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ABSTRACT

Vortex dynamics at fluid interfaces is discussed. Special emphasis

is placed on the dynamics near a free surface.

The kinematics required at a free surface is discussed in detail.
The level of vorticity required at the interface is calculated from
the motion of the surface normal. Previous results restricted to
special geometries are generalized and the role of the surface ge-

ometry is included.

Geometry effects on vorticity flux from a free surface is addressed.
Contrary to previously published work these results show vortex
lines may be straight and geometry-induced vorticity flux is pro-
duced; conversely vortex lines may be curved and no geometry-
induced vorticity flux is produced. A convenient method for as-
sessing vorticity flux from a steady surface based on Gaussian

curvature is derived.

The vorticity transport equation is derived for a thin interface
with variable density and viscosity. Viscosity gradients add sev-
eral new terms to the vorticity transport equation. These new
terms show vorticity is created not only by baroclinic torques but
by torques due to viscosity gradients and a coupling of density
gradients with viscosity gradients. These results are compared to

those predic-ting the level of vorticity required at a free surface



discussed earlier.

Observations of vortex rings experimentally produced in two sets

of experiments at a free surface are described.

The first set of experiments reports observations of vortex ring
motion for the first 70 ms after it is created by the impact of a
2.6 mm dyed water drop upon a pool of clear water: Weber num-
ber (&) = 23.2. Precisely controlled multiple exposure pho-
tographs were used to measure the position and shape of the

vortex ring versus time, and calculate velocity.

Refinements to the apparatus for producing repeatable drop-formed
vortex rings are described. Control of parameters leading to re-

producible experiments are addressed in detail.

Further experiments with this refined apparatus using 5.18 mm
diameter drops with Weranging from 11.4 to 76 are reported.
Detailed analysis of the falling drop using image processing tech-
niques are described. Analysis of the vorticity creation process

and vortex ring decay are compared with theoretical results.



Dedicated to the memory of Lloyd Graff



PREFACE

This is the second thesis [ have written about drops impacting a
pool of the same liquid. My first thesis was written for my mas-
ters degree; it examined the three-dimensional vortex structure
created by a drop at short times after impact. This work was
motivated by Professor Sigurdson’s observation of similarities be-
tween a vortex structure created by an impacting water drop and
the nuclear blast.

I began working on this problem with Professor Sigurdson in the
summer of 1989 as an undergraduate summer student. Later I
continued with my masters degree and first thesis on the subject.
At the time, we believed the experiment would be a thrifty way
to do research in the area of coherent structures in turbulence.
My experience has shown that the experiment is far more com-
plex than we initially thought. Experiments are frustrating and
tedious, and the apparatus required was not as inexpensive as we
originally hoped. Perseverance and stubbornness paid off with
the present apparatus. It was sufficiently unique to have been
published in the primary literature.

Our early research left us with many fundamental questions with
no answers in the literature. First, how is the vorticity created
when the drop coalesces with the pool ? This has been one of
the central outstanding issues of our research. Professor Sigurd-
son raised this question at the 1989 American Physical Society
meeting. Since that time a flurry of activity in the literature has
addressed this question and the creation of vorticity at fluid in-
terfaces in general. The current rush of papers on the subject
reflects the relevance to current research. Unfortunately none of
these papers presented a satisfactory explanation of how torques
are applied to a fluid element. This area created a profound
curiosity in myself and directed my education into the areas of
continuum mechanics and elementary differential geometry. In
Chapters 2 3 and 4 I feel I have answered this problem with a
result which at least satisfies my own curiosity.



[ used the Chicago Manual of Style as my primary reference for
matters of style, although the bibliography was organized using
the AA4S conventions. The mathematics were set using the con-
ventions given in the Ap4S documentation. The notation used is,
wherever possible, consistent with that used by Chadwick (1976).
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CHAPTER 1

INTRODUCTION

1.1 Background

This thesis is written in paper format and is divided into two parts. Each
part contains three separate papers. In all, three of these papers have been
published in the primary literature and one is in review. Two more are yet to
be submitted. The status of each paper is noted at the start of each chapter.

This research was undertaken to understand the birth, evolution and
decay of vortex structures produced by impacting water drops. If the drop
fluid is dyed, and the drop is released from not too great a height, a vortex
ring is formed and its evolution can easily be observed as it travels through
the receiving pool.

The first observation of this phenomenon reported in the literature ap-
pears to be Ball (1868) and later Thomson and Newall (1885). These papers
were published during a time of great advances in vortex dynamics and they
reflect a profound interest in the then-developing field. Only ten years before
Ball’s work, Helmholtz published the seminal paper on vortex dynamics in
his native German (Helmholtz, 1858); an English version appeared nine years
later (Helmholtz, 1867). The importance of vortex rings to the scientists of
this period is reflected in an added note to the English version of Helmholtz’s
paper. Here, the first appearance of the classic formula giving the speed of
a vortex ring in an ideal fluid appears, Eq. (7.5) Chpt. 7. This result was
calculated by Kelvin and included without derivation.

Early researchers believed vortex rings represented a fundamental quan-
tity; this view was reflected in the vortex theory of the atom put forward by
Thomson. More recently Maxworthy (1972) suggested that vortex rings may
represent a fundamental structure within turbulence possibly being responsi-
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ble for the sharp demarcation and growth of turbulent boundary layers with
the external flow.

The evolution of vortex rings contains an entire range of topics from
vortex dynamics. Vortex rings form when an axisymmetric vortex sheet
‘rolls up’ to form a circular line vortex. This line vortex is the vortex ring
core. Instabilities may form on the vortex ring. These instabilities have been
the subject of a great deal of attention in the literature. Finally, as Phillips
(1956) showed, all flows decay to a Stokes flow of a vortex ring.

The early experimental works on drop-formed vortex rings mentioned ear-
lier were limited, since they had no way of capturing a visual record of the
phenomena other than hand-drawn sketches. Remarkably, the sketches in
Thomson and Newall (1885) roughly show the complex evolution of the im-
pacting drop into a vortex ring. This was subsequently verified by high-speed
photography. Some of these sketches suggested that a complex structure
forms at early times, from which a stable vortex ring emerges. High-speed
photographs of this phenomena were published by Okabe and Inoue (1961).
One of the photographs from this paper which appears in Batchelor (1967,
Fig. 7.2.3 (1) ) was to become the inspiration for Sigurdson’s comparison
of the atomic blast to the structure visible in the structure created by an
impacting drop (Sigurdson, 1991).

Sigurdson suggested a similar large-scale vortex structure could be con-
structed to model both flows, despite the huge difference in Reynolds num-
bers. Here, the structure is modelled from a series of line-vortices, the dom-
inant structure being a central vortex ring. In the larger view this reflects
Sigurdson’s pursuit of a ‘periodic table of turbulence’: a table of coherent
turbulent structures, with which complex turbulent flows may be understood.

Constructing a vortex model of the structure created shortly after drop
impact was the topic of my M.Sc. thesis (Peck, 1993) and (Peck and Sig-
urdson, 1991, 1992, 1994). While several new results were presented, several
questions remained unanswered. The present work addresses outstanding
fundamental questions raised in these works. New insights into observations
not noticed before are also given.

Part I presents general analytical results on the creation of vorticity at free
surfaces. A critical question was how vorticity was created by the coalescing
drop. This is important not only for this specific problem of impacting drops
but also for the general area of flows involving fluid interfaces. Knowing how
vorticity enters a flow or is created within a region gives insight into the
physics of the problem. For example, in a homogeneous, initially irrotational
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flow, vorticity can only be created at the boundaries from which it then
diffuses into the flow (Truesdell, 1954).

Part II presents experimental work on the specific case of an impacting
drop.

Five appendices are included with this thesis. Appendix E includes sev-
eral useful formulae used in many of the derivations in Part L.

The three chapters comprising Part I, Chapters 2, 3 and 4, discuss the
creation of vorticity at a free surface in three different ways: the state of stress
at a free surface, the Navier-Stokes equations and the vorticity equation.
Each of these chapters are a self-contained journal paper that may be read
individually. Useful results and comments on the notation used can be found
in Appendix E.

The first two chapters of Part I view the interface as a singular surface
(sharp interface) which possesses no thickness. Chpt. 2 looks at the level of
vorticity required by the state of stress imposed by the free surface condi-
tion where the surface is assumed to be a sharp interface. The free surface
condition is that tangential surface tractions are assumed to vanish and only
a constant pressure is exerted on the interface. This work discovers new in-
terpretations of the kinematics required to satisfy this boundary condition.
The derivation is done from the most fundamental assumptions possible and
worked through in its entirety. Although thought to be excessively verbose
by some, paying extra attention to the details of this derivation yielded im-
portant new results previously overlooked in briefer analyses.

Chpt. 3 still uses a sharp interface model but now looks at the effect of
the free surface condition and geometry on the flux of vorticity from the free
surface using the momentum equation. Special attention is paid to situa-
tions where curvature-dependent contributions to the vorticity flux may be
neglected. The topology of vortex lines embedded in the surface is discussed
in this context. These results show that vortex lines may be straight and
geometry-induced vorticity flux is produced; conversely vortex lines may be
curved and no geometry-induced vorticity flux is produced. A convenient
method for assessing vorticity flux from a steady surface based on Gaussian
curvature is derived. There is significant redundancy between the introduc-
tion to Chpt.3 and Chpt. 2, Sec. 3.3 may well be skipped by those familiar
with results from Chpt. 2.

Creation of vorticity at fluid interfaces is discussed in the context of the
vorticity transport equation in Chpt.4. Here, an interface is modelled as a
thin region across which density and viscosity vary rapidly but smoothly. Vis-
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cosity gradients in this region add an extra term to the usual Navier-Stokes
equation. Calculating the curl of this equation reveals curvature-dependent
vorticity production terms. These new terms show vorticity is created not
only by baroclinic torques but by torques due to viscosity gradients and
a coupling of density gradients with viscosity gradients. These results are
compared to those predicting the sign and level of vorticity required at a free
surface discussed earlier.

The second part of this thesis Part [I presents experimental results: Chpt. 5,
Chpt. 6 and Chpt. 7.

Chpt. 5 presents experiments where a scaling law is proposed. Several
measurements of the early-time vortex ring evolution were taken and com-
pared with scaling arguments. The data presented here were acquired after
completeing my M.Sc. and the scaling analysis was not addressed at all in
my M.Sc.. This chapter respesents both new work when compared to my
M.Sc. thesis and original inspiration in the scientific community. These ex-
periments exposed several deficiencies in the apparatus which motivated the
construction of a new apparatus.

Chpt. 6 describes the new apparatus in detail. Recently, several authors
have suggested sophisticated optical measurement techniques such as Parti-
cle Image Velicometry (PIV) would be required to further understand the
dynamics of impacting drops (Durst, 1996; Dooley et al., 1997). Before con-
sidering these expensive experiments, we chose to address the quality of the
experiment itself rather than the sophistication of the measurement tech-
nique. We showed in Chpt. 6 that several parts of this experiment have gone
overlooked even though they could be addressed with ingenuity and patience.

Experiments using this latest apparatus are reported in Chpt.7. The
experimental observations reported in this chapter were acquired using high-
speed photography. A detailed record of the falling drop is recorded us-
ing image-processing techniques. The vorticity creation ideas developed in
Chpt. 2 and Chpt. 4 were used to explain the creation of vorticity by drop im-
pact and subsequent formation of vortex rings. Release heights were chosen
to span the range of We where vortex rings were known to form. Also, a re-
lease height was examined outside of the range where vortex rings are known
to form. Here early-time vorticity creation is observed and is contrasted with
previous results.

A summary of the conclusions from the six chapters forming the body of
this thesis appears in Chpt. 8.
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PArT 1

ANALYSIS OF VORTEX MECHANICS
AT FLUID INTERFACES



CHAPTER 2

ON THE KINEMATICS AT A FREE SURFACET .

2.1 Introduction

In this paper we describe the kinematics required to satisfy the dynamics
of an interface where tangential surface tractions vanish. This assumption
is often used to model air-water interfaces. If the air is assumed to only
exert a constant pressure on the surface, the interface is called a free surface.
Several papers have recently appeared which discuss the presence of vorticity
required at free surfaces (Longuet-Higgins, 1992; Creswell and Morton, 1995;
Rood, 1995; Wu, 1995; Sarpkaya, 1996). In these papers interpretation of
the kinematics at the free surface are either restricted to simple geometries
or left in very general tensor notation. In our work we will carefully examine
and interpret the kinematics near the surface using results from differential
geometry. Our results are especially relevant because of considerable recent
research into complex three-dimensional flow interactions with free surfaces
(Sarpkaya, 1996).

The vanishing tangential surface traction leads to equations that require
one of the principal axes of rate-of-strain to be aligned with the surface
normal n. Longuet-Higgins (1992) and, later, Sarpkaya (1996) interpret this
boundary condition as a requirement for solid rotation of elements on the
surface. In general, there is no requirement for this to be so whether the flow
is two or three-dimensional, Sec. 2.2.1. However, the lack of tangential surface
tractions does set the rotation rate, in the material sense, of the principal axis
of rate-of-strain aligned with n. From this, the level of tangential vorticity
that must be present at the surface can be calculated, Sec. 2.2.2.

tThis chapter is the text of a paper accepted for publication in the IMA Journal of
Applied Mathematics, (Peck and Sigurdson, 1998)

8
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For two-dimensional plane-flow in a frame of reference that makes the
surface stationary,

w = —2Ky, (2.1)

where w is the vorticity normal to the plane of the flow (Longuet-Higgins,
1953; Batchelor, 1967). The velocity component tangential to the plane curve
% is v, where % is formed by the intersection of the flow’s plane and the
surface. When interpreting Eq. (2.1), x has been referred to as merely the
‘curvature’, the normal curvature of the surface, or the curvature of the
streamline on the surface. We will clarify these definitions and discuss the
significance of the Gaussian and mean curvatures.

We use the convention that the curvature and the radius of curvature r
have opposite signs so that & = —;1:. If the surface normal at some point is
chosen to be pointed upward, a surface which curves upward at that point
will have positive curvature, Fig. 2.1.

In a recent paper by Wu (1995) the result

w = —QKmUt (2.2)

appears (Wu’s Eq.(3)), where that paper defines the mean curvature £, to
be the sum of the principal values of curvature. That paper claims this result
is correct for steady, two-dimensional surfaces and later in the same paper
qualifies this to only include two-dimensional flows. Although Eq. (2.2) is
valid on surfaces of translation when the velocity is directed along the curve
which generates the surface of translation, we will show it does not apply
to general two-dimensional axisymmetric flows; Eq. (2.1) is correct for all
two-dimensional flows where the surface is stationary.

We will extend Eq. (2.1) to include arbitrary two-dimensional surfaces
and unsteady three-dimensional flows. In three-dimensional flow, compo-
nents of vorticity not accounted for in Eq-(2.1) may exist which are directed
along the streamline. We will show that vorticity must exist at a curved
surface in a steady flow if the Gaussian curvature and tangential velocity are
nonzero, Sec. 2.2.3. The discussion is concluded with brief comments on the
use of streamline curvature, Sec. 2.2.4.
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Figure 2.1: Deformation of an initially semi-circular fluid element in a two-
dimensional plane flow near the free surface & of a region & . Here it is
understood that u; is directed out of the page. At &} and &, the surface
is concave down and our sign convention gives negative curvature for an
outwardly directed surface normal n.

2.2 Free surface kinematics

2.2.1 Jump conditions

The interface is modeled as a two-dimensional material surface S embedded
in three-dimensional Euclidian space R3!. Two regions of R?, &% and &~
have & as their common boundary. The jump in surface tractions on & is
given by

[t] =~ (& —£,) + ivS, (23)

(Kosiriski, 1986)2. Here, t(,) = on is the surface traction and [ ] denotes
the jump in a quantity on % with surface normal n. For fluids in &%

1For a discussion of the validity of this assumption see Meyer (1982)
2A complete derivation of jump conditions on 5 has been included in Appendix A
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and 2, the Cauchy stress tensor o is assumed to follow the Newtonian
constitutive relation for an isochoric fluid: o = —pI + 2uD. The identity
tensor is denoted with I, p is the pressure and p is the dynamic viscosity.
The symmetric, rate-of-strain tensor is represented by D = (L +LT), where
L = grad(u). We will use u to represent the velocity in the bulk regions and
v to represent the velocity of particles embedded in the surface. v is a space
vector and has components tangential and normal to & v = v, + vn. The
density of the surface per unit area is denoted e, ; the surface body forces
are f_. Eq. (2.3) also includes the effects of mtrmsm surface stress S. In this
paper we will only consider 8 to be the two-dimensional analogue of a stress
in a three-dimensional ideal fluid. As such, 8 will be independent of surface
rate-of-strain or dilation. In this case the constitutive relation for the surface
stress is 8 = ya® @ a,, a* and a, are the contravariant and covariant basis
vectors on & (Scriven, 1960; Aris, 1962). Calculating the divergence, we
obtain

div8 = 2Hyn + grad 7, (2.4)

where the mean curvature H is defined in Eq. (2.21a) and grad _ is the surface
gradient. The coefficient v is the surface tension coefficient and is the two-
dimensional equivalent of pressure in R3.

We resolve t(,) into components tangential and normal to the surface:

ta) = tn) — (M- tm)) + (n - t(a))n

=(I-n®n)on+(n®n)on. (2.5)
tangZutial nor‘trna.l

Substituting Eq. (2.5), Eq. (2.4), and the constitutive relation into Eq. (2.3)
we get two equations. For tangential components we have the vector valued
equation

D n—[n-(Dn)n= #—t{D"'n —[n-(D*n)]n}

L
B roa . (s

e (o= (29
1

+2—Egrady7.

Superscripts {+, —} have been affixed to represent the relevant quantities in
@* and €¢~. Equating the normally directed components we arrive at the
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scalar valued equation

+—__-n-D+n

We introduce the nondimensionlization:

. D

D~ ———
(U/L)

P
(p~U?)

- B

v D ——

(U2L)
H~ HL?

12

(2.7)

(2.8)

where the tilde denotes a nondimensional variable. L is a characteristic length
scale and U is a characteristic velocity. We have assumed p* is constant. In

nondimensional form Eq. (2.6) becomes

D ~[n- @ n)n = () (B*n—[n- (5*n)in}

(80U [ (3£ )
[T 2
+ ( T ) EXeT
Lu 2
and Eq. (2.7) is now
~ - - —pt + -
n D'n=(p UL)p 2p +<£;j>n-D+n

(2.9)

(2.10)
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If ut « p~ the contributions from the rate-of-strain terms in %% — the
second term on the right of Eq. (2.10) — are neglected. Ifp U [u” is assumed
to be small, contributions from the second term on the rlght of Eq. (2.9) are
neglected. Also, at present, we will assume that no surface tension gradi-
ents are present which may arise due to thermal gradients, contamination or
dynamical means. We will return to examine the effects of surface tension
gradients later in the text. With these assumptions Eq. (2.6) becomes

(D - M)n =0, (2.11)

where A = n - (Dn) (the superscripts have been dropped since we will only
be concerned with £2~). This means ) is a principal value of the rate-of-
strain and is directed along n. The value of A is calculated from Eq. (2. 7)

With our supposition of vanishing viscosity in &#*, A = Re Ap/ 2u+ g L“ —1_H,

where Ap is the jump in pressure across the interface and Re = ”T- The
other two principal axes of strain will lie in the surface tangent plane.

From this discussion we see that the jump condition Eq. (2.3) and the
assumptions which lead to Eq. (2.11) requires one principal axis of rate-of-
strain to be aligned with n. This does not imply that the motion of fluid
elements at the surface is locally solid. Longuet-Higgins (1992) suggested
fluid elements at the free surface of purely two-dimensional plane flow were
in solid rotation . For a solid rotation, D = 0. However, Eq. (2.11) shows
that an element is free to deform along an axis, which will be a principal axis
of rate-of-strain, aligned with n at a rate ), Fig. 2.1 . In two-dimensional
flow, the principal axes of strain will remain in the plane and orthogonal;
one axis normal to the surface and one tangential. D takes the form D=
~Au; ® u; + A @ n due to the continuity restriction for an isochoric fluid
divii = tr(L) = tr(D) = Dy + D33 = 0 where D33 = \. Here we have
assigned the subscript 2 with reference to the unit vector uz and the subscript
3 to n. Thus, even in a purely two-dimensional flow, fluid elements at the
surface will not be in solid rotation unless the rate-of-strain directed along
the surface normal is zero. Longuet-Higgins observation that the tangential
shears vanish only assures us that off diagonal terms of D are zero and the
direction of one principal axes of rate-of-strain will remain aligned with n.
Thus, the other principal axis of rate-of-strain will remain tangent to the
surface. We can say the direction of the axes themselves will be in a state
of continuous solid rotation — not necessarily the fluid element however. We
note that while Longuet-Higgins’ physical interpretation was misleading it
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does not affect any of the calculations in that paper.

In three-dimensional flows, there may be components of vorticity normal
to the surface. Also, there are no restrictions on the deformation of an
element along the principal axes of rate-of-strain in the tangent plane. A
solid rotation D = 0 would imply that any vorticity intensification due to
stretching of vortex lines would vanished as the vortex-lines approach the
surface. This is clearly not so.

2.2.2 Vorticity

To calculate the vorticity, we use the decomposition L = D + W, where
W = L(L — LT) is the spin tensor. We solve for D and substitute into
Eq. (2.11):

Ln—-Wn-n-(Ln)n+n-Wn=0. (2.12)

Adding and subtracting LTn to Eq. (2.12) gives the convenient form

Ln—-LTn-Wn +£,Tn - [13.' (Ln)jn =0. (2.13)
2Wn —n

Now, the material derivative of the surface normal n appears. We refer the
reader to Appendix B for a derivation of n (Chadwick, 1976). Since W is
skew-symmetric Wn = $ X n. Eq. (2.13) is rewritten

w X n=2n. (2.14)
Crossing Eq. (2.14) with n gives the expression for the vorticity:

w—(n-wn=2nXn. (2.15)
we
The left side of Eq. (2.15) is the tangential component of vorticity w;. The
right represents the surface normal’s angular velocity.

We can interpret these equations in terms of the Cauchy-Stokes decompo-
sition, where a fluid motion is described as a translation, a deformation along
three mutually orthogonal axes and a rotation of these axes (Aris, 1962). In
our case the translation of a fluid element will be constrained by the material
nature of the interface so that particles of the element in contact with the
surface will remain so. From Eq. (2.11) we know that one of the principal
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axes of deformation will remain aligned with the surface normal. The rate-
of-rotation of this axis is given by Eq. (2.15); thus, the tangential vorticity
is given by twice the angular velocity of n. Likewise, the normal vorticity
would be given by twice the instantaneous rate of rotation of the principal
axes of strain which must necessarily lie in the tangent plane. This is an
example of the elegant interpretation of vorticity attributed to Boussinesq
by Truesdell (1954), which is, that vorticity is twice the instantaneous rate
of rotation of the principal axes of strain; see Appendix C for details.

The curvature-independent surface gradient term may need to be included
in Eq. (2.6) if the surface tension gradients are of similar magnitude to the
bulk dynamic viscosity. The vorticity becomes

. 1
wg=2n X n+ ;n X grad 7, (2.16)

so that even when n = 0 a gradient in surface tension will require the
presence of vorticity (Brgns, 1994; Tryggvason et al.,, 1992). The presence
of a surface tension gradient invalidates Eq. (2.11) and we can no longer
calculate the vorticity from the rotation rate of the surface normal.

2.2.3 Geometric interpretation

To interpret Eq. (2.15) in terms of the surface geometry, we use an expression
for n in terms of surface coordinates (a%, n):

. = —grad v — bluga® = —grad _v — by, (2.17)

where a* are the contravariant basis vectors and vg are the covariant com-
ponents of the tangential velocity v;. For this derivation, we refer the reader
to Naghdi (1972) and Kosiriski (1986). In Eq. (2.17)) grad v is the surface
gradient of the normal velocity v, 62 are the mixed components of the cur-
vature tensor b. Also, Greek indices take the value {1,2} and summation
on repeated indices is implied. The curvature tensor is related to the surface
normal:

grad(n) = n,, ®a* = —bag ® a® = —b, (2.18)

where we have used Weingarten’s equation n , = —b2ag. The curvature ten-
sor is a symmetric surface tensor which ensures the existence of two extremal
values. The extremal values are the maximum and minimum values of the
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Figure 2.2: Definition sketch of the surface coordinates on &

normal curvatures at a point. These are the principal values of curvature
Ky = —ﬁ and ko = —%. The planes which contain these curvatures are
orthogonal. The unit vectors u;, u, are aligned with the planes containing
the principal values of curvature and, with m, form an orthonormal basis,
Fig. 2.2. These are called lines-of-curvature coordinates. In these coordi-

nates,

b = k;u; ® u; + Kouz ® u,. (2.19)

We may choose another orthonormal basis (£, {, ) such that £ X { = n.
Off-diagonal terms appear in b if the unit vectors &, { are not aligned with
the principal axes of curvature. The off-diagonal terms represent the surface
twist 7. In this case Eq. (2.19) becomes

b=r®E+rCOCHT(ERCH(BE), (2.20)

where x¢ and ¢ are the normal curvatures in the ¢ and £ planes. If the sur-
face is locally umbilic—locally spherical or planar—the principal directions
of b are not unique and 7 = 0 in all directions.

We note two scalar measures of a surface’s curvature. The mean curvature
H which is the arithmetic mean of x;, and &3, and the Gaussian curvature K
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which is their product:

2H =div(n) = tr{grad(n)] = <1 + k2 = K¢ + K, (2.21a)
K = det(b) = k1ky = Keke — T2 (2.21b)

Substituting Eq. (2.20) into Eq. (2.17), we obtain

n = —grad v — kevee> (€ - Q)¢ — mevee> (€ - §)€
—Tuee>(€- Q)€ —Tues(€-€)C. (2.22)

Using Eq. (2.22) in Eq. (2.15), we get the general expression for w; at an
unsteady free surface:

wy = 2grad v X n +2bv: X n (2.23a)
=2grad v X n + 2(Kcv<e> +Tu<e>)€ — 2(revce> + Tuce>)(- (2-23b)

Here the twist of the surface now contributes to the vorticity. We have
not seen the terms involving 7 in the literature before. In lines-of-curvature
components, Eq. (2.23a) becomes

we =2 grad_,/v Xn+ 2(nzv<2>)u1 - 2(!6)_'U<1>)U2. (224)

It is important to note that since the coordinate systems used in Eq. (2.23b)
and Eq. (2.24) are both orthonormal bases, the velocity components in both
equations are physical components which are denoted with angle braces, <>.
These are values which could actually be measured in experiments. These are
not to be confused with contravariant or covariant components which may
not even have the same physical dimension as their physical counterparts.

Eq. (2.23) shows that w; is made of two components: (1) local rotation of
the surface in three-dimensional space given by 2grad _v X n, (2) rotation
of the fluid element as it traverses regions of normal curvature and surface
twist represented by 2(kcv<c> +Tv<e> )€ and 2(kev<e> +Tv<¢> )¢ The terms
containing T represent the rotation of the principal axis of strain aligned
with n as the tangent plane rotates about the axis directed along the path
of travel. If the reference basis falls on the principal directions of curvature,
7 = 0 and the vorticity is given by the tangential velocities and principal
curvatures alone.

As a simple example, we consider a flow on a steady surface where the
local fluid velocity q is directed along & so that v<¢> = ¢. In such a case, we
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may wish to know the components of vorticity in terms of components along
u;, u; or components along &€, (. For the first case, we simply rewrite v¢;>
and v<os in terms of ¢ and the angle o between u; and &:

v<1> = gcos(a)
U<o> = gsin(a). (2.25)

Substituting Eq. (2.25) into Eq. (2.24) gives
w; = 2q(k2sin au; — K cos aug). (2.26)

The vorticity components in terms of €,{ can also be expressed using the
principal curvatures and a. After substituting g for vees in Eq. (2.23b) we
are left with,

w; = —2k¢q€ + 274€. (2.27)

Expressions for k¢g> and 7 in terms of 1,2 and « can be calculated as
follows. Using Euler’s theorem ((Kreyszig, 1991), p. 132) k<¢> can be written
as:

Ke = K1 COS” @ + Kasin’ a. (2.28)
From Eq. (2.21a), the invariance of H requires
K¢ = Ky sin’ a + kg cos® a. (2.29)

The invariance of K is invoked to obtain an expression for 7. Substituting
Eq. (2.28) and Eq. (2.29) into Eq. (2.21b) and solving for 7 gives

72 = (k1 — K2)% cos® asin’ . (2.30)
In view of our sign convention, we choose the negative root of 7:

T = (K2 —K)sinacosa = E&;Ll)sin(?-a)— (2.31)

Substituting these results into Eq. (2.27) gives

w, = —2¢(k3 cos® @ + ky sin® @)¢ + g(ke — 1) sin(2a)€. (2.32)
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The component of vorticity directed along ¢ represents the vorticity due to
normal curvature while that directed along £ is due to the surface twist. The
surface twist vanishes along the principal directions o = 0, . Eq. (2.32)
nicely demonstrates how 7 vanishes at umbilic points. At such a point,
K1 = K, and the last term of Eq. (2.32) is zero. This is expected since b has
no distinct principal directions at umbilics and 7 = 0 for all orientations.

