[LL]]

University of Alberta

S

o)

Asymmetry in Binary Search Tree
Update Algorithms

by

Joseph Culberson and Patricia A. Evans

Technical Report TR 94-09
May 1994

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada

Asymmetry in Binary Search Tree Update
Algorithms

Joseph C. Culberson * Patricia A. Evans |

May 17, 1994

Abstract

In this paper we explore the relationship between asymmetries in
deletion algorithms used in updating binary search trees, and the re-
sulting long term behavior of the search trees. We show that even what
would appear to be negligible asymmetric effects accumulate to cause
long term degeneration. This persists even in the face of other effects
that would appear to counteract the long term effects. On the other
hand, eliminating the asymmetry completely seems to give us trees
that have a smaller IPL than is expected for trees built by a random
sequence of insertions. But even then there are surprises in that the
backbone becomes longer than expected.

1 Introduction

Binary search trees are one of the oldest and most frequently used data
structures for solving the dictionary and other problems [2, 11, 6, 9]. The
average case efliciency of these structures has been well studied, when only
insertions are involved. The usual insertion algorithm simply inserts new
values at the leaf, although insertion at the root has also been studied [10].

However, developing and analyzing deletion algorithms, and their inter-
action with insertion algorithms, has proven more difficult [6, 9, 7, 5, 1, 4, 3].

*Supported by Natural Sciences and Engineering Research Council Grant No.
OGP8053. Department of Computing Science, University of Alberta, Edmonton, Alberta,
Canada, T6G 2H1. email:joe@cs.ualberta.ca

INSERC Undergraduate Summer Student Research Award. This was work done during
the summer and fall of 1990.

Although there are many algorithms that achieve efficient operation by en-
forcing balancing constraints, we are here looking at the long term behavior
of trees using algorithms that do not use such mechanisms.

The purpose of this paper is a study of the effects of asymmetry in
deletion algorithms. In [4, 3] it was shown that the algorithm proposed
by Hibbard [6] causes long term deterioration, leading to trees in which
the average depth of a node is O(y/n). Simulations show that by making
the algorithm symmetric by randomly choosing between mirror versions of
Hibbard’s algorithm, or the improved algorithm proposed by Knuth [9], leads
to trees with O(log n) depth, where the constant factor is actually improved
over that of a tree generated by a random insertion sequence. However, no
analysis has been presented confirming these observations.

In this paper we attempt to shed more light on the effects of asymmetry
by making further modifications to these algorithms. We improve Knuth’s
algorithm further in the same sense he improved Hibbard’s. We systemat-
ically modify the algorithms so that the asymmetry evident in these algo-
rithms appears to be greatly reduced, although not eliminated. We hasten
to point out that these algorithms are designed for purposes of studying
trees, not as practical algorithms, although the symmetric forms do seem
to achieve a high level of search efficiency. The surprising and paradoxi-
cal results that we achieve show that, although the rate at which the trees
degenerate is reduced, after sufficiently long sequences of updates the trees
are far more imbalanced than the ones produced by the usual algorithms.
Symmetric versions of our algorithms do not degenerate, verifying that it is
indeed the asymmetry that causes the deterioration.

2 Algorithms and Definitions

A binary tree is a (possibly empty) collection of nodes, consisting of one
distinguished node, called the root, and two subtrees, referred to as the left
and right subtrees. A binary search tree is a binary tree in which each node
contains a real number called the key, such that all keys in the left subtree
of any node are less than the key of the node, and all the keys in the right
subtree are larger. If both subtrees of a node are empty, the node is referred
to as a leaf. In describing the following algorithms, we use a number of
terms that are defined in an appendix.

The insertion algorithm that we use is the usual one, in which a search
is made for the key, and when it fails, the key is inserted as a leaf where the

search terminated.

The problems facing a designer of a deletion algorithm stems from the
requirement of maintaining order in the structure when keys from non-leaf
nodes are to be deleted. In these circumstances restructuring of the tree
and reassignment of keys to nodes is generally necessary. To delete a key in
a leaf, all that is necessary is to remove the node. The natural choices arise
when we wish to delete a non-leaf element.

