define our models for automatic code generation, we designed a general

architecture for BLE applications that communicate with peripheral devices.

Fig. 3.2 demonstrates how this architecture is laid out and shows its essential

components that are as follows:

• Device Scanner: This component is in charge of searching for devices

using the BLE component, pairing with them and storing their information.

• Service: Service component handles all the background work and connects

all the other components to each other.

• BLE: All Bluetooth communications, including searching for devices, con-

necting to and disconnecting from them and writing and reading data, are

handled in this component.

• Data Storage: The content provider and all its parts are a part of this

component.

We go through each of these components and discuss how they work and

interact with other components.

21

Figure 3.2: Common Components of Android Applications Working with BLE
Devices

22

Figure 3.3: Sequence of Events Happening During Reading and Storing BLE
Data in Our Architecture

3.2.1 Device Scanner

The device scanner calls the BLE scanner (from the BLE component) and lists

all the nearby devices. The end user of the application picks the device they

want to pair with the application, and the hardware information about that

device is stored using Android Shared Preferences 3. Later when the service

is started to read the data from the device, this information is retrieved from

Shared Preferences and passed to the BLE reader. Figure 3.4 depicts this

process.

3.2.2 Service

When the boot process is finished in Android, a BOOT COMPLETED broad-

cast message is broadcast. This message helps developers find out when the

boot process is finished so they can schedule tasks including periodic ones. A

boot receiver, which is a subclass of Android Broadcast Receiver, listens for

this message and initiates the tasks it is asked to run.

3Shared Preferences, as a kind of data storage, allow developers to save and retrieve data
in the form of key, value pair in a simple and easy way.

23

Figure 3.4: Sequence of Events When Pairing a BLE Device With a Phone

Also, for applications that perform time-based operations outside of their

lifetime, such as communicating with a peripheral device or periodic network

communications, repeating alarms 4 should be set for specific periods of time

to initiate tasks like running a service. This is done using Alarm Receiver class

which is another broadcast receiver. Boot receiver and alarm receiver classes

are usually used together for implementing periodic tasks in Android.

In our design, when the alarm set by the boot receiver class goes off, the

alarm receiver gets the message and calls the Android service. This service is

responsible for collecting and storing data. At first, it reads the device infor-

mation stored in a shared preferences file by the device scanner component.

Then, it triggers the BLE read action and waits for the results to come back

from the BLE component. At last, when the data is ready, it will be passed

to the content resolver with an insert query by this service.

As shown in figure 3.2, the service connects all the components in our

architecture to each other.

3.2.3 Data Storage

This component is fully implemented using Android content providers. The

data collected by the service running in the background is handed to a content

4https://developer.android.com/training/scheduling/alarms.html

24

resolver which is an abstraction layer for content provider operations. The data

is automatically handled by the content provider based on the query from the

content resolver. Implementing a content provider makes this architecture

more flexible. The data can be shared with other applications if required, and

the underlying data persistence mechanism can be any DBMS or REST APIs.

We used SQLite which is very lightweight and is used as the default DBMS in

Android application.

3.2.4 BLE

BLE scanner component is used by two other components: BLE device scanner

which is an activity listing surrounding devices and the BLE service that is

in charge of reading and storing data periodically. The scanner is generic and

can be used in any application that works with BLE devices. On the contrary,

BLE reader is device specific, and the implementation heavily depends on

the protocol defined on the physical device. The possibility of accessing each

characteristic individually or getting a notification when new data is written

to a characteristic are among the main benefits of the BLE standard since

they reduce energy consumption. At the same time, reading from a device

should be done in a synchronous matter, and characteristics should be read

one by one. So, reading the data altogether is not possible, and even if there

is a synchronization mechanism in place to do so, it won’t be energy efficient.

For these reasons, BLE reader is the only component in our architecture that

should be implemented by the user and is neither automatically generated nor

pre-written.

25

Chapter 4

The AHL Application
Construction Framework

We start this chapter with a discussion about Android Content Provider Gen-

erator library and how it works (Section 4.1). Then we introduce MPS (Section

4.2), how we designed our DSL with it (Section 4.3) and the concepts of our

language (Section 4.3.1). After that, we put forward the plugin we have cre-

ated for IntelliJ IDEA that adds our language to this IDE (Section 4.4). In the

end, we discuss the code generation process (Section 4.5) and AHL Wrapper,

a Java class that finishes the work by running Android Content Provider Gen-

erator and moving generated classes to their right place in an Android project

after code generation (Section 4.6).

4.1 Android Content Provider Generator

As mentioned before, Android Content Provider Generator (ACPG) makes

the tedious task of implementing a content provider easy and quick. It takes

JSON files as input and generates all the Java classes for data types, a content

provider, content resolvers and helper classes for creating structured data.

To generate a content provider, ACPG needs one general configurations

file and at least one table definition. The configuration file provides the li-

brary with some information about the system including authority, applica-

tions package name, Java class names for different classes (provider, helper

classes, etc.), provider package name and so on. Table definition files include

26

column names, column types, optional documentation for the table and its

columns, whether a column is nullable or not, and constraints such as field

being unique, foreign keys, conflict resolution, etc.