To illustrate the geometry of the deformation near a free surface we con-
sider the surface given by the hyperbolic paraboloid in Fig. 2.3. The lower
half of the figure is. assumed to be filled with the bulk fluid. If an initially
hemispherical fluid element at .7 travels along & the vorticity will be given
by the normal curvature alone since % is a line-of-curvature. If the element
moves from &, along %3 — a rule of &, so there is no normal curvature
— the vorticity will be given by the surface twist alone. This component of
vorticity will be directed along #;.

We can now show that a steady surface may have normal curvature with
w; = 0. On a steady surface there will be no local rotation and the first
term on the right of Eq. (2.23a) is zero. If we assume the vorticity is zero
Eq. (2.23a) becomes

b'vg = O, (2.33)

since bv, is a surface vector. For a nonzero v;, we must have det(b) = K =0
to satisfy Eq. (2.33). Thus, for no vorticity at the interface, the Gaussian
curvature must vanish which implies at least one of the principal curvatures
must vanish. Such surfaces are referred to as developable. If both principal
curvatures vanish the surface is locally planar and v, can take on any value.
If only one principal curvature is zero, say x;, and the velocity is directed
along uy, the vorticity will be zero but the surface will be curved. If we
choose an orthonormal basis not aligned with the lines-of-curvature basis the
terms containing the normal curvature and surface twist will sum to zero for
each component of vorticity; kcv<c> + TU<e> = 0 and Kevees + TU<e> = 0.
In Longuet-Higgins (1992) we find the statement and theorem: “any
curved surface in a steady flow, irrotational or not, is necessarily a source of
vorticity”. These results were derived in Longuet-Higgins for two-dimensional
plane flow bounded by a free surface. We only need to slightly modify this re-
sult and theorem to cover general three-dimensional cases. Longuet-Higgins’
statement is always true if K # 0. If K = 0, a special case can exist where
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Figure 2.3: The deformation of an initially hemispherical element at 5;.
The curves &, and %, are lines-of-curvature. Fluid elements traveling
along these curves have their vorticity determined by the normal curvatures
alone. The unbroken lines on & including %3 are rules of the hyperbolic
paraboloid and have no normal curvature. The vorticity of fluid elements
traveling along % is given by the surface twist and directed along the path
of travel. ); are the principal stretches at &3, one of which must be directed
along the surface normal.

the velocity is in the direction of the zero-valued principal curvature. In this
case, a zero value of vorticity is required on the surface although the surface
is still curved.

Wu (1995) states that Eq. (2.2) is valid for stationary two-dimensional
surfaces. This can include all surfaces embedded in three-dimensional space
which means that any steady three-dimensional flow would be admissible.
From Eq. (2.24) we see that the normal curvatures determine the vorticity;
the mean curvature has no direct influence on the vorticity. Later in the
same paper, the applicability of Eq. (2.2) is limited to two-dimensional flow.
This limits the bounding surfaces to either surfaces of revolution or surfaces
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~

Ug

Figure 2.4: A surface which is locally a catenoid. The catenoid is a minimal
surface defined by H = 0.

of translation — both are one-dimensional. Since the flow is two-dimensional
the plane of the flow will contain a principal value of curvature. The only sit-
uation which satisfies Eq. (2.2) is two-dimensional flow bounded by a surface
of translation.

Eq. (2.2) is not correct for general two-dimensional axisymmetric flows
(although the correct calculation must have been done to obtain Eq. 81 in
Wu (1995) for a spherical bubble). An example is flow on a locally minimal
surface such as a catenoid (Kreyszig, 1991). A minimal surface is defined
by H = 0 implying x; = —k2, (see Fig. 2.4). The velocity is assumed to be
directed along the meridians of the catenoid and &2~ contains the axis of
symmetry. In this case Eq. (2.2) predicts the vorticity to be zero although
the correct value is wq;s = 2K2U<2>-

The only axisymmetric geometry which satisfies Eq. (2.2) is a locally
cylindrical surface if v; is in the plane of the cylinder’s radius R so that
w = 2v;/R. This can also be viewed as a surface of translation. If the flow is
directed along the axis of the cylinder with the same velocity Eq. (2.2) would
still predict the same value for the vorticity. The correct value is zero. This
also serves as an example of a steady flow which requires zero vorticity at
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a curved surface. In general, the mean curvature has no direct relationship
with the vorticity because it is a scalar that has no direction associated with
it. The normal curvatures and surface twist are assigned directions through
b.

Eq. (2.24) and Eq. (2.23) have consequences for experiments. To measure
vorticity at a surface we don’t need to know the tangential velocity’s gradi-
ents. We do need to know the angular velocity of the surface normal affixed
to a certain particle, the particle’s velocity and the surface geometry.

2.2.4 Streamline curvature

We must be careful when interpreting Eq. (2.1) in terms of streamline cur-
vature. If a streamline follows a curve % embedded in & we may define a
curvature vector along the streamline & = x,€ + K,s where &, is the normal
curvature of & in the direction of the unit vector £ directed along %. The
geodesic curvature k, is directed along s which is normal to £ and in the
tangent plane of . Thus, in general, the vorticity normal to the direction
of flow is only given by the streamline curvature if k, vanishes. If this is the
case ¥ is a geodesic curve and « in Eq. (2.1) corresponds to the streamline
curvature.

Most examples in the literature are steady, two-dimensional flows with the
flow restricted to a plane. The plane of the flow intersects the free surface &
normally. The bounding streamline follows a curve formed by the intersection
of the flow’s plane and &. In these cases, the bounding streamline lies on a
geodesic of & therefore, the streamline curvature and normal curvature are
the same. For example, consider axisymmetric flow bounded by a surface
of revolution. Here, streamlines either follow meridians or parallels of the
surface which are geodesics.

Circular streamlines on plane surfaces are examples of curves which have
only geodesic curvature. In this case, the flow is still in a two-dimensional
plane, but the flow’s plane coincides with &*. Using streawline curvature in
Eq. (2.1) would predict an incorrect nonzero value.

2.3 Conclusions

The results discussed in this paper only tell us what level of vorticity must be
present to satisfy the dynamics imposed by the-continuous surface tractions.
They do not tell us how the local torques are applied to fluid elements. These
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results are valid for any interface between immiscible fluids with disparate
dynamic viscosities. Thus, the surface tractions at an interface between
two fluids with equal densities and different viscosities must satisfy Eq.(2.3)
also. Since the density is constant there are no baroclinic torques and the
torques will be applied by viscous forces. We will be addressing this issue in
a forthcoming paper which is presently the body of Chpt. 4.
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CHAPTER 3

GEOMETRY EFFECTS ON FREE SURFACE
VORTICITY FLUX f

3.1 Introduction

This paper discusses effects of complex surface geometries on vorticity flux ®
from an arbitrary two-dimensional free surface embedded in three-dimensional
Euclidian space R3. Most previous analyses of free surface vorticity flux
have been restricted to one-dimensional surfaces. By one-dimensional we
mean surfaces which vary in only one parameter. Examples are the free sur-
faces of plane waves and axisymmetric flows such as rising bubbles. Recent
advances in experimental techniques have allowed analysis of complicated
two-dimensional surface geometries Dabiri (1997). In these experiments,
complete understanding of geometric effects are essential for correct interpre-
tation of vorticity levels at free surfaces and vorticity flux from free surfaces.

The idea of a vorticity flux was introduced by Lighthill (1963) to describe
introduction of vorticity into a bulk fluid from rigid boundaries. Here, diffu-
sion of linear momentum was written in terms of vorticity gradients normal to
the boundary. Since vorticity is diffused in the same manner as momentum,
the smoothing action of viscosity will try to equalize the level of vorticity
where a gradient exists. This results in a flux of vorticity either from or to
the surface.

Prediction of vorticity flux was extended to free surfaces by Lugt (1987)
who used local series expansion about points on the free surface. More re-
cently, Rood (1995, 1994) and Wu (1995) have interpreted the vorticity flux

tA version of this chapter has been submitted to the Journal of Fluids Engineering for
publication

26
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from free surfaces in a more general sense. Lundgren and Koumoutsakos
(1997) have constructed numerical schemes to predict the creation of vortic-
ity at a free surface using the vorticity flux. For a review of recent work on
the dynamics of free surfaces we refer the reader to Sarpkaya (1996).

Our paper is organized as follows. Several formulae used in this paper’s
derivations are presented in Sec. 3.2. The level of vorticity required to satisfy
free surface boundary conditions is reviewed in Sec. 3.3. General expressions
for the vorticity flux are derived in Sec. 3.4. Some results in this section are
useful for calculating ® from a rigid boundary. Here we also discuss the
topology of vortex lines at the surface. A vorticity flux equation specialized
for steady surfaces is derived in Sec. 3.4.3.

3.2 Preliminary formulae

We begin by presenting definitions and deriving formulae used to describe
two-dimensional surfaces embedded in three-dimensional Euclidian space R3.
Equations requiring results from differential geometry are derived with added
detail.

3.2.1 Geometry

The tensor product of two arbitrary vectors a, b is defined as (a® b)c =
a(b - c¢). Spatial forms of V- ( ), V.x ( ), V( ) are denoted div( ),
curl( ) and grad( ).

We construct a convected coordinate system 6° = (6*) that maintains
fixed correspondence with particles embedded in the material surface 5.
Here Latin indices are understood to range over (1,2, 3) and Greek indices
(1,2); summation on repeated indices is implied.

A point on & is located relative to a fixed basis in R® with the po-
sition vector r = r(6%,t). Partial derivatives of r with respect to surface
coordinates 8 give the covariant basis vectors a, along §%; r,, = a,. Par-
tial differentiation with respect to surface coordinates is represented with a
comma and Greek subscript. The subscript 3 is reserved for differentiation
with respect to 3. The covariant derivative will be denoted with a vertical
bar and subscript ( )|g. For arbitrary contravariant components of a vector
¢ the covariant derivative is

Calﬂ = c",ﬂ _{_I‘:ﬂc'Y_ (31)
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Figure 3.1: Two orthonormal coordinate systems embedded in &,
(6, 62) and (61, 62).

The surface Christoffel symbol appears in Eq. (3.1) and is defined by

[g=a%-a,;p. (3.2)

For further details we refer the reader to Kreyszig (1991).

The vectors a, span the tangent plane and can be used to calculate the
surface normal n = (a; Xaz)/|a; Xas|. The gradient of n gives the symmetric
curvature tensor b,

gradn = —n,, ®a* = —bPag @ a® = ~b = —b7, (3.3)
where we have used Weingarten'’s equation,
n,, = —bPag. (3.4)

The contravariant basis vector a? has been introduced in Eq. (3.2) and
Eq. (3.3). This is related to a, through the surface metric a.g = a, - ag by
ag = aaﬂaﬁ .

We will find it useful to define an orthonormal basis embedded in &,
(&,¢,n) where £ and { are orthogonal unit vectors in the tangent plane



CHAPTER 3. VORTICITY FLUX 29

such that & X { = n, Fig. 3.1. This coordinate system has the advantage
that quantities referenced to it will be physical components of that quantity.
Quantities referenced to a contravariant or covariant basis may not even have
the same physical dimensions as their physical counterpart.

In orthogonal coordinates b takes on the form,

b=rf®E+r(RCHT(ERC+(®E). (3.5)

Here, k¢ = —1/r¢, k¢ = —1/7 are the normal curvatures and 7 represents
the surface twist. In lines-of-curvature coordinates, ¢ and . correspond to
principal curvatures of b so that 7 = 0 and,

b =k1u; @ u; + Koup ® Uy, (3.6)

where x;, ko are the principal curvatures and u; and uy are the principal
directions. We will also use the two scalar invariants of b, the mean curvature
H = divb/2 = (k1 + K2)/2 = (ke + x¢)/2 and the Gaussian curvature,
K =detb = K1k = Kk — T2

3.3 Vorticity at a free surface

In this section we briefly discuss the level of vorticity required to satisfy
boundary conditions at a free surface. Complete derivations of these results
are available in Peck and Sigurdson (1998).

We assume a two-dimensional material surface S’separates two regions of
fluid, 22! and 2%. Surface tractions t(,) in one region, say £2*, are assumed
to be negligible except for a constant pressure p,. The level of vorticity at
& can be calculated by considering the jump in t(,) across &*. Thus, on &,
the following boundary conditions must be satisfied:

[t(n)] = —97(‘0 - t:(/) + diVS (37)

Here, [] denotes a jump in a quantity across &”. Body forces acting on
surface elements are denoted f An intrinsic surface stress 8 is assumed to
depend on surface tension y through the constitutive equation 8 = ya* ® a,.
The fluid velocity of particles embedded in 5 is represented with v The
velocity of particles in the bulk fluid is denoted u. If the surface density 8,

is assumed small Eq. (3.7) becomes

Dn —[n - (Dn)jn = 51; grad 7. (3.8)
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The symmetric portion of the velocity gradient tensor L is the rate-of-strain
tensor D = (L + LT)/2. A surface gradient operator is represented with
grad _. Eq. (3.8) can be rearranged as,

Wn=n+ %‘- grad _, (3.9)

where W = (L + LT)/2 is the spin tensor and 7 is the material derivative
of the surface normal. W is a skew symmetric tensor so that an axial vector
w exists given by 2Wn = w X n; in this case w = curl u is the vorticity.
Substituting this relation into Eq. (3.9) gives the following expression for the
tangential component of vorticity w; on S

1
w=2n X n+ ;n X grad 7. (3.10)

Here, and for the remainder of this text the subscript (): denotes compo-
nents of a vector tangential to . The material derivative of n in surface
coordinates is

n = —grad (v) — Yuga® = —grad _(v) — bv,. (3.11)

We refer the reader to Naghdi (1972) for this derivation of . Substituting
Eq. (3.6) into Eq. (3.11) gives the level of tangential vorticity on & in lines-
of-curvature components,

W = 2grady('u) Xn+ 2([‘62’02)111 — 2(!‘31'01)112. (312)

Alternatively, we can express w; with the basis used in Eq. (3.5) where the
influence of the surface twist on the level of vorticity is now represented:

w; = 2grad (v) X n + 2(rev¢ + Tvg)€ — 2(rgve + Tc)C. (3.13)

3.4 Vorticity flux

Until now, we have only examined the level of vorticity required to satisfy
boundary conditions on .%*. We can gain insight into the rate at which
vorticity enters or leaves the bulk fluid from the surface through expressions
for the vorticity flux. In the derivations that follow, most of the equations are
valid for any material surface embedded in a fluid. The case of a free surface



CHAPTER 3. VORTICITY FLUX 31

is examined by directly substituting values required by boundary conditions
into the momentum equation.
In this paper’s context, the vorticity flux ® is defined by,

0w, d(wn)
+v .
063 063
The first term on the right of Eq. (3.14) represents normal gradients of vor-
ticity tangent to . The second term on the right represents the normal
gradients of vorticity normal to the surface. w will be used to represent the

scalar component of vorticity normal to .5 so that wn is the normal vector
component of w.

® =vgradwn =v (3.14)

3.4.1 Flux of normal vorticity

The vorticity flux of normal vorticity wn is readily derived from the vorticity
field’s solenoidal property:

divw = tr(gradw) = 0. (3.15)

To calculate the surface divergence, the vorticity gradient tensor is first cal-
culated in terms of surface coordinates,

gradw = w,, 2% + (w),3 On. (3.16)
After differentiating and grouping terms we obtain

gradw = (g — b2w)a, ® a° + w32, @ n

g (3.17)
+H(w,p +bgwa)n @ a° +w3n @ n.
Taking the trace of the vorticity gradient tensor yields,
tr(grad w) = trfw,o ®a* + (wn),3 @n] (3.18)

= w*q — bow +wy3

=w®q —2Hw +w,3=0

The mean curvature H appears in Eq. (3.18) which is the arithmetic mean
of any two orthogonal normal curvatures at a point on .

Obtaining an expression for the flux of normally directed vorticity is a
simple matter of rearranging Eq. (3.18) and multiplying by v,

o(wn) —o®ln
55 = v(2Hw la) (3.19)

v
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It is important to note that the mean curvature is dependert on surface
orientation. This means the sign of H is dependent on the direction of the
unit normal to .%”. In the present context m is assumed to point away from

the bulk fluid.
3.4.2 Flux of tangential vorticity

Tangential components of ® represent the flux of w; from . An expression
for this can be derived from the momentum equation

pla —g) =divo. (3.20)

Here o = —pI +2uD is the Cauchy stress, a is the fluid acceleration and g is
the body force; for our purposes g will only be assumed to represent gravity.
We decompose Eq. (3.20) into normal and tangential components as follows,

pa=[n-(pa)n+nx(paxn)=[n-(dive)ln+n X (dive X n)
(3.21)

For convenience @ will be used to represent (@ — g). Using the constitutive
equation given above and equating tangential components of Eq. (3.20) gives,

pa; = —grad _p — n X (pcurlw X n), (3.22)

where we have used the identity div grad u = grad(div ) —curl curl u. Plac-
ing our attention on the last right hand side term of Eq. (3.22) we rec-
ognize curlw as the axial vector of a skew-symmetric tensor formed from
(gradw — grad wT) so that (gradw — grad wT)n = curlw X n. Substituting
into Eq. (3.22) gives

pa; = —grad ,p — un X (gradwn — gradwTn), (3.23)
or, in terms of the vorticity flux:

gradp

vgradwn =n X @&+ n X +vgradw™n. (3.24)

For our purposes, the last term on the right of Eq. (3.24) is expressed more
conveniently using the identity

gradwTn = grad(w - n) — grad nTw = grad(w) + bw,. (3.25)
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Since b is purely a surface tensor it will only operate on a surface vector so
bw can be replaced with bw,. Also

dw
grad(w) = grad _(w) + Eri (3.26)
Substituting this result in Eq. (3.25), Eq. (3.24) becomes
Ow, _ grad_, /) .
V@ =X Gt X Z— +vgrad_[(w) + vbw, (3.27)

The first term on the right represents tangential acceleration of material
elements on &, the second term the tangential pressure gradient. The normal
gradients of normal vorticity in Eq. (3.26) cancel those within grad wn so we
are left with the third term on the right of Eq. (3.27) which is the surface
gradient of the normally directed vorticity. The curvature tensor appears in
the last term of Eq. (3.27). This term represents the vorticity flux due to
surface curvature acting on the component of vorticity tangential to 5.

At this point Eq. (3.27) is simply an alternate expression of the momen-
tum equation tangential to any arbitrary material surface embedded in R3.
No boundary conditions have been imposed to reflect the presence of a free
surface. If a vortex ring were to approach this surface there would be no rea-
son for the vortex ring to be deflected from its path. Thus, the wide variety
of phenomena associated with vortex-free surface interactions such as vortex
ring rebound and vortex reconnection are not predicted using this equation
without imposing suitable boundary conditions (Sarpkaya, 1996; Bernal and
Kwon, 1989).

We introduce ®, to represent the last term on the right of Eq. (3.27)

&, = vbuw. (3.28)

Interpretation of @, has caused some confusion in the literature (Rood,
1994). The primary purpose of the present paper is to clarify the condi-
tions under which this term may be neglected.

On a free surface, the level of tangential vorticity is set as derived in
Sec. 3.3. Introducing this boundary condition into Eq. (3.27) provides in-
sight into ®,. If surface tension gradients are negligible or the ratio v/p is
negligible we write w; on 5 as,

w; =2n X f. (3.29)
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Substituting into Eq. (3.27) gives

awt ~ gra.d,/p .
v—==nXa+n X Z— +vgrad (w) +2vb(n x 7).  (3.30)
083 ; e e
P
We may also write ®, as
n . ]

where t is a unit vector directed along the tangential vorticity. t is calculated
from the vector product of n and the normalized ©; t = n X n/|n|.
Writing b in terms of lines-of-curvature components Eq. (3.31) becomes,

2u||1'z|][rcl(u1 - t)ul + Iig(llg - t)llg] (332)

Hence, if t is directed along a zero-valued principal curvature, ®, vanishes.
This does not imply that vortex lines along t are straight however. As an
example, consider the surface shown in Fig. 3.2. For this example we have
chosen a surface of revolution. The profile curve is a Bessel function, the
surface being formed by revolving this curve shown in Fig. 3.3 around the
vertical axis. The precise function which describes the surface is unimportant,
rather the overall qualitative analysis is what we are interested in. On this
surface the parallels and meridians are lines-of-curvature so that at each point
on % the principal curvatures are directed along these curves. We denote
the principal curvature directed along the surface parallel as . and that
directed along the meridians as «,. In the present case k. = &1 and &, = Ka.
A plot of k., k, and the Gaussian curvature K for the surface in Fig. 3.2 is
shown in Fig. 3.4. We will see the significance of the Gaussian curvature in
Sec. 3.4.3. From Fig. 3.2 and Fig. 3.4 we see that «r, the normal curvature
in the direction of the vortex lines vanishes at the local maxima and minima
of the generating curves which means that ®, necessarily vanishes at these
points. However, the vortex lines at these points are not straight but form
a set of concentric circles about the vertical axis. Hence, the result given in
Rood (1994) does not hold: vortex lines may be curved with @, # 0.

Further complication arises if t is not directed along a principal direction
of curvature. If this is the case ®, becomes

2v|nf[xe(€ - )€ + (¢ - £)C]- (3-33)
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u;

Figure 3.2: A surface of revolution formed by rotating a Bessel function
around the vertical axis. Radially directed lines are surface meridians, the
circular lines are surface parallels. Lines-of-curvature correspond to meridi-
ans and parallels. Surface shading indicates the Gaussian curvature’s sign.
Darkly shaded regions denote hyperbolic regions K < 0, lightly shaded re-
glons are parabolic K = 0. Unshaded regions are elliptic K > 0. The
two dark lines are representative vortex lines. The sign of the vorticity is
indicated in the figure

This shows that even if the normal curvature vanishes along t a component
of vorticity flux due to surface twist would still exist

&, = 2v|n|r¢. (3.34)

For illustration we consider the surface shown in Fig. 3.5. Here we assume
vortex lines are directed along rules of the hyperbolic paraboloid shown.
The rules of . are straight lines embedded in &, hence they have no normal
curvature and the surface has no normal curvature in that direction. In this
case, even though the vortex lines are straight ®,. is nonzero.

3.4.3 The vorticity lux equation at a steady surface

This section describes a convenient means for assessing effects of surface
curvature on ®, from a steady surface. By a steady surface we mean a
surface where grad _(v) = 0. This implies that there is no local rotation of
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Figure 3.3: A Bessel function of the first kind f(z) = Jy(z). This is the
generating curve used for the surface of revolution shown in Fig. 3.2.

& in the chosen reference frame. We may also view this analysis as being
that for the steady component of . on an unsteady surface.
With this steady surface simplification Eq. (3.12) becomes,

w;=2bv; X n
= 2b‘§vma’5 Xn
= —2b3v.e?Pa, (3.35)
Substituting Eq. (3.35) into the last term on the right of Eq. (3.27) gives
P, = —2wb]bjv.c?a, ® a’a,,

= —2Vb§b;fvaeﬂ"a,,,

= —2vKv,eMa,

=2wKuv X n, (3.36)

after noting b367¢#? = Ke>7. We can also rewrite Eq. (3.36) in the convenient
form

$,. = 2vKqdt, (3.37)

where ¢ = [v] and £ = m X n is a unit vector normal-+o the plane containing
the surface normal and the unit vector m directed along v.
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0 2 4 6 8 10

Figure 3.4: The value of the principal curvatures . and , on the surface
shown in Fig. 3.2 as a function of radial distance z from the axis of revolu-
tion.The Gaussian curvature K is also shown.

In Eq. (3.36) and Eq. (3.37) the Gaussian curvature K appears. K is a
scalar invariant independent of direction on 5. The sign of K characterizes
regions of a surface as elliptic K > 0, parabolic K = 0 or hyperbolic K < 0.
A developable surface is a surface which is parabolic everywhere.

From Eq. (3.37) we see that determining the sign of ®, is a matter of
assessing the sign of K and knowing the direction of v. Hence if the flow
passes from an elliptic region to a hyperbolic region the sign of ®, will change.
This is a convenient method since we do not need knowledge of w;. Nor do
we require knowledge of the normal curvatures or surface twist beyond what
is necessary for calculating K.

Thus we have a convenient method of determining if the-curvature-
dependent term will contribute to the vorticity flux in a steady flow. If the
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Figure 3.5: Local flow on a hyperbolic paraboloid. The fluid velocity v
is assumed directed along a rule of the surface. Hence, as a fluid element
travels from &, to %%, n rotates due to the surface twist implying the sign
of vorticity indicated. In this case the vortex line is straight.

Gaussian curvature is nonzero and jv| # O there will be a contribution. If
the surface is developable or is locally parabolic there will be no contribution
regardless of the flow’s direction: ®, = 0.

We consider steady two-dimensional plane waves as an example. Here
& is a surface of translation and the flow is assumed directed along the
generating curve. A nonzero level of vorticity occurs at points of inflection
on the generating curve where the normal curvature directed along the curve
vanishes. Since the principal curvature normal to the generating curve is
always zero, the surface is developable and ®, vanishes. Indeed the direction
of the flow is irrelevant to ®,.. No matter which way the flow is directed
K =0and &, =0.

The sign of K on surfaces with more complex geometry—even one—
dimensional surfaces such as a torus—is not always so obvious. As an ex-
ample we have illustrated the Gaussian curvature of a torus by shading the
surface as shown in Fig. 3.6. This could represent the geometry of a toroidal
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Figure 3.6: A torus colored with Gaussian curvature. As with Fig. 3.2 hyper-
bolic points are colored with a dark shade, elliptic points with a light shade.
Intermediate shades represent parabolic regions

bubble rising in water. Here the inner regions of the torus are hyperbolic
while the outer regions are elliptic, the dividing region being parabolic. The
parabolic region is caused by a vanishing principal curvature directed along
the surface parallel. Hence in the parabolic regions ®. will vanish. Also, if
the direction of the flow does not change, the sign of ®, will change as we
move form hyperbolic to elliptic regions.

A still more complex one-dimensional surface shown in Fig. 3.2 is colored
with Gaussian curvature. As in Fig. 3.6, K vanishes at the local minima
and maxima of the generating curve due to vanishing x,. The Gaussian
curvature is also zero at points of inflection on the generating curve since at
these points «, vanishes.

Further simplification of tangential vorticity flux equation is possible if
both the surface and flow are steady. First, we rewrite the kinematic expres-
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sion for the fluid acceleration,
- u©
a=a-g=—+Lu—g. (3.38)

Since the flow is assumed steady, %—'t‘ = 0. Now a becomes Lu = LTu+2Wu
so that

1
a= -2—grad(u2) +w X u. (3.39)
after using the relation LTu = grad(u2)/2. If we assume there is no normal
vorticity the vector product of n with the Lamb vector w X u vanishes as
does the surface gradient of normal vorticity so that Eq. (3.27) becomes

Ouwe
P TE

where the surface streamline is assumed directed along m. The total head
is H = Lu®+p/p+ Q and grad @ = —g. This gives a simple extension to
Lugt’s result (Lugt, 1987). Hence, Lugt’s result holds for all developable
steady surface’s and is valid at all parabolic points on a free surface.

=-—grad H X n— 2vK (qt) (3.40)
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CHAPTER 4

CREATION OF VORTICITY AT A THIN INTERFACE

4.1 Introduction

This chapter describes how torques are applied to material elements at a
fluid interface to generate vorticity. This discussion is very different from
that in the preceding two chapters. In Chpt. 2, only the level of vorticity was
calculated for an interface where the tangential surface tractions vanished.
In that case we would only surmise that vorticity of sufficient strength was
created by some means to satisfy the boundary condition. In Chpt.3 the
flux of vorticity was calculated but no dynamical means were suggested for
the application of torques to the fluid elements. In both cases vorticity
creation could only be inferred; the process which created vorticity could not
be deduced.

