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Abstract 

Cytochrome P450 (CYP) enzymes have been identified in the heart and 

their levels have been reported to be altered during cardiac hypertrophy and heart 

failure. Furthermore, CYP enzymes have been shown to metabolize arachidonic 

acid to cardioprotective epoxyeicosatrienoic acids (EETs) and cardiotoxic 20-

hydroxyeicosatetraenoic acid (20-HETE). Therefore, the objective of this study 

was to investigate the protective effect of EETs and the role of CYPs and soluble 

epoxide hydrolase (sEH) in the development of cardiac hypertrophy. Our results 

showed that isoproterenol-induced cellular hypertrophy caused a significant 

induction in the mRNA expression of CYP1A1, CYP1B1, CYP2J3, CYP4F4, 

CYP4F5 and EPHX2 in H9c2 cells. Also, we demonstrated that 11,12- and 14,15-

EETs significantly attenuated the isoproterenol-mediated induction of 

hypertrophic markers, ANP and BNP, as well as CYP1A1, CYP2J3, CYP4F4, 

CYP4F5 and EPHX2. Furthermore, we showed that the inhibition of sEH by 

TUPS significantly decreased the isoproterenol-mediated induction of ANP, BNP, 

CYP1A1, CYP2J3, CYP4F4, CYP4F5 and EPHX2. 
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1. Introduction 

1.1 Cardiac hypertrophy 

Cardiac hypertrophy is a major pathological event leading to heart failure 

and sudden death (Rame and Dries 2007). It is the enlargement of ventricles and 

can be defined as an increase in heart mass in response to stress stimuli (Bernardo, 

Weeks et al. 2010). Initially, cardiac hypertrophy is an adaptive cellular response 

to an increase in cardiac overload. In response to the chronic increase in wall 

stress, the heart adapts to the higher demands for cardiac work by enlarging the 

cardiac muscle cells, leading to an increase in size and mass (Cooper 1987; 

Sugden and Clerk 1998; Hunter and Chien 1999). However, it becomes 

maladaptive if left untreated and prolonged hypertrophy has been known as an 

important risk factor for cardiovascular mortality (Muiesan, Salvetti et al. 1995; 

Verdecchia, Schillaci et al. 1998). This hypertrophic response can be broadly 

classified as either physiological or pathological. Physiological and pathological 

cardiac hypertrophies are caused by different stimuli, which are functionally 

distinguishable and associated with distinct structural and molecular features 

(McMullen and Jennings 2007). 

1.1.1 Classifications of cardiac hypertrophy 

Physiological cardiac hypertrophy occurs in response to normal postnatal 

development, pregnancy and chronic exercise training (Fagard 1997; Eghbali, 

Deva et al. 2005). Normally physiological growth is associated with normal 

cardiac structure and enhanced cardiac function (Fagard 1997). In contrast, 

pathological cardiac hypertrophy occurs in response to a variety of mechanical, 

hemodynamic, hormonal and pathologic stimuli, including hypertension, valve 

disease, myocardial infarction and genetic mutations in cardiac contractile protein 

genes (Kannel 1974; Levy, Anderson et al. 1988; Braunwald and Bristow 2000; 

Seidman and Seidman 2001; McMullen and Jennings 2007). Pathological 

hypertrophy is typically associated with loss of myocytes and fibrotic 

replacement, cardiac dysfunction and increased risk of heart failure and sudden 
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death (Levy, Garrison et al. 1990; Weber, Brilla et al. 1993; Cohn, Bristow et al. 

1997). 

Physiological and pathological hypertrophy can be sub-classified as 

concentric or eccentric based on the changes in shape that are dependent on the 

initiating stimulus (Grossman, Jones et al. 1975; Pluim, Zwinderman et al. 2000). 

Concentric hypertrophy is the hypertrophic growth of the heart without an overall 

enlargement, in which the ventricular walls thicken with a reduction of heart 

cavity volume. It is characterized by the addition of new sarcomeres in a parallel 

pattern, leading to an increase in myocyte cell width (Smith and Bishop 1985; 

Campbell, Rakusan et al. 1989; Campbell, Korecky et al. 1991). Concentric 

hypertrophy is related to the increased pressure load of the heart. A pathological 

stimulus causing pressure overload, often due to hypertension or aortic stenosis 

produces an increase in systolic wall stress, which results in concentric 

hypertrophy (Grossman, Jones et al. 1975). Similarly, a physiological stimulus 

can also produce concentric hypertrophy. Strength training such as weight lifting, 

wrestling and throwing heavy objects can result in a pressure overload on the 

heart, leading to concentric hypertrophy (Pluim, Zwinderman et al. 2000). In 

contrast, eccentric hypertrophy refers to an increase in cardiac mass with 

increased chamber volume, i.e. dilated chambers. In eccentric hypertrophy, the 

relative wall thickness may be normal, decreased, or increased depending on the 

initial stimulus. However in general, eccentric hypertrophy is characterized by the 

addition of new sarcomeres in series, leadings to an increase in myocyte cell 

length (Grossman, Jones et al. 1975). A pathological stimulus causing volume 

overload, such as aortic regurgitation or arteriovenous fistulas can produce an 

increase in diastolic wall stress and results in eccentric hypertrophy (Grossman, 

Jones et al. 1975; Pluim, Zwinderman et al. 2000). The diseased setting of 

eccentric hypertrophy is generally associated with thinning of the ventricular 

walls (Gerdes, Campbell et al. 1988). Also, physiological stimuli including 

pregnancy and aerobic exercise (also known as endurance training) such as 

running and swimming increase venous return to the heart, resulting in volume 

overload and eccentric hypertrophy (Pluim, Zwinderman et al. 2000; Eghbali, 
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Deva et al. 2005). This type of eccentric hypertrophy is usually characterized by 

chamber enlargement and a proportional change in wall thickness.  

1.1.2 Characteristic distinctions 

The increase in heart size is a common feature of physiological and 

pathological hypertrophy; however, each is associated with distinct structural and 

molecular bases. Cardiac hypertrophy is associated with structural remodeling of 

the ventricular walls to accommodate increases in myocyte size. In physiological 

hypertrophy, a network of collagen fibers provides structural integrity of 

adjoining myocytes and facilitates myocyte shortening, which supports an 

efficient cardiac pump function (Bernardo, Weeks et al. 2010). Pathological 

hypertrophy is associated with cell death and the loss of myocytes is replaced with 

excessive collagen, known as fibrosis. The cardiac fibroblasts and extracellular 

matrix proteins accumulate disproportionately and excessively. This leads to 

mechanical stiffening of the ventricles, which impairs contraction and relaxation 

and impairs the electrical coupling capillary density. As a result, it increases 

oxygen diffusion distances, leading to myocardial ischemia, and is likely to 

progress from hypertrophy to heart failure (Brower, Gardner et al. 2006; 

Bernardo, Weeks et al. 2010). In the normal healthy heart, fatty acid oxidation is 

the main metabolic pathway responsible for generating 70% of adenosine-5’-

triphosphate (ATP) energy, with glucose and lactate metabolism accounting for 

the remaining 30% (van der Vusse, Glatz et al. 1992). Physiological hypertrophy 

induced by exercise training is characterized by enhanced fatty acid and glucose 

oxidation (Gertz, Wisneski et al. 1988). With more ATP available, it is also 

associated with elevations in myosin ATPase activity and enhancement of 

contractility. In contrast, pathological hypertrophy is associated with decreased 

fatty acid oxidation and increased glucose metabolism (Allard, Schonekess et al. 

1994; Christe and Rodgers 1994; Davila-Roman, Vedala et al. 2002). 

Correspondingly, it has a lower myosin ATPase activity and depressed contractile 

function (Wikman-Coffelt, Parmley et al. 1979; Rupp 1981). It is believed that 

this alternation in substrate utilization may be a protective mechanism, enabling 
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the heart to produce more ATP per molecule of oxygen consumed (van der Vusse, 

Glatz et al. 1992). Moreover, models of pathological cardiac hypertrophy are 

often associated with up-regulation of fetal genes, including atrial natriuretic 

peptide (ANP), B-type natriuretic peptide (BNP) and genes for fetal isoforms of 

contractile proteins, such as skeletal α-actin and β-myosin heavy chain (MHC). In 

comparison, this is accompanied by the down-regulation of genes normally 

expressed at higher levels in the adult than in embryonic ventricles, such as α-

MHC and sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) (Iemitsu, 

Miyauchi et al. 2001; Bernardo, Weeks et al. 2010). The re-expression of the fetal 

gene program genes does not usually occur in models of physiological 

hypertrophy induced by exercise training (McMullen, Shioi et al. 2003). 

1.1.2.1 Natriuretic Peptides 

Natriuretic peptides are a family of hormones that exhibit important 

autocrine and paracrine effects in regulating cardiovascular homeostasis, fat 

metabolism and bone growth (Potter, Abbey-Hosch et al. 2006). Within the 

myocardium and coronary circulation, they are involved in the regulation of 

myocyte growth, inhibition of fibroblast proliferation and extracellular matrix 

deposition, a cytoprotective anti-ischemic function, and influences on coronary 

endothelium and vascular smooth muscle proliferation and contractility (D'Souza, 

Davis et al. 2004). ANP, BNP and C-type natriuretic peptides (CNP) are three 

main natriuretic peptides. Other members of the natriuretic peptide family 

includes Dendroaspis natriuretic peptides (DNP), urodilatin, guanylin and 

uroguanylin (D'Souza, Davis et al. 2004). The most known effects of ANP, BNP 

and CNP on the cardiovascular system are cardioprotective, natriuretic, diuretic 

and vasorelasent effects (Nishikimi, Maeda et al. 2006). The ANP and BNP 

coding genes are expressed in almost all tissues, however the heart is the organ in 

which the expression in the highest (Clerico and Emdin c2006). Effects of 

natriuretic peptides are mediated through natriuretic peptide receptors (NPR), in 

which three types have been identified; NPR-A, NPR-B and NPR-C. NPR-A and 

NPR-B are membrane associated guanylate cyclase receptors, while NPR-C is the 
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clearance receptor (Maack 1992; Misono 2002; D'Souza, Davis et al. 2004). NPRs 

are expressed on cardiomyocytes, endocardial endothelial cells and coronary 

vascular smooth muscle cells (Singh, Kuc et al. 2006). 

ANP is a 28-amino acid polypeptide secreted largely from the atria in a 

prompt response to stretch (de Bold, Borenstein et al. 2001). ANP is normally 

expressed under physiological conditions primarily in the atrium, however the 

induction of left ventricular ANP gene expression is seen in many cardiovascular 

disorders, as well as in experimental models with pressure or volume overload 

(D'Souza, Davis et al. 2004). BNP is a 32-amino acid polypeptide secreted 

predominantly by cardiac atria and ventricles (D'Souza, Davis et al. 2004). The 

levels of BNP are markedly elevated under the pathophysiological conditions in 

cardiac ventricles from patients or animals undergoing cardiac stress such as 

diastolic dysfunction, congestive heart failure, myocardial infarction and cardiac 

hypertrophy (Mukoyama, Nakao et al. 1991). As a result, the upregulation of 

ANP and BNP expression is widely used as a clinical diagnostic marker for left 

ventricular hypertrophy, diastolic dysfunction and heart failure. 

1.1.3 Mechanisms of Cardiac hypertrophy 

Several signaling pathways have been shown to play a critical role in the 

signal transduction of growth and hypertrophic response in the heart. The best 

characterized signaling cascade responsible for pathological cardiac hypertrophy 

is the G protein-coupled receptors (GPCR), Gαq signaling. Other signaling 

pathways implicated in mediating pathological cardiac growth are those involved 

with phosphoinositide 3-kinase (PI3K, p110γ), mitogen activated protein kinases 

(MAPKs), protein kinase C (PKC) and PKD, calcineurin/nuclear factor of 

activated T-cells (NFAT) and nuclear factor kappa B (NF-κB). 

1.1.3.1 G protein-coupled receptors (GPCRs) 

G protein-coupled receptors (GPCRs) play a critical role in the regulation 

of cardiac functions. The most important myocardiam GPCRs include the 

adrenergic (α- and β-adrenergic) receptors and muscarinic receptors. There are 
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two forms of signal transducing G proteins, the heterotrimeric G proteins and the 

small monomeric G proteins. Heterotrimeric G proteins consist of three subunits 

(α, β and γ) and couple to GPCRs. Binding of an agonist to the GPCR leads to 

dissociation of the Gα and Gβγ subunits, followed by activation of downstream 

signaling pathways (Gutkind 1998a; Gutkind 1998b; Rockman, Koch et al. 2002). 

Isoforms of the heterotrimeric G proteins are largely determined by the isoform of 

the α subunits, which fall into three subfamilies; Gs, Gi, and Gq/G11 (Simon, 

Strathmann et al. 1991; Neer 1995; Frey and Olson 2003).  

In pathological hypertrophy, stress stimuli such as pressure or volume 

overload induce the release of humoral factors including angiotensin II (Ang II), 

endothelin 1 (ET-1) and norepinephrine (NE) (Schunkert, Dzau et al. 1990; Arai, 

Yoguchi et al. 1995; Yamazaki, Komuro et al. 1999; Rapacciuolo, Esposito et al. 

2001; Yayama, Horii et al. 2004). These ligands bind to their GPCRs, i.e. Ang II 

receptors type 1 (AT1 receptors), endothelin receptors (ETA and ETB) and α1-

adrenergic receptors (ARs), respectively. This causes the activation of Gαq/11, 

which in turn activates downstream signaling proteins, including phospholipase C 

(PLC), MAPKs, and PKC. Transgenic over-expression of these receptors (Koch, 

Lefkowitz et al. 2000; Paradis, Dali-Youcef et al. 2000) and their downstream 

mediator Gαq (D'Angelo, Sakata et al. 1997; Sakata, Hoit et al. 1998) results in 

cardiac hypertrophy, and subsequently leads to cardiomyopathy. Stimulation with 

α-adrenergic agonists coupled to Gαq/11 has been shown to mediate cardiomyocyte 

hypertrophy (Nicol, Frey et al. 2000). Furthermore, transgenic mice over-

expressing Gαq developed cardiac hypertrophy and were associated with cardiac 

dysfunction and premature death (D'Angelo, Sakata et al. 1997; Mende, Kagen et 

al. 1998). In contrast, transgenic mice lacking the Gαq/11 proteins displayed no 

hypertrophy or a significantly blunted response to pressure overload (Akhter, 

Luttrell et al. 1998; Wettschureck, Rutten et al. 2001).  

On the other hand, the most abundant adrenergic receptor in cardiac tissue 

is the β1-AR, which couples to the Gαs protein. It activates downstream adenylate 

cyclase (AC), resulting in the production of cAMP which in turn activates protein 

kinase A (PKA). Over-expression of the β1-AR and Gαs proteins in transgenic 
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mice increase the responsiveness to isoproterenol, and eventually leads to 

progressive deterioration of cardiac performance, cardiomyocyte hypertrophy and 

heart failure (Gaudin, Ishikawa et al. 1995; Engelhardt, Hein et al. 1999; 

Bisognano, Weinberger et al. 2000; Engelhardt, Hein et al. 2002). Similar 

findings were obtained with over-expression of Gαs in transgenic animals, but 

surprisingly were not dependent on the activation of AC (Gaudin, Ishikawa et al. 

1995). In contrast, over-expression of AC type VI does not appear to exert 

adverse effects on cardiac function (Roth, Gao et al. 1999; Roth, Bayat et al. 

2002). However, transgenic over-expression of PKA results in dilated 

cardiomyopathy associated with cardiomyocyte hypertrophy and fibrosis (Antos, 

Frey et al. 2001). It has been reported that the β1-AR coupling also activates the 

calcium/calmodulin-dependent protein kinases (CaMKs) signaling (Zhu, Wang et 

al. 2003). Studies suggest that the cardiac hypertrophic effect of β1-AR is mainly 

attributed to the activation of calcium/CaMK and Akt glycogen synthase kinase 

3b (GSK 3b)-GATA4 signaling pathways rather than the cAMP/PKA pathway. 

Sustained β1-AR stimulation is able to increase the Ca2+/CaMK II activity in a 

PKA-independent manner (Zhu, Wang et al. 2003; Zheng, Han et al. 2004) and to 

induce myocyte hypertrophy (Morisco, Zebrowski et al. 2000).  

The cardiac muscarinic and β2-adrenergic receptors are both coupled 

through the Gαi protein. The expression of Gαi is up-regulated in human 

hypertrophic and failing hearts (Neumann, Schmitz et al. 1988; Eschenhagen, 

Mende et al. 1992; Bohm, Gierschik et al. 1993). Conditional over-expression of 

Gαi-coupled GPCR resulted in cardiomyopathy and arrhythmias (Redfern, 

Degtyarev et al. 2000). Altogether, these findings indicate that G protein-

dependent signaling is sufficient to cause hypertrophy and heart failure.  

The family of small monomeric G proteins can be divided into 5 

subfamilies, and these are Ras, Rho, ADP ribosylation factors, Rab and Ran. 

Small G proteins act as molecular switches which link receptors to downstream 

signaling cascades (Clerk and Sugden 2000; Frey and Olson 2003). Various small 

G proteins such as Ras, Rho and Rac are activated by Gαq/11 agonists and each is 

sufficient to induce cardiac hypertrophy (Proud 2004; Lezoualc'h, Metrich et al. 
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2008). Several in vitro studies have shown that the over-expression of Ras 

induced hypertrophic gene expression and increased cell size (Thorburn, 

Thorburn et al. 1993; Abdellatif and Schneider 1997; Fuller, Finn et al. 1998). 

Cardiospecifically over-expressing a constitutively active form of Ras induced 

cardiac hypertrophy in transgenic mice (Hunter, Tanaka et al. 1995; Gottshall, 

Hunter et al. 1997). In contrast, inhibition of Ras prevented phenylephrine (PE)-

induced hypertrophic responses (Thorburn, Thorburn et al. 1993). Similarly, 

expressing an activated Rho also stimulated ANF expression (Sah, Hoshijima et 

al. 1996; Thorburn, Xu et al. 1997; Hoshijima, Sah et al. 1998). A dominant 

inhibitory mutant of Rho prevented PE-stimulated, Gαq-stimulated, and Ras-

induced models of hypertrophy (Sah, Hoshijima et al. 1996; Hines and Thorburn 

1998). Furthermore, using a Rho-kinase inhibitor, one study showed that Rho-

kinase was critical for pressure overload-induced pathological hypertrophy, but 

not swimming-induced physiological cardiac hypertrophy in rats (Balakumar and 

Singh 2006). Over-expression of Rab1a was able to cause pathological cardiac 

hypertrophy which progressed to heart failure (Wu, Yussman et al. 2001).  

1.1.3.2 Phosphoinositide 3-kinase (PI3K, p110γ) signaling 

Phosphoinositide 3-kinases (PI3Ks) are lipid kinases that release inositol 

lipid products from the plasma membrane, which in turn mediate intracellular 

signaling pathways (Toker and Cantley 1997; Vanhaesebroeck, Leevers et al. 

1997). Activation of PI3Ks is coupled to both GPCRs and several receptor 

tyrosine kinases, such as insulin-like growth factor (IGF), fibroblast growth factor 

(FGF) and transforming growth factor (TGF) (Chesley, Lundberg et al. 2000; 

Zhu, Zheng et al. 2001). There are three classes of PI3Ks, classes I, II, and III. 

Class I PI3Ks are heterodimers and further divided into the subclasses IA and IB. 

Class IA PI3Ks consist of a p110 catalytic subunit (α, β or δ) and a p85 or p55 

regulatory subunit. The only Class IB PI3K is p110γ, which is regulated by the 

p101 regulatory subunit (Vanhaesebroeck, Leevers et al. 1997). Of the Class I 

PI3Ks, p110α and p110γ are abundantly expressed in the heart. PI3K (p110γ) is 

coupled to GPCRs and has a detrimental effect in the heart (Oudit, Sun et al. 
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2004). PI3K (p110γ) is a negative regulator of cardiac contractility, and PI3K 

(p110γ) knockout mice displayed enhanced contractile function, less hypertrophy 

and fibrosis, and were protected from heart failure induced by the activation of β-

adrenergic receptors (Crackower, Oudit et al. 2002; Oudit, Crackower et al. 

2003). PI3K (p110γ) contributes to cardiac dysfunction by its effect on β-AR 

internalization and regulation of phosphodiesterases (Oudit and Kassiri 2007; 

Pretorius, Owen et al. 2009). Binding of p110γ to β-AR kinase 1 (β-ARK1) lead 

to the down-regulation and desensitization of β-ARs, which is a hallmark of heart 

failure. Expression of an inactive p110γ mutant disrupted the interaction between 

p110γ and β-ARK1, and restored β-AR signaling in transgenic mice subjected to 

chronic β-AR stimulation (Nienaber, Tachibana et al. 2003; Perrino, Naga Prasad 

et al. 2005; Perrino, Schroder et al. 2007). 

1.1.3.3 Mitogen activated protein kinase (MAPK) pathways 

Mitogen activated protein kinases (MAPKs) can be categorized into three 

subfamilies, extracellular-signal regulated kinases (ERKs), c-Jun N-terminal 

kinases (JNKs), and P38 MAPKs (Clerk and Sugden 1999; Widmann, Gibson et 

al. 1999; Pearson, Robinson et al. 2001). All three types of MAPKs are activated 

in response to GPCR agonists (couple to Gαq), and mechanical stress, as well as in 

pressure overloaded hearts and failing human hearts (Yamazaki, Tobe et al. 1993; 

Sadoshima, Qiu et al. 1995; Komuro, Kudo et al. 1996; Sugden and Clerk 1998; 

Cook, Sugden et al. 1999; Esposito, Prasad et al. 2001; Pearson, Robinson et al. 

2001; Takeishi, Huang et al. 2001; Purcell, Wilkins et al. 2007). Interestingly, 

over-expression of MAPK phosphatase 1 (MKP-1), which inhibits the three 

MAPK signaling pathways, prevented both agonist-induced in vitro hypertrophy 

and pressure overload-induced in vivo hypertrophy (Bueno, De Windt et al. 2000). 

This demonstrates the significant role of these pathways in hypertrophic signaling. 

ERK1/2 are ubiquitously expressed and their activation has been reported 

in various settings of cardiac hypertrophy and heart failure (Boulton, Nye et al. 

