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Abstract  

The growth of internet traffic, which is an indication of increased dependency of users on 

internet for service, business and Internet of things, brings challenges of cost, scale, control 

and management. Software Defined Networking with Network Function Virtualization 

(SDN/NFV) provides a cost effective solution to network management as opposed to the use 

of classical, monolithic network elements. Software Defined Cognitive Network (SDCoN) is 

a self-aware network design model that adapts to the changing network environment and 

present proactive solution to network challenges. To provide a proactive solution, the 

Software Defined Network controller is modeled with an intelligence abstraction layer. 

Machine learning and external deep learning libraries are used to analyze network statistics. 

The intelligence plane of the intelligence abstraction layer houses the services and application 

for data analytics and deep learning. Key consideration for design of SDCoN, besides the 

intelligent layer is the Southbound protocol for collecting network status stimuli. OpenFlow 

offers multi part messaging for network statistics collection from OpenFlow tables, Group 

tables and Meter tables. Cloud Radio Access Network (RAN) has the potential of virtualizing 

Baseband Pool resources for Remote Radio Units with SDN/NFV.  Enabling end to end 

flows from the Radio Unit to vEPC provides the opportunity of implementing centralized 

spectrum sensing for cluster of base stations.  A demonstration of bandwidth improvement 

with network path manipulation is demonstrated. Although the demonstration does not take 

advantage of the opportunities of the SDCoN model, it does demonstrate the feasibility in 

autonomic learned decision making with SDN. An SDN controller with integrated intelligent 

Plane Service and APP, synonymous with the MILA framework, provides answers to 

network management and operation challenges.  

  



INTRODUCTION  

The telecommunication network has made technological advance from 2G/GSM EDGE through 

3G/WCDMA HSPA to 4G/ LTE service. In each evolution, the constant change is the increase in 

data throughput for users.  Ericsson mobility report in 2016 mentions an increase of 45% in all 

mobile data with smartphones accounting for 50% of the projected growth [5]. By the year 2020, 

Cisco projects the global internet traffic would reach 2.3 Zettabyte [6].  

 

The growth is driven by the upsurge of mobile internet users coupled with the ever increasing 

dependency on internet applications for daily activities. An office in New York is able to access 

project progress report in real time from a village in Kenya with a simple web database 

application. Business processes have become more dependent on the internet than ever. Emerging 

economies are harnessing the potential of internet technology with homegrown solutions for 

basic needs. In developed economies, Internet of Things (IoT), Automations of Systems and the 

ever evolving business on the go contributes to the continuous demand for internet traffic. Cisco 

projects the number of internet connected objects to reach 28.4billion in 2017 and 50bn by 2020 

[8]. Wireless data service, cellular data and Wi-Fi, offers the flexibility that suites varying 

applications and services of internet users. People have become used to instant access to 

information with increasing complexity in variety of service quality and service management so 

much that slow internet is unacceptable. The increasing demand for video streams and 

application services would continue to drive data demands.  

 

According to Naudts et al [7], data traffic volumes increase has not resulted in automatic increase 

in revenue. In most cases, revenue has stayed constant and it’s declining in some cases. At the 

same time, cost of equipment has only dropped between 10% to 20% [7]. Telecom network 

operators are experiencing decline in profit making it difficult to reinvest in network 

infrastructure expansion to accommodate the increasing traffic trend. Monolithic and function 

specific network devices are cited by [7] as major reason for market demand and architectural 

design mismatch. Rethinking of network architecture and design that match network capability 

and market demand is required. 

 

Resolving internet evolving demand requires that network devices and future generation wireless 

networks have extra capacity to accommodate the growing trend. The service demand complexity 

also requires inbuilt quality of service that match user service demand without architectural 



limitations.  This would mean enabling quality of service per data flow with efficient bandwidth 

and spectrum utilization. A major consideration in matching market requirement with 

architectural design is ensuring a seamless change process. The new design should not disrupt the 

existing operational service flows.  In addition, it should be cost effective. Reusing existing 

protocols and devices will reduce complexity and cost of deployment [7].  

 

Advance in intelligent networking offers the opportunity to meet diverse and changing network 

demands that comes with internet traffic growth. Cognitive networks with Cognitive radio, 

coupled with Network Function Virtualization and Software Defined Networking, has the unique 

advantage of adaptability, reusability and self-learning in real-time network optimization [2]. 

 

Problem Statement  

 
As explained, the internet data growth is putting telecom operators under pressure to increase 

capacity of bandwidth and to optimize radio spectrum usage. However, these resources are 

limited. Operators are also faced with the challenge of meeting diverse market Quality of Service 

(QoS) demands.  

This leads to the following problem statement: 

How to design an SDN Network that automatically and intelligently adjust to network 

service and policies requirement?  

What are the key consideration in designing such an intelligent SDN Network?  

 

 1.0 COGNITIVE NETWORK AND SDN 

 

The nodes in a network, protocol layers and defined policies does not adapt reactively to changes 

in network. Also, network status communication, response mechanism and scope of network 

elements are limited by the layered protocol architecture and range of node response to changes.  

This is the reason network elements offers reactive response in adaptation to changes in network. 

The idea of cognitive networks is to solve the status and response mechanism limitation, allowing 

networks to optimize their network performance through observation and learning of network 

pattern and metrics [2].  Ryan W. Thomas et al in [2] explains that cognitive networks should be 

forward-looking and adapt to network changes before they occur.  Meaning for a network to 

learn, predict and adapt, it has to be flexible and support integration of new network elements and 



network service improvement applications.  Ryan W. Thomas et al defines cognitive network as 

the learning of current networking conditions, planning, deciding and taking action based on the 

learned condition with the network using the learned adaptation to make future decisions while 

maintaining and end-to-end performance goals [2].  

 

Besides the adaptability to learned network patterns and metrics, cognitive network must have 

end-to-end network scope.  Thus each element of the network is involved in this end-to end 

scope. To achieve performance optimization goals would require cross-layer optimization. 