The evolution of the vorticity field can be predicted with the vorticity
equation. This equation is derived by calculating the curl of Cauchy’s equa-
tion:

pa =div o + pg. (4.1)

Here p is the fluid density, a is the acceleration and o is the Cauchy stress.
In a homogeneous viscous fluid the vorticity equation becomes

Ow
ot

tMuch of this work was presented at the 1996 meeting of the American Physical Society
(Peck and Sigurdson, 1996) and the 13th Canadian Symposium on Fluid Mechanics. A
version of this chapter is to be submitted to the Philosophical Transactions of the Royal~
Society, Series A.

+ gradu w = gradw u + vdivgrad w. (4.2)

42
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Morton (1984) points out that there is no true production term in this equa-
tion. For an initially irrotational flow vorticity will not be created from where
there was none before. Chorin (1994) describes this as vorticity being un-
able to be created ab nihilo (from nothing). A more thorough discussion is
available in Batchelor (1967) and Truesdell (1954). As both authors point
out vorticity can only be created at the boundaries and diffused inward.

The effect of variable density and viscosity on circulation was investi-
gated by Jeffreys (1928) and later by Truesdell (1949). Here they concluded
in a very general way that vorticity must be created in a circuit initially
encompassing a region of irrotational flow since the integral giving the rate
of change of circulation

dr divo
T = $ET—g)-ix o (43)
Truesdell (1949) identifies a mechanism whereby circulation is created due
to viscous gradients alone.

The vorticity equation Eq. (4.1) becomes much more complex if fluid
viscosity and density are both allowed to vary. This form of the equation has
received very little attention in the literature. A general result is available
in Dutton (1995) where the vorticity equation is derived in the context of
atmospheric motions. Green (1995) derives a similar equation in a general
form but provides some explanation of the terms produced in the analysis.
Mueller (1996) and Mueller et al. (1997) derive the vorticity equation with
variable density and viscosity to investigate vorticity creation in combustion
processes. These results are in very general form and the authors conclude
that viscosity gradients in their problem are small enough to be neglected.
All of the results mentioned so far are left in a very general form which does
not provide any further insight into the problem of vorticity creation at a
thin interface especially the effect of surface curvature on vorticity creation.

To predict the evolution of vorticity at an interface we derive the vorticity
transport equation for a fluid body where density and viscosity are allowed to
vary rapidly but smoothly across a thin zone separating two regions of oth-
erwise constant material properties. In one region the viscosity and density
are both large while in the other, density and viscosity are assumed small.
We assume the direction of the viscosity and density gradients are normal to
the surface which allows us to take the derivation further than those cited
above. As a result we discover terms predicting vorticity creation which are
consistent with the levels of vorticity in Chpt. 2.
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This scheme is similar in spirit to that used by Dahm et al. (1989) to cal-
culate the vorticity creation at a thin density interface. In that paper, only
the density was allowed to vary across a thin interface whereas the viscosity
was held fixed over the entire domain. With these assumptions they pre-
dicted the creation of vorticity by baroclinic torques. The baroclinic torque
is created by net pressure forces on a fluid element not acting through the
element’s mass centroid, thus creating a torque on the element. The effect
of baroclinic torques at free-surfaces has been widely studied in a variety of
papers. Most have been the basis for boundary-integral numerical schemes,
(Zarodny and Greenberg, 1973; Baker, 1983; Baker et al., 1980, 1984). These
methods modify the strength of a vortex sheet separating two masses of in-
viscid fluid with different densities. Once the vortex-sheet strength is known
at the boundary a velocity potential in each region can be deduced from
which the velocity field follows.

A model which only includes baroclinic torques is not satisfactory for the
case of a viscous free-surface model. As pointed out in Chpt. 2, the level of
vorticity predicted by equation Eq. (2.16) is independent of the density jump
across the interface—the vorticity level is only dependent on the viscosity
jump. If there is no density jump baroclinic torques cannot exist. We must
look for other means to explain the generation of torques.

The thin region used in our analysis is a simple model of a real fluid inter-
face. This model differs greatly from that used in the previous two chapters
where the interface was modeled as a singular surface with no thickness. The
thin interface model assumes that the continuum assumption applies through
this region. Analyses based on such assumptions appears in previous articles
such as Antanovskii (1995); Dunn and Serrin (1983); Blinowski (1973b,a).
More complete references can be found in these papers. The validity of ap-
plying such a continuum assumption to a fluid interface was addressed by
Koplik and Banavar (1994). Here they concluded through numerical analysis
that the continuum model may not be appropriate for a fluid-air interface.
However, this area is still a very active area of ongoing research.

The thin interface model does not include surface tension effects. Unlike
a sharp-interface analysis, including surface tension effects requires modi-
fication of the constitutive response in the interface. We address this in
Sec. 4.2.6.



CHAPTER 4. VORTICITY CREATION 45

4.2 Vorticity transport equation

4.2.1 General Form

In this section we derive the vorticity equation for a fluid with varying density
and viscosity. We begin by rearranging Eq. (4.1) into a form convenient for
derivations to follow:

(% g =i »

We assume p can vary in space but the fluid is still volume-preserving (iso-
choric), hence divu = 0. Taking the curl of Eq. (4.4) and rearranging gives,

d d
pcurl <-§) = —gradp X (d—ttl' - g) + curl(div o) (4.5)

. We have assumed g to be the gradient of a scalar so that curlg = 0. Using
Eq. (4.4) we replace du/dt — g with the equivalent expression divo/p:

pcurl (i—?) = —% grad p X (diveo) + curl(div o). (4.6)

Now a very general form of the vorticity becomes,

dw 1 1
—_—= Lw — —gradp X dive + —curl(divo). 4.7
Stretching and tilting — —_— P
Density gradient-net force Surface forces

In this compact form, we can interpret the physical significance of the three
terms on the right hand side of Eq. (4.7). The first term on the right repre-
sents vorticity production from stretching and tilting of vorticity. The second
term represents modification and creation of vorticity due to the misalign-
ment of the vector dive and the density gradient vector. Physically this
means that vector representing the net surface forces per unit volume re-
sponsible for imparting linear acceleration to a fluid element, div o are not
aligned with the density gradient. The third term represents the net torque
imparted on a fluid element due to surface forces alone. This term does not
require a density gradient to affect the vorticity. Whether the second and
third term create vorticity from an irrotational flow or not depends on the
constitutive hypothesis we choose to model the response of the fluid. For
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example in a homogeneous, isochoric Newtonian fluid, the divergence of the
Cauchy stress becomes

divo = —grad p + pdivgrad w. (4.8)

which when substituted into Eq. (4.1) yields the Navier-Stokes equation for
a homogeneous fluid:

d

—5 = —gradp + pdivgrad u + pg. (4.9)
As discussed earlier the curl of this equation results in Eq. (4.2) from which
vorticity cannot be created ab nzhilo.

For non constant p an extra term appears in Eq. (4.9):
dive = —grad p + pdivgrad u + 2D grad p. (4.10)
In terms of the vorticity Eq. (4.10) becomes,
dive = —gradp — pcurlw + 2D grad p.. (4.11)

The variable viscosity adds a new term when compared to the usual Navier-
Stokes equations given for homogeneous fluids:

d

d_::=—gradp+pdivgradu+2Dgradu+pg. (4.12)
D. D. Joseph and T. Y. Liao (1994) suggests the curl of this new term imparts
a local torque by surmising that since the equation of motion in this form
will not admit a potential flow solution, local torques must be imparted to
create vorticity.

Density gradient viscosity gradient coupling: general case

In the following two sections we will substitute the general form of the Cauchy
stress divergence into Eq. (4.7) and discuss the vorticity equation in a general
sense. That is, we will not specialize the equations to a thin interface.
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We begin the derivation by examining the second term on the right of
Eq. (4.7). Substituting Eq. (4.11) into Eq. (4.7) gives

1 d ad
;gradpxdiva'zgra ppngr P (4.13)
+ grad p X vcurlw
p
_ 2gradp X (D grad p)
p? '

The first term of Eq. (4.13) represents baroclinic torques, which have been
well studied in the literature (Green, 1995; Saffman, 1992). The second term
represents a modification to the viscous diffusion of momentum. The last
term is a coupling of the density and dynamic viscosity gradients through
the rate-of-strain tensor. This is a true production term in the sense that
its kinematics are only dependent on the irrotational portion of the velocity
gradient decomposition D. Thus, even for an initially irrotational flow D
will have a nonzero value and vorticity may be created.

To illustrate the coupling effect of this term we consider the following
simple example. For simplicity we will use rectangular Cartesian coordinates
chosen in such a way that the basis vectors (ej, ez, e3) are instantaneously
aligned with the principal axes of D. Writing D in spectral form,

3
D=) \e®e: (4.14)

=1

The viscosity gradient is assumed to be directed along a unit vector t which
makes an angle @ with e;. The viscous density gradient coupling term now
becomes,

=1

d 3
= 2gr22 P X (ZA,-e,- ® e;) grad p

3
1
= 2-p—2 (ZA;(e,- -grad p) grad p X e,-) . (4.15)

=1

This equation shows that if the density gradient is aligned with a principal
axis of strain this term will vanish since e; X grad p = %[ grad pfle; X e; = 0.
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The baroclinic torque has often been interpreted with a physical model
showing how the net pressure force will not act through the mass centre of a
fluid element creating a torque. We can construct an analogous example for
the viscous-density coupling condition as follows. Consider a case where the
viscosity gradient in an initially irrotational flow is aligned with a principal
axis of rate-of-strain. If we draw a small rectangular element, the net viscous
force will act through the volume centroid. If the density gradient is not
aligned with the principal axis of strain, and hence is not aligned with the
direction of grad u, the mass centroid will be offset from the line of action of
the force. This will create a torque. For the case where the viscosity gradient
is not aligned with a principal axis of strain, an example cannot be so easily
interpreted physically.

For cases where viscosity is only a function of density the coupling term
becomes,

dp u | grad pf?

- %a—z-—p—z—— cosasina (4.16)

Curl of surface forces: general case

We must also account for the curl of the forces acting on the surface of mate-
rial elements. In a homogeneous fluid this only amounts to spatial diffusion
of vorticity in a manner analogous to linear momentum (Batchelor, 1967).
The situation is much more complex with variable viscosity. Substituting the
divergence of the Cauchy stress into the third term on the right of Eq. (4.7)
gives

%curl(div o) = —vcurl(curlw) + —;-gra.d,u X curlw + 2 curl(D grad p)

= vdiv(gradw) + %grady X curlw + 2 curl(D grad p)
(4.17)

after noting that curl grad p vanishes. I have not been able to work Eq. (4.7)
into a simpler general form than that given above. Eq. (4.17) has been in-
cluded for completeness. As noted before, D. D. Joseph and T. Y. Liao
(1994) suggested the presence of viscosity gradients imparts local torques.
Although not expanded upon in that paper, this mechanism must lie within
the terms shown above since their paper was only in reference to fluids with
viscosity gradients and no density gradients.
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Vorticity equation: general case

Combining results from Eq. (4.13) and Eq. (4.17) and substituting these into
Eq. (4.7) gives the general result for the vorticity equation with viscosity and
density gradients:

dw
@
gradp X gradp gradp X vcurlw 2gradp X (D grad p)
+ + —~ +
p? P s :
+ vdiv(grad w) + %grad,u X curl w + 2 curl(D grad ) (4.18)

A similar equation appears in Mueller (1996); Green (1995) and Dutton
(1995). As it stands however, these equations do provide further insight into
the problem of vorticity creation at fluid interfaces. To proceed, we will make
assumptions relevant to a thin interface which will let us take the calculations
further. Also, we will use equations from differential geometry to assist in
interpreting these equations with reference to a two dimensional surface.

4.2.2 Equations for a thin interface

Results presented in this section are necessary for the discussion to follow.
Here we give results required to express our results with reference to a coor-
dinate frame embedded in a two-dimensional surface.

Gradients of x and p are needed in terms of surface coordinates. With
our assumptions, the gradients of p and u will only be directed normally to
the surface; tangential gradients are assumed to vanish.

Both p and p are scalars and their gradients can be calculated in similar
ways. Since we will require higher order derivatives of y than p we will only
show the calculation of grad i1 and grad grad p:

_Op o, Ou
gra.d,u— Wa + aesn (419)

Remembering that tangential gradients vanish Eq. (4.19) simply becomes
Op
gradpu = FT ik (4.20)

For convenience the 8% coordinate will be represented by 7 in the remaining
text. This will avoid confusion between superscripts and second derivatives.
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We also need an expression for grad (grad u) in terms of surface coordi-
nates:

g o 0 8°
(-a%n) o ®a% + (%n) 30N = E—En,a ®a” + an’,_fn ®n
Ay «, Pu _ du, | Pu
-—%bﬁa‘g@a +a—172n®n_——é;b+a—n§-n®n (4.21)

where we have used Weingarten’s equation once again.
We are now in a position to substitute these expressions into the general
form of the vorticity equation.

4.2.3 Density gradient viscosity gradient coupling

First, we analyze the fourth term on the left of Eq. (4.18) which is a term
affected by the combined effects of density and viscosity gradients. This term
is converted to a form which we can analyze using the thin-interface results
given above. With the aid of the identity D = W + LT the third term on
the right of Eq. (4.13) becomes

2grad p X Dgrad i
= [grad p X (w X grad g)] + 2grad p X (LT grad p)
= w(grad p - grad ) — grad p(w - grad p)
+ 2grad p X [grad(u - grad p) — grad(grad p)u]. (4.22)

In terms of surface coordinates:

OpOu

=2POE 1 — —2(u,ga%
2gradp X Dgrad p 9 1 [(w—wn)—2(u,a"+bu)l X n
_ Opdu .
= 331 [we +2(n x 1)] (4.23)

We now write Eq. (4.13) as

1
—gradp X dive =
ngr p

dpnXgrad_p v 10p0u .
— < 4 _—gradpXgradw+ ———[w: +2(n X n 4.24
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Here we see the appearance of the baroclinic torques in terms of density
gradients through the surface and tangential pressures gradients. Also the
rotation rate of the surface normal is evident.

4.2.4 Curl of surface forces

It remains to calculate the third term on the right of Eq. (4.7) which rep-
resents local torques created by viscosity gradients alone. We begin this
derivation by writing the Cauchy stress in the convenient form

dive = —gradp + udiv grad u + 2W grad p + 2LT grad . (4.25)

Here we have used the identity D = W + LT once more. Also, the last term
on the right of Eq. (4.25) may be rewritten as,

2 grad(u - grad 1) — 2 [grad(grad )] u. (4.26)
Using the identity
2Wa=w X a (4.27)

and Eq. (E.15) we rewrite Eq. (4.25) as

dive = grad[2(u - grad p) — p] Term I
— pcurlw Term 11
+w X grad u Term III
— 2[grad(grad p)]Tu Term IV. (4.28)
Term I

The first term is the gradient of a scalar hence by Eq. (E.12) the curl of this
term vanishes.

Term II

The second term is calculated as follows. Using Eq. (E.13), Eq. (E.15) and
the solenoidal property of the vorticity field we arrive at,

~—curl(p curlw) = curlw X grad p + pdivgradw (4.29)
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To gain further insight into the character of the first term on the right of
Eq. (4.29) we note that grad u is the axial vector of the skew symmetric
tensor formed by the tensor gradient of w and its transpose. So with an
obvious change in notation to Eq. (4.27) we can write,

curlg;- X grad p = %(gradw grad u — grad w" grad ). (4.30)
Now with,
(grad w)T grad pu = grad(w - grad u) — grad(grad p) " u (4.31)
Term II becomes,
—pcurlw =
-g—f;(gradw)n - g—f;gra.d(w ‘n)— g—l;bw + g%(n -w)n + pdivgradw

(4.32)

Term III

We turn our attention to the third term. With use of Eq. (E.14) and divw =
0 Term III becomes

curl(w X gradp) = —g% grad wn — [grad(grad pu)jw + divgrad pw. (4.33)

Now substituting Eq. (4.21) yields,

ou &u )
B_nbw - -572—(‘"' - w)n + (div grad p)w

(4.34)
Calculating divgrad p is straightforward since divgrad 4 = trgradgrad u.
Carrying out this manipulation with the aid of Eq. (4.21) gives the following:
0 8%
o, O
&n = n?
see for example Kosifski (1986). Now Eq. (4.34) becomes

curl(w X grad p) = g—:;(gradw)n +

divgrad u = —2H (4.35)

curl(w X gradp) =

ou Op,  .Ou 0?u &u
an(gradw)n-l- 317bw 2H6nw +—a?w 6772(17. w)n.| (4.36)
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Term [V

The fourth term is the by far the most difficult to manipulate into a useful
form. The most convenient method seems to be to write this term in summa-
tion notation and calculate the curl directly. Note that we have temporarily
omitted the leading factor of 2 here for simplicity during the calculation.
This factor is reintroduced in the final form of the equations which appear
in boxes.

oL, o &u
curl(grad(grad p)u] = curl [(—-é; ﬂua) a® + curl (-a—n;u) n] (4.37)

Directly taking the curl of Eq. (4.37) gives the following four terms to differ-
entiate:

a’ X (—g—l; guaaﬂ) " Term IV(a)
e, a8 Term IV(b
+n X ~ 3 5Uaa” | 1y erm IV(b)
2
+a’ X (g—n‘:un) "y Term IV(c)
& u v(d 4.38
+n X 8—172un " Term IV(d) (4.38)
Term IV{(a)
We begin with
—a* X (%bguaaﬂ) "
O [ (1a o
= & () — GuaTf ] & X &

:
- a—Z (tBb5ua) a7 X . (4.39)
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where we have used Gauss’s equation and have continued the assumption
(an),., = 0. We can rewrite Eq. (4.39) as

(44 a# a
—a® X (%bﬁuuaﬂ> =

al“' (] By a#
7y (51a) ] &7m = 5-b(bu) x n (440)

We may simplify this expression somewhat by expanding the covariant deriva-
tive (b§ua)ly = b5l %a + b§uel, and using the Mainardi-Codazzi formulae
baply = bay|p (Kreyszig, 1991, p. 226) We are left with a form useful for our
final result,

e (i) o

O B (pe Ou
2556 (b5ul,) n 23nb(bu) X n.| (4.41)

Term [V(b)

Calculating Term IV(b) is straightforward differentiation of the following
term,

&[T
n X (—%bﬁuaaﬂ) " (4.42)

After noting b3,, = a®,, = 0 we arrive at,

6[.& @ 62“ a a‘u
n X <_% ﬁuaaﬂ) m=|—2 (8 F208% an 5 0buan | X 2| (443)

Term IV{c)
This is another straightforward calculation which follows,

&2 82 &
a* X (3—1;2‘un> = a_nl;u’ 7a’' X n— #ubaﬂa-' X a% (4.44)
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After noticing
bapga’ X a* = €% =0

since b,g is symmetric. This leaves

Term [V(d)
Finally the last term of Term IV produces a trivial result,

*u *u Pu
n X -é—ﬁz—un m=nXmn -a—n—2-'u. m N X n, 517—2111?'

since n X n =0 and n,,=0.

4.2.5 The vorticity equation at a thin interface

(V)]
(3]

(4.46)

):0 (4.47)

The terms in their final form for our use, have been enclosed by boxes:
Eq. (4.24),Eq. (4.32),Eq. (4.36), Eq. (4.41),Eq. (4.43),Eq. (4.46). Making the
appropriate substitution of these results into Eq. (4.7) we arrive at a general
expression for the vorticity equation where a thin interface of viscosity and
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density exists. We are left with:

d

7‘;’- = Lw Tilting and stretching

+vdivgradw Vorticity diffusion
dpm X grad _p -
4~ __ = 7 t
Bn 7 Baroclinic torque
vdp . . e

- ;3—77 curlw X n Density gradient momentum diffusion
dp Op w, ) ] ] . ..

- Viscosity/densit, adients—tangential vorticit
B0 22 ty/ Y gt g y

dpoun Xn
+2—— Viscosity/density gradient couplin
IV / gr g

20u .. ..

+ 2on gradwn Normal derivatives of vorticity (flux)
10
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(4.48)

There are of course, several new terms which appear when compared to
Eq. (4.2). We note that in the absence of viscosity gradients we are left with
dpn Xgrad_p vp

dw .
E{—Lw+ud1vgra.dw+a—n ) 2o

This differs from Dahm et al. (1989) by the last term on the right hand
side which seems to be an oversight. This oversight does not seem to have

curlw X n.  (4.49)
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affected the accuracy of their numerical results, which compared well with
experimental observations.

If there are no density gradients Eq. (4.48) simply becomes Eq. (4.2). This
is the standard form of the vorticity equation, which would of course apply
to regions removed from the thin interface, where the density and viscosity
gradients are negligible.

We are primarily interested in the means by which tangential vorticity
can be created from an initially irrotational flow. In this case w = 0 and
Eq. (4.48) reduces to:

w _
at
6ang1‘adyp 28;u OpOun X 1 206%u ]
—_—— n X bgrad _ SU +2— - nXxXmn
on p? ( & ) ndn p? panz( z

tangenhal

23/1

Y —-b5u aw’m (4.50)

o

normal

Once again, terms involving 1 X 12 enter the equation as it did in our analysis
of the sharp interface. Especially important is that one of the terms does
not involve any density gradients; this was one of the criteria needed for a
successful model. That is, even at a sharp interface where there is no density
jump, but where there is a viscosity jump, the level of vorticity must still
satisfy Eq. (2.14). In the present model, creation of vorticity is predicted for
surfaces with n # 0.

We must also consider whether the sign of the vorticity predicted is con-
sistent with the sharp interface model. To do this we will need a model of
the density and viscosity profile through the interface.

Previously Dahm et al. (1989) have used a step function to model the
abrupt change in density across the interface . The derivative of the step
function is the Dirac delta function. This is not suitable in the present
case because substitution of the step function in Eq. (4.50) yields products
of Dirac delta functions. The product of the delta function is undefined
(Kaplan, 1984, Pg. 528). This difficulty did not arise in Dahm et al. (1989)
since the authors’ model of the interface did not include the effect of variable
viscosity. This meant that no products of delta functions were needed. In the
present case we avoid this difficulty by using a smooth function to represent
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the change in g and p through the interface.

To determine the relative importance of the terms in Eq. (4.50) we assign
a function to describe the variation in fluid properties p, u across the interface.
Suitable functions for our purpose are:

pn) = 5 (4™ + %) = (4~ — u*) tanh(6m)] (451)
p(n) = 5 (6™ + %) = (67 = ") tanh(ém)] (452)

These functions represent monotonically changing fluid properties through
the interface. Here, § gives a measure of the surface thickness. Specifying
very large values of § gives a very abrupt interface.

Material continuity is automatically satisfied by our choice of the density
distribution since the fluid is assumed isochoric and the density of a material
particle is assumed fixed: p = 0.

Derivatives of Eq. (4.51) with respect to 7, the coordinate perpendicular
to the surface, become

0 1, _

__a;‘ = - - p*)8 sech?(8 n) (4.53)
32/-‘ - +1\ 2 2
o2 = (u~ — p¥)86%sech?®(d n) tanh(d 1) (4.54)

A plot of the fluid properties is given in Fig. 4.1 as well as the first and
second derivatives. The sign of the derivatives is what is of primary interest.
Eq. (4.50) is non-dimensionalized as follows. Nondimensionalized variables
are denoted with a tilde.

Vorticity is nondimensionalized with a characteristic velocity U and length

L:
- w
and time:
-~ t
t= /o (4.56)

Here we assume that [ and U are characteristic of the flow on a scale much
larger than the interfacial thickness. Similarly for n we have

= —75 (4.57)
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Figure 4.1: Plots of the function describing the density and viscosity through
the interface.

The pressure gradient is nondimensionalized with

——— gra,dyp

& o P = Gt o) OA/L (458)
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The surface gradient of u becomes:

crad u = E2d (4.59)

Also, the following nondimensional groups are introduced:

A i Atwood numb
= P fwood number
-t
V.= -Fi__l_—lﬁ_ Viscosity ratio
L+ p
€ =0L Thickness ratio
“+pT)UL
Re = (_p_;-_p__)r Reynolds number (4.60)
B+ p

Substituting these results in Eq. (4.50) gives the following expression after a
considerable amount of algebra,

0w, 2 sech?(6 ) 1 — Vi —
B { T+ Atanb(8 1) |1 Atanh(6 )" = FdoP + o m X grad
> 2V; sech?(87) Asech?(én) _ < }
& {Re (1 + Atanh(é 7)) [1 + Atanh(é ) 2tanh(§n)| m X 7

(4.61)

The first term on the right is O(e,) while the second is O(e?) and hence will
dominate in view of the magnitude of ;. Assuming €; > Re, the two most
important terms are the coupling of viscosity gradients and density gradients
acting on 1 and the second derivatives of viscosity acting on 1. To examine
the sign of the vorticity produced by these terms we assign the functions f;
to the coefficient of the density gradient viscosity gradient term and f; to
the coefficient of the term involving second order viscosity gradients

= e2V;Asech*(8n)
1™ Re[l + Atanh(én)]2
2 2
e V; sech®(6n) tanh(dn)
= — ; .62
f2 Re ([l + Atanh(dn)] (4.62)

In this form these functions nicely show the effects of net density and viscosity
changes through the interface. For vanishing viscosity gradients V; = 0 and
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Figure 4.2: The functions f; and f,. In these plots A = V; = 0.818. This
corresponds to p~/pt = = /ut = 10.

both functions go to zero. For vanishing density gradient A = 0 so that
fi1 = 0. The second function survives however and reduces to
2

fa= —2%—:1 sech?(87n) tanh(d7). (4.63)
f1 and f, are plotted in Fig. 4.2 for A = V; = 0.818. This value was chosen
arbitrarily and is not meant to represent a particular physical example. We
note that f is symmetric about its maxima which is slightly to the right of
n/8 = 0. This is caused by the varying value of density at each point through
the interface, not the value of the density gradient which is symmetric about
n/6 = 0. f is asymmetric about this point having a greater magnitude on
the less viscous side of the interface. Physically this represents the greater
effect of viscous torques on less dense fluid. Fig. 4.3 illustrates the effect of
various A on the sum f; + f» which we simply refer to as f. The viscosity
ratio was set to reflect that for an air-water interface so that V; = 0.981. All
the plots in Fig. 4.3 are symmetric about the inflection point, which shifts
to the right with increasing A. Most importantly the sign of f is positive
in the more dense, more viscous region. This result is consistent with what
we would expect from the sharp interface analysis in Chpt. 2. Indeed f; and
fo are the same sign and will act cooperatively. This also means that even
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Figure 4.3: A plot of the functions from Eq. (4.61) with the following A:
(a) A=1L & =1, (b) A =0818 £ =10, (c) A = 0.980; - = 100,
(d)A = 0.997; £ = 1000. V; was held constant at 0.981 for all curves

if A = 0 the correct sign of w; production is predicted. This means that
vorticity production of the correct sign is predicted even at the interface of
two fluids of the same density but differing viscosity. '

4.2.6 Conclusion

The vorticity transport equation has been derived for a thin interface through
which density and viscosity are allowed to vary. This analysis yields terms
that predict vorticity creation of a sign consistent with the sign of vorticity
observed in experiments and predicted by the sharp-interface model Chpt. 2.
These results shows that, in general, vorticity creation results from a com-
bination of the curl of viscous forces and viscosity-gradient density-gradient
coupling. The analysis leading to Eq. (4.61) shows that baroclinic torques
are likely secondary to the viscosity-dependent contributions.

This analysis also successfully fulfills another criterion stated at the out-
set: The creation of vorticity is predicted at an interface where there is solely
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a viscosity gradient. As discussed in Chpt. 2, the sharp interface model with
vanishing tangential surface tractions—the free-surface model—requires a
prescribed level of vorticity to match this boundary conditions independent
of the density jump across the surface.

A deficiency in this chapter’s analysis is the absence of surface tension
effects. This may not be such a bad assumption however. As Saffman (1992)
points out, the effect of a constant surface tension is an application of a
force normal to the surface. He states, without analysis, that such a force
will not create a local torque on fluid elements at the surface. As we saw
in Chpt. 2 the effects of constant surface tension did not appear—only the
presence of surface tension gradients altered the level of vorticity. The effects
of intrinsic surface stress on the vorticity equation remains to be calculated.
Papers recently brought to my attention (Mavrovouniotis and Brenner, 1993;
Mavrovouniotis et al., 1993) may offer future directions for this work which
I hope to pursue.

