
Knowledge Graph Population from Conversations

by

Michael Strobl

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

© Michael Strobl, 2023

Abstract

This thesis describes the design of a system that is capable of the generation

of a Knowledge Graph (KG), referred to as Knowledge Graph Population

(KGP), from conversations, specifically with elderly people. While this system

still follows a traditional KGP approach with Entity Recognition (ER), Entity

Linking (EL) and Relation Extraction (RE), we propose novel approaches

for: (1) Annotating Wikipedia with Named Entities exhaustively in order to

extract datasets for a variety of NLP tasks. (2) An interactive system to test

and visualize the output of a KGP system based on a conversation. (3) Fast

and accurate dataset creation for RE. (4) Dataset creation as well as training

procedures for partially annotated ER datasets. (5) KG Question Answering

(KGQA) using RE datasets for KGP instead of solely relying on dedicated

KGQA datasets, not necessarily suited to the KG at hand.

A KG consists of nodes, corresponding to distinct entities, and edges, cor-

responding to semantic relations that link entities to each other. The main

concern is composed of three topics: Family/Friends, Health, and Nutrition.

We chose these since they are the main topics we think elderly people are in-

terested in during daily conversations. The KGP follows a pipeline consisting

of three systems: (1) ER, (2) EL and (3) RE. ER is concerned with finding

entities of interest, mainly named entities and entities related to the topics

Nutrition and Health. The EL system aims to link mentions of entities found

by the ER system to their corresponding KG nodes or create a new one if not

existing. The RE system then tries to find evidence in utterances that link

ii

entities to each other. In order to test the resulting KG, a KG Question An-

swering (KGQA) system is used to translate natural language questions into

structured queries to retrieve answers from the KG. In addition, future tasks,

such as response generation, could take advantage of such a KG in order to

continue a conversation by creating informative utterances using the gained

knowledge from previous utterances from the current or previous conversations

in a structured way.

iii

Preface

Parts of the following chapters of this thesis have been published:

• Chapter 3: The first version of WEXEA was published at LREC 2020

[84] and the updated version including multilingual corpora at LREC

2022 [82].

• Chapter 6: This chapter was published at NLDB 2022 [85].

• Chapter 4 and 7: The main parts of these chapters have been accepted

for the Knowledge and Natural Language Processing track at ACM SAC

2023 and the paper is available on Arxiv [83] under the title “FREDA:

Flexible Relation Extraction Data Annotations”, focusing on the cre-

ation and evaluation of manually annotated datasets for the task of Re-

lation Extraction.

iv

Acknowledgements

First, I would like to thank my supervisor Prof. Zäıane for his support, pa-

tience and knowledge. His guidance was indispensable for my research and the

writing of this thesis.

Second, I would like to thank my supervisory committee, besides my super-

visor, Prof. Goebel and Prof. Kondrak, for their time and insightful comments

on my research.

My sincere thanks also goes to Prof. Langlais and Prof. Rafiei, the re-

maining examining committee members, as well as Prof. Ray, the committee

chair, for taking their time for my defense.

Last, I would like to thank my wife for her support throughout this long

journey.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Examples . 4
1.3 Initial Assumptions . 6
1.4 Problem Statement . 7
1.5 Research Questions and Contributions 8

1.5.1 RE Dataset Creation 8
1.5.2 ER for Partially Annotated Datasets 9
1.5.3 Interactive System for KGP 9
1.5.4 KGQA . 10

1.6 Organization . 10

2 Related Work 13
2.1 Related work for KGP . 13

2.1.1 Entity Recognition . 13
2.1.2 Entity Linking . 15
2.1.3 Relation Extraction . 16

2.2 Other Approaches . 19
2.2.1 CoreNLP . 19
2.2.2 Hierarchical Multi-Task Learning model 20

3 Datasets derived from Wikipedia 21
3.1 Introduction . 21
3.2 Related Work . 23

3.2.1 Wikipedia Annotated Corpora for NER 23
3.2.2 Distant Supervision . 25

3.3 Wikipedia . 26
3.4 Method . 28

3.4.1 Dictionary Creation . 30
3.4.2 Direct Mention Annotations 32
3.4.3 Candidate Conflict Resolution 33
3.4.4 Co-reference Resolution 34
3.4.5 Multi-Language . 36

3.5 Evaluation . 37
3.5.1 Dataset Creation . 37
3.5.2 Visualization . 38
3.5.3 WEXEA Statistics . 39
3.5.4 Entity Annotations . 42
3.5.5 Baseline Comparison 43
3.5.6 Dataset Creation . 46

3.6 Conclusion . 52

vi

4 Flexible Relation Extraction Data Annotation 54
4.1 Introduction . 54
4.2 Related Work . 55
4.3 Flexible Relation Extraction Data Annotation 58

4.3.1 General Architecture 58
4.3.2 WEXEA as Data Source 60
4.3.3 Adding Data from WEXEA 60
4.3.4 Data Annotation . 61
4.3.5 More Annotation Tasks 66

4.4 Evaluation . 68
4.4.1 Baseline . 70
4.4.2 Comparison . 70

4.5 Conclusion . 71

5 A Knowledge Graph Population System for Conversations 73
5.1 Introduction . 73
5.2 Related Work . 76
5.3 KGP from Conversations . 76

5.3.1 Entity Recognition . 77
5.3.2 Entity Linking . 78
5.3.3 Relation Extraction . 79
5.3.4 User Interface . 80

5.4 Discussion . 80
5.4.1 Belief Revision . 81
5.4.2 Interactivity . 81
5.4.3 Missing Baseline Comparison 82
5.4.4 Example . 82

5.5 Conclusion . 83

6 Entity Recognition 85
6.1 Introduction . 85
6.2 Related Work . 87
6.3 Method . 89

6.3.1 Data creation . 89
6.3.2 Model training strategies 92

6.4 Evaluation . 95
6.4.1 Datasets derived from Wikipedia 95
6.4.2 Model parameters . 96
6.4.3 Baselines . 97
6.4.4 CoNLL + Wikipedia 97
6.4.5 Example . 100

6.5 Conclusion . 102

7 Relation Extraction 103
7.1 Introduction . 103
7.2 Related Work . 105
7.3 Model Architecture . 108
7.4 Evaluation . 109

7.4.1 Model Training and Dataset Statistics 109
7.4.2 Baselines . 112
7.4.3 Test Results . 112
7.4.4 Challenge RE dataset 114
7.4.5 How many sentences do we need per relation? 116
7.4.6 Annotation Speed . 117
7.4.7 Example . 119

vii

7.5 Acknowledgements . 120
7.6 Conclusion . 120

8 Knowledge Graph Question Answering 122
8.1 Introduction . 122
8.2 Related Work . 125

8.2.1 Simple Questions . 125
8.2.2 Large Complex Question Answering Dataset 126

8.3 Method . 127
8.3.1 SPARQL Query Construction 127
8.3.2 Model Architecture . 129

8.4 Evaluation . 130
8.4.1 Baselines . 130
8.4.2 Dataset Preparation 131
8.4.3 Model training . 132
8.4.4 Test results . 133
8.4.5 Examples . 135

8.5 Conclusion . 135

9 Conclusion 137
9.1 Key Findings . 137
9.2 Main Contributions . 138
9.3 Future Work . 140
9.4 Limitations . 141

9.4.1 Triple-based Storage of Facts 141
9.4.2 Maintenance of Existing Facts 142
9.4.3 Downstream Tasks . 142

References 144

viii

List of Tables

3.1 Statistics of the 10 largest Wikipedias. 26
3.2 Distribution of number of articles and language versions. . . . 27
3.3 Number of important pages other than articles. 27
3.4 Annotation statistics for WEXEA compared to Wikipedia, for

English, German, French and Spanish. 40
3.5 Further annotation statistics for WEXEA and all languages. . 41
3.6 Breakup of mention types found by WEXEA for all languages. 42
3.7 Accuracy and number of annotations for four different annota-

tion types and 20 randomly selected articles from the English
WEXEA corpus. 43

3.8 Results on WEXEA vs. WiNER, based on the abstracts of 100
articles. 45

3.9 Statistics for datasets based on Distant Supervision created us-
ing Wikipedia and WEXEA corpora with DBpedia: Number
of relations for which at least 100 sentences can be extracted,
extracted sentences total, unique pairs of entities averaged per
relation and average number of sentences per relation. 48

4.1 Number of seconds (average per sentence) to annotated 100
sentences per task for both approaches. 71

5.1 Detectable relations and corresponding type signatures. 80

6.1 Statistics for datasets derived from Wikipedia for the types
Food and Drugs. 96

6.2 Results for CoNLL 2003 mixed with the Wikipedia dataset for
Food. Best F1-score for each dataset in bold. 98

6.3 Results for CoNLL 2003 mixed with the Wikipedia dataset for
Drugs. Best F1-score for each dataset in bold. 101

7.1 Data statistics (Total and per relation): Number of sentences,
number of positive and negative facts extracted from these and
inter-annotator kappa (between the first two annotators). . . . 111

7.2 Test set results of the models trained on the FREDA training
sets for each relation and both approaches. The last 4 relations
are not part of KnowledgeNet’s dataset, therefore the results
are missing. Interim corresponds to the overall results for all 15
relations in both datasets. Total includes results on all relations
in FREDA’s test set. 114

7.3 Challenge RE dataset test results. The previously trained mod-
els from FREDA were used as well as the KnowBERT-W+W
model, trained on TACRED and showing state-of-the-art per-
formance on the TACRED test set. The best F1 scores per
relation and overall are in bold. 115

ix

7.4 Average annotation speed in seconds per sentence for each an-
notator, lower is better. A model was trained for each dataset
and the F1 score on the CRE dataset for the spouse-relation as
test set is reported. Best results per annotator are in bold. . . 118