Hibbard’s Algorithm

In Hibbard’s algorithm [6] when a non-leaf key is to be deleted, the key is
replaced by the key in the successor node, if the successor exists. Then the
successor node is deleted, and its right subtree, if it exists, is re-attached
to the successor’s parent in its place. This action is illustrated in figure 1.
If there is no successor, then the node is deleted, and its left subtree if it
exists, is re-attached to the node’s parent.

/N

Figure 1: Deletion of ‘¢’ using Hibbard’s Algorithm

This algorithm has the remarkable property that after inserting n + 1
elements in random order, and then deleting one element selected at random
from the tree, the probability distribution of shapes of trees is the same as if
the remaining n elements had been inserted in random order [6]. Unfortu-
nately, as observed by Knott [8] the distribution of shapes is destroyed with
the next random insertion. The problem is that the distribution of trees
over n+ 1 elements is not the same as the distribution obtained by inserting
n elements selected randomly from the set of n + 1 elements. The studies
cited in the introduction show that using this algorithm for long sequences

of updates causes the tree to seriously deteriorate, so that nodes are at an

average depth of O(y/n).

Knuth’s Algorithm

Knuth [9] observed that if the left subtree of the node whose key is to be
deleted is empty, then instead of using the successor key as a replacement,
it is always at least as effective to delete the node, and bring up its right
subtree as a replacement. However, this algorithm does not improve the
long term behavior of the tree very much, and the average depth is still
O(y/n) [3]. In this paper we sometimes refer to this as algorithm A.

Algorithm B

This is a modification of Knuth’s algorithm such that if
depth(node, successor) > depth(node, predecessor)

then the key from the node in the successor path whose depth is one greater
than the depth of the predecessor is used as the replacement. The replace-
ment node is then deleted, and its subtrees are reattached as illustrated in
figure 2.

/N

Figure 2: Deletion of ‘¢’ using Algorithm B

The number of nodes reduced in depth is always greater than or equal to
the number reduced in depth by Knuth’s algorithm, and thus for any single
deletion, this algorithm is superior to Knuth’s. It was in fact designed as a
natural extension to Knuth’s idea.

Algorithm B is highly asymmetric. If we think of the node whose key
is scheduled for deletion as a fixed point in the structure, then whenever
both subtrees exist, and the successor key is not used as the replacement
key, some nodes from the right subtree are moved to the left subtree. Such
movement never occurs in the opposite direction.

Algorithm C

Algorithm (' is a more symmetric version of B where, if
depth(node, successor) < depth(node, predecessor)

then the key in the node in the predecessor path whose depth is one greater
than the depth of the successor is used as the replacement. The replacement
node is then deleted, and its subtrees are reattached in a fashion symmetric
to algorithm B. The only asymmetric bias that remains occurs when the
successor and predecessor are at the same depth, in which case the key from
the successor is always used as the replacement. To enable this reduction
in asymmetry, the guaranteed improvement over A for a single deletion is
relinquished.

We might expect that the small bias in this algorithm would lead to only
slight imbalances in the asymptotic results. Surely the shifting of nodes
within the domain as in [4] would be offset by the reshuffling effects, and
besides, if the right subtree of a node tends to be smaller than the left,
then the successor would be at a shallower depth. Thus, we might expect
that the skewing evidenced in [4] would be stopped before it could cause the
extensive deterioration demonstrated there.

Algorithm D

Algorithm D is a modification of Knuth’s algorithm (A) wherein the deeper
of the predecessor or successor is used as the replacement key unless they
are at equal depth, in which case the successor is used. Alternatively, this
algorithm can be seen as a modification of C', in which the reshuffling of
subtrees has largely been eliminated.

Although this algorithm has asymmetry similar to C', it should deteri-
orate faster and to a worse state than ', as D has none of the symmetric
rebalancing employed by €' beyond the selection of the deeper node as the
replacement value. On the other hand, we might expect it to be better
than Knuth’s algorithm, since it seems to eliminate most of the asymmetry
evident in it.