Since we are assuming the interface to be a thin region we cannot include
a singular surface with an intrinsic surface stress such as surface tension.
Modelling surface tension in the thin interface context would require an al-
ternative constitutive response to include this effect. Some models of surface
tension effects in the context of a thin interface do exist (Dunn and Serrin,
1983; Blinowski, 1973b,a). Here, they find that surface tension arises as a
manifestation of steep density gradients through the interface. It would be
worthwhile to investigate the implications of these equations in the future.
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CHAPTER 5

THE VORTEX RING VELOCITY DUE TO AN
IMPACTING DROP

5.1 Introduction

The experiment studied here is a result of a remarkably simple and ubiquitous
event. A water drop falls freely through air and strikes a pool of the same
liquid. If the Weber number (We) and Froude number (Fr) are not too
great, a vortex ring forms within the pool, (Hsiao et al., 1988). Weand
Fr are defined as follows,

2 2
Wé:onde, =U.
Y gd.

Here « is the surface tension, p the density of water, g is the acceleration due
to gravity, U the velocity of the drop and d. is the drop’s effective diameter
( d. will be defined in section Sec. 5.3).

The purpose of the present chapter is to investigate the properties of
the vortex ring resulting from two cases. In the first case (Case 1) the drop
impacts the pool with a W& of 23.2 and Frof 25.2. In the second case (Case 2)
the drop’s Weis 16.6 and the Fris 18. In this regime the impacting drop was
found to produce an intricate three-dimensional vortex structure, (Peck and
Sigurdson, 1994). It was the study of this structure which led to the present
experiments. This phenomena was studied experimentally using dyed water
drops falling into an un-dyed test cell of water. The evolution of the vortex

-ring was examined for short times after its formation. This corresponds to

tThis chapter has appeared in Experiments in Fluids: Peck and Sigurdson (1995)
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times less than 70 ms after the drop and cell first come into contact with
each other. The specific topics to be addressed in this chapter will be:

1. The position of the vortex ring relative to the undisturbed free-surface
during the times mentioned.

2. The growth of the vortex ring’s spatial dimensions.

3. The velocity of the vortex ring.

Previously published data, (Rodriguez and Mesler, 1988), are compared
to the present data to investigate the validity of a major proposition of the
present chapter; the appropriate time-scale is the time for the impact crater
to reach its maximum depth. This endeavour makes use of a scaling for this
time suggested by Pumphrey’s experiments, reported and developed in Oguz
and Prosperetti (1990).

5.1.1 An Introduction to the Problem

The experiment begins with a water drop freely falling through air. During
its fall the drop will oscillate as a result of the separation of the pendant
drop from the tip used to form it. If the primary mode is excited the drop
will oscillate about spherical, between vertically prolate and vertically oblate.
The shape of the drop at impact has been shown to influence the depth to
which the vortex ring penetrates into the pool before stopping, (Thomson
and Newall, 1885; Keedy, 1967; Chapman and Critchlow, 1967; Rodriguez
and Mesler, 1988).

As the drop strikes the pool a vortex sheet must exist to match the
discontinuous velocity potentials. In this way an axisymmetric distribution
of azimuthally aligned vorticity will be present, see Fig. 5.1. The dynamical
means by which the vorticity is generated is unclear!. Very little discussion is
available in the literature. Chapman and Critchlow (1967) offer an essentially
kinematic argument to explain the generation of circulation which hinges on
the oscillation phase of the drop at impact. The reader is referred to Peck
and Sigurdson (1994) for a more complete discussion.

lWhen this chapter was prepared for publication (1994), this statement reflected the
state of knowledge. I believe the work in Part I of this thesis provides significant insight
into this process.
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Figure 5.1: Schematic diagram of vortex structure after drop impact

It is unlikely that there is any significant contribution to the vortex dy-
namics taking place after impact from the small amount of vorticity created
within the drop during free-fall. It has been shown that in a drop-fixed frame
of reference the internal velocities are on the order of 1% of the drop velocity
after the drop has reached terminal velocity, (Pruppacher and Beard, 1987).
If the axisymmetric vortex sheet created by the impact is considered in the
absence of the free-surface it will begin to roll-up under its Biot-Savart self-
induction. A spiral forms in the z,r plane which will center about a circle
that has its plane perpendicular to, and its origin on, the axis of symmetry.
The radius of this circle will decrease until a steady value, ry, is reached . If
the initial radius to the outer edge of the sheet is r; and C = 3, C will take
on a value less than 1 in order to satisfy the invariance of the hydrodynamic
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impulse, I, where,

1
I=-2-p/erdV. (5.1)

Here r is the position vector and w is the vorticity of the elemental volume
dV. Integration is taken over the entire volume, V. The value of C is de-
pendent on the initial radial distribution of the azimuthal vorticity (see for
example Taylor (1953)). Unlike Taylor’s analysis, the impulse is no longer
necessarily invariant in the presence of the free-surface.- For the idealized
theoretical case of a steady free-surface the surface will tend to further con-
tract the vortex sheet as the vorticity interacts with its images. The result
of the vortex sheet roll-up is the vortex ring.

At this point it is important to clarify the definitions of the vortex ring
and the vortex ring core which will be used. Common definitions of vortex
rings range from a single circular line vortex to Hill’s spherical vortex. This
issue is further complicated when describing turbulent or unsteady vortex
rings. The present chapter will adopt the definition of Glezer and Coles
(1990); the vortex ring will be defined as “an axially symmetric, approxi-
mately spheroidal volume whose internal mean vorticity lies entirely in the
azimuthal direction”. In a reference frame moving with the vortex ring the
spheroid is bounded by a stream-surface with a front and rear stagnation
point. The vortex ring core will refer to the concentrated region of azimuthal
vorticity within the vortex ring often idealized as a single circular line vortex.

The point in time when the vortex sheet becomes a vortex ring is am-
biguous but occurs in the nondimensional time interval, 0 to 1.5 (using the
time-scaling proposed in Sec. 5.3). This time interval will be referred to as
the vortex ring formation interval (interval A shown in figures). The time
intervals mentioned are not meant to represent precise boundaries. They are
to aid in identifying which general flow regime the vortex ring is undergoing
in the following discussions.

As the vortex ring travels downward it may undergo an instability
whereby azimuthal vorticity is tilted to become stream-wise vorticity and
is deposited into the wake. This is observed in the present experiments and
is described in greater detail elsewhere, (Peck and Sigurdson, 1994). This will
be referred to as the transition region corresponding to the nondimensional
time interval, 1.5 to 3.6 (interval B shown in figures).

The vorticity that is left within the vortex ring relaminarizes and proceeds
downward into the pool. This corresponds to nondimensional times greater
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than 3.6 and is referred to as the relaminarized region (interval C shown in
figures).

This problem has also been studied in the light of the entrainment of
bubbles which act as nucleation sites for boiling, often termed Mesler en-
trainment, (Esmailizadeh and Mesler, 1986). The results to be presented
are also relevant to the study of drop-pool mixing in the near interface re-
gion,(Anilkumar et al., 1991). It is hoped that the present quantitative results
will assist in understanding these topics.

5.2 Apparatus

A schematic of the apparatus used in this experiment is shown in Fig. 5.2.
A comprehensive description of the experimental apparatus has been given
in Peck and Sigurdson (1994). The entire experiment was automated by a
personal computer operating through a series of I/O devices. This allowed
a complete set of data to be taken without the danger of disturbances from
human presence.

The drops were formed on tips constructed from carefully prepared stain-
less steel hypodermic tubes. A small stepper-motor-actuated pump was fab-
ricated to deliver precise amounts of fluid to the tip. The pendant drops
were first quickly filled to 85 % of their predicted final volume. The rate
of filling was then slowed until the weight of the pendant drop caused it to
fall away from the tip. This is similar to the method used to obtain a con-
sistently sized drop when using the drop mass technique of surface tension
measurement (Wilkinson, 1972). The dye used in the drops was Fluorescein
with a concentration of 400 mg per 1000 ml of distilled water. The surface
tension of the Fluorescein solution was tested using the drop mass technique
in a separate set of experiments using a 4.4 mm diameter glass tip prepared
using the techniques outlined by Harkins and Brown (1919). Less thana 1 %
difference in surface tension between the drop and the pure water of the pool
were recorded.

The un-dyed pool was held within a glass vessel which had been blown
from a single piece of glass. The temperature of the pool at the beginning
of the experiment was 19°C and rose over the course of the experiment to
21°C. An optically clear window was fused into one wall of the vessel to
allow proper focusing of photographic equipment. The vessel and the drop
forming tips were mounted on a vibration isolation table to stabilize the free
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Figure 5.2: Plan view of apparatus. (1) Personal computer, (2) data acqui-
sition/ management board, (3) function generator, (4) 35 mm camera, (5)
stepper motor driven, precision pump, (6) three-axis traverse and hypoder-
mic tube carrier, (7) test cell, (8) cell temperature probe, (9) strobolume,
(10) He-Ne triggering laser, (11) photo-transistor to receive laser trigger,
(12) relative humidity sensor, (13) ambient temperature sensor, (14) optical
benches, (15) vibration-isolation table.

surfaces of the pool and the pendant drop. The height of fall was defined as
the distance from the tip to the free surface minus two drop radii. The fall
height remained constant throughout the experiments at 32.9 mm.

All of the apparatus which would come in contact with the liquids involved
were constructed of stainless steel, glass or teflon. This allowed the apparatus
to be cleaned using a 1:1 nitric acid solution followed by ten rinses of distilled
water. This eliminated any contaminants present on the apparatus. The
free surface was left open to the atmosphere. The degree to which airborne
contaminants may affect the results is currently under investigation. The
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photographic data were acquired with a Nikon F3 camera and 60 mm lens
mounted on a bellows. A strobe was used to illuminate the event from the
right side of the tank. The strobe was discharged at a rate of 66.67 bursts
per second while keeping the camera shutter open in a darkened room. The
flash rate was controlled by a function generator. This resulted in four or five
images being reproduced on each photograph at 15 ms intervals. The time
at which the first flash was triggered was controlled by a timing circuit. The
circuit was activated by the falling drop intercepting a laser beam reflected
off the surface of the pool. The accuracy of the timing circuit was determined
to be 0.15 ms. The time for the first flash in the series to be discharged was
varied for different drop impacts by 2 to 3 ms over a 15 ms range starting at
7.5 ms. In this way a complete record of the event was compiled for the first
70 ms.

5.3 Experimental Results

Twenty-eight multiple exposure photographs were taken yielding one hun-
dred and thirty points. One of these photographs is shown in Fig. 5.3. Three
distances were measured from these photographs as follows.

The depth z, of the horizontal plane which contained the vortex ring’s
greatest width (henceforth referred to as the vortex ring’s major axis) was
measured relative to the position of the undisturbed free surface, Fig. 5.1.
This measurement was the most reasonable estimate of the position of the
vortex ring’s core obtainable using this form of flow visualization. Examina-
tion of more detailed single exposure photographs confirmed that the center
of the spirals formed from the dyed fluid sheet corresponds to the position of
the vortex ring’s major axis. It seems reasonable to assume that the position
of the center of the vortex ring core will be close to the center of the spiral
at these early times when the diffusion length of the vorticity is small.

The depth of the vortex ring’s greatest penetration z, was also measured
relative to the undisturbed free surface. This was taken to be the greatest
depth that dyed fluid associated with the vortex ring was visible. That
position will be referred to as the depth of the vortex ring’s leading edge.
Care must be exercised when interpreting this result. The position of the
dye does not necessarily mark the stream-surface separating the vortex ring
from the outer irrotational flow. The diffusion of vorticity through the fluid
is much faster than the dye. Thus while the presence of dyed fluid that was
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Figure 5.3: A typical multi-exposure photograph acquired in this experiment.
The first flash was discharged at 17.5 ms after impact and at 15 ms intervals
thereafter.

initially rotational indicates the presence of vorticity, the converse does not
hold. The position of the leading edge as measured in these experiments can
only give an approximate indication of the position of the front stagnation
point on the bounding stream-surface. The minor axis length a will be defined
as £, — ;. This is one half the length of the minor axis expected if the vortex
ring were symmetrical about the horizontal plane containing the vortex ring
core. Limitations of the flow visualization technique used did not allow any
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accurate measurement of the rear stagnation point.

The length of the major axis b was the third measurement to be taken
from the photographs. This dimension must also be treated with the same
care mentioned in the preceding paragraph. At early times this length suffers
in interpretation due to the highly unsteady nature of the vortex ring as it
undergoes a transition to turbulence. During these times the major axis was
taken to be the maximum length across which dyed fluid was observed.

The lengths were made dimensionless with the effective drop diameter,
d.. This is the diameter of a sphere which would occupy the same volume as
the dyed water drop used in these experiments.

All the times appearing in the present chapter were made dimensionless
with the time at which the maximum penetration depth of the crater oc-
curs, t,. Pumphrey has found that ¢, varies as U id,. Oguz and Prosperetti
(1990) suggest a dimensionless scaling which appears in that paper linking
Pumphrey’s experimental result with the dispersion of the impacting drop’s
energy via the largest wavelength capillary waves with wave-speed, ¢,. This
scaling did not require viscosity and hence the scaling presented here is in-
dependent of Re. Nondimensionalization yields the following result,

de

Utend
g o

+ —_—
bt —

1
This may be written as follows ( since ¢, = (5%1) *) )

taU
de

= (V%Fr)%

Therefore,

%“‘: - %{-(% Pr)-t.

The measured time for the crater to reach its maximum depth in the
present experiment was 8 ms +.5 ms. This corresponds well with the pre-
dicted value of 8.5 ms using the above relationship. Two other cases were
tested from data appearing in Rodriguez and Mesler (1988) (this publication
will henceforth be referred to as RM) for 4.4 mm d. drops falling from 17.6
mm and 27.6 mm. The predicted times were 13.0 and 14.0 ms respectively.
The values taken from the published data were 12.5 and 15 ms +1 ms in the

same order.
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The velocities of the vortex ring, U,, were calculated from z;. A cen-
tered differencing technique was used where the data was available. At the
endpoints of each data set a backward or forward differencing was used as
required. From multiple exposure photographs taken of the drop in free-fall
it was determined that the drop struck the pool while spherical passing from
vertically prolate to vertically oblate. The ratio of the major and minor axes
of the drop (defined in the usual sense for an ellipse) in the fully prolate
configuration just prior to impact was 1.1.

All of the results mentioned so far were dependent on the reproducibility
of this delicate experiment. It is for this reason that the present method of
data acquisition was used. The small scatter in the data confirms that the
events studied here were reproducible and represented a specific phenomenon
under these conditions.

5.4 Discussion

The position of the vortex ring’s major axis and leading edge are plotted
against time in Fig. 5.4, which includes data from RM (in all of the figures the
open circles represent data from Case 1 while the open squares represent data
from Case 2). No error bars are shown in the plots since the measurement
error lies within the plotted symbols. The position of the vortex ring’s major
diameter is plotted in Fig. 5.5. In both Fig. 5.4 and Fig. 5.5 we see the data
for the two cases agrees very well, indicating the validity of the proposed
scaling. The Case 2 data appears offset slightly below the Case 1 data, which
may be due to the maximum crater impact depth being slightly smaller in
that case. This would be consistent with the vortex ring being created nearer
the surface. The agreement between the two cases is even better for Fig. 5.5
indicating the maximum ring diameter position is a better diagnostic than
the leading edge position, which can be influenced by differing individual
growth rates of the vortex rings. This influence can be seen in Fig. 5.6 where
the Case 1 vortices are growing slightly faster than the Case 2 vortices.

In Fig. 5.4 and Fig. 5.5 we also see that the vortex rings travel away from
the free surface in a remarkably smooth manner over the entire time interval
studied (in particular note the best fit line in Fig. 5.5). This is surprising
when the upward flow due to the reversing impact crater (estimated to be of
the same order of magnitude as U) is considered at early times (interval A).
It is equally unexpected during the transition phase, B, where'the vortex ring
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Figure 5.4: The nondimensionalized position of the vortex ring’s leading
edge vs nondimensional time. The open circles correspond to the depth of
the leading edge in Case 1 (W& =23.2, Fr =25.2). The open squares represent
the depth of the leading edge in Case 2 (We=16.6, Fr = 18) The filled circles
and squares are data which appear in RM for the position of the leading edge
of vortex rings created by larger drops, d. = 4.4mm, impacting the pool at
different oscillation phases. The filled squares and circles correspond to drops
which were vertically oblate and vertically prolate at impact, respectively.
Two best fit lines are plotted in region B. The upper line is for data from
Case 1, the lower line for Case 2.

undergoes dramatic topological changes. After the vortex ring has undergone
transition and has shed its secondary structure into the wake the leading edge
advances into the pool at a slightly greater rate than the major axis. This
indicates that the leading edge is advancing away from the vortex ring’s
major axis. The vortex ring is growing as will be discussed later.

Data is published in RM for a drop with a d. of 4.4 mm which had fallen
"17.6 mm before striking a pool and was fully prolate at impact. The Weand
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Figure 5.5: The nondimensionalized position of the vortex ring’s major di-
ameter vs nondimensionalized time (see caption to Fig. 5.4 for explanation
of symbols

Pr calculated in this case are near 21 and 8 respectively. The Weis very close
to that in Case 1. In the same publication, data were also presented for
the case of a drop with the same effective diameter but impacting in the
fully oblate position after falling 27.6 mm yielding a Weof 31 and Frof 12.5.
These data are also shown in Fig. 5.4. The vortex rings formed from fully
prolate drops in the experiments of RM scale very well with the data col-
lected for the significantly smaller drops studied in the present experiments.
This lends support to the validity of the scaling proposed here. This is not
the case for the vortex rings formed from the fully oblate drops in the RM
experiments. The position of z, for the vortex rings created by fully oblate
drops consistently lies behind the others discussed.



CHAPTER 5. VORTEX RING VELOCITY 80

The photographs reproduced of vortex rings produced by fully prolate
drops in RM’s experiments also show a qualitative similarity to those stud-
ied here. In both cases the vortex rings appear to become unstable after
formation and undergo a transition. This is observable if the first exposure
in Fig. 5.3 of the present chapter is compared with Fig 3, frame 11 of RM.
Both of these photographs correspond to nondimensional times of 2.1. The
expulsion of dyed fluid into the wake is also visible in RM at later times
consistent with those observed here.

The apparent similarity between the prolate drop of RM’s and the smaller
drops studied here and the dissimilarity of the oblate case may be due to
the complex crater-vortex sheet interaction at early nondimensional times
between 0 and 1. RM have suggested that the increased influence of the
crater inhibits the formation of the vortex ring.

The diameter of the vortex ring was scaled using the effective drop di-
ameter and plotted against the scaled time in Fig. 5.6. Note that it is the
drops which are prolate at impact (RM, Case 2) which have similarly sized
vortex rings. There is some ambiguity as to when the vortex sheet actually
becomes a vortex ring. Thus, the diameters plotted at early times represent
the maximum extent of the volute of dyed fluid within which the vortex sheet
is embedded. It can be ascertained from Fig. 5.6 that the sheet contracts.
As mentioned earlier the diameter contraction is entirely consistent with the
formation of a vortex ring from a vortex sheet. In these experiments the
distribution of circulation along the sheet is unknown and any attempts to
estimate it are hampered by the presence of the unsteady free surface. A
stationary free surface will cause a diameter reduction of a vortex ring of this
sign near it due to velocities induced from its images. To what degree these
effects come into play in the present unsteady case are unknown.

There is some scatter in the data during the transition phase due to the
ambiguity in the measurement of the complex vortical topology.

After the transition phase the vortex ring diameter, b, is approximately
40 % larger than d. in Case 1 and 25 % larger in Case 2. In both cases
the diameter begins to increase at a slow rate. In Case 1, b grows by 6.5 %
between the start of region C to 10 nondimensional time units. In Case 2, b
grows by 4.5 % over the same time interval. This growth, coupled with the
advancement of the leading edge away from the plane containing the major
axis, implies that bulk fluid is being entrained as the vortex ring progresses
through the pool. At these later times the entrainment is likely dominated by
diffusive processes perhaps similar to those outlined by Maxworthy (1972).
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Figure 5.6: The nondimensionalized diameter of the vortex ring vs nondi-
mensionalized time (see caption to Fig. 5.4 for explanation of symbols)

At early times entrainment due to convective means is viable.

To test for self-similarity of the vortex ring, the ratio of the minor axis,
a, and one half the major axis length, b/2, were plotted versus time Fig. 5.7.
The ratio was approximately 0.7 for the relaminarized vortex ring, and
remained so for the times considered here, indicating self- similarity was
present. The Reynolds number (Re) of the vortex ring was calculated from
the measured velocities to be near 500 just after relaminarization. Here,

_Up

v

Re (5.2)

where v is the kinematic viscosity. In Case 1 the Re was 390 at the begin-
ning of the region C, the start of the relaminarization region, and decreased
to 360 by eight nondimensional time units. For Case 2 the respective values
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Figure 5.7: Ratio of the vortex ring’s minor axis, a (defined in section 3), to
one half the vortex rings major axis, b/2, vs nondimensionalized time (see
caption to Fig. 5.4 for explanation of symbols).

are 370 and 320. These Reare within the known range for laminar vor-
tex rings. While these are the Re after relaminarization, it is likely that the
Reis significantly higher prior to transition when the vortex ring is travelling
downward through the upward flow of the reversing impact crater. There-
fore the velocities along the vortex ring’s bounding stream-surface in a vortex
ring-fixed frame of reference will have to be greater than that implied by the
velocity of the vortex ring in a lab-fixed frame of reference.

The dimensionless velocity of the vortex ring was also plotted vs the
scaled time in Fig. 5.8. The upper line is a best fit line for the data from
Case 1, the lower line corresponds to Case 2. The scaling used was taken
directly from the slope of the z; vs. time graph. A general trend of slowly -
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Figure 5.8: The nondimensional velocity of the vortex ring’s major axis and
a single data point given by RM for a vortex ring created by a 4.4 mm
d. drop impacting in the vertically prolate configuration (filled circle) vs.
nondimensional time. The upper line is a best fit line for the data from Case
1, the lower line corresponds to Case 2 (see caption to Fig. 5.4 for explanation
of symbols).

decreasing velocity is evident. In region C this is consistent with the motion of
previously studied laminar vortex rings, (Maxworthy, 1972; Saffman, 1970).
The offset between Case 1 and Case 2 that appeared in the location data now
disappears and agreement is excellent, supporting the hypothesized scaling.
The data point from the text of RM compares well with the present data.
A disconcerting prediction of this result is that the vortex ring velocity
would scale to an inverse one third power of the drop velocity at impact. In
other words, the velocity of the vortex ring will decrease as the drop height
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is increased. In the present experiments the drops with the higher Weand
Frimpacted the pool at 80 cm/s creating a vortex ring with a velocity of
10.9 cm/s after relaminarization. The lower Weand Frdrops impacted the
pool at 68 cm/s and created vortex rings with a slightly higher velocity of
11.4 cm/s which is predicted from the scaling.

This discomfort is slightly alleviated by the following consideration. If
it is assumed that the vortex ring velocity at early times will determine the
total depth that the vortex ring will travel, then the penetration depth data
collected by RM corroborates this scaling. The maximum depth of penetra-
tion (the depth at which the vortex ring ceases its downward motion) for a
fully prolate drop at impact decreases with increasing fall height, with the
exception of one anomalous result. Further agreement is found in Thomson
and Newall (1885) where drops were used which were similar in size to those
in the present experiments. Here the maximum depth of penetration was
found to decrease with increasing drop height for five drop heights which
produced greatest penetration. There is little quantitative data to test this
result further.

5.5 Conclusions

The evolution of drop-produced vortex rings was measured and analyzed
from drops released from two heights. In both cases the dyed drops had a
d. = 2.6mm but in Case 1 were almost spherical at impact while in Case 2
they were fully prolate. In the first case the drops impacted the pool with
a We=23.2, and Fr=25.2. In the second case the drop had a We = 16.6
and Fr = 18.0. Measurements of vortex ring location versus time indicated
a remarkably steady rate of progress, even in the early stages of vortex ring
development. In these stages the upward motion of the free surface might be
expected to have a retarding influence.

The drops with the higher We and Frimpacted the pool at 80 cm/s cre-
ating a vortex ring with a velocity of 10.9 cm/s after relaminarization. The
lower Weand Frdrops impacted the pool at 68.4 cm/s and created vortex
rings with a slightly higher velocity of 11.4 cm/s at the same nondimensional
time.

A proposed scaling uses d. as a length-scale and the time to maximum im-
pact crater depth as a time-scale. Values for this time predicted from theory
compared well to measurements. The scaling gave excellent agreement when
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used to compare the present results for vortex ring location and velocity with
those previously published for significantly larger drops (d. = 4.4mm) that
had a similar We. The agreement occurred when the larger drops had struck
the surface in a fully prolate configuration, but not when they were oblate.
The validity of the scaling was also supported by direct qualitative compari-
son of the timing of the transition behaviour of the vortex ring. The scaling
suggests the counter-intuitive result that the vortex ring velocity varies as
U-3. This is corroborated to some extent by previously published data.

Comparison between these data sets is encouraging but far from validates
the scaling. More comparisons with different sized drops, other values of fall
height, We and Fr are necessary for confirmation.

In the laminar ring region the ratio of the width of the vortex ring to the
effective drop diameter was determined to be 1.25 to 1.4 compared to 1.3 for
the larger drops. In this same region the ratio of the minor axis to one half
the major axis was 0.7. This can be used as an indication of the shape of the
ring. Self-similarity is implied by its constancy, although this was measured
over a relatively short range of vortex ring propagation, approximately two
drop diameters.
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CHAPTER 6

AN APPARATUS TO STUDY DROP-FORMED VORTEX
RINGST

6.1 Introduction

The study of vortex rings is of fundamental interest in fluid mechanics.
Saffman (1981) asserts that “one particular motion exemplifies the whole
range of problems of vortex motion and is also a commonly known phe-
nomenon, namely the vortex ring”. The most popular method for producing
vortex rings is to expel fluid through a sharp circular orifice. Although this
experiment has been widely studied many questions about orifice-produced
vortex rings and vortex rings in general remain unanswered (Auerbach, 1988;
Shariff and Leonard, 1992). One difficulty encountered with orifice-created
vortex rings is the effect of the solid boundaries on the vortex field’s evolu-
tion when the vortex ring has just formed and is still very near the generator.
Other methods of vortex ring production are known such as when a smoke
filled air bubble on a free surface bursts (Rogers, 1858; Buchholz et al., 1995).

Another method to produce vortex rings without a solid boundary is to
let liquid drops impact a pool of the same liquid. If the drops are released
from not too great a height a vortex ring forms as the drop and pool coalesce
(Rodriguez and Mesler, 1984; Hsiao et al., 1988). Although this experiment
has been a subject of sporadic study for well over a century (Rogers, 1858;
Thomson and Newall, 1885; Chapman and Critchlow, 1967; Rodriguez and
Mesler, 1988) the phenomenon is still not completely understood.

The inspiration for this work is a photograph published by Okabe and

tA form of this chapter has appeared in the Journal of Measurement Science and
Technology: Peck et al. (1995)

88
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Inoue (1961) which appears in Batchelor (1967). We have recently under-
taken our own experiments to elicit understanding of the vortex dynamics of
drop-formed vortex rings from single and multi-exposure photographic data
(Peck and Sigurdson, 1991, 1992, 1994a,b). Our intent was to reproduce and
track the evolution of the structure seen in Okabe and Inoue’s figure II,1
(Batchelor’s figure 7.2.3). The difficulties in repeatably reproducing their
result, which was necessary for a meaningful analysis from single exposure
photography of separate events, soon became apparent. In Okabe and In-
_oue’s experiments the drops were formed on the tip of a burette and allowed
to fall into a pool. The large and irregular oscillations induced in the drop as
it released from the tip of the burette were responsible for setting new initial
conditions with each drop impact. This caused a large variation in the vortex
structures observed with drops formed under the same conditions using the
limit of control available with that apparatus. Constructing an apparatus
to successfully reproduce this experiment was a challenging opportunity to
utilize techniques from several areas of experimental science. We found this
to be a difficult task with little assistance available in the literature.

The version of the apparatus which we will discuss is the latest of several
iterations used in our laboratory. Through its evolution we have synthesized
ideas from previous experiments and modified many areas which we believe
precluded reproducibility and hence clear understanding of the phenomenon.

In this final form our apparatus provides another method to study the
short and long term properties of vortex rings. By producing such small
(3-6.7 mm diameter) low-Reynold’s number vortex rings (Re less than 1500
where Re = Q"UQL' where U, is the velocity of the vortex ring, D, the vortex
ring diameter and v is the kinematic viscosity of the liquid) we have been able
to observe the instability and transition to turbulence of a time-dependant
three-dimensional vortex structure (Sigurdson and Peck, 1994). The long
time evolution of the vortex ring can also be conveniently studied over its
entire motion. This is not the case for vortex rings created by large orifice
generators since they require very large and expensive reservoirs to conduct
the experiment.