8.1 Examples from SimpleQuestions for the relations born in, na-
tionality, founded and parent. The subject is highlighted in bold.126

8.2 Examples from LC-QuAD 2.0 involving more than a single fact
from the KG. 127

8.3 Test results for models trained on FREDA including no or vari-
ous amounts of questions from SimpleQuestions and LC-QuAD
2.0 as well as results for models trained without FREDA data.
Precision, Recall and F1 are reported for models tested on the
corresponding KGQA datasets test sets. 134

8.4 Questions, corresponding KGQA extractions (that lead to SPARQL
queries), and answers from the KG extracted from the conver-
sation in Figure 1.2a. 135

x

List of Figures

1.1 Concept of suggested system with statements from dialogue text
as input and a Knowledge Graph as output with entities as
nodes and relations as directed edges. 2

1.2 Conversation of a human (Irene) with a chatbot named Ana
and corresponding Knowledge Graph. 3

1.3 Resulting KG after first example utterance. 5
1.4 Resulting KG after second example utterance. 5

3.1 Same paragraph from Queen Victoria’s English Wikipedia arti-
cle as well as her corresponding article generated by WEXEA.
Hyperlinks/Annotations in blue, linked articles are omitted due
to readability. 39

3.2 Number of sentences per relation (top 50) for Wikipedia (or-
ange) and WEXEA (blue; in addition to Wikipedia). 49

3.3 Number of sentences per relation (log scale) for Wikipedia (or-
ange) and WEXEA (blue; in addition to Wikipedia). 51

4.1 Annotation interface of BRAT, including annotations for the
spouse-relation. 56

4.2 Popup for relation annotations with BRAT, similar for entity
type selection. 57

4.3 General architecture. 59
4.4 Overview of available datasets for RE data annotation. 63
4.5 Interface for RE data annotation. The relation considered here

is educated at with Martin as subject and Centennial High
School as object. The locations Bakersfield and California are
not participating in the relation, but can be used for creating
negative examples. 64

4.6 Data annotation for the task of NER. 67
4.7 Candidate selection for EL data annotation. The entity Viet-

nam was selected in the text view and all related entities in
Wikipedia are are shown, ranked in descending order by the
number of hyperlinks of the anchor text Vietnam to those arti-
cles. 69

5.1 Output of each pipeline part from the example sentence. e1, e2
and e3 correspond to nodes in the graph, arrows denote relations
between two nodes or a node (subject) and a Literal (object).
The EL system further adds (not shown here) all entities to the
KG through merging or keeping nodes. Although not shown
here as well, it is also possible to add the gender, as it is encoded
in the schema.org ontology. 75

5.2 Examples of detected entities and corresponding EGs. 79

xi

5.4 KG extracted from the conversation in Figure 1.2a by the pro-
posed system. Light grey relations and entities cannot be de-
tected yet. 83

5.3 Knowledge Graph Population user interface. Messages can be
sent and graphs can be stored and loaded. 84

6.1 Examples of sentences and their annotation, which can occur
in a partially annotated dataset for NER and new classes, ex-
tracted from Wikipedia. 93

6.2 NER with BERT. Each token is embedded with the BERT
model, which is used as input for the final classification layer. 94

6.3 KG extracted from the conversation in Figure 1.2a by the pro-
posed systems. The entity ”Pancakes“ is newly extracted. Light
grey relations cannot be detected yet. 101

7.1 Binary classification model used for Relation Extraction from
a sentence with annotated subject and object, similar to the
one proposed by [79]. Both entities are encapsulated in special
tokens and the embeddings of the begin tokens of both are used
for classification. 108

7.2 F1-score on FREDA (test) for different training set sizes and a
selection of relations. 117

7.3 KG extracted from the conversation in Figure 1.2a by the pro-
posed systems. All child of -relations are newly added. Now the
extractions are complete. 120

8.1 Workflow for answering questions using the Knowledge Graph
extracted by our KGP system. 123

8.2 Sub-KG of DBpedia for the entity Barack Obama, including
RDF representation and SPARQL query. DBpedia namespace
prefixes are omitted. 124

8.3 Relation Extraction and query translation for the simple ques-
tion “Where was Barack Obama born?”. DBpedia namespace
prefixes are omitted. 128

8.4 Model for extracting a relation for a marked entity as subject
or object (see entity markers). Therefore, this models extracts
an entity as subject or object for a detected relation (or no ex-
traction, if no relation is detected). This entity-relation double
can be plugged into a SPARQL query. 129

9.1 Corresponding RDF representation with a Blank Node. 142

xii

List of Acronyms

CR Co-reference Resolution.

DS Distant Supervision.

EG Entity Graph.

EL Entity Linking.

EM Entity Mention.

ER Entity Recognition.

FDA Flexible Data Annotation.

FREDA Flexible Relation Extraction Data Annotation.

IE Information Extraction.

KB Knowledge Base.

KBP Knowledge Base Population.

KG Knowledge Graph.

KGP Knowledge Graph Population.

KGQA Knowledge Graph Question Answering.

MD Mention Detection.

NE Named Entity.

NER Named Entity Recognition.

NLI Natural Language Interface.

NLP Natural Language Processing.

NLU Natural Language Understanding.

NN Neural Network.

RE Relation Extraction.

xiii

RG Response Generation.

URI Unified Resource Identifier.

WEXEA Wikipedia EXhaustive Entity Annotation.

xiv

Chapter 1

Introduction

1.1 Motivation

A Knowledge Graph (KG) is a graph-based representation of knowledge and

Knowledge Graph Population (KGP) is the task of creating and maintaining a

KG1. Entities in text are represented as nodes in the KG, linked to each other

with appropriate relations, as edges. Therefore, a KGP system needs to be

able to extract mentions of entities from text, link them to their corresponding

node in the graph (or create a new node for unseen entities) and find relations

between entities, expressed in text, and add them to the KG (only if missing,

otherwise nothing is done). Such a KG can be seen as a structured and compact

representation of knowledge expressed in text, which can be visualized and

queried, e.g. in order to answer simple questions.

There exist multiple downstream tasks, which can take advantage of such

a KG, as well as practical reasons why a KG can be useful:

• Response Generation (RG) for conversations (as part of a Dialog Sys-

tem): When a response has to be generated in a conversation, typically

previous utterances are taken into account by a sequence-to-sequence

model in order to generate a new response [77]. However, the older a

certain utterance is, the less likely it is that (1) it is taken into account

all-together and (2) the entities in it are linked to other mentions prop-

erly. A KG with properly linked entities and their relations may help.

1In this thesis, we are only adding information to the KG.

1

• The alternative to a KG would be to keep the whole conversation as

text in memory, leading to a much higher memory requirement since

a graph-structure with its nodes and edges would presumably consume

much less memory space. Furthermore, if external knowledge, e.g. from

Wikipedia, should be included, keeping text instead of a corresponding

KG, e.g. DBpedia, is even less desirable.

• KGs can be queried with query languages, such as SPARQL, whereas

querying text is a much harder task to do, even if simple questions need

to be answered.

Overall, a properly maintained KG can be seen as a structured long-term

memory, which does not forget, can be queried with structured query languages

and contains essential information expressed in a conversation.

Therefore, we propose a system that is capable of KGP for conversations.

Figure 1.1 shows conceptually the system’s input (text statements from dia-

logues) and output (KG extracted from input statements). As an example,

Figure 1.2a shows a conversation of a chatbot called Ana with the user Irene

with the corresponding KG in Figure 1.2b below.

Figure 1.1: Concept of suggested system with statements from dialogue text
as input and a Knowledge Graph as output with entities as nodes and relations
as directed edges.

2

(a) Conversation between Ana (chatbot) and Irene (human).

(b) Knowledge Graph, which can be extracted from Irene’s utterances.

Figure 1.2: Conversation of a human (Irene) with a chatbot named Ana and
corresponding Knowledge Graph.

3

The goal of this system is to be able to extract information from such

conversations and add them to a KG2. In order to do so, entities have to

be recognized and added to a KG as nodes as well as relations mentioned in

text between these entities as edges. Entities and relations can be detected

through training systems using high-quality labelled datasets. Therefore, our

main contributions include:

• Due to the lack of high-quality manually annotated datasets for the task

of Relation Extraction (RE), which are necessary to extract relations

from text reliably, we delineate a tool for flexible data annotation for

the task of RE and, in addition, Entity Recognition (ER), Co-reference

Resolution (CR) and Entity Linking (EL).

• We shed some light into how semi-automatically and partially annotated

datasets for ER derived from Wikipedia can be added to models trained

on commonly used datasets.

• An interactive system that can be used to test subtasks of KGP and the

resulting KG can be inspected.

• A KG Questions Answering system (KGQA), which can make use of

existing RE datasets in order to create structured queries in order to

retrieve answers from a KG.

1.2 Examples

In order to illustrate the population of a KG, consider the following simplified

example, starting with the first utterance:

“My neighbour’s name is John.”

Figure 1.3 shows the resulting KG after the first utterance. Two entities

can be detected: The speaker is referenced through a possessive pronoun (My)

2This thesis should not be confused with providing a KG that can be used offline. Instead
the goal is to provide solutions that aim to extract pieces of information from statements
and unify them into a KG on demand.

4

and there is a mention of a person named John. In addition, both entities can

be linked through the neighbour -relation.

Figure 1.3: Resulting KG after first example utterance.

Second utterance:

“John’s sister Sarah lives in Edmonton.”

In Figure 1.4 two more entities are added: Sarah and the City of Edmon-

ton. Both are linked to the corresponding subjects of the sister - and lives in-

relation, respectively. The entity referred to through the mention John is

already part of the KG and therefore can be linked to an existing node in the

KG.