Algorithms F and F

In [5, 4] symmetric versions of the Hibbard and Knuth algorithms exhibited
much better behavior than the asymmetric versions. These symmetric ver-
sions are designed by making a second copy of the algorithm, except that
the roles of left and right, and successor and predecessor are reversed. Then
whenever a deletion is to be made, one of the two versions is chosen ran-
domly to perform the deletion. This effectively prevents any long term bias
from skewing the tree. Algorithms F and F are the symmetric forms of C'
and D respectively. F and F are actually implemented by simply flipping
a coin when the successor and predecessor are at the same depth, since this
was the only point of asymmetry in algorithms €' and D. These algorithms
should exhibit no left to right skewing, and so we hope to isolate the effects
of the extensions to Knuth’s algorithm from the skewing effects.

3 Simulation Results

Algorithms A through D were simulated for tree sizes 512, 1024, 2048, and
4096 nodes. For each simulation, a random binary search tree was con-
structed and subjected to repeated updates, each composed of a random
deletion followed by a random insertion. Fach tree size and algorithm pair
was simulated 10 times. Fach tree simulation was continued until deteriora-
tion had stopped and a slightly oscillating steady state was observed. How-
ever, given the long lead times, we cannot guarantee that the final steady
state was reached. Simulations from an initial state of a left linear tree are
observed to come down and meet the observed results from the simulations
which start with a random tree, so the observed state at which the simula-
tions were concluded is supported by observations as being the steady state
of the tree.

In order to determine the behavior of the trees as updates are performed,
the following measures, defined in appendix I, were taken. The internal
path length (IPL) gives us the measure of overall efficiency of the tree. The
skewness measure gives us one measure of left right imbalance, as does the
length of the backbone and forebone. Since the algorithms depend heavily
upon the relative lengths of the predecessor and successor paths, it seemed
reasonable to compute the total length over all nodes of the predecessor and
successor paths. However, the following relationships can be proven to hold
(see appendix II)

Lemma 3.1 The total length of all successor paths is n — |backbone|, the
total length of all predecessor paths is n— | forebone| and thus the total depth
of all predecessor and successor paths is 2n — 1 — |shell|.

This indicates that the length of the backbone and forebone are important
measures.

Ranking the algorithms by IPL we find that A < B < C' < D; that is,
A produces the most efficient trees, while the successive improvements in B
and C actually make the long term results increasingly worse. Algorithm
D, which has very little asymmetry, but does not have the rebalancing
effects present in (', produces the worst trees after sufficiently many updates.
Typical of these are the results from trees of 1024 nodes displayed in figure 3.
Note that not only does algorithm B have a larger IPL, than does A, but
that it also degenerates more quickly. This is not surprising given the high
asymmetry of algorithm B. Notice also that both algorithms €' and D have
greater initial improvement than the others, probably because the skewing
effects take much longer to produce an effect, thus allowing the rebalancing
effects longer to improve the tree.

The same ranking occurs when we take the skewness measure, and
when we examine the backbone length versus forebone length, displayed
as (|backbone| — | forebone|)/|shell| in figure 4, showing that indeed the de-
generation is closely related to the asymmetry of the algorithm.

Algorithm D removes most of the rebalancing effects of algorithm ',
and as one might expect, the tree deteriorates even further under D than
under C'. It is still surprising nevertheless that given the small degree of
asymmetry the tree becomes so degenerate.

Size A B C D
512 5704.9 7438.9 9101.8 11096.1
1024 14496.1 23115.6 33021.2 37878.5
2048 37806.5 72878.2 122330.7 130484.3
4096 98220.1 319805.8 462874.8 533726.5

Table 1: Average IPL of the Asymmetric Algorithms

In table 1 we show the final IPL of the algorithms for the various sizes.
For reference the expected IPL given trees generated by a random insertion
sequence are included in table 3. We do not have enough points to verify

IPL

A Knuth (A)

oB
40000 + . C A

oD X o\ = U e oo
35000 %
30000
25000
20000

A AN

15000 AAAAAAAAAA AAAAAAAAAA
10000 ¥
5000 ' I ! , MllﬂlOIlS of Updaltes

0 5 10 15 20 25 30
Figure 3: Comparison of IPL on n = 1024 for A, B,C, D

Normalized Bone Difference
A A
o B
0.018 o C
oD
A %
0016— & ¢¢6¢§¢’¢,¢¢'
0.014 | el
0.012
0.01 TNy e
0.008
0.006
A AN A
A 5
A Ak
0.004
0.002 {8
)