Although our primary interest is drop-formed vortex rings, this apparatus
can also be used to study free-surface dynamics due to drop impact. For
example, if drops impact the surface within a certain range of Froude a.nd
Weber numbers (Represented by Fr and We respectively where F'r = D,

We = £ 6D ', is the liquid’s density, g is the acceleration due to gravity,y is



CHAPTER 6. APPARATUS 90

the surface tension, U is the drop’s velocity and D is the drop diameter) an
air bubble is created by the impact crater. This phenomenon is significant
to those studying underwater acoustics, boiling and cavitation. For a review
of drop impact phenomena in general we refer the reader to Rein (1993) and
Prosperetti and Oguz (1993).

6.2 Apparatus

In constructing this apparatus our primary concern was to set reproducible
initial conditions for each drop impact. Several parameters had to be consid-
ered for this to be so. The drop would have known fluid properties, impact
velocity and oscillation phase. The pool onto which the drop fell would be
clean with known fluid properties. Rogers (1858) also pointed out that “it
is essential to a perfect experiment to have the liquid of the reservoir as mo-
tionless as possible, its mass should be large, and it should be allowed to
come to rest after each drop before the next is allowed to impinge upon it”
implying that the surface of the pool and the pool’s bulk fluid should be mo-
tionless. To study the long term characteristics of vortex rings it is especially
important to have the pool free of any currents which may have been created
by the passage of vortex rings or temperature gradients in the pool. The
atmosphere through which the drop fell should also be free of contaminants
and currents. The following apparatus, shown in Fig. 6.1 and schematically
in Fig. 6.2, was designed to meet these criteria.
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Figure 6.1: A photograph of the experimental apparatus. For clarity of
presentation some of the support equipment is not shown.
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Figure 6.2: Schematic diagram of the experiment and electronics
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6.2.1 The test cell

The liquid pool into which the drops fall is held within a sealed, prismoidal
glass hexahedron made from 5 mm thick sheets of plane glass. The height

Figure 6.3: A cutaway perspective drawing of the temperature controlled
pool reservoir. 1, three-axis traverse; 2, tip and tip holder assembly; 3, inlet
manifold; 4, Teflon gaskets; 5, reservoir; 6, three-way inlet/outlet valve. The
heavy dark arrows indicate the motion of heating/cooling fluid.

of the reservoir is 40 cm. At its base the reservoir is 10 cmx9 cm and at
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the top 10 cmx13.5 cm. An 8 cm hole was drilled through the top of the
reservoir to allow the entrance of the drop formation apparatus. The depth
of the pool is sufficient to study of the most penetrating vortex rings based
on previously published data (Rodriguez and Mesler, 1988).

The plane glass sheet provides transparency and optical flatness which
are necessary to take clearly focused photographs. Having the film plane
parallel to the walls of the test cell minimizes distortion of the image. With
this in mind, one of the test cell’s walls was tilted 5° outward from vertical
enabling the camera to be positioned at a 5° angle below horizontal. This
viewing location provides the clearest view of the drop impact and subse-
quent vortex-free-surface interaction. The plane walls will also allow the
use of Laser Induced Fluorescence planned for future experiments. Laser
Doppler Velocimetry and Particle Image Velocimetry have been considered
but at present it is unclear how the requisite seeding particles would affect
the sensitive interfacial properties.

Surface tension is very susceptible to outside contamination. To elimi-
nate contamination from the apparatus it was important to design all the
components of the apparatus that would come in contact with the pool or
drop liquid to withstand vigorous cleaning procedures. With this in mind,
the glass walls, top plate and bottom plate were ground together along their
edges to obtain a water-sealed fit. The six pieces were then cemented to-
gether on the outside of the ground joint. This prevents the test fluid or
volatile cleaning agents from coming in contact with and possibly dissolving
surface active agents in the cement. It is also important to keep the interface
free of contamination during the course of the experiment. To maintain the
clean environment the pool was sealed from the lab environment using Teflon
gaskets, Fig. 6.3. )

A temperature sensor (Analog Devices 590J) is located on the wall of the
reservoir to record the test-cell temperature. At the bottom of the reservoir
an outlet pipe is attached to a Teflon-packed three-way valve for filling and
draining the test fluid. A flange on the outlet pipe is ground into the glass
to provide a clean, water tight seal.

6.2.2 Drop Formation

The pendant drops are formed on carefully prepared tips of various diameters
to allow drops of the desired volume to be formed. The drops we have used
ranged from 2.6 mm to 5.4 mm d, where the effective diameter d. is the
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diameter of a sphere with the same volume. The smallest drops were formed
on 27 gauge (.40 mm outside diameter) stainless steel hypodermic tubes and
the largest on prepared Pyrex capillary tubing tips with diameters ranging
from 2.594 to 5.560 mm.

The hypodermic tubes are prepared as follows. First the lateral surface of
the tube is highly polished with successively smaller grits of diamond paste
(1000-14000 mesh) while the tube is rotated in a precision collet mounted
in a lathe. When a high polish is obtained the end of the tube is ground
flat with a fine abrasive disc. This face is left unpolished to ensure the tip
wets uniformly during the early formation stages of the pendant drop. This is
similar to the method used by Wilkinson (1972) to prepare tips for measuring
surface tension using the drop-volume method.

Pyrex tips are prepared using techniques similar to those given by Harkins
and Brown (1919). This method is similar to that for the hypodermic tubing
but requires the tubing to be ground circular before polishing. This is done by
turning the capillary tubing rapidly in a lathe while simultaneously grinding
the lateral surfaces with a diamond impregnated or silicon-carbide wheel
mounted in a high speed tool. The surfaces are then polished as before. To
finish its face the tip is mounted in a 10 cm diameter brass rod with a hole
drilled slightly larger than the tip. The small cavity between the brass hole
and the tip is filled with lapidary sealing wax before grinding the brass block
and the tip with 600 grit carborundum paste. The wax prevents the edges
from chipping while the face is being ground.

Burs or chips on the face of the tips inevitably cause pendant drops
to creep up the sides of the tube. When the pendant drop released from
the tip in this case the drops acquired a non-vertical trajectory. This was
unacceptable to us for two reasons. First, it is important that the.drop
fall at a preset spot for timing accuracy, see Sec. 6.2.6. Also, with properly
prepared tips forming drops of a known size, the surface tension may be
measured using the drop-volume method.

After the tips are completed they are measured 16 times (in total) across
four diameters using a tool-maker’s microscope. This is necessary for an
accurate knowledge of the diameter and to ensure they have not become oval
during the polishing process. We summarize the characteristics of the tips
in Table 6.1.

Appropriately sized, interchangeable Teflon collets hold the tips securely
in a temperature controlled stainless steel mount, Fig. 6.3. This holder was
mounted on a three-axis traverse which allows precise positioning of the tip
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[ Tip | Mean Tip Diameter (mm) | Eccentricity |

1 0.418 £+ 0.003 1.001
2 2.594 £ 0.007 1.004
3 4.939 + 0.001 1.005
4 5.560 + 0.009 1.001

Table 6.1: A table of manufactured tips used and their sizes and eccentric-
ities. The eccentricity listed is the largest ratio of the four mean diameters
measured for each tip which are at right angles to each other.

in relation to the impact site

6.2.3 Temperature Control

A major concern in our experiments has been the control of the liquid’s
dynamic viscosity p and the interface’s surface tension . Both are functions
of temperature. The rapid change with temperature in the dynamic viscosity
of liquids is often overlooked in water drop experiments. The test cell and
drop formation tip were temperature-controlled by a re-circulating bath of
water. Fig. 6.3 shows the system’s plumbing.

The water is fed into the chamber through a manifold with four inlets at
the top of the tank, Fig. 6.3. A single outlet is positioned at the bottom.
This was done to ensure a symmetric low with uniform cooling. The tip
holding device is also temperature controlled. An annulus was constructed
around the feed pipe to the formation tips. Fluid is circulated through this
annulus in parallel with the test cell chamber’s plumbing.

By using an enclosed test environment and a circulating tempera.ture
control bath this apparatus eliminates any temperature gradients in the test
fluids which may cause convection cells. Experiments to test for thermal gra-
dients in the reservoir showed no measurable temperature gradients after 130
minutes (see Fig. 6.4). Each experiment was started in a worst case situation
with the pool artificially far warmer or cooler than room temperature. The
reservoir was then cooled/warmed until the temperature observed on three
glass thermometers placed 1 cm from the bottom, the center and 1 cm from
the top of the test cell did not change in a 10 minute interval. This systems
temperature control also ensures that the temperature of the drop fluid will
be the same of the pool fluid which has often been tacitly assumed in the



CHAPTER 6. APPARATUS 97

Temperature °C

0.0 50.0 1000 150.0
Time (minutes)

Figure 6.4: A plot of the test cell temperature vs. time for two cases. In the
first case the temperature was recorded at three locations while the tank was
cooled from 25° C. In the second, the tank was warmed from a cooled state.

past. This assumption is likely incorrect in most cases due to evaporative
cooling of the drop in an open atmosphere. In this apparatus the atmosphere
within the test cell is sealed and will reach a saturated state eliminating any
evaporative cooling in the drop or the pool. These cells have been observed
in other experiments (Keedy, 1967) and may have gone unnoticed in others.
Early versions of the present apparatus such as that decribed in Chpt. 5 were
very susceptible to these currents.

6.2.4 Pump

A small stepper-motor-actuated pump was constructed to deliver fluid to the
drop-formation tips. The pump was a simple plunger riding in a cylinder. It _
is a rugged design which delivers accurate amounts of fluids. The materials
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and methods of construction allowed the pump to be thoroughly cleaned. The
pump body was machined from a solid block of stainless steel to eliminate
the risk of contaminants being trapped in blind joints. The piston bore was
honed to give a consistently sized 6.75 mm bore along the length of the
cylinder. A small inlet hole enters the top of the cylinder through which
the cylinder fluid is recharged. Teflon-packed ball valves are mounted on
the pump inlet and outlet to direct the flow for drop production or cylinder
recharging.

A-stainless steel pushrod with a Teflon piston ring serves as the plunger.
The plunger is translated along its axis by a live-nut mounted in precision
bearings threaded onto a 40 tpi thread which was machined onto the rear 8 cm
of the pushrod. The nut is turned while the plunger is not allowed to rotate.
A gear reduced stepper motor was installed which drives the nut through a
45.71:1 gear reduction. The stepping motor allows computer automation of
the process.

The pump, test cell, and drop formation tips form a system similar to
an apparatus reported by Tornberg (1977) to measure surface tension by the
drop-volume method. By knowing the volume displaced by the pump, V
(determined from the stepper-motor input) to release a drop from a properly
prepared tip of radius r it is possible to determine the surface tension from
the relationship first developed by Harkins and Brown (1919),

VApg

7= 21rrf(7"_}-)’ (6.1)

where Ap is the density difference across the interface. The function f (-;"3,—) is

calculated from a fourth order polynomial fit to data collected by Wilkinson
(1972). Thus, it is natural for us to use the data collected to keep track of
the surface tension of our drops since there has been some question regarding
the surfactant properties of the dyes used for flow visualization (Fluorescein).
To obtain the most accurate measurements of surface tension with the drop-
volume method the tip should be chosen such that f ('é') is near 0.6 for a
liquid/air interface. The largest tip we use is near this value and is the tip
used for measuring reported values of surface tension (Peck and Sigurdson,
1994b). Data from the smaller tips are only used to monitor the surface
tension as the experiment proceeds.
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6.2.5 Photography and timing

A 35 mm format SLR camera (Nikon F-3) with motor drive (Nikon MD-4) is
mounted on a bellows extension (Nikon PB-6). A 60 mm f/2.8 lens (Micro-
Nikkor) is used in the standard or reversed configurations. The reversed
configuration gives more object to lens distance under certain magnifications.
We chose the Nikon F-3 camera for its ability to open and close the shutter
manually while also using a motor drive. The optics are focused by replacing
the drop formation tip with a stainless steel dowel. The dowel is lowered into
the pool slightly and the lens is focused on it.

The photographs are taken in a darkened room with the camera shutter
open. The strobolume lamp (Gen Rad 1540-P2 Lamp Unit) is discharged at a
preset time after drop impact (see section 6.2.6). The strobolume control unit
is set to the high intensity range giving a 15 us peak light output. The length
of the flash is sufficiently brief to freeze the phenomena we are observing. At
this range of lamp intensity an f stop setting of 8 gives sufficient depth of
field and brightness.

Multiple exposure photographs are used to measure velocities and check
repeatability. In a previous paper representative results of this technique
are used to consider a proposed scaling (Peck and Sigurdson, 1994b). The
photographs used in these experiments were taken with the addition of the
circuit shown in Fig. 6.2 and the strobolume lamp set to the medium intensity
range. The frequency of the signal to the strobolume varies between 30 to
100 Hz which is too quick for the strobolume lamp to recharge while set at
the highest intensity range.

The flow visualization photographs we obtain with 35 mm photographs
are much clearer than those obtainable from high speed film (Hi-Cam) or
video. Also, with our timing system, the timing resolution is generally far
better than a Hi-Cam. Since a Hi-Cam must be started well in advance of the
event the timing error will be the time between frames which is typically 1 ms.
There is also a difficulty capturing the event at all due to the limited amount
of filming time available (1-2 s). Experiments using high speed film must
resort to artificially initiating the drop’s fall in order to record its impact.

6.2.6 Timing

Discharging the strobolume lamp at a predetermined and reproducible time
after impact was necessary to comstruct an accurate record of the vortex
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ring’s evolution. In a previous paper Peck and Sigurdson (1994a) we observed
dramatic restructuring of the vortex topology in less than 5 ms. Our system
was able to time the lamp’s discharge with a typical error of less than 100
Us.

The triggering system was set up as follows. A 0.5 mW He-Ne laser
(Melles Griot model 05 LLR 811) was declined 5 degrees from horizontal
and focused on the centre of the impact site using an 8 x beam expander
(Melles Griot model 09 LBC 003). The timing circuit was triggered by an
interruption in the laser beam that had been reflected off of the air water
interface into a photo detector positioned on the opposite side of the pool.
We chose this geometry so that the drop would pass through the beam close
to the interface. This reduces the amount of timing lead that would otherwise
have to be determined and adjusted out if the drop were to break the beam
at some point further above the interface. While the best position for the
beam would have been parallel to the plane of the interface it was necessary
to use our present geometry to avoid interference from the meniscus on the
sides of the tank.

The geometry of the laser trigger introduces a lead time due to the beam
touching the falling drop’s surface at latitudes removed from the lower pole,
point P in Fig. 6.5. The lead time is increased if the central axis of the drop
does not pass through the point of symmetry, O and the drop first touches
the laser beam at point Q. There is also an error due to the uncertainty of
when the beam is sufficiently attenuated by the passing drop to begin the
timing circuit.

An analysis of the maximum lead time for a spherical drop yields

1 Afseca
ool _ A seca (6.2
8¢ T3ah [R(sec a—1)+ ¢ tan(a) + r— ] (6.2)

where 6, is the lead time. This is the time it takes for the drop’s bottom
pole to traverse the distance to the pool surface from its point in space when
first contact is made between the drop and the laser. From left to right, the
first term within the braces represents the error due to the first contact of
the drop with the laser at latitudes removed from the bottom pole, Fig. 6.5.
The second term arises due to uncertainty in the lateral positioning of drop,
€. The last term is the laser beam width, where ) is the wavelength of the
laser (629 nm), f the focal length of the beam expander (60 cm) and w is the
laser beam width before entering the beam expander. The distance was then
divided by the calculated velocity for a body falling in a vacuum u = V2gk,
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Figure 6.5: The geometry of the laser timing circuit. Here R is the spherical
drop radius, w is the laser beam width, a is the laser beam’s declination.
The dashed circle represents a drop which has fallen away from the point of
symmetry O by an amount e¢,.

where h is the distance the drop centroid has fallen from release. In the
analysis we have assumed that the drop’s acceleration is negligible over the
small time interval considered and that the beam does not diverge.

The results are displayed graphically in Fig. 6.6 and Fig. 6.7 for an €, of 1
mm. Fig. 6.6 shows the timing to be more sensitive to declination angle than
drop radius. The second figure illustrates the individual contributions to the
lead time from the three terms. The greatest contribution to the lead time
is due to the lateral positioning of the drop. For the range of experiments
we wish to study the lead time will fall below 0.5 ms.

6.2.7 Vibration control

This experiment is very succeptible to vibration. It was necessary to mount
the reservoir, drop formation apparatus, laser timing equipment and photo-
graphic equipment on a 75 x 181 cm optical table supported by four air-



CHAPTER 6. APPARATUS 102

20 A

"0.00 200 4,00 8.00 10.00

h (cm)
Figure 6.6: The combined lead time and timing error versus fall height.
Curves A B and D represent a 2.6 mm d. drop with declination angles & of

0, 5 and 20 degrees respectively. Curves A, C and E represent a 6 mm d. drop

with the same respective values of a (The curves for & = 0° are coincident
for both d.)

charged vibration isolation dampers. The centre of the stand-offs and the
optical benches used to support the laser equipment were filled with lead
shot suspended in an elastomer (Flex-ane 80) for damping.

6.3 Automation

6.3.1 Electronics

The experiment was automated by a small computer (Hewlett Packard Vectra
286) to eliminate any uncertainty or irregularities due to human control.
With reference to Fig. 6.2, the pump’s stepper motor, 35 mm camera, and
timing circuits are controlled through a I/O interface card (Metrabyte PIO-
96). A separate board (DA/M-100-3) with an on-board counting IC chip
is used to count the gated output from a 1 MHz oscillator. The gate is
opened by an interruption in the signal from the photo detettor (Motorola
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Figure 6.7: Components of the lead time versus fall height for a 2.6 mm d.
drop with fixed @ = 5°. Curve A is the lead time due to the laser beam
striking the drop at latitudes removed from the lower pole. The distance
between curves B and A is the lead time due to the passage of the drop
through the beam. The distance between curves C and B is the increased
lead time due to misalignment of the drop’s vertical axis with the point of

symmetry

MRD 300). Flip-flops in the timing input circuit ensure only one signal
passes on to the gate for each impact. This is necessary to eliminate multiple
inputs to the gate because of impact-created surface waves reflecting the
laser beam over the photo detector several times. A signal to the strobolume
control unit (GenRad 1540-P4) is sent after the counting chip counts down
to its pre-loaded number of cycles input to it from the computer program
for each exposure. The strobolume control unit was modified to eliminate an
inherent 300 us delay. An optional multiple-exposure timing circuit is shown
in Fig. 6.2. A gated function generator (Dynascan 3030) is put in line with
a duration timing circuit. Thus we are able to determine the period between
and number of bursts.
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6.3.2 Computer Control

Computer software used to run the experiment was written in the QuickBA-
SIC language. The program is fully automatic and needs no input from an
operator once the experimental run is begun. The number of experiments in
each run is only limited by the number of exposures on the camera’s film,
which is usually 24 or 36. The program uses flash delay times as well as drop
formation rates input before the start of an experiment. The formation rates
determine how fast the pendant drop will be formed. This is done in two
stages; in the first stage the pendant drop is rapidly filled to approximately
90 percent of its final volume in approximately 60 s. Then the drop is slowly
filled until it falls away which may take from 60 to 120 s. The time for
the experiment to lay dormant between exposures is set at 2 minutes which
allows any disturbances from previous drops to dissipate.

6.4 Conclusions

An apparatus which can reproducibly study the vortex ring produced by the
impact of a liquid drop on a liquid pool has been discussed. The experi-
ments are conducted in a sealed, temperature-controlled glass walled reser-
voir. To eliminate inconsistencies from human control the apparatus was
fully automated allowing runs of 24 to 36 separate impacts. Single exposure
photographs are taken by discharging a strobe lamp at a precisely controlled
time after impact. The combined error and lead in timing the strobe dis-
charge varies with the impact velocities and is O(.1ms). Multiple-exposure
photographs are used to measure vortex velocities from flow visualization
photographs. By drawing on techniques used to measure surface tension, the
surface tension of the drops used to form the vortex rings can be measured
and monitored.
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CHAPTER 7

DROP-FORMED VORTEX RINGS

7.1 Introduction

This chapter presents results from experiments using impacting water drops
to produce vortex rings. This interest results from Sigurdson’s observation
of the similarity between the vortex structure created by a water drop im-
pacting a pool of water and structure visible in an atomic blast (Sigurdson,
1991; Sigurdson and Peck, 1992a,b). The goal is to understand the process
that creates vorticity from this assumed initially irrotational flow and to
understand how vortex rings form (Peck, 1993; Peck and Sigurdson, 1994;
Sigurdson and Peck, 1994). We also discuss possible explanations of how an
instability forms on the vortex ring at early times.

Our previous work in this area addressed vortex structures formed by
2.6 mm diameter impacting drops and subsequent motion of the vortex rings
at early times after impact. There are still outstanding questions however:
the means by which vorticity is created by the drop impact is addressed as is
the process of vortex ring formation from this vorticity. Also the mechanism
which leads to instability on the vortex ring at early times and the final
stages of motion when the vortex ring stops are discussed.

Experimental data reported in this chapter have been acquired using high-
speed photography. Recently several authors have called for more sophisti-
cated techniques to be employed for studying this phenomenon, for example
PIV or LIV (Durst, 1996; Dooley et al., 1997). There is no doubt that our
understanding of this experiment would benefit from such analysis. However,
before these expensive experiments could be considered we chose to address

tA version of this chapter will be submitted to the Journal of Fluid Mechanics
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the quality of the experiment itself rather than the measurement technique’s
sophistication. As we showed in Chpt. 6, several parts of this experiment
have gone overlooked even though they could have significant effects on the
experiment. Addressing these concerns allowed us to carefully study effects
of droplet oscillation phase on vortex ring formation. Precise timing allowed
us to study the effect of drop height on vortex ring formation. Temperature
control of the reservoir was also important to ensure a repeatable oscillation
phase at impact. Temperature control also ensured any thermal gradients in
the reservoir were small enough to allow the final stages of vortex ring decay
to be studied.

A significant contribution from this chapter is the description of the vor-
ticity creation process in this experiment. Thomson and Newall (1885) ex-
plained the creation of vorticity by comparing the impacting drop to a solid
sphere impinging on a free surface. They believed the the drop surface could
act as a rigid surface from which vorticity would diffuse in a similar way as
from a solid boundary. Chapman and Critchlow (1967) attempted to explain
vorticity creation in terms of circulation present after impact; no explanation
of actual vorticity creation was given though. More recently, Sigurdson and
Peck (1989) suggested a vorticity creation process dependent on baroclinic
torques. Later, we discussed the level of vorticity which must be present at
a free surface to satisfy the vanishing tangential stress condition(Peck and
Sigurdson, 1994). This discussion was quite elementary since we were bas-
ing this on results for a steady surface (Batchelor, 1967). A recent paper
by Creswell and Morton (1995) has extended this idea to the surface of a
coalescing drop using a fixed toroidal coordinate system which limited their
analysis. Rein (1996) recently published work on coalescing and splashing
drops where he cites the work of Creswell and Morton (1995) to account
for vorticity generation. In this chapter we further refine these ideas with
the results derived in Chpt. 2 and explain the application of torques at the
interface using results from Chpt. 4.

Two recent papers have investigated the case of pendant drops just com-
ing in contact with a pool (Shankar and Kumar, 1995; Dooley et al., 1997).
In these experiments drops are formed slowly on a tip until they come in
contact with the receiving pool. The primary interest here is scaling forma-
tion parameters to the penetration depth. Only Dooley et al. (1997) address
the vorticity creation process directly. Here they explain vorticity creation
in terms of vorticity flux ® . Shankar and Kumar (1995) discuss the creation
of vorticity but in the context of a “slug”. The slug is defined as the drop
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fluid just after making contact with the pool. They believe this slug to be
rotational but do not discuss how rotational motion is generated. Their re-
maining discussion describes boundary layer separation from the free surface.

Details of boundary layer separation from the free surface and its subse-
quent roll-up into a vortex ring has received little attention. Creswell and
Morton (1995) give the only detailed description of this process. We extend
these ideas using new photographic data and the analysis from previous chap-
ters. These new data show how vortex rings are formed from the separated
boundary layer. We also show that vorticity is created by high Wedrops
and explain how vortex ring formation is inhibited by the impact craters
subsequent pinch-off into a submerged bubble.

Observations of an instability forming on the vortex ring at early times
extends the discussion begun in Peck and Sigurdson (1994) and Sigurdson
and Peck (1994). New photographic data of the instability is presented.

This chapter is organized as follow. In Sec. 7.2 we briefly review the ap-
paratus. The apparatus used in these experiments allowed us to examine the
behaviour of vortex rings at very low Re. Sec. 7.3 presents results from care-
ful experiments to understand the motion of drops as they were released from
the formation tip. These results let us investigate the relationship between
drop fall height and penetration depth of vortex rings in Sec. 7.4. Here we
also discuss what is meant by a penetration depth in this context. From this
we were able to choose appropriate drop heights to examine the vorticity cre-
ation and subsequent instability of the vortex rings. Sec. 7.5 presents results
from detailed photography of the vortex ring formation and discusses the
vorticity creation mechanism. Also, we discuss possible mechanisms which
explain the appearance of the high-wavenumber instability at early times.
We summarize our findings in Sec. 7.8.

7.2 Apparatus

Experiments discussed in this chapter used the apparatus described in Chpt. 6.
A single drop size was used for all the experiments presented in this chapter.
The drops were formed from the number 3 tip in Table 6.1. The drop’s size
was calculated from the volume displaced to produce each drop by the pre-
cision pump described in Sec. 6.2.4. The average effective diameter d. was
calculated to be 5.18 mm +0.01 mm from a data set with n = 208. A his-
togram of these data is shown in Fig. 7.1. Surface tension was tracked during
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the experiments using the drop-volume technique discussed in Sec. 6.2.4. The
mean vy was 73.16 dynes/cm with a standard deviation of 0.601 dynes/cm.
A histogram of v using data from these experiments is shown in Fig. 7.2.

This apparatus has significant advantages over that used for the exper-
iments described in Chpt.5. This apparatus allowed us to reproduce ex-
perimental conditions with sufficient accuracy. Temperature control and the
enclosed environment ensured consistent fluid properties in each experiment.
The cooling system was set at 15.0 °C which produced a uniform 15.4 °C
throughout the test cell. The maximum temperature variation over the ex-
periments was 0.1C°. This eliminated currents visible in pools open to the
atmosphere which are presumedly caused by evaporative cooling at the sur-
face. The quiescent state of the test cell allowed very accurate observations
of the vortex ring behaviour at long times after impact where the vortex ring
expands very quickly.

7.3 The falling drop

A large drop diameter was chosen so that the range of experiments performed
would span the known range where vortex rings are known to form. This
range extends to We = 64 (Hsiao et al., 1988). With the present apparatus
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and drop size we were able to study drops with We = 76. Also, drop oscilla-
tions are known to affect the quality of the vortex ring formed. The larger
oscillation amplitude of these drops would amplify this effect.

To this end, we began by gathering a detailed record of the drop’s ge-
ometry during free-fall. This was necessary to determine the effects of the
drop’s phase on vorticity creation and vortex ring formation process.

Previous publications have given little attention to this part of the ex-
periment (Keedy, 1967; Chapman and Critchlow, 1967; Hallet and Chris-
tensen, 1984; Rodriguez and Mesler, 1988). Keedy (1967) includes several
photographs of the drop in free-fall but only studied smaller diameter drops
(0.26 cm). Chapman and Critchlow (1967) discussed the geometry of larger
drops in free-fall but no photographs are included with their paper. They
do provide a plot of eccentricity vs fall height taken from unpublished pho-
tographic data. Eccentricity was defined as the vertical height of the drop
divided by its width. From these data they deduced the effect of oscillation
phase on vortex ring penetration depth. Hallet and Christensen (1984) and
later Rodriguez and Mesler (1988) only published photographs of drops at
times within a few milliseconds of the moment of impact.

A series of sixty-seven precisely timed photographs taken of the falling
drop give a detailed record of its behavior during free-fall. The photographs
are in groups of two to five of the same drop at 15 ms intervals. Twenty
drops were photographed this way, each subsequent drop having the initial
delay incremented 1 ms which filled in the information over 15 ms intervals.