1991; Muslin 2008). ERK1/2 was activated in response to agonists that induce 

pathological hypertrophy such as Ang II, ET-1 and NE, but not to physiological 
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hypertrophic agonist, IGF1 (Clerk, Aggeli et al. 2006). Stimulation with 

hypertrophic agonists that signal the Gαq protein coupled receptors also activated 

ERK1/2 (Wang and Proud 2002). The major activators of ERK1/2 are MAPK 

kinase (MEK) 1 and MEK2, and inhibition of these activators attenuated the 

hypertrophic response to agonist stimulation in cultured cardiomyocytes 

(Glennon, Kaddoura et al. 1996; Clerk, Michael et al. 1998). Transgenic over-

expression of MEK1 activated ERK1/2, and resulted in hypertrophic phenotypes 

(Bueno, De Windt et al. 2000). On the other hand, JNK has been found to be 

activated in failing human hearts (Cook, Sugden et al. 1999) and in the 

myocardium of infarcted rat hearts (Li, Zaheer et al. 1998). Several in vitro 

studies have demonstrated that the expression of JNKs was activated and that they 

may be important regulators of pathological hypertrophy (Bogoyevitch, Gillespie-

Brown et al. 1996; Ramirez, Sah et al. 1997; Choukroun, Hajjar et al. 1998; 

Wang, Su et al. 1998; Choukroun, Hajjar et al. 1999). JNK is phosphorylated and 

activated by MEK4 and MEK7, which in turn are regulated by MAPK kinase 

kinase 1 (MEKK1). Stimulation of mechanical stress or agonists by ET-1 or PE 

induced a rapid phosphorylation of JNK (Komuro, Kudo et al. 1996; Ramirez, 

Zhao et al. 1997; Choukroun, Hajjar et al. 1998). MEKK1/JNK has been shown to 

be involved in the hypertrophic response of cardiomyocytes subjected to Gαq 

coupled receptor stimulation (Bogoyevitch, Andersson et al. 1996). Additionally, 

over-expression of MEK7 has been found to induce hypertrophy in cultured 

cardiomyocytes (Wang, Su et al. 1998). Transgenic mice with constitutive 

activation of MEK7 died prematurely from congestive heart failure (Petrich, 

Molkentin et al. 2003). Contrarily, expression of a MEK4 mutant attenuated the 

hypertrophic response to ET-1 stimulation (Choukroun, Hajjar et al. 1998), along 

with pressure overload-induced hypertrophy (Choukroun, Hajjar et al. 1999). 

Finally, the major activators of p38 MAPKs are MEK3 and MEK6. Similarly, p38 

activity has been shown to be increased in pressure overload, and in ET-1 and PE-

induced cardiac hypertrophy (Clerk, Michael et al. 1998; Ueyama, Kawashima et 

al. 1999; Takeishi, Huang et al. 2001). Over-expression of MEK3 and MEK6 

mediators has also demonstrated an induction of hypertrophy in cardiomyocytes 
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(Wang, Huang et al. 1998). Moreover, the upstream regulator of MEK3/6, 

transforming growth factor β–activated kinase 1 (TAK1) was up-regulated in 

hypertrophy, and a constitutively active TAK1 mutant also resulted in severe 

hypertrophy and subsequently cardiac failure in transgenic mice (Zhang, Gaussin 

et al. 2000). Of interest, p38 activates several transcriptional factors implicated in 

the hypertrophic response such as MEF2 and NFATs (Frey and Olson 2003). 

1.1.3.4 Protein Kinases 

Extracellular stimuli such as pressure overload activate PKC and PKD via 

GPCRs to trigger hypertrophic responses (Dorn and Force 2005; Harrison, Kim et 

al. 2006). PKC is one of the critical signal transducers downstream of Gαq. There 

are 12 isoforms of PKC and four of these isoforms have been implicated in the 

induction of cardiac hypertrophy, these are the α, β, δ, and ε isoforms (Dorn and 

Force 2005). Transgenic mice over expressing PKCβ developed cardiac 

hypertrophy associated with cardiac dysfunction, fibrosis and premature death 

(Bowman, Steinberg et al. 1997; Wakasaki, Koya et al. 1997; Chen, Hahn et al. 

2001). However, PKCβ knockout mice displayed a typical hypertrophic response 

to a GPCR agonist, PE or aortic banding-induced hypertrophy (Roman, Geenen et 

al. 2001). Thus, these findings suggest that PKCβ is not necessary for the 

pathological hypertrophic response. PKCε has been shown to cause compensated 

cardiac hypertrophy in vivo (Takeishi, Ping et al. 2000), and a similar study 

reported to induce hypertrophy with rapid progression to heart failure (Pass, 

Zheng et al. 2001). Transgenic mice over-expressing PKCδ displayed a mild 

hypertrophy, but in response to a cardiac insult, such as ischemia-induced 

damage, PKCδ exacerbated the damage (Chen, Hahn et al. 2001). PKCα appears 

to be critical for regulating cardiac contractility (Braz, Bueno et al. 2002; Hahn, 

Marreez et al. 2003; Braz, Gregory et al. 2004). Over-expression of PKCα in 

transgenic mice resulted in diminished cardiac contractility, while PKCα 

knockout mice had improved cardiac contractility (Braz, Gregory et al. 2004). 

Furthermore, inhibition of PKCα activity in Gαq-mediated hypertrophy showed an 

improvement of cardiac contractility, whereas activation of PKCα resulted in a 
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lethal cardiomyopathy (Hahn, Marreez et al. 2003). Similarly, transgenic mice 

expressing a constitutively active PKD1 developed pathological hypertrophy and 

died prematurely (Harrison, Kim et al. 2006). In contrast, conditional deletion of 

PKD1 resulted in a blunted hypertrophic response in various pathological models, 

including pressure overload, Ang II and isoproterenol-induced hypertrophy 

(Fielitz, Kim et al. 2008). 

1.1.3.5 Calcineurin/nuclear factor of activated T-cells (NFAT) 

Calcium is central to the control of contractile function and cardiac 

growth. Calcium/calmodulin is an important second messenger for GPCR 

agonists and biomechanical stress (Frey, McKinsey et al. 2000; Sugden 2001). 

The best described calcium-dependent signaling proteins are the calcineurin and 

calcium/calmodulin-dependent protein kinases (CaMKs). Calcineurin is a 

calmodulin-dependent phosphatase that dephosphorylates nuclear factor of 

activated T-cells (NFAT) transcription factors. It unmasks the nuclear localization 

signals, which results in the translocation of NFAT proteins to the nucleus and the 

activation of gene transcription. Stimulation with GPCR hypertrophic agonists 

such as Ang II and PE increased the calcineurin activity in cultured 

cardiomyocytes (Taigen, De Windt et al. 2000). Calcineurin activity was also 

increased in human hypertrophied and failing hearts (Haq, Choukroun et al. 

2001), as well as in the ventricular muscle of hearts exposed to Ang II and ET-

1(Li, Wang et al. 2005). Furthermore, calcineurin activity was up-regulated in 

hypertrophied hearts following aortic banding in rodents (Shimoyama, Hayashi et 

al. 1999; Lim, De Windt et al. 2000; De Windt, Lim et al. 2001; Zou, Hiroi et al. 

2001; Saito, Fukuzawa et al. 2003). Finally, expression of an activated form of 

calcineurin in transgenic mice produced profound cardiac hypertrophy, which 

rapidly progressed to dilated cardiomyopathy and heart failure (Molkentin, Lu et 

al. 1998). Contrarily, targeted inactivation of calcineurin resulted in an impaired 

hypertrophic response to GPCR agonists and pressure overload-induced 

hypertrophy in transgenic mice (Bueno, Wilkins et al. 2002). In addition, 

transgenic expression of a dominant negative form of the calcineurin A produced 
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an attenuated hypertrophic response to pressure overload stimulus (Zou, Hiroi et 

al. 2001). Pharmacological inhibition of calcineurin activity also attenuated 

cardiac hypertrophy in mouse models of transgenic constitutively active 

calcineurin A and pressure overload hypertrophy (Molkentin, Lu et al. 1998; 

Meguro, Hong et al. 1999), as well as in the cultured cardiomyocytes in response 

to Ang II and PE stimulation (Lattion, Michel et al. 1986; Obata, Nagata et al. 

2005). Consistent with the idea that calcineurin/NFAT coupling induces 

pathological cardiac hypertrophy, calcineurin regulates the hypertrophic response 

by dephosphorylation of NFAT (Olson and Williams 2000). NFAT translocates to 

the nucleus, where it associates with other transcription factors such as myocyte 

enhancer factor 2 (MEF2), to regulate cardiac genes (Wilkins, De Windt et al. 

2002; Frey and Olson 2003). NFAT-luciferase reporter mice were subjected to 

both physiological and pathological stimuli, and NFAT luciferase reporter activity 

was induced only in the pathological models, but not in the physiological models 

(Wilkins, Dai et al. 2004). Moreover, constitutive activation of a NFAT3 mutant 

in transgenic mice resulted in cardiac hypertrophy and heart failure, whereas the 

control mice did not develop hypertrophy (Molkentin, Lu et al. 1998). To further 

examine the role of calcineurin/NFAT signaling in mediating cardiac 

hypertrophy, other mediators in this pathway have been investigated. The 

myocyte-enriched calcineurin-interacting protein 1 (MCIP) is able to inhibit 

calcineurin signaling by binding directly to the catalytic subunit, which inactivates 

its ability to dephosphorylate NFAT and MEF2. Over-expression of MCIP1 in 

transgenic mice attenuated hypertrophy and prevented the progression to dilated 

cardiomyopathy in response to aortic-banding and the β-AR agonist isoproterenol 

(Rothermel, McKinsey et al. 2001; Hill, Rothermel et al. 2002).  

CaMK II is a protein kinase that has been implicated in cardiac 

hypertrophy and heart failure. Up-regulation of CaMKII has been found in human 

failing hearts and animal models of heart failure (Hoch, Meyer et al. 1999; 

Kirchhefer, Schmitz et al. 1999; Bossuyt, Helmstadter et al. 2008). CaMKII was 

also found to be induced in hypertrophy-inducing stimuli in vitro and pressure 

overload-induced hypertrophy in mice (Kato, Sano et al. 2000; Colomer, Mao et 
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al. 2003). Over-expression of CaMKII in transgenic mice induced cardiac 

hypertrophy, dilated cardiomyopathy and heart failure (Zhang, Johnson et al. 

2002; Zhang, Maier et al. 2003). Several studies have reported that the 

hypertrophic response in cultured cardiomyocytes was decreased by inhibiting 

CaMKs (Kato, Sano et al. 2000; Zhu, Zou et al. 2000). Further supporting this 

role, transgenic inhibition of CaMKII prevented cardiac dilation and dysfunction 

resulting from myocardial infarction and β-AR stimulation in mice (Zhang, Khoo 

et al. 2005). Recently, CaMKII-null mice were shown to be protected against 

hypertrophy and fibrosis in response to pressure overload stimulus (Backs, Backs 

et al. 2009). Furthermore, the activation of CaMKII in both cultured 

cardiomyocytes and in vivo models lead to the induction of hypertrophic markers 

ANP, BNP and β-MHC (Ramirez, Zhao et al. 1997; Colomer and Means 2000). 

1.1.3.6 Nuclear factor kappa B (NF-κB) 

Nuclear factor kappa B (NF-κB) is a transcription factor involved in the 

regulation of a variety of cellular processes, including cytokines, growth factors, 

immunoreceptors, cell adhesion molecules, acute phase response proteins and cell 

surface receptors (Zordoky and El-Kadi 2009). The NF-κB family is comprised of 

five hetero- or homo-dimers, i.e. p50, p52, p65 (RelA), RelB, and c-Rel (Kumar, 

Takada et al. 2004; Pereira and Oakley 2008). Each subunit has its own biological 

activity and different dimeric combinations of these subunits have different 

effects on cell function (Pereira and Oakley 2008). NF-κB can be activated by 

many stimuli including cytokines, viruses, oxidative stress and chemical agents 

(Guijarro and Egido 2001). Recently, NF-κB has been recognized as an important 

mediator in the development of cardiac hypertrophy and heart failure. Activation 

of NF-κB has been observed in the myocardium of patients with congestive heart 

failure (Wong, Fukuchi et al. 1998; Grabellus, Levkau et al. 2002). Similarly, NF-

κB has been found to be activated in myotrophin-induced hypertrophy in neonatal 

rat caridomyocytes (Gupta, Purcell et al. 2002). GPCR agonist stimulation by Ang 

II, ET-1 and PE also resulted in an activation of NF-κB in hypertrophic 

cardiomyocytes (Purcell, Tang et al. 2001; Hirotani, Otsu et al. 2002). 
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Additionally, it has been shown that reactive oxygen species-mediated activation 

of NF-κB is involved in tumor necrosis factor-α (TNF-α)-induced cardiomyocyte 

hypertrophy (Higuchi, Otsu et al. 2002). Furthermore, activation of NF-κB itself 

induces cellular hypertrophy in neonatal rat caridomyocytes (Purcell, Tang et al. 

2001). Conversely, expression of a dominant-negative NF-κB mutant significantly 

attenuated the hypertrophic response of aortic banding, Ang II and PE stimulation 

(Purcell, Tang et al. 2001; Li, Ha et al. 2004; Kawano, Kubota et al. 2005). 

Recently, it has been shown that NF-κB inhibition attenuated the hypertrophic 

response, but not left ventricular remodeling, suggesting that NF-κB is necessary 

for adaptive cardiac hypertrophy (Zelarayan, Renger et al. 2009). 

1.1.3.7 Other Signaling pathways 

Recently, several other pathways have been also implicated in cardiac 

hypertrophy, and these are pathways involving MEF2, Na+/H+ exchanger, 

peroxisome proliferator activated receptor (PPAR), and NADPH oxidase (Frey 

and Olson 2003; Rohini, Agrawal et al. 2010). Over-expression of CaMKII in 

transgenic mice induced cardiac hypertrophy and was associated with an 

induction of the MEF2 activity (Zhang, Johnson et al. 2002). The activity of 

Na+/H+ exchanger is increased in several animal models of cardiac hypertrophy, 

including pressure overload (Takewaki, Kuro-o et al. 1995) and post infarction 

remodeling (Yoshida and Karmazyn 2000), as well as in cultured cardiomyocytes 

subjected to mechanical stress (Yamazaki, Komuro et al. 1998). Enhanced Na+/H+ 

exchanger activity reduces the transmembrane Na+ gradient, which leads to 

increased intracellular Ca2+ levels, and triggesr cardiomyocyte hypertrophy via 

several pathways including calcium/calmodulin, calcineurin and MAPK. 

Inhibition of the Na+/H+ exchanger decreased the stretch-induced activation of the 

ERK pathway and protein synthesis in cultured cardiomyocytes (Takano, Komuro 

et al. 1996), which suggests that the Na+/H+ exchanger may also associated with 

the ERK-dependent pathway. It has been shown that agonist-induced PPARα 

activation progresses to contractile dysfunction in pressure overload-induced 

hypertrophied rat hearts (Young, Laws et al. 2001). Furthermore, cardiac over-
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expression of PPARα caused cardiomyopathy with contractile dysfunction 

(Czubryt, McAnally et al. 2003). With regard to NADPH oxidase, a study has 

shown that induction of cardiac hypertrophy by Ang II is dependent on NADPH 

oxidase activation (Hingtgen, Tian et al. 2006). 
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Figure 1.1 Schematic diagram of the major intracellular signaling pathways involved in 
cardiac hypertrophic response. There is a degree of complexity between the signaling pathways, 
therefore a highlight for the central pathways and effectors that have been shown to play a critical 
role in the signal transduction of hypertrophic and growth response in the heart. Those signaling 
pathways include: G protein-coupled receptors (GPCRs) activated by angiotensin II (Ang II), 
endothelin-1 (ET-1) and catecholamines, three various mitogen activated protein kinases 
(MAPKs) [i.e. extracellular signal regulated kinase (ERKs), c-Jun N-terminal kinase (JNKs) and 
p38 MAPKs], protein kinase C, calcineurin/nuclear factor of activated T-cells (NFAT), 
phosphoinositide 3-kinase (PI3K, p110γ). Adopted from (Bernardo, Weeks et al. 2010) 
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1.2 Cytochrome P450 (CYP) 

Cytochrome P450 (CYP) is a superfamily of hemeproteins that are 

involved in the oxidative metabolism of a wide range of endogenous and 

exogenous compounds (Nelson, Koymans et al. 1996). Some of the CYP 

substrates include steroids, bile acids, fatty acids, prostaglandins, environmental 

chemicals, pollutants and drugs (Nebert and Russell 2002). CYP can be classified 

into different families and subfamilies according to their amino acid sequences 

(Gonzalez and Nebert 1990; Guengerich 2003).They are phase I drug metabolism 

enzymes and are mainly expressed in the liver and to a varying degree in other 

extrahepatic tissues, including the lungs, kidneys, brain, gastrointestinal tract, and 

heart (Rushmore and Kong 2002; Imaoka, Hashizume et al. 2005). Within the 

superfamily, CYP1, CYP2 and CYP3 families have been identified as the major 

contributors in hepatic and extra-hepatic drug metabolism (Lewis 2003). Other 

CYP families are more involved in the biosynthesis and/or metabolism of 

endogenous substances (Meyer 1996; Danielson 2002).  

1.2.1 CYP expression in the heart 

The liver is known to express a vast majority of CYP enzymes; however, 

early studies detected the expression of CYP enzymes in cardiac tissues of various 

in vivo animal models (Geetha, Marar et al. 1991; Yamada, Kaneko et al. 1992; 

McCallum, Horton et al. 1993; Fulton, Mahboubi et al. 1995). Recently, several 

studies have identified the expression of many CYPs in human heart tissues 

(Thum and Borlak 2000a; Delozier, Kissling et al. 2007). In vitro studies have 

also indicated that CYP enzymes are expressed in cultured rat cardiomyocytes and 

the rat cardiomyoblast H9c2 cell line (Thum and Borlak 2000b; Zordoky and El-

Kadi 2007). The expression of CYPs in the cardiovascular tissues is summarized 

in Table 1.1.  
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1.2.1.1 CYP1 family 

The CYP1 family consists of three members, CYP1A1, CYP1A2 and 

CYP1B1. CYP1A1 and CYP1B1 are expressed in the hepatic and extra-hepatic 

tissues, whereas, CYP1A2 is mainly expressed in the liver (Whitlock 1986; 

Gonzalez 1990; Murray, Melvin et al. 2001; Danielson 2002). CYP1A1 and 

CYP1B1 are responsible for the oxidative metabolism of exogenous chemicals, 

such as polycyclic aromatic hydrocarbons (PAHs) (Fujii-Kuriyama, Imataka et al. 

1992; Murray, Melvin et al. 2001). CYP1A2 is involved in the metabolism of 

exogenous chemicals and drugs, such as caffeine and warfarin (Danielson 2002). 

The expression of CYP1 family has been detected in both humans and 

animals. In humans, the mRNA expression of CYP1A1 has been detected in the 

left ventricle of healthy subjects and in the right ventricle, aorta and left atrium of 

patients with dilated cardiomyopathy (Thum and Borlak 2000a; Thum and Borlak 

2002). Other studies also found that CYP1A1 was expressed in the left ventricular 

tissues of explanted human failing hearts and cardiac fibroblasts (Dubey, Jackson 

et al. 2005; Michaud, Frappier et al. 2010). CYP1A1 mRNA was also reported in 

rat left ventricular tissues (Thum and Borlak 2002). The inducibility of CYP1A1 

has been reported in vitro by the treatment of Aroclor 1254, and 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD) and β-naphthoflavone (βNF) in rat 

cardiomyocytes and H9c2 cells (Thum and Borlak 2000b; Zordoky and El-Kadi 

2010). In vivo studies showed that the treatment of βNF induced CYP1A1 in 

hearts of mice and guinea pigs (McCallum, Horton et al. 1993; Brittebo 1994; 

Granberg, Brunstrom et al. 2000). Moreover, CYP1A1 protein was detected in 

human coronary artery smooth muscle cells pretreated with 3-

methylcholantherene (3-MC) (Dubey, Jackson et al. 2004). On the other hand, 

CYP1A2 mRNA has been found in pig hearts (Messina, Chirulli et al. 2008), but 

not in human hearts (Thum and Borlak 2000a; Thum and Borlak 2002). In 

explanted human hearts, CYP1B1 has been reported to be the second most 

abundantly expressed CYP gene (Bieche, Narjoz et al. 2007). Furthermore, 

CYP1B1 was found to be expressed at a higher basal level than CYP1A1 in 

human cardiac fibroblast (Dubey, Jackson et al. 2005). The expression of 
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CYP1B1 was also detected in rat left ventricle (Thum and Borlak 2000b). In 

contrast to CYP1A1, CYP1B1 expression is expressed under constitutive and 

inducible conditions in vascular smooth muscle cells (VSMC) (Kerzee and Ramos 

2001). CYP1B1 protein was detected in mouse endothelial cells and aortic SMC 

following the treatment of TCDD and benzo(a)pyrene (BaP), respectively 

(Moorthy, Miller et al. 2003; Filbrandt, Wu et al. 2004). AhR ligands, TCDD and 

βNF have been shown to induce the expression of CYP1B1 in H9c2 cells 

(Zordoky and El-Kadi 2010). Similarly, it has been reported that 3-MC and BaP 

induced CYP1B1 in rat hearts (Aboutabl, Zordoky et al. 2009). Another study 

also indicated concentrated ambient particles such as oxygenated compounds and 

PAHs were able to induce CYP1B1 in rats (Ito, Suzuki et al. 2008).  

1.2.1.2 CYP2 family 

The CYP2 family is the largest family of CYP in humans (Lewis 2004). 

CYP2A6 is primarily expressed in the liver and mediates oxidative metabolism of 

several procarcinogens and drugs including aflatoxin and coumarin (Yun, 

Shimada et al. 1991; Salonpaa, Hakkola et al. 1993; Koskela, Hakkola et al. 

1999). CYP2A7 is also found in the liver, while CYP2A13 is expressed at a very 

low level (Koskela, Hakkola et al. 1999). Little is known about these two 

isoforms; however, CYP2A13 has been observed to metabolize coumarin as well 

(Lewis 2004). The CYP2B subfamily in humans only consists of CYP2B6, which 

accounts for less than 1% of the hepatic CYP content (Danielson 2002). It is 

involved in the metabolism of some clinically important drugs such as selegiline 

(Hidestrand, Oscarson et al. 2001). However, CYP2B subfamily enzymes are 

abundantly expressed in rodent hepatic tissues and are inducible by bartbiturates 

(Danielson 2002). The CYP2C subfamily constitutes about 20% of the hepatic 

CYP content in humans and metabolizes 20% of all clinically used drugs (Imaoka, 

Yamada et al. 1996; Guengerich 2006). CYP2D6 represents only 2% of the total 

hepatic CYP content in humans, yet it metabolizes more than 70 different drugs 

(Danielson 2002). Similarly, CYP2E1 is the only member of the CYP2E 

subfamily in humans and it catalyzes the metabolism of 70 substrates, which are 
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mainly small hydrophobic compounds (Hakkak, Korourian et al. 1996). Lastly, 

CYP2J2 is primarily expressed in extrahepatic tissues, with a high expression in 

the heart. It is involved in the metabolism of arachidonic acid to 

epoxyeicosatrienoic acids (EETs), which has significant biological implications 

(Wu, Moomaw et al. 1996; Zeldin, Foley et al. 1996).  

