
University of Alberta

Asymmetry in Binary Search Tree
Update Algorithms

by

Joseph Culberson and Patricia A� Evans

Technical Report TR �����
May ����

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada



Asymmetry in Binary Search Tree Update

Algorithms

Joseph C� Culberson � Patricia A� Evans y

May ��� ����

Abstract

In this paper we explore the relationship between asymmetries in

deletion algorithms used in updating binary search trees� and the re�

sulting long term behavior of the search trees� We show that even what

would appear to be negligible asymmetric e�ects accumulate to cause

long term degeneration� This persists even in the face of other e�ects

that would appear to counteract the long term e�ects� On the other

hand� eliminating the asymmetry completely seems to give us trees

that have a smaller IPL than is expected for trees built by a random

sequence of insertions� But even then there are surprises in that the

backbone becomes longer than expected�

� Introduction

Binary search trees are one of the oldest and most frequently used data
structures for solving the dictionary and other problems ��� ��� �� ��� The
average case e�ciency of these structures has been well studied� when only
insertions are involved� The usual insertion algorithm simply inserts new
values at the leaf� although insertion at the root has also been studied ��	��

However� developing and analyzing deletion algorithms� and their inter

action with insertion algorithms� has proven more di�cult ��� �� �� �� �� � ���

�Supported by Natural Sciences and Engineering Research Council Grant No�

OGP����� Department of Computing Science� University of Alberta� Edmonton� Alberta�

Canada� T�G �H�� email	joe
cs�ualberta�ca
yNSERC Undergraduate Summer Student Research Award� This was work done during

the summer and fall of �����

�



Although there are many algorithms that achieve e�cient operation by en

forcing balancing constraints� we are here looking at the long term behavior
of trees using algorithms that do not use such mechanisms�

The purpose of this paper is a study of the e�ects of asymmetry in
deletion algorithms� In �� �� it was shown that the algorithm proposed
by Hibbard ��� causes long term deterioration� leading to trees in which
the average depth of a node is O�

p
n�� Simulations show that by making

the algorithm symmetric by randomly choosing between mirror versions of
Hibbard�s algorithm� or the improved algorithm proposed by Knuth ���� leads
to trees with O�logn� depth� where the constant factor is actually improved
over that of a tree generated by a random insertion sequence� However� no
analysis has been presented con�rming these observations�

In this paper we attempt to shed more light on the e�ects of asymmetry
by making further modi�cations to these algorithms� We improve Knuth�s
algorithm further in the same sense he improved Hibbard�s� We systemat

ically modify the algorithms so that the asymmetry evident in these algo

rithms appears to be greatly reduced� although not eliminated� We hasten
to point out that these algorithms are designed for purposes of studying
trees� not as practical algorithms� although the symmetric forms do seem
to achieve a high level of search e�ciency� The surprising and paradoxi

cal results that we achieve show that� although the rate at which the trees
degenerate is reduced� after su�ciently long sequences of updates the trees
are far more imbalanced than the ones produced by the usual algorithms�
Symmetric versions of our algorithms do not degenerate� verifying that it is
indeed the asymmetry that causes the deterioration�

� Algorithms and De�nitions

A binary tree is a �possibly empty� collection of nodes� consisting of one
distinguished node� called the root� and two subtrees� referred to as the left
and right subtrees� A binary search tree is a binary tree in which each node
contains a real number called the key� such that all keys in the left subtree
of any node are less than the key of the node� and all the keys in the right
subtree are larger� If both subtrees of a node are empty� the node is referred
to as a leaf� In describing the following algorithms� we use a number of
terms that are de�ned in an appendix�

The insertion algorithm that we use is the usual one� in which a search
is made for the key� and when it fails� the key is inserted as a leaf where the

�



search terminated�
The problems facing a designer of a deletion algorithm stems from the

requirement of maintaining order in the structure when keys from non
leaf
nodes are to be deleted� In these circumstances restructuring of the tree
and reassignment of keys to nodes is generally necessary� To delete a key in
a leaf� all that is necessary is to remove the node� The natural choices arise
when we wish to delete a non
leaf element�

Hibbard�s Algorithm

In Hibbard�s algorithm ��� when a non
leaf key is to be deleted� the key is
replaced by the key in the successor node� if the successor exists� Then the
successor node is deleted� and its right subtree� if it exists� is re
attached
to the successor�s parent in its place� This action is illustrated in �gure ��
If there is no successor� then the node is deleted� and its left subtree if it
exists� is re
attached to the node�s parent�

Figure �� Deletion of �c� using Hibbard�s Algorithm

This algorithm has the remarkable property that after inserting n � �
elements in random order� and then deleting one element selected at random
from the tree� the probability distribution of shapes of trees is the same as if
the remaining n elements had been inserted in random order ���� Unfortu

nately� as observed by Knott ��� the distribution of shapes is destroyed with
the next random insertion� The problem is that the distribution of trees
over n�� elements is not the same as the distribution obtained by inserting
n elements selected randomly from the set of n � � elements� The studies
cited in the introduction show that using this algorithm for long sequences

�



of updates causes the tree to seriously deteriorate� so that nodes are at an
average depth of O�

p
n��

Knuth�s Algorithm

Knuth ��� observed that if the left subtree of the node whose key is to be
deleted is empty� then instead of using the successor key as a replacement�
it is always at least as e�ective to delete the node� and bring up its right
subtree as a replacement� However� this algorithm does not improve the
long term behavior of the tree very much� and the average depth is still
O�
p
n� ���� In this paper we sometimes refer to this as algorithm A�

Algorithm B

This is a modi�cation of Knuth�s algorithm such that if

depth�node� successor� � depth�node� predecessor�

then the key from the node in the successor path whose depth is one greater
than the depth of the predecessor is used as the replacement� The replace

ment node is then deleted� and its subtrees are reattached as illustrated in
�gure ��

Figure �� Deletion of �c� using Algorithm B

The number of nodes reduced in depth is always greater than or equal to
the number reduced in depth by Knuth�s algorithm� and thus for any single
deletion� this algorithm is superior to Knuth�s� It was in fact designed as a
natural extension to Knuth�s idea�





Algorithm B is highly asymmetric� If we think of the node whose key
is scheduled for deletion as a �xed point in the structure� then whenever
both subtrees exist� and the successor key is not used as the replacement
key� some nodes from the right subtree are moved to the left subtree� Such
movement never occurs in the opposite direction�

Algorithm C

Algorithm C is a more symmetric version of B where� if

depth�node� successor� � depth�node� predecessor�

then the key in the node in the predecessor path whose depth is one greater
than the depth of the successor is used as the replacement� The replacement
node is then deleted� and its subtrees are reattached in a fashion symmetric
to algorithm B� The only asymmetric bias that remains occurs when the
successor and predecessor are at the same depth� in which case the key from
the successor is always used as the replacement� To enable this reduction
in asymmetry� the guaranteed improvement over A for a single deletion is
relinquished�

We might expect that the small bias in this algorithm would lead to only
slight imbalances in the asymptotic results� Surely the shifting of nodes
within the domain as in �� would be o�set by the reshu�ing e�ects� and
besides� if the right subtree of a node tends to be smaller than the left�
then the successor would be at a shallower depth� Thus� we might expect
that the skewing evidenced in �� would be stopped before it could cause the
extensive deterioration demonstrated there�

Algorithm D

Algorithm D is a modi�cation of Knuth�s algorithm �A� wherein the deeper
of the predecessor or successor is used as the replacement key unless they
are at equal depth� in which case the successor is used� Alternatively� this
algorithm can be seen as a modi�cation of C� in which the reshu�ing of
subtrees has largely been eliminated�

Although this algorithm has asymmetry similar to C� it should deteri

orate faster and to a worse state than C� as D has none of the symmetric
rebalancing employed by C beyond the selection of the deeper node as the
replacement value� On the other hand� we might expect it to be better
than Knuth�s algorithm� since it seems to eliminate most of the asymmetry
evident in it�

�



Algorithms E and F

In ��� � symmetric versions of the Hibbard and Knuth algorithms exhibited
much better behavior than the asymmetric versions� These symmetric ver

sions are designed by making a second copy of the algorithm� except that
the roles of left and right� and successor and predecessor are reversed� Then
whenever a deletion is to be made� one of the two versions is chosen ran

domly to perform the deletion� This e�ectively prevents any long term bias
from skewing the tree� Algorithms E and F are the symmetric forms of C
and D respectively� E and F are actually implemented by simply �ipping
a coin when the successor and predecessor are at the same depth� since this
was the only point of asymmetry in algorithms C and D� These algorithms
should exhibit no left to right skewing� and so we hope to isolate the e�ects
of the extensions to Knuth�s algorithm from the skewing e�ects�

� Simulation Results

Algorithms A through D were simulated for tree sizes ���� �	�� �	�� and
	�� nodes� For each simulation� a random binary search tree was con

structed and subjected to repeated updates� each composed of a random
deletion followed by a random insertion� Each tree size and algorithm pair
was simulated �	 times� Each tree simulation was continued until deteriora

tion had stopped and a slightly oscillating steady state was observed� How

ever� given the long lead times� we cannot guarantee that the �nal steady
state was reached� Simulations from an initial state of a left linear tree are
observed to come down and meet the observed results from the simulations
which start with a random tree� so the observed state at which the simula

tions were concluded is supported by observations as being the steady state
of the tree�

In order to determine the behavior of the trees as updates are performed�
the following measures� de�ned in appendix I� were taken� The internal
path length �IPL� gives us the measure of overall e�ciency of the tree� The
skewness measure gives us one measure of left right imbalance� as does the
length of the backbone and forebone� Since the algorithms depend heavily
upon the relative lengths of the predecessor and successor paths� it seemed
reasonable to compute the total length over all nodes of the predecessor and
successor paths� However� the following relationships can be proven to hold
�see appendix II�

�



Lemma ��� The total length of all successor paths is n � jbackbonej� the
total length of all predecessor paths is n�jforebonej and thus the total depth

of all predecessor and successor paths is �n� �� jshellj�

This indicates that the length of the backbone and forebone are important
measures�

Ranking the algorithms by IPL we �nd that A � B � C � D� that is�
A produces the most e�cient trees� while the successive improvements in B

and C actually make the long term results increasingly worse� Algorithm
D� which has very little asymmetry� but does not have the rebalancing
e�ects present in C� produces the worst trees after su�ciently many updates�
Typical of these are the results from trees of �	� nodes displayed in �gure ��
Note that not only does algorithm B have a larger IPL than does A� but
that it also degenerates more quickly� This is not surprising given the high
asymmetry of algorithm B� Notice also that both algorithms C and D have
greater initial improvement than the others� probably because the skewing
e�ects take much longer to produce an e�ect� thus allowing the rebalancing
e�ects longer to improve the tree�

The same ranking occurs when we take the skewness measure� and
when we examine the backbone length versus forebone length� displayed
as �jbackbonej� jforebonej��jshellj in �gure � showing that indeed the de

generation is closely related to the asymmetry of the algorithm�

Algorithm D removes most of the rebalancing e�ects of algorithm C�
and as one might expect� the tree deteriorates even further under D than
under C� It is still surprising nevertheless that given the small degree of
asymmetry the tree becomes so degenerate�

Size A B C D

��� ��	�� ����� ��	��� ��	����
�	� ����� ������� ��	���� �������
�	� ���	��� ������� �����	�� ��	���
	�� ����	�� ����	��� ������ ��������

Table �� Average IPL of the Asymmetric Algorithms

In table � we show the �nal IPL of the algorithms for the various sizes�
For reference the expected IPL given trees generated by a random insertion
sequence are included in table �� We do not have enough points to verify

�



Millions of Updates

	 � �	 �� �	 �� �	

IPL

�			

�				

��			

�				

��			

�				

��			

				

����������������
��
�
� � � � � � � � � � � � � � � � � � �

�
� � � � � � � � � �

�����������
�
�
�
�

�

�
�
�� � � � � � �

� � � � � � � �
�

� � � � � � � � � �
� � � �

�
�������������������

�

�

�

�

�

�
�

�
� � � � � � � � � � � � � � � � � � � � �

�
�������������������

�

�

�

�

�
�

�
�

�
� � � � �

�
�

� � � � �
� � � �

� � � �

� Knuth �A�

� B
� C
� D

Figure �� Comparison of IPL on n � �	� for A�B�C�D

�



Millions of Updates

	 � �	 �� �	 �� �	

Normalized Bone Di�erence


	�		�

	