Implying cognitive communication system has distinguishing scope from single element or single 

layer cognitive systems. To achieve this end-to-end cross-layer performance, network elements 

should support abstraction of the network functionalities through Software Adaptable Network 

(SAN) [2]. This offers abstraction, adaptability and cross-layer management.  

 

In 2005, [2] designed a cognitive network layered abstraction model. The layered abstractions 

make the Application layer independent of the Cognitive process layer and Software Adaptive 

Network layer. In achieving end-to-end traffic goals, the requirements of the application layer are 

passed to the independent underlying layers. Software Adaptive Network layer interface with the 

network element hardware while cognitive process adapts to the goals of traffic flow.  

 

 
 



 

1.1 Cognitive Network Process  

 
It is understood from [2] that the process by which cognitive networks learn network pattern, 

metrics and policies could be centralized or decentralized. Centralized benevolent control means 

all network elements operate with the permission and resource allocation of a central controller. 

As multiple streams of data flow through a network element, how each flow is treated does not 

depend on the selfish goals of the local network element. In achieving end-to-end cross layer, 

cross network elements data flow objective, an SDN controller makes this possible.  

 

 The scope of the network is not limited by the network elements rather, the instance of data flow 

within the network. The preferential treatment of data flow from one end to another may 

transcends a couple of network elements. Adopting a scope defined by the data flow introduces a 

question of the price of anarchy [10], thus if self-governed network element which undertakes 

selfish local flow goals is preferable to the centralized controller which harmonizes the overall 

network resources and data flow goals.  

 

The state of each network element must be known to permit end-to-end flow of data.  Data loss in 

not knowing the state of a network element as traffic flows from one network element to another 

directly affects revenue and should be avoided. Network elements know the status of the next 

switch, device or hop. Centralized or decentralized learning of network devices state should 

weigh the cost of packet overheads with single point failure.  

 

Response-mechanism or feedback to change in the network environment defines the foundation 

of cognitive networking.  Thomas et al [2] illustrates cognitive process with the feedback loop 

first deigned by Col. John Boyd. The loop has four stages: Observe, Orient, Decide and Act 

(OODA). That is - Observing stimuli from the environment, Orient state, Decide and take Action.  Mitola 

[9] provides a more elaborate explanation. The limitation of creating a software adaptive network 

in the loop is overcome with innovations in SDN.  

 

According to Mitola [9], streams of stimuli from the environment are observed and passed. In 

the observation, inference is made and stimuli is bound to prior observations from the 

environment to stablish a pattern. The orient phase binds observations to recent known set of 

stimuli to establish stimulus recognition. This is achieved when current stimulus is a match with 



prior experience. With nearly exact match between currently observed stimuli and prior 

experience, binding is done for easy inference.  A plan is generated to deal with incoming 

message(Stimuli). This suggest that response to observation from the environment are not 

reactive. The plan phase deals with incoming stimuli deliberately and it does so by including 

reasoning over time. Deliberate response to a stimuli may not always be available in a situation 

where there is no planned response making reactive response suitable approach in such instances.  

Among the available plans, in the decide phase, a decision is made. The decision is based on 

policies, metrics or data flow goals. The selected decision is acted upon in the Act phase. This 

could mean undertaking an action within the network element or sending a signal for action to be 

taken on an external environment. The learn phase is the phase of perception. Thus perception 

through observation, decision and action. The inference hierarchy facilitates learning.  

 

 

 

 

 

 



1.3 SDN and OpenFlow for Networking  

 
Software-Defined network is a layered architecture, separates management and control plane 

from data plane. Meaning the data or forwarding plane can be an independent unit/device 

interfaced with the control and management plane via standard intercommunication protocols. 

OpenFlow is a common protocol for southbound communication between SDN controller and 

forwarding switch or a base station as the case may be. [1] enables OpenFlow at the base station 

interface with forwarding switch which are controlled by a central SDN controller. Software 

Defined Cognitive Network (SDCoN), a Cognitive Network (CN) over SDN.  

 

 
 
 

1.4 SDN and Vendor Dependency  

SDN model of separating the control from the forwarding creates flexibility in the programming 

of the forwarding plane [7]. The intelligence of the network is programmed in a central controller 

and path to devices are discovered through databases, thus the controller operates like an 

operating system program [2]. The forwarding plane which may be switch or routing devices are 

manipulated by the central intelligence via interfacing OpenFlow protocol. The route to a 

destination is determined by the Controller through the sharing of flow tables with OpenFLow 

enabled switches.  

 



 

Switch configurations and requirements are modified using the OpenFLow protocol [2]. Thus for 

a switches to support OpenFLow, it must therefore be designed to conform to the OpenFLow 

standard. The separation of control and management from the forwarding plane and the use of 

OpenFLow protocol creates an open communication between platforms. The controller and 

Switch interface becomes less vendor dependent [7]. SDN with OpenFLow breaks the vendor 

dependency barrier in interconnecting different vendor network resources. An OpenFLow 

enabled switch can interconnect with an SDN controller via secured TCP/TLS channel [21]. 

 

Network virtualization, resource is cut into slices such that different channels can access different 

slices of the resources without an overlap. All virtual slices are managed at the same time. The 

network resources abstraction into slices can be assigned to network devices in real time [7]. That 

is the essence of network virtualization. For example, function virtualization of radio network, 

Enhanced-UTRAN or Radio Base station resources is possible with FlowVisor [7] as an 

OpenFlow supported Controller. SDN with network function virtualization permits isolated 

networks with different addressing and forwarding schemes to access the same physical 

infrastructure [7]. OpenFlow supported SDN with network function virtualization further erodes 

vendor dependency.  