Like the CYP1 family, the CYP2 family is also found in the 

cardiovascular system. In humans, CYP2A6/7, CYP2B6/7, CYP2C8/9/19, 

CYP2D6, CYP2E1 and CYP2J2 have all been identified in heart tissues (Thum 

and Borlak 2000a; Delozier, Kissling et al. 2007). The major CYP isoforms in the 

human heart are CYP2C8 and CYP2J2, with the CYP2J2 being highly and 

constitutively expressed (Thum and Borlak 2002). However, the expression of 

CYP2C8, CYP2C9 and CYP2C11 were also found in the coronary arteries under 

basal conditions (Mancy, Dijols et al. 1996; Bolz, Fisslthaler et al. 2000). On the 

other hand, the expression of CYP2B6/7, CYP2C8-19, and CYP2D6 were also 

predominantly expressed in the right ventricle of patients with dilated 

cardiomyopathy (Thum and Borlak 2000a). Furthermore, CYP2E1 mRNA was 

detected in various parts of the heart including the right and left atria, right and 

left ventricle, and the ventricular septum (Thum and Borlak 2000a). CYP2J2 has 

been shown to be the main CYP isoform highly expressed in normal human hearts 

(Bieche, Narjoz et al. 2007; Delozier, Kissling et al. 2007). Recently, CYP2S1 has 

been found to be expressed at very low levels in fetal and adult human hearts 

(Choudhary, Jansson et al. 2005). In rats, CYP2A1/2, CYP2B1/2, CYP2C23, 

CYP2E1 and CYP2J3 were identified in the ventricular tissue (Thum and Borlak 

2002; Imaoka, Hashizume et al. 2005). Contrarily, CYP2C11 mRNA was only 

observed in isolated rat cardiomyocytes (Thum and Borlak 2000b), but not in 

heart tissues (Thum and Borlak 2002). Evidence for the expression of CYP2B1/2 

in the heart is still limited, however one study detected CYP2B1/2 in fetal rat 

heart at the protein level (Czekaj, Wiaderkiewicz et al. 2000). Similar to human 

hearts, CYP2S1 mRNA was detected at a very low level in the mouse hearts 

(Choudhary, Jansson et al. 2003). Moreover, in vitro studies showed that 
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CYP2B1/2, CYP2E1 and CYP2J3 were also expressed in H9c2 cells at 

comparable levels to those in rat heart tissues (Zordoky and El-Kadi 2007). 

1.2.1.3 CYP3 family 

In humans, the CYP3 subfamily comprises 4 members, CYP3A4, 

CYP3A5, CYP3A7 and CYP3A43 (Gellner, Eiselt et al. 2001). The most 

important CYP enzyme is CYP3A4, which is predominantly expressed in the liver 

and is responsible for 60% of the hepatic CYP-mediated metabolism of drugs 

(Martinez-Jimenez, Jover et al. 2007). CYP3A4 is involved in the metabolism of 

more than 30% of clinically administered drugs including dihydropyridine 

calcium channel blockers and macrolide antibiotics (Anzenbacher and 

Anzenbacherova 2001). The level of CYP3A5 in the human liver is approximate 

to that of CYP3A4, whereas CYP3A7 and CYP3A43 are expressed at much lower 

levels (Gibson, Plant et al. 2002). CYP3A5 appears to be more limited in its 

metabolic capacity than CYP3A4, but it actively metabolizes nifedipine, 

testosterone and cortisol. On the other hand, CYP3A7 seems to be involved in the 

metabolism of endogenous steroids (Gibson, Plant et al. 2002).  

The expression of the CYP3 family in cardiovascular tissues still remains 

to be elucidated. CYP3A4, CYP3A5, and CYP3A7 mRNA were not detected in 

human heart tissues; however, the expression of CYP3A4 was found in human 

endocardium and coronary vessels (Minamiyama, Takemura et al. 1999; Thum 

and Borlak 2002). Similarly, expression of CYP3A1/2 isoforms was not found in 

rat cardiovascular tissues, and only CYP3A1 mRNA was detected in isolated 

cardiomyocytes (Thum and Borlak 2000b). 

1.2.1.4 CYP4 family 

The CYP4 family is abundantly expressed in the kidney and to a lesser 

extent in the liver (Theken, Deng et al. 2011). The CYP4A isoforms are involved 

in the metabolism of endogenous compounds, namely long chain fatty acids and 

some prostaglandins, together with eicosanoids such as arachidonic acid. They 
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metabolize these medium and long chain fatty acids at their ω-carbon (Okita and 

Okita 2001; Lewis 2004). 

In humans, CYP4A11 has been detected in failing hearts (Michaud, 

Frappier et al. 2010), whereas CYP4B1 is predominantly expressed in the right 

ventricle of explanted human hearts (Thum and Borlak 2000a). In addition, 

CYP4F11 and CYP4F12 have been reported in human hearts as well (Cui, Nelson 

et al. 2000; Bylund, Bylund et al. 2001). CYP4A1, CYP4A3 and CYP4F4 were 

found to be expressed in rat heart tissues, while CYP4A2 was not detected 

(Engels, van Bilsen et al. 1999; Zordoky, Aboutabl et al. 2008). Similarly, CYP 

4A1 was also detected in the isolated rat cardiomyocytes (Thum and Borlak 

2000b). On the other hand, Cyp4a12 mRNA was found in mice hearts (Theken, 

Deng et al. 2011). In dogs, CYP4A1, CYP4A2 and CYP4F were all found in the 

heart tissues (Nithipatikom, Gross et al. 2004).  

1.2.1.5 Other CYP families 

Other CYP families are involved in the biosynthesis and/or metabolism of 

endogenous compounds, which includes thromboxane A2, bile acid, prostacyclin, 

and steroid biosynthesis (Elbekai and El-Kadi 2006). The expression of these 

CYP families has been less characterized in the heart tissues. In humans, CYP11A 

mRNA was identified in the normal and failing hearts (Young, Clyne et al. 2001). 

However, CYP11B1 and CYP11B2 were only found in some chambers of the 

human failing hearts but not in the normal hearts (Young, Clyne et al. 2001). 

Also, the expression of CYP11B2 mRNA was detected in rat hearts (Silvestre, 

Robert et al. 1998).  
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Table 1.1 The expression of CYP enzymes in cardiovascular tissues 

CYP Level Tissues Species References 
CYP1A1 mRNA heart human (Thum and Borlak 2000a; 

Walles, Thum et al. 2002; 
Choudhary, Jansson et al. 
2003; Michaud, Frappier 
et al. 2010) 

mRNA heart human, rat (Thum and Borlak 2002) 
protein SMC human (Dubey, Jackson et al. 

2004)  
mRNA, protein heart rat (Thum and Borlak 2000b) 
mRNA heart rat (Zordoky, Aboutabl et al. 

2008; Aboutabl, Zordoky 
et al. 2009) 

mRNA, protein, 
activity 

VSMC mouse (Kerzee and Ramos 2001)  

activity endothelial cells mouse (Granberg, Brunstrom et 
al. 2000) 

CYP1A2 protein endothelial cells human (Minamiyama, Takemura 
et al. 1999) 

CYP1B1 mRNA heart human (Choudhary, Jansson et al. 
2003) 

mRNA veins human (Bertrand-Thiebault, 
Ferrari et al. 2004) 

protein SMC human (Dubey, Jackson et al. 
2004) 

mRNA heart rat (Thum and Borlak 2002) 
mRNA heart rat (Zordoky, Aboutabl et al. 

2008; Aboutabl, Zordoky 
et al. 2009) 

mRNA, protein, 
activity 

VSMC mouse (Kerzee and Ramos 2001)  

protein SMC mouse (Moorthy, Miller et al. 
2003) 

protein endothelial cells mouse (Filbrandt, Wu et al. 
2004) 

CYP2A1/2 mRNA heart rat (Thum and Borlak 2002) 
CYP2A6/7 mRNA heart human (Thum and Borlak 2002) 
CYP2B1 mRNA endothelial cells human (Hoebel, Steyrer et al. 

1998) 
CYP2B1/2 mRNA heart rat (Thum and Borlak 2000b; 

Thum and Borlak 2002) 
mRNA  heart rat (Zordoky, Aboutabl et al. 

2008; Aboutabl, Zordoky 
et al. 2009) 

protein, activity heart rat (Czekaj, Wiaderkiewicz et 
al. 2000) 

CYP2B6/7 mRNA heart human (Thum and Borlak 2000a; 
Thum and Borlak 2002; 
Walles, Thum et al. 2002; 
Michaud, Frappier et al. 
2010) 

CYP2B23 mRNA heart mouse (Renaud, Cui et al. 2011) 
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CYP2C mRNA veins human (Bertrand-Thiebault, 
Ferrari et al. 2004) 

CYP2C8-19 mRNA heart human (Thum and Borlak 2000a; 
Thum and Borlak 2002; 
Walles, Thum et al. 2002) 

CYP2C8/9 mRNA, protein heart human (Delozier, Kissling et al. 
2007; Michaud, Frappier 
et al. 2010)  

CYP2C8/19 mRNA endothelial cells human (Fisslthaler, Popp et al. 
1999) 

CYP2C11 mRNA heart rat (Thum and Borlak 2000b; 
Zordoky, Aboutabl et al. 
2008) 

CYP2C11/13 mRNA heart rat (Aboutabl, Zordoky et al. 
2009) 

CYP2C29 mRNA heart human (Choudhary, Jansson et al. 
2003) 

CYP2E1 mRNA heart human (Thum and Borlak 2000a; 
Walles, Thum et al. 2002; 
Michaud, Frappier et al. 
2010) 

mRNA veins human  (Bertrand-Thiebault, 
Ferrari et al. 2004) 

mRNA heart human, rat (Thum and Borlak 2002) 
protein  coronary vessels,  

endocardium  
human, rat (Minamiyama, Takemura 

et al. 1999) 
mRNA heart rat (Thum and Borlak 2000b) 
mRNA heart rat (Zordoky, Aboutabl et al. 

2008; Aboutabl, Zordoky 
et al. 2009) 

CYP2J2/3 mRNA heart human (Walles, Thum et al. 
2002; Delozier, Kissling 
et al. 2007) 

mRNA, protein heart human (Wu, Moomaw et al. 
1996; Michaud, Frappier 
et al. 2010) 

mRNA heart human, rat (Thum and Borlak 2002) 
mRNA, protein heart  rat (Wu, Chen et al. 1997) 
mRNA heart rat (Zordoky, Aboutabl et al. 

2008; Aboutabl, Zordoky 
et al. 2009) 

CYP2S1 mRNA heart mouse (Choudhary, Jansson et al. 
2003) 

mRNA heart human, 
mouse 

(Choudhary, Jansson et al. 
2005) 

CYP2U1 mRNA heart human (Karlgren, Backlund et al. 
2004; Bieche, Narjoz et 
al. 2007) 

mRNA heart mouse (Renaud, Cui et al. 2011) 
mRNA heart human, 

mouse 
(Choudhary, Jansson et al. 
2003; Choudhary, Jansson 
et al. 2005)  

CYP3A1 mRNA heart rat (Thum and Borlak 2000b) 
CYP3A4 protein endothelium, 

endocardium, 
human (Minamiyama, Takemura 

et al. 1999) 
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coronary vessels  
CYP4A protein arteries rat (Kunert, Roman et al. 

2001) 
CYP4A1 mRNA heart rat (Thum and Borlak 2000b; 

Zordoky, Aboutabl et al. 
2008) 

CYP4A3 mRNA heart rat (Zordoky, Aboutabl et al. 
2008; Aboutabl, Zordoky 
et al. 2009) 

CYP4A1/2 protein heart dog (Nithipatikom, Gross et 
al. 2004) 

CYP4A1/2/3 activity heart rat (Engels, van Bilsen et al. 
1999) 

 Protein arteries (VSMC) cat (Harder, Gebremedhin et 
al. 1994) 

CYP4A1/2/3/8 mRNA arteries rat (Gebremedhin, Lange et 
al. 2000) 

CYP4A11 mRNA heart human (Thum and Borlak 2002; 
Michaud, Frappier et al. 
2010) 

mRNA veins human (Bertrand-Thiebault, 
Ferrari et al. 2004) 

CYP4A29 mRNA heart mouse (Renaud, Cui et al. 2011) 
CYP4B1 mRNA heart human (Thum and Borlak 2000a; 

Walles, Thum et al. 2002) 
CYP4F activity heart dog (Nithipatikom, Gross et 

al. 2004) 
CYP4F3 mRNA PMN human (Kikuta, Kusunose et al. 

1993) 
CYP4F1/4/5/6 mRNA heart rat (Aboutabl, Zordoky et al. 

2009) 
CYP4F4/5 mRNA heart rat (Zordoky, Aboutabl et al. 

2008) 
CYP4F11 mRNA heart human (Cui, Nelson et al. 2000) 
CYP4F12 mRNA heart human (Bylund, Bylund et al. 

2001) 
CYP4F13 mRNA heart mouse (Choudhary, Jansson et al. 

2003) 
CYP4F13/16 mRNA heart mouse (Theken, Deng et al. 

2011) 
CYP4F37 mRNA heart mouse (Renaud, Cui et al. 2011) 
CYP11A mRNA heart, arteries, 

veins 
human, 
mouse 

(Young, Clyne et al. 
2001) 

CYP11B2 mRNA heart rat (Silvestre, Robert et al. 
1998) 
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1.2.2 CYP expression in cardiac hypertrophy and heart failure 

The expression of several CYP isoforms has been associated with the 

development of cardiac hypertrophy and heart failure in human and rat hearts. In 

humans, it has been demonstrated that the induction of CYP2A6/7 and CYP4A11 

expression was found in hypertrophied left ventricle (Thum and Borlak 2002). 

CYP2E1 protein level was significantly increased in the left ventricular 

myocardium of patients with dilated cardiomyopathy (Sidorik, Kyyamova et al. 

2005). In addition, an upregulation of CYP1B1, CYP2E1, CYP2J2, CYP2F2 and 

CYP4A10 was observed in human failing hearts (Tan, Moravec et al. 2002; 

Elbekai and El-Kadi 2006). Furthermore, CYP11B1 and CYP11B2 were found to 

be expressed in the vascular wall and left atria of human failing hearts, while not 

detected in normal hearts (Young, Clyne et al. 2001). The elevated levels of 

CYP11B2 mRNA were found to be associated with increased myocardial fibrosis 

and left ventricular dysfunction in chronic heart failure patients (Satoh, Nakamura 

et al. 2002). In rats, the expression of CYP1B1, CYP2A1/2, CYP2B1/2, CYP2E1 

and CYP2J3 was significantly increased in the left ventricle of spontaneously 

hypertensive rats (SHRs) compared to normotensive rats (Thum and Borlak 

2002). Furthermore, a significant induction in the mRNA expression of CYP1A1, 

CYP1B1 and CYP4A3, with an inhibition of CYP2C11 and CYP2E1 were found 

in isoproterenol-induced cardiac hypertrophy in rats (Zordoky, Aboutabl et al. 

2008).  

1.3 Arachidonic acid metabolism 

Arachidonic acid is a polyunsaturated fatty acid found in the 

phospholipids of cell membranes. It is released into the cytosol by the activation 

of phospholipase A2 in response to stress stimuli (Mukherjee, Miele et al. 1994; 

Jenkins, Cedars et al. 2009). The free arachidonic acid can be metabolized via 

three major enzymatic pathways, namely those involving cyclooxygenases 

(COXs), lipoxygenases (LOXs), and CYP enzymes (Roman 2002). 
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1.3.1 CYP-mediated arachidonic acid metabolism 

In the first pathway, COXs metabolize arachidonic acid to prostaglandin 

(PG) G2 and PGH2. PGH2 is further metabolized by CYP5A1 (thromboxane A2 

synthase) to thromboxane A2 and by CYP8A1 (prostacyline I2 synthase) to 

prostacyclin I2 (PGI2). In the second pathway, LOX enzymes metabolize 

arachidonic acid to hydroxyeicosatetraenoic acids (HETEs) and 

dihydroxyeicosatetraenoic acids (DiHETEs), which are subsequently converted to 

hydroxyeicosatetraenoic acids (HETEs), leukotrienes, or lipoxins. In the third 

pathway, CYP enzymes can metabolize arachidonic acid to epoxyeicosatrienoic 

acids (EETs) by CYP epoxygenases and hydroxyeicosatetraenoic acids (HETEs) 

by CYP ω-hydroxylases (Roman 2002). The metabolism of arachidonic acid by 

the COXs and LOXs pathways has been well established. However, the role of the 

CYP pathway in arachidonic acid metabolism has recently gained scientific 

attention. Several studies have demonstrated the involvement of CYP-mediated 

arachidonic acid metabolites in different physiological functions. Moreover, other 

studies have investigated the ability of specific CYP isoforms to metabolize 

arachidonic acid to certain metabolites.  

1.3.1.1 Epoxyeicosatrienoic acids (EETs) 

The enzymatic reaction involving CYP epoxygenases involves 

epoxidation at the 5-, 8-, 11-, and 14-positions of arachidonic acid, resulting in the 

formation of four regioisomers, 5,6-, 8,9-, 11,12- and 14,15-EETs. Several CYP 

enzymes can be considered as CYP epoxygenases and metabolize arachidonic 

acid into different EET regioisomers. These mainly include the CYP1A, CYP2B, 

CYP2C, CYP2E and CYP2J subfamilies (Imig 2000; Zeldin 2001). Nevertheless, 

members of the CYP2C and CYP2J subfamilies are considered as the major 

enzymes involved in the synthesis of EETs (Kroetz and Zeldin 2002; Jenkins, 

Cedars et al. 2009). 

One of the metabolic fates of EETs is the hydrolysis by soluble epoxide 

hydrolase (sEH) into a less biologically active form, 5,6-, 8,9-, 11,12- and 14,15-
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dihydroxyeicosatrienoic acids (DHETs) (Zeldin, Kobayashi et al. 1993; Imig 

2000; Spector and Norris 2007). Alterations in the sEH activity would result in an 

accumulation of EETs, and predominantly metabolize by β-oxidation or chain 

elongation. β-Oxidation would result in the formation of a 16 carbon epoxy fatty 

acid, while chain elongation would form the 22 carbon epoxy fatty acid (Fang, 

Kaduce et al. 2001; Fang, Weintraub et al. 2002). Other pathways in the 

metabolism of EETs involve the CYP ω-oxidases, which result in the insertion of 

a hydroxyl group at the ω terminal of EETs. Additionally, 5,6- and 8,9-EETs are 

also substrates for COX enzymes, which converts them to 5,6-epoxy-PGE1 and 

11-hydroxy-8,9-EET, respectively (Zhang, Prakash et al. 1992; Carroll, Balazy et 

al. 1993). If EETs are not further metabolized, they are generally incorporated 

into the phospholipid pools of cell membranes, which are the storage sites for 

these molecules in many cell types (VanRollins, Kaduce et al. 1993; Weintraub, 

Fang et al. 1997; Roman 2002). EETs can then be released from the membrane 

phospholipids in response to vasoactive hormones and other stimuli that activate 

phospholipases (Carroll, Balazy et al. 1997; Weintraub, Fang et al. 1997). About 

90% of the total EETs are incorporated back into the membrane phospholipids 

(Kaspera and Totah 2009).  

1.3.1.2 20-Hydroxyeicosatetraenoic acid (20-HETE) 

20-HETE is the major product in the metabolism of arachidonic acid by 

CYP ω-hydroxylases. The metabolic reaction by CYP ω-hydroxylases is the 

hydroxylation of arachidonic acid at the ω terminal, forming the 20-HETE. 

Members of the CYP4A and CYP4F subfamilies are the major CYP ω-

hydroxylase enzymes responsible for 20-HETE formation. However, CYP1A1, 

CYP1B1 and CYP2E1 have been reported to produce different regioisomers of 

HETEs (Laethem, Balazy et al. 1993; Elbekai and El-Kadi 2006). Similarly, 20-

HETE can be metabolized by β-oxidation to 16- or 18-carbon derivatives, which 

are less biologically active (Fang, Kaduce et al. 2001; Roman 2002). 20-HETE 

can also be metabolized by COXs to vasodilator prostaglandin or prostacyclin-

like derivatives, such as 20-hydroxy-prostaglandin G2 and H2 (Schwartzman, 
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Falck et al. 1989). Likewise, if 20-HETE is not further metabolized, it can be re-

incorporated into membrane phospholipid pools, where it can be released again 

through the actions of agents that activate phospholipases.  

1.3.2 The role of CYP-mediated arachidonic acid metabolites in 

cardiovascular diseases 

1.3.2.1 Epoxyeicosatrienoic acids (EETs) 

EETs exhibit a variety of diverse actions in different types of tissues and 

cells. The role of EETs in cardiovascular physiology has been the focus of several 

studies (Imig 2000; Zeldin 2001; Kroetz and Zeldin 2002; Roman 2002; Jenkins, 

Cedars et al. 2009). EETs have been reported to possess vasodilating 

(Pomposiello, Carroll et al. 2001; Pratt, Li et al. 2001; Zhang, Oltman et al. 2001), 

fibrinolytic (Node, Ruan et al. 2001), anti-inflammatory (Node, Huo et al. 1999; 

Campbell 2000), anti-apoptotic, (Chen, Capdevila et al. 2001) and potential anti-

fibrotic effects (Levick, Loch et al. 2007). 

EETs display a potent vasodilating property in small resistance vessels of 

heart, brain, kidney, skeletal muscle and intestine (Fang, Kaduce et al. 2001). 

EETs activate the opening of calcium-activated K+ channels (Kca) and transient 

receptor potential Ca2+ channels (TRPV4) (Hu and Kim 1993; Earley, Heppner et 

al. 2005), resulting in hyperpolarization of the VSMCs (Gebremedhin, Ma et al. 

1992) and thereby producing vasorelaxation. The vasodilating effect of EETs is 

regioisomer-selective and organ-specific. Generally, EETs are vasodilators, 

however, 5,6- and 8,9-EETs can be metabolized by COXs to vasoconstrictor 

metabolites (Imig, Navar et al. 1996; Zhu, Bousamra et al. 2000; Roman 2002). 

Vasoconstriction effects of EETs were found in vitro to constrict pulmonary 

arteries of rabbits (Zhu, Bousamra et al. 2000). Similarly, EETs were found to 

increase acute hypoxic vasoconstriction in mouse lungs (Pokreisz, Fleming et al. 

2006; Keseru, Barbosa-Sicard et al. 2008). However, a recent report has 

demonstrated that sEH inhibitors, which increase the endogenous levels of EETs, 
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prevented monocrotaline-induced pulmonary hypertension in rats (Revermann, 

Barbosa-Sicard et al. 2009).  

In addition to their vasodilating effect, EETs have potent anti-

inflammatory properties (Node, Huo et al. 1999). It has been reported that EET 

decreased cytokine-induced endothelial cell adhesion molecule expression, and 

prevented leukocyte adhesion to the vascular wall by inhibiting NF-κB and IκB 

kinase (Node, Huo et al. 1999). Also, activation of the tyrosine kinase and the 

MAPK signaling pathway may be involved in mediating the anti-inflammatory 

effect of EETs (Roman 2002). In vascular endothelial cells, EETs displayed 

fibrinolytic properties through the induction of plasminogen activator gene 

expression, and antithrombotic properties through the inhibition of platelet 

aggregation and platelet adhesion to endothelial cells (Node, Ruan et al. 2001; 

Jiang, McGiff et al. 2004; Krotz, Riexinger et al. 2004). Similarly, studies have 

shown that EETs increased endothelial cell growth and angiogenesis 

(Munzenmaier and Harder 2000; Wang, Wei et al. 2005; Michaelis and Fleming 

2006). On the other hand, EETs has been reported to inhibit the migration and 

proliferation of VSMCs through the cAMP/PKA signaling pathway (Davis, 

Thompson et al. 2002; Sun, Sui et al. 2002). 