	�		�

	�		

	�		�

	�		�

	�	�

	�	��

	�	�

	�	��

	�	��

�����
����
����
�
��
��
��
�
�

�
� � � � �

� � � � � �
�

� � � � � � ��
� �

�
� �

� � �
�

��
��
����
��
����

�

�
�
�
�
�

��� � �
� � � � � � � � � � �

�
�

�
� �

� � � � � � �
�

� �
�

�������
��������
����
���
�

�

�

�
�

�
�

�
�

�
� � � � � � � � � � � � � � � �

� � � �

����
�
���
��
�����
���
��
���

�

�

�

�
�

�
� �

� � � �
� �

�
�
� � � � � �

� � � � � �
�

� A

� B
� C
� D

Figure � Comparison of Normalized Bone Di�erences for A�B�C�D

�



precisely how fast the IPL is growing with n for these algorithms� but clearly
it is much faster than the 	����n

p
n conjectured for Hibbard and A in ����

In table � we give the leading coe�cients from regression for each of the
algorithms� where the �t is to n���� n log� n� c� Note the close agreement
of A with the conjectured value� It seems clear however� from the data in
table � that algorithms B through D are growing faster than a constant
times the rate of A�

Algorithm A B C D
Coe�cient 	���� ���� ��� ��

Table �� Regression Coe�cient of n���

As mentioned above� symmetric versions of C and D� called E and F

respectively� yield improved IPL and show no signs of skewing� In ���� the
IPL for the symmetric Knuth algorithm for n � ��� and �	� is given as
����� and ��	�	 respectively� Comparing the results in table �� these
algorithms appear to be better than even Knuth�s algorithm in terms of
the e�ciency of the resulting trees� In fact� these results are very close to
optimal balanced trees� �

Size IPL E IPL F Expected IPL

��� ������ ������ �����
�	� ��	���� ������ ��������
�	� ���	��	 ������� ���	���
	�� ����� ������ ���	����

Table �� Comparison of IPL from Symmetric Algorithms

On the other hand� the average length of the backbone �and the forebone�
increase over the expected length of a random tree by a factor of ��� to ����

���� and ���� were run for ��� million updates� and the means computed from sampling

conducted every �� thousand updates over the last �� million� ���� ran for ��� million

updates and sampling was from last �� million� ���� ran for ��� million and sampling

was from the last �� million� It is not absolutely clear that the absolute minimum was

obtained in the latter cases� but the values appeared to be reasonably constant� The same

sampling was done for the backbone measurement in table ��

�	



as is evident in table � This result is surprising and just a little cautionary�

Size Backbone E Backbone F Expected �Hn�

��� ��� ���� ����
�	� ���� ���� ����
�	� �	��� �	��� ���	
	�� ����� ���	� ���	

Table � Comparison of Backbones from Symmetric Algorithms

Is it possible that for su�ciently large trees �presumably extremely large�
the e�ect of lengthening the shell of the tree could outweigh the rebalancing
e�ects and produce trees that are less e�cient than random trees� Are there
other surprises waiting for us in the various symmetric deletion algorithms
that are so far believed to produce e�cient trees�

Appendix I� De�nitions

If v is a node in a binary tree� then we refer to the left subtree as l�v� and
the right as r�v��

� Backbone � the path from the root of the tree to the smallest valued
element in the tree� situated at the extreme left of the tree� including
the root�

� Forebone � the path from the root of the tree to the largest valued
element in the tree� situated at the extreme right of the tree� including
the root�

� Shell � the shell of a tree is composed of the forebone and backbone
of the tree�

� Kernel � all nodes that are not part of the shell of the tree�

� Successor � the successor of a given node is the node in the given
node�s right subtree which has the least value�

� Successor path � the path from a given node to its successor� All
nodes in this path are contained in the right subtree of the given node�
Does not include the given node�

��



� Predecessor � the predecessor of a given node is the node in the given
node�s left subtree which has the greatest value�

� Predecessor path � the path from a given node to its predecessor� All
nodes in this path are contained in the left subtree of the given node�
Does not include the given node�

� Depth�v�w� � the number of nodes in a path from v to w� including
w but not v� where v is an ancestor of w� If v is not speci�ed� it is
assumed to be the root of the tree� Is equivalent to jpath�v� w�j where
path�v� w� is the path from v to w�

� Local subtree � the subtree with the given node as its root�

� Local characteristics � the characteristics� such as node distribution�
of the local subtree�

� Internal path length �IPL� � the total over all nodes v of depth�root� v��

� Harmonic n � de�ned as Hn �
Pn

k�� ��k�

� Skewness � a measure of the normalized relative balance of a tree�
Calculated as �

�sleft� sright�

�sleft� sright�

where

sleft �
X

v�T

jl�v�j
�depth�root�v�

sright �
X

v�T

jr�v�j
�depth�root�v�

This measure tells us if the tree is skewed to the left or right� A value
of zero implies the tree is left�right balanced� but not necessarily of
small IPL�

� Update � an update consists of one deletion followed by one insertion�
For our purposes� the key to be deleted is selected randomly and equi

probably over the set of n nodes in the tree� The new key for the
insertion is chosen randomly using the uniform distribution over the
interval �	����

��



Appendix II� Proof outline of lemma ���

We list here the lemmas that lead to the result stated in the paper relating
the shell to the predecessor and successor paths�

Lemma ��� Every node in a binary tree is part of at most one predecessor

path and one successor path�

Lemma ��� Every node on the forebone of a tree is not part of a predecessor

path� and every node on the backbone of a tree is not part of a successor path�

Lemma ��� Except the root� all nodes in the backbone are part of exactly

one predecessor path� and all nodes in the forebone are part of exactly one

successor path� The root is not part of either type of path�

Lemma ��� All nodes in the kernel of a tree are part of exactly one prede�

cessor path and one successor path�

Lemma ��� The total length of all predecessor paths is n� jforebonej
Proof� All the nodes in the tree �n of them� can be divided into three
groups� those internal� those on the forebone� and those on the backbone
�except the root� which is on the forebone�� All internal nodes and those
on the backbone� except the root� are part of exactly one predecessor path�
and thus each contribute � to the total predecessor depth� All nodes on the
forebone� including the root� are not part of any predecessor path� thus they
do not contribute to the total predecessor depth� Thus we have �

X

v

depth�v� predecessor� � jkernelj� jbackbonej � �

But jkernelj � n� jbackbonej� jforebonej� � as we cannot count the root
twice�
So�
P

v depth�v� predecessor� � n� jforebonej�
By symmetry we have

Lemma ��� The total length of all successor paths is n� jbackbonej�
Combining the last two lemmas� and noting that the root occurs in both

the forebone and the backbone�

Theorem ��� The total depth of all predecessor and successor paths is �n�
�� jshellj�

��



References

��� Ricardo A� Baeza
Yates� Analysis of algorithms in search trees� Master�s
thesis� Universidad de Chile� Santiago� Chile� January �����

��� A� D� Booth and A� J� T� Colin� On the e�ciency of a new method of
dictionary construction� Information and Control� ��������� ���	�

��� Joseph Culberson and J� Ian Munro� Analysis of the standard deletion
algorithms in exact �t domain binary search trees� Algorithmica� ������
���� ���	�

�� Joseph C� Culberson and J� Ian Munro� Explaining the behavior of
binary search trees under prolonged updates� A model and simulations�
The Computer Journal� ������������ February �����

��� Je�ery L� Eppinger� An empirical study of insertion and deletion in
binary trees� Communications of the ACM� ��� September �����

��� Thomas N� Hibbard� Some combinatorial properties of certain trees
with applications to searching and sorting� Journal of the ACM�
����������� January �����

��� Arne T� Jonassen and Donald E� Knuth� A trivial algorithm whose
analysis isn�t� Journal of Computer and System Sciences� ����	������
�����

��� Gary D� Knott� Deletion in Binary Storage Trees� PhD thesis� Stanford
University� May ����� Avail� as Tech� Rep� STAN
CS
��
���

��� D� E� Knuth� Sorting and Searching� volume III of The Art of Computer

Programming� Addison
Wesley Publishing Company� Inc�� Reading�
Massachusetts� �����

��	� C� J� Stephenson� A method for constructing binary search trees by
making insertions at the root� International Journal of Computer and

Information Sciences� �������� ���	�

���� P� F� Windley� Trees� forests and rearranging� The Computer Journal�
������� July ���	�

�


