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ABSTRACT

Vortex dynamics at fluid interfaces is discussed. Special emphasis

is placed on the dynamics near a free surface.

The kinematics required at a free surface is discussed in detail.
The level of vorticity required at the interface is calculated from
the motion of the surface normal. Previous results restricted to
special geometries are generalized and the role of the surface ge-

ometry is included.

Geometry effects on vorticity flux from a free surface is addressed.
Contrary to previously published work these results show vortex
lines may be straight and geometry-induced vorticity flux is pro-
duced; conversely vortex lines may be curved and no geometry-
induced vorticity flux is produced. A convenient method for as-
sessing vorticity flux from a steady surface based on Gaussian

curvature is derived.

The vorticity transport equation is derived for a thin interface
with variable density and viscosity. Viscosity gradients add sev-
eral new terms to the vorticity transport equation. These new
terms show vorticity is created not only by baroclinic torques but
by torques due to viscosity gradients and a coupling of density
gradients with viscosity gradients. These results are compared to

those predic-ting the level of vorticity required at a free surface



discussed earlier.

Observations of vortex rings experimentally produced in two sets

of experiments at a free surface are described.

The first set of experiments reports observations of vortex ring
motion for the first 70 ms after it is created by the impact of a
2.6 mm dyed water drop upon a pool of clear water: Weber num-
ber (&) = 23.2. Precisely controlled multiple exposure pho-
tographs were used to measure the position and shape of the

vortex ring versus time, and calculate velocity.

Refinements to the apparatus for producing repeatable drop-formed
vortex rings are described. Control of parameters leading to re-

producible experiments are addressed in detail.

Further experiments with this refined apparatus using 5.18 mm
diameter drops with Weranging from 11.4 to 76 are reported.
Detailed analysis of the falling drop using image processing tech-
niques are described. Analysis of the vorticity creation process

and vortex ring decay are compared with theoretical results.



Dedicated to the memory of Lloyd Graff



PREFACE

This is the second thesis [ have written about drops impacting a
pool of the same liquid. My first thesis was written for my mas-
ters degree; it examined the three-dimensional vortex structure
created by a drop at short times after impact. This work was
motivated by Professor Sigurdson’s observation of similarities be-
tween a vortex structure created by an impacting water drop and
the nuclear blast.

I began working on this problem with Professor Sigurdson in the
summer of 1989 as an undergraduate summer student. Later I
continued with my masters degree and first thesis on the subject.
At the time, we believed the experiment would be a thrifty way
to do research in the area of coherent structures in turbulence.
My experience has shown that the experiment is far more com-
plex than we initially thought. Experiments are frustrating and
tedious, and the apparatus required was not as inexpensive as we
originally hoped. Perseverance and stubbornness paid off with
the present apparatus. It was sufficiently unique to have been
published in the primary literature.

Our early research left us with many fundamental questions with
no answers in the literature. First, how is the vorticity created
when the drop coalesces with the pool ? This has been one of
the central outstanding issues of our research. Professor Sigurd-
son raised this question at the 1989 American Physical Society
meeting. Since that time a flurry of activity in the literature has
addressed this question and the creation of vorticity at fluid in-
terfaces in general. The current rush of papers on the subject
reflects the relevance to current research. Unfortunately none of
these papers presented a satisfactory explanation of how torques
are applied to a fluid element. This area created a profound
curiosity in myself and directed my education into the areas of
continuum mechanics and elementary differential geometry. In
Chapters 2 3 and 4 I feel I have answered this problem with a
result which at least satisfies my own curiosity.



[ used the Chicago Manual of Style as my primary reference for
matters of style, although the bibliography was organized using
the AA4S conventions. The mathematics were set using the con-
ventions given in the Ap4S documentation. The notation used is,
wherever possible, consistent with that used by Chadwick (1976).
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CHAPTER 1

INTRODUCTION

1.1 Background

This thesis is written in paper format and is divided into two parts. Each
part contains three separate papers. In all, three of these papers have been
published in the primary literature and one is in review. Two more are yet to
be submitted. The status of each paper is noted at the start of each chapter.

This research was undertaken to understand the birth, evolution and
decay of vortex structures produced by impacting water drops. If the drop
fluid is dyed, and the drop is released from not too great a height, a vortex
ring is formed and its evolution can easily be observed as it travels through
the receiving pool.

The first observation of this phenomenon reported in the literature ap-
pears to be Ball (1868) and later Thomson and Newall (1885). These papers
were published during a time of great advances in vortex dynamics and they
reflect a profound interest in the then-developing field. Only ten years before
Ball’s work, Helmholtz published the seminal paper on vortex dynamics in
his native German (Helmholtz, 1858); an English version appeared nine years
later (Helmholtz, 1867). The importance of vortex rings to the scientists of
this period is reflected in an added note to the English version of Helmholtz’s
paper. Here, the first appearance of the classic formula giving the speed of
a vortex ring in an ideal fluid appears, Eq. (7.5) Chpt. 7. This result was
calculated by Kelvin and included without derivation.