Figure 1.4: Resulting KG after second example utterance.

This example should make the general idea of KGP clear, including the

three parts of such a system: (1) Entity Recognition (ER), i.e. detecting all

5

entity mentions (the speaker, John, Sarah, Edmonton and their co-references

in this example), (2) Entity Linking (EL), linking these mentions to their

corresponding node in the graph (create new node if it does not already exist)

and (3) Relation Extraction (RE), i.e. linking entities to each other with the

corresponding relations, if expressed in text (neighbour, sister and lives in in

this example). In reality, these tasks are not always as straightforward as it

sounds and this work should shed some light into how a general KGP system

for conversations can look like.

1.3 Initial Assumptions

Early work in cognitive science and language understanding dates back to the

1960s with, for example, the SHRDLU program [92] that was able to conduct a

dialogue in English with a human to move blocks by the computer in a virtual

box. Even in such a restricted environment and a vocabulary of only 200

words, the complexity of a system that is capable of understanding a small

portion of the English language is large. Therefore, we make a few initial

assumptions regarding the utterances we expect to extract information from:

1. Although intonation is an important part of human communication, we

assume text as input. This is in line with previous work on Dialogue

Systems, e.g. see [25].

2. The input to the system is assumed to be utterances from a single in-

terlocutor. The phrase my mother contains valuable information, but it

depends on who said it. Whereas, if all utterances are assumed to be

from the same person, this phrase is not ambiguous.

3. We focus on conversations with elderly people. Relation Extraction is

dependent on a set of pre-defined relations since an exhaustive set of re-

lations is difficult to create and acquire data for, e.g. see [97]. Therefore,

we mainly consider relations in the domains Family/Friends, Nutrition,

and Health due to the assumption that these domains are the most im-

portant ones for a Dialogue System for elderly people. However, the

6

approaches described thereafter are kept general enough to be able to

extend them to broader topics.

1.4 Problem Statement

The Resource Description Framework (RDF)3 is a standard for triple-based

RE, i.e. the extraction of facts consisting of a subject, relation and object,

each. The extractions of the proposed KGP system follow this standard and

are described in more detail in the following.

Our goal is to populate a KG from conversations, consisting of Literals

(strings or numbers, e.g. for names or dates) or Uniform Resource Identifiers

(URI) as vertices (for entities) and relations linking these together as edges.

It is fed with facts extracted from conversations. Here we provide more formal

details about KGs and the facts that we are aiming to extract.

The sets of entities E, Literals L and relations R form the basic building

blocks of a KG4, a specific form of Knowledge Base (KB), which itself we con-

sider as a not necessarily structured collection of knowledge, e.g. the collection

of all websites in the Internet or Wikipedia5. Whereas, DBpedia [7] and Free-

base [9] follow a graph structure and are therefore KGs. For the rest of this

document, if the structure of the KB is not important for understanding the

context, the term KB is used, otherwise we use the more specific term KG,

which we are aiming to create from a conversation.

Formally, given a set of n sentences (or pieces of text) T = t1, t2, ..., tn

(with n ∈ N) we are aiming to extract a set of facts F = f1, f2, ..., fm (with

m ∈ N). A fact fi = (si, ri, oi), often referred to as a subject-relation-object-

triple, consists of a subject si ∈ E, an object oi ∈ E ∪L and a relation ri ∈ R,

with 1 ≤ i ≤ m. Literals cannot be used as subjects as they are used for

attributes, encoded as strings, numbers or dates. Therefore, the goal is to

populate a Knowledge Graph KG = (E,F,R).

3https://www.w3.org/RDF/
4Even though edges and vertices in the KG are represented as URIs, they are conceptually

quite different and, therefore, we keep them separate in our notation.
5https://www.wikipedia.org/

7

https://www.w3.org/RDF/
https://www.wikipedia.org/

E, L, R and even their cardinalities are difficult to specify formally, there-

fore we provide an informal definition here with more information later in

subsequent chapters:

• The set E consists of entities, which can be part of a fact f = (s, r, o)

with r ∈ R, s ∈ E and o ∈ E ∪ L.

• The set L of literals can be any string or number, typically referring to

certain properties of entities, e.g. dates or names.

• The set R of relations is, in general, the set of possible links between

subject s ∈ E and an object o ∈ E ∪ L. Relations r ∈ R represent

directed edges in the KG6.

1.5 Research Questions and Contributions

In the following, we describe the main research questions this thesis aims to

solve and our solutions to these questions.

1.5.1 RE Dataset Creation

Each of the subtasks of KGP usually requires high-quality manually annotated

datasets to train models on. However, specifically for the task of RE (the most

difficult one to annotate for), creating datasets manually is a time-consuming

and tedious task and it is not always clear what kind of text data is suitable for

annotation since some relations are not mentioned very frequently. Therefore,

approaches are needed to potentially filter text data and reduce the cognitive

load for the annotator.

We delineate our tool for Flexible Relation Extraction Data Annotation

(FREDA) and show that FREDA is a simple yet effective and efficient tool

for manual data annotations for multiple NLP tasks. In addition, we develop

and test our system Wikipedia EXhaustive Entity Annotations (WEXEA), a

semi-automatic system to annotate named entities in Wikipedia for multiple

6Some relations, e.g. spouse or sibling, are bi-directional and therefore have to be added
in both ways separately.

8

languages. We show how the resulting WEXEA datasets can be used for data

annotation with FREDA, reducing the amount of time a user has to spend to

annotate entities in sentences.

1.5.2 ER for Partially Annotated Datasets

NER models are typically trained on datasets with a specific set of entity

classes, e.g. Person, Location, Organization, and Miscellaneous for the CoNLL

2003 NER dataset [72]. Whenever more classes of interest should be added, a

new dataset has to be found or created containing high-quality manual anno-

tations for all classes. However, these datasets may often not exist. This leads

to the question, how is it possible to add new classes to NER systems without

the need for expensive manual data annotation, if possible.

We specify a semi-automatic procedure for creating partially annotated

datasets for NER, using WEXEA and the Wikipedia category hierarchy. This

procedure is used to create two partially annotated dataset for the entity types

Food and Drugs. In addition, we compare three training strategies for models

trained and tested on these datasets as well as on two corresponding manually

annotated datasets.

1.5.3 Interactive System for KGP

Testing the subtasks of KGP is often straightforward, either through testing on

existing datasets with commonly used metrics as can be seen in [49] for NER, or

visually, e.g. through a web-interface as done by the CoreNLP tool7. However,

the combination of all subtasks, i.e. a KGP system, is not straightforward to

test and complete systems for visual testing with replaceable modules for each

subtasks do not exist.

Therefore, we describe and develop a system with a graphical user-interface

showing a conversation with a chatbot and the resulting KG. Basic rule-based

components for ER, RE and EL are included, which can be further extended.

7https://corenlp.run/

9

https://corenlp.run/

1.5.4 KGQA

Asking questions is a way to retrieve information stored in the KG. Especially

in conversations, it is common to ask such questions in natural language.

However, questions, which can be answered by a system storing the KG, are

typically encoded in SPARQL, an SQL-like query language. Therefore, such a

KG Question Answering (KGQA) system needs to be able to translate natural

language questions to SPARQL queries for a specific KG. But this may not

be working on other KGs, e.g. since the sets of relations contained by the

KGs may differ, and datasets to train a model to learn this task for a new

KG may be missing. This leads to the question how it is possible to still

be able to train such a model on our KG, ideally without the need for new

manually annotated datasets containing natural language questions and their

corresponding KG-specific SPARQL queries.

We specify, develop, and test a KGQA system, which is able to trans-

late natural language questions to SPARQL queries, partially trained on RE

datasets. This is due to the fact that dedicated KGQA datasets are specific to

certain KGs and may not work on others. However, we show that no or a min-

imal amount of dedicated KGQA data is needed to perform this translation

task.

1.6 Organization

This thesis is structured as follows:

• Chapter 2: In this chapter we present details regarding commonly used

related work for the task of KGP. It mainly contains descriptions of ex-

isting work and datasets on the subtasks ER, EL and RE. In addition,

two approaches combining subtasks of KGP are described. Each of the

following chapters provides details regarding related work more specifi-

cally.

• Chapter 3: Wikipedia EXhaustive Entity Annotations (WEXEA): A

framework for semi-automatic entity annotations (in addition to exist-

10

ing annotations) of an entire Wikipedia dump for multiple languages.

Due to Wikipedia guidelines, many entity mentions are not annotated

by editors, i.e. hyperlinks to their corresponding article are missing.

However, it is presumably a lot easier to add these missing annotations

in Wikipedia than in open text without any annotations to start with.

The resulting exhaustively annotated dataset can be used to speed up

manual data annotation for the aforementioned subtasks of KGP.

• Chapter 4: Flexible Relation Extraction Data Annotation (FREDA): A

flexible tool for fast data annotation for KGP subtasks. Specifically for

the task of RE, manual data annotation is cumbersome since entities,

their co-references and relations between two entities have to be labelled.

In addition, many relations of interest are difficult to find in text data and

a filtering step needs to be applied. FREDA is a tool aiming to mitigate

these issues through providing an easy to use framework for manual data

annotation for the task of RE as well as other KGP subtasks.

• Chapter 5: In order to be able to test the full KGP system including all

subtasks, we present a description of a web-based tool with a text input

and the resulting KG with real-time updates in this chapter. Rules can

be added easily to the NER and RE sub-systems to be able to extend

and test the system quickly. The following chapters add improvements

to specific subtasks of this system.