Listing 4.1 depicts definition of a simple table with two columns. This table

has two columns: packet id and start time, both of type Integer. Start time

can be null but packet id cannot. Additionally, this table has a constraint;

packet id should be unique, and an insert operation with an already existing

id will be ignored (line 22). As the code shows, developers can also write

documentation lines in this file.

1
2 {

3 "documentation ": "Packets read from the Redliner device",

4 "fields ": [

5 {

6 "documentation ": "Packet ID",

7 "name": "packet_id",

8 "type": "Integer",

9 "nullable ": false

10 },

11 {

12 "documentation ": "Start Time",

13 "name": "start_time",

14 "type": "Integer",

15 "nullable ": true

16 },

17],

18
19 "constraints ": [

20 {

21 "name": "unique_packet_id",

22 "definition ": "UNIQUE (packet_id) ON CONFLICT IGNORE"

23 }

24]

25 }

Listing 4.1: Database Table Definition

A sample query to the database using classes generated by ACPG can be

done in the way shown in Listing 4.2. PacketSelection and PacketColumns

are examples of generated helper classes for querying, inserting and updating

data. A selection class is created for every table that includes helper methods

for making selections. In our example of a Packets table, rows that have

27

packet id of 0000 or start time of 0000 will be selected (line 3). Later in

line 5, this selection is passed to the query method to return the rows with

the desired values. There is also a columns class generated for every table.

These classes include column names and the URIs of tables for easy access.

PacketColumns.CONTENT URI, in this example, provides the URI for the

Packets table.

1 PacketSelection selection = new PacketSelection ();

2
3 selection.packetId ("0000").or().start_time (0000);

4
5 Cursor c = context.getContentResolver ().query(PacketColumns.

CONTENT_URI , projection , selection.sel(), selection.args(),

null);

Listing 4.2: Sample Database Query

4.2 JetBrains Metaprogramming System (MPS)

We used MPS for implementing the idea behind this work, mainly because it

integrates with IntelliJ IDEA and Android Studio, the official Android IDE,

is an IntelliJ IDEA variant. MPS implements a non-textual presentation of

code. In this approach that takes advantage of Projectional Editors, developers

do not write code in a plain text format. Every expression of a language is

broken into cells, and each cell only accepts special keywords or properties

that are correct in the context. Since DSLs are mostly being used by domain

experts, not professional programmers, projectional editors make things easier

by asking for a specific value for each cell. Also, this approach eliminates the

need for a parser and provides flexibility for designing languages.

MPS always maintains code in an Abstract Syntax Tree (AST). The AST

consists of nodes that have properties and children. A DSL can be created

using three approaches: first, writing a generator that converts developer’s

AST to an intermediate AST that is understood by the MPS generator and

will be transformed into code. This method uses model to model and model

to text transformations. Second, writing text generators to directly transform

28

the AST to code, which is a model to text transformation. The third method

is a combination of these two.

For model to model or model to text transformation, the generated code

depends on the templates written by the developer. As an example of model

to text transformation, if we have a data model called packet defined using

the syntax shown in Listing 4.3 and the developer decides to generate a Java

class from this model, two templates should be created to associate the model

properties with the desired elements of a Java class and generate the code.

First, a text generator is defined to create the Packet class that can have any

number of properties. Listing 4.4 shows this generator.

1 Packet[

2 packetId:long ,

3 packetData:String

4]

Listing 4.3: Sample Data Model

1 text gen component for concept Packet {

2 file name : <Node.name >

3 extension : (node)->string {

4 ".java";

5 }

6 encoding : utf -8

7 text layout : <no layout >

8 (context , buffer , node)->void {

9 append {public class } ${node.name} { {} \n ;

10 increase depth ;

11 append $list{node.listOfPacketProperties} \n ;

12 decrease depth ;

13 append {}} ;

14 }

15 }

Listing 4.4: Text Generator for Packet Class

The generated file name and its extension are defined at the top of every

text generator. Then, starting from line 9, the text that we want to generate is

appended to the output buffer. node in this piece of code represents a Packet

model. So, if we create a model of type Packet and name it Data the following

29

line:

append {public class } ${node.name} { {} \n ;

results in the following output:

public class Data {

The $listnode.listOfPacketProperties line adds all the generated code from

text generators of every property to the Packet model (listOfPacketProperties

is a property defined for this model). It is also possible to manage indentation

in the generated class with increase depth and decrease depth commands.

Listing 4.5 shows the text generator that generates the code for the dec-

laration of each property in the Packet model and the associated getters and

setters. Each property is defined using the PacketProperty model that includes

a name and a type for that property. node in this text generator represents

a PacketProperty model. It is worth mentioning that this generator does not

create a file (hence no sign of defining file name or extension) and just gen-

erates the code that is appended to the output buffer in the Packet model

generator.

1 text gen component for concept PacketProperty {

2 (context , buffer , node)->void {

3 append \n ;

4 append {private } ${node.type} { } ${node.name} {;} \n \n ;

5
6 append {public } ${node.type} { } {get} ${node.name} {(){}

\n ;

7 increase depth ;

8 append {return } ${node.name} {;} \n ;

9 decrease depth ;

10 append {}} ;

11
12 append \n \n ;

13
14 append {public void set} ${node.name} {(} ${node.type} { }

${node.name} {) {} \n ;

15 increase depth ;

16 append {this.} ${node.name} { = } ${node.name} {;} \n ;

17 decrease depth ;

18 append {}} ;

30

19
20 append \n;

21
22 }

23 }

Listing 4.5: Text Generator for Properties

Using these two generators the Packet model is transformed into a com-

plete .java file with all the properties, access modifiers and getter and setter

methods. This resulting Java class is demonstrated in Listing 4.6.