The photographs were scanned into electronic format and data collected
from these electronic images. Electronic images were enhanced using Adobe
Photoshop® software. Photoshop was then used to trace outlines of the drops
in free-fall to be imported by Adobe Ilustrator® where bitmaps of the profile
were made. An example of a scanned photograph and the corresponding
bitmap is shown in Fig. 7.3. This step was necessary since the images were
not clear enough for the edge finding filters in Photoshop to give a reliable
edge. The filled bitmaps were analyzed using Matrox Inspector® software.
These images gave the drop centroid and position relative to the tip.

7.3.1 Drop separation

Detailed behavior of the drop as it separates from the tip is available from the
photographic data. Using the method described in Chpt. 6 a pendant drop
was quickly filled to 90% of its predicted final volume on the formation tip and
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Figure 7.3: A scanned image and the corresponding filled bitmap. The tip
diameter visible at the top of the photograph is 4.939 mm. A smaller 1.1 mm
diameter drop formed during drop separation is visible. The multi-exposure
photography timing causes this smaller drop to be superimposed on the pre-
vious exposures main drop

then slowly filled until it fell away. An estimated outline of the pendant drop
is shown by the light line in Fig. 7.4. Previous experiments have assumed the
centroid of the drop was one drop radius below the formation tip Chapman
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and Critchlow (1967); Rodriguez and Mesler (1988). The fall height was then
determined to be the distance from one drop radius below the tip to one drop
radius above the surface. Analysis of our photographs show this assumption
to be flawed. As the drop begins to move away from the tip, the radius of

jo—0.4939 c—=|

Laser beam

Figure 7.4: A scale drawing showing a pendant drop on the formation tip.
The distance h, is the distance from the base of the tip to the virtual origin
determined from Fig. 7.6. The dashed line represents the profile of a spherical
drop centred on the virtual origin represented by the small circle filled with
a cross. A similar circle above h, represents one drop radius from the base
of the tip. Aerror is the distance between these two points. The drop profile
outlined with a solid dark line extending to the laser beam is the actual profile
of the pendant drop 15 ms after it breaks the laser beam. The light gray
line represents an approximate outline of a pendant drop before it begins to
separate from the tip.

the pendant drop begins to decrease about one drop radius below the tip.
This forms a neck shown by the darkly outlined profile in Fig. 7.4. The first



CHAPTER 7. DROP-FORMED VORTEX RINGS 114

image in Fig. 7.5 shows the drop profile | ms later, very near the instant
when the drop disconnects from the tip. Surface tension retards the motion
of the fluid which will form the drop until the neck breaks. After the drop is
disconnected from the neck, the drop centroid will be in free-fall. Profiles
of the drop in free-fall are shown in Fig. 7.5. Positions of the drop centroid
were found from computer analyses of the filled bitmaps. These are plotted
vs time in Fig. 7.6. A best fit line of this plot gives:

tzin_?'.

cm 1
h(t) = 0.68 .24t — + =932
(t) 682 cm + 6 . +29 =2

(7.1)
This fit under predicts the value of g = 9.81 m/s? by 5%.

Setting the first time derivative of Eq. (7.1) to zero gives the time when
the freely falling drop would have been stationary. The drop’s virtual origin
is the corresponding point in space h,. In time, the calculation gives —6.7 ms
or 21.7 ms before the outlined image in Fig. 7.4. In space, this corresponds
to 0.64 cm below the forming tip’s base. Thus, the starting point of the
drop’s centroid is over one drop diameter from the forming tip’s base. In
contrast, previous papers have used one drop radius to estimate the virtual
origin. This would be less than half the correct height in the present case.

These data are specific to the drop size considered. For much smaller
drops (2.6 mm diameter) the drops are nearly spherical when released from
the tip. This would move the virtual origin closer to one drop radius below
the tip.

The drops used in the experiments of Rodriguez and Mesler (1988) and
Chapman and Critchlow (1967) are closer to the size studied here. Thus,
their estimate of the virtual origin is likely incorrect. This explains the error
correlating penetration depth with oscillation phase reported by Rodriguez
and Mesler (1988). Using the incorrect higher virtual origin increases the
calculated drop velocity over the true drop velocity. Hence, the time between
oscillations they calculated from their assumed drop height is likely incorrect.

7.3.2 Drop oscillation

The freely falling drop’s oscillation period was measured from plots of data
taken from the filled bitmaps. The oscillation amplitude @4 plotted against
time is shown in Fig. 7.7. The amplitude was calculated by measuring the
vertical height of the drop and subtracting the effective diameter. ®; =
(hmaz — Bmin) — de. Measuring peak to peak gives a 34.0 ms period. This
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Forming tip———e| =

Figure 7.5: The drop centroid position relative to the base of the formation
tip vs. time. Zero time is the moment the drop passed through the laser set
at a height determined by trial and error

compares well with the predicted period of 34.2 ms calculated using Kelvin’s
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Figure 7.6: Plot of the position of the drop centroid h(t) relative to the base
of the formation tip vs. time. The virtual origin, the point in space where
the velocity is zero, is represented by hg. The flash delay was set at 15 ms
after the drop broke the laser beam. This time was found by trail and error.
Here, h(t) = 0.682 cm + 6.24 <= ¢ + 1932 ¢ 2,

result (Lamb, 1932; Chapman and Critchlow, 1967):

Ta= %Mpf. (7.2)

We used values previously given in this text for this calculation: 7 = 73.16 dynes/cm;
p = 0.999 gm/cm3; d. = 0.518 cm.
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Figure 7.7: Plot of the amplitude of oscillation vs time. The values of ®; > 0
correspond to a vertically prolate drop; ®4 < 0 correspond to a vertically
oblate phase. Oscillation period 74 measured peak to peak is 34 ms.

7.3.3 Drop volume

The drop’s volume was easily calculated using the area and centroid calcu-
lated from the filled bitmap using Matrox Inspector © software (see Fig. 7.3).
The filled bitmaps are half of the drop profile. The volume of the drop was
calculated from the position of the centroid from the vertical axis £ and the
bitmap area Ay using the theorem of Pappus and Guldinus for a volume of
revolution. Thus, the volume of the drop is given by 2wA;Z from which d.
could be calculated, d, = (12A45%)/3. This calculation gave a mean d. of
5.15 mm. The larger drop diameter predicted by drop-volume measurements
(5.18 mm) is consistent with the observed smaller drop formed during drop
separation. This small drop is visible in Fig. 7.3. The difference between the
two measurements is equivalent to a drop with a 1.33 mm diameter, close to
the measured value of 1.1 mm. This small difference in d, verifies the drops
axisymmetry during freefall.
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Figure 7.8: A plot of the probability of a vortex ring being formed vs. drop
height. The drop height was varied by 0.1 cm increments and nine or ten
experiments were recorded at each drop height. The roman numerals corre-
spond to the first three cases as defined in text of Sec. 7.4. The gray region
of width A is a ‘notch’ in the data where no vortex rings were formed; see
also Fig. 7.9

7.4 Penetration depth of drop-formed vortex rings

Penetration depth of drop-formed vortex rings formed from drop impact has
been reported in several publications (Rodriguez and Mesler, 1988; Keedy,
1967; Chapman and Critchlow, 1967; Thomson and Newall, 1885). In the
present work penetration depth is used as calibration for experiments on
vorticity creation at early times. The height of the formation tip was varied
in 0.1 cm increments from 10 cm to 60 cm. At each height, nine or ten
experiments were conducted and recorded on video tape. The videocamera
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was mounted perpendicular to the vertical face of the tank. Its position was
varied so the lens axis would roughly match the final depth of the vortex ring
to avoid parallax. A careful record of the vortex ring quality was recorded.
The quality was recorded as: well-formed, poor or none. Although a sub-
jective measure, these data indicate variation in probability of vortex ring
production over the range of heights used. The percentage of well formed
vortex rings is plotted in Fig. 7.8.

For now, we introduce a new variable, the critical depth d.. Critical
depth was measured from a scale fixed to the edge of the tank. The critical
depth was taken to be the depth where the dye within the vortex ring did not
travel more than one scale unit 0.1 cmin 1 s: U, = 0.1 cmn/s or approximately
0.5% of the initial vortex ring speed. The vortex ring speed is discussed in
Sec. 7.5.4.

This does not necessarily correspond to the overall penetration depth
which we take to be the depth of the vorticity centroid of the vortex ring as
t = 0o. We discuss this further in Sec. 7.7.

Results of these experiments are shown in Fig. 7.9. The critical depth
was difficult to judge from videotape. We address this in Sec. 7.7. Vortex
rings begin to formed from impacting drops when A = 1.4 cm. Vortex rings
form from tip heights below this but were neglected since the drop was never
in freefall. The first critical depth maxima occurs at 1.8 cm with the vortex
ring travelling 18 c¢m into the pool. At and on either side of this maxima,
vortex rings are consistently formed (see Fig. 7.8).

The first minima where vortex rings form occurs at 2.7 cm. Vortex ring
formation is intermittent with a 50 % chance of success, Fig. 7.8.

The next maxima occurs at 3.8 cm. The critical depth 21.5 cm is slightly
greater than observed for the first maxima. Vortex rings are regularly formed
from 3.8 cm but at 3.9 and 4.0 cm no vortex rings were formed. This is
represented by the shaded area in Fig. 7.8 and Fig. 7.9 marked with A.

Both maxima occurred with ®; > 0 but the drop was not yet fully pro-
late. Here the drop is passing from a configuration where the vertical and
horizontal axes lengths are nearly equal to a vertically prolate configuration
and is closer to the former. This agrees with the observations of Chapman
and Critchlow (1967) but disagrees with Rodriguez and Mesler (1988).

A correlation between the percentage of vortex rings formed at a par-
ticular height and the critical depth is apparent when Fig. 7.8 and Fig. 7.9
are compared. This is in overall agreement with the behaviour noted in Cai
(1989).
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Figure 7.9: Plots of the critical depth d. and oscillation phase @4 vs the
fall height. The fall height is the distance from the base of the tip to the
free surface in (a) and to the lowest point of the drop in (b). The gray
region, denoted A, represents a ‘notch’ in the data where no vortex rings

were formed.

In view of these results the following four cases

were chosen for further

study with 35 mm photography. Case I is the first maxima. Case II was set
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at 25 cm. This is near the first minima but slightly lower. No vortex rings
were observed to formed from drops released at this height. In this case we
hoped to discern if vorticity is still created by drop impact and understand
why no vortex rings emerge. Case III is the second maxima. This case was
chosen for direct comparison with the first maxima. Case IV is the next
predicted maxima based on drop oscillation phase. This case is above the
We where vortex rings are known to form as predicted in Hsiao et al. (1988).
As with Case II, this height was chosen to observe existence of any early-time
vorticity creation. These four cases are summarized in Table 7.1, where

[ Case| Tip height cn [d. mm [Ucm/s| We | Fr | Re |

Case | 1.80 5.1 403|114 | 3.2} 1800
Case 11 2.50 5.1 544 | 20.7 | 5.9 | 2450
Case III 3.8 5.1 72.2 | 36.6 | 10.4 | 3250
Case IV 7.5 5.1 104.2 | 76.0 | 21.6 | 4690

Table 7.1: A table of relevant dimensionless quantities. The fluid properties
are: v = 72.9 dynes/cm?; p = 0.9999 gm/cm?® ; ;= 0.0114 gm/cm s

2 2
e = Y de, Fr = —U—, Re = Udc. (7.3)
¥ gd. v

These nondimensional numbers all refer to the drop falling through air at
impact.

7.5 The formation of vortex rings from drop impéct

Understanding the creation of vortex rings from impacting drops and espe-
cially the means by which vorticity is created is important for fundamental
understanding of free surface dynamics. This experiment serves as a repro-
ducible means of identifying where vorticity is created and where the bound-
ary layer separates from the surface and enters the bulk fluid. In this section
we will describe these processes educed from photographic data.

Results from Sec. 7.4 directed selection of appropriate release heights for
comparing vortex ring formation process. Several series of precisely timed
35 mm photographs were taken of the vortex ring formation process for the
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four cases given in Table 7.1. Nine photographs are displayed for each case
shown in Plates 1-36. The times used for each case were chosen to be repre-
sentative of the vortex ring evolution and for comparison with the other three
cases. The time shown below each plate refers to the delay time between the
laser beam being broken and the photographs shown; for details see Chpt. 6.
A table of the Plates in this chapter with their times and viewpoints is given
in Table 7.2.
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7.5.1 Vorticity creation

The creation of vorticity and formation of vortex rings is most easily de-
scribed by separating the process into the initial stage which includes the
drop in free-fall and four subsequent stages. It is most convenient to classify
the four impact cases (Cases I-IV) considered in terms of the geometries ob-
served in the photographic data since the times when these geometries occur
change for each Case. Period A refers to early times O(lms) after impact. In
this stage the diameter of the ring of contact expands outward from an ini-
tially small ‘contact patch’ assumed to be much smaller than the dimensions
of the drop to roughly the drop diameter. Period B refers to times following
Period A and until the drop has penetrated into the pool so that the surface
is approximately flat. Period C refers to times during which an impact crater
forms until Period D. Period D refers to times after the impact crater has
reached its maximum depth and its motion and concavity reverses.

The sign of azimuthally-directed w will be assigned as follows. Counter-
clockwise vorticity in the right hand half plane is assumed positive. Hence,
the primary vortex ring is formed from positive w. Negative or ‘counter-
signed’ vorticity is clockwise directed vorticity in the right hand half plane.

Initial contact

When the drop first contacts the pool there are two regions of essentially
irrotational flow: the quiescent pool and the falling drop assumed to be in
a state of uniform translation. The validity of assuming the drop to be
irrotational is addressed in the following four paragraphs.

Several critics have suggested that vorticity which forms the vortex ring is
created by drag on the falling drop. We believe this is false for the following
reasons. _

Experimental measurements of internal circulation in the drop show this
to be very small—O(1 %) of the translational velocity—even for drops at ter-
minal velocity, (Pruppacher and Beard, 1987). The drops used in the present
experiments are only in free-fall for a very short time so it is doubtful that
they will acquire much internal circulation from air drag. Also, even if the
vorticity was created in free-fall, we would still not have a clear description
of the vorticity creation process at the air-drop interface.

Secondly, vortex ring production very similar to what is observed in the
present experiments occurs for pendant drops which just come in contact
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with the pool. These drops are never in free-fall and will not experience
drag. In the pendant drop case, the entire vortex ring creation process is
driven by the coalescence of the static liquid drop with the quiescent pool.

A third possibility not suggested by anyone before is creation of vorticity
at the moving drop boundary while the drop oscillates in free-fall. Although
often considered to be an irrotational motion, the free surface of an oscillat-
ing drop must obey the same boundary condition derived in Chpt. 2. Thus,
surface rotation will require vorticity to be present since the principal axis
of strain aligned m on the surface of the drop will have to rotate. This is
unlikely to be the principal effect since just-touching drops do not oscillate
and still produce similar effects. Also, since drops do oscillate as they fall,
this implies that n rotates to produce both signs of vorticity, although ex-
periments always produce vortex rings with the same predominant sign of
vorticity such that the vortex rings travel into the pool.

With the assumptions of irrotational flow stated above, the circulation
about a material circuit shown in Fig. 7.10 is zero. This observation is due
to Creswell and Morton (1995). This also holds true for any reducible circuit
within this region. Thus, by Stokes’ theorem, the vorticity in this region is
initially zero. Since the fluid within this region is assumed to possess homo-
geneous material properties, vorticity can only be diffused into the interior
region from the boundaries and it is here where we look for the vorticity
creation mechanism !. Creswell and Morton (1995) used the stress bound-
ary condition—similar to that discussed in Chpt.2—to deduce the level of
vorticity required at the free surface. They argued that the vorticity level is
set at the free surface and is then diffused through the boundary. These au-
thors were hindered by the form of equations used by them when their paper
was written. Their starting equations were those which appear in Batchelor
(1967) given in generalized three-dimensional coordinates. A

As we pointed out in the closing to Chpt. 2, the stress boundary condition
at a free surface does not explain the details of how the vorticity is actually
created. The analysis in Chpt. 4 of torques shows that torques are applied to
fluid elements at the interface through the combined action of viscous torques
arising from viscosity gradients and a density-gradient-viscosity-gradient cou-
pling mechanism. This is consistent with the sign of vorticity predicted by
the free surface stress boundary condition (see Sec. 4.2.5). Thus, when we

1For a general discussion of the circulation theorem we refer the reader to Truesdell
(1954, Chpt. IX) and Batchelor (1967, p. 269)
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speak of vorticity creation, we assume that sufficient vorticity has been cre-
ated to match the level of vorticity at the surface required by the sharp
interface model, Eq. (3.10).
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Figure 7.10: Sketch of a fluid drop at the moment of impact with a pool.
The shaded region represents the drop fluid, the dark line the fluid interface.
The dashed line is a material curve around which the circulation is zero at
the moment of impact.

Pertod A

We begin by comparing vortex ring formation and onset of instability for the
two cases producing most penetrating vortex rings — Case I and Case III
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— over the four time periods given above. Some relevant comments on Case
II and Case IV are included in the following sections but we will leave the
greater portion of this discussion to their separate sections: Sec. 7.5.2 and
Sec. 7.5.3.

In all four cases vorticity appears in the bulk flow very soon after the
drop and pool first touch. At times less than 5 ms — before much of the
dyed drop fluid has entered the pool — there appears to be vorticity visible
at the interface where dyed fluid from the drop meets the undyed fluid of the
pool. This is suggested in Plates 1, 2 and 3. Assuming vorticity is.present
it is likely in the form of a vortex sheet originating at the surface. This is
consistent with observations made by Shankar and Kumar (1995) for pendant
drops and the conjecture of Creswell and Morton (1995) for impacting drops.
Also, in Plate 2, a secondary distribution of dye appears on the bottom of
the dye-pool interface which is rolling up at its circumference as well. We
note that while Plate 4 is taken at the same delay times as the previous three
plates the drop penetrates the pool faster and it appears to be more similar
to the lower impact velocity drops at later times.

If vorticity is present in the bulk fluid at such early times we should look
for a mechanism before these times which explains creation of at least some
of the vorticity. Also, appearance of the vortex sheet roll-up in the bulk fluid
indicates the boundary has separated from the surface at an earlier time.
Photographs at early times from below do not reveal much information since
much of the flow is obscured. We can get some additional information by
comparing photographs of drops taken from slightly above during the first
moments of impact shown in Plates 37-72.

We idealize the impact process as the coalescence of an initially spherical
drop with a plane surface, Fig. 7.11(A). Initially the drop and the pool are
irrotational, Fig. 7.10. As the drop first touches the pool the interfaces merge
and the ring of contact quickly pulls to the sides; from the dotted line to the
solid line in Fig. 7.11(B). This process is visible in the photographic Plates
taken of the drop impact viewed from above the surface, Plates 37-72. During
Period A, the surface normal at points on the lower surface of the drop quickly
rotates. Some elements of the drop surface will initially be pointed vertically
down and in the first 1-2 ms the normal affixed to these particles will be
rotated to point slightly upwards. The sign of vorticity required to match
the vanishing tangential stress Eq. (3.10) is consistent with what is observed
in the vortex ring. -

Predicting the sign of vorticity in this way is similar in spirit to the method
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used in Peck and Sigurdson (1994). There, however we were limited by the
steady-surface result from Batchelor (1967). In the same way Creswell and
Morton (1995) interpreted vorticity creation using these relations but were
restricted to a specialized stationary toroidal coordinate system where it was
difficult to interpret the moving interface. The results derived in Chpt.2
using convected coordinates greatly simplify the interpretation for unsteady
interfaces.

Also, our photographs from below and, more convincingly, those pub-
lished by Creswell and Morton (1995) show undyed fluid from the pool climbs -
up the outside of the original dyed drop. This behaviour is also observed by
Dooley et al. (1997) for stationary drops just touching the surface. This be-
ing the case requires the pool surface to be lifted near the drop causing the
surface to rotate. Considering the sign of n in this case requires vorticity
of opposite sign to that of the vortex ring’s to be created. This is shown
schematicily in Fig. 7.11 b. This conclusion has not been reached by previ-
ous authors. Since the fluid beneath the pool at this point carries no tracers
boundary layer separation is invisible unless dyed fluid is entrained.

This may explain the occasional appearance of a large-diameter dyed
ring visible in Plate 2 at the outer edge of the impinging drop where the
pool surface is almost flat again. The dyed ring’s diameter increases with
time while starting near the interface, which is consistent with countersign
vorticity (see Plate 6, Plate 10). The presence of countersign vorticity is
important for our discussion of possible vortex instabilities in Sec. 7.6. As
noted earlier, observing this ring is dependent on dyed fluid being entrained
by the countersign vorticity as it rolls up.

We can estimate the level of vorticity as follows. From Chpt.2: w =
9n X 1. We know from the photographs taken from above that n will rotate
by /2 at some of the points on the interface in the first 1 ms (see Plates
37-48). This gives w ~ 2(m/2)(107® s) ~ 3000 s~1. Of course this is an
average over the first 1 ms and this value may be much higher at earlier
times.

Period B

At the beginning of period B, the contact ring has expanded to the diameter
of the drop and drop fluid enters the pool (see Plates 48, 50, 51, 53). Creswell
and Morton (1995) base their vorticity generation arguments on this period
of the flow. Here they argue that drop fluid passes over regions of high
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Figure 7.11: Sketch of the vorticity creation process

curvature of the free surface as the drop drains into the pool. This argument
is based on their experimental photographic data taken of dyed drops ‘from
above the pool. Our data indicates that the dyed fluid does not pass over
the region of high curvature at the base of the drop. Rather, it seems that
the boundary layer has separated further up the walls of the dyed fluid drop.
This is indicated in the photographic data given in Creswell and Morton
(1995) as well where demarcation of the original pool surface and the drop
surface is marked with the boundary of particles originally distributed on
the pool surface. This would mark a separation point of the boundary layer,
Fig. 7.12 a.

This is reconcilable with our vorticity generation model since the surface is
undergoing a rapid rotation consistent with the sign of the primary vorticity.
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(a) (b)

Figure 7.12: Sketch of boundary layer separation: (2) The boundary sep-
arates from the surface near a stagnation point p; (b) Vortex sheet rollup,
the impact crater still serves as a source of vorticity; (c) Dye is entrained
by countersign vorticity which is formed from the reversing impact crater.
Hypothesized countersign vorticity formed in Period A not shown.

The rotating surface acts as a source of vorticity which diffuses into the drop
fluid as it drains into the pool. Boundary layer separation is indicated as
discussed above. _

We also mention Shankar and Kumar (1995) who use a less sophisticated
argument which does include vorticity generation. Here they suggest that
a microjet is ejected into the bulk fluid by the coalescing drop. They liken
this to the formation of vortex rings from submerged orifices. This model
does not account for the very transient nature of the free surface in this
phenomenon.

Period C

Drop impact forms a crater whose geometry is dependent on impact velocity
and drop geometry (Peck and Sigurdson, 1995). The motion of the impact
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crater geometry greatly influences vortex ring creation.

After the trailing edge of the drop becomes level with the free surface a
crater begins to form with a convex region in the centre (see Fig. 7.11c). The
convex region travels into the pool as the crater forms. At the outer edges of
the convex region the surface is rapidly turning over to form the walls of the
crater. Rotation of n at all points in the crater is consistent with positive
signed vorticity and will be the highest at the transition region described
above. Time to deepest crater formation is between 20 and 25 ms in Case I
and Case III. The level of vorticity at the boundary will be similar to that
described in Period A.

Period D

In Period D, the impact crater begins to reverse. Now another convex region
forms in the centre of the impact crater but its motion is reversed when
compared to the convex region observed during Period C.

By this time the primary vortex ring has moved away from the surface. At
the outer edge of the reversing impact crater the surface normal is rotating
rapidly acting as a source of negative-signed vorticity. The appearance of
counter-sign vorticity is visible in the reversing impact crater forming vortex
rings at the surface of opposite sign to the primary vortex ring. The sign of
this ring can be deduced easily since its radius expands under the influence
of its image vortex required by the presence of the free surface (Peck and
Sigurdson, 1994).

We previously reported that the earliest observed formation of countersign
vorticity was in the reversing impact crater and concluded no other counter-
sign vorticity was formed (Sigurdson and Peck, 1994). Our arguments earlier
in this section suggest that countersign vorticity may be created during the
first period of coalescence t < 1 ms which is sooner than previously thought.
This is especially important in view of the role of counter-sign vorticity pos-
sibly being responsible for an instability observed on the vortex ring core
that leads to the three-dimensional structure. The nature of this instabil-
ity is unclear (Sigurdson and Peck (1994), Appendix D). It may fall into
the category of a Rayleigh centrifugal instability. The Rayleigh centrifugal
criterion is that a necessary and sufficient condition for stability is that the
square of the circulation does not decrease anywhere (Drazin and Reid, 1991,
p.69). Hence, the presence of two signs of vorticity invalidates this condition
and is unstable. Thus, the presence of countersign vorticity at early stages
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is important because it could trigger the instability.

7.5.2 Case II: Minimum penetration and Subcritical e

Case II drop impacts do not produce well-formed vortex rings, (see Fig. 7.8).
At this height, ®; =~ 0.12 > 0 and going to ®4 < 0 so drops are becoming
vertically oblate from vertically prolate but are still prolate as shown in
Fig. 7.7. As Plate 38 shows, the drop is pear shaped at impact. As the drops
impacts the pool, a wider impact crater forms than in Case I or Case III:
(see Plates 2, 6, 10, 14). A vortex ring forms in a way similar to Cases I and
III and is visible at the base of the impact crater (see Plate 18). As noted
by Rodriguez and Mesler (1988), the vortex ring does not move away from
the impact crater before the reversing flow into the impact crater retards its
forward motion. During the crater reversal countersign vorticity of will be
generated in the reversing impact crater. The primary vortex ring will remain
near a source of countersign vorticity possibly annihilating some vorticity or
at least reducing the net local circulation.

A large amplitude instability forms between 30 ms (Plate 22) and 35
ms (Plate 26) and the initially axisymmetric distribution of vorticity now
becomes a tangle of vortex tubes which remains near the surface. In some
cases a vortex ring does emerge from this tangle but none were captured in
the photographs.

7.5.3 Case I'V: High Wecase

The drops studied in Case IV have Wé = 76 as shown in 7.1. These drops do
not form vortex rings propagating through the pool which is consistent with
the predictions in Hsiao et al. (1988). Many recent works have concluded
that vorticity is not created at these higher We and have sought explanations
for this behaviour. We will point out some flaws in this conjecture.

Creswell and Morton (1995) and Rein (1995) suggest that in the very early
moments of impact—roughly equivalent to our Period A—the impacting drop
flattens at impact and contact is made at several points on the interface. This
is referred to as surface destruction. They go on to say that the vorticity
generation mechanism will no longer operate after the surface is destroyed.
This is plausible for regions where there is surface destruction, but this is
limited to times no greater than those discussed in Period A. Creswell and
Morton (1995) however, base their vorticity generation explanation on Period
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B which will still act as a source of vorticity regardless of whether there was
surface destruction or not.

Our data shows that vorticity is produced from high-Wedrops. Plate 4
shows a vortex ring that forms very near the surface and appears to have
evolved in a similar way as for lower Ve drops studied in these experiments.
Plate 8 and Plate 12 show that the impact crater rapidly swells outward
near its base. This appears to be an extension of the crater bulging observed
in Case III visible in Plate 11. Plate 12 and 18 show a large bubble—near
the size of the drop—forming as the impact crater neck pinches off. This
large bubble appears to oscillate between 20 and 25 ms (see Plates 16 and
20). During this period, the vortex ring seen rolling up in Plate 4 at 5 ms
is no longer seen. The drop fluid gets divided by the bubble growth. Some
of the dyed fluid of the drop originally associated with the vorticity appears
to be entrained into the wake of the bubble (see Plates 20, 24 28). Some
of the dyed fluid appears to be in front of the bubble at 20 ms (Plate 16),
although this is difficult to interpret because of the reflections. The large
bubble travels into the pool before eventually rising to the surface. At 50 ms
some dye is below the bubble as it has begun to rise. Plate 36 shows dye
that has propagated into the pool and has formed a weak vortex ring.

The large bubble formation process discussed here does not seem to have
been reported before. This phenomenon is very different from very high
speed drop impacts where a bubble is formed from a fluid sheet rising from
the surface Engel (1966).

7.5.4 Estimates of surface vorticity

The level of surface vorticity is checked with the following: estimates of the
level of vorticity required in the separating boundary layer and estimating
the vortex rings vorticity.