In the kidney, EETs have been found to be important regulators of 

glomerular filtration by activating Na+/H+ exchanger (Harris, Munger et al. 1990). 

Additionally, EETs was shown to mediate pressure natriuresis and control blood 

pressure (Dos Santos, Dahly-Vernon et al. 2004). In cerebral circulation, EETs are 

important regulator of cerebral blood flow (Alkayed, Birks et al. 1996). 

Astrocytes have been reported to produce EETs upon receptor stimulation with 

excitatory neurotransmitters (Alkayed, Birks et al. 1997); it suggests EETs are 

acting on the cerebral VSMC to dilate cerebral arteries which allow more blood 

flow to the active regions of the brain.  

In the heart, numerous studies have demonstrated that EETs have 

cardioprotective effects. Studies demonstrated that exogenous administration of 

11,12-EET improved the recovery of contractile function, increased cell 

shortening and increased intracellular Ca2+ concentrations after ischemia-
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reperfusion injury in rat hearts (Moffat, Ward et al. 1993; Wu, Chen et al. 1997). 

Exogenous administration of 11,12- and 14,15-EETs into the ischemic hearts of 

canines and mice produced a remarkable decrease in myocardial infarct size 

(Nithipatikom, Moore et al. 2006; Motoki, Merkel et al. 2008). EETs also exert 

protective effects to attenuate myocardial stunning and block the loss in 

membrane potential in rat cardiomyocytes and H9c2 myocytes (Javadov, 

Karmazyn et al. 2009; Katragadda, Batchu et al. 2009). Furthermore, transgenic 

over-expression of CYP2J2, a CYP epoxygenase enzyme responsible for the 

endogenous production of EETs, demonstrated an improved recovery of left 

ventricular developed pressure after ischemia-reperfusion injury in mice (Seubert, 

Yang et al. 2004). Similarly, increasing the intracellular concentration of EETs in 

a knockout mouse model of the Ephx2 gene to abolish the formation of sEH also 

showed an improved recovery of left ventricular developed pressure and less 

infarction after ischemia-reperfusion (Seubert, Sinal et al. 2006). Consistently, 

sEH-null mice were found to be protected from pressure overload-induced cardiac 

arrhythmia and heart failure (Monti, Fischer et al. 2008).  Moreover, inhibiting the 

sEH with selective inhibitors has been shown to attenuate left ventricular 

hypertrophy in mice with pressure overload-induced myocardial failure (Xu, Li et 

al. 2006) and in Ang II-induced cardiac hypertrophy (Ai, Pang et al. 2009). These 

cardioprotecitve effects of EETs have been attributed to the activation of ATP-

sensitive K+ channels, a p42/p44 MAPK pathway, and a cAMP/PKA-dependent 

signaling pathway, as well as inhibition of NF-κB (Seubert, Yang et al. 2004; Lu, 

Ye et al. 2006; Xu, Li et al. 2006; Batchu, Law et al. 2009). In addition, EETs 

modulate the activation of several ion channels. It has been reported that EETs 

inhibited cardiac Na+ channels (Lee, Lu et al. 1999) and activated ATP-sensitive 

K+ channels (Lu, Hoshi et al. 2001; Lu, VanRollins et al. 2002; Lu, Ye et al. 

2006). Furthermore, studies have shown that EETs increased cardiac Ca2+ currents 

by enhancing phosphorylation of the L-type Ca2+ channels (Xiao, Huang et al. 

1998; Xiao, Ke et al. 2004). It also increased the maximal peak transient outward 

K+ currents and activated the voltage-dependent K+ channels by phosphorylation 
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of α-subunit via cAMP/PKA-dependent pathway (Anderson, Adams et al. 2000; 

Ke, Xiao et al. 2007).   

1.3.2.2 20-Hydroxyeicosatetraenoic acid (20-HETE) 

In contrast to EETs, 20-HETE has been reported to be a potent 

vasoconstrictor in the renal, cerebral, pulmonary, mesenteric and skeletal muscle 

arterioles (Imig, Navar et al. 1996; Alonso-Galicia, Falck et al. 1999; 

Gebremedhin, Lange et al. 2000; Zhu, Bousamra et al. 2000; Kunert, Roman et al. 

2001; Wang, Zhang et al. 2001). The vasoconstriction effect of 20-HETE is 

through the blocking of calcium-activated K+ channels, resulting in depolarization 

of the VSMCs, and leading to an increase of intracellular K+ levels with 

subsequent activation of voltage-gated Ca2+ channels (Harder, Gebremedhin et al. 

1994; Imig, Zou et al. 1996; Zou, Fleming et al. 1996; Roman 2002). 20-HETE 

also contributes to the vasoconstriction effects of the ET-1-induced changes in the 

kidney (Oyekan and McGiff 1998). In addition, it has been found that 20-HETE 

mediates the proliferation of VSMCs in response to Ang II and NE stimulation 

through the activation of a Ras MAPK signaling pathway (Muthalif, Benter et al. 

1998; Uddin, Muthalif et al. 1998; Muthalif, Parmentier et al. 2000). In the 

cerebral circulation, cerebral microvessels have been found to produce 20-HETE 

when incubated with arachidonic acid (Harder, Gebremedhin et al. 1994; 

Gebremedhin, Lange et al. 2000). 20-HETE also plays an important role in the 

heart. Inhibition of 20-HETE formation was found to improve the cardiac 

function and to reduce cardiomyocyte apoptosis following ischemia-reperfusion 

injury in rats (Lv, Wan et al. 2008; Yousif, Benter et al. 2009). Furthermore, it has 

been shown that 20-HETE formation was increased in isoproterenol-induced 

hypertrophied rat hearts (Zordoky, Aboutabl et al. 2008). 
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Figure 1.2 Pathways of arachidonic acid metabolism. Arachidonic acid is metabolized by 
cyclooxygenases (COXs), lipoxygenases (LOXs), and cytochromes P450 (CYPs). COXs 
metabolize arachidonic acid into PGH2, which is further metabolized by CYP5A1 and CYP8A1 to 
TXA2 and PGI2, respectively. LOXs metabolize arachidonic acid to HETEs and subsequently to 
leukotrienes. The third metabolic pathway is mediated by the CYP enzymes, which metabolize 
arachidonic by ω-hydroxylases and epoxygenases to HETEs and EETs, respectively (Roman 
2002). 
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1.4 Soluble epoxide hydrolase (sEH) as a therapeutic target 

EETs exert a variety of cardioprotective effects including vasodilation, 

anti-inflammatory and anti-migratory actions on VSMCs, anti-hypertensive effect 

and protection against ischemic stroke and vascular disease. However, EETs can 

be metabolized by soluble epoxide hydrolase (sEH) into their corresponding diols 

(DHETs), diminishing their beneficial cardiovascular properties. Therefore, 

inhibition of sEH is a promising therapeutic strategy to enhance the endogenous 

levels of EETs by preventing their metabolism (Imig and Hammock 2009).  

1.4.1 Soluble epoxide hydrolase (sEH) 

The EPHX2 gene encodes the sEH enzyme, which primarily exists as a 

homodimer with monomers arranged in an anti-parallel form of the two (Oesch, 

Schladt et al. 1986; Newman, Morisseau et al. 2005; Morisseau and Hammock 

2008). Each monomer is a 62.5kDa protein and composed of two domains, a C-

terminal epoxide hydrolase activity which acts on epoxy fatty acids, and an N-

terminal phosphatase activity which acts on lipid phosphates (Newman, 

Morisseau et al. 2003; Morisseau and Hammock 2005; EnayetAllah, Luria et al. 

2008). The epoxide hydrolase activity is well defined; however, the biological 

role of the phosphatase activity remains to be elucidated (Tran, Aronov et al. 

2005). sEH is a highly conserved enzyme that is widely distributed in numerous 

tissues, including lungs, heart, brain, spleen, adrenal, intestine, bladder, vascular 

endothelium, smooth muscle, placenta, skin, mammary glands and other tissue 

(Enayetallah, French et al. 2004). However, sEH has demonstrated to be highly 

expressed in the liver and kidney (Yu, Davis et al. 2004; Newman, Morisseau et 

al. 2005). Within the cell, sEH is mainly localized in the cytosolic faction; it has 

also been found to localize in the peroxisomes (Enayetallah, French et al. 2006).  

1.4.1.1 sEH expression in the heart 

The expression of she has been found in the human myocardium and 

blood vessels (Enayetallah, French et al. 2004). Other studies showed that the 
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activity of sEH was highly expressed in the human coronary endothelial cells 

(VanRollins, Kaduce et al. 1993), and lower levels were detected in arteries and 

vascular smooth muscle cells (Yu, Davis et al. 2004). In rats, a recent study 

detected the mRNA expression of sEH in the heart of Sprague-Dawley rats 

(Zordoky, Aboutabl et al. 2008). Several studies also determined a high level of 

sEH activity in the heart of these rats (Oesch, Schladt et al. 1986; Schladt, Worner 

et al. 1986). Furthermore, the mRNA expression of sEH was identified in the 

heart of mice at a moderate level (Johansson, Stark et al. 1995). The protein and 

activity levels were also reported in mouse heart by another study (Waechter, 

Bentley et al. 1988). 

1.4.1.2 sEH expression in the cardiac hypertrophy and heart failure 

The expression of sEH has been found to be altered in several 

cardiovascular conditions. One study has identified EPHX2, the gene encoding 

sEH, as a susceptibility factor for heart failure in spontaneously hypertensive 

heart failure (SHHF) rats. They found an increase in the expression of the 

transcript, protein, and enzymatic activity levels in these rats, which lead to a 

more rapid hydrolysis of cardioprotective EETs. The role of sEH in heart failure 

was confirmed using Ephx2 knockout mice, where Ephx2 gene ablation protected 

from pressure overload-induced heart failure and cardiac arrhythmias (Monti, 

Fischer et al. 2008). Other studies have shown that increased the mRNA and 

protein expression of sEH in both human umbilical vein ECs and bovine aortic 

ECs. Similarly, the protein level of sEH was induced in the aortic intima of 

spontaneous hypertensive rats and by Ang II in normotensive rats (Ai, Fu et al. 

2007). To further confirm the role of sEH in cardiac hypertrophy, Ai and 

colleagues have detected an increased level of sEH protein in the rat myocardium 

of Ang II-induced cardiac hypertrophy (Ai, Pang et al. 2009). Correspondingly, an 

in vitro study showed that Ang II induced sEH protein expression and cardiac 

hypertrophy in rat neonatal cardiomyocytes (NCMs). Interestingly, the authors 

further showed that adenoviral over-expression of sEH in cultured NCMs 

increased the cell area and expression of hypertrophic markers. These results 
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suggest sEH as a mediator for the hypertrophic effect of Ang II, but also sufficient 

for the induction of cardiac hypertrophy (Ai, Pang et al. 2009). Recently, a study 

has demonstrated that isoproterenol-induced cardiac hypertrophy significantly 

increased the mRNA expression of sEH in rat hearts (Zordoky, Aboutabl et al. 

2008). Moreover, the mRNA and protein expression of sEH were also found to be 

induced in AhR ligands; 3-MC- and BaP-mediated cardiac hypertrophy in rats 

(Aboutabl, Zordoky et al. 2009).   

1.4.2 Soluble epoxide hydrolase (sEH) inhibitors 

Several sEH inhibitors have been synthesized, targeting compounds with 

high potency, solubility and stability. The first-generation of sEH inhibitors were 

potent competitive inhibitors, which included chalcone oxides and glycidols 

(Mullin and Hammock 1982; Spector, Fang et al. 2004; Morisseau and Hammock 

2005). However, instability was a concern as these compounds are rapidly 

inactivated by glutathione and glutathione transfereases (Spector, Fang et al. 

2004; Morisseau and Hammock 2005). Amides, ureas and carbamate sEH 

inhibitors were discovered later; they are potent, competitive tight-binding and 

stable transition state inhibitors of sEH. Among the different sEH inhibitors, urea 

is the central pharmacophore that binds to the sEH active site through the 

formation of hydrogen bond-stabilized salt bridges between the urea moiety and 

residues of the C-terminal of sEH (Morisseau, Goodrow et al. 1999; Morisseau 

and Hammock 2005). This suggests that this interaction imitates the transient 

intermediates during the enzymatic reaction that involves the opening of epoxide 

ring by sEH (Argiriadi, Morisseau et al. 2000; Morisseau, Goodrow et al. 2002). 

sEH inhibitors with the urea pharmacophore include 1-cyclohexyl-3-

dodecyl-urea (CDU) and 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA). 

Although these are highly potent enzyme inhibitors, they seem to have poor 

solubility in water (Fang, Weintraub et al. 2004). The solubility of AUDA is 

higher than that of cyclohexyl ureas, however, AUDA requires a considerable 

amount of 2-hydroxylpropyl β-cyclodextrin to increase its solubility and 

bioavailability. Several structural modifications were made to increase the water 
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solubility of the inhibitor without reducing its potency (Kim, Heirtzler et al. 2005; 

Hwang, Tsai et al. 2007; Ghosh, Chiang et al. 2008; Morisseau and Hammock 

2008). Finally, 1-adamantan-3-(5-(2-(2-ethylethoxy)ethoxy)pentyl)urea (AEPU) 

demonstrated improved water solubility, good oral bioavailability and high 

potency, but a decline in plasma concentration as it was rapidly metabolized. 

Recently, several compounds have been shown excellent potency and efficacy in 

many species, and these include trans-4-[4-(3-adamantan-1-yl-ureido)-

cyclohexyloxyl]-benzoic acid (t-AUCB), and 1-(1-methanesulfonyl-piperidin-4-

yl)-3-(4-trifluoromethoxyphenyl)-urea (TUPS) (Chiamvimonvat, Ho et al. 2007). 

TUPS has demonstrated a high potency on human sEH and appropriate oral 

bioavailability and pharmacokinetic in a canine model (Tsai, Hwang et al. 2010).  

1.4.3 Role of sEH inhibitors in cardiovascular diseases 

Inhibition of sEH has emerged as a novel approach for the treatment of 

some cardiovascular diseases. Several studies have shown that sEH inhibitors 

exert a significant effect in reducing blood pressure in numerous animal models of 

hypertension (Imig and Hammock 2009). It has been found that the N,N’-

dicyclohexyl urea (DCU) lowered blood pressure and decreased DHET excretion 

in SHRs (Yu, Xu et al. 2000). DCU decreased blood pressure in a rat model of 

Ang II-induced hypertension (Imig, Zhao et al. 2002). AUDA was the first sEH 

inhibitor administered orally and found to attenuate blood pressure and increase 

the plasma EET to DHET ratio in rat and mouse models of Ang II-induced 

hypertension (Imig, Zhao et al. 2005; Jung, Brandes et al. 2005; Loch, Hoey et al. 

2007), as well as in stroke-prone spontaneously hypertensive rats (SHRSP) (Li, 

Carroll et al. 2008). Similarly, treatment with N-adamantyl-N’-dodecylurea 

(ADU) and t-AUDA decreased systolic blood pressure and normalized endothelial 

function in deoxycorticosterone acetate (DOCA)-salt hypertensive rats (Loch, 

Hoey et al. 2007; Manhiani, Quigley et al. 2009). Furthermore, a significant 

reduction of the systolic blood pressure was found in male sEH knockout mice as 

compared to the wild-type mice in dietary salt loading and DOCA-salt 

hypertension (Sinal, Miyata et al. 2000; Manhiani, Quigley et al. 2009). The 
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mechanism by which sEH inhibitors lower blood pressure is thought to depend on 

decreased vascular resistance and enhanced Na+ excretion (Zhao, Yamamoto et al. 

2004; Imig, Zhao et al. 2005; Jung, Brandes et al. 2005). These findings are 

consistent with the biological actions of EETs to dilate blood vessels and inhibit 

renal tubular Na+ reabsorption (Spector, Fang et al. 2004; Imig 2005; Fleming 

2008). 

sEH inhibitors also exert cardioprotective effects against ischemia-

reperfusion. Administration of AUDA showed an improved recovery of left 

ventricular developed pressure and a smaller myocardial infarct size in canine 

hearts (Gross, Gauthier et al. 2008). Similarly, a sEH inhibitor, AUDA butyl ester 

(AUDA-BE) significantly reduced the infarct size after myocardial ischemia-

reperfusion injury in mice (Motoki, Merkel et al. 2008). Furthermore, AEPU and 

t-AUCB showed an improved cardiac function and prevented the progression of 

cardiac remodeling post myocardial infarction in mice (Li, Liu et al. 2009). With 

regard to its role in cardiac hypertrophy, AUDA has been shown to attenuate 

cardiac hypertrophy in SHRSP rats (Li, Carroll et al. 2008). Moreover, the sEH 

inhibitors AEPU and AUDA were found to decrease left ventricular hypertrophy 

in a mouse model of pressure overload-induced cardiac hypertrophy (Xu, Li et al. 

2006). Administration of TUPS also prevented the left ventricular hypertrophy of 

Ang II-induced cardiac hypertrophy (Ai, Pang et al. 2009). More recently, it has 

been shown that inhibition of sEH with TUPS protects against BaP-induced 

cardiac hypertrophy in rats (Aboutabl, Zordoky et al. 2011). 

The effect of sEH inhibitors in the protection of cardiac hypertrophy was 

attributed to their ability to prevent metabolism of EETs, thereby prolonging their 

effects, which in turn blocks the activation of NF-κB (Xu, Li et al. 2006). 

Generally, NF-κB is inactive when bound to its inhibitor protein, IKB. Once IKB 

is phosphorylated by IKB kinase (IKK), NF-κB translocates to the nucleus and 

mediates gene transcription. EETs can inhibit IKK, which prevents the activation 

of NF-κB and ultimately the NF-κB-mediated gene transcription (Campbell 

2000). NF-κB is a downstream target of several signaling pathways that are 
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involved in cardiac hypertrophy and heart failure; these include the α-AR, ras, 

PI3K/Akt, PKC, p38 and MEKK1/4-MAPK pathways (Harris, Li et al. 2008). 

1.5 Rationale, Hypotheses, and Objectives 

1.5.1 Rationale 

Cardiovascular disease is the leading cause of death in North America. 

While the rate of deaths from cardiovascular disease has been declining over the 

past few decades, it remains as one of the major health problems of modern times. 

It accounts for more than 30% of all deaths in 2008 and costs more than $298 

billion in the United States and $21 billion in Canada. Heart failure alone affects 

more than 5.8 million patients and is the main cause of mortality and morbidity 

resulting from cardiovascular diseases in North America. (Roger, Go et al. 2012). 

Cardiac hypertrophy is a major pathological event and prolonged hypertrophy is 

known as a significant risk factor for heart failure and sudden death. Therefore, it 

is important to identify the molecular basis of cardiac hypertrophy and develop 

treatment approaches to prevent or reverse the hypertrophic phenotype and 

subsequently heart failure at an early stage. 

In searching for the pathogenesis of cardiovascular disease, increasing 

evidence has suggested a role of the CYP superfamily in the onset, progression 

and prognosis of cardiovascular disease (Roman 2002). The expression of many 

CYP enzymes has been identified in the heart and their levels have been reported 

to be altered during cardiac hypertrophy and heart failure. The CYP enzymes are 

considered as one of the major metabolic factors for the metabolism of 

arachidonic acid. Arachidonic acid is metabolized by CYP epoxygenases to 

cardioprotective metabolites, EETs and by CYP ω-hydroxylases to cardiotoxic 

metabolites, HETEs. These metabolites have a significant biological role in the 

regulation of the cardiovascular system (Roman 2002). The opposing effects of 

these metabolites suggest the maintenance of a balanced formation of EETs and 

20-HETE is critical for normal homeostasis.  
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EETs have been shown to have numerous beneficial effects in the 

cardiovascular system. Studies have demonstrated that exogenous administration 

of EETs improved the recovery of contractile function, increased cell shortening 

and intracellular Ca2+ concentrations, and decreased myocardial infarct size in 

ischemic hearts (Moffat, Ward et al. 1993; Wu, Chen et al. 1997; Nithipatikom, 

Moore et al. 2006; Motoki, Merkel et al. 2008). Furthermore, EETs exert 

protective effects to attenuate myocardial stunning and block the loss in 

membrane potential in rat cardiomyocytes and H9c2 myocytes (Javadov, 

Karmazyn et al. 2009; Katragadda, Batchu et al. 2009). Recently, EETs have been 

considered as a new therapeutic target, as increased EET levels protect the overall 

health of cardiovascular physiology. Therefore, several studies have demonstrated 

a novel therapeutic approach using sEH inhibitors in the treatment of 

cardiovascular diseases. The beneficial effect of sEH inhibitors is attributed to 

their ability to inhibit the sEH enzyme and increase the endogenous levels of 

EETs by preventing their metabolism. As a result, EETs are preserved to exhibit 

several cardioprotective effects, including vasodilation, anti-inflammatory and 

anti-hypertensive effects, preventing the development of cardiac hypertrophy and 

protecting against ischemic stroke and vascular disease (Imig and Hammock 

2009). Among the sEH inhibitors, TUPS has been shown to prevent Ang II and 

BaP-induced cardiac hypertrophy in rats (Ai, Pang et al. 2009; Aboutabl, Zordoky 

et al. 2011). 

The importance of studying the role of CYP in the heart has been of great 

interest in recent years. Previous studies examining the expression and role of 

CYPs in the heart employed in vivo models (Thum and Borlak 2002; Imaoka, 

Hashizume et al. 2005) or primary cultures of isolated cardiomyocytes (Thum and 

Borlak 2000b). Each model has its difficulties and limitations. For instance, in 

vivo models may limit the use of chemicals due to the administration route and 

bioavailability of the compounds. On the other hand, the isolation and cultivation 

technique of cardiomyocytes is a difficult multi-step process, and isolated 

cardiomyoctyes are rather fragile (Schluter and Schreiber 2005; Louch, Sheehan 

et al. 2011). Therefore, the H9c2 cell line is commonly use as an in vitro model 
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for studying the cellular mechanisms and signaling pathways in the heart. The 

H9c2 cell line is a clonal cardiomyoblast cell line derived from embryonic rat 

heart tissue (Kimes and Brandt 1976). These cells maintain many molecular 

features of cardiomyocytes and exert morphological characteristics of immature 

embryonic cardiomyocytes (Hescheler, Meyer et al. 1991). Furthermore, the H9c2 

cell line can be used to study the role of CYPs in the pathogenesis of cellular 

hypertrophy as multiple CYPs were expressed at a comparable level to those 

expressed in the rat heart (Zordoky and El-Kadi 2007).  

1.5.2 Hypotheses 

1) Isoproterenol induces cellular hypertrophy through the alteration of the 

expression of CYPs and sEH in the H9c2 cell line.  

2) Administration of 11,12- and 14,15-EETs exert a protective effect against 

isoproterenol-induced cellular hypertrophy through modification of the 

expression of CYPs and sEH. 

3) Inhibition of sEH using a sEH inhibitor, TUPS protects against 

isoproterenol-induced cellular hypertrophy through modification of the 

expression of CYPs and sEH.  

1.5.3 Objectives 

The specific objectives of the present work are: 

1) To investigate the hypertrophic effect of isoproterenol and its modulation 

of the expression of CYPs and EPHX2 genes in rat cardiomyoblast H9c2 

cells and rat hepatoma H4IIE cells. 