1 public class Packet {

2
3 private long PacketId;

4
5 public long getPacketId (){

6 return PacketId;

7 }

8
9 public void setPacketId(long PacketId) {

10 this.PacketId = PacketId;

11 }

12
13 private String PacketData;

14
15 public String getPacketData (){

16 return PacketData;

17 }

18
19 public void setPacketData(String PacketData) {

20 this.PacketData = PacketData;

21 }

22
23 }

Listing 4.6: Generated Java Code

4.3 Designing AHL in MPS

In order to design AHL, we used the following aspects of a language provided

in MPS for defining a DSL:

• Structure: Structure part of a language defines all the concepts included in

that language. We defined our basic concepts such as a BLE characteristic

31

or a database column. Then, more complex concepts were defined based on

these basic ones: a database table consisting of multiple database columns,

a BLE service consisting of multiple characteristics and characteristic packs,

etc.

• Editor: Each concept has an editor. These editors define how a concept is

displayed to the user when a file of that concept is created. Fig 4.1 shows

the editor for each database column in AHL.

Figure 4.1: A Simple Concept Editor

After defining this editor, a database column will be portrayed in the same

way in any place that the database column concept is used. Figure 4.2

shows the effect of this editor when the database column is used in the table

concept.

Figure 4.2: Effect of the Concept Editor

• TextGen: TextGen aspect defines model to text transformation in MPS.

TextGens can generate source code files or snippets based on the type of the

model. There is no limit on the target language or file format since these

attributes are defined by the DSL developer.

• Generator: Generators in MPS perform model to model transformations.

A project can have multiple generators, and each generator can have multi-

ple rules including pre and post processing scripts, reduction and mapping

32

rules, etc. In Section 4.5, we will discuss generators and the way we used

them in details.

4.3.1 AHL Concepts

In MPS, concepts are definitions that describe the abstract structure of a

syntax element in a DSL. Therefore, creating a DSL starts with defining its

concepts. Our language includes the following concepts (Figure 4.3):

Figure 4.3: AHL Metamodel

• Characteristic: This concept defines a single BLE characteristic. Every

characteristic concept has three properties: name, uuid, and type.

• CharacteristicPack: In some cases, developers bundle related data items

in a pack and access each item using its length and start byte. Character-

33

isticPack defines that kind of data representation and has name and uuid

properties.

• CharacteristicPackItem: This concept defines single items in a charac-

teristic pack and has four properties: name, start byte, length, and type.

• BleService: BleService concept defines a single BLE service. Each concept

of this type includes a list of characteristics and a list of optional charac-

teristic packs. Depending on the BLE profile, there can be one or multiple

BLE services on the physical peripheral device.

• BleServices: This concept packs single BleService concepts together. The

main purpose of this concept is an easier model to model transformation

that will be explained later.

• Configurations: Configurations is the biggest concept in our language and

includes database configurations, database tables, and BLE services. This

concept is mainly designed so that developers can easily provide all of the

information required for code generation in one single file.

• DbColumn: This concept defines a database column that is used in DbTable

concept. DbColumn properties are: type, nullable and documentation (com-

ment).

• DbInfo: DbInfo defines information about the content provider and database

classes to be generated, including database file name and version, class and

package names for the content provider, etc.

• DbTable: DbTable defines a database table and includes a list of database

column concepts.

• DbTables: This concept defines a list of database tables. Mainly used for

an easier model to model transformation.

34

4.4 The Application Specification Plugin

MPS comes with tools that give DSL developers an option to create IntelliiJ

IDEA plugins for their languages and distribute it to users. DSL developers

can create a build script in their MPS project and define features of their plu-

gin. They also need a working installation of IntellJ IDEA with MPS plugin

installed on it that will be referenced in this script and will be used for gen-

erating the DSL plugin. This script will generate an Apache Ant build script

that includes all the information about the designed language, the required

features and the path to IntelliJ IDEA installation. Running this Ant script,

either in MPS or independently using Ant build tools, will create a zip file as

the plugin which can be installed on IntelliJ IDEA.

We used this feature to create a plugin that packs our language and its

concepts, editors, model transformations and code generators. This plugin, in

combination with MPS plugin for IntelliJ IDEA, provides the tools for creating

AHL models and write the code in this language.

To use AHL scripts and code generators, the developer creates an MPS

module in their Android project and specify AHL as the language they want to

use. After that, they will be able to create AHL root models (Fig. 4.4). These

models include database configurations, database tables, BLE Service (a single

service), BLE Services (a collection of services), and BLE Characteristic Packs

(a collection of BLE characteristics) that can be created separately. Another

option is creating an AHL configuration model that includes all of the other

models (Fig. 4.5). Both methods generate the same code. We provided both

options to make organizing and managing models easier for small and big

projects.

4.5 The Process of Code Generation

In this section, we describe the steps involved in the process of generating code

using our framework.

35

Figure 4.4: Creating Models in IntelliJ IDEA

Figure 4.5: Available AHL Models

4.5.1 Creating Concepts and Writing AHL Code

As previously mentioned, all AHL concepts are included in the provided plugin

and are available to the user. These concepts can be created like a new file

in the project. After creating concepts, the user can start writing AHL code.