• Chapter 6: Typically, NER systems are able to detect a specific set

of classes, depending on the datasets they were trained on. Extending

this set of classes is difficult as high-quality manually labeled datasets

are necessary with exhaustive annotations for all classes of interest. This

chapter provides details of our approach to create and use partially anno-

tated datasets for new classes in addition to the originally used datasets

without harming the NER model a lot. We manually annotated 500

sentences for the two classes Food and Drugs in order to test the system.

• Chapter 7: In this chapter we present more details on how to use our

11

FREDA framework, as described in chapter 4, for the task of RE. We

created datasets for 19 relations with at least 500 sentences per relation

and evaluated models trained on these datasets on other state-of-the-art

datasets, showing promising results.

• Chapter 8: In order to ask questions to a KG in natural language, the

question itself has to be translated to the SPARQL query language,

which can be directly applied to the framework storing the KG. However,

existing approaches are strongly tied to a specific KG, e.g. Wikidata [91]

or Freebase [9], leading to not necessarily correct queries when applied

to other KGs with potentially different sets of relations. This problem

typically leads to the issue of a lack of datasets to train models on for

this task and a specific KG. Our approach, as described in this chapter,

aims to use RE datasets, which were used for populating a KG, to help

with translating natural language questions to SPARQL queries without

the need for new manually annotated datasets.

• Chapter 9: In this chapter, this thesis is concluded and a description of

potential future works is included.

12

Chapter 2

Related Work

In this chapter we present commonly used related work on the subtasks in the

pipeline of KGP, namely ER, EL and RE, as well as approaches aiming to

combine subtasks of the KGP pipeline. Each remaining chapter of this work

contains a more specific section about related work, not necessarily mentioned

herein.

2.1 Related work for KGP

Since KGP is typically a pipelined approach (e.g. see [96]), this section presents

related work on all relevant subtasks in order to construct a Knowledge Graph

(KG) from any kind of text1. State-of-the-art systems in this area of NLP are

typically models based on Neural Networks (NN) trained on specific datasets.

These models can only be as good as the training dataset is and therefore we

mainly focus on the most common English datasets used for each subtask in

this section.

2.1.1 Entity Recognition

The vast majority of ER systems are NER systems that are trained and tested

on the CoNLL 2003 dataset for NER [72], using the classes Person, Orga-

nization, Location and Miscellaneous, e.g. see [28], [42], [49] or [2]. These

systems learn to label sequences of words with the BIO scheme (Beginning-

1Generally, these approaches do not focus on conversations since there is more training
data available from other sources, such as news text.

13

Inside-Outside of an entity mention2). The BIO scheme encodes the first word

of an entity as B-<class>, all subsequent words of an entity as I-<class> and

all other words as Outside. Therefore, this scheme allows the system to be

able to detect multiple entities in a row without separator. The CoNLL 2003

dataset is based on Reuters news stories from the years 1996 and 1997. It is

split into a training set, a development set and a test set. The test set contains

sentences from news articles from different months (therefore different entities)

than the development and training sets, leading to a more challenging test set

for neural NER systems. These neural NER systems are typically word-based

models, e.g. see [49], and are trained to predict a class for each word in the

input.

There are more classes in other datasets, e.g. the ACE05 corpus [23], which

includes 7 types of entities. The system introduced in [73] is able to detect

named entities as well as other entity mentions from the ACE05 corpus. But

the scope of entities is still limited, containing only 7 types of entities: Person,

Organization, Location, Facility, Weapon, Vehicle and Geo-Political Entity.

Ling and Weld [53] introduced a fine-grained set of 112 types named

FIGER. This set was created by using Freebase’s [9] type set by removing

noise types (as they are created by humans) and combining overly specific

types. Since there was no data available with FIGER type annotations, the

authors created a dataset based on Wikipedia and its hyperlinks for training

and testing their system. They compared it to the Stanford NER system [28]

(FIGER types can be matched to CoNLL types) and showed its superiority

over the coarse type system from CoNLL, with which the Stanford NER works

with. However, while containing some very specific types, e.g. actor, architect,

bridge, hotel, transit system, etc., some other entities would be labeled with

a very broad type, i.e. person, organization, location, product, art, event or

building (apart from 30 other types not in these categories).

There are other NER datasets, e.g. based on Wikipedia (see [34]), but the

above datasets are the most commonly used ones.

2For the rest of this document, we consider an entity mention as a reference to an entity,
which itself is a node that can be added to the KG.

14

The TAC KBP EDL dataset3 contains NEs of types Facility, Geo-Political

Entity, Location, Organization and Person including nominal entity mentions,

such as “president” or “forest reserve”. Therefore this dataset contains valu-

able information for trained models in order to detect entities that are not

mentioned by their name.

2.1.2 Entity Linking

The most commonly used dataset for EL is the CoNLL-AIDA dataset [40]

with manual annotations of the aforementioned CoNLL 2003 NER dataset.

Entities are linked to the YAGO2 database [39], which effectively contains

links to Wikipedia articles.

Existing approaches, such as [78] or [29], are typically ignoring out-of-KB

entities (entities without a match in the reference KB) for their evaluation

and therefore are not able to distinguish between entities that are in-KB and

out-of-KB. Furthermore, these approaches are not able to detect the mentions

of entities themselves, instead they rely on an NER tool annotating a dataset

beforehand, which is already done in case of the CoNLL-AIDA dataset.

These are the steps EL systems, such as the previously mentioned ones,

follow after an NER tool extracts mentions of entities:

1. For each mention, a candidate set of entities from a KB is created. This

can be done using an alias dictionary, which contains references, i.e.

alternative names, to each entity in the KB, e.g. “NYC” and “New

York” can both refer to the entity “New York City”, among others.

2. A score for each candidate entity is computed and the mention is linked

to the entity with the highest score. This score is typically computed by

a model that takes several features into account (among others): The

immediate context of the mention, other mentions of entities or their

links (if available), Wikipedia articles of each candidate entity and the

probability of the mention being linked to a candidate in Wikipedia. For

3Text Analysis Conference (TAC) Knowledge Base Population (KBP) Entity Discovery
and Linking (EDL): https://catalog.ldc.upenn.edu/LDC2019T19

15

example, in order to link both entities in the sentence “Edmonton won

against Calgary 6:1 yesterday.”, the context has to be taken into account

to notice that they should be linked to sports clubs rather than the cities.

However, other approaches, such as [48], are able to do NER and EL in one

step, while still not being trained to detect out-of-KB entities as they are not

designed for that. But of course a mention cannot be linked if its candidate set

is empty. However, especially for first names, there will be multiple candidates

with a high chance.

On the contrary, approaches trained on the TAC KBP EDL dataset, which

also contains links to entities of an attached dataset, such as [96], are explic-

itly designed to detect out-of-KB entities, since this is part of the TAC KBP

evaluation. Out-of-KB entities can presumably be found frequently in conver-

sations, such as “uncle George”. Although it is common to simply consider

mentions as out-of-KB entities if the candidate set is empty, as done in the

CMU submission for the KBP TAC 2017 Entity Discovery and Linking chal-

lenge [55]. In addition, conversations presumably do not contain many popular

entities compared to news data, therefore these systems may not be able to

help linking the majority of entities in our case.

2.1.3 Relation Extraction

Generally, RE is the task of detecting entities and how they are related to

each other in text data. There are two different paradigms of RE used in the

literature: Open Information Extraction (OpenIE) and an approach we refer

to RE with a predefined set of relations.

Open Information Extraction

OpenIE systems, such as [27] and [75] based on hand-crafted grammatical

patterns or more recently [5] with a classification-based approach, are able to

extract simple subject-verb-object triples. They are open since there is no

predefined set of relations, therefore it is unknown which exact relation is ex-

tracted. In addition, it is usually possible to express a relation in different ways

16

even with different words and OpenIE approaches would not be able to capture

that since OpenIE relations consist of words directly taken from the processed

piece of text. For example, the sentences “John is married to Sarah” and “John

and his wife Sarah live in Edmonton” are both expressing the spouse-relation,

but the sentence structure is very different and OpenIE systems would not

extract the exact same relation between “John” and “Sarah”.

RE with predefined relations

On the other hand, RE systems with predefined relations are able to match

relations that can be expressed with different words. However, they are limited

to a hand-crafted set of relations of a typically very limited size.

Previously, in order to extract datasets from large text corpora for RE

Distant Supervision (DS) was used, a bootstrapping method that uses an

existing KG and a corpus of text to label sentences with relations.

Due to the lack of large datasets with entities as well as their relations

annotated, Mintz et al. [63] proposed to link entities in text corpora to their

corresponding entries in a KG, e.g. Freebase [9], and whenever two entities that

are linked in the KG appear in the same sentence, this sentence is considered as

expressing this relationship in some ways. Although this can lead to obvious

incorrect annotations, e.g. sentences that include Bill and Melinda Gates

certainly do not always express that they are married. They created a dataset

with 10,000 instances and 102 Freebase relations using Wikipedia, although

entities are tagged with an NER and existing annotations are ignored. The

reported human-evaluated precision of the extracted instances is 67.7%.

Riedel et al. [70] follow a similar approach, except that their assumption

is slightly different. Instead of assuming every sentence expresses a certain re-

lation, they hypothesized that given a set of sentences mentioning two specific

entities, at least one of them expresses the relation of interest. They created

an RE corpus based on the New York Times Annotated Corpus4 with 430

Freebase relations.

However, even though using the DS assumption may lead to noisy RE

4https://catalog.ldc.upenn.edu/LDC2008T19

17

https://catalog.ldc.upenn.edu/LDC2008T19

datasets, it can still help creating datasets for RE through speeding up the

process of manual annotation. More details on this can be found in Chapters

4 and 7.