Early researchers believed vortex rings represented a fundamental quan-
tity; this view was reflected in the vortex theory of the atom put forward by
Thomson. More recently Maxworthy (1972) suggested that vortex rings may
represent a fundamental structure within turbulence possibly being responsi-
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ble for the sharp demarcation and growth of turbulent boundary layers with
the external flow.

The evolution of vortex rings contains an entire range of topics from
vortex dynamics. Vortex rings form when an axisymmetric vortex sheet
‘rolls up’ to form a circular line vortex. This line vortex is the vortex ring
core. Instabilities may form on the vortex ring. These instabilities have been
the subject of a great deal of attention in the literature. Finally, as Phillips
(1956) showed, all flows decay to a Stokes flow of a vortex ring.

The early experimental works on drop-formed vortex rings mentioned ear-
lier were limited, since they had no way of capturing a visual record of the
phenomena other than hand-drawn sketches. Remarkably, the sketches in
Thomson and Newall (1885) roughly show the complex evolution of the im-
pacting drop into a vortex ring. This was subsequently verified by high-speed
photography. Some of these sketches suggested that a complex structure
forms at early times, from which a stable vortex ring emerges. High-speed
photographs of this phenomena were published by Okabe and Inoue (1961).
One of the photographs from this paper which appears in Batchelor (1967,
Fig. 7.2.3 (1) ) was to become the inspiration for Sigurdson’s comparison
of the atomic blast to the structure visible in the structure created by an
impacting drop (Sigurdson, 1991).

Sigurdson suggested a similar large-scale vortex structure could be con-
structed to model both flows, despite the huge difference in Reynolds num-
bers. Here, the structure is modelled from a series of line-vortices, the dom-
inant structure being a central vortex ring. In the larger view this reflects
Sigurdson’s pursuit of a ‘periodic table of turbulence’: a table of coherent
turbulent structures, with which complex turbulent flows may be understood.

Constructing a vortex model of the structure created shortly after drop
impact was the topic of my M.Sc. thesis (Peck, 1993) and (Peck and Sig-
urdson, 1991, 1992, 1994). While several new results were presented, several
questions remained unanswered. The present work addresses outstanding
fundamental questions raised in these works. New insights into observations
not noticed before are also given.

Part I presents general analytical results on the creation of vorticity at free
surfaces. A critical question was how vorticity was created by the coalescing
drop. This is important not only for this specific problem of impacting drops
but also for the general area of flows involving fluid interfaces. Knowing how
vorticity enters a flow or is created within a region gives insight into the
physics of the problem. For example, in a homogeneous, initially irrotational
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flow, vorticity can only be created at the boundaries from which it then
diffuses into the flow (Truesdell, 1954).

Part II presents experimental work on the specific case of an impacting
drop.

Five appendices are included with this thesis. Appendix E includes sev-
eral useful formulae used in many of the derivations in Part L.

The three chapters comprising Part I, Chapters 2, 3 and 4, discuss the
creation of vorticity at a free surface in three different ways: the state of stress
at a free surface, the Navier-Stokes equations and the vorticity equation.
Each of these chapters are a self-contained journal paper that may be read
individually. Useful results and comments on the notation used can be found
in Appendix E.

The first two chapters of Part I view the interface as a singular surface
(sharp interface) which possesses no thickness. Chpt. 2 looks at the level of
vorticity required by the state of stress imposed by the free surface condi-
tion where the surface is assumed to be a sharp interface. The free surface
condition is that tangential surface tractions are assumed to vanish and only
a constant pressure is exerted on the interface. This work discovers new in-
terpretations of the kinematics required to satisfy this boundary condition.
The derivation is done from the most fundamental assumptions possible and
worked through in its entirety. Although thought to be excessively verbose
by some, paying extra attention to the details of this derivation yielded im-
portant new results previously overlooked in briefer analyses.

Chpt. 3 still uses a sharp interface model but now looks at the effect of
the free surface condition and geometry on the flux of vorticity from the free
surface using the momentum equation. Special attention is paid to situa-
tions where curvature-dependent contributions to the vorticity flux may be
neglected. The topology of vortex lines embedded in the surface is discussed
in this context. These results show that vortex lines may be straight and
geometry-induced vorticity flux is produced; conversely vortex lines may be
curved and no geometry-induced vorticity flux is produced. A convenient
method for assessing vorticity flux from a steady surface based on Gaussian
curvature is derived. There is significant redundancy between the introduc-
tion to Chpt.3 and Chpt. 2, Sec. 3.3 may well be skipped by those familiar
with results from Chpt. 2.