Millions of Updates
5 10 15 20 25 30

-0.002
Figure 4: Comparison of Normalized Bone Differences for A, B,C', D

precisely how fast the IPL is growing with n for these algorithms, but clearly
it is much faster than the 0.266n/n conjectured for Hibbard and A in [3].
In table 2 we give the leading coefficients from regression for each of the
algorithms, where the fit is to n3/2 + nlogy n + ¢. Note the close agreement
of A with the conjectured value. It seems clear however, from the data in
table 1 that algorithms B through D are growing faster than a constant
times the rate of A.

Algorithm A B C D
Coefficient 0.261 2.99 3.49 4.54

Table 2: Regression Coefficient of n?/?

As mentioned above, symmetric versions of C' and D, called F and F
respectively, yield improved IPL and show no signs of skewing. In [3], the
IPL for the symmetric Knuth algorithm for n = 512 and 1024 is given as
4332.47 and 9840.40 respectively. Comparing the results in table 3, these
algorithms appear to be better than even Knuth’s algorithm in terms of
the efficiency of the resulting trees. In fact, these results are very close to
optimal balanced trees. !

Size IPL F IPL F Expected IPL
512 3845.27 3849.67 4945.75
1024 8706.25 8716.42 11297.83
2048 19490.10 19514.67 25420.13
4096 43434.36 44268.76 56502.52

Table 3: Comparison of IPL from Symmetric Algorithms

On the other hand, the average length of the backbone (and the forebone)
increase over the expected length of a random tree by a factor of 1.2 to 1.3,

1512 and 1024 were run for 100 million updates, and the means computed from sampling
conducted every 10 thousand updates over the last 50 million. 2048 ran for 150 million
updates and sampling was from last 20 million. 4096 ran for 300 million and sampling
was from the last 30 million. It is not absolutely clear that the absolute minimum was
obtained in the latter cases, but the values appeared to be reasonably constant. The same
sampling was done for the backbone measurement in table 4.

10

as is evident in table 4. This result is surprising and just a little cautionary.

Size Backbone I2 Backbone I’ Expected (H,,)
512 8.64 8.59 6.82
1024 9.62 9.58 7.51
2048 10.55 10.77 8.20
4096 11.68 11.06 8.90

Table 4: Comparison of Backbones from Symmetric Algorithms

Is it possible that for sufficiently large trees (presumably extremely large)
the effect of lengthening the shell of the tree could outweigh the rebalancing
effects and produce trees that are less efficient than random trees? Are there
other surprises waiting for us in the various symmetric deletion algorithms
that are so far believed to produce efficient trees?

Appendix I: Definitions

If v is a node in a binary tree, then we refer to the left subtree as [(v) and
the right as r(v).

Backbone — the path from the root of the tree to the smallest valued
element in the tree, situated at the extreme left of the tree, including
the root.

Forebone — the path from the root of the tree to the largest valued
element in the tree, situated at the extreme right of the tree, including
the root.

Shell — the shell of a tree is composed of the forebone and backbone
of the tree.

Kernel — all nodes that are not part of the shell of the tree.

Successor — the successor of a given node is the node in the given
node’s right subtree which has the least value.

Successor path — the path from a given node to its successor. All
nodes in this path are contained in the right subtree of the given node.
Does not include the given node.

11

Predecessor — the predecessor of a given node is the node in the given
node’s left subtree which has the greatest value.

Predecessor path — the path from a given node to its predecessor. All
nodes in this path are contained in the left subtree of the given node.
Does not include the given node.

Depth(v,w) — the number of nodes in a path from v to w, including
w but not v, where v is an ancestor of w. If v is not specified, it is
assumed to be the root of the tree. Is equivalent to |path(v, w)| where
path(v,w) is the path from v to w.

Local subtree — the subtree with the given node as its root.

Local characteristics — the characteristics, such as node distribution,
of the local subtree.