The code written in each concept follows the rules defined in the editor for it.

4.5.2 Running MPS and AHL Wrapper

We mentioned that model to text transformation can be defined using the

TextGen aspect of a language in MPS. We created TextGen for five of our

major models in ordered to generated code for solutions defined based on the

following concepts:

• CharacteristicPackItem: Every characteristic pack item is transformed

36

into a Java property with corresponding getters and setters. The generated

code from this TextGen for each item will be used in the class generated for

each characteristic pack.

• CharacteristicPack: Each characteristic pack is turned into a java class.

The TextGen for this concept defines the class and appends the code gen-

erated from each characteristic pack item.

• BLEService: The TextGen for each BLE service generates a java class with

single characteristic and characteristic packs as properties and getters and

setters for each property. It is taken into account that each characteristic

pack is a class and a type itself.

• DbInfo: This model is transformed into a JSON file named config.json

which is one of the files required by the Android Content Provider Generator

library for generating the content provider.

• DbTable: There can be one or more database tables defined based on

DbTable. This concept has a TextGen that transforms it into a JSON

file describing the table based on the Android Content Provider Generator

library standards. Each table defined based on DbTable will be converted

to a separate JSON file.

Other than having separate concepts for different components of our frame-

work, we have also defined an all-in-one Configuration concept that includes

all the other concepts. Using this concept, users can provide all the informa-

tion required by the framework in a single solution file. However, it is not

possible to have multiple TextGens for a single concept and generate multiple

source code files from it. So, we defined model to model transformations using

the generator aspect of languages in MPS to map each part of Configuration

to other concepts and then execute the model to text transformations using

already defined TextGens.

As a part of the code generation process, we created a Java class called

AHL Wrapper that runs the Android Content Provider Generator library as

37

one of its tasks. This library generates the code for the data storage component

of our architecture.

4.6 AHL Wrapper

MPS does not support creating project structure and generating files in mul-

tiple folders or packages. All the generated files and classes are placed in a

single folder. Additionally, even though configuration files for Android Content

Provider Generator are generated using MPS, running it as a Java application

cannot be done with MPS. To overcome these issues, we created a wrapper

class written in Java that performs the following tasks after the MPS code

generation is done:

• Creating packaging structure: At first, the wrapper class creates all the

required Java packages in the project.

• Moving files and classes: Then, the wrapper class will move generated

and the pre-written classes and resource files to their right place in the

Android project.

• Running Android Content Provider Generator: Using the JSON con-

figuration files generated by MPS and moved by the wrapper as the input,

ACPG library is called to generates the content provider in its right package

in the Android project.

• Giving the update instructions for Gradle build files and Android-

Manifest.xml: At the end the wrapper class prints out some instructions

for updating two sets of files: a) Gradle build files for adding the required

libraries to the Android project and b) the AndroidManifest.xml for request-

ing permissions and adding the service and the content provider definitions

to the Manifest.

After defining the configurations and building the Android project for the

MPS generator to kick in and generate the files, the user runs the wrapper to

perform the mentioned tasks and finish up the work.

38

Chapter 5

Developing an Application with
AHL Framework

In this chapter, we introduce Redliner as an activity tracker system for wheelchair

users. Then we go through the steps to generate the code for multiple com-

ponents of the accompanying Android application using AHL IntelliJ IDEA

plugin and AHL Wrapper. In order to do this, we create an Android project

and start the code generating process. When it’s done, the generated code

will be added to the project and is ready to use.

5.1 What is Redliner?

Redliner is a wheelchair activity monitor that can measure upper body over-

exertion (Redline events) for wheelchair users. By measuring different metrics,

the Redliner system allows users to be aware of their activities and be notified

in case of over-exertion. A peripheral device, which includes multiple sensors

and has a BLE module installed on it, is attached to the wheelchair and

connects to Android phones. The Redliner activity monitor, in the form of an

Android application, periodically connects to this device via BLE, reads the

data and stores it in a database on the device. Then the app uses this data

to visualize multiple metrics such as Redline events, velocity, the number of

pushes, etc.

39

5.2 Generating the Redliner Application with

AHL

In this section, we will describe the process of generating the code for the Red-

liner application. We assume that IntelliJ IDEA with MPS plugin is already

installed and ready to use.

• Step 1 - Installing the AHL Plugin: We install the AHL plugin for

IntelliJ IDEA which is provided as a zip file. This can be done in the

Plugins section of IDEA settings by choosing the Install plugin from disk...

option.

• Step 2 - Creating a New Android Project: IntelliJ IDEA commu-

nity edition comes with Android Studio plugin pre-installed. We create a

standard Android project in IntelliJ IDEA (Figure 5.1).

Figure 5.1: Creating a New Android Project

• Step 3 - Creating a Java Library Module: We create an Android Java

Library module for the application. This can be done by a right-click on the

project’s name and selecting New > Module > Android > JavaLibrary

40

(a) Creating an Android Java Library (b) Java Library Configuration

Figure 5.2: Android Java Library Module Configuration

(Figure 5.2a). We will name this module AHL and configure it in the way

demonstrated in (Figure 5.2b.