Creation of vorticity at fluid interfaces is discussed in the context of the
vorticity transport equation in Chpt.4. Here, an interface is modelled as a
thin region across which density and viscosity vary rapidly but smoothly. Vis-
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cosity gradients in this region add an extra term to the usual Navier-Stokes
equation. Calculating the curl of this equation reveals curvature-dependent
vorticity production terms. These new terms show vorticity is created not
only by baroclinic torques but by torques due to viscosity gradients and
a coupling of density gradients with viscosity gradients. These results are
compared to those predicting the sign and level of vorticity required at a free
surface discussed earlier.

The second part of this thesis Part [I presents experimental results: Chpt. 5,
Chpt. 6 and Chpt. 7.

Chpt. 5 presents experiments where a scaling law is proposed. Several
measurements of the early-time vortex ring evolution were taken and com-
pared with scaling arguments. The data presented here were acquired after
completeing my M.Sc. and the scaling analysis was not addressed at all in
my M.Sc.. This chapter respesents both new work when compared to my
M.Sc. thesis and original inspiration in the scientific community. These ex-
periments exposed several deficiencies in the apparatus which motivated the
construction of a new apparatus.

Chpt. 6 describes the new apparatus in detail. Recently, several authors
have suggested sophisticated optical measurement techniques such as Parti-
cle Image Velicometry (PIV) would be required to further understand the
dynamics of impacting drops (Durst, 1996; Dooley et al., 1997). Before con-
sidering these expensive experiments, we chose to address the quality of the
experiment itself rather than the sophistication of the measurement tech-
nique. We showed in Chpt. 6 that several parts of this experiment have gone
overlooked even though they could be addressed with ingenuity and patience.

Experiments using this latest apparatus are reported in Chpt.7. The
experimental observations reported in this chapter were acquired using high-
speed photography. A detailed record of the falling drop is recorded us-
ing image-processing techniques. The vorticity creation ideas developed in
Chpt. 2 and Chpt. 4 were used to explain the creation of vorticity by drop im-
pact and subsequent formation of vortex rings. Release heights were chosen
to span the range of We where vortex rings were known to form. Also, a re-
lease height was examined outside of the range where vortex rings are known
to form. Here early-time vorticity creation is observed and is contrasted with
previous results.

A summary of the conclusions from the six chapters forming the body of
this thesis appears in Chpt. 8.
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ANALYSIS OF VORTEX MECHANICS
AT FLUID INTERFACES



CHAPTER 2

ON THE KINEMATICS AT A FREE SURFACET .

2.1 Introduction

In this paper we describe the kinematics required to satisfy the dynamics
of an interface where tangential surface tractions vanish. This assumption
is often used to model air-water interfaces. If the air is assumed to only
exert a constant pressure on the surface, the interface is called a free surface.
Several papers have recently appeared which discuss the presence of vorticity
required at free surfaces (Longuet-Higgins, 1992; Creswell and Morton, 1995;
Rood, 1995; Wu, 1995; Sarpkaya, 1996). In these papers interpretation of
the kinematics at the free surface are either restricted to simple geometries
or left in very general tensor notation. In our work we will carefully examine
and interpret the kinematics near the surface using results from differential
geometry. Our results are especially relevant because of considerable recent
research into complex three-dimensional flow interactions with free surfaces
(Sarpkaya, 1996).

The vanishing tangential surface traction leads to equations that require
one of the principal axes of rate-of-strain to be aligned with the surface
normal n. Longuet-Higgins (1992) and, later, Sarpkaya (1996) interpret this
boundary condition as a requirement for solid rotation of elements on the
surface. In general, there is no requirement for this to be so whether the flow
is two or three-dimensional, Sec. 2.2.1. However, the lack of tangential surface
tractions does set the rotation rate, in the material sense, of the principal axis
of rate-of-strain aligned with n. From this, the level of tangential vorticity
that must be present at the surface can be calculated, Sec. 2.2.2.

tThis chapter is the text of a paper accepted for publication in the IMA Journal of
Applied Mathematics, (Peck and Sigurdson, 1998)
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For two-dimensional plane-flow in a frame of reference that makes the
surface stationary,

w = —2Ky, (2.1)

where w is the vorticity normal to the plane of the flow (Longuet-Higgins,
1953; Batchelor, 1967). The velocity component tangential to the plane curve
% is v, where % is formed by the intersection of the flow’s plane and the
surface. When interpreting Eq. (2.1), x has been referred to as merely the
‘curvature’, the normal curvature of the surface, or the curvature of the
streamline on the surface. We will clarify these definitions and discuss the
significance of the Gaussian and mean curvatures.