Internal path length (IPL) — the total over all nodes v of depth(root, v).
Harmonic n — defined as H, = > ;_, 1/k.
Skewness — a measure of the normalized relative balance of a tree.

Calculated as :
(sleft — sright)

(sleft + sright)

where

|(v)]
Sleft = Z Qdepth(root,v)
veT
o [r(v)]
STZght - Z 9depth(root,v)
veT
This measure tells us if the tree is skewed to the left or right. A value
of zero implies the tree is left-right balanced, but not necessarily of
small TPL.

Update — an update consists of one deletion followed by one insertion.
For our purposes, the key to be deleted is selected randomly and equi-
probably over the set of n nodes in the tree. The new key for the
insertion is chosen randomly using the uniform distribution over the
interval (0,1).

12

Appendix II: Proof outline of lemma 3.1

We list here the lemmas that lead to the result stated in the paper relating
the shell to the predecessor and successor paths.

Lemma 3.2 Fvery node in a binary tree is part of at most one predecessor
path and one successor path.

Lemma 3.3 Fvery node on the forebone of a tree is not part of a predecessor
path, and every node on the backbone of a tree is not part of a successor path.

Lemma 3.4 Fxcept the root, all nodes in the backbone are part of evactly
one predecessor path, and all nodes in the forebone are part of exactly one
successor path. The root is not part of either type of path.

Lemma 3.5 All nodes in the kernel of a tree are part of exactly one prede-
cessor path and one successor path.

Lemma 3.6 The total length of all predecessor paths is n — | forebone|

Proof: All the nodes in the tree (n of them) can be divided into three
groups, those internal, those on the forebone, and those on the backbone
(except the root, which is on the forebone). All internal nodes and those
on the backbone, except the root, are part of exactly one predecessor path,
and thus each contribute 1 to the total predecessor depth. All nodes on the
forebone, including the root, are not part of any predecessor path, thus they
do not contribute to the total predecessor depth. Thus we have :

Z depth(v, predecessor) = |kernel| + |backbone| — 1

But |kernel| = n — |backbone| — | forebone| + 1 as we cannot count the root
twice.
So, >, depth(v, predecessor) = n — | forebone|. m

By symmetry we have
Lemma 3.7 The total length of all successor paths is n — |backbone|.

Combining the last two lemmas, and noting that the root occurs in both
the forebone and the backbone,

THEOREM 3.1 The total depth of all predecessor and successor paths is 2n—
1 — |shell].

13

References

[1]

[2]

[3]

Ricardo A. Baeza-Yates. Analysis of algorithms in search trees. Master’s
thesis, Universidad de Chile, Santiago, Chile, January 1985.

A. D. Booth and A. J. T. Colin. On the efficiency of a new method of
dictionary construction. Information and Control, 3:327-334, 1960.

Joseph Culberson and J. Ian Munro. Analysis of the standard deletion
algorithms in exact fit domain binary search trees. Algorithmica, 6:295—
311, 1990.

Joseph C. Culberson and J. lTan Munro. Explaining the behavior of
binary search trees under prolonged updates: A model and simulations.
The Computer Journal, 32(1):68-75, February 1989.

Jeffery L. Eppinger. An empirical study of insertion and deletion in
binary trees. Communications of the ACM, 26, September 1983.

Thomas N. Hibbard. Some combinatorial properties of certain trees
with applications to searching and sorting. Journal of the ACM,
9(1):13-28, January 1962.

Arne T. Jonassen and Donald . Knuth. A trivial algorithm whose
analysis isn’t. Journal of Computer and System Sciences, 16:301-322,
1978.

Gary D. Knott. Deletion in Binary Storage Trees. PhD thesis, Stanford
University, May 1975. Avail. as Tech. Rep. STAN-CS-75-491.

D. E. Knuth. Sorting and Searching, volume 111 of The Art of Computer
Programming. Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1973.

C. J. Stephenson. A method for constructing binary search trees by
making insertions at the root. International Journal of Computer and
Information Sciences, 9:15-29, 1980.

P. F. Windley. Trees, forests and rearranging. The Computer Journal,
3:84-88, July 1960.

14