• Step 4 - Copying the AHL Development Bundle into the Project:

Then we copy the AHL Development Bundle folder into the root of the newly

created Java library module. This folder includes the following items: a set

of generic Java classes that are already written and can be used without any

changes, Android Content Provider Generator library, a src gen folder as the

destination for the MPS code generator and an src folder that includes the

AHL Wrapper Java class.

• Step 5 - Creating an MPS Module: Now it’s time to setup MPS. We

add an MPS module to the project. MPS is listed under the Java section in

the New Module window (Figure. 5.3). The relative path to models folder

can be customized while creating the module. This path only matters to

the MPS module and can be changed or left as default. Either way, it won’t

affect the code generation process.

• Step 6 - Configuring the MPS Module: Now if we right click on the

project (or on any other module) and choose Open Module Settings item,

we can access the module settings for the project and configure our MPS

module. Under the Paths tab, we set the output folder for the generated

code to src gen in our AHL module. Also, we add AHL as a language

41

Figure 5.3: Adding a MPS Module to the Project

to the MPS module under Languages tab. Figure 5.4 demonstrates these

configurations.

After these steps, the project structure will look like Figure 5.5. The app

module, the default module for Android applications, can be seen in the

structure.

• Step 7 - Creating AHL Concepts: Now we can right click on the model

folder in the MPS module (specified in Step 5, while creating the module)

and create a new root model and name it AHL. AHL defined concepts can

be created under this model. We create an AHL Configuration File to define

all the configurations for Redliner. As explained before, there is an alternate

way of defining configurations. Each section of the Configuration concept

can be a separate file which is beneficial for big projects. However, for the

sake of simplicity, we will stick to defining everything in a single file using

the Configuration concept.

The newly created file looks like Figure 5.6. By pressing Enter key on

<< ... >> signs, the definition for that sections will be generated. Since

MPS uses projectional editors, everything that appears in this file is already

42

(a) Output Path Configuration (b) Adding AHL to MPS

Figure 5.4: MPS Module Configuration

defined in the editor for the Configuration concept and the user cannot add

anything extra to the file.

• Step 8 - Writing AHL Code: We fill out the configuration file based on

the Redliner project specifications. The database includes one table with

all the metrics from the device as columns (Figure 5.7). The BLE Service

part is also completed with information from the Redliner BLE protocol

(Figure 5.8). This protocol defines a Data service with three characteris-

tics representing packet information required for reading packets, and two

characteristic packs that package the packet data.

• Step 9 - Generating MPS Code: Now we will make the project. This can

be done through the Build menu in IntelliJ IDEA, choosing Make Module

from the right click menu on the root module of the project, or using Ctrl

+ F9 shortcut. The make command will trigger the MPS generator that

defines the model to model transformation and all the TextGen aspects that

perform source code generation. In the end, the code will be generated in

the src gen folder of the AHL module.

• Step 10 - Running the AHL Wrapper: At last, we run AHL Wrapper

to finish the process. At first, AHL Wrapper creates the package struc-

ture in the Android module. Then it runs the Android Content Provider

Generator library, using the JSON files generated by MPS, to create the con-

43

Figure 5.5: Project Structure After the Setup

tent provider. At last, all the generated classes and the pre-written generic

classes will be moved to their right packages in the project. After this point,

AHL and MPS modules are no longer needed and can be removed from the

project.

44

Figure 5.6: AHL Configuration File

Figure 5.7: Redliner Database Configuration

45

Figure 5.8: Redliner BLE Configuration

46

Chapter 6

Evaluating the AHL Framework

In chapter 5, we briefly described the Redliner application and discussed the

process of developing an application and generating the code for its essential

components as proof of concept. In this chapter, we compare the application

that was generated through that process with the original Redliner application

developed from scratch in terms of functionality and more quantifiable metrics

such as line of code and number of classes. To investigate further, we also

created an application for a BLE nearable technology called Estimote Stickers

and compared to the application developed by another developer it in the same

way.

6.1 Redliner vs. AHL Redliner

Other than the common functionality components that were described in the

previous chapter, Redliner has a UI component that is consist of the following

activities 1:

• Dashboard: This activity lists different metrics and provides a link to

visualizations for each one (Figure 6.1a).

• Visualizations: Each metric is visualized based on time in a separate ac-

tivity (Figure 6.1b).

• Device Manager: This activity lists nearby Bluetooth devices and allows

1Activties are interactive screens in Android application.

47

(a) Dashboard (b) Visualizations

Figure 6.1: Redliner Activities

the user to pick the Redliner device and pair it with the phone. Removing

a paired device is also possible in this activity.

Out of these three kinds of activities, only the last one is available in the

application generated by our framework. Figure 6.2 shows the AHL produced

activities including the device manager that has the complete functionality

of the same activity in the Redliner application (6.2b). The other generated

activity is an empty main activity with a floating action button that launches

the device manager (Figure 6.2a). Clearly, developers can remove this button

and launch the device manager from anywhere that is appropriate based on

their design.