 

1.5 Economic benefits of SDN  

The economic benefit of SDN is higher compared with the existing or classical deployment. The 

existing distributed network, which is classified as the Classical Scenario, is compared alongside 

the SDN scenario, which has a centralized controller managing and controlling switches through 

Southbound protocol (OpenFlow). The third scenario, named the sharing scenario, is an SDN 

OpenFlow network with functional virtualization allowing the sharing of network resources 

among multiple operators with FlowVisor controller. [7] 

 

The capital and Operational expenditure in each of classical Scenario, SDN scenario and Shared 

scenario are analyzed. The Capital expenditure (CAPEX), OpenFlow controllers, line cards and 

interface adapters constitute the major cost for SDN deployment [7]. Unlike the classical 

approach that deploys complicated logic on multiple device, SDN scenario requires a Central 

Controller to manage multiple devices at the same time. The shared scenario aligns network 

capacity with actual demand. This reduces the waste of having redundant or marginally used 



resources on one hand and an over utilization on the other. Shared scenario incorporated in radio 

network design with, FlowVisor controller, will achieve the possibility of resources demand 

alignment.  

 

 

 

 

Operational expenditure (OPEX) considerations by [7] are power usage, maintenance and repair 

cost, cost of service provisioning and finally the cost of installing network equipment for the first 

time. The separation of management, control from forwarding devices reduces processing 

activity and subsequent power reduction in the forwarding plane for SDN network. Maintenance 

cost is less in SDN scenario with the number of software reduced and has fewer autonomous 

network devices. The shared scenario has different operators sharing the cost of replacement. 

Different operators can be responsible for different sections of the network reducing the cost of 

repair in Sharing scenario. Provisioning of service in SDN or shared scenario is automated – 

saves cost of manual operations and human errors. Installing equipment for the first time requires 

testing, and extensive checks. SDN offers the simulation platform for rigorous testing and 

doubles as learning opportunity for operators. However, Controller suffers the disadvantage of a 

single point of failure (depending on deployment topology). 

 
 



2.0 CONSIDERTIONS FOR SDCoN  

 

The idea of policy and service aware Software Defined Cognitive Network (SDCoN) is to 

design a software defined network structure that can learn from the network’s structured-

system data and do so automatically. This implies two major considerations. The first is the 

design or construction of the network system for learning to take place. The second 

consideration is enabling the learning to happen. That is, to make possible the learning of the 

network data. The important aspect of automatically learning about the network structured-

system is to have real time understanding of the network and to make changes or adapt to 

network changes. Network automation exist in current SDN networks for Load balancing, 

QoS and Boarder Gateway Protocol. The key consideration for SDCoN is to explore existing 

automation options and project a design which is self-aware, self-correcting and always 

learning. In existing automation system, response to change is a reactive process.  The 

computing program is unable to predict the network behavior and modify program ahead of 

time. Over the years, computing algorithms have improved. Reactive response time to 

network failures are faster with quicker resolution time. With increasing internet traffic 

growth, varying user service categories and radio spectrum constraints, it is important to 

predict accurately the network behavior and make modifications to accommodate the 

predicted change.  

 

Deploying resource based on need is a good solution to resource constraints. To determine 

bandwidth, queues, spectrum etc for services based on need/requirement can be deployed in 

time. Bandwidth as a service(BaaS) [13] illustrates deploying bandwidth based on client 

Service Level Agreement[SLA]. This implies the allowable bandwidth is an external data 

input. All the same, [13] provides a strong case of managing resources based on need. The 

opposite would be deploying fixed bandwidth for client wither in use or not. Internet growth 

and network demands require resource on demand solution. SDCoN, unlike [13], learns from 

each action and predict future behavior.  

 

So far, an explanation is provided for the distinction of SDCoN from existing automation 

computing and for instance [13]. The best model for SDCoN is a model and SDN as a 

network brain with Machine Learning (ML) or Artificial Intelligence(AI) providing cognitive 

network and service functions.   



 

 

2.1 Considerations for Intelligent SDN Controller 

 

There are multiple controllers in the market. In this model, OpenDaylight (ODL) as the 

primary focus. There would be occasional mention and use of other controllers. The existing 

SDN layered model provides the flexibility of programmability. The existing model of an 

SDN network has Data (forwarding) plane, Control plane and Management plane. 

 

In a layered view of an SDN network, as illustrated by Thomas et al [2], the Software 

Adaptable Network (SAN) layer offers abstraction, adaptability and cross-layer management. 

Autonomic functions of existing SDN networks are implemented through an application layer 

over Northbound protocol. For instance, implementation and validation of an SDN Controller 

for Transport Network Virtualization and Autonomic Operation [14] used Netconf – ODL 

northbound API – for control applications to interact with the network.  In [1] the cognitive 

engine interacts with the network device abstraction layer and the control plane.  

 

The SDN reference model (RFC 7426), there are two abstraction layers and an application 

plane. These are: Device and resource abstraction layer (DAL), Network Service Abstraction 

layer(NSAL) and an Application plane.  In comparison, Thomas et al [2] cognitive 

abstraction model is a simplified version. The cognition layer is not explicitly defined in the 

reference model. It is considered as an additional intelligence layer, required for SDCoN. 

This would imply that designing an intelligent SDN, the functionality of ML/AI should be 

housed within the intelligent layer. The intelligent layer should be within the controller, 

interact with the control and management plane and have access to the service plane. It 

should also have services and applications. The RFC7426 defines an Application (APP) as 

standalone piece of software which does not offer interface API connection to any 

applications or services. Cognitive process in Thomas et al [2] has Network API and status 

sensor connections. Service defined by the RFC7426 performs single or multiple functions, 

provides one or more APIs connections to applications and services either on the same layer 

or across layers. Cognitive Process requires more than an APP, it is a combinations of 

service(s) and application(s).  

 



The cognition process is combination an APP and Service. Service has inter-process 

communication to other services with cross layer functionality. Cross layer functionality 

implies the Application Plane can interact with cognition service process.  The paper, 

Towards Software Defined Cognitive Networking [1] illustrates a model with the cognitive 

engine that interacts with OpenFlow enabled switch and the Controller.  

 

The aim of this project is to propose a design that clearly identifies the intelligent layer and 

its functionality, and does not seek to reinvent the layers. In this project, the cognition layer is 

designed as an autonomous/ independent Intelligence Abstraction Layer (IAL) which can 

interact with other services and applications within or cross layers.  

 

 



2.1.1 Intelligence Abstraction Layer (IAL) 

 

The Intelligence abstraction layer is responsible executing the cognition cycle. The 

explanation of the cognition cycle in [9] as applied to the IAL:   

 

Observation – Observe the network device environment with Network Status Sensors. 

Streams of stimuli are passed on to the IAL.  

Orient – Observed data is matched with existing database to detect similarity with previous 

experience.  

Plan- To make sure the network response is not reactive; a planned action is set in motion 

based on consistency of observed stimuli with previous experience.  

Decide – A decision is made based on the available plan option. Decision maybe policy, 

service or any other applicable decision.  

Act – Action phase could be on DAL or sending signal to NSAL for specific action to be 

taken. The Control Plane executes the final action.  Control Plane configures Forwarding-

Plane through Control-Plane Southbound Interface (CPSI) [15]. 

Learn – at this stage, the hierarchy of observation, decision and action trigger learning via 

perception.  Analyzing statistical parameters builds experience. IETF-86 proceedings defined 

learning as a ‘procedure that estimates model parameters so that the learned model 

(algorithm) can perform a specific task’ [16] 

Retrospection – This is an added state which is applicable in ML/AI. Machine learning 

introduces ‘sleep’ and ‘prayer’ epoch [9] for network retrospection - cognitive radio. 

Implying the ML/AI service for the controller would have an Online/real-time process and an 

Offline ML process. 

 

The Intelligence and Abstraction layer functionality is to process information which may or 

may not be predictable.  The information pattern may be so unpredictable that it cannot be 

modeled into a function. The network status stimuli passed on to the IAL may be of different; 

either be higher-dimensional or lower-dimensional data. These characteristics makes the use 

of ML/AI suitable. Also there are available open source code for ML. ML is suitable for 

recognition of signal patterns. Stimuli information from DAL. The Orient phase requires 

understanding relationship of various data, data optimization to avoid the challenge of hidden 

data and other ML functionalities like data pattern generation, anomaly detection and 

prediction of network events. With ML, the function is predicted from available data. This 



must include development of models that fit both the known and unknown and well as predict 

the future. Predicting the future implies learning. The challenge then is the complexity of 

dimensionality. ML; whether supervised, semi-supervised, unsupervised, or reinforcement; is 

to estimate model parameters such that the learned algorithm can perform desired task. [16]  

 

2.1.2 Intelligent Controller Framework with ML/AI  

 

With an intelligent Controller, or controller with an intelligent layer, the ML/AI can be 

implemented for traffic and routing management, resource optimization, security and 

network troubleshooting. The intelligence plane does the complex analytics of ML.  

 

Traffic Control and Routing Optimization –The possibility of predicting the future, can be 

used to predict network traffic pattern. The fore knowledge of traffic pattern is helpful in 

optimized network. In such situations, congestion is controlled.   

Resource optimization – The network resource is allocated on demand. Underutilization of 

resource is avoidable. There is optimization in management of Cloud resource.  

Security – Enhanced security and anomaly detection including DDoS attack detection.  [17] 

  

OpenDaylight Machine Learning & Artificial Intelligence (MILA) Framework [17], aptly 

captures the major considerations for an intelligent controller as: adapting the Controller for 

ML requirements and facilitate ML services development.  

 

Application (APP) – The Intelligent Plane provides framework for ML applications. That’s a 

standalone piece of software that uses underlining services to pass arguments at a function 

call time and does not offer interfaces to other applications or services [15].  

 

Services -  service software performs multiple functions, provides API connection. Service 

software API connects to other services either on the same layer or across different layers.  

Services can combine with other services to form a new service [15].  

 

Intelligence Abstraction Layer – Provides access to the Intelligence Plane southbound 

interface. The network status sensor data is exchanges through the Southbound API which 

integrates existing or native network data collection and controls.  

 



Policy and Service Awareness ( ie QoS Aware Controller) -  Network status sensor collects 

data from network. Machine learning and analytics is used to determine traffic flow policy 

and service requirement. Robotically change policy and service for traffic.  

 

 

 

 

 

Network Data collection to IAL: Data from the network:  statistics, environmental stimuli 

and network device status; are collected and housed in a data repository. This means there 

must be a Data Collection Service (DCS) that routinely collects data from the DAL.  The data 

collected, which are time stamped, are stored in with the Data Storage Service (DSS). In 

ODL, the data storage is TSDR. The data storage has Data Query Service (DQS), Data 

Purging Service (DPS) and Data Aggregation Services (DAS). Data Query Service provides 

means to access the stored data. Data collected cannot be stored forever in the controller 

database. To avoid losing information, the Data Purging Service should have 

backup/recovery system, which maybe, outside of the controller –  example Operations 



Support Subsystem (OSS) Database. This means the ML/AI should have both real-time and 

historical data path. Data Aggregation Service processes the combination of streams of data 

into datasets. Real-time data-path and historical data-path connection to the ML/AI data 

repository allows ML to access both existing data in the controller and historical data stored 

on an external server.  

 

Data Analytics & ML: In the POC of OpenDaylight MILA framework, ODL Time Series 

Data Repository(TSDR) in collaboration with Waikato Environment for Knowledge Analysis 

(Weka) are used for advanced analytics and ML. Weka leverages the data collected in TSDR 

to make network predictions with analytic/cognitive engine [17].  The prediction, for instance 

could be traffic congestion on a particular network path in the next operation cycle (eg 

24hrs). Possible best path options and decision is made. A cross layer service interaction with 

the control plane sends the actionable path selection flow to the forwarding plane.  

 

Interface Communication: Interaction between two services, elements or entities could be 

implemented using Application Programming Interface (API), Inter-Process Communication 

(IPC) or Network Protocol [15]. OpenFlow is a well-known and well documented 

southbound API for SDN. Other southbound protocols can be used in place or in cooperation 

with OpenFlow. The ML/AI analytic module has data-paths to the data repository. The real-

time network information is accessed through the real-time data path with historical data-path 

available to access existing data.  Application Plane service(s) or an external operator may 

interact with the ML/AI module.  

 

 



 

 

 

2.2 Considerations for Cognitive Radio over SDN  

 
Radio networks in Cellular Network has base station and controller of the base station that is 

in-charge of allocation of radio resources. For example, in a GSM network, a Base Station 

Subsystem (BSS) has a base station controller responsible for multiple Base Stations. The 

situation no different with Radio Network Controller (RNC) that manages multiple Node B’s 

in Wide-band Code-Division Multiple Access (WCDMA) network of a Radio Access 

Network (RAN). Long-Term evolution (LTE) presents a different topology. Each E-Node B, 

manages its own radio resources and does not have a central radio controller like GSM or 

WCDMA. Progress into Cloud Radio Access Network (CRAN) aims to centralized the 

Baseband Pool(BBP) resource of the individual base stations. Thus the radio resource 

management, which is done within the BBP, would be controlled from a cloud. This CRAN 

topology is similar to both BSS and RAN in that the radio resource is allocated by a 



centralized controller. Again, in all these three technologies, base stations and mobile users 

stay within allocated frequency spectrum of the network provider. In a populated area, the 

spectrum and frequency allocations for Base Stations are not enough at service peak hours. 

This leads to congestion. The national agencies, communication authorities, responsible for 

spectrum allocations, assign network providers with static spectrums. Operators are expected 

to operate within this spectrum.  In large populated regions, static allocation of spectrums no 

longer serves varying demands.   

 

Tao Jiang et al [11] stated the November 2002, U.S. Federal Communications Commission 

(FCC) Spectrum Policy Task Force report that there are more available radio spectra which 

are less utilized and at the same time there are other spectra experiencing congestion.  The 

report concludes that spectrum scarcity is not the challenge rather the static allocation of 

spectra, which does not permit non-assigned users access, is the most significant cause of the 

spectrum problem. This means white spaces may not be adequate for future radio network 

technologies. The FCC task force report gives the indication that certain spectra are more 

utilized whilst others are barely used. This is not an efficient use of existing spectra.  A 

congested spectrum provides less reliable communication. Thus, the current static spectrum 

allocation results in an inefficient use of spectrum and poor user communication experience 

[11].  

 
The spectrum inefficiency challenge can be resolved if users can share their assigned static 

spectrum with other users that are not licensed to operate within that spectrum. In the 

spectrum assignment, it is possible for Primary User (PU), thus user with license to operate 

within an underutilized spectrum, to allow usage of its spectrum by a Secondary User (SU), 

which has license to operate in a different and possibly congested spectrum.  A primary user 

(PU) assigned a frequency spectrum band, can allow a secondary user (SU) to transmit within 

it, this is Sharing-Based Spectrum Allocation. Also, the SU may be allowed to operate in the 

band allocated to the PU in the absence of the PU, this scenario is Opportunistic Spectrum 

Allocation (OSA). Implying that in sharing-based spectrum allocation the SU is permitted to 

transmit as long as SU interference does not degrade the quality of service of the PU. 

Equally, in OSA, the SU can operate in the frequency band allocated to the PU as long as the 

PU is absent. This opens avenue for primary legacy frequency band allocations, like 

TV/broadcasting, navigation, GSM, WCDM etc, to be used by SU when the PU is absent [4].  

 



Spectrum inefficiency will be reduced with sharing-based spectrum allocation and the 

Opportunistic Spectrum Allocation. The radio network should be intelligent to observe the 

presence or absence of a PU. To know a primary user, exist, it should be aware of its 

surrounding environment and be able to read external stimuli. Secondly, it should be able to 

learn from observed stimuli and adapt itself in accordance with the changes observed from 

environment (external radio parameters). Since the radio environment varies, it is expected to 

adapt to observed variations. Some of the variations maybe parameters like transmit-power, 

carrier-frequency, and modulation strategy. It uses the methodology of understanding-by-

building to learn from the environment and adapt. So, in either sharing-based spectrum 

allocation and Opportunistic Spectrum Allocation, the radio network is expected to exhibit 

awareness, intelligence, learning, adaptivity, reliability and effectiveness. A radio that show 

these characteristics is a Cognitive Radio (CR). A Cognitive Radio Network (CRN) is a 

solution to spectral inefficiency. Sensing in OSA CRN involves both physical and MAC 

layer. Physical layer sensing is observing the environment to detect PU signals to know if a 

PU is present or not. MAC layer sensing tells which channels to sense. CRN OSA aims to 

identify and use a channel with no operating PU at a specific place (geographic location) and 

time [11].  

 

2.2.1 Cognitive Radio Sensing Model  

 
The aim of cognitive radio is to provide more spectrum access to users. In sensing, the SU 

should not introduce interference in the PU band. The effectiveness in providing more 

spectrum access depends on the accuracy of sensing with no interference.  

 

Sensing of the PU band by SU is done periodically. There is the need to determine the time in 

which it is considered sufficient and optimal for sensing to stop and transmission by SU to 

begin. At the period of sensing (which is equal to ts), the SU does not transmit. This is to 

avoid the confusion between PU and SU signal as the RF front-end cannot differentiate 

between the two. Hence, there is a period of sensing, at which if no interference is detected, is 

preceded by transmission of SU. The sensing and transmission period of the SU forms a 

cycle of time = Ts. Hence the duration which SU transmits is = Ts  - ts. The primary objective 

is to find the right balance between observation time ( ts) and transmission time (Ts ). In a network, 

to have a model that prevents interference of the PU band, sensing of the SU is synchronized 

to occur at the same time. Again SU sensing information is shared with the base station 



which shares with other SUs which form cooperative sensing. Cooperative sensing among 

SUs prevents fading and shadowing [18].  

 

 

 

There are different SU sensing methods.  Primary transmitter detection, which includes 

matched filter detection, energy detection and feature detection, the SU is doing detection 

from the primary transmitter.  Cooperative transmitter detection depends on shared SU 

detection information. The third method is primary receiver detection. The surest way of 

know the PU is active is if it receiver local oscillator leakage power. This is can be measured 

by SU in the primary receiver detection to check the presence of a PU. The fourth is 

interference temperature management [18]. 

  

The PU activity is modeled to determine the period PU band is used and the time it is not 

used. The model depicts PU activity as exponentially distributed inter-arrivals. Meaning the 

PU has two states, either active (birth) or inactive(Death). So the PU has a ON (busy) state at 

which the it uses the spectrum and an OFF (idle) period when the spectrum is not used.  The 

arrival of PU in the spectrum are independent of each other and follows the Poisson process 

with the length of the ON, OFF periods exponentially distribution [18]. 

 

Cognitive Radio Optimal Sensing Framework – Adaptive Cooperative Sensing:  

Below is a scenario for the CR radio sensing framework from [18] 

1. Sensing parameter optimization phase: The base station determines the parameters 

required for optimal sensing of the allowable spectrum bands. The required 

parameters for optimal sensing of each spectrum band is determined.  

  



2. Spectrum selection and scheduling:  When SU join the CR networks, the most 

suitable spectrum band is selected by the base station for the SU through spectrum 

selection and scheduling methods. The optimal sensing parameters are set for the SU 

with consideration for the sensing schedules (to avoid introduction of interference 

through sensing) and number of its transceivers.  

 

3. Spectrum Monitoring: The SU monitors spectrum bands. SU does the 

monitoring continuously with the assigned optimized sensing parameters and 

predetermined schedule. The monitoring results are sent to the base station.   

 

4. Determination of Spectrum Availability: The base station, based on the results 

from spectrum monitoring, determine availability, or otherwise, of the spectrum. 

 

5. Adaptive and cooperative sensing phase: If the base station detects changes in 

the sensing environment that affects sensing results, the sensing parameters are re-

optimized. The new optimized parameters are announced to the SUs. The cooperative 

sensing of SUs help in detection changes that affect the sensing performance. 

 
 



2.3 SDN with Cognitive Radio Framework 

 
The cognition process, observe, orient, plan, decide, act and learn, does applies to radio 

cognitive networks. The decision on observation from the radio network environment - which 

includes spectrum bands sensing by cognitive radio user and base station – is made by radio 

base station controller.  

 

In recent radio architecture (eg. 3G/4G-LTE), the Baseband Unit (BBU), connects to Remote 

Radio Units (RRU) for radio signal processing. The optical cable linking the RRU to the 

BBU can be extended to a long distance over access backbone network. This makes it 

possible to house the radio control functionality in a cloud. Thus, creates a pool of baseband 

resources which can be allocated on demand. Thus creating BBUs in a Cloud connecting 

RRUs, over Gigabit optical link - identical to Cloud RAN architecture.  

 

With SDN and Network Function Virtualization (NFV), the virtual BBU resource is deployed 

on demand for different RRUs. The BBU connects to the Evolved Packet Core network 

nodes (MME, SGW, PGW, ANDSF, HSS, etc) [19] which may also be housed in the cloud. 

This makes it possible to use SDN/NFV to manage the radio access network elements.  

 

SDN/NFV in the cloud, with the intelligent controller module, would have learning of results 

from radio environment sensing with ML/AI and a subsequent prediction of radio resource 

management decision. It is also possible to combine 3GPP access technology with non-3GPP 

(eg. Wifi) technologies [19].  

 

 



 

(SDN/NFV architecture for Radio Network. Reference [20] [19]) 

 

WAN SDN Controller - SDN/NFV with Transport Network virtualization and autonomic 

operation [14] [20]. 

 

Wi-Fi AP - the functionality in the vEPC: authentication, Access Network Discovery and 

Selection Function (ANDSF) and Packet Data Network Gateway (PGW), which links users 

to internet [19]. 

 

 

 

 

 

 



3.0 Cognitive Controller Service and Application Model Design  

 
The Intelligent plane has two streams of information flow: The real time and historical data. 

ML has both real-time, online ML and a historical offline ML operations [17].  The real-time 

online ML data is collected via pipe with OpenFlow protocol statistics from the Network 

whereas the offline historical ML obtains ML data via the controller data repository.  

 

3.1 Processing Data and statistics from the network 

 
The collection of data: information about network environment stimuli, network status, fault 

information, interface tx/rx data rate, policies, services and link states.  

 

Online ML Service: the implementation requires collection of network status information 

directly through the OpenFlow statistics collector. This can be achieved by creating a stream 

of real-time data pipeline with Kafka plugin [17]. Kafka provides the opportunity to reliably 

transfer streams of data between the network and the controller in real-time. The online ML 

is able to generate response to streams of data that comes via Kafka.  

 

Offline ML Service: Offline ML uses historical data of the network. That is the network 

statistics collected via OpenFlow. The OpenFLow statistics collected from the network at 

periodic data collection cycle is fetched via API or IPC for the offline ML.   

 

The collected data and statistics is analyzed with ML / deep learning algorithm.  

 

External ML Libraries: The ML service with the intelligence plane can use external deep 

learning libraries. Sample deep learning libraries include: Spark Mlib, Theano, Torch, Caffe 

and DeepLearning4J [17]. In the illustration below, Spark Mlib is used. The Spark Mllib 

package use Resilient Distributed Datasets (RDD) based API.  

 

Machine learning Algorithm: The statistics obtained through OpenFlow protocol is used to 

generate ML algorithm.  There algorithm could be supervised or unsupervised learning. For 

instance, the use of unsupervised K-means clustering is simple concept. Again, unsupervised 

learning does not require teaching the algorithm something about the OpenFlow data first. 

Like all ML algorithms, the acquired data, Network information, is cleaned before running 

the algorithm. The acquired data can be visualized with a graphical plot.  



 

 

 

(Intelligent SDN with Machine Learning Module. Reference [17]) 

 

3.2 Sending and Receiving data through Southbound Protocol - OpenFlow 

 

The Southbound protocol, OpenFlow, is used to forward actionable instructions to the 

network. For instance, if it is learned that the end-to-end path of a packet would be congested 

in the next 24hrs, the action to change the path has to be forwarded to the forwarding plane. 