Boundary layer approach

This is essentially the technique used in Creswell and Morton (1995). Here
they reasoned that the level of vorticity can be estimated after knowing the
jump in velocity [u] across the boundary layer. The velocity difference arises
between the drop fluid rushing into the pool and the pool fluid assumed to
be stationary. The integrated amount of vorticity through the shear layer of
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thickness [ can be estimated from this velocity jump:

{ d u2
/wdy — _/ (_igdy = —/ du = Uy — Uy = [[‘U.B. (7.4)
0 Yy u

3

We recalculate these estimates using by estimating the surface vorticity from
the rate of rotation of the surface normal affixed to a material particle on
the surface. This differs significantly from their approach which was based
solely on surface curvature and does not include effects of surface rotation.

We assume the difference in velocity across the separated boundary layer
will be O(U), where U is the translational speed of the drop at impact. This
means that the integrated amount of w through the boundary layer will follow
U ~ wl. Assuming the boundary thickness grows like Vut gives w ~ U//vt.
Now ¢ ~ 2ms and U = 40cm/s (Case I) so that w ~ 8000s~!. This is higher
than our earlier predicted estimates of w on the surface. The value used for U
is likely too high since the drop fluid is slowed at impact. Also, the vorticity
level predicted at the surface is based on an average || and may be much
higher at the first instants.

Ideal vortez ring velocity approach

Estimates of the vorticity level in the vortex ring can also provide some
information. Assuming the equation for a vortex ring’s velocity U in an
ideal fluid can be used to estimate U, in a real fluid at early times

r 8R 1
e [ (5B) 1] os
As mentioned in Chpt. 1, this formulae is originally due to Kelvin and apbears
in Helmholtz (1867), a derivation can be found in Lamb (1932) and a more

complete treatment in Saffman (1992)2. Here, R is the vortex ring radius, €
the core radius and T circulation . Hence, we require estimates of these three

values to calculate U..

2In a personal discussion, Professor Saffman pointed out to me that derivations of
Eq. (7.5) are rarely found in the literature. In fact he thought that derivations were only
to found in Lamb (1932) and his own book (Saffman, 1992). I subsequently found another
derivation in Shivamoggi (1985), unfortunately this result is incorrect! As it stands the
only correct derivations are in the citations above.
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Assuming w is uniform through e the vorticity level follows from the
circulation, [ = wwe?. Substituting this result in Eq. (7.5) gives:

w= L [m (§5> - lr. (7.6)

€2 € 4

Now estimates of w depend on U, R and «.

U, was calculated for Case I and III from multiple-exposure photographs
using centred differences: (U,); = (ziy1 — Zi—1)/(2At). Each photograph
captured 10 images separated by 40 ms intervals. A plot of U, vs time
is presented in Fig. 7.13. From this figure we chose a typical early-time
U.=22cm/s.

The vortex ring radius was measured from 35 mm photographs. This
distance was taken to be half the centre to centre distance of the spirals
visible in photographs. The most difficult estimate is the core radius. As a
lower bound we use the diffusion length € = V4vt where t is assumed to be
the time from impact. With v given earlier this gives ¢ = 0.044 cm. As an
upper bound we resort to estimates from concentrated dyes regions visible
in photographs and use 0.1 cm. These two core estimates yield w = 3700s7!
and w = 800s~!, w decreasing with increasing core size. Estimates of w
based on # in Sec. 7.5.1 give w ~ 3000s~! which is within the bounds on w
estimated from Eq. (7.6).
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Figure 7.13: Vortex ring speed vs time. Unfilled symbols correspond to
Case [, filled symbols Case III. The different shapes correspond to individual
multi-exposure photographs

7.6 Vortex Instabilities

This section discusses vortex instabilities which evolve during the first 100 ms
after impact. ]

A large-scale instability is often observed which has been compared to
the structure in the Atomic Blast under precise circumstances for both cases
(Peck and Sigurdson, 1994). Observation of this structure was originally
reported for a 4.4 mm diameter drop in Okabe and Inoue (1961). Detailed
observations of this structure’s evolution for smaller drops appear in Peck and
Sigurdson (1994) and Peck (1993). There we observed that an axisymmetric
distribution of lobes—or ‘petals’—composed of vortical fluid evolves from the
vortex ring. These petals are composed of vortical fluid although a recent
paper suggested otherwise (Rom-Kedar et al., 1990; Shariff and Leonard,
1992). Proof of their vortical nature is educed from the observed reconnection
process at the tips of the petals. The tips of the petals pinch off to form small



CHAPTER 7. DROP-FORMED VORTEX RINGS 144

vortex rings travelling away from the central axis. While this was reported
in Peck (1993) the first photograph of this appears in Plate 29.

The type of instability responsible for this structure is of particular in-
terest and is addressed in (Sigurdson and Peck, 1994) which is included as
Appendix D. That paper concludes the instability is likely due to a Taylor-
Gortler centrifugal instability or Bernal-Roshko type of instability rather
than a Widnall-type core instability.

In this section we present new observations of the early-time instability
formation and comment on possible sources of countersign vorticity necessary
to satisfy Rayleigh’s criterion.

7.6.1 Early-time instability: Case I

Our experiments show consistent formation of the large-scale structure men-
tioned above in Case I. A time sequence of its evolution is recorded in Plates
21, 25, 29 and 33. The earliest sign of instability in this case appears in the
range 16-25 ms: Plates 9, 13 and 17. Plate 17 (25 ms) shows an azimuthal
distribution of dye along the crater wall just in the wake of the forming vor-
tex ring. This sheet of dye is still visible in the wake at 30 ms, Plate 21.
A similar but more prominent form of this instability is visible in Case IIL
From 40-55 ms a low-wavenumber instability forms on the ring and large-
scale structures escape the vortex ring. These structures form petals visible
at later times (see Plate 33).

7.6.2 Early-time instability: Case III

From 5-10 ms a tiny azimuthal instability is visible on the circumference of
the dyed fluid just entering the pool (see Plates 3 and 7). At 15-20 ms an
azimuthal distribution of 16-20 spike-like structures is visible near the crater
wall and in the vortex ring wake (see Plate 11 and Plate 15). The spikes
appear to travel away from the crater walls from 20-25 ms (see Plates 19
and 23). This is surprising since this motion is opposite to the local flow
direction induced by the vortex ring. A possible explanation is that these
structures are hairpin line-vortices convecting away from the surface under
their self-induction. The wave number drops to four at 25 ms. At 30 ms,
a fine-scale instability appears over the entire ring. This instability grows
begins to be deposited into the wake of the ring (see Plates 27, 31, 35).
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The large scale structures observed in Case III are not observed: instead,
finer-scale features is shed into the wake (see Plates 23, 27, 31 and 35).

The source of this instability may be a centrifugal instability. In Peck and
Sigurdson (1994) we reasoned that countersign vorticity could be introduced
into the flow from the reversing impact crater. This would be too late for the
source of the instability observed here. But, as we have argued in Sec. 7.5.1 a
possible source of countersign vorticity exists at the earliest stages of impact.
Here the upward motion of the free surface at first impact was thought to
be a possible source of countersign vorticity. The presence of countersign
vorticity is supported by observations of Case II and is responsible for the
relatively large amount of dye visible in countersign vortex rings at the free
surface in that case at later times.

As mentioned earlier, Case II vortex rings also become unstable but dis-
integrate; this appears to be driven by the flow into the reversing impact
crater.

7.7 Notes on the final decay

The critical depth as defined above does not necessarily mark the end of the
vortex ring motion. Indeed, it is not at all obvious that a vortex ring should
necessarily come to a stop. Multi-exposure 35 mm photographs taken at 5 s
intervals in subsequent experiments showed the vortex ring to be still moving
slowly downward O(> .lcm/s) even after 20 s. This is expected since—in
an unbounded viscous fluid—the downward-directed hydrodynamic impulse
I is conserved in time.

Only scattered observations of this long-time behaviour have been re-
ported. Shankar and Kumar (1995) noticed similar behaviour for vortex
rings produced from small coalescing drops. They were very surprised by
this behaviour and felt it was a phenomenon peculiar to the smallest drop
size they used: 2.5 mm. They did not observe this sudden growth behaviour
in larger vortex rings such as those used in the present experiments. This is
likely because of the increased time necessary for vorticity to diffuse to the
vertical axis of symmetry for the larger vortex rings. By this time the vortex
motion in their experiments appears to be dominated by instabilities forming
on the vortex ring similar to those observed by Thomson and Newall (1885).
From our experience this instability seems to be density driven and can be
delayed substantially by using less concentrated dye. Also, as Keedy (1967)
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pointed out the penetration depth and the onset of vortex ring instability is
strongly affected by thermal currents in the reservoir. His solution was to try
and find places in the reservoir where the pool appeared to be still. In our
experiments thermal gradients were eliminated using the cooling bath and
enclosed test cell as described in Chpt. 6.

Figure 7.14: Multiple-exposure photograph of a vortex ring. Each image is
is recorded at 5 s intervals beginning 20 s after impact

In an ideal fluid a vortex ring retains its size and will not stop its forward
motion. In a viscous fluid, energy will be dissipated and the vortex ring
will become less energetic. This is the view Anilkumar et al. (1991) used
as a basis for scaling arguments to predict the penetration length of vortex
rings produced by coalescing drops. Shankar and Kumar (1995) note the
difficulty with assigning a true penetration depth to a vortex ring and define
the critical depth as the depth to which the vortex ring travels before slowing
to 0.2 cm/s.

A clue to the late-time behaviour of the vortex ring is the expansion of
the vortex ring to several drop diameters over a short distance beginning at
times near 20 s after impact. A typical multi-exposure photograph of this
is shown in Fig. 7.14. At this time, the forward motion of the vortex ring is
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very slow O(.lem/s). In some cases, the diameter increases to dimensions
on the order of the test cell’s dimension.

A possible explanation is the onset of asymptotic drift as predicted by
Rott and Cantwell (1993b,a); Shariff and Leonard (1992); Cantwell and Rott
(1988); Kambe and Oshima (1975). In these analyses the large time estimates
of the Navier Stokes equations are given using asymptotic expansions. Unlike
Stokes flow solutions, these solutions include estimates of convective terms
and hence the transport of vorticity.

In a vortex ring context asymptotic drift describes the vorticity centroid
motion at large times when the vortex core diffuses to dimensions on the scale
of the vortex ring diameter. To determine whether this behaviour is possible
for the time scales considered we perform the following order of magnitude
analysis. The core cross-sectional radius is expected to grow as VIt so in
the present experiments with ¢ ~ 20s and v = 0.0114cm?/s the diffusion
length becomes [ ~ 0.48cm. This compares well with the observed vortex
ring radius—not to be confused with vortex core cross-sectional diameter—of
approximately 0.5 cm at 20 s after impact.

If the core diameter is on the order of the vortex ring diameter significant
cancellation occurs at the vertical axis of symmetry. Kambe and Oshima
(1975) show that the ring diameter should then grow as tl/2 to satisfy the
invariance of hydrodynamic impulse I. The ring convection velocity dz/dt
should then decay as t=3/2.

To test this behaviour the dyed ring’s diameter and it velocity are plotted
vs time in Fig. 7.15 and Fig. 7.16. We have purposely worded this as the dyed
ring and not the vortex ring. At these large times the position of the dye does
not necessarily mark the location of the vorticity. In two-dimensional plane
flow, vorticity diffuses in the same manner as a dye but at a much greater
rate. Hence, vorticity can be diffused to regions absent of any apparent dye.
This is further complicated for non-planar flows since vorticity diffuses as a
vector and dye as a scalar.

Experimentally measured values of the dyed ring diameter growth com-
pare very well with the theoretical predicted result for the vortex ring diame-
ter growth. Fig. 7.15 shows a log-log graph of results from seven experiments.
The slopes range from 0.47 to 0.57 with an average of 0.504 which agrees well
with the predicted value of 0.5.

The vortex ring velocity measured from experiment does not compare
as favorably to theoretical values Fig. 7.16. Our results for the exponent
are -0.88 to -1.4 with a mean value of -1.25 compared to the theoretical
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value of -1.5. These low results could be a result of several factors the most
obvious being that the vortex ring may not have yet reached the asymptotic
drift stage. Also, there are errors in tracking the vorticity centroid with
dye although the excellent agreement with theoretically predicted diameter
growth suggests otherwise. The total distance travelled by the vortex ring
centroid from some time ¢ is finite if the exponent is less than -1. As an
example where the exponent in the power law fit is —1.45 so that

dz '

5= 4.31¢7145, (7.7)

where the factor 4.31 comes from the numerical power law fit done using
Xmgr 4.0 ©. The final depth is calculated by integrating Eq. (7.7):

Az = / 4.31t7 1%t = — 4’—31-t‘°'45) 12, =2.25 cm. (7.8)
20 s .45
This is slightly further than that recorded in the photographic record 1.9 cm.

The greater theoretical value is expected since the photographic record does
not capture the complete final motion of the ring.
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7.8 Conclusions

This chapter presented detailed analysis of vortex ring creation from an im-
pacting drop. A substantial amount of work was expended on studying the
motion of the drop in freefall.

For the drop in freefall we found excellent agreement with the measured
drop oscillation period of 34.0 ms and the theoretically predicted 34.2 ms
period. We also found a virtual origin exists due to the complex drop sepa-
ration process. The most penetrating vortex rings are formed by drops with
the same phase at impact. This phase corresponds to a drop passing from
vertically oblate to vertically prolate but still prolate. This agrees with the
observations of Chapman and Critchlow (1967) but disagrees with Rodriguez
and Mesler (1988). Penetration depth is roughly correlated with the chance
of a vortex ring forming.

Vorticity creation observed at early times is consistent with predicted in
Chpt. 2 and Chpt.4. Using a sharp interface model, the level of vorticity
required at the free surface estimates is predicted to be O(3000 s71) at early
times. This is consistent with the motion of the vortex rings produced.
The surface continues to act as a source of vorticity while the impact crater
forms. This feeds the separated boundary layer. This early-time behaviour
is observed in the four cases studied here even for W above the critical limit.

Vortex rings are formed in Case I and III because they are able to move
away from the impact crater without the upward flow from the reversing
impact crater adversely affecting their motion. In Case II a vortex ring
appears to form at early times in a similar way as Case I and Case III but
Case II vortex rings are trapped in the upward flow due to the reversing
crater. Positive vorticity in the vortex ring likely comes in contact with
countersign vorticity at this time and some cancellation may occur. Only a
weak vortex ring is sometimes observed.

Experimental evidence shows vorticity also appears in a similar way for
drops impacting above the critical We. This is counter to arguments from
several previous papers where it is argued that no vorticity creation takes
place because of surface destruction. At We = 76 the appearance of a well-
formed vortex ring is inhibited by the separation of a bubble larger than a
drop diameter from the surface.

An argument for the appearence of countersign vorticity at very early
times has been proposed. This is much earlier than previously thought and
may be responsible for the onset of an instability since Rayleigh’s centrifugal
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criterion for stability is broken.

The sudden enlargement of vortex rings at long times O(20s) after im-
pact was explained: drop-formed vortex rings enter into an asymptotic drift
phase. Theoretically, this implies the vortex ring diameter expands as £1/2
and the speed of the vortex centroid should slow as t—3/2, Experimental re-
sults showed the ring diameter enlarged as t'/2 and that dz/dt ~ t=1-%°. This
ensures the penetration depth of the vorticity centroid is finite.



BIBLIOGRAPHY 151

Bibliography

A. V. Anilkumar, C.P. Lee, and T.G. Wang. Surface-tension induced mixing
following coalescence of initially stationary drops. Phys. Fluids A, 3(11):
2587-2591, November 1991.

G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University,
New York, 1967.

Y. K. Cai. Phenomena of a liquid drop falling to a liquid surface. Ezp. in
Fluids, 7:388-394, 1989.

Brian Cantwell and Nicholas Rott. The decay of a viscous vortex pair. Phys.
Fluids, 31(11):3213-3224, November 1988.

D. S. Chapman and P.R. Critchlow. Formation of vortex rings from falling
drops. J. Fluid Mech., 29:177-185, 1967.

R. W. Creswell and B. R. Morton. Drop-formed vortex rings—the generation
of vorticity. Phys. Fluids, 7(6):1363-1370, June 1995.

B. S. Dooley, A. E. Warncke, M. Gharib, and G. Tryggvason. Vortex ring
generation due to the coalescence of a water drop with a free surface. Ezp.
in Fluids, 22:369-374, 1997.

P. G. Drazin and W. H. Reid. Hydrodynamic Stability. Cambridge University,
New York, 1991.

F. Durst. Penetration length and diameter development of vortex rings gen-
erated by impacting water drops. Ezp. in Fluids, 21:110-117, 1996.

Olive Engel. Crater depth in fluid impact. J. Appl. Phys., 37(4):1798-1808,
March 1966.

J. Hallet and L. Christensen. Splash and penetration of drops in water. J.
Res. Atmosph., 18(4):225-242, Oct.— Dec. 1984.

H. Helmholtz. On integrals of the hydrodynamical equations, which express
vortex-motion. Phil. Mag., 33(226):485-512, 1867.

Mingying Hsiao, Seth Lichter, and Luis G. Quintero. The critical Weber
number for vortex and jet formation for drops impinging on a pool. Phys.
Fluids, 31(12):3560 —3562, December 1988.




BIBLIOGRAPHY 152

Tsutomu Kambe and Yuko Oshima. Generation and decay of viscous vortex
rings. J. Phys. Soc. Jap., 38(271):1443-1450, 1975.

H. F. Keedy. Vortez Rings Formed by Free-Surface Interaction. PhD thesis,
University of Michigan, Ann Arbor, Michigan, 1967.

Horace Lamb. Hydrodynamics. Dover, New York, 1932.

J. Okabe and S. Inoue. The generation of vortex rings, II. Rept. Res. Inst.
Appl. Mech., 9(36):147-161, 1961.

Bill Peck and Lorenz Sigurdson. The three-dimensional vortex structure of
an impacting water drop. Phys. Fluids, 6(2):564-576, February 1994.

Bill Peck and Lorenz Sigurdson. The vortex ring velocity resulting from an
impacting water drop. Ezp. in Fluids, 18:351-357, 1995.

Bill J. Peck. The three-dimensional vortex structure of an impacting water
drop. Master’s thesis, University of Alberta, January 1993.

H Pruppacher and K. Beard. A wind tunnel investigation of the internal
circulation and shape of water drops falling at terminal velocity in air.
Quart. J. R. Met. Soc., 96:247-256, 1987.

M. Rein. Wave phenomena during droplet impact. In S. Morioka and L. van
Wijngaarden, editors, [UATM Symp. on Waves in Liquid/Gas and Lig-
uid/Vapor, pages 191-200. Kluwer, 1995.

Martin Rein. The transitional regime between coalescing and splashing drops.
J. Fluid Mech., 306:145-165, 1996.

Francisco Rodriguez and Russel Mesler. The penetration of drop formed
vortex rings into poals of liquid. J. Colloid Interface Sci., 121(1):121~129,
January 1988.

V. Rom-Kedar, Anthony Leonard, and S. Wiggins. An analytical study of
transport mixing and chaos in an unsteady vortical flow. J. Fluid Mech.,
214:347-394, 1990.

Nicholas Rott and Brain Cantwell. Vortex drift. II:The potential flow sur-
rounding a drifting vortical region. Phys. Fluids A, 5(6):1451-1455, June _
1993a.




BIBLIOGRAPHY 153

Nicholas Rott and Brian Cantwell. Vortex drift. [:Dynamic interpretation.
Phys. Fluids A, 5(6):1443-1450, June 1993b.

P. G. Saffman. Vorter Dynamics. Cambridge University Press, New York,
1992.

P. N. Shankar and Manoj Kumar. Vortex rings generated by drops just
coalescing with a pool. Phys. Fluids, 7(4):737-746, April 1995.

Karim Shariff and Anthony Leonard. Vortex rings. Annu. Rev. Fluid Mech.,
24:235-279, 1992.

Bhimsen K. Shivamoggi. Theoretical fluzd dynamics. Kluwer Academic, Dor-
drecht, 1985.

Lorenz Sigurdson. Atom Bomb/Water drop. Phys. Fluids A, 3(9):2034,
September 1991.

Lorenz Sigurdson and Bill Peck. The vorticity generation mechanism for
impinging water drops. In Praceedings of the American Physical Society,
page 2093. American Physical Society, 1989.

Lorenz Sigurdson and Bill Peck. A drop of violence. Discover, page 11, May
1992a.

Lorenz Sigurdson and Bill Peck. The turbulent times of a water drop. New
Scientist, 135(1830):18, July 1992b.

Lorenz Sigurdson and Bill Peck. Three-dimensional transition of the vorticity
created by an impacting warter drop. In V. R. Benzied, editor, Advances
in Turbulence, pages 470—475. EuroMECH, Kluwer Academic, 1994.

J. J. Thomson and H. F. Newall. On the formation of vortex rings by drops
falling into liquids, and some allied phenomena. Proc. Roy. Soc. London
Ser. A, 39:417—-436, 1885.

C. Truesdell. The Kinematics of Vorticity. Indiana University, Bloomington,
Indiana, 1954.



CHAPTER 8

CONCLUSIONS

8.1 Closing remarks

We close by briefly reviewing the work presented in this thesis and provide
an overall context for what was presented.

A careful analysis of interfacial mechanics was carried out in Part L. There
were three chapters in this part, Chpt. 2, Chpt. 3 and Chpt. 4, dedicated to
understanding the dynamics of vorticity near a free surface.

These chapters also roughly reflect the chronological evolution of my
thinking and education on this subject. My work in this field began by
working through previous results and making sense of the scattered results
in this field and putting them in proper context. These three chapters all
benefit from expressing the equations in each chapter using results from dif-
ferential geometry. Once this task was carried out the incredible depth of
results from this field could be used to assist with physical interpretation.

Chpt. 2 generalized and provided detailed physical interpretation of the
kinematics at a free surface. Although I derived all the results in this chapter
independently, several papers appeared while this thesis was in preparation
addressing this subject. The paper most similar to the results in Chpt. 2 was
published by Wu (1995) who presented similar results to Eq. (2.15). I was
not able to follow his derivation however and the results in that paper were
left in a very general form.

To my knowledge Eq. (2.24), describing the presence of streamwise, vor-
ticity is new and is the first time the presence of streamwise vorticity at a free
surface has been recognized. This is convincing evidence of the power of dif-
ferential geometry in the analysis of free surfaces. It was only by expending
the small extra effort to write the equations in terms of the curvature tensor
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that this result became obvious. Since our paper (Peck and Sigurdson, 1998)
was submitted for publication—and before it was accepted for publication—
this result has appeared in another paper (Longuet-Higgins, 1998). That
paper references the version of our paper which was under review at that
time. That paper claims that the effect of surface twist on streamwise vor-
ticity can be educed from the analysis givin therein leading to Eq. (2.31).
I do not believe that this is obvious from that analysis without some prior
knowledge of the surface twist.

The result deriving from Eq. (2.33) showing that on a steady surface
with nonzero Gaussian curvature K vorticity must be present is new. Also
recognition of the alignment of the principal value of rate-of-strain with the
surface normal is new: Eq. (2.11). This was a particularly satisfying result
to discover since, to me at least, it vividly described the interpretation of
vorticity attributed to Boussinesq, (Truesdell, 1954). This result also points
out an error in the literature given in Longuet-Higgins (1992). Here he
stated incorrectly that the motion of fluid elements at a free surface was
a rigid body one which was clearly shown to be false. This was important to
show and clarify since this incorrect statement has propagated through the
literature (Sarpkaya, 1996). By singular coincidence Longuet-Higgins (1998)
has now recently recanted his interpretation of solid-body rotation at free
surfaces from his earlier paper (Longuet-Higgins, 1992) and recognizes that
the interpretation given in Chpt.2 is correct. The results from Sec. 2.2.4
concerning the geodesic curvature are new and follow immediately once the
equations of surface vorticity are expressed in surface coordinates.

Chpt. 3 discusses the vorticity flux. That is, interpreting the diffusion
of momentum using the normal gradients of vorticity tangential and normal
to a surface. This is a step closer to understanding the vorticity creation
mechanism. This is a popular means of estimating the creation of vorticity
from free surfaces. Again, I used the sharp interface model and equations of
differential geometry to derive the vorticity flux equations. Expressing the
equations in a form using results from differential geometry quickly exposed
a mistake in the literature. The most important result from this chapter
was that the curvature-dependent terms in the vorticity flux equation could
be neglected on developable surfaces, that is surfaces where K = 0. This
analysis pointed out the incorrect result in the literature which was that if
vortex lines were straight the vorticity flux due to geometric effects would
vanish. This was shown to be false with the analysis given in Sec. 3.4.2 and
displayed in Fig. 3.2.
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In Chpt. 4 the vorticity transport equation was calculated. Here, recog-
nizing the presence of not only density gradients but also viscosity gradients
in the interface exposed new terms in the vorticity transport equation when
applied to the thin fluid interface. The extra term arising in the equation of
motion due to the viscosity gradient has received very little attention in the
literature [ reviewed.

Results using the spectral decomposition of D given in Sec. 4.2.1 appears
to be new as is the physical interpretation. Also, the assumptions used
to obtain Eq. (4.48) in the context of the vorticity equation appear to be
unique. This equation satisfied several of the criteria required by the sharp-
interface model of the free surface. First, the creation of vorticity should be
predicted for surfaces where the surface normal rotates and this is reflected in
Eq. (4.48). Also, there should be a production term for interfaces where there
is only a viscosity gradient and no density gradient. This too is predicted by
Eq. (4.48) where the creation of vorticity is predicted with viscous gradients
alone.

Part II contains three chapters reporting experimental results, Chpt. 5,
Chpt. 6, Chpt. 7. The first two of these chapters have appeared in the pri-
mary literature.

Chpt. 5 was the first chapter to present experimental results. Here vortex
rings formed from impacting drops were studied. Scaling arguments were
used to compare the data with previously published data with different pa-
rameters. This work also points out several problems which needed to be
overcome to make reproducible experiments. These issues were addressed in
Chpt. 6 which explained how a new apparatus was built based on the ap-
paratus used for the experiments used in Chpt.5. It is important to note
however that the experiments done in Chpt. 5 were not done using the appa-
ratus described in Chpt. 6. This new apparatus was used for the experiments
in Chpt. 7 however.

Many new techniques and several revived older techniques were used to
construct the final apparatus. This apparatus reflects several hundreds of
hours of effort most of it being hand built by myself and the Department
of Mechanical Engineering’s machine shop staff. The apparatus was suffi-
ciently unique to be published on its own (Peck et al., 1995). I was delighted
to include the names of two technicians from the Department of Mechani-
cal Engineering on the paper, Bernard Faulkner and Ian Buttar, who spent
countless patient hours working on this apparatus with me.

Finally, Chpt. 7 presented experimental results using this new apparatus.
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These results carefully recorded the drop motion above the free surface before
impact. This went a long way towards clarifying previous disagreement in
the literature over what phase of oscillation produced the most penetrating
vortex rings. Also, we presented rarely reported results on the probability of
vortex ring formation and found it to be approximately correlated with the
penetration depth.

Using results from Part I and experimental observations we predicted the
occurrence of early-time countersign vorticity. This is significant since it may
explain the source of an early time instability.

Subcritical Wedrops which do not produce vortex rings were studied.
Vortex ring formation was inhibited by the flow required by the reversing
impact crater. High-W& drops were found to produce vorticity in a similar
way as low Wedrops. The subsequent crater dynamics prevent creation of a
vortex ring because of a large bubble which forms from an expanding region
of the impact crater.

The first known pictures of the final period of decay are presented. Pho-
tographing this process was made possible by the careful construction of the
apparatus to ensure no thermal gradients were present. We found excellent
agreement with theoretically predicted vortex ring growth and good agree-
ment with the forward motion. These results predict that the vortex centroid
should reach a finite depth.
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APPENDIX A

JUMP CONDITIONS AT A FLUID INTERFACE

In this appendix the conservation of mass and momentum in a region &7
are used to obtain the stress jump conditions on . The region £, is
subdivided into three regions, €~, 2% and the material surface & which

forms a common boundary between &% and %, Fig. A.L

Conservation of mass

The total mass within &2, denoted M, is the sum the three region’s masses.
M is the sum of two integrals:

M= /pdV+//_J?da, (A.1)

&- 7 L

where A, is the mass per-unit-area of the surface. To conserve mass in &
the condition
dM d d '
@ &
must be satisfied.
To evaluate these integrals we will need transport theorems for the bulk
fluid regions and the surface itself. The transport theorem for density of the
bulk fluid density p in a subregion of the 7 which contains no singularities
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Figure A.1: A region & of R® with an embedded singular surface .

is

p+ pdivu)dV V (A.3)

& e
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pdV+/div(pu.)dV
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dV—{-/pu-nda:O
a¥

Using the localization theorem we arrive at the mass continuity equation for
£,

% +div(pu) = 0. (A.4)

The derivation of the transport theorem used in Eq. (A.3) is given in
several texts on continuum mechanics Chadwick (1976).
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We also require the analogous expression of the transport theorem for
a surface. Since this form of the transport theorem does not appear as
frequently as the three-dimensional version, we will derive it in detail for
the surface density. We begin by considering the material derivative of the
surface mass. The total mass is given by the integral in Eq. (A.1). The
material derivative of this integral becomes:

d d ) .
E/‘pydazz"- /),/JdA:/(;)yJ+gyJ)dA (A.5)

i Za o

where,

J= (f‘-)“ . (A.6)

To proceed we will require an expresssion for the material derivative of J on
the surface. Taking the derivative:

l/ax-2a 1/a\3a
i=3(3) "7=3 (Z)2 (A7)
a
= — A..8
(2a) (A8)
Also,
a = det(aaﬂ) = a—[d;L—a(:’:ﬁ—)ld,\., = aa“ﬂdaﬁ. (A.g)

Since we are using convected coordinates,

d [ or or
= (E)V s =, A.10
o=@ (ae«) 6=~ " (4.10)
Substituting gives
d(a, d
_(_dtﬁl = —(3a-3p) = Via-ag +3a " Vsp (A.11)
= (v7|a — b)) 2y - ag + aa - (V7|5 — v63) 2y (A.12)

= vﬂla + valﬁ - zvbaﬁ- (A'13)
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Now, Eq. (A.9) becomes,
a = 2aa*®(vgla + Valg — 2vbap) = 2a(v%|a + vb7), (A.14)
and
J = J(v*|a + 2vH). (A.15)

Substituting Eq. (A.15) into Eq. (A.5) we obtain the surface transport equa-
tion: )

dt ot

&

9p,
4 p,da -:./ [_p{_ + (/?(/va)[a—2pva] da (A.16)
k4

Now, the first integral on the right of Eq. (A.1) is seperated into its compo-
nents lieing in 92+ and regions &2~ and with the aid of Eq. (A.3) and and
Eq. (A.16) becomes,

Op* dp~
f X v + / 4 (A.17)
@®t-7 @ -7
+ / ptu-mda+ / p~u - mda

oRt-7 o~ -~

+ /p“"u. -ntda + /p"u -n"da

N

+ / [6;*: + (@,”a)la - 2pva] da = 0.
&
Now, with reference to Fig. A.2 we collapse the two regions 7t and &~ onto
& The contributions from the volume integrals will vanish and the surface
normal to 882+, m will become n~. Now, after using n = n~ = —nt
Eq. (A.17) becomes,

/(p"’u-n—p’u-n+p"u-n—p"‘u-n)+ (A.18)
&

Op,
- [a‘t/-l—(pyv“)la—Zpva]da:O
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2 ™\

Figure A.2: The geometry near & as & is collapsed on to &

The first four terms of the integral vanish. Using the localization theorem
on the surface Eq. (A.18) we obtain the expression for mass conservation at
a point on %

+ (v — 20, Hy = (A.19)

Conservation of momentum

In this section we will derive the jump condition on the surface which balance
momentum in 2. In general the baiance of a thermodynamic variable ¥in
22 is given by the relation,
@ _wiPsR (A.20)
dt
where W represent the efflux of ¥ through the boundary 022, P, represents
the production of ¥ in &7 and R represents the supply of ¥ through external
actions such as body forces. In the previous sections we used an intuitive
notion of mass conservation where we assumed there was no efflux of mass
across the material boundaries or production of mass in the region of interest.
Also, we assumed the body forces acting from afar had no effect.
To balance momentum we maust account for the eflux of momentum
across 822 and body forces. We will however assume there is no production
of momentum in £2. For the balance of momentum we define

v=F= / pudV+/%,vda (A.21)
2-5 7
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The eflux of momentum W is given by

W=-— / t(,.)da - / t(y)dﬁ (A22)

aX¥ -7 97

Here, t(n) is the surface traction vactor acting on a surface element and t( )
is the traction per unit length acting on the boundary of . t(a) is related
to the Cauchy stress through t(,) = on. The boundary traction is related
to the stress intrinsic to 5 through the analogous expression t(z) = Sv.
The outwardly directed unit vector v lies in the tangent plane of & and is
normal to 9.%.

The supply of momentum due to body forces is given by

R= / png—l—/ps,fyda (A.23)
@5 k4

where g and f are the body forces acting on the fluids’ volume and surface
elements.

Substituting Eq. (A.21), Eq. (A.22) and Eq. (A.22) in Eq. (A.20) we ob-
tain the general expression for the balance of momentum in &2

dF _ d . d d
= = — - — 2
= = pudV+dt / pudV-{-(ﬁ/;_v(/vdV (A.24)
@t-o @-— 7
= / t(n)da + /t(g)dl+ / png+/;>ygyda (A.25)
®-5 X -5 ke

Using the transport theorems given in Eq. (A.3) and Eq. (A.16) and substi-
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tuting pu in for p and P for p, we get,

/ ['3_(% - "+g] v + / [a(,;u) —p'g] &V +  (A.26)

At-7 K=

/ [p-i-'u,('u, -m) — (n)] da + / [p'u(u -m) — t(’n)] da +

o#t-7 oOR—~7

/ [ptu(u - n)] da + / [pu(u - n)] da+

F+ 7=

at -i-(p,'uv e 2%va—37gy] da +

For regions which do not contain any portion of 5 the integrals in &2+ or
%2~ become

/ Q(—g;u—) — pgdV + / [pw(u - ) — tw) da (A.27)
¥ a8y
=/‘6gtu png—{-/[(pu@u) o] mda
=/ [agt +div(pu ® u) — diva'—pg] dv.
7

For a given point in 2 the localization theorem gives

dpu

e +div(pu @ u) =divo + pg (A.28)

Differentiating and using Eq. (A.4) gives

7] 0 . .
p—at2+pgraduu+uap+d1v(pu)=d1v0'+pg (A.29)

e

=0
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so that
pu =dive + pg. (A.30)

This is the spatial form of Cauchy’s equation of motion valid in any portion
of 22 which does not contain any part of .

Collapsing the integrals on to &, using the same arguments used in Sec. A
and invoking Greens theorem for a surface we arrive at the following integral
over &

/ ("7 )‘{"(P uvo‘)la—2p H‘U'v—pf —divS——cr'n—a' nda
ot Kl z 7
A

(A.31)

Now, using the same sign convention as in Sec. A —o~n +o¥n = —[tm]
where [ ] denotes the jump in the quantity on 5. the sign is determined
by the difference between the value of a quantity on the side to which the
unit normal faces €2+ and the value of the quantity in 2~. The integral in
Eq. (A.31) is rewritten as,

dv .
/py(—at—+v|av“) —pyt;/—dWS—[t(n)]]-l-
7

v [aait? + (py'u") la — 2;_)_7Hv:| da (A32)
h =0 by Eq. (A.19) ~
which upon using the localization theorem becomes
dv .
o, (79-{ + vlav“) —pf, —divS — [tw] =0. (A.33)

This is the two-dimensional analogue of Cauchy’s equation of motion valid
on a surface which may be endowed with Reimann curvature.

The influence of surface tension is obvious when we calculate the diver-
gence § in Eq. (A.33). Using identity Eq. (E.19) we expand the expression
into,

div8 = a® ® a, grad v + vdiv(a® ® aa), (A.34)
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The first term on the right of Eq. (A.34) is transformed into the surface
gradient since a® ® a, grad ¥ = (a, - grad y)a* = grad _,v. With the identity
given in Eq. (E.20) Eq. (A.34) becomes,
divS = grad _v + 7(grad a*) + ya*(div aa) (A.35)

= grad v + 7(a%,s ®ag)a® + va[tr(grad a,)].

=grad v+~ [(—F.,‘jsa" +b5n)® aﬂ] a, +

[tr(T s, ® @ + bagn ® a°)] a°

=grad v — 7 (I‘;;a“’ - F%a" - bzn)

= grad _ v +vban (A.36)
Hence, we arrive at the final result:

div8 = grad v + 27Hn. (A.37)

This is the general form of the classic result relating the surface tension
coeficient to the curvature of the surface. In this general form we see that
the mean curvature affects the normal component of the stress and causes a
force normal to the surface itself. Another force tangential to the surface is
created by the presence of surface tension gradients.
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APPENDIX B

MATERIAL DERIVATIVE OF THE SURFACE NORMAL

The material derivative of a surface’s unit normal vector can be calculated
with the aid of Nanson’s relation ((Chadwick, 1976), p.61). This equation
describes the deformation of a surface element from a reference to deformed
configuration,

nda = JF"TNdA. (B.1)
F is the deformation tensor given by
O0z;
=i e, QE; 2
F= X, ® E;, (B.2)

where z; are coordinates in the deformed configuration with Cartesian basis
vectors e;. The coordinates X; and basis vectors E; are fixed in the reference
configuration. The Jacobian J is defined by J = det F. Also, N is a2 unit vec-
tor normal to a reference surface element dA. The corresponding quantities
in the deformed configuration are denoted by n and da.

The material derivative of F is

o 4 (9 du; Bz
Fz%(m) O, = oiie; @ E; = oo oo-(e: ® ex)(e: ® E;) = LF

8X; aX; Bz 80X
(B-3)
so that
L=FF. (B.4)
Now, since FF~! =1,
L=FF!=_-FF1L (B.5)
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Differentiating Eq. (B.1) materially gives
nda + nda = JF"TNdA + JF"TNdA. (B.6)
The material derivative of the Jacobian is
J =J(trL). (B.7)
With the aid of Eq. (B.5) the derivative of F~T is rewritten in the form,
FT=FY =—(F'L)T=-LTF " (B.8)
Substituting Eq. (B.7) and Eq. (B.8) into Eq. (B.6) gives,
nda + nda = (trL — LTn) JF~TNdA. (B.9)

The dot product of n with Eq. (B.9) yields an expression for the rate of
surface dilation;

;—g = trL — n - (LTn) = trtL — n - (Ln), (B.10)

where we have used n - n = 1 and n - n = 0. Substituting Eq. (B.10) into
Eq. (B.9) gives the material derivative of the surface normal,

n=n-(Ln)—LTn. (B.11)

We can also calculate the material derivative of the surface normal vector
n in terms of surface coordinates. This derivation is based on that which
appears in Naghdi (1972).

The dot product of the surface normal and a vector lying in the tangent
plane a, - n = 0 is differentiated materially:

%(aa.n)zéa.n+aa-ﬁ=o (B.12)
so that
i, -m = —ay-n. (B.13)
Since 4, = v,, Eq. (B.13) can be multiplied by a* and rewritten as

(aa : n) a®*=n= (n *Via )aa. (B'14)
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The derivative v, = (v%2,),3 +(vn),e is calculated with the aid of Wein-
garten’s equation,

n,, = bla,, (B.15)

Substituting Eq. (B.15) and Gauss’s equation,

aa,p = g + bapn (B.16)
v,, becomes
Vo = (V*|a + b5v)an + (ve + B3va)1 (B.17)
so that
A = — [v, —(b5v*)] aa
= —Uala — b3y (a'\ ; aq) Ao (B.18)
= —v,pa% — (bfa. ® a*) v,a”
= —grad v — bv
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APPENDIX C

MATERIAL DESCRIPTION OF VORTICITY

This appendix shows how the rate of change of an arbitrary deformation
relates to the vorticity using a material description.

In this derivation we use &, to represent the material body in its reference
state and &, for the transformed material body. Coordinates in the deformed
configuration are given by z; directed along the basis vectors e;. Reference
frame coordinates are X; with basis vectors E;. The deformation gradient
tensor F is given by

8:::;

F =GradF = 39X,

e; ® E;. (C.1)

Here, Grad indicates spatial derivatives forming the gradient taken with
repect to the reference configuration.

The deformation gradient F is the fundamental kinematic quantity com-
paring sizes and shapes of material bodies in their reference and transformed
states. F only gives information about the relative shapes of material ele-
ments, it does not provide us with any indication of the rate at which the
element deforms. Knowledge of the deformation rate gives essential informa-
tion for determining the viscous forces in a real fluids. More importantly we
will also be able to deduce the vorticity by calcualting the rate which the
principal axes of strain rotate.
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To calculate the rate we take the time derivative of ¥

§=F=%(§j{_) e ®F, (C:2)
_ 5;. (‘fl’;) e ® E; (C-3)
3?( (ui)e; ® E; (C4)

= Gor 50 O ©

- e me SX (C6)
=graduF =LF (C.7)

where L = grad u is the spatial gradient of velocity. Multiplying both sides
of the last line of Eq. (C.2) by F~! with the aid of Eq. (E.9) we have the
required expression for the velocity gradient in terms of the time derivative
of F and F itself in the form of its inverse.

gradu = FF! (C.8)

The velocity gradient is the gradient of a vector, and as such, is a tensor with
a unique additive decomposition

L=D+W (CQ)
where
1 1 1
D= §L + EL

W=lL—lLT.
2 2

For now we will refer to D and W as the symmetric and anti-symmetric or
skew-symmetric components of L.

To gain a deeper insight into the physical relevance of these tensors we
write them in terms of the deformation gradient tensor Eq. (C.8)

D= 5[ FFL+ (FF“)T] .(C.IO)

- W=- [FF"‘ (FF-I)T] .
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Now we write the deformation gradient in terms of its multiplicative decom-
position,

F=RUorF = VR, (C.11)

where U and V are symmetric tensors representing a stretch along three
mutually orthogonal (principal) axes. R is a rotation tensor so that if it
acts on a line element dx, Fdx represents a rotation of dx. Thus, from
Eq. (C.11) the deformation can be represented as either a rotation of three
mutually orthogonal axes of deformation followed- by a triaxial deformation
or the deformation followed by a rotation.

Now we will substitute Eq. (C.11) into Eq. (C.8) and then use this result
to evaluate D and, more importantly, W in Eq. (C.10). First,

L = (RU)(RU)™! (C.12)
= (RU 4+ RU)(U'R™})
=RUU-'R™!' + RUU'R™!
=RR™!+RUU'R™!
Substituting Eq. (C.12) in Eq. (C.10) we find,

D=1 [RR“ +(RRY)T +RUU + (Rt'JU-l)T] . (C.13)

To simplify Eq. (C.13) we first note R™! = RT since it is a rotation. Now
RR-! = RRT =I so that RRT + (RRT)T = 0 and it follows RRT is skew
symmetric. With this result Eq. (C.13) reduces to,

D = ; [R(UU™ + UTO)RT). (C.14)

Where we have used the symmetric properties of U. A similar calculation
for W gives,

W= %R (U"U-1 - U-lt'J) RT + RRT, (C.15)

where we see the skew symmetric tensor remains.

Now we suppose that the deformed confguration is passing through the
reference state. At this point F = I so that U =R =1 and D and W take
on the simple forms,

D=Uand W =R. (C.16)
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Figure C.1: An arbitrary deformation of a fluid element. Deformation of the
element’s centroid to x (&#;) from X ( &, ) represents an irrotational motion.
Deformation of the element from X to x* represents a rotational motion.

Since D is symmetric it also possesses three principal values A; directed
along three mutually orthogonal axes r;. As we pass through the reference
state, we see that these principal values will coincide with the rate of the
stretch along the principal axes.

We choose a material line element directed along a principal direction r;
to examine the effect of W. Calculating the material derivative gives

F; = Lr; — {r; - (Lx;)}rs (C.17)
=D+ W)r; — {r; - (D + W)r;}r;
= LA,'I.‘{ —I;- (A{l‘{)r}' +W1‘,'

=0

=W1‘,-=QXI‘{=%XI'{ (C.18)
Now
2Q =w =curlv (C.19)

In view of this result we see vorticity represents twice the rate of rotation
of the principal axes of rate-of-strain. If we choose the deformed configuration
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as it instantaneously passes through the reference configuration we see that
for that instant the vorticity represents twice the rate of rotation of the
principal axes of strain.

With this result, physical interpretation of the velocity gradient becomes
clear. The rate-of-deformation or rate-of-strain tensor D represents the rate
at which an element is stretching along three principal axes. The spin tensor
W represents the rate-of-rotation of these axes.

An arbitrary motion in a continuum is composed of a translation, a stretch
along three mutually-orthogonal axes and an instantaneous rotation of these
axes. This is the Cauchy-Stokes decomposition of a motion and applies
equally well to all media whether it is fluid or not.
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THE THREE-DIMENSIONAL TRANSITION OF THE
VORTICITY CREATED BY AN IMPACTING WATER
DROP

ABSTRACT

A falling water drop impacting the free surface of a pool of water
creates approximately circularly symmetric vorticity. This vor-
ticity rolls up into a primary vortex ring and undergoes a transi-
tion to a three-dimensional structure. Under certain conditions,
this characteristic large-scale structure is strikingly similar to an
above-ground atomic blast. The range of parameters discussed
here is of interest because the resulting vorticity is at a Reynolds
number very near the transition Reynolds number, therefore the
flow goes from laminar to turbulent to laminar again, allowing
careful study of the transition process. The nature of the insta-.
bility is discussed with particular regard to categorization. It is
suggested that it is not the Widnall instability that is initially at
work although it may play a role at later times.

tThis appendix has appeared in Advances in Turbulence (Sigurdson and Peck, 1994).
This paper was written by Professor Sigurdson and was therefore included as an appendix
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D.1 Background

Photographic observations and ring convection velocity measurements have
been reported for the transition to three-dimensionality of the vorticity cre-
ated by a dyed water drop impacting a pool of water (Peck and Sigurdson,
1994). It was studied for a Weber number of 22-25 and a Froude number
of 25-28. As the drop impacts the pool its impulse initially produces circu-
larly symmetric vorticity which rolls up into a primary vortex ring. As this
happens, some vortex filaments undergo an azimuthal instability (in what
will be referred to as the transition region) resulting in stream-wise vortices
which extend from the primary vortex ring to another ring of vorticity that
appears and remains at the free-surface. The azimuthal instability continues
to grow as the primary ring convects downward until the filaments escape
the trapped orbits of the primary vortex ring and are ‘shed’. (This has re-
cently been shown to occur numerically by Chorin (1993) in a similar flow.)
This results in three to five loops or ‘petals’ left behind the primary ring.
Although photographs indicate that the initial instability at earlier times
grows in a non-symmetric way, the petals which emerge tend to do so in an
azimuthally symmetric fashion. The ring velocity does not vary significantly
during this process (Peck and Sigurdson, 1995). After the petals are shed
a relaminarized circular primary vortex ring continues to convect downward
(relaminarized region).

D.2 Nature of the instability

D.2.1 Possible instabilities

There are two previously recognized instabilities of vortex rings which may
be responsible for the transition observed in the present case. The first is
the Widnall instability (Widnall et al., 1974; Widnall, 1975) (also sometimes
called the Krutzsch instability) which consists of a waviness of the entire
core which grows due to the imposed straining field from the circular geom-
etry of the rest of the ring. The second is Rayleigh's centrifugal instability
(Maxworthy, 1972) or a Taylor-Gartler type instability (Glezer and Coles,
1990) which are a more localized instability of the core itself which occur
without the presence of an external straining field. It could therefore occur
on a straight, infinitely long vortex as well as on a curved vortex. It requires
that the absolute value of the circulation, I', decrease with radial distance at
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some point in the flow.

Another possibility for the present case is that it involves an instability
of the vortex sheet which rolls up to form the vortex ring itself. There is
certainly evidence of instability as early as 7.5 ms when the vortex ring is
still very much in the formation stage. This may couple with the Taylor-
Gértler instability. It may be a result of a Bernal-Roshko type of instability
(Bernal, 1981) occurring in the vortex sheet, amplified in a straining field
between the primary vortex ring and the local ring that remains at the free
surface.

D.2.2 Previous Discussion and current results

Dziedzic (1994) suggested a new classification scheme for vortex rings:
(a2) laminar
(b) laminar, but with azimuthal waves on the core
(c) turbulence producing—rough surface, laminar core. turbulent wake
(d) turbulent—turbulent core, turbulent wake. -

He concluded that a rough estimate for the transition between (b) and
(c) is Re = 1000, and Re = 2000 for (d), where Re = Reynolds number
based vortex ring velocity and diameter. Maxworthy (1972) described three
regimes:

(a) Re < 600, laminar, (b) Re > 600, waviness, (c) Re > 1000, turbu-
lence.

In the present case, the Reis initially 320-390 for the relaminarized vortex
rings, well within the laminar regime. Earlier, in the transition region (non-
dimensional times less than 3.6 in Fig. D.1), the Reis higher, perhaps as
high 600 as measured in the lab reference frame. (Due to the upward flow
suggested by the free surface motion, the effective Re may be higher.) This
could be high enough to produce some Widnall waviness, but the waviness
would have very little time to grow before the Redropped into the stable
regime again. Also, the Widnall instability is based upon a waviness of the
entire core (the most unstable mode is estimated to be three or four waves),
whereas the instability observed in the present case appears to be initially a
very high wave number instability (28 waves) which grows on an otherwise
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Figure D.1: Reynolds number versus non-dimensional time (Using data from
Peck and Sigurdson (1995))

uniformly circular core. For these reasons it is concluded that the present
instability is probably not the Widnall instability.

A much more likely candidate is a Taylor-Gortler type instability as sug-
gested by Glezer and Coles (1990) for their turbulent vortex rings. This falls
into the category of Rayleigh’s centrifugal instabilities which was suggested
by Maxworthy (1972). This may be the instability which is responsible for
making Dziedzic's “turbulence producing” rings dimensional time have an
apparent “rough surface”, although the core remains laminar, at Re = 1000
(similarly for Maxworthy’s regime c). In the present case the velocities in-
volved before vortex ring formation is complete are also much higher than the
resulting vortex ring velocity (perhaps three or four times as high) creating
a Recomparable to that of the Re= 1000 vortex rings. (A Taylor-Gortler
instability would scale not on the velocity of the ring and diameter directly,
but rather the properties of the core alone.)

Maxworthy (1972) suggested that vorticity of opposite sign to the primary
vortex ring is generated due to the induced flow of the vortex ring interact-
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ing with the vortex gemerator. This can be transported to the outside of
the ring creating a situation which is unstable by Rayleigh’s criterion. As
a Taylor-Gértler type instability is a centrifugal instability, this conjecture
is not inconsistent with Glezer and Coles’ comments. The present case does
have vorticity of opposite sign present, first apparent within the reversing
impact crater at 10 ms, and forming the base rings. It has already been
suggested (Peck and Sigurdson, 1994) that some of the primary ring vortic-
ity gets trapped with the base rings. Simultaneously, or conversely, some of
the base ring may become trapped if the primary ring, leading to the situa-
tion Maxworthy envisaged. After the instability has grown and escaped the
previously trapped orbits of the vortex ring, the Rayleigh criterion may no
longer be satisfied and the appropriate Re may have dropped below critical,
therefore the ring would remain laminar.

Another possibility is that the formation of the vortex ring (which in-
volves an unknown unusual initial distribution of vorticity, a vortex sheet
roll-up, and a slight diameter contraction) creates a situation which inten-
sifies or couples with the Taylor-Gértier instability or offers the possibility
for instability of the vortex sheet itself. This possibility would suggest an
instability unique to this particular geometry. After the ‘petals’ have been
shed the conditions leading to the instability would be absent, therefore no
further instability would occur unless the resulting vortex ring Re was above
critical for the Widnall instability.

Although the initial instability may not be the Widnall instability, the
observed wave number drops into the range one might expect for this flow.
This could indicate that a combination of the two instabilities is at work, the
Taylor-Gortler first and then the Widnall.

D.2.3 Vortex dynamics geometry of the ring instability

From a vortex dynamics point of view, one possibility for the source of the
transverse vorticity is tilting of the vortex lines present in the primary ring.
A sequence of geometries for a representative vortex line is shown in
This figure indicates how an initial perturbation in a vortex line could
grow and create the transverse rings which would then convect away from
the core under their self-induction (Peck and Sigurdson, 1994, Fig. 6). This
is similar to the instability directly Fig. 2 Representative vortex observed
experimentally by Smith and Wei (1994). in colliding off-axis vortex rings,
" who draw a distinction between this and the Widnall instability. Chorin
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Figure D.2: Representative vortex line indicating nature of the instability

(1993) has shown numerically that small perturbations grow into loops which
are shed behind a vortex ring. Lim (1989) discussed the presence of a similar
geometry of bi-helical vortex lines in an experimental study of a vortex ring
interacting with an inclined wall. The cause in that case is a variation in
core size which causes the vortex line segments closer to the wall to wind
around the vortex ring axis at a rate faster than those further away. This
is not thought to be as strong an effect in the present case, but may be a
contributing factor. |

The instability may also be similar to that observed by Liepmann and
Gharib (1992) in the early development of round jets. They concluded (Liep-
mann and Gharib, 1992, Pg. 65) that it is not a Widnall instability but do
not discuss it further other than to note that the instabilities first appeared
in the braid and not the primary ring. (The braid is the region between two
successive rings.) This type of instability might be referred to as a Bernal-
Roshko instability (Bernal, 1981).
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D.2.4 Growth of the instability

The transverse axial pairs may undergo a merging process to reduce the
number of waves from 21 to 3, 4 or 5. A similar process has been reported
by Taneda (1977) for the growth of the boundary layer on an impulsively
rotated cylinder which shows very similar structures. It can be qualitatively
understood by considering that two suitably spaced vortex dipoles side by
side will initially be attracted to one another, simply by considering their
induced velocities from the Biot-Savart law.

D.3 Conclusions

The nature of the initial instability leading to the transition in the present
case is most likely not the Widnall instability, but rather a Taylor-Gortler or
Bernal-Roshko type of instability. The Widnall instability may play a role
at later times.
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APPENDIX E

USEFUL FORMULAE

E.1 Notational style
A comparison of two notations with a vector a and tensor A.
Aa=a-A and ATa=A-a (E.1)
The Navier-Stokes equations can is written as

_88_1?1 +Lu= _gradp

+vdivgradu. (E.2)

using the notation in this text. The notation (u - V)u can often be found in
the fluid mechanics literature to represent Lu. Also V2 or V - Vu is often
used to represent divgradu

E.2 Vector identities

For the arbitrary scalar ¢, vectors (or first order tensors) a, b, ¢,d and tensor
A the following identities apply.

¢(a x b) = a x (¢b) (E-3)
ax(bxc)=(axb)+(axc) (E.4)
aXb=-bxa (E.5)
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ax(bxc)=b-(a-c)—c-(a-b) (E.6)
(axb)-(cxd)=(a-c)(b-d) —(a-d)(b-c) (E.7)
(ax b) x (¢ x d) =b[a- (c x d)] —a[b - (c X d)] (E.8)
AAT=1 : (E.9)

E.3 Gradient identities

The gradient operation increases the rank of a tensor by one. For example
the gradient of a zeroeth order tensor (a scalar) is a vector; the gradient of
a first order tensor(a vector) is a tensor.

grad(ga) = (grad ) ® a + pgrada (E.10)
grad(a-b) = (grada)b + (gradb)a+ a X curlb + b X curla (E.11)

E.4 Curl identities

curl(grad ¢) =0 (E.12)
curl(¢a) = grad¢ X a+ ¢curla (E.13)
curl(a X b) = (grada)b — (grad b)a + adivb —bdiva (E.14)

curl(curla) = grad(div a) — div(grada) (E.15)
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E.5 Divergence identities

188

The divergence operator decreases the rank of a tensor by ome. The di-
vergence of a second order tensor is a vector (a first order temsor). The

divergence of a vector is a scalar (a zeroeth order tensor).

div(curla) =0
div(a X b) =b -curla—a-curlb
div(grad a) = grad(diva) — curl(curla)
div(¢A) = Agrad ¢ + ¢ divA

div(a ® b) = (grada)b + adivb

E.6 Transport Formulae

E.6.1 Scalar Transport formulae

di pda= [ (ddx+ pLdx)

tJe, #.

d _ y T

% 5 pnda = /y‘ [(¢>+ ptrL)n — oL n] da
4 ¢pdv = (¢ + ¢trL)dv
dt ), ®.

E.6.2 Vector Transport formulae

—d—/ a-dx= | (a+LTa)-dx
dt e 2.

_d_/ a-nda= | (a+atrL—La) nda
dt J o, e

4 adv = (a+atrL)dv
dt P e =

(E.16)
(E.17)
(E.18)
(E.19)

(E.20)

(E.21)
(E.22)

(E.23)

(E-24)
(E.25)

(E.26)
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