On the other hand, most of the code that provides functionality in the

background is produced by AHL. To verify that the generated application is

working properly, we added the BLE Reader code from the Redliner Android

application to AHL Redliner, generated AHL Redliner APK file and installed

it on a Nexus 6 phone running Android 7, Nougat. Then we turned on a

48

(a) Main Activity (b) Device Manager Activity

Figure 6.2: AHL Redliner Activities

Redliner prototype device that generates random dummy data. A blue LED

light on the device was indicating that the Android service in the application

is successfully connecting to the device and reading the packets every five

minutes. In order to investigate this further and at the same time ensure that

the database system is working as well, we pulled the application’s database,

named packets.db, from the Android phone (this name was defined in the AHL

configuration file in the process of generating the code). We used DB Browser

for SQLite tool 2 to browse the database. Figure 6.3a shows that the structure

defined in AHL configuration file is successfully created. Figure 6.3b proves

that the dummy data from the device is inserted into the database.

6.1.1 Functionality Comparison

If we exclude the UI component, that is partly generated, most of the other

functionalities of the Redliner application are available in AHL Redliner. List-

2http://sqlitebrowser.org/

49

(a) Database Structure (b) Database Rows

Figure 6.3: AHL Redliner Database

ing, pairing and unpairing devices (the background BLE code), data persis-

tence using Android content providers and all the service components are pro-

duced by AHL. The only missing part is reading from a BLE device which, as

discussed before, is heavily device dependent. We provided a comparison of the

two applications in terms of functionality in Table 6.1. Dashboard and graph-

ical representations are a part of the UI component. Listing devices, pairing

and removing a device functionality have both UI code and background code

and all of it is produced by the framework.

Functionality Redliner
AHL

Redliner

Dashboard ✓ x

Listing Nearby Devices ✓ ✓

Pairing a Device ✓ ✓

Remove a Paired Device ✓ ✓

Reading from a Device ✓ x

Data Persistence ✓ ✓

Boot Receiver ✓ ✓

Alarm Receiver ✓ ✓

Android Service ✓ ✓

Graphical Reperesentations

/ Charts
✓ x

Table 6.1: Redliner vs. AHL Redliner in Terms of Functionality

50

6.1.2 LOC Comparison

In order to evaluate our work in a more quantifiable manner and show the

amount of the generated code, we performed a comparison in terms of lines

of code (LOC). The results are provided in Table 6.2. First, this comparison

shows all of the classes and nearly all of the code that provide some func-

tionality in the background are generated by AHL. The only background code

that must be implemented by the user is a part of the BLE communication

class that is responsible for reading from a device. That is the only difference

between these two application when it comes to the background code.

Moreover, even though generating UI code is not the focus of our frame-

work, 25% of XML and 24% of Java code for the UI is generated through

AHL. Java classes related to UI include activities, fragments and Android list

adapters.

It is worth mentioning that we excluded all comments and empty lines when

counting lines of code to get a better understanding of the actual percentage

of the code generated by AHL.

of Classes
of UI

Related Classes

LOC (Java -

Functionality) *

LOC

(Java - UI) *

LOC

(Java - Total) *

LOC

(XML)

Original

Redliner
36 14 2235 910 3145 1263

AHL

Redliner
25 3 1970 216 2186 315

% of Generated

Code
69% 21% 88% 24% 70% 25%

* Comments and empty lines are not counted.

Table 6.2: Redliner vs. AHL Redliner in Terms of Line of Code (LOC)

6.2 Estimote Reader vs. AHL Estimote Reader

Estimote Stickers 3 are customizable BLE sensors that can be attached to ob-

jects and provide context awareness by broadcasting data packets. These data

packets include information like x, y and z accelerometer values, temperature

and a boolean value that indicates whether the sticker is in motion. These

stickers are used to track movements in a research project called Smart Condo

3http://estimote.com/

51

(a) Database Structure (b) Database Rows

Figure 6.4: AHL Estimote Reader Database

4. As a part of that project, an Android application connects to the Estimote

stickers, collects their data and stores them in a file. This application is in early

stages of development, and some of its requirements are not implemented yet.

As a method to evaluate our work, we followed the steps described in chapter

5 and created an Estimote Reader application with AHL.

For the database, we defined one table with a column for the following

values existing in the packets: RSSI (Received Signal Strength Indication)

value and x, y, z values from the sticker’s accelerometer. Figure 6.4a shows

that the database is created and Figure 6.4b shows that the data from the

stickers are successfully inserted into the database.

6.2.1 Functionality Comparison

We sat down with the researcher who is working on the Estimote Reader

application and managed to develop a fully functional application with AHL

in just an hour. In order to adapt the generated application to the project

requirements, we had to make some changes. Estimote provides an SDK for

handling communications with their devices. This SDK provides function calls

for searching for devices and reading from them. Therefore, we removed the

BLE Scanner component of our framework. Also, since there is no need to

pair stickers with the phone, we also removed the Device Scanner component

which was providing an interface for pairing and managing devices.

4http://www.hserc.ualberta.ca/Resources/Spaces/SmartCondo.aspx

52

Other than the BLE Reader component, that is provided by Estimote SDK

in this project, AHL covers all the other components of the Estimote Reader

application. We compared the original Estimote reader to the AHL produced

application in terms of functionality in Table 6.3.