This means making OpenFlow table modifications. The OpenFlow pipeline processing on the 

OpenFlow switch can either be implemented in hardware or software. Essentially, three main 

components of OpenFlow are:  Flow table, Group table and Meter table.   

   



 Flow table: is an essential part of an OpenFlow switch. The Flow table as the datapath 

equivalent in traditional switches. OpenFlow pipeline processing consist of multiple flow 

tables (possible to have a single table). These tables contain entries that determine how 

packets should be processed. The Flow tables are numbered sequentially – starting from zero 

(0) to n-1.  The switch capacity determines the number of flow tables. The controller is 

informed of the capability of the switch Handshake message during OpenFLow connection 

establishment. [21] 

 

 

 

 

 

 

 

 

OpenFlow Match fields is used to match against incoming traffic. The flow match fields 

have OpenFLow Extensible Match (0xM) format. The 0xM is a Type-Length-Value (TLV) 

format of size of varying size from 5 to 259 bytes. The Match fields has Type (set with 



OFPMT_OXM) and length (actual length match fields) and Payload field (which is a set of 

0xM fields). [21] 

 

 

The Priority is used when an incoming packet matches against two or more flow entries in 

the flow table. Priority field is more of a tie breaker in deciding which flow entry in the flow 

table should be best match an incoming packet. The Counter field is sued for statistics. The 

counter is updated anytime a packet is matched against an entry in a flow table. This gives 

information per flow table (Reference count of active entries) and per flow entry (received 

packets, received bytes, duration). The instruction set has six (6) set of instructions which is 

executed (in the order presented below) when the packet matches against a flow entry. In 

general, the actions inside an action set are executed in the following order, no matter the 

order in which they are added in the action set: Copy TTL inwards, Pop, Push-MPLS, Push-

PBB, Push-VLAN, Copy-TTL outwards, Decrement TTL, Set, QoS, Group, Output - [21



 

An OpenFlow entry has two Timeout specifications which are set by the controller. They are 

idle_timeout and hard_timeout. When a flow entry counter, has no packet or byte count for a 

period equal to the idle-timeout, the switch deletes the flow entry. A flow entry has a time-span 

from the time it is added to the flow table. When the time-span is up, the switch deletes the flow 

entry. When statistics is required and there is the need to query the flow entry, cookie field is 

used. In OpenFlow table, a new entry can be added to the flow table, modified, removed and 

multiple tables can be synchronized (thus synchronizing one flow table with another). [21] 

 



 

 

The incoming packet is first matched with against the first entry of the first flow table. The 

matching flow entry which has highest priority selected for further processing of the packet. The 

instruction set in the flow matched flow entry is executed. The instruction may require further 

forwarding of the packet Meter table or Group table. [21] 

 

 

 

 

 

 

 

 



OpenFlow Processing pipeline: 

 

 

Group table: The group table has the following keys: Group ID, Group type, Counters and 

Action Bucket. The group table is used for operations such as Multicast forwarding, Multipath 

forwarding, switch port abstraction and fast failover support (etc). [22]  

 

Group table provides abstraction for the following: Multipath forwarding and multicast Equal 

Cost Multi Path(ECMP) forwarding, Interface ports as single virtual port for forwarding and Fast 

failover. Group table is referred to by the flow table when an action set of the packet contains a 

group action with specified group table id. The group table action bucket contains a set of actions 

to be executed [22].  

A group id uniquely identifies a group. There are 4 Group types: All (broadcast and multicast 

forwarding), Select (used for multipath/ECMP forwarding), Fast failover (providing fast failover 

support for flow entries) and Indirect (provide and indirect object for multiple entries use the 

same output action) [22] 

 

Meter Table: Meter table is used for QoS operations. This ranges from simple QoS operations 

like rate-limiting to more complex forms as Diffserv. When a packet arriving in a switch is 

matched with the flow table entries and the instruction indicates Meter with specified meter-id, 

the switch forwards the packet to the meter table entry with the specified meter-id [22].    

 



A meter table has the following keys: meter id, meter bands and counters.  The meter band 

defines how the packet should be forwarded. A meter entry may have more than a single meter 

band. Each meter band has a band type. The band type can be any of the following: Drop packet, 

DSCP remark, Counter for specific band and an optional argument (type specific) [22].  

 

Fetching Statistics from OpenFlow switch with Multipart Messaging 

OpenFLow messages that are too large (size is bigger than 64KB) to be encoded in a single 

message can be broken into parts and forwarded. Multipart messaging is used to encode 

OpenFLow request and reply messages bigger than 64KB.  This is typically suitable for 

collection of statistics. Multipart messages may be interleaved with other messages; the unique 

transaction id makes reassembling of messages possible. [23]  

 

Fetching Statistics from individual Flow Entry: Assuming we want to collect statistics from a 

particular / individual flow entry. OFPMP_FLOW message is sent to the switch with the flag set 

to OFPMP_REQ_. The OFPMP_FLOW message request has the following: flow table id 

(besides the flow table id, OFPTT_ALL can be set to indicate all tables), match field, output port 

(which can be set to OFPP_ANY) and output group (which can also be set to OFPG_ANY). The 

request also has cookie value and cookie mask. When the switch receives this message, identifies 

the entry in the flow table and constructs a reply message. The reply of the OFPMP_FLOW 

message has cookie value filled with the value of the multipart request message. [23]  

 



 

 

Fetching Statistics from aggregate of flow tables: The OFPMP_AGGREGATE multipart 

message sent to the switch for aggregate flow table statistics. There is still table id, match field, 

output group, output port, cookie and cookie mask [23].  

 

Fetching Statistics from Table: When statistics of the entire flow table, OFPMP_TABLE 

message is sent to the switch with empty body field [23] 

 

Fetching Statistics from a Port:  The message sent to the switch is OFPMP_PORT_STATS. 

The body has only the port number. The port number field in the body can be set to OFPP_ANY 

for all ports [23].  

 

Fetching Port Queue Statistics: The message sent to the switch is OFMP_QUEUE_STATS.  

The body fields are port number and queue id. All ports is OFPP_ANY and all queue is 

OFPQ_ALL [23].  

 

Fetching Meter Statistics: The message sent to the switch is OFPMP_METER. The body 

requires the meter id field and it could be set to OFPM_ALL for all [23].  

 



Fetching Group Statistics: The message to the switch is OFPMP_GROUP and the body field 

has the group id required [23].  

 

Besides statistics, information about the switch, flow tables, Group and Meter tables features can 

be can be fetched from the switch using multipart messaging.  

 

4. Scenario Implementations   

 

The implementation considers different scenario of services over SDN and the results is 

analyzed. 

 

4.1 CASE I: Improving Bandwidth Utilization 

 
 Description: The flow of packets through a network are assigned the same path end-to-end. To 

balance the load on the network, the path is changed to a newer link of a lower cost. This is 

primarily balancing the load on the network based on the cost of the path observed from the 

forwarding plane.  

 

 

 

 

 

 

 

 

 

 

 

 

4.1.1 CASE I: Network Topology: 

 



 

 

Mininet and ODL are run on different virtual machines. The network topology consists of 8 

network Host connected to 4 different distribution rings which are interconnected with a core 

ring. The host network and Switch nodes are in different networks segments. To avoid looping, 

spanning-tree protocol is enabled on each bridge.  

 

The network topology data is fetched and the cost of each path is analyzed. The interface and 

port of each node is considered. The cost takes into consideration how busy, or how much flow 

passing through a port interface. A new path is computed for the host-to-host traffic. The flow 

for the new path is pushed to the network. The impact on the available bandwidth before and 

after the flow is demonstrated.  

 

 

 

4.1.2 Algorithm  

 



The paths from source to destination is determined with Dijkstra Algorithm. The utilization of 

the link as a ratio of the allowable bandwidth on the link is computed for each path. The path 

with least cost end-to-end is selected.  

 

 
 

Network device information and port statistics is fetched from the data plane. The format is 

either json or xml. The link port mapping of connected host, device, mac, IP address and link 

port statistics are saved to be compared with the next json or xml file fetched in the periodic 

network query. Extended Dijkstra algorithm is used to determine the available short paths from 

source host to destination host. The cost associated with each path is determined. The least cost 

path is selected and script generated to change OpenFLow tables.  

 

 

4.1.3 Results  

 



The end-to-end bandwidth is measured at an even interval with iperf from source host to 

destination host.  A transfer of 128Mbytes over the link from source to destination is measured 

before and after running the algorithm to balance load path.  

 

 

 

It is observed that, with transfer of 128Mbytes from host 3 to host 7, the bandwidth after traffic 

path balancing (load balancing) improved. Bandwidth utilization is improved with observation of 

live network data, observing, analyzing and modifying the path for traffic.  

 

4.1.4 Improvement of CASE I 

Case I implementation did not use deep learning algorithm. The prediction of best path can be 

further improved with sufficient network data that make use deep learning algorithm.  
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4.2 CASE II: Modifying Network Traffic Service & Policy  

 
Description: The objective is to demonstrate dynamically changing traffic service and policy 

over an SDN network based on observed network information. In Case II demonstration, the 

controller is Floodlight-qos-beta. This is a fork() of floodlight ( by Ryan Wallner) and has 

integrated Quality of Service and web user interface. The modification of the network QoS is 

done through modification of QoS applications programs which are part of Flodlight-qos-beta.   

 

4.2.1 CASE I: Network Topology: 

 

 

  
Mininet and Floodlight are run on the same virtual machine, 192.168.0.15/24.  

 

 



4.2.2 Algorithm  

 

OpenFlow statistics is fetched from the network (port, queue, meter, table or Group statistics) 

using multi part OpenFlow messaging. The statistics table fetched is dependent on the QoS 

parameter of interest. In this scenario, the aim is to improve link utilization by modifying the 

QoS settings on the flow path.  

 

 
 

 
 
 
The multi part messaging reply body field has duration_nsec and duration_sec for time flow has 

been alive in the table.  There is also packet_count and byte_count for number of packets in flow 

and number of bytes in flow respectively.  The link utilization is computed with the byte count 

per port. If the successive utilization is increasing (say Un/Un-1 is increasing at rate >=35%) or 



decreasing, QoS can be modified to accommodate this change. The bandwidth can also be 

limited for a an Host-to-Host flow in the downlink as demonstrated below.  

 

4.2.3 Results  

 
In this scenario, traffic policy is modified with flow of traffic from Host 4 to Host 1. Host 1 is 

server and uplink from H4 is capped at 5Mbps. However, the downlink H1-H4 is uncapped. The 

QoS policy affects only H4 to H1 as the bandwidth from H4 to H2 is unaffected.  
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4.2.4 Improvement of CASE II 

Case II implementation did not use deep learning algorithm. Data was few and analyzed without 

an ML tool.  The result can be improved with bandwidth, policy and service prediction based on 

sufficient data for deep learning.  

 
 
 

Conclusion 

 
The implementation key considerations for the design of and intelligent controller is the 

intelligent plane which, in this model, is suggested should be implemented with a Machine 

learning. Without the use of deep learning tool, simple programs aimed at adjusting service 

policy and traffic path is observed to give more control on the bandwidth utilization to the 

operator. This project is however, limited on a full implementation to demonstrate intelligent 

decision making by a controller. Equally, an attempt to use Mininet Wi-Fi (fork() of Mininet) 

was unsuccessful in simulating automatic radio parameter changes because it provides no API or 

IPC yet.  A continuation of this project with scenario implementation of deep learning is 

recommended.   
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APPENDIX  

 
Code reference files for codes available on this shared drive: 

https://drive.google.com/open?id=0Bw4lSwoV0yedS2JDLUptNEV5ZlU 

 