The most common dataset today is the TACRED dataset [97], which was

annotated using Mechanical Turk crowd annotation of the TAC KBP challenge

data with 41 relation types. It is split into a training, development and test

set. However, even though it is based on human annotations, the quality of

these is unknown since the authors did not provide any information on whether

annotations were judged by several annotators. Moreover, the dataset contains

obvious mistakes, as can be seen in the following part of a sentence from the

development set:

“Besides his wife, Mandelbrot is survived by (...)”

The word “his” is considered as the subject and the word “Mandelbrot”

the object for the relation “per:spouse”, although both words refer to the same

entity.

State-of-the-art models trained on the NYT dataset typically lead to worse

results than, for example, models trained on the newer TACRED dataset. Al-

though this is not directly comparable due to different text data used for both

datasets, the results measured with the F1 score are quite different (and still

disappointingly low), e.g. 0.587 for [95] (NYT) versus 0.701 for [79] (TA-

CRED).

Recently a dataset called DialogRE was created (see [93]) from dialogues

from the Television show “Friends” with entity mentions, the speakers and

their relations annotated by humans. Although unfortunately entities are only

considered to be mentioned if a name appears, ignoring mentions such as “my

brother”, without a name. These relations are only considered if the name

was mentioned somewhere else in the conversation, which the authors denoted

as cross-sentence relations, which we believe is incorrect since the mention of

“my brother” should already be considered as entity mention and relation to

be extracted.

18

2.2 Other Approaches

Here we present approaches, which combine multiple relevant subtasks for

KGP.

2.2.1 CoreNLP

CoreNLP [57] is a popular toolkit, which consists of many annotators for a

variety of NLP tasks, from which a few can be used to build a KG:

• NER: A Conditional-Random-Field (CRF) based NER [28], being able

to detect the classes Person, Location, Organization, Miscellaneous (and

Money, Percent, Date and Time, if needed). The whole system can be

re-trained, e.g. for a dataset with a different type set, but partially

labelled datasets cannot be used here (see Chapter 6).

• EL: An EL system [80] solely based on a dictionary over Wikipedia

articles, linking entity mentions based on the probability distribution of

their surface form as anchor text of hyperlinks to articles in Wikipedia.

Out-of-KB entities cannot be linked.

• OpenIE: A logistic regression classifier to detect relations in text without

a pre-defined set of relations. The output of the system is a set of subject-

relation-object triple. As previously mentioned, such a system can only

extract relations directly mentioned in the sentence, typically as a verb.

• KBP: A rule-based as well as a classifier-based system [96] for detecting

TAC KBP relations in text. A rigid set of relations is used, which may

not be possible to extend, except that new rules can be added.

• Co-reference Resolution (CR): The CR system aims to detect co-references

in text, mainly linking pronouns to their corresponding entity mention,

if available. A deterministic [50], statistical [18] or neural CR system

[19] can be applied. Such a CR system could also implicitly be part of

EL.

19

In general, CoreNLP is a good starting point for many NLP tasks, but, if

multiple annotators are combined in the pipeline, mistakes or other issues are

carried over, typically leading to very few extractions for short pieces of text.

2.2.2 Hierarchical Multi-Task Learning model

The Hierarchical Multi-Task Learning model (HMTL) [74] combines the pre-

diction for multiple NLP tasks into a single model (in contrast to multiple

models/approaches used by CoreNLP), namely: NER, Entity Mention Detec-

tion (EMD)5, CR and RE. A limited set of relations is used from the afore-

mentioned ACE05 corpus.

HMTL encodes the input sentence using multiple types of word embeddings

(GloVe [67], ElMo [68], CNN-extracted Char Features ([49] and [17])). These

embeddings are later used for multiple encoders (Multi-layer BiLSTM) to make

predictions for all four tasks.

Similar to CoreNLP, HMTL is not specifically developed or trained to do

KGP, but aims to solve subtasks of KGP.

5Similar to NER, except that also entities, which do not have a name, can be detected.
In this thesis, we refer to NER and EMD as Entity Recognition (ER), in general.

20

Chapter 3

Datasets derived from
Wikipedia

Manually labelling datasets for NLP tasks is a time-consuming and potentially

error-prone task. Text with entity annotations could be helpful in a variety of

NLP tasks when used as a starting point. Therefore, in this chapter we present

an approach aiming to create a dataset from Wikipedia with ideally all named

entities being annotated, which can be of use for several related NLP tasks,

important for KGP.

3.1 Introduction

Generally, in order to train well-performing models, for example, for NLP

tasks, ideally large amounts of labeled data are required. However, high-

quality manually annotated data is often limited, especially if languages other

than English are of interest.

Wikipedia1 is a valuable source of information and is currently available in

325 languages2 with the English version containing 6,383,000+ articles3. It is

free to download and is already exploited for various NLP tasks, including En-

tity Linking (EL) (using Wikipedia alias dictionaries for candidate selection),

e.g. see [36], or Named Entity Recognition (NER) (using hyperlinks, among

others, as entity annotations), e.g. see [34].

1https://www.wikipedia.org/
2As of Jan. 20, 2022: https://meta.wikimedia.org/wiki/List_of_Wikipedias
3As of Jan. 20, 2022.

21

https://www.wikipedia.org/
https://meta.wikimedia.org/wiki/List_of_Wikipedias

Wikipedia, as-is, is already able to provide datasets in the following ways:

1. NER: If an NER-type to Wikipedia article mapping is available, e.g.

from [34], existing annotations in Wikipedia can be tagged with their

corresponding type and used for NER models to be trained on. However,

Wikipedia is not exhaustively annotated, and training such models on

partially annotated data is challenging and leads to worse results than

if fully annotated datasets are used, e.g. see [44] or [59].

2. Co-reference Resolution (CR): Wikipedia sometimes contains annota-

tions of the same entities within the same article, even though authors

are discouraged from linking the same entity per article more than once.

Still, a dataset with such co-references for some entities can be created

and a model can be trained on this dataset, even though more annota-

tions in Wikipedia would be beneficial.

3. EL: Wikipedia already has entities linked as hyperlinks, e.g. [36] created

a dataset where they leveraged hyperlinks as links between entities and

their articles in Wikipedia.

4. Relation Extraction (RE): Using Distant Supervision, as applied by [70],

and a KG, such as DBpedia [8], an RE dataset can be created through

considering a specific relation between a specific pair of entities, as it

appears in the KG and sentences expressing this relation if both entities

are present.

We present our work on Wikipedia EXhaustive Entity Annotations (WEXEA),

which is able to add a large amount of training data for each of these tasks4. In

addition, datasets extracted by WEXEA can be considered as a starting point

for manual data annotation since it presumably needs minimal refinement by

human annotators, compared to starting data annotations from scratch.

Therefore, our contributions are:

4WEXEA aims to exhaustively annotate all entities in Wikipedia. However, the difficulty
of this task heavily depends on the definition of an entity and we cannot claim that all
entities can be actually annotated. Therefore, information on the exact kind of entities,
that are ideally exhaustively annotated by WEXEA, can be found in Section 3.4

22

• Devising a new approach to annotate ideally all entity mentions in Wikipedia

to create an annotated text corpus that can be useful in downstream

tasks, for the English, German, French and Spanish versions of Wikipedia.

• Highlighting the usefulness of our approach for the task of creating

datasets for RE using Distant Supervision. Many more sentences, for

more relations, can be extracted, following our approach, than using a

basic Wikipedia-based corpus without additional annotations.

• Generally WEXEA can provide the following language resources for mul-

tiple languages (as long as an NER tool is available): Wikipedia with ad-

ditional annotations, RE datasets using Distant Supervision (need to be

refined manually, ideally), NER datasets (article-type-mapping needs to

be available), EL datasets, CR datasets (especially for the article entity,

since these are often mentioned), parsed Wikipedia articles, dictionaries

for hyperlinks, aliases, redirects, categories and many more.

The remainder of this chapter is structured as follows: Section 3.2 provides

information about similar existing approaches. In Section 3.3, Wikipedia and

related statistics are presented. In Section 3.4 our method is described in

detail with an evaluation in Section 3.5, and our conclusions are presented in

Section 3.6.

3.2 Related Work

There are two main lines of previous work that are important to our method:

(1) Datasets with annotations similar to ours (mostly for NER) and (2) semi-

automatically extracted datasets for RE using DS. Both are described below.

3.2.1 Wikipedia Annotated Corpora for NER

In [64], entities in Wikipedia are classified into one of the CoNLL-2003 entity

types, i.e. Person, Organization, Location or Miscellaneous, in order to create

a large annotated corpus based on the English Wikipedia. Already linked

23

entities are classified and additional links are identified through the use of 3

different rules:

1. The title of an article and all redirects are used to find more links of this

article.

2. If article A is of type Person, the first and last word are considered as

alternative title for article A.

3. The text of all links linking to article A is used as alternative title as

well.

Their work is based on a 2008 Wikipedia dump. Co-references such as he

or she or others that can be used to refer to certain entities are not considered,

if not already in Wikipedia (typically it is not the case).

Ghaddar et al. [34] created the WiNER corpus and follow a similar ap-

proach using a 2013 Wikipedia dump. Their annotation pipeline is similar to

the one of [64] and consists of three steps as well (typing information is used

from Freebase):

1. Each article reachable via a hyperlink, i.e. out-links, is considered for

search. Co-references, i.e. alternative entity names such as NYC or New

York for the article New York City, from [33] are included in addition to

the article titles.

2. Article titles reachable via out-links of out-links are searched.

3. Co-references from articles found in step 2 are included as well.

Conflicts (certain words may refer to multiple entities) are resolved through

linking such a mention to the closest already linked article before or after.

The resulting corpora of both systems are evaluated using common NER

approaches and corpora, and showed a slightly better result than training an

NER system on other typically smaller datasets. Even though both datasets

are publicly available, classifying entities into one of the 4 CoNLL-2003 classes

introduces errors. Moreover, the original annotations are removed and cannot

24

be obtained anymore. This removes valuable information, e.g. for creating

distantly supervised RE corpora or training CR systems, since it is not clear

which annotation refers to which Wikipedia article.

The same authors created the system WiFiNE [35], which builds up on

WiNER and includes more co-references and fine-grained entity typing.

The closest to our approach is the work of Klang et al. [47]. It uses an

EL system with a pruning strategy based on link counts in order to keep the

number of candidates per mention low (after running a mention detection al-

gorithm). It also uses PageRank [11] combined with a neural network classifier

to link mentions to their Wikipedia articles. The authors did not publish the

code, and the data is not downloadable, to work with it offline5. Therefore,

it is not possible to compare against this approach. In addition, co-references

are not resolved.

Another similar but smaller dataset is the Linked WikiText-2 dataset from

[54], which is publicly available6. It consists of only 720 articles (600 train,

60 dev, 60 test). It was created using a neural EL system [37] and a CR

system [58] to generate additional annotations to the ones given by the editors

of the articles. However, using automatic tools introduce additional errors.

Conversely, Wikipedia can be considered as partially annotated data, and

therefore it would certainly be beneficial to consider these annotations, as our

work and others in the literature suggest [34], [64]. The main issue with using

an Entity Linker in such an unrestricted way is that it tries to link all mentions

of entities, regardless of whether they have an article in Wikipedia or not.

3.2.2 Distant Supervision

Another line of work, relevant to ours, is extracting datasets from large text

corpora for RE using Distant Supervision (DS).

Riedel et al. [70] run a manual inspection on a DS dataset based on

Wikipedia as well as the New York Times corpus comparing the number of

5The article provides links in order to inspect the datasets online, but they are not
available anymore (as of Sep. 29, 2022).

6https://rloganiv.github.io/linked-wikitext-2

25

https://rloganiv.github.io/linked-wikitext-2

Language Articles Edits Active Users
English 6,441,277 1,062,121,045 121,778
Cebuano 6,110,506 33,782,787 194
Swedish 2,723,659 49,986,114 2,318
German 2,655,326 217,914,814 19,203
French 2,390,851 189,594,878 18,738
Dutch 2,078,405 60,740,414 4,234
Russian 1,787,519 119,176,670 11,411
Spanish 1,746,575 140,623,695 13,997
Italian 1,736,786 124,879,290 8,445
Egyptian Arabic 1,538,022 6,320,459 210

Table 3.1: Statistics of the 10 largest Wikipedias.

violations of the DS assumption on three relations and found that it is a lot

less often violated in Wikipedia (≈ 31% vs. ≈ 13%). This indicates that

Wikipedia can provide DS data for RE systems and high-quality annotations

presumably lead to better extractions. As we show in Section 3.5, WEXEA is

capable of extracting many more relevant sentences than only using Wikipedia

without additional annotations.

3.3 Wikipedia

Wikipedia is a free encyclopedia that exists for 325 languages of varying

content size. Table 3.1 shows statistics about the 10 largest versions (the

Swedish and Cebuano Wikipedias were largely created by a bot7)8. Although

Wikipedia exists for 325 languages, only 18 of all Wikipedias contain more

than 1,000,000 articles and 253 contain only less than 100,000 articles, see

Table 3.29. Nevertheless, Wikipedia is a Knowledge Base of impressive size

with more than 6 million articles in the English version. This leads to a huge

potential for NLP research, as shown by Ghaddar et al. [34] for NER.

Wikipedia contains many more pages than articles, such as redirect or

disambiguation pages as seen in Table 3.3. In the following, we explain certain

7https://en.wikipedia.org/wiki/Lsjbot
8As of Jan. 20, 2022: https://meta.wikimedia.org/wiki/List_of_Wikipedias
9As of Jan. 20, 2022.

26

https://en.wikipedia.org/wiki/Lsjbot
https://meta.wikimedia.org/wiki/List_of_Wikipedias

No. articles Languages
1,000,000+ 18
100,000+ 53
10,000+ 89
1,000+ 124
100+ 30
10+ 0
1+ 9
0 2

Table 3.2: Distribution of number of articles and language versions.

Page type Number
Redirects 8,440,863
Disambiguations (other) 189,124
Disambiguations (geo) 38,507
Disambiguations (human) 59,988

Table 3.3: Number of important pages other than articles.

features of Wikipedia and the annotation scheme proposed for editors, which

we deem important for a proper understanding of our approach:

• Redirect pages: Wikipedia contains many redirect pages, e.g. NYC or

The City of New York referring to the article of New York City. Editors

can create these pages through adding alternative names for an article

or they are created automatically, e.g. in case the name of an article

changes and therefore broken links can be avoided through creating a

redirect page.

• Disambiguation pages: Wikipedia contains many disambiguation pages,

which are similar to redirect pages, except they deal with mentions that

are knowingly referring to several different articles. For example, the

disambiguation page of New York 10 refers to a whole list of articles in-

cluding the city, state and many sports clubs located in New York City

or the state of New York.

10https://en.wikipedia.org/wiki/New_York

27

https://en.wikipedia.org/wiki/New_York

• Typically, entities are only linked once in an article when they are men-

tioned first. Subsequent mentions should not be linked anymore.11 In

addition, pages do not contain links to themselves, e.g. there is no link

to the article of Barack Obama within itself, although he is mentioned

in there many times.

• Links can consist of two parts: (1) The article name that the link refers

to (mandatory), and (2) an alias for that article since it is not always

convenient to include the linked article’s full name. This could look like

the following link (following the linking scheme of Wikipedia): [[Barack

Obama|Obama]], resulting in a hyperlink with anchor text Obama, link-

ing to article Barack Obama.

• Links, in general, should help the reader to understand the article and

therefore should only be added if helpful (over-linking is to be avoided).

This also means that articles, most readers are familiar with, such as

countries, locations, languages, etc., are typically not linked.

Wikipedia’s linking scheme aims for the best readability, but in order to

be useful for NLP tasks, more annotations can be beneficial and we show

in the remainder of this chapter that it is possible to add more annotations

automatically.

3.4 Method

In this section we present WEXEA, which annotates as many mentions of

entities as possible in Wikipedia articles.

The reader may expect WEXEA to be actually able to annotate all entities

that can be found in Wikipedia. However, the definition of an entity is difficult

to make and depends on the application. We consider the tasks of Named

Entity Recognition (NER) and Co-reference Resolution (CR) as references

here. Therefore, Named Entities and their co-references are considered as

the entities and mentions WEXEA aims to annotate in Wikipedia (or keep

11https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking

28

https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking

existing annotations). This means that annotations in Wikipedia, which are

not related to these kind of annotations, are removed and do not appear in

the resulting datasets. For Named Entities, we only keep entities and their

articles that more often than not start with a capital letter (considering the

variety of anchor texts of incoming links of an article; this is a similar approach

as described in [34]). Details on co-references can be found in Section 3.4.4

below.

In order to illustrate the problem that our approach aims to solve, con-

sider the following sentence from Tony Hawk ’s Wikipedia article12 (original

annotations in blue):

“Tony Hawk was born on May 12, 1968 in San Diego, California

to Nancy and Frank Peter Rupert Hawk, and was raised in San

Diego.“

Apart from the entity San Diego, California, a few other non-annotated

mentions of entities appear in this sentence: (1) Tony Hawk, the entity of

the current article, (2) his parents Nancy Hawk and Frank Peter Rupert Hawk

(both currently not in Wikipedia), as well as (3) another mention of San Diego,

California. Therefore, if correctly annotated, this sentence includes 5 mentions

of entities, although only a single one is already annotated.

In general, editors should avoid to link mentions if they refer to entities that

were already linked before or if they refer to very popular entities, and linking

them would not contribute to understanding the meaning of a sentence13.

However, WEXEA aims to add all missing annotations in Wikipedia in order

to create an annotated text corpus that can be more useful in downstream

tasks, than solely relying on already existing links or using an NER and EL

to find and link more mentions, which introduces unnecessary errors.

In order to achieve this task, it can be broken down into several subtasks,

including (1) dictionary creation for linking mentions to articles, (2) initial

12https://en.wikipedia.org/wiki/Tony_Hawk
13https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking

29

https://en.wikipedia.org/wiki/Tony_Hawk
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking

annotations, (3) co-reference resolution and (4) candidate conflict resolution,

which are described below.

3.4.1 Dictionary Creation

The first step of our approach is to create the following dictionaries that help

with the initial Mention Detection (MD) and EL, considering the hyperlinks

that are added by the editors of the article:

• Redirects dictionary: Wikipedia contains many redirect pages, e.g. NYC 14

or The City of New York 15 referring to the article of New York City.

These redirects are useful alternative titles that, presumably, solely refer

to a certain entity (otherwise it would not be a redirect page, it could be

a disambiguation page instead if several candidate articles are possible).

Redirect pages can be either created by an editor to provide alternative

titles or they are created automatically in case the title of an article

changes.16

• Alias dictionary: This is another dictionary containing alternative names

for articles, created through collecting anchor texts of hyperlinks refer-

ring to an article, e.g. U.S. and USA are both included in the alias dictio-

nary since they appear in other Wikipedia articles linking to the article

of the United States. Overlaps with the redirects dictionary are possible,

but typically the alias dictionary contains more ambiguous aliases, e.g.

New York referring to the articles New York City, New York (state) and

many more. We only keep aliases that start with a capital letter, since

only these can refer to Named Entities, and we ignore alias-entity links

that only appear once in Wikipedia, since these are often not meaningful

and can introduce unnecessary errors.

• Disambiguation page dictionaries: Wikipedia contains many disambigua-

tion pages, which are similar to redirect pages, except they deal with

14https://en.wikipedia.org/w/index.php?title=NYC&redirect=no
15https://en.wikipedia.org/w/index.php?title=The_City_of_New_York&

redirect=no
16https://en.wikipedia.org/wiki/Wikipedia:Redirect

30

https://en.wikipedia.org/w/index.php?title=NYC&redirect=no
https://en.wikipedia.org/w/index.php?title=The_City_of_New_York&redirect=no
https://en.wikipedia.org/w/index.php?title=The_City_of_New_York&redirect=no
https://en.wikipedia.org/wiki/Wikipedia:Redirect

mentions that knowingly refer to several different articles, e.g. the dis-

ambiguation page New York refers to a whole list of articles including

the city, state and many sports clubs located in New York City or the

state of New York. Often, these disambiguation pages have a certain

type attached, mainly human17 for persons or geo18 for geopolitical en-

tities. In case the page contains several types of entities, such as New

York, it typically does not fall under one of these two categories. How-

ever, if it does, at least we can infer that the mention type is Person or

Geopolitical Entity, even if we cannot link it to a specific article.

• We are ignoring stub articles19, which are articles that are very short and

do not contain a great deal of information. Usually, these are articles

that are just started, but none of the editors has taken a closer look

into it, and therefore the expected quality could be lower than the more

popular and longer articles.

• We compiled a list of persons from the Yago KG [56] in order to figure

out whether an article refers to a person, in which case the first and last

word of the name can be also considered as alternative name for that

person, again, as done in [64].

• Often very popular entities, such as countries or certain events (e.g.

World War II) are mentioned in text without being linked. In order

to link these mentions with high confidence we keep a dictionary of the

10,000 most popular articles (regarding the number of incoming hyper-

links found in all of Wikipedia) that can be linked to mentions, without

being linked in the text at all.

• Wikipedia contains many articles about given names. We collect all ar-

ticles for this dictionary through looking for the categories Given names,

Masculine given names or Feminine given names20.
17https://en.wikipedia.org/wiki/Template:Human_name_disambiguation
18https://en.wikipedia.org/wiki/Template:Place_name_disambiguation
19https://en.wikipedia.org/wiki/Wikipedia:Stub
20Categories in Wikipedia can be used by editors to group articles: https://en.

wikipedia.org/wiki/Help:Category

31

https://en.wikipedia.org/wiki/Template:Human_name_disambiguation
https://en.wikipedia.org/wiki/Template:Place_name_disambiguation
https://en.wikipedia.org/wiki/Wikipedia:Stub
https://en.wikipedia.org/wiki/Help:Category
https://en.wikipedia.org/wiki/Help:Category

3.4.2 Direct Mention Annotations

We found that applying just 3 or 4 rules in order to annotate mentions of

entities in Wikipedia articles, as done in [34] or [64], is not sufficient, therefore

we apply a relatively extensive set of rules. Apart from keeping the links

corresponding to articles mostly starting with capital letters, we are detecting

new potential mentions of articles using the following rules (applied to text

between already annotated mentions):

1. The first line of an article often contains mentions of the article entity in

bold, representing alternative names and are therefore annotated with

the article entity.

2. At any time throughout processing an article, we are keeping an alias

dictionary of alternative names for each linked article up until this point.

This includes all aliases in the alias dictionary, all redirects and first and

last word of an article in case it is a person. Since each article is linked

once by the author, when it was mentioned first, these alternative names

can be searched throughout the text after an article link is seen. If a

match is found, the found mention can be annotated with the matching

article.

3. We search for acronyms using a regular expression, for example, strings

such as “Aaaaaa Bbbbbb Cccccc (ABC)”, linking the acronym to the

matching string appearing before the brackets, which was linked to its

article before.

4. For all entity mention spans that are not found so far, we apply the

NER of the CoreNLP toolkit [58] in order to find and type more entity

mentions. This includes dates and times found by the SUTime library

[15].

5. In many cases, the corresponding article for a mention is not linked in

the text before (or cannot even be found in Wikipedia) and therefore the

following rules are applied in these cases:

32

• If the mention matches an alias of the current articles’ main entity

and does not exactly match any other entities, it is linked to it.

• If the article matches one of the 10,000 most popular entities in

Wikipedia, the mention is linked to this article.

• If it matches a disambiguation page and one of the previously linked

articles appears in this page, the mention is linked to this article.

These mentions are solely found by the NER and therefore the

entity type is kept too.

• If the mention matches an alias from the general alias dictionary, it

is linked to the most frequently linked entity given the mention.

6. We also apply rules in case there are conflicts (more than one potential

candidate for a mention using previous rules):

• If all candidates correspond to persons (sometimes people with the

same first or last names appear within the same article), the person

that was linked with the current mention more often, is used as

annotation.

• If a mention matches an alias of the current articles’ main entity

and more entities in the current alias dictionary, these are discarded

in case the corresponding articles do not match the mention exactly.

• Otherwise, in some cases conflicts cannot be solved this way and

EL has to be used (see Section 3.4.3).

7. If no entity can be found by these ways, the mention is annotated as un-

known entity or, in case a disambiguation page matches, this page is used

and it sometimes contains the information that the mention corresponds

to a person or geopolitical entity.

3.4.3 Candidate Conflict Resolution

Even after applying the rules explained in Section 3.4.2, it is still possible

to end up with multi-candidate mentions, which the following sentence (from

33

Wikipedia21) illustrates:

“Leicestershire are in the second division of the County Champi-

onship and in Group C of the Pro40 one day league.“

Leicestershire in this sentence refers to the Leicestershire County Cricket

Club although an alternative candidate, which is exactly matching, would be

Leicestershire22, which was mentioned in a previous sentence within the same

article.

In order to resolve these conflicts we use the Entity Linker from [37], as

used for the Linked Wikilinks-2 dataset as well. The authors made the code

and the used models publicly available23. However, we only use the Linker

for multi-candidate mentions and not to find and link all mentions (which

leads to errors if a mention refers to an entity that is absent in Wikipedia

since the system always finds a link) and we modified it in a way that it only

considers our candidate set for linking, not the candidate set from its own alias

dictionary, since this set would include many more articles that are presumably

not relevant.

3.4.4 Co-reference Resolution

Co-references that are not Named Entities (do not start with a capital letter),

such as he or she for humans, the station for Gare du Nord24 or the company

for General Electric25, should be linked as well. Our approach to achieve this

is explained below.

As mentioned before, CR systems work increasingly well, although their

performance is still far behind the performance of, for example, NER tools,

e.g. [1] or [51]. We experimented with the state-of-the-art system from [51],

but there are two main issues with it: (1) For long articles it takes several

seconds to process (AMD Ryzen 3700x, 64gb, Nvidia GeForce RTX 2070) and

21https://en.wikipedia.org/wiki/Leicestershire_County_Cricket_Club
22https://en.wikipedia.org/wiki/Leicestershire
23https://github.com/nitishgupta/neural-el
24https://en.wikipedia.org/wiki/Gare_du_Nord
25https://en.wikipedia.org/wiki/General_Electric

34

https://en.wikipedia.org/wiki/Leicestershire_County_Cricket_Club
https://en.wikipedia.org/wiki/Leicestershire
https://github.com/nitishgupta/neural-el
https://en.wikipedia.org/wiki/Gare_du_Nord
https://en.wikipedia.org/wiki/General_Electric

is therefore too slow to annotate approximately 3,000,000 articles within a

reasonable amount of time. (2) The model was trained in a fully open way,

i.e. it has to find all mentions of entities and create one cluster per distinct

entity, which is a very hard task. Whereas in our setting, many mentions

are already annotated and a system only has to figure out whether there are

more mentions (non-named entities) of the annotated entities in the article.

Therefore, we decided to use a simple rule-based system.

Our system for CR considers a small set of co-references, depending on the

type of entity. In order to find the type of an entity, we use the Yago KG

[56] in order to retrieve all types of each entity. Yago is a system that links

Wikipedia articles to a set of types, which consists of Wikipedia categories, as

well as words from WordNet [61]. In case an entity is not of type “person”,

all WordNet types are considered as co-references, with “the” as prefix, e.g.

the station (Gare du Nord) or the company (General Electric). For persons,

he, she, her, him and his are considered as co-references. Also sometimes the

article name includes the type of an entity, which can be considered as a co-

reference as well, e.g. the type of Audrey (band)26 is band. This results in an

initial dictionary with zero or more co-references per article in Wikipedia.

In order to find out which of the co-references in the initial dictionary is

actually used, we simple searched and counted each co-reference for each ar-

ticle. For example, we found that General Electric has type company in Yago

and the company appears 19 times in its article. If a co-reference appeared

more than a user-defined threshold, it was accepted. For persons, we looked

for he and she, and if one of them appeared more than a threshold, the one

appearing more often was accepted. This includes his, him and her as well, de-

pending on the previous decision. We found setting this threshold to 2 worked

reasonably well. This resulted in a dictionary of at least one co-reference for

825,100 entities in Wikipedia.

Using this dictionary, we can add more annotations to our corpus using

the following procedure for each article:

26https://en.wikipedia.org/wiki/Audrey_(band)

35

https://en.wikipedia.org/wiki/Audrey_(band)

1. Processing an article sequentially and whenever an already annotated

entity mention appears, all its co-references are added to the current

co-reference dictionary.

2. The text in between two entities (or start/end of article) are tagged using

this co-reference dictionary, making sure that only previously mentioned

entities can be used.

At any time, there can only be one entity attached to a certain co-reference,

which effectively results in using the article matching a co-reference that ap-

peared most recently in the previous text. Mentions that do not have a

Wikipedia article, but were still annotated are classified into male or female

human or something else using the gender guesser package27. We classify a

mention as male, if there are no female-classified words in the mention and

vice-versa for female mentions. Otherwise, the mention is not considered for

annotation.

3.4.5 Multi-Language

CoreNLP is the main entity detection tool (apart from mentions found through

existing hyperlinks), which is available in the following languages: English,

Arabic, Chinese, French, German and Spanish28. We tested WEXEA on En-

glish, French, German and Spanish, even though more languages can be intro-

duced through training new models.

The SUTime library for detecting dates and times is available in English

and Spanish. We extended the rule-set for German and French, which mainly

involved translating weekdays and months as well as adjusting regular expres-

sions for detecting dates. It can be adjusted for more languages of interest or

left out.

The EL system used for mentions of entities with multiple candidates was

trained on English Wikipedia text [37] and therefore cannot be used for other

languages. In this case a greedy EL system is used, which links the candidate

27https://pypi.org/project/gender-guesser/
28https://stanfordnlp.github.io/CoreNLP/human-languages.html

36

https://stanfordnlp.github.io/CoreNLP/human-languages.html

with the highest prior probability, i.e. the one that appears the most often with

the detected mention in Wikipedia. For example, if the entity “New York” is

found and the set of candidates consists of the articles for “New York City”

and the “New York Yankees”, the former would be chosen since the hyperlink

count from “New York” to the article “New York City” is higher than for the

“New York Yankees”.

In addition, the CR system used cannot directly be applied to other lan-

guages. Hence pronouns are translated from English to the currently used

language, and English entity names are still used, other co-references from

Yago are removed since they would have to be translated including the cor-

responding definite articles used. This reduces the set of entities with such

co-references, although still some of them can be detected for languages other

than English.

3.5 Evaluation

In this section we present statistics of the datasets we created with WEXEA

for the English, German, French and Spanish versions of Wikipedia and a

visualization of a paragraph of an article in English.

3.5.1 Dataset Creation

Wikipedia is large29 and processing all articles can be time-consuming, de-

pending on the language used. WEXEA has two main steps30:

1. Dictionary creation, article split (storing each article separately), re-

solving templates, removing non-content articles, e.g. redirects, lists,

categories etc. (∼ 5h).

2. Removing non-named entity annotations and adding annotations through

the alias and redirect dictionaries as well as running the CoreNLP toolkit

and finding acronyms (∼ 2d).

296,383,000+ articles in the English Wikipedia as of January 14, 2022: https://www.

wikipedia.org/
30Runtimes are based on dataset creation on a AMD Ryzen 3700X with 64G main memory

and the English Wikipedia (version with the most articles).

37

https://www.wikipedia.org/
https://www.wikipedia.org/

Especially step (2) takes a significant amount of time due to CoreNLP

annotating each article. However, once all necessary dictionaries are created

in (1), articles can be prioritized in step (2), e.g. only processing the most

popular articles, to speed up the process. Wikipedia for languages other than

English usually contains significantly less articles and, therefore, run time

would be faster.

3.5.2 Visualization

Figure 3.1 shows a paragraph from Queen Victoria’s English Wikipedia ar-

ticle31 with the original in Figure 3.1a and the corresponding one generated

by WEXEA in Figure 3.1b. WEXEA annotated many more entities than the

original paragraph contains. Multiple annotations of Queen Victoria can be

found compared to no annotations in Wikipedia since this is her article, and

editors are not supposed to add links to the same article.

31https://en.wikipedia.org/wiki/Queen_Victoria

38

https://en.wikipedia.org/wiki/Queen_Victoria

(a) Original paragraph from Wikipedia. Multiple entities are not annotated.

(b) Corresponding paragraph from the file generated by WEXEA with additional
entity annotations. In order to simplify, only the anchor text for hyperlinks is shown,
the linked entity is left out. Hyperlinks (blue) refer to an entity in Wikipedia, for all
other annotations (green) no entity in Wikipedia can be found (mostly dates, times,
numbers as well as other named entities). The original annotation of succession
crisis (third sentence) was removed since it does not correspond to a named entity.

Figure 3.1: Same paragraph from Queen Victoria’s English Wikipedia ar-
ticle as well as her corresponding article generated by WEXEA. Hyper-
links/Annotations in blue, linked articles are omitted due to readability.

3.5.3 WEXEA Statistics

Table 3.4 provides basic statistics of WEXEA when run on the English32,

German33, French34 and Spanish35 Wikipedia versions. The number of rel-

32Wikipedia dump enwiki-20210220
33Wikipedia dump dewiki-20220101
34Wikipedia dump frwiki-20220101
35Wikipedia dump eswiki-20220101

39

evant articles36 and sentences as well as the number of original annotations

in Wikipedia and all annotations in WEXEA (“Entities total”) are shown in

total, averaged per sentence and article.

Language English German
Type Wikipedia WEXEA Wikipedia WEXEA
Articles 2,676,086 1,929,698
Sentences 148,866,723 83,426,382
Entities total 62,026,078 320,142,453 45,383,570 149,776,874
- avg per sentence 0.42 2.15 0.54 1.80
- avg per article 23.18 119,63 23.52 77.62

Language French Spanish
Type Wikipedia WEXEA Wikipedia WEXEA
Articles 1,568,460 1,137,844
Sentences 64,214,837 43,794,620
Entities total 26,113,542 97,482,667 17,059,545 74,824,888
- avg per sentence 0.41 1.52 0.39 1.71
- avg per article 16.65 62.15 14.99 65.76

Table 3.4: Annotation statistics for WEXEA compared to Wikipedia, for En-
glish, German, French and Spanish.

WEXEA extracts a number of potentially useful dictionaries and articles

of a specific type, with statistics presented in Table 3.5:

• Article: Number of articles (in order to put numbers into perspective).

• Categories (assigned): Wikipedia contains a category hierarchy37 to group

together entities of a similar subject. Each article can have multiple cat-

egories attached, hence more category assignments than articles can be

found.

• Disambiguation pages: These pages often contain lists of articles, which

can be referred to by the name of the disambiguation page38.

• Lists: List articles group articles of the same type39.

36Not all article entities are considered as named entities, therefore the shown number of
articles is lower than the one found on https://www.wikipedia.org/.

37https://en.wikipedia.org/wiki/Help:Category
38Disambiguation page of “New York”: https://en.wikipedia.org/wiki/New_York
39List of sovereign states: https://en.wikipedia.org/wiki/List_of_sovereign_

states

40

https://www.wikipedia.org/
https://en.wikipedia.org/wiki/Help:Category
https://en.wikipedia.org/wiki/New_York
https://en.wikipedia.org/wiki/List_of_sovereign_states
https://en.wikipedia.org/wiki/List_of_sovereign_states

• Aliases: Each hyperlink in Wikipedia contains an anchor text (i.e. an

alias) and the entity it refers to (not necessarily the same). Therefore

this dictionary contains aliases and linked articles, important for EL in

order to create a list of candidates per entity found in text.

• Links: Some EL systems, e.g. see [36], consider the links of a candidate

to other entities in a document in order to link an entity to a candidate.

This dictionary contains all links extracted through hyperlinks from an

article to the linked entity.

• Redirects: This dictionary provides alternative names for many Wikipedia

articles, e.g. New York state refers to the article with name New York

(state). Whenever an article in Wikipedia is renamed, a redirect page is

created (if it is not ambiguous). Editors can also add redirects manually.

• Given names and surnames: Specific templates and categories mark ar-

ticles about a given name or surname. These articles are stored in these

dictionaries and can be used to identify entities of type person.

English German French Spanish
Articles 2,676,086 1,929,698 1,568,460 1,137,844
Categories (assigned) 21,067,025 11,702,075 9,509,203 5,641,208
Disambiguation pages 303,508 311,151 106,963 58,845
Lists 111,103 83.664 27,229 55,992
Aliases 4,620,268 3,019,351 2,315,007 1,818,029
Links 104,820,886 62,790,995 47,263,448 33,434,730
Redirects 4,811,019 1,444,249 1,089,731 1,434,897
Given names 10,482 7,103 1,327 976
Surnames 35,600 6,318 2,379 142

Table 3.5: Further annotation statistics for WEXEA and all languages.

Table 3.6 breaks up the annotation types of WEXEA:

• Annotations: Main annotations from Wikipedia.

• Article Entity: The article’s entity, mentioned many times, but typically

not annotated.

41

• Popular entities: Matching one of the 10,000 most popular articles in

Wikipedia (after sorting by each article’s number of hyperlinks), which

are often not annotated due to the assumption the reader knows which

article is mentioned.

• Single candidate: Annotations with a single candidate, typically referring

to articles previously linked in the same article.

• Multi candidate: Multiple candidates are available, solved by the EL

system.

• Co-references: Pronouns (found by the CoreNLP NER) and co-references

for many entities based on their type.

• Acronyms: Acronyms and corresponding entities, which were not already

annotated.

• NER: All other entities found and typed by the NER (including numer-

ical entities only available in English).

English German French Spanish
Annotations 62,026,078 45,383,570 26,113,542 17,059,545
Article Entity 19,873,610 11,215,066 6,507,156 4,695,562
Popular entities 14,507,645 7,667,027 4,110,588 3,502,393
Single candidate 42,833,403 27,162,472 10,228,398 8,786,032
Multi candidate 2,861,934 894,593 316,171 223,584
Co-references 36,300,537 2,604 1,092 1,140
Acronyms 745,470 207,876 84,113 117,951
NER 140,993,776 57,243,665 43,808,292 32,023,229
Total 320,142,453 149,776,874 91,169,353 66,409,439

Table 3.6: Breakup of mention types found by WEXEA for all languages.

Since all annotations are marked accordingly, unwanted annotations