Functionality
Estimote

Reader

AHL

Estimote

Reader

Reading from a Device ✓ x

Data Persistence ✓ ✓

Boot Receiver ✓ ✓

Alarm Receiver ✓ ✓

Android Service ✓ ✓

Table 6.3: Estimote Reader vs. AHL Estimote Reader in Terms of Function-
ality

6.2.2 LOC Comparison

Since Estimote Reader is in an early stage of development, our framework gen-

erated more code than the original application. More specifically, there is no

service implemented in Estimote Reader and the data persistence mechanism

is not standard. Reading from stickers and storing the data is triggered when

the application is launched and it stops when the it is closed by the user. This

means that there is no background data collection. Also, this application stores

the data in a file and this file is supposed to be transferred to a server over the

network for further processing. This is not a standard way of handling data

storage in Android; rather a temporarily solution. A proper database makes

this data exchange much easier, especially when it is done regularly which

makes transferring the whole file impractical. The content provider generated

by AHL solves this problem and makes data storage standard and scalable in

this application.

In terms of user interface, the only UI part in AHL Estimote Reader is

the MainActivity class which is the default activity in Android. That explains

the generated UI code even though AHL Estimote Reader does not cover any

53

UI requirements. The original application lists the surrounding stickers in the

main activity which is not necessary to its functionality and is implemented

for debugging purposes. That is the reason for the higher amount of XML and

Java UI code in the original Estimote Reader.

of Classes
of UI

Related Classes

LOC (Java -

Functionality) *

LOC

(Java - UI) *

LOC

(Java - Total) *

LOC

(XML)

Estimote

Reader
9 4 285 368 653 233

AHL

Estimote

Reader

21 1 1191 24 1215 112

% of Generated

Code
233% 25% 418% 7% 186% 48%

* Comments and empty lines are not counted.

Table 6.4: Estimote Reader vs. AHL Estimote Reader in Terms of Line of
Code (LOC)

54

Chapter 7

Conclusion and Future Work

In this thesis, we introduced the AHL framework for a systematic development

of applications working with peripheral BLE devices. We defined a general

architecture for applications communicating with such devices and described

the common components among them. Then, using JetBrains MPS, we created

a domain specific language that allows developers to define their application

requirements in configuration files and generate the code for the components

defined in the general architecture. These components include an Android

service and related alarm manager and broadcast receivers, a content provider

incorporating a content resolver and an SQLite database, and UI elements for

detecting and managing Bluetooth devices. Parts of the BLE communications

code, which are not device specific, are also generated by our framework.

We provided an IntelliJ IDEA plugin that makes the code generation possi-

ble from within an Android application project in IDEA. This plugin includes

our domain specific language and all of its tools and enables users to add a

model module to their application and define their requirements. After that,

the AHL framework will use these defined requirements and add the generated

code to the project.

Using this framework does not require prior knowledge of the generated

components and their concepts. These components are complicated and time-

consuming to implement. The code generated by AHL is fully functional and

does not need any modifications. This means developers do not have to learn

how to implement or modify these components because using them does not

55

require knowledge of how they work.

The contributions of this work are as follows:

• We defined a general architecture for Android application work-

ing with physical BLE devices. This architecture laid out all the

common components among applications working with BLE devices. Us-

ing this, we build other parts of our framework to automate the process

of implementing as many of those components as possible.

• We developed a modeling language that describes components

of an application working with BLE devices. Using this language

developers can define their components’ configurations such as database

tables and their BLE specifications and the AHL framework takes it from

there and produces the code.

• We developed a framework that allows Android developers gen-

erate code for their application in an easy and efficient way.

AHL turns the tedious task of implementing content providers, services,

etc. that usually takes weeks into a fast process that can be done in a

few hours. The Redliner Android application is a part of the Redliner

platform which will hit the market in the near future. We generated

most parts of this application in less than 30 minutes and illustrated the

process in 10 steps.

• We evaluated our framework by developing two applications

and comparing them to the applications developed from scratch

for the same purpose. We added the code already written for reading

from the Redliner BLE device to the AHL generated Redliner and com-

pared this functional application to the one built from scratch. On top

of that, we developed an application for working with Estimote Stick-

ers in an hour and compared it to the original application developed by

another developer.

In the future, we are planning to update our DSL with new syntax, so it

is possible to define the order in which BLE characteristics will be read by an

56

application. Using this methodology, our framework will be able to generate

some parts of the BLE Reader component. However, the parts related to

specific BLE protocol on each physical device will still be left for developers

to implement. Also, it is possible to make AHL framework more general in

the future. By augmenting it with more auto-generated components, it can

be used for other types of applications. Naturally, developers will define the

components they need and the code only for those will be generated by the

framework.

57

Bibliography

[1] Idc: Smartphone os market share 2015, 2014, 2013, and 2012.
http://www.idc.com/prodserv/smartphone-os-market-share.jsp, [Online;
accessed 22-July-2016].

[2] Cross-platform tool benchmarking 2014. http://research2
guidance.com/cross-platform-tool-benchmarking-2014/, [Online; ac-
cessed 09-December-2016].

[3] Clint Wheelock Aditya Kaul. Wearables: 10 trends to watch. Technical
report, Tractica, Boulder, Colorado USA, 2015.

[4] Wearables market to be worth $25 billion by 2019.
http://www.ccsinsight.com/press/company-news/2332-wearables-
market-to-be-worth-25-billion-by-2019-reveals-ccs-insight, [Online;
accessed 10-November-2016].

[5] Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how
to develop domain-specific languages. ACM computing surveys (CSUR),
37(4):316–344, 2005.

[6] Xtext - language engineering made easy! https://eclipse.org/Xtext/,
[Online; accessed 10-November-2016].

[7] Emftext. http://www.emftext.org/index.php/EMFText, [Online; ac-
cessed 10-November-2016].

[8] Jetbrains meta programming system. https://www.jetbrains.com/mps/,
[Online; accessed 10-November-2016].

[9] Eclipse modeling framework. http://www.eclipse.org/modeling/emf/,
[Online; accessed 10-November-2016].

[10] Graphical modeling project. http://www.eclipse.org/modeling/gmp/,
[Online; accessed 10-November-2016].

[11] Atom3 a tool for multi-formalism meta-modelling.
http://atom3.cs.mcgill.ca/, [Online; accessed 10-November-2016].

[12] Metaedit+ domain-specific modeling tools.
http://www.metacase.com/products.html, [Online; accessed 10-
November-2016].

58

[13] Overview of domain-specific language tools.
https://msdn.microsoft.com/en-us/library/bb126327.aspx, [Online;
accessed 10-November-2016].

[14] Vicente Pelechano, Manoli Albert, Javier Muñoz, and Carlos Cetina.
Building tools for model driven development. comparing microsoft dsl
tools and eclipse modeling plug-ins. In DSDM, 2006.

[15] Philip De Smedt. Comparing three graphical dsl editors: Atom3,
metaedit+ and poseidon for dsls. Preprint, Submitted to Elsevier, Uni-
versity of Antwerp, 2011.

[16] Xtend - modernized java. https://eclipse.org/xtend/index.html, [Online;
accessed 10-November-2016].

[17] Acceleo. https://eclipse.org/acceleo/, [Online; accessed 10-November-
2016].

[18] Generator overview mps 3.3 documentation confluence.
https://confluence.jetbrains.com/display/MPSD33/Generator+Overview,
[Online; accessed 10-November-2016].

[19] Abilio G Parada and Lisane B de Brisolara. A model driven approach
for android applications development. In Computing System Engineering
(SBESC), 2012 Brazilian Symposium on, pages 192–197. IEEE, 2012.

[20] Abilio G Parada, Eliane Siegert, and Lisane B de Brisolara. Generat-
ing java code from uml class and sequence diagrams. In 2011 Brazilian
Symposium on Computing System Engineering, 2011.

[21] Richard Membarth, Oliver Reiche, Frank Hannig, and Jürgen Teich. Code
generation for embedded heterogeneous architectures on android. In Pro-
ceedings of the conference on Design, Automation & Test in Europe,
page 86. European Design and Automation Association, 2014.

[22] Woo Yeol Kim, Hyun Seung Son, Jae Seung Kim, and Robert Young Chul
Kim. Adapting model transformation approach for android smartphone
application. In Advanced Communication and Networking, pages 421–429.
Springer, 2011.

[23] Woo Yeol Kim, Hyun Seung Son, and Robert Young Chul Kim. Design of
code template for automatic code generation of heterogeneous smartphone
applications. In Advanced Communication and Networking, pages 292–
297. Springer, 2011.

[24] Ayoub Sabraoui, Mohammed El Koutbi, and Ismail Khriss. Gui code
generation for android applications using a mda approach. In Complex
Systems (ICCS), 2012 International Conference on, pages 1–6. IEEE,
2012.

[25] MOHAMED LACHGAR and ABDELMOUNAÏM ABDALI. Modeling
and generating the user interface of mobile devices and web development
with dsl. Journal of Theoretical & Applied Information Technology, 72(1),
2015.

59

[26] Meera Radhakrishnan, Archan Misra, Rajesh Krishna Balan, and
Youngki Lee. Smartphones and ble services: Empirical insights. In Mo-
bile Ad Hoc and Sensor Systems (MASS), 2015 IEEE 12th International
Conference on, pages 226–234. IEEE, 2015.

[27] Android api guides - bluetooth low energy.
https://developer.android.com/guide/topics/connectivity/bluetooth-
le.html, [Online; accessed 20-July-2016].

[28] Processes and application life cycle. https://developer.android.com/guide
/topics/processes/process-lifecycle.html, [Online; accessed 27-July-2016].

60

	Introduction
	Motivation
	Contributions
	Thesis Outline

	Literature Review
	Model-Based Code-Generation Environments
	Domain Specific Languages
	DSL Designing Tools
	Code Generators

	Code Generation for Android

	Background
	Android Related Technologies
	Bluetooth Low Energy
	Android Content Providers
	Android Services
	Android Alarms and Broadcast Receivers

	Generic Architecture of BLE Applications
	Device Scanner
	Service
	Data Storage
	BLE

	The AHL Application Construction Framework
	Android Content Provider Generator
	JetBrains Metaprogramming System (MPS)
	Designing AHL in MPS
	AHL Concepts

	The Application Specification Plugin
	The Process of Code Generation
	Creating Concepts and Writing AHL Code
	Running MPS and AHL Wrapper

	AHL Wrapper

	Developing an Application with AHL Framework
	What is Redliner?
	Generating the Redliner Application with AHL

	Evaluating the AHL Framework
	Redliner vs. AHL Redliner
	Functionality Comparison
	LOC Comparison

	Estimote Reader vs. AHL Estimote Reader
	Functionality Comparison
	LOC Comparison

	Conclusion and Future Work
	Bibliography