2) To examine the effect of 11,12- and 14,15-EETs against the isoproterenol-

induced cellular hypertrophy and their modulations of the expression of 

CYPs and EPHX2 genes. 

3) To determine the role of sEH in cardiac hypertrophy using a sEH inhibitor, 

TUPS and its protective effect against isoproterenol-induced cellular 

hypertrophy through the modulation of the expression of CYPs and 

EPHX2 genes. 
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2. Materials and Methods 

2.1 Materials 

1-(1-methanesulfonyl-piperidin-4-yl)-3-(4-trifluoromethoxyphenyl)-urea, 

TUPS was a generous gift from Dr. Bruce Hammock (University of California, 

Davis), and synthesized by Paul Jones (University of California, Davis) as 

described previously (Tsai, Hwang et al. 2010). Isoproterenol and anti-goat IgG 

with horseradish peroxidase secondary antibody were purchased from Sigma-

Aldrich (St. Louis, MO, USA). Dulbecco's modified Eagle's medium (DMEM) 

base, fetal bovine serum, L-glutamine, penicillin–streptomycin, TRIzol reagent 

and UltraPure distilled water were purchased from Invitrogen (Carlsbad, CA). 

Amphotericin B was purchased from ICN Biomedicals Canada (Montreal, QC, 

Canada). Amikacin Sulfate injection USP was purchased from Sandoz Canada 

Inc. (Boucherville, QC, Canada). For real time-polymerase chain reaction (PCR), 

a High-Capacity cDNA Reverse Transcription Kit, SYBR Green SuperMix, and 

96-well optical reaction plates with optical adhesive films were purchased from 

Applied Biosystems (Foster City, CA, USA). Real time-PCR primers were 

synthesized by Integrated DNA Technologies Inc. (Coralville, IA, USA) 

according to previously published sequences. Arachidonic acid metabolite 

standards, 11, 12-, 14, 15-EETs were obtained from Cayman Chemical (Ann 

Arbor, MI, USA).  Acrylamide, N’ N’-bis-methylene-acrylamide, ammonium 

persulphate, β-mercaptoethanol, glycine, nitrocellulose membrand (0.45μm) and 

N,N,N’,N’-tetramethylethylenediamine (TEMED) were purchased from Bio-Rad 

Laboratories (Hercules, CA). Chemiluminescence Western blotting detection 

reagents were purchased from GE Healthcare Life Sciences (Piscataway, NJ, 

USA). CYP1A1 goat anti-rat, CYP1B1 rabbit anti-rat, sEH goat anti-rat, ANP 

goat anti-rat and actin rabbit anti-rat primary antibodies were purchased from 

Cruz Biotechnology Inc. (Santa Cruz, CA, USA). CYP2J primary antibody was 

obtained as a generous gift from Dr. Darryl Zeldin (National Institute of 

Environmental Health Sciences, National Institutes of Health, Research Triangle 

Park, NC, USA). The pGL3-Basic vector, pRL-CMV Rluc control vector, and 
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Luciferase Reporter Assay System were purchased from Promega (Mannheim, 

Germany). All other chemicals were purchased from Fisher Scientific Co. 

(Toronto, ON, Canada). 

2.2 Cell culture and treatments 

The H9c2(2-1) cell line is a subclone of the original clonal H9 cell line 

derived from a 13 day embryonic BD1X rat heart. The mononucleate myoblasts 

of H9c2 cells resemble morphological characteristics of cardiac muscle myoblasts 

(Kimes and Brandt 1976). H9c2 cells (American Type Culture Collection, 

Manassas, VA) were maintained in standard Dulbecco's modified Eagle's medium 

(DMEM) supplemented with 10% fetal bovine serum, 4mg/ml L-glutamine, 

100 IU/ml penicillin, 100 μg/ml streptomycin, 2.5 μg/ml amphotericin B and 62.5 

μg/ml amikacin. The H4IIE cell line is an established cell line derived from rat 

hepatoma. H4IIE cells (American Type Culture Collection, Manassas, VA) were 

maintained in standard DMEM supplemented with 10% fetal bovine serum, 

4mg/ml L-glutamine, 100 IU/ml penicillin and 100 μg/ml streptomycin. The H9c2 

cells and H4IIE cells were grown in 75-cm2 tissue culture flasks at 37 °C in a 5% 

CO2 humidified incubator. For analysis of mRNA, H9c2 cells and H4IIE cells 

were grown at a density of 1–1.5 × 106 cells per well in a 6-well tissue culture 

plate. On 60–80% confluence (2–3 days), H9c2 cells and H4IIE cells were 

incubated with appropriate stock solutions of isoproterenol to reach final 

concentrations of 1, 10, 50 and 100 μM for 24 and 48 h. For the EETs studies, 100 

μM of isoproterenol was incubated in the presence or absence of either 11, 12-

EET or 14, 15-EET at a concentration of 1 μM, every 8 h for 24 h in H9c2 cells. 

For the TUPS study, 100 μM of isoproterenol was incubated in the presence or 

absence of 10 μM TUPS for 24 h in H9c2 cells. All treatments were performed in 

serum-free medium (DMEM). Cell passage around 15 to 21 were used in these 

experiments.  
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2.3 Measurement of cell viability 

The effects of isoproterenol and TUPS on cell viability were determined 

by measuring the capacity of reducing enzymes present in viable cells to convert 

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) to formazan 

crystals. After incubating the H9c2 cells and H4IIE cells with isoproterenol or 

TUPS for 24 and 48 h in a 96-well plate at 37°C under a 5% CO2 humidified 

incubator. The medium was replaced with 100 μl of serum free medium 

containing 1.2 mM of MTT dissolved in PBS, pH 7.2. The plate was then 

incubated at 37°C in a 5% CO2 humidified incubator for 2 h. The medium was 

then decanted off by inverting the plate, and 100 μl of isopropyl alcohol was 

added to each well with shaking for 1 h to dissolve the formazan crystals. The 

color intensity in each well was measured at wavelength of 550 ηm using a BIO-

TEK Instruments EL 312e microplate reader. The percentage of cell viability was 

calculated relative to control wells designated as 100% viable cells.  

2.4 RNA extraction and cDNA synthesis 

Total RNA was isolated from H9c2 cells using TRIzol reagent 

(Invitrogen) according to the manufacturer's instructions. Briefly, 0.3 ml of 

TRIzol reagent was added to each six-well cell culture plate to lyse the cells. Cell 

lysates in TRIzol were then collected into 1.5 ml tubes and mixed with 120 ul 

chloroform, followed by centrifugation at 12,000 x g for 15 min at 4°C. The 

aqueous phase which contains RNA was then transferred to a new tube and 300 µl 

of isopropyl alcohol was added to each tube to precipitate the RNA by freezing 

the samples at -20°C overnight. The tubes were centrifuged once more at 12,000 x 

g for 10 min at 4°C. The isopropyl alcohol was aspirated out and the RNA pellet 

was washed once with 500 µl of 75% ethanol in UltraPure distilled water. The 

tubes were centrifuged for the last time at 12,000 x g for 5 min at 4°C to 

precipitate the pellets. The supernatant was collected and discarded, and the pellet 

was dried, then dissolved in 20-100 µl of UltraPure distilled water depending on 

the size of the pellet. The tubes were placed in a water bath at 65°C for 10-12 min 
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to ensure that the pellet was completely dissolved. Total RNA was quantified by 

measuring the absorbance at 260 nm. RNA quality was determined by measuring 

the 260/280 ratio.  

Thereafter, first-strand cDNA synthesis was performed using the High-

Capacity cDNA reverse transcription kit (Applied Biosystems) according to the 

manufacturer’s instructions. Briefly, 1.5 μg of total RNA from each sample was 

added to a mix of 2.0 μl 10× reverse transcription buffer, 0.8 μl of 25× dNTP mix 

(100 mM), 2.0 μl of 10× reverse transcription random primers, 1.0 μl of 

MultiScribe reverse transcription, and 3.2 μl of nuclease-free water. The final 

reaction mix was kept at 25°C for 10 min, heated to 37°C for 120 min, heated for 

85°C for 5 s, and finally cooled to 4°C. 

2.5 Quantification by real time polymerase chain reaction (PCR) 

Quantitative analysis of specific mRNA expression was performed by real 

time-PCR, by subjecting the resulting cDNA to PCR amplification using 96-well 

optical reaction plates in the ABI Prism 7500 System (Applied Biosystems) 

according to the manufacturer’s instructions. The 25 µl reaction mix contained 

0.1 µl of 10 µM forward primer, 0.1 µl of 10 µM reverse primer (40 nM final 

concentration of each primer), 12.5 µl of SYBR Green Universal Mastermix, 

11.05 µl of nuclease-free water, and 1.25 µl of cDNA sample. The primers used in 

the current study were chosen from previously published studies and are listed in 

Table 2.1. (Bleicher, Pippert et al. 2001; Kalsotra, Anakk et al. 2002; Kuwahara, 

Kai et al. 2002; Grygielko, Martin et al. 2005; Hirasawa, Kawagoe et al. 2005; 

Rollin, Mediero et al. 2005; Sellers, Sun et al. 2005; Baldwin, Bramhall et al. 

2006; Soppa, Lee et al. 2008; Zordoky, Anwar-Mohamed et al. 2011). Assay 

controls were incorporated onto the same plate, namely, no-template controls to 

test for the contamination of any assay reagents. After sealing the plate with an 

optical adhesive cover, the thermocycling conditions were initiated at 95°C for 

10 min, followed by 40 PCR cycles of denaturation at 95°C for 15 s, and 

annealing/extension at 60°C for 1 min. 

http://www.sciencedirect.com.login.ezproxy.library.ualberta.ca/science/article/pii/S1537189108000864#tbl1
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2.6 Real time-PCR data analysis 

The real time-PCR data were analyzed using the relative gene expression, 

that is ΔΔCT method as described in Applied Biosystems User Bulletin No. 2 and 

as described previously (Livak and Schmittgen 2001; Schmittgen and Livak 

2008). Briefly, the data are presented as the -fold change in gene expression 

normalized to the endogenous reference gene, glyceraldehyde-3-phophate 

dehydrogenase (GAPDH) and relative to a calibrator. The untreated control was 

used as the calibrator when the change of gene expression by the treatments was 

being studied.  

2.7 Cellular protein extraction and Western blot analysis 

H9c2 cells were incubated with increasing concentrations of isoproterenol 

(1, 10, 50, 100 μM) for 48 h and cells were collected in lysis buffer (50mM 

HEPES, 0.5 M sodium chloride, 1.5 mM magnesium chloride, 1 mM EDTA, 10% 

glycerol (v/v), 1% Triton X-100, and 5 μl/ml of protease inhibitor cocktail). The 

total cellular proteins were obtained by incubating the cell lysates on ice for 1 h, 

with intermittent vortexing every 10 min. The lysates were centrifuged at 12,000 

x g for 10 min at 4°C. The protein concentrations in the H9c2 cells were 

determined by the Lowry method using bovine serum albumin as a standard 

(Lowry, Rosebrough et al. 1951).  

Western blot analysis was performed using a previously described method 

(Gharavi and El-Kadi 2005). Briefly, 35-90 μg of cellular protein were separated 

by 10% sodium dodecyl sulphate-polyacrylamide gel (SDS-PAGE), and then 

electrophoretically transferred to nitrocellulose membrane. Protein blots were then 

blocked overnight at 4°C in blocking solution containing 0.15 M sodium chloride, 

3 mM KCl, 25 mM Tris-base (TBS), 5% skimmed milk, 2% bovine serum 

albumin and 0.5% Tween-20. 

After blocking, the blots were incubated with primary polyclonal goat 

anti-rat CYP1A1 antibody, rabbit anti-rat CYP1B1, rabbit anti-rat CYP2E1, rabbit 

anti-rat CYP2C11, rabbit anti-mouse CYP2J, goat anti-rat sEH and rabbit anti-rat 
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actin and were incubated overnight at 4°C. The primary antibodies were prepared 

in TBS solution containing 0.05% (v/v) Tween-20 and 0.02% sodium azide. 

Incubation with a peroxidase-conjugated rabbit anti-goat IgG secondary antibody 

for CYP1A1 and sEH or goat anti-rabbit IgG secondary antibody for CYP1B1, 

CYP2C11, CYP2E1, CYP2J, and actin was carried out for 4 h at room temperate. 

The bands were visualized using an enhanced chemiluminescence method 

according to the manufacturer’s instructions (GE Healthcare Life Sciences, 

Piscataway, NJ, USA). The intensities of the protein bands were quantified 

relative to the signals obtained for actin, using ImageJ software (National 

Institutes of Health, Bethesda, MD, http://rsb.info.nih.gov/ij).  

2.8 Luciferase reporter gene assay 

H9c2 cells were seeded on 12-well culture plates, allowed to attach and 

recover for 24 h, and then transfected using Lipfectamine 2000 (Invitrogen). All 

of the transfections were carried out according to the manufacturer’s instructions. 

The EPHX2 promoter was cloned upstream of the firefly luciferase gene in the 

pGL3-Basic reporter plasmid (Promega).  For each transfection, 1.6 μg of 

luciferase promoter constructs were contransfected with  0.1 μg of renilla 

luciferase control plasmid (pRL-CMV, Promega, Mannheim, Germany) using 4 μl 

of Lipfectamine 2000 per well. Thereafter, 100 μl of the complexes were added to 

each well with 900 μl of media to achieve the final transfection volume of 

1ml/well. All transfections were performed in serum-free medium (DMEM). 

After a 24 h long incubation at 37°C, the cells were treated with different 

concentrations of isoproterenol (1, 10, 50, 100 μM) for 24 and 48 h. For the effect 

of EETs on EPHX2 promoter activity, 100 μM of isoproterenol was incubated in 

the presence or absence of either 11, 12-EET or 14, 15-EET at a concentration of 

1 μM, every 8 h for 24 h. For the effect of TUPS on EPHX2 promoter activity, 

100 μM of isoproterenol was incubated in the presence or absence of 10 μM 

TUPS for 24 h. The cells were lysed with 250μl/well of Passive Lysis Buffer. The 

luciferase assay was carried by means of the Dual Luciferase Reporter Assay 

System (Promega) using 20 μl of the cell lysate. Luciferase activities were 
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determined using a Spectra Fluor Plus microplate reader (TECAN). Firefly 

luciferase activity was normalized with respect to renilla luciferase activity, and 

shown as relative luciferase activity (relative luciferase activity = firefly luciferase 

activity/renilla luciferase activity). 

2.9 Statistical analysis 

Data are presented as mean + S.E.M. Control and treatment measurements 

were compared using the Student’s t test. The two-way analysis of variance 

(ANOVA) was used for comparison across groups in the isoproterenol treatment. 

A result was considered statistically significant where p < 0.05.  
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Table 2.1 Primer oligonucleotides for quantitative real-time PCR for rat genes 

Gene Forward Primer Reverse Primer 

CYP1A1 CCAAACGAGTTCCGGCCT TGCCCAAACCAAAGAGAATGA 

CYP1B1 GCTTTACTGTGCAAGGGAGACA GGAAGGAGGATTCAAGTCAGGA 

CYP2B1 AACCCTTGATGACCGCAGTAAA TGTGGTACTCCAATAGGGACAAGATC 

CYP2C11 CACCAGCTATCAGTGGATTTGG GTCTGCCCTTTGCACAGGAA 

CYP2E1 AAAGCGTGTGTGTGTTGGAGAA AGAGACTTCAGGTTAAAATGCTGCA 

CYP2J3 CATTGAGCTCACAAGTGGCTTT CAATTCCTAGGCTGTGATGTCG 

CYP4A1 TCACCTCCCTTCCACTGGTT TCCACACATGTCATAATTTGCT 

CYP4A2 CTCGCCATAGCCATGCTTATC CCTTCAGCTCATTCATGGCAATT 

CYP4A3 CTCGCCATAGCCATGCTTATC CCTTCAGCTCATTCATGGCAATC 

CYP4F1 CCCCCAAGGCTTTTTGATG GAGCGCAACGGCAGCT 

CYP4F4 CAGGTCTGAAGCAGGTAACTAAGC CCGTCAGGGTGGCACAGAGT 

CYP4F5 AGGATGCCGTGGCTAACTG GGCTCCAAGCAGCAGAAGA 

EPHX2 GATTCTCATCAAGTGGCTGAAGAC GGACACGCCACTGGCTAAAT 

ANP GGAGCCTGCGAAGGTCAA TATCTTCGGTACCGGAAGCTGT 

BNP CAGAAGCTGCTGGAGCTGATAAG TGTAGGGCCTTGGTCCTTTG 

β-MHC AGCTCCTAAGTAATCTGTTTGCCAA AAAGGATGAGCCTTTCTTTGCT 

GAPDH CAAGGTCATCCATGACAACTTTG GGGCCATCCACAGTCTTCTG 

β-actin CCAGATCATGTTTGAGACCTTCAA GTGGTACGACCAGAGGCATACA 
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3. Results 

3.1 Isoproterenol induces cellular hypertrophy and modulates the gene 

expression of cytochromes P450 and EPHX2 in H9c2 cells 

3.1.1 Effect of isoproterenol on cell viability 

To determine the cytotoxic effect of isoproterenol, H9c2 cells and H4IIE 

cells were incubated with increasing concentrations of isoproterenol (1, 10, 50, 

100 μM) for 24 and 48 h. Thereafter, cell viability was evaluated by the MTT 

assay as described in materials and methods. The MTT assay showed that the 

isoproterenol concentrations ranging from 1-100 μM did not significantly affect 

cell viability as compared to the control in H9c2 cells and H4IIE cells (Fig. 3.1A-

B). Therefore, the observed changes in the gene expression are not due to the 

decreased cell viability or toxicity. 

3.1.2 The expression of ADRB1 in H9c2 cells and H4IIE cells 

In order to determine whether isoproterenol can have an effect on the 

H9c2 cells and H4IIE cells, we measured the gene expression of the β1-adrenergic 

receptor. Isoproterenol is a β-adrenergic agonist, which activates the β1-receptor 

in the heart and induces hypertrophy. Our results showed that both H9c2 cells and 

H4IIE cells expressed ADRB1 and the treatment of isoproterenol did not cause 

any significant changes to the ADRB1 gene expression (Fig. 3.2). 
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Figure 3.1 Effect of isoproterenol on cell viability. H9c2 cells and H4IIE cells were incubated 
with increasing concentration of isoproterenol (1, 10, 50 and 100 μM) for 24 and 48 h. The cell 
viability was measured by the MTT assay as described in materials and methods. Data are 
presented as a percentage of control (mean + S.E.M, n=8). * p < 0.05 compared to control. 
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Figure 3.2 The expression of ADRB1 in H9c2 cells and H4IIE cells. H9c2 cells and H4IIE cells 
were incubated with 100 μM of isoproterenol for 24 h. Total RNA was isolated and the expression 
of ADRB1 was determined by real-time PCR. Fold of induction was calculated as target gene 
expression (normalized to GAPDH) divided by the control values (the control value was set as 1). 
Data are presented in fold of control (mean + S.E.M, n=4-6/group). * p < 0.05 compared to 
control. 
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3.1.3 Effect of isoproterenol on the expression of hypertrophic markers in 

H9c2 cells 

To investigate whether isoproterenol causes cellular hypertrophy in H9c2 

cells, we determined the mRNA expression of the hypertrophic markers, ANP, 

BNP and β-MHC relative to the untreated cells following 24 and 48 h of 

incubation with isoproterenol at different concentrations (1, 10, 50, 100 μM). At 

the 24 h time point, isoproterenol at 50 and 100 μM caused a significant induction 

of ANP by 2 and 2.2-fold, respectively. At 48 h, isoproterenol at 50 and 100 μM 

also caused a significant up-regulation of ANP by 1.5 and 1.3-fold, respectively 

(Fig. 3.3A). Similarly, our results showed that isoproterenol at 10, 50 and 100 μM 

caused a significant induction of BNP at 24 h by about 1.5, 1.4 and 2.8-fold, 

respectively. At 48 h, isoproterenol at 50 and 100 μM caused a significant 

increase in the BNP levels by 2.7 and 2.3-fold, respectively (Fig. 3.3B). On the 

other hand, there were no significant changes in the expression of β-MHC with 

the isoproterenol treatment at both 24 and 48 h (Fig. 3.3C).  

3.1.4 Effect of isoproterenol on the expression of CYPs in H9c2 cells  

To examine the effect of isoproterenol on the expression of CYPs, H9c2 

cells were treated with isoproterenol for 24 and 48 h. Following, the mRNA 

expression of different CYPs was analyzed using real-time PCR. After 24 h of 

treatment, we observed a significant increase in the CYP1A1 expression at 10, 50 

and 100 μM of isoproterenol by 2.2, 2.9 and 5.6-fold, respectively. 

Correspondingly at 48 h, isoproterenol at these concentrations caused a significant 

induction in the CYP1A1 expression by 1.4, 5.3 and 8.9-fold, respectively (Fig. 

3.4A). Similarly, a concentration-dependent induction was found in the 

expression of CYP1B1 at 24 h with 1, 10, 50 and 100 μM of isoproterenol by 1.6, 

3.4, 4.6 and 5.9-fold, respectively. These changes were also seen at 48 h with the 

same concentrations by 1.7, 3.9, 7.1 and 4.5-fold, respectively (Fig. 3.4B).  

With regard to the expression of the CYP2 family, there were no 

significant changes in the mRNA expression of CYP2B1, CYP2C11 and CYP2E1 
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by isoproterenol at both 24 and 48 h (Figs. 3.5A-B, 3.6A). However, the 

expression of CYP2J3 at 10, 50 and 100 μM of isoproterenol was significantly 

increased at 24 h by 3, 3.7 and 5.2-fold, respectively (Fig. 3.6B). Comparable 

changes were also observed at 48 h with 10, 50 and 100 μM by 2.5, 2.3 and 4.5-

fold of induction, respectively (Fig. 3.6B). Fig. 3.7A shows the effect of 

isoproterenol on the mRNA expression of CYP4F1. There were no significant 

changes in the expression of CYP4F1 produced by the treatment with 

isoproterenol for 24 or 48 h. On the other hand, isoproterenol significantly 

increased the expression of CYP4F4 at 24 h at concentrations of 10, 50 and 100 

μM by 2.4, 2.6 and 2.7-fold, respectively. At 48 h, the expression of CYP4F4 was 

also significantly increased at 10, 50 and 100 μM by 1.7, 2.4 and 1.9-fold, 

respectively (Fig. 3.7B). Likewise, treatment with isoproterenol at 10, 50 and 100 

μM significantly induced the expression of CYP4F5 by 1.6, 1.6 and 2-fold, 

respectively. Similar changes were observed at 48 h with the concentrations of 10, 

50 and 100 μM by approximately 1.6, 1.6 and 1.5-fold, respectively (Fig. 3.7C). 