We use the convention that the curvature and the radius of curvature r
have opposite signs so that & = —;1:. If the surface normal at some point is
chosen to be pointed upward, a surface which curves upward at that point
will have positive curvature, Fig. 2.1.

In a recent paper by Wu (1995) the result

w = —QKmUt (2.2)

appears (Wu’s Eq.(3)), where that paper defines the mean curvature £, to
be the sum of the principal values of curvature. That paper claims this result
is correct for steady, two-dimensional surfaces and later in the same paper
qualifies this to only include two-dimensional flows. Although Eq. (2.2) is
valid on surfaces of translation when the velocity is directed along the curve
which generates the surface of translation, we will show it does not apply
to general two-dimensional axisymmetric flows; Eq. (2.1) is correct for all
two-dimensional flows where the surface is stationary.

We will extend Eq. (2.1) to include arbitrary two-dimensional surfaces
and unsteady three-dimensional flows. In three-dimensional flow, compo-
nents of vorticity not accounted for in Eq-(2.1) may exist which are directed
along the streamline. We will show that vorticity must exist at a curved
surface in a steady flow if the Gaussian curvature and tangential velocity are
nonzero, Sec. 2.2.3. The discussion is concluded with brief comments on the
use of streamline curvature, Sec. 2.2.4.
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Figure 2.1: Deformation of an initially semi-circular fluid element in a two-
dimensional plane flow near the free surface & of a region & . Here it is
understood that u; is directed out of the page. At &} and &, the surface
is concave down and our sign convention gives negative curvature for an
outwardly directed surface normal n.

2.2 Free surface kinematics

2.2.1 Jump conditions

The interface is modeled as a two-dimensional material surface S embedded
in three-dimensional Euclidian space R3!. Two regions of R?, &% and &~
have & as their common boundary. The jump in surface tractions on & is
given by

[t] =~ (& —£,) + ivS, (23)

(Kosiriski, 1986)2. Here, t(,) = on is the surface traction and [ ] denotes
the jump in a quantity on % with surface normal n. For fluids in &%

1For a discussion of the validity of this assumption see Meyer (1982)
2A complete derivation of jump conditions on 5 has been included in Appendix A
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and 2, the Cauchy stress tensor o is assumed to follow the Newtonian
constitutive relation for an isochoric fluid: o = —pI + 2uD. The identity
tensor is denoted with I, p is the pressure and p is the dynamic viscosity.
The symmetric, rate-of-strain tensor is represented by D = (L +LT), where
L = grad(u). We will use u to represent the velocity in the bulk regions and
v to represent the velocity of particles embedded in the surface. v is a space
vector and has components tangential and normal to & v = v, + vn. The
density of the surface per unit area is denoted e, ; the surface body forces
are f_. Eq. (2.3) also includes the effects of mtrmsm surface stress S. In this
paper we will only consider 8 to be the two-dimensional analogue of a stress
in a three-dimensional ideal fluid. As such, 8 will be independent of surface
rate-of-strain or dilation. In this case the constitutive relation for the surface
stress is 8 = ya® @ a,, a* and a, are the contravariant and covariant basis
vectors on & (Scriven, 1960; Aris, 1962). Calculating the divergence, we
obtain

div8 = 2Hyn + grad 7, (2.4)

where the mean curvature H is defined in Eq. (2.21a) and grad _ is the surface
gradient. The coefficient v is the surface tension coefficient and is the two-
dimensional equivalent of pressure in R3.

We resolve t(,) into components tangential and normal to the surface:

ta) = tn) — (M- tm)) + (n - t(a))n

=(I-n®n)on+(n®n)on. (2.5)
tangZutial nor‘trna.l

Substituting Eq. (2.5), Eq. (2.4), and the constitutive relation into Eq. (2.3)
we get two equations. For tangential components we have the vector valued
equation

D n—[n-(Dn)n= #—t{D"'n —[n-(D*n)]n}

L
B roa . (s

e (o= (29
1

+2—Egrady7.

Superscripts {+, —} have been affixed to represent the relevant quantities in
@* and €¢~. Equating the normally directed components we arrive at the
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scalar valued equation

+—__-n-D+n

We introduce the nondimensionlization:

. D

D~ ———
(U/L)

P
(p~U?)

- B

v D ——

(U2L)
H~ HL?
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(2.7)

(2.8)

where the tilde denotes a nondimensional variable. L is a characteristic length
scale and U is a characteristic velocity. We have assumed p* is constant. In

nondimensional form Eq. (2.6) becomes

D ~[n- @ n)n = () (B*n—[n- (5*n)in}

(80U [ (3£ )
[T 2
+ ( T ) EXeT
Lu 2
and Eq. (2.7) is now
~ - - —pt + -
n D'n=(p UL)p 2p +<£;j>n-D+n

(2.9)

(2.10)