Furthermore, we also examined the expression of CYP4A1, CYP4A2 and 

CYP4A3, but the mRNA levels of these CYPs were not detectable in H9c2 cells.
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Figure 3.3 Effect of isoproterenol on the expression of hypertrophic markers, ANP (A), BNP 
(B) and β-MHC (C) in H9c2 cells. H9c2 cells were incubated with increasing concentrations of 
isoproterenol (1, 10, 50 and 100 μM) for 24 and 48 h. Total RNA was isolated and the expression 
of the hypertrophic markers, ANP, BNP and β-MHC was determined by real-time PCR. Fold of 
induction was calculated as target gene expression (normalized to GAPDH) divided by the control 
values (the control value was set as 1). Data are presented in fold of control (mean + S.E.M, n=4-
6/group). * p < 0.05 compared to control at 24 h. # p < 0.05 compared to control at 48 h.  
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Figure 3.4 Effect of isoproterenol on the expression of CYP1A1 (A) and CYP1B1 (B) in H9c2 
cells. H9c2 cells were incubated with increasing concentrations of isoproterenol (1, 10, 50 and 100 
μM) for 24 and 48 h. Total RNA was isolated and the expression of CYP1A1 and CYP1B1 was 
determined by real-time PCR. Fold of induction was calculated as target gene expression 
(normalized to GAPDH) divided by the control values (the control value was set as 1). Data are 
presented in fold of control (mean + S.E.M, n=4-6/group). * p < 0.05 compared to control at 24 h. 
# p < 0.05 compared to control at 48 h. 
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Figure 3.5 Effect of isoproterenol on the expression of CYP2B1 (A) and CYP2C11 (B) in 
H9c2 cells. H9c2 cells were incubated with increasing concentrations of isoproterenol (1, 10, 50 
and 100 μM) for 24 and 48 h. Total RNA was isolated and the expression of CYP2B1 and 
CYP2C11 was determined by real-time PCR. Fold of induction was calculated as target gene 
expression (normalized to GAPDH) divided by the control values (the control value was set as 1). 
Data are presented in fold of control (mean + S.E.M, n=4-6/group). * p < 0.05 compared to control 
at 24 h. # p < 0.05 compared to control at 48 h. 
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Figure 3.6 Effect of isoproterenol on the expression of CYP2E1 (A) and CYP2J3 (B) in H9c2 
cells. H9c2 cells were incubated with increasing concentrations of isoproterenol (1, 10, 50 and 100 
μM) for 24 and 48 h. Total RNA was isolated and the expression of CYP2E1 and CYP2J3 was 
determined by real-time PCR. Fold of induction was calculated as target gene expression 
(normalized to GAPDH) divided by the control values (the control value was set as 1). Data are 
presented in fold of control (mean + S.E.M, n=4-6/group). * p < 0.05 compared to control at 24 h. 
# p < 0.05 compared to control at 48 h.  
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Figure 3.7 Effect of isoproterenol on the expression of CYP4F1 (A), CYP4F4 (B) and 
CYP4F5 (C) in H9c2 cells. H9c2 cells were incubated with increasing concentrations of 
isoproterenol (1, 10, 50 and 100 μM) for 24 and 48 h. Total RNA was isolated and the expression 
of CYP4F1, CYP4F4 and CYP4F5 was determined by real-time PCR. Fold of induction was 
calculated as target gene expression (normalized to GAPDH) divided by the control values (the 
control value was set as 1). Data are presented in fold of control (mean + S.E.M, n=4-6/group). * p 
< 0.05 compared to control at 24 h. # p < 0.05 compared to control at 48 h.  
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3.1.5 Effect of isoproterenol on the expression of EPHX2 and the luciferase 

transcriptional activity of EPHX2 in H9c2 cells  

As depicted in Fig. 3.8A, isoproterenol caused a significant induction of 

EPHX2 at 24 h at 1, 10, 50 and 100 μM by 1.3, 1.7, 2 and 1.8-fold, respectively. 

At 48 h, a prominent increase was found in the EPHX2 expression at 1, 10, 50 and 

100 μM by 1.4, 1.9, 3 and 3.9-fold of induction, respectively (Fig. 3.8A). 

Furthermore, we examined the effect of isoproterenol on the transcriptional 

activity of EPHX2, a transient expression assay based on a reporter firefly 

luciferase gene was established. Our findings demonstrated that the luciferase 

expression resulted in a significant induction at 24 h with 10, 50 and 100 μM of 

isoproterenol by 1.2, 1.3 and 1.6-fold, respectively. Similarly, treatment with 

isoproterenol for 48 h caused a significant increase at 10, 50 and 100 μM by 1.3, 

1.8 and 1.8-fold, respectively (Fig. 3.8B). 

3.1.6 Effect of isoproterenol on the protein expression of CYPs and sEH 

To investigate whether isoproterenol-mediated induction of CYPs and 

EPHX2 gene expression is further translated into functional proteins, cellular 

proteins were extracted from H9c2 cells treated with increasing concentrations of 

isoproterenol (1, 10, 50, 100 μM) for 48 h. Thereafter, CYP1A1, CYP1B1, 

CYP2C11, CYP2E1, CYP2J3 and sEH protein levels were determined using 

Western blot analysis. Our results demonstrated that isoproterenol significantly 

increased the protein levels of sEH at 1, 10, 50 and 100 μM to about 267%, 265%, 

270% and 210% of control, respectively (Fig. 3.9A). Protein levels of the CYPs 

were not found at a detectable level in H9c2 cells. 
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Figure 3.8 Effect of isoproterenol on the expression of EPHX2 (A) and the luciferase 
transcriptional activity of EPHX2 (B) in H9c2 cells. (A) H9c2 cells were incubated with 
increasing concentrations of isoproterenol (1, 10, 50 and 100 μM) for 24 and 48 h. Total RNA was 
isolated and the expression of EPHX2 was determined by real-time PCR. Fold of induction was 
calculated as target gene expression (normalized to GAPDH) divided by the control values (the 
control value was set as 1). Data are presented in fold of control (mean + S.E.M, n=5-6/group). * p 
< 0.05 compared to control at 24 h. # p < 0.05 compared to control at 48 h. (B) H9c2 cells were 
incubated with increasing concentrations of isoproterenol (1, 10, 50 and 100 μM) for 24 and 48 h. 
H9c2 cells were lysed and luciferase activities were determined using a Spectra Fluor Plus 
microplate reader. Fold of induction was calculated as a relative luciferase activity (firefly 
luciferase activity divided by the control renilla luciferase activity). Data are presented in fold of 
control (mean + S.E.M, n=3/group). * p < 0.05 compared to control at 24 h. # p < 0.05 compared 
to control at 48 h. 
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Figure 3.9 Effect of isoproterenol on the protein level of sEH in H9c2 cells. H9c2 cells were 
incubated with increasing concentrations of isoproterenol (1, 10, 50 and 100 μM) for 48 h. Cellular 
protein was isolated and 35 μg of protein was separated on a 10% SDS-PAGE. The protein level 
of sEH was detected using the enhanced chemiluminescence method. The graph represents the 
relative normalized amount of sEH protein as percentage of control (mean + S.E.M, n=3/group). 
Representative Western blots are shown for each group, control, isoproterenol (1, 10, 50 and 100 
μM). * p < 0.05 compared to control. 
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3.1.7 Effect of isoproterenol on the expression of hypertrophic markers in 

H4IIE cells 

To investigate whether the hypertrophic effect of isoproterenol was 

specific to H9c2 cells, we examined the effect of isoproterenol in H4IIE cells. The 

expression of ANP and BNP were not detectable in H4IIE cells. Although β-MHC 

was expressed in the H4IIE cells, but no significant changes were observed with 

any of the isoproterenol concentrations at either 24 or 48 h (Fig. 3.10).  

3.1.8 Effect of isoproterenol on the expression of CYPs in H4IIE cells 

To further examine whether the modulation of CYP expression in 

isoproterenol-mediated cellular hypertrophy was specific to cardiac cells, rat 

hepatoma H4IIE cells were also treated with isoproterenol at increasing 

concentrations for 24 and 48 h. The mRNA expression of CYP1A1 was not 

significantly changed with any of the isoproterenol concentrations at 24 or 48 h 

(Fig. 3.11A). Similarly, CYP1B1 was not significantly affected by the 

isoproterenol treatment at either 24 or 48 h (Fig. 3.11B). 

As for the CYP2 family, there were no significant changes in the gene 

expression of CYP2B1, CYP2C11 or CYP2E1 after treating H4IIE cells with 

isoproterenol for 24 or 48 h (Fig. 3.12A-C). For CYP2J3, it was found at a very 

low or undetectable level in the H4IIE cells. In contrast to the H9c2 cells, 

CYP4A1, CYP4A2 and CYP4A3 were detectable in the H4IIE cells; however, 

isoproterenol treatment did not caused a significant change in the expression of 

these CYPs at either time point (Fig. 3.13A-C). Furthermore, the expression of 

CYP4F1, CYP4F4 and CYP4F5 was not significantly changed in H4IIE cells 

treated with isoproterenol at 24 and 48 h (Fig.3.14A-C).  

3.1.9 Effect of isoproterenol on expression of EPHX2 in H4IIE cells  

Figure 3.15 shows the effect of isoproterenol on the expression of EPHX2 

in H4IIE cells. At 24 and 48 h, isoproterenol caused no significant changes in the 

mRNA levels of EPHX2 at any of the isoproterenol concentrations (Fig. 3.15). 
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Figure 3.10 Effect of isoproterenol on the expression of hypertrophic marker, β-MHC in 
H4IIE cells. H4IIE cells were incubated with increasing concentrations of isoproterenol (1, 10, 50 
and 100 μM) for 24 and 48 h. Total RNA was isolated and the expression of the hypertrophic 
markers ANP, BNP and β-MHC were determined by real-time PCR. The expression of ANP and 
BNP was not detectable in the H4IIE cells. Fold of induction was calculated as target gene 
expression (normalized to GAPDH) divided by the control values (the control value was set as 1). 
Data are presented in fold of control (mean + S.E.M, n=4-6/group). * p < 0.05 compared to control 
at 24 h. # p < 0.05 compared to control at 48 h. 
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Figure 3.11 Effect of isoproterenol on the expression of CYP1A1 (A) and CYP1B1 (B) in 
H4IIE cells. H4IIE cells were incubated with increasing concentrations of isoproterenol (1, 10, 50 
and 100 μM) for 24 and 48 h. Total RNA was isolated and the expression of CYP1A1 and 
CYP1B1 was determined by real-time PCR. Fold of induction was calculated as target gene 
expression (normalized to GAPDH) divided by the control values (the control value was set as 1). 
Data are presented in fold of control (mean + S.E.M, n=4-6/group). * p < 0.05 compared to control 
at 24 h. # p < 0.05 compared to control at 48 h.  
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Figure 3.12 Effect of isoproterenol on the expression of CYP2B1 (A), CYP2C11 (B) and 
CYP2E1 (C) in H4IIE cells. H4IIE cells were incubated with increasing concentrations of 
isoproterenol (1, 10, 50 and 100 μM) for 24 and 48 h. Total RNA was isolated and the expression 
of CYP2B1, CYP2C11, CYP2E1 and CYP2J3 was determined by real-time PCR. The expression 
of CYP2J3 was not detectable level in the H4IIE cells. Fold of induction was calculated as target 
gene expression (normalized to GAPDH) divided by the control values (the control value was set 
as 1). Data are presented in fold of control (mean + S.E.M, n=4-6/group). * p < 0.05 compared to 
control at 24 h. # p < 0.05 compared to control at 48 h.  
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Figure 3.13 Effect of isoproterenol on the expression of CYP4A1 (A), CYP4A2 (B) and 
CYP4A3 (C) in H4IIE cells. H4IIE cells were incubated with increasing concentrations of 
isoproterenol (1, 10, 50 and 100 μM) for 24 and 48 h. Total RNA was isolated and the expression 
of CYP4A1, CYP4A2 and CYP4A3 was determined by real-time PCR. Fold of induction was 
calculated as target gene expression (normalized to GAPDH) divided by the control values (the 
control value was set as 1). Data are presented in fold of control (mean + S.E.M, n=4-6/group). * p 
< 0.05 compared to control at 24 h. # p < 0.05 compared to control at 48 h. 
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Figure 3.14 Effect of isoproterenol on the expression of CYP4F1 (A), CYP4F4 (B) and 
CYP4F5 (C) in H4IIE cells. H4IIE cells were incubated with increasing concentrations of 
isoproterenol (1, 10, 50 and 100 μM) for 24 and 48 h. Total RNA was isolated and the expression 
of CYP4F1, CYP4F4 and CYP4F5 was determined by real-time PCR. Fold of induction was 
calculated as target gene expression (normalized to GAPDH) divided by the control values (the 
control value was set as 1). Data are presented in fold of control (mean + S.E.M, n=4-6/group). * p 
< 0.05 compared to control at 24 h. # p < 0.05 compared to control at 48 h. 
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Figure 3.15 Effect of isoproterenol on the expression of EPHX2 in H4IIE cells. H4IIE cells 
were incubated with increasing concentrations of isoproterenol (1, 10, 50 and 100 μM) for 24 and 
48 h. Total RNA was isolated and the expression of EPHX2 was determined by real-time PCR. 
Fold of induction was calculated as target gene expression (normalized to GAPDH) divided by the 
control values (the control value was set as 1). Data are presented in fold of control (mean + 
S.E.M, n=4-6/group). * p < 0.05 compared to control at 24 h. # p < 0.05 compared to control at 48 
h. 
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3.2 11,12- and 14,15-EETs protect against isoproterenol-induced cellular 

hypertrophy 

3.2.1 Effect of 11,12-EET on the changes of hypertrophic markers in 

isoproterenol-mediated hypertrophy 

To study the protective effect of 11,12-EET against isoproterenol-induced 

cellular hypertrophy, H9c2 cells were pretreated with 1 μM of 11,12-EET for 2 h 

and then 100 μM of isoproterenol, or isoproterenol alone for an additional 24 h. 

Thereafter, the mRNA expression of the hypertrophic markers ANP, BNP and β-

MHC was measured using real-time PCR. Isoproterenol alone caused a significant 

induction of ANP and BNP. Pre-treatment with 11,12-EET significantly 

decreased the isoproterenol-mediated effect by 72% and 94% for the expression 

of ANP and BNP, respectively (Fig. 3.16A-B). On the other hand, isoproterenol 

did not affect the expression of β-MHC. In addition, 11,12-EET treatment also did 

not alter the expression of β-MHC (Fig. 3.16C). 

3.2.2 Effect of 11,12-EET on the changes of CYPs expression in 

isoproterenol-mediated hypertrophy 

To explore the protective effect of 11,12-EET on the isoproterenol-

mediated alterations of CYPs, the mRNA expression was assessed using real-time 

PCR. Consistent with our earlier findings, isoproterenol alone significantly 

induced the mRNA expression of CYP1A1 and CYP1B1. Pre-treatment with 

11,12-EET significantly attenuated the isoproterenol-mediated induction of 

CYP1A1 by 77% (Fig. 3.17A). However, treatment of 11,12-EET did not 

decrease the isoproterenol-mediated induction of CYP1B1. Interestingly, 11,12-

EET alone caused a significant increase in the expression of CYP1B1 to about 2-

fold of control (Fig. 3.17B). 

Within the CYP2 family, CYP2J3 was the only CYP that was significantly 

induced by the isoproterenol treatment. Treatment of 11,12-EET resulted in a 

significant reduction in the CYP2J3 expression by 74% (Fig.3.18C). Interestingly, 

expression of several CYPs were altered by the treatment of 11,12-EET, but not 
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by the treatment of isoproterenol. As shown in Fig. 3.18A, we observed a 

significant decrease in the mRNA levels of CYP2C11 in the 11,12-EET alone and 

isoproterenol plus 11,12-EET groups to about 0.6-fold of control. In contrast, 

11,12-EET caused a significant induction of CYP2E1 in the 11,12-EET alone and 

isoproterenol plus 11,12-EET groups to about 1.6 and 1.3 -fold, respectively (Fig. 

3.18B). Furthermore, treatment with 11,12-EET significantly increased the 

expression of CYP4F1 in the 11,12-EET alone and isoproterenol plus 11.12-EET 

groups to about 2.5 and 2.2-fold, respectively (Fig. 3.19A). However, 

isoproterenol alone did not change the expression of these CYPs, i.e. CYP2C11, 

CYP2E1 and CYP4F1. On the other hand, isoproterenol significantly increased 

the expression of CYP4F4 and CYP4F5, as we observed earlier. The treatment 

with 11,12-EET caused a significant reduction in the expression of CYP4F4 that 

was mediated by isoproterenol by about 116% (Fig. 3.19B). Similarly, 11,12-EET 

also decreased the isoproterenol-mediated induction of CYP4F5 by 83% (Fig. 

3.19C).  

3.2.3 Effect of 11,12-EET on the changes of EPHX2 expression and the 

luciferase transcriptional activity of EPHX2 in isoproterenol-mediated 

hypertrophy 

With regard to the expression of EPHX2, our results demonstrated a 

similar induction caused by isoproterenol as mentioned earlier, and 11,12-EET 

treatment significantly inhibited the isoproterenol-mediated induction of EPHX2 

by about 125% (Fig. 3.20A). Moreover, we examined the effect of isoproterenol 

on the transcriptional activity of EPHX2; a transient expression assay based on a 

reporter firefly luciferase gene was used in the study. Our results showed that 

treatment of 11,12-EET caused a significant inhibition in the isoproterenol-

induced luciferase activity by 147% (Fig. 3.20B). 
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Figure 3.16 Effect of 11,12-EET on the expression of hypertrophic markers, ANP (A) and 
BNP (B) and β-MHC (C). H9c2 cells were incubated with 100 μM isoproterenol in the presence 
or absence of 1 μM 11,12-EET for 24 h. Total RNA was isolated and the expression of the 
hypertrophic markers ANP, BNP and β-MHC were determined by real-time PCR. Fold of 
induction was calculated as target gene expression (normalized to GAPDH) divided by the control 
values (the control value was set as 1). Data are presented in fold of control (mean + S.E.M, n=4-
6/group). * p < 0.05 compared to control. # p < 0.05 compared to isoproterenol. 
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Figure 3.17 Effect of 11,12-EET on the expression of CYP1A1 (A) and CYP1B1 (B). H9c2 
cells were incubated with 100 μM isoproterenol in the presence or absence of 1 μM 11,12-EET for 
24 h. Total RNA was isolated and the expression of CYP1A1 and CYP1B1 were determined by 
real-time PCR. Fold of induction was calculated as target gene expression (normalized to 
GAPDH) divided by the control values (the control value was set as 1). Data are presented in fold 
of control (mean + S.E.M, n=4-6/group). * p < 0.05 compared to control. # p < 0.05 compared to 
isoproterenol.  
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Figure 3.18 Effect of 11,12-EET on the expression of CYP2C11 (A), CYP2E1 (B) and 
CYP2J3 (C). H9c2 cells were incubated with 100 μM isoproterenol in the presence or absence of 
1 μM 11,12-EET for 24 h. Total RNA was isolated and the expression of CYP2C11, CYP2E1 and 
CYP2J3 were determined by real-time PCR. Fold of induction was calculated as target gene 
expression (normalized to GAPDH) divided by the control values (the control value was set as 1). 
Data are presented in fold of control (mean + S.E.M, n=4-6/group). * p < 0.05 compared to 
control. # p < 0.05 compared to isoproterenol. 
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Figure 3.19 Effect of 11,12-EET on the expression of CYP4F1 (A), CYP4F4 (B) and CYP4F5 
(C). H9c2 cells were incubated with 100 μM isoproterenol in the presence or absence of 1 μM 
11,12-EET for 24 h. Total RNA was isolated and the expression of CYP4F1, CYP4F4 and 
CYP4F5 were determined by real-time PCR. Fold of induction was calculated as target gene 
expression (normalized to GAPDH) divided by the control values (the control value was set as 1). 
Data are presented in fold of control (mean + S.E.M, n=4-6/group). * p < 0.05 compared to 
control. # p < 0.05 compared to isoproterenol.  
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Figure 3.20 Effect of 11,12-EET on the expression of EPHX2 (A) and the luciferase 
transcriptional activity of EPHX2 (B). (A) H9c2 cells were incubated with 100 μM isoproterenol 
in the presence or absence of 1 μM 11,12-EET for 24 h. Total RNA was isolated and the 
expression of the expression of EPHX2 was determined by real-time PCR. Fold of induction was 
calculated as target gene expression (normalized to GAPDH) divided by the control values (the 
control value was set as 1). Data are presented in fold of control (mean + S.E.M, n=5-6/group). * p 
< 0.05 compared to control. # p < 0.05 compared to isoproterenol. (B) H9c2 cells were incubated 
with 100 μM isoproterenol in the presence or absence of 1 μM 11,12-EET for 24 h. H9c2 cells 
were lysed and luciferase activities were determined using a Spectra Fluor Plus microplate reader. 
Fold of induction was calculated as a relative luciferase activity (firefly luciferase activity divided 
by the control renilla luciferase activity). Data are presented in fold of control (mean + S.E.M, 
n=3/group). * p < 0.05 compared to control. # p < 0.05 compared to isoproterenol. 
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3.2.4 Effect of 14,15-EET on the changes of hypertrophic markers in 

isoproterenol-mediated hypertrophy 

To examine the protective effect of 14,15-EET against isoproterenol-

induced hypertrophy, H9c2 cells were pretreated with 1 μM of 14,15-EET for 2 h 

and then 100 μM of isoproterenol, or isoproterenol alone for an additional 24 h. 

Thereafter, the mRNA expression of the hypertrophic markers ANP, BNP and β-

MHC were measured using real-time PCR. Isoproterenol alone caused a 

significant induction of ANP and BNP. Pre-treatment of 14,15-EET significantly 

decreased the isoproterenol-mediated induction of ANP and BNP by about 110% 

and 130%, respectively (Fig. 3.21A-B). However, isoproterenol did not affect the 

expression of β-MHC, and treatment of 14,15-EET also did not alter the 

expression of β-MHC (Fig. 3.21C). 

3.2.5 Effect of 14,15-EET on the changes of expression of CYPs in 

isoproterenol-mediated hypertrophy 

To further investigate the protective effect of 14,15-EET on isoproterenol-

mediated alterations of CYPs, the mRNA expression was assessed using real-time 

PCR. Consistent with our earlier findings, isoproterenol alone significantly 

induced the mRNA expression of CYP1A1 and CYP1B1. Treatment of 14,15-

EET significantly reduced the isoproterenol-mediated induction of CYP1A1 by 

63% (Fig. 3.22A). However, pre-treatment with 14,15-EET did not decrease the 

isoproterenol-mediated induction of CYP1B1 (Fig. 3.22B). 

Similarly, the expression CYP2J3 was significantly induced by the 

treatment with isoproterenol. Pre-treatment with 14,15-EET caused a significant 

reduction of CYP2J3 by 84% (Fig. 3.23C). Among the CYPs we have measured, 

the expression of CYP2C11, CYP2E1 and CYP4F1 were modulated by the 

treatment of 14,15-EET, but not by the treatment of isoproterenol. Fig. 3.23A 

shows a significant inhibition in the mRNA levels of CYP2C11 in the 14,15-EET 

alone and isoproterenol plus 14,15-EET groups to about 0.6-fold of control. In 

contrast, 14,15-EET caused a significant induction of CYP2E1 in the 14,15-EET 
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alone and isoproterenol plus 14,15-EET groups to about 1.7 and 3.5-fold, 

respectively (Fig. 3.23B). Furthermore, treatment of 14,15-EET significantly 

increased the expression of CYP4F1 in the 14,15-EET alone and isoproterenol 

plus 14,15-EET groups to about 2.4 and 1.6-fold, respectively (Fig. 3.24A). On 

the other hand, isoproterenol significantly increased the expression of CYP4F4 

and CYP4F5 as we mentioned earlier. Treatment of 14,15-EET significantly 

attenuated the isoproterenol-mediated induction of CYP4F4 and CYP4F5 by 

127% and 126%, respectively (Fig. 3.24B-C). 

3.2.6 Effect of 14,15-EET on the changes of EPHX2 and the luciferase 

transcriptional activity of EPHX2 in isoproterenol-mediated 

hypertrophy 

Regarding the expression of EPHX2, our results demonstrated a similar 

induction caused by isoproterenol as mentioned earlier. Pre-treatment with 14,15-

EET significantly inhibited the isoproterenol-mediated induction of EPHX2 by 

105% (Fig. 3.25A). Furthermore, we examined the effect of isoproterenol on the 

transcriptional activity of EPHX2; a transient expression assay based on a reporter 

firefly luciferase gene was employed. Figure 3.25B shows that the treatment with 

14,15-EET caused a significant reduction in the isoproterenol-induced luciferase 

activity by 134% (Fig. 3.25B). 
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Figure 3.21 Effect of 14,15-EET on the expression of hypertrophic markers, ANP (A), BNP 
(B) and β-MHC (C). H9c2 cells were incubated with 100 μM isoproterenol in the presence or 
absence of 1 μM 14,15-EET for 24 h. Total RNA was isolated and the expression of the 
hypertrophic markers ANP, BNP and β-MHC were determined by real-time PCR. Fold of 
induction was calculated as target gene expression (normalized to GAPDH) divided by the control 
values (the control value was set as 1). Data are presented in fold of control (mean + S.E.M, n=4-
6/group). * p < 0.05 compared to control. # p < 0.05 compared to isoproterenol. 
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Figure 3.22 Effect of 14,15-EET on the expression of CYP1A1 (A) and CYP1B1 (B). H9c2 
cells were incubated with 100 μM isoproterenol in the presence or absence of 1 μM 14,15-EET for 
24 h. Total RNA was isolated and the expression of CYP1A1 and CYP1B1 were determined by 
real-time PCR. Fold of induction was calculated as target gene expression (normalized to 
GAPDH) divided by the control values (the control value was set as 1). Data are presented in fold 
of control (mean + S.E.M, n=4-6/group). * p < 0.05 compared to control. # p < 0.05 compared to 
isoproterenol.  
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Figure 3.23 Effect of 14,15-EET on the expression of CYP2C11 (A), CYP2E1 (B) and 
CYP2J3 (C).  H9c2 cells were incubated with 100 μM isoproterenol in the presence or absence of 
1 μM 14,15-EET for 24 h. Total RNA was isolated and the expression of CYP2C11, CYP2E1 and 
CYP2J3 were determined by real-time PCR. Fold of induction was calculated as target gene 
expression (normalized to GAPDH) divided by the control values (the control value was set as 1). 
Data are presented in fold of control (mean + S.E.M, n=4-6/group). * p < 0.05 compared to 
control. # p < 0.05 compared to isoproterenol. 
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Figure 3.24 Effect of 14,15-EET on the expression of CYP4F1 (A), CYP4F4 (B) and CYP4F5 
(C). H9c2 cells were incubated with 100 μM isoproterenol in the presence or absence of 1 μM 
14,15-EET for 24 h. Total RNA was isolated and the expression of CYP4F1, CYP4F4 and 
CYP4F5 were determined by real-time PCR. Fold of induction was calculated as target gene 
expression (normalized to GAPDH) divided by the control values (the control value was set as 1). 
Data are presented in fold of control (mean + S.E.M, n=4-6/group). * p < 0.05 compared to 
control. # p < 0.05 compared to isoproterenol. 
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Figure 3.25 Effect of 14,15-EET on the expression of EPHX2 (A) and the luciferase 
transcriptional activity of EPHX2 (B). (A) H9c2 cells were incubated with 100 μM isoproterenol 
in the presence or absence of 1 μM 14,15-EET for 24 h. Total RNA was isolated and the 
expression of the expression of EPHX2 was determined by real-time PCR. Fold of induction was 
calculated as target gene expression (normalized to GAPDH) divided by the control values (the 
control value was set as 1). Data are presented in fold of control (mean + S.E.M, n=4-6/group). * p 
< 0.05 compared to control. # p < 0.05 compared to isoproterenol. (B) H9c2 cells were incubated 
with 100 μM isoproterenol in the presence or absence of 1 μM 14,15-EET for 24 h. H9c2 cells 
were lysed and luciferase activities were determined using a Spectra Fluor Plus microplate reader. 
Fold of induction was calculated as a relative luciferase activity (firefly luciferase activity divided 
by the control renilla luciferase activity). Data are presented in fold of control (mean + S.E.M, 
n=3/group). * p < 0.05 compared to control. # p < 0.05 compared to isoproterenol. 
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3.3 Inhibition of sEH by a sEH inhibitor, TUPS protects against 

isoproterenol-induced cellular hypertrophy in H9c2 cells 

3.3.1 Effect of TUPS on cell viability 

To determine the cytotoxic effect of TUPS, H9c2 cells were incubated 

with increasing concentrations of TUPS (0.1, 1, 5, 10 μM) for 24 h. Thereafter, 

cell viability was evaluated by the MTT assay. The MTT assay showed that the 

TUPS concentrations ranging from 0.1-10 μM did not significantly affect cell 

viability as compared to the control (Fig. 3.26). Therefore, the observed changes 

in the gene expression are not due to the decreased cell viability or toxicity. 

3.3.2 Effect of TUPS on the changes of hypertrophic markers in 

isoproterenol-mediated hypertrophy 

To investigate whether the inhibition of sEH by TUPS confers 

cardioprotection in isoproterenol-mediated cellular hypertrophy, H9c2 cells were 

pretreated with 10 μM of TUPS for 2 h and then 100 μM of isoproterenol, or 

isoproterenol alone for an additional 24 h. We measured the expression of 

hypertrophic markers ANP, BNP and β-MHC using real-time PCR. Isoproterenol 

caused a significant induction of ANP and BNP as we observed earlier. TUPS 

treatment significantly decreased the isoproterenol-mediated induction of ANP 

and BNP by 75% and 130%, respectively (Fig. 3.27A-B). Consistent with our 

earlier findings, isoproterenol did not cause any significant changes in the 

expression of β-MHC. In addition, pre-treatment with TUPS did not alter the 

expression of β-MHC (Fig. 3.27C). 
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Figure 3.26 Effect of TUPS on cell viability. H9c2 cells were incubated with increasing 
concentrations of TUPS (0.1, 1, 5 and 10 μM) for 24 h. The cell viability was measured by the 
MTT assay as described in materials and methods. Data are presented as a percentage of control 
(mean + S.E.M, n=8). * p < 0.05 compared to control. 
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Figure 3.27 Effect of TUPS on the expression of hypertrophic markers, ANP (A), BNP (B) 
and β-MHC (C). H9c2 cells were pretreated with 10 μM TUPS for 2 h and then 100 μM 
isoproterenol, or isoproterenol alone for an additional 24 h. Total RNA was isolated and the 
expression of the hypertrophic markers, ANP, BNP and β-MHC were determined by real-time 
PCR. Fold of induction was calculated as target gene expression (normalized to GAPDH) divided 
by the control values (the control value was set as 1). Data are presented in fold of control (mean + 
S.E.M, n=4-6/group). * p < 0.05 compared to control. # p < 0.05 compared to isoproterenol. 
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3.3.3 Effect of TUPS on the changes of CYPs expression in isoproterenol-

mediated hypertrophy 

To examine the protective effect of TUPS on isoproterenol-mediated 

alterations of CYPs, the mRNA expression was evaluated using real-time PCR. 

Figure 3.28A shows the effect of TUPS treatment on isoproterenol-mediated 

induction of CYP1A1 expression. Our results demonstrated that isoproterenol 

caused a significant increase in the CYP1A1 mRNA expression. Treatment of 

TUPS caused a significant inhibition of the isoproterenol-induced CYP1A1 

expression by 52% (Fig. 3.28A). On the other hand, isoproterenol induced the 

CYP1B1 expression as we demonstrated earlier. However, treatment of TUPS 

caused no significant changes in the isoproterenol-mediated induction of 

CYP1B1. Furthermore, TUPS alone significantly increased the expression of 

CYP1B1 to about 1.7-fold of control (Fig. 3.28B). 

Consistently, isoproterenol induced the expression of CYP2J3. Pre-

treatment of TUPS significantly attenuated the isoproterenol-induced effect of 

CYP2J3 by about 115% (Fig. 3.29C). As we observed earlier, isoproterenol did 

not alter the expression of CYP2E1. Moreover, treatment of TUPS did not cause a 

significant change in the expression of CYP2E1 (Fig. 3.29B). Interestingly, the 

expression of CYP2C11 and CYP4F1 was modulated by the treatment of TUPS, 

but not by the treatment of isoproterenol. Fig. 3.29A shows a significant inhibition 

in the mRNA level of CYP2C11 in the TUPS alone and isoproterenol plus TUPS 

groups to about 0.4-fold of control. Contrarily, treatment of TUPS significantly 

increased CYP4F1 in the TUPS alone and isoproterenol plus TUPS groups to 

about 2.5 and 2.2-fold, respectively (Fig. 3.30A). On the other hand, isoproterenol 

significantly increased the expression of CYP4F4 and CYP4F5 as we observed 

earlier. Treatment of TUPS significantly attenuated the isoproterenol-mediated 

induction of CYP4F4 and CYP4F5 by 137% and 97%, respectively (Fig. 3.30B-

C). 
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3.3.4 Effect of TUPS on the changes of EPHX2 expression and the 

luciferase transcriptional activity of EPHX2 in isoproterenol-mediated 

hypertrophy 

As for the expression of EPHX2, we showed that isoproterenol caused a 

similar induction of EPHX2 as mentioned earlier. Pre-treatment of TUPS 

significantly inhibited the isoproterenol-mediated induction of EPHX2 by 105% 

(Fig. 3.31A). Moreover, we examined the effect of isoproterenol on the 

transcriptional activity of EPHX2, a transient expression assay based on a reporter 

firefly luciferase gene was adopted in this study. Our findings demonstrated that 

treatment of TUPS significantly inhibited the isoproterenol-induced luciferase 

activity by approximately 150% (Fig. 3.31B). 
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Figure 3.28 Effect of TUPS on the expression of CYP1A1 (A) and CYP1B1 (B). H9c2 cells 
were pretreated with 10 μM TUPS for 2 h and then 100 μM isoproterenol, or isoproterenol alone 
for an additional 24 h. Total RNA was isolated and the expression of CYP1A1 and CYP1B1 were 
determined by real-time PCR. Fold of induction was calculated as target gene expression 
(normalized to GAPDH) divided by the control values (the control value was set as 1). Data are 
presented in fold of control (mean + S.E.M, n=5-6/group). * p < 0.05 compared to control. # p < 
0.05 compared to isoproterenol.  
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Figure 3.29 Effect of TUPS on the expression of CYP2C11 (A), CYP2E1 (B) and CYP2J3 
(C). H9c2 cells were pretreated with 10 μM TUPS for 2 h and then 100 μM isoproterenol, or 
isoproterenol alone for an additional 24 h. Total RNA was isolated and the expression of 
CYP2C11, CYP2E1 and CYP2J3 were determined by real-time PCR. Fold of induction was 
calculated as target gene expression (normalized to GAPDH) divided by the control values (the 
control value was set as 1). Data are presented in fold of control (mean + S.E.M, n=4-6/group). * p 
< 0.05 compared to control. # p < 0.05 compared to isoproterenol. 
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Figure 3.30 Effect of TUPS on the expression of CYP4F1 (A), CYP4F4 (B) and CYP4F5 (C). 
H9c2 cells were pretreated with 10 μM TUPS for 2 h and then 100 μM isoproterenol, or 
isoproterenol alone for an additional 24 h. Total RNA was isolated and the expression of CYP4F1, 
CYP4F4 and CYP4F5 were determined by real-time PCR. Fold of induction was calculated as 
target gene expression (normalized to GAPDH) divided by the control values (the control value 
was set as 1). Data are presented in fold of control (mean + S.E.M, n=4-6/group). * p < 0.05 
compared to control. # p < 0.05 compared to isoproterenol.  
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Figure 3.31 Effect of TUPS on the expression of EPHX2 (A) and the luciferase 
transcriptional activity of EPHX2 (B). (A) H9c2 cells were pretreated with 10 μM TUPS for 2 h 
and then 100 μM isoproterenol, or isoproterenol alone for an additional 24 h. Total RNA was 
isolated and the expression of the expression of EPHX2 was determined by real-time PCR. Fold of 
induction was calculated as target gene expression (normalized to GAPDH) divided by the control 
values (the control value was set as 1). Data are presented in fold of control (mean + S.E.M, n=4-
6/group). * p < 0.05 compared to control. # p < 0.05 compared to isoproterenol. (B) H9c2 cells 
were pretreated with 10 μM TUPS for 2 h and then 100 μM isoproterenol, or isoproterenol alone 
for an additional 24 h. H9c2 cells were lysed and luciferase activities were determined using a 
Spectra Fluor Plus microplate reader. Fold of induction was calculated as a relative luciferase 
activity (firefly luciferase activity divided by the control renilla luciferase activity). Data are 
presented in fold of control (mean + S.E.M, n=3/group). * p < 0.05 compared to control. # p < 
0.05 compared to isoproterenol. 



94 
 

4. Discussion 

4.1 Isoproterenol induces cellular hypertrophy and modulates the gene 

expression of cytochromes P450 and EPHX2 in rat cardiomyoblast 

H9c2 cells, but not in rat hepatoma H4IIE cells. 

In the present study, we investigated the effect of isoproterenol on rat 

cardiomyoblast H9c2 cells and rat hepatoma H4IIE cells and its modulation on 

the expression of CYP genes. Our results have demonstrated that isoproterenol 

caused cellular hypertrophy in H9c2 cells at both 24 and 48 h, as manifested by a 

significant induction of the hypertrophic markers ANP and BNP. Previously, 

isoproterenol has been shown to induce cellular hypertrophy as indicated by an 

induction of hypertrophic markers, an increase in cardiomyocyte size and an 

enhance protein systhesis in H9c2 cells and rats (Clarke and Ward 1983; Chen, 

Bu et al. 2012). In agreement with our results, the induction of ANP and BNP has 

been found in several in vivo models of cardiac hypertrophy (Shimoike, Iwai et al. 

1997; Magga, Vuolteenaho et al. 1998; Masson, Arosio et al. 1998; Zordoky, 

Aboutabl et al. 2008; Ai, Pang et al. 2009). Similarly, numerous in vitro models of 

cellular hypertrophy caused by vasopressin, insulin-like growth factor II, 

angiotensin II, lipopolysaccharides, doxorubicin, hydrogen peroxide, TCDD, and 

βNF showed an induction of ANP and BNP in H9c2 cells (Van der Bent, Church 

et al. 1994; Chu, Tzang et al. 2008; Huang, He et al. 2008; Liu, Cheng et al. 2008; 

Zordoky and El-Kadi 2008; Saeedi, Saran et al. 2009; Zordoky and El-Kadi 2010; 

Oyama, Takahashi et al. 2011; Watkins, Borthwick et al. 2011). Furthermore, this 

is consistent with previous findings from our lab and others that the expression of 

ANP and BNP was significantly increased in rat hearts of isoproterenol-induced 

cardiac hypertrophy (Sucharov, Mariner et al. 2006; Tshori, Gilon et al. 2006; 

Lin, Wang et al. 2008; Zordoky, Aboutabl et al. 2008; Tan, Li et al. 2011).  

In an attempt to understand the role of CYPs in the development of cardiac 

hypertrophy, we measured the mRNA expression of different CYP genes caused 

by isoproterenol-induced hypertrophy in H9c2 cells. We demonstrated that 

treatment of isoproterenol significantly increased the mRNA expression of 



95 
 

CYP1A1 and CYP1B1 at both 24 and 48 h time points. The induction of CYP1A1 

and CYP1B1 is consistent with a previous report from our lab illustrating the 

increased mRNA expression of CYP1A1 and CYP1B1 in rat hearts following 

isoproterenol treatment (Zordoky, Aboutabl et al. 2008). Furthermore, the 

expression of CYP1A1 and CYP1B1 was significantly increased in left 

ventricular tissues of SHRs as compared to normotensive rats (Thum and Borlak 

2002). CYP1A1 has been shown to be involved in synthesis of ω-terminal HETEs 

(Schwarz, Kisselev et al. 2005; Lucas, Goulitquer et al. 2010), while CYP1B1 can 

metabolize arachidonic acid to both mid-chain HETEs and EETs (Choudhary, 

Jansson et al. 2004). 

With regard to the CYP2 family, no significant changes were observed for 

the expression of CYP2B1, CYP2C11 or CYP2E1 at 24 or 48 h in the 

isoproterenol-treated H9c2 cells. Previous studies reported that CYP2B1 mRNA 

expression was not altered during isoproterenol-induced cardiac hypertrophy in a 

rat model (Zordoky, Aboutabl et al. 2008). Also, the expression of CYP2B1 was 

not significantly changed in the rat hearts in AhR ligands; 3-MC and BaP-induced 

hypertrophy (Aboutabl, Zordoky et al. 2009). Similarly, the expression of 

CYP2B1 was not altered in various in vitro models of cellular hypertrophy, 

including doxorubicin and the AhR ligands; TCDD and βNF-induced cellular 

hypertrophy in H9c2 cells (Zordoky and El-Kadi 2008; Zordoky and El-Kadi 

2010). Additionally, the expression of CYP2C11 in our current study is consistent 

with several studies from our lab. We previously showed that CYP2C11 

expression was not altered by 3-MC and BaP treatments in rat hearts, and during 

TCDD and βNF-induced cellular hypertrophy in H9c2 cells (Aboutabl, Zordoky 

et al. 2009; Zordoky and El-Kadi 2010). The importance of these enzymes 

emerges from their ability to metabolize arachidonic acid to various EETs (Kroetz 

and Zeldin 2002). CYP2B1 epoxygenase produces 14,15-EET predominantly, 

whereas CYP2C11 metabolizes arachidonic acid into 11,12- and 14,15-EETs 

(Laethem, Halpert et al. 1994; Ng, Huang et al. 2007). As for CYP2E1, there have 

been some discrepancies regarding its expression in different models of cardiac 

hypertrophy. In several models of cardiac hypertrophy, significant inductions of 
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CYP2E1 expression were observed by treatment with AhR ligands and 

doxorubicin in rats and H9c2 cells (Zordoky and El-Kadi 2008; Aboutabl, 

Zordoky et al. 2009; Zordoky and El-Kadi 2010). Contrarily, another study 

showed that isoproterenol treatment caused a significant reduction of CYP2E1 

expression in the hypertrophied hearts of rats (Zordoky, Aboutabl et al. 2008). 

However, our results from the current study demonstrated that CYP2E1 

expression was not significantly altered. These discrepancies are likely due to 

different inducers of experimental cardiac hypertrophy and the use of animal or 

cell line models. 

Our results demonstrated that isoproterenol significantly increased the 

mRNA expression of CYP2J3 during isoproterenol-mediated cellular hypertrophy 

in H9c2 cells. In agreement with our findings, a previous study showed that the 

mRNA expression of CYP2J3 was significantly increased by 4-fold in the left 

ventricular tissues of SHRs (Thum and Borlak 2002). Furthermore, other studies 

have demonstrated a significant induction of CYP2J3 in TCDD, βNF and 

doxorubicin-treated H9c2 cells (Zordoky and El-Kadi 2008; Zordoky and El-Kadi 

2010). However, several papers have shown that the mRNA expression of 

CYP2J3 was not significantly altered in 3-MC, BaP and isoproterenol-induced 

cardiac hypertrophy in rats (Zordoky, Aboutabl et al. 2008; Aboutabl, Zordoky et 

al. 2009). These discrepancies may be explained by the use of animal or cell line 

models, different types of experimental stimuli, and the period of treatment in 

these studies. Further studies will be needed to better define the factors that 

regulate the expression of CYP2J3. In this context, it is important to mention that 

CYP2J3 is one of the major enzymes involved in the formation of EETs in 

extrahepatic tissues. It is the major epoxygenase that is highly expressed in the 

heart (Wu, Moomaw et al. 1996; Wu, Chen et al. 1997; Scarborough, Ma et al. 

1999). CYP2J3 mainly produces 11,12- and 14,15-EETs with a ratio of 40% and 

60%, respectively (Kaspera and Totah 2009). 

CYP4A and CYP4F subfamilies are considered the most important CYP 

ω-hydroxylases which are involved in the metabolism of arachidonic acid to 20-

HETE (Kroetz and Xu 2005; Rifkind 2006). In the current study, the expression 
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of CYP4A1, CYP4A2 and CYP4A3 were not detected in the H9c2 cells. 

Moreover, there was no significant change in the expression of CYP4F1 in the 

isoproterenol-treated H9c2 cells. Consistent with previous findings, CYP4F1 

expression was not altered in AhR agonists; TCDD and βNF-induced models of 

cellular hypertrophy in H9c2 cells (Zordoky and El-Kadi 2010), or 3-MC and 

BaP-induced models of cardiac hypertrophy in rats (Aboutabl, Zordoky et al. 

2009). On the other hand, we demonstrated that treatment with isoproterenol 

significantly increased the mRNA expression of CYP4F4 at both 24 and 48 h in 

H9c2 cells. Our results are consistent with several previous studies showing that 

the expression of CYP4F4 was significantly induced in TCDD and βNF-induced 

cellular hypertrophy in H9c2 cells (Zordoky and El-Kadi 2010), as well as in 3-

MC, BaP and isoproterenol-induced cardiac hypertrophy in rats (Aboutabl, 

Zordoky et al. 2009; Althurwi, Tse et al. in press). Furthermore, our findings also 

showed a significant induction of CYP4F5 in isoproterenol-treated H9c2 cells at 

both time points. Similar to a previous study, the expression of CYP4F5 was 

significantly increased in hearts of 3-MC and BaP-treated rats (Aboutabl, Zordoky 

et al. 2009). However, the expression of CYP4F5 was not altered in two other 

hypertrophy studies, including TCDD and βNF-treated H9c2 cells (Zordoky and 

El-Kadi 2010), and isoproterenol-induced cardiac hypertrophy in rats (Zordoky, 

Aboutabl et al. 2008). Further studies will be needed to clarify these 

discrepancies.  

The sEH enzyme is an important factor in determining the levels of EETs, 

as it catalyses the conversion of EETs to DHETs, thereby diminishing their 

biological effects (Imig, Zhao et al. 2002). A previous study has identified 

EPHX2, the gene encodes the sEH enzyme, as a susceptibility factor for heart 

failure in SHHF rats using linkage analyses with genome-wide expression 

profiling (Monti, Fischer et al. 2008). Therefore, we investigated the effect of 

cardiac hypertrophy on the expression of sEH. In the current study, the transcript 

and protein levels of sEH were found to be increased in isoproterenol-induced 

cellular hypertrophy in H9c2 cells. Consistent with our results, a study has shown 

an increase in the transcript, protein, and enzymatic activity levels of sEH in 



98 
 

SHHF rats (Monti, Fischer et al. 2008). Another study has also indicated that the 

expression of sEH was induced in spontaneous hypertensive rats (Ai, Fu et al. 

2007). Furthermore, an in vitro study showed an increase in the protein expression 

of sEH in Ang II-induced cellular hypertrophy in rat neonatal cardiomyocytes and 

H9c2 cells (Monti, Fischer et al. 2008; Pang, Li et al. 2011). Correspondingly, the 

expression of sEH was detected to be increased in the rat myocardium of Ang II-

induced cardiac hypertrophy (Ai, Pang et al. 2009). More recently, the mRNA 

expression of sEH was shown to be induced in rat hearts of isoproterenol-induced 

cardiac hypertrophy (Zordoky, Aboutabl et al. 2008). Similarly, the protein level 

of sEH was significantly increased in isoproterenol-induced cardiac hypertrophy 

in rats (Althurwi, Tse et al. in press). 

To determine whether the hypertrophic effect of isoproterenol and the 

modulation of CYP expression due to the isoproterenol-mediated cellular 

hypertrophy were specific to cardiac cells, we investigated whether isoproterenol 

has a similar effect and modulates the expression of CYPs in rat hepatoma H4IIE 

cells. In the current study, we showed that the expression of hypertrophic markers 

ANP and BNP were not expressed in H4IIE cells, but only expressed in H9c2 

cells. Similar to a previous study in our lab, the mRNA expression of ANP and 

BNP was only detected in the heart tissues, and not in liver tissues in 

isoproterenol-induced cardiac hypertrophy in rats (Zordoky, Aboutabl et al. 

2008). Furthermore, the mRNA expression of CYPs was measured in the 

isoproterenol-treated H4IIE cells. Our results demonstrated that the expression of 

CYP1A1, CYP1B1, CYP2B1, CYP2C11 and CYP2E1 was not significantly 

changed in the H4IIE cells by treatment with isoproterenol. Consistent with a 

previous study, the mRNA expression of these CYPs were not altered in the liver 

in isoproterenol-induced cardiac hypertrophy in rats (Zordoky, Aboutabl et al. 

2008). On the other hand, the expression of the major epoxygenase, CYP2J3 was 

found at very low or undetectable levels in H4IIE cells. As shown in a previous 

study, even at a detectable level in the liver of rats, isoproterenol did not mediate 

any significant changes in the mRNA expression of CYP2J3 (Zordoky, Aboutabl 

et al. 2008). As for the CYP4 family, our study showed that the expression of 
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CYP4A1, CYP4A2, CYP4A3, CYP4F1, CYP4F4 and CYP4F5 was not 

significantly altered by the treatment with isoproterenol in H4IIE cells. Similar 

findings were observed in a previous study. The expression of these CYPs was 

not significantly changed in the liver of isoproterenol-treated rats (Zordoky, 

Aboutabl et al. 2008). Altogether, these findings suggest that the hypertrophic 

effect of isoproterenol is specific to cardiac cells. Furthermore, the modulation of 

CYP expression was likely due to the isoproterenol-mediated cellular 

hypertrophy, rather than the effect of isoproterenol itself as we did not observe a 

similar modulation in the H4IIE cells. 

In conclusion, our study showed that isoproterenol induces cellular 

hypertrophy in H9c2 cells, but not in H4IIE cells. Furthermore, isoproterenol-

induced cellular hypertrophy caused significant changes in the expression of 

several CYPs and EPHX2, which is mostly specific to cardiac cells. Therefore, the 

cardiac CYPs may play an important role in the development and/or progression 

of cardiac hypertrophy. However, more studies are needed to explore the 

mechanisms by which cardiac hypertrophy modulates CYP and EPHX2 gene 

expression. 

4.2 11,12- and 14,15-EETs protect against the isoproterenol-induced 

cellular hypertrophy through the modulation of gene expression of 

CYPs and EPHX2 in H9c2 cells. 

To investigate the protective effect of 11,12- and 14,15-EETs against 

isoproterenol-induced cellular hypertrophy in H9c2 cells, we performed real time-

PCR on the expression of the hypertrophic markers, CYPs and EPHX2. We found 

that both 11,12- and 14,15-EETs significantly decreased the isoproterenol-

mediated induction of ANP and BNP in H9c2 cells. For the first time, the 

protective effect of EETs was being examined in cellular hypertrophy. Previous 

studies have only shown that the exogenous administration of EETs exerts a 

protective effect against ischemia-reperfusion injury and myocardial infarction 

(Moffat, Ward et al. 1993; Wu, Chen et al. 1997; Nithipatikom, Moore et al. 

2006; Motoki, Merkel et al. 2008). Likewise, other studies have only 
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demonstrated the protective effects of sEH inhibitors against cardiac hypertrophy. 

Nevertheless, we have shown that an sEH inhibitor decreased the hypertrophic 

markers ANP and BNP in BaP-induced cardiac hypertrophy in rats (Aboutabl, 

Zordoky et al. 2011). Similarly, another study showed that inhibition of sEH by 

TUPS attenuated the hypertrophic markers in Ang II-mediated hypertrophy in rat 

hearts and neonatal rat cardiomyocytes (Ai, Pang et al. 2009). Two other sEH 

inhibitors, AEPU and AUDA were also reported to decrease the hypertrophic 

markers in thoracic aortic constriction murine model (Xu, Li et al. 2006). Our 

study is the first to show that exogenous administrations of 11,12- and 14,15-

EETs attenuated the expression of ANP and BNP in isoproterenol-mediated 

cellular hypertrophy in H9c2 cells. Increasing levels of EETs by adding 

exogenous EETs or by inhibiting sEH, the enzyme responsible for the degradation 

of EETs, both showed a protective effect against cellular hypertrophy and 

decreased the expression of hypertrophic markers. 

Due to the importance of CYPs in the pathogenesis of cardiac 

hypertrophy, we examined the effect of 11,12- and 14,15-EETs on the expression 

of different CYPs that are mediated by isoproterenol-induced cellular 

hypertrophy. Our results demonstrated that 11,12- and 14,15-EETs significantly 

decreased the isoproterenol-mediated induction of the CYP ω-hydroxylase 

enzyme CYP1A1 in H9c2 cells. However, 11,12- and 14,15-EETs were unable to 

decrease the other ω-hydroxylase enzyme, CYP1B1 in our study. Most studies 

have indicated that CYP1A1 is regulated by the aryl hydrocarbon receptor (AhR) 

signaling pathway (Fujii-Kuriyama, Imataka et al. 1992; Abel and Haarmann-

Stemmann 2010). On the other hand, both rat and mouse CYP1B1 is regulated by 

the AhR and cyclic AMP (cAMP)-mediated pathways. Transcription factor-1 

motifs have been found to associate with cAMP-dependent transcriptional 

activation of genes in the 5’ upstream regulatory sequences of the mouse CYP1B1 

gene (Brake and Jefcoate 1995; Zhang, Savas et al. 1998). Rat CYP1B1 has been 

found to be inducible by AhR agonists and by adrenocorticotropic hormone 

(ACTH) (Brake and Jefcoate 1995). ACTH treatment of cultured cells of rat 

adrenal cortex resulted in an increase in CYP1B1 expression. Interestingly, the 
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response towards ACTH was greater than the corresponding response elicited by 

treatment with dioxin. Other steroid hormones, such as benzanthracene and 

estradiol also increased the expression of CYP1B1 in rat mammary stromal 

fibroblasts (Christou, Savas et al. 1995). Many studies have indicated the 

inducible expression of CYP1B1 may also involve non-AhR-mediated 

mechanisms, thus providing further evidence for the involvement of multiple 

cellular pathways in the regulation of CYP1B1 (Murray, Melvin et al. 2001). 

Therefore, the unresponsive effect of CYP1B1 in our study may be due the 

regulation of this gene by other pathways.  

Nonetheless, treatment with 11,12- and 14,15-EETs also significantly 

reduced the isoproterenol-mediated induction of CYP2J3. Interestingly, treatment 

with 11,12- and 14,15-EETs alone caused a significant reduction in the expression 

of CYP2C11 whereas, a significant induction was observed in the expression of 

CYP2E1. Consistent with a previous study, increasing EET concentrations by the 

inhibition of sEH resulted in an induction of CYP2E1 in the heart tissues of rats 

(Aboutabl, Zordoky et al. 2011). Likewise, the expression of CYP4F1 was also 

significantly increased by the treatment of 11,12- and 14,15-EETs alone in H9c2 

cells. The modulation of CYP2C11, CYP2E1 and CYP4F1 by 11,12- and 14,15-

EETs could be attributed to the involvement of EETs in regulating CYP-

dependent pathways during cardiac hypertrophy. With regard to the other CYP4 

members, our study showed that the treatment of 11,12- and 14,15-EETs 

significantly inhibited isoproterenol-mediated induction of CYP4F4 in H9c2 cells. 

Our results are consistent with several studies showing that the expression of 

CYP4F4 was significantly attenuated by the inhibition of sEH with TUPS in BaP 

and isoproterenol-induced cardiac hypertrophy in rats (Aboutabl, Zordoky et al. 

2011; Althurwi, Tse et al. in press). Similarly, the expression of CYP4F5 was also 

significantly decreased by treatment with 11,12- and 14,15-EETs in isoproterenol-

induced cellular hypertrophy. In agreement with our results, a previous study 

showed that TUPS reduced the expression of CYP4F5 in BaP-induced cardiac 

hypertrophy in rats (Aboutabl, Zordoky et al. 2011).  
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In addition, our findings indicated that 11,12- and 14,15-EETs 

significantly attenuated the mRNA expression of  EPHX2 in isoproterenol-

induced cellular hypertrophy. To confirm the effect of 11,12- and 14,15-EETs on 

the transcriptional activity of EPHX2, we employed the luciferase gene reporter 

assay under the control of EPHX2 promoter. We found that isoproterenol 

activated the EPHX2 promoter, and the treatment with 11,12- and 14,15-EETs 

decreased the isoproterenol-mediated induction of EPHX2-luciferase activity. 

Consistently, other studies have shown that inhibition of sEH by TUPS also 

decreased the mRNA expression of sEH in BaP and isoproterenol-induced cardiac 

hypertrophy in rats (Aboutabl, Zordoky et al. 2011; Althurwi, Tse et al. in press). 

Altogether, these findings suggest that EETs exert a protective effect against 

cellular hypertrophy by down regulating the gene expression of EPHX2. EETs 

play an important role in the inhibition of NF-κB, which is a downstream target of 

several signaling pathways implicated in cardiac hypertrophy, including pathway 

involving α-adrenergic stimulation, angiotensin II, PI3K/Akt, p38, ras, MEKK1/4, 

PKC and gp130 (Zechner, Craig et al. 1998; Rouet-Benzineb, Gontero et al. 2000; 

Craig, Wagner et al. 2001; Force, Kuida et al. 2004; Fischer and Hilfiker-Kleiner 

2007). In addition to NF-κB, EETs have several other downstream targets that 

may explain their cardioprotective effects (Harris, Li et al. 2008). EETs modulate 

several signal transduction pathways such as those involving p42/p44 MAPK, 

cAMP-PKA, IKK-IKB, and ATP-sensitive potassium channels, suggesting that 

EETs act by binding to membrane receptors to initiate signaling cascades 

(Seubert, Yang et al. 2004; Lu, Ye et al. 2006; Batchu, Law et al. 2009). 

In conclusion, we demonstrated for the first time that treatment with 

11,12- and 14,15-EETs significantly attenuated isoproterenol-induced cellular 

hypertrophy in H9c2 cells. In addition, 11,12- and 14,15-EETs also inhibited the 

isoproterenol-mediated induction of CYPs and EPHX2. Altogether, our results 

suggest the role of CYPs in the development of cardiac hypertrophy and the 

protective effects of 11,12- and 14,15-EETs against cellular hypertrophy may be 

through the involvement of CYPs. Further investigation is needed to confirm our 

findings and to examine the mechanisms by which CYPs are implicated in cardiac 



103 
 

hypertrophy and the pathways by which EETs mediate to protect against cardiac 

hypertrophy. 

4.3 Inhibition of sEH by a sEH inhibitor, TUPS, protects against 

isoproterenol-induced cellular hypertrophy through the modulation of 

gene expression of CYPs and EPHX2 in H9c2 cells. 

The cardioprotective effects of sEH inhibitors emerge from their ability to 

inhibit the degradation of EETs and other epoxy fatty acids, thereby prolonging 

the cardioprotective effect of EETs. Among the different sEH inhibitors that have 

been synthesized, the urea pharmacophore is the most potent, competitive and 

tight binding inhibitor of sEH (Morisseau, Goodrow et al. 1999). In the current 

study, we employed TUPS as the choice of sEH inhibitor, which comprises a 

highly potent urea pharmacophore (Chiamvimonvat, Ho et al. 2007). We 

investigated the cardioprotective effect of the inhibition of sEH by TUPS in 

isoproterenol-induced cellular hypertrophy. Our results demonstrated that TUPS 

significantly decreased the isoproterenol-mediated induction of hypertrophic 

markers ANP and BNP in H9c2 cells. In agreement with our results, it has been 

demonstrated previously that TUPS decreased the hypertrophic markers, ANP and 

BNP in BaP-induced cardiac hypertrophy in rats (Aboutabl, Zordoky et al. 2011). 

Similarly, TUPS attenuated the hypertrophic markers and left ventricular 

hypertrophy in Ang II-induced hypertrophy in rat hearts and neonatal rat 

cardiomyocytes (Ai, Pang et al. 2009). Recently, our lab also demonstrated that 

TUPS decreased the hypertrophic markers of isoproterenol-induced cardiac 

hypertrophy in rats (Althurwi, Tse et al. in press). Furthermore, two other sEH 

inhibitors, AEPU and AUDA, were also reported to decrease the hypertrophic 

markers and prevent cardiac hypertrophy in a thoracic aortic constriction murine 

model (Xu, Li et al. 2006). Therefore, these findings suggest that sEH inhibitors 

exert a cardioprotective effect against cardiac hypertrophy and decrease the 

expression of hypertrophic markers. 

Due to the importance of CYPs in the pathogenesis of cardiac 

hypertrophy, we investigated the effect of sEH inhibition on the expression of 
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different CYP genes involved in isoproterenol-induced cellular hypertrophy. Our 

results demonstrated that TUPS significantly decreased the isoproterenol-

mediated induction of CYP1A1 in H9c2 cells. In agreement with our results, 

another study showed that TUPS significantly attenuated the expression of 

CYP1A1 in BaP-induced cardiac hypertrophy in rats (Aboutabl, Zordoky et al. 

2011). On the other hand, TUPS did not decrease the expression of CYP1B1, 

which is consistent with the findings we observed earlier with 11,12- and 14,15-

EETs. Although a previous study demonstrated that TUPS decreased the 

expression of CYP1B1 in BaP-induced cardiac hypertrophy in rats (Aboutabl, 

Zordoky et al. 2011), we did not observe this reduction in our current study. This 

discrepancy is likely due to the different models between animals and cell lines. 

With regard to the CYP2 family, treatment with TUPS significantly 

decreased the isoproterenol-mediated induction of CYP2J3. Interestingly, 

treatment with TUPS alone caused a significant reduction in the expression of 

CYP2C11. Consistent with the findings we observed earlier by the treatment of 

11,12- and 14,15-EETs, which alone also decreased the expression of CYP2C11. 

On the other hand, the expression of CYP4F1 was significantly increased by the 

treatment of TUPS, which is consistent with the results obtained from the 

treatment of 11,12- and 14,15-EETs. The modulation of CYP2C11 and CYP4F1 

by TUPS could be attributed to the increasing levels of EETs through the 

inhibition of sEH, and possibly through the involvement of EETs in regulating the 

CYP-dependent pathways during cardiac hypertrophy. On the other hand, our 

study showed that the treatment of TUPS significantly inhibited the isoproterenol-

mediated induction of CYP4F4 in H9c2 cells. Consistent with our results, several 

studies showed that TUPS significantly attenuated the expression of CYP4F4 in 

BaP and isoproterenol-induced cardiac hypertrophy in rats (Aboutabl, Zordoky et 

al. 2011; Althurwi, Tse et al. in press). Furthermore, our study also showed that 

treatment of TUPS significantly decreased the expression of CYP4F5 in 

isoproterenol-induced cellular hypertrophy in H9c2 cells. In agreement with our 

results, a previous study showed that TUPS reduced the expression of CYP4F5 in 

BaP-induced cardiac hypertrophy in rats (Aboutabl, Zordoky et al. 2011). 
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The expression of EPHX2 was found to be induced in spontaneously 

hypertensive rats with heart failure (Monti, Fischer et al. 2008). Moreover, an 

increased level of sEH was detected in the rat myocardium of Ang II-induced 

cardiac hypertrophy (Ai, Pang et al. 2009). Previous studies from our lab have 

also demonstrated that the expression of sEH was significantly induced in BaP-

mediated cardiac hypertrophy (Aboutabl, Zordoky et al. 2009) and isoproterenol-

induced cardiac hypertrophy in rats (Zordoky, Aboutabl et al. 2008). In our 

current study, we demonstrated that TUPS significantly attenuated the mRNA 

expression of sEH in isoproterenol-induced cellular hypertrophy. To confirm the 

effect of TUPS on the transcriptional activity of EPHX2, we adopted the 

luciferase gene reporter assay under the control of the EPHX2 promoter. We 

found that isoproterenol increased the EPHX2-luciferase activity, and the 

treatment of TUPS significantly attenuated the isoproterenol-mediated induction 

of EPHX2-luciferase expression. Consistently, previous studies have shown that 

inhibition of sEH by TUPS decreased the mRNA expression of sEH in BaP and 

isoproterenol-induced cardiac hypertrophy in rats (Aboutabl, Zordoky et al. 2011; 

Althurwi, Tse et al. in press). Altogether, these findings suggest that TUPS exerts 

a protective effect against cellular hypertrophy by down regulating the gene 

expression of EPHX2. Inhibition of sEH by TUPS increases the endogenous 

levels of EETs; the EETs play a critical role in the inhibition of NF-κB activation, 

which is a downstream target of several signaling pathways implicated in cardiac 

hypertrophy (Zechner, Craig et al. 1998; Rouet-Benzineb, Gontero et al. 2000; 

Craig, Wagner et al. 2001; Force, Kuida et al. 2004; Fischer and Hilfiker-Kleiner 

2007). In addition to NF-κB, EETs also target several other downstream signaling 

pathways that may explain their cardioprotective effects (Harris, Li et al. 2008). 

EETs activate the p42/p44 MAPK pathway, ATP-sensitive potassium channels, as 

well as the PKA-dependent signaling pathway (Seubert, Yang et al. 2004; Lu, Ye 

et al. 2006; Batchu, Law et al. 2009). 

In conclusion, we demonstrated that the treatment with TUPS significantly 

attenuated isoproterenol-induced cellular hypertrophy in H9c2 cells. In addition, 

TUPS also inhibited the isoproterenol-mediated induction of CYPs and EPHX2 
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gene expression. Taking into account the accumulating evidence of sEH involved 

in the development of cardiac hypertrophy, sEH inhibitors may emerge as a new 

therapeutic tool for the treatment of cardiac hypertrophy and heart failure. 

However, more studies are needed to further demonstrate the protective effect of 

sEH inhibitors against cardiac hypertrophy and to examine the mechanisms by 

which CYPs are implicated in cardiac hypertrophy. 

4.4 General conclusion 

Cardiac hypertrophy remains as a major pathological event, in which 

prolonged hypertrophy can lead to heart failure and sudden death. Therefore, 

research into the molecular basis of cardiac hypertrophy can elucidate possible 

treatment approaches to prevent hypertrophy and subsequently heart failure at an 

early stage. Hence, our work has been focused on investigating the protective 

effect of EETs, and the role of CYP enzymes and sEH in cardiac hypertrophy.  

In the current study, we have demonstrated that treatment with 

isoproterenol increased the expression of the hypertrophic markers ANP and BNP 

in H9c2 cells. Isoproterenol-induced cellular hypertrophy also caused a significant 

induction of the CYP1A1, CYP1B1, CYP2J3, CYP4F4, CYP4F5 and EPHX2 gene 

expression. Of these CYP enzymes, CYP1A1, CYP1B1, CYP4F4 and CYP4F5 

are the major CYP ω-hydroxylases, which were significantly increased by 

isoproterenol-mediated hypertrophy in our study. As the main CYP epoxygenase 

in cardiac cells, the mRNA expression of CYP2J3 was also significantly induced 

in isoproterenol-induced cellular hypertrophy. Furthermore, the expression of sEH 

was increased at both the mRNA and protein levels. Altogether, these findings 

suggest a modulation of CYP expression, which leads to a possible alteration in 

the balance of CYP-mediated arachidonic acid metabolites, EETs and HETEs 

during cardiac hypertrophy. 

In an attempt to examine the protective effect of EETs against cardiac 

hypertrophy, we investigated whether administration of 11,12- and 14,15-EETs 

can prevent hypertrophy by modulating the isoproterenol-mediated induction of 

CYPs and EPHX2 expression in cellular hypertrophy. Our results demonstrated 
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that treatment with 11,12- and 14,15-EETs significantly inhibited the 

isoproterenol-mediated induction of the hypertrophic markers ANP and BNP in 

H9c2 cells. Furthermore, 11,12- and 14,15-EETs also significantly attenuated the 

isoproterenol-mediated induction of CYP1A1, CYP2J3, CYP4F4, CYP4F5 and 

EPHX2 gene expression. Thus, we confirmed the protective effect of EETs 

against isoproterenol-induced cellular hypertrophy and the involvement of CYPs 

and sEH in the development of cardiac hypertrophy. 

In order to further address the role of sEH in cardiac hypertrophy, we 

examined whether the inhibition of sEH would confer cardioprotection in 

isoproterenol-mediated cellular hypertrophy. Our study showed that treatment 

with TUPS significantly decreased the isoproterenol-mediated induction of ANP 

and BNP in H9c2 cells. Moreover, TUPS caused a significant reduction in the 

isoproterenol-mediated induction of CYP1A1, CYP2J3, CYP4F4, CYP4F5 and 

EPHX2 gene expression. These findings indicate a role of the sEH inhibitor TUPS 

in protection against isoproterenol-mediated cellular hypertrophy and the 

involvement of CYP enzymes in the development of cardiac hypertrophy. 

4.5 Future directions 

The results of the present work have highlighted the protective effect of 

EETs and the role of CYPs and sEH in the pathogenesis of cellular hypertrophy. 

However, more studies are needed to confirm the findings and further address the 

underlying molecular basis of cardiac hypertrophy. 

1) To investigate whether EETs protect against cardiac hypertrophy in vivo. 

2) To determine whether CYP epoxygenase inducers confer cardioprotection 

against cardiac hypertrophy in vitro and in vivo. 

3) To determine the combined effect of sEH inhibitors and epoxygenase 

inducers on cardiac hypertrophy in vitro and in vivo. 

4) To identify the mechanisms by which cardiac hypertrophy causes these 

alterations in the CYPs and sEH expression. 

5) To investigate whether CYP ω-hydroxylase inhibitors confer 

cardioprotection against cardiac hypertrophy in vitro and in vivo. 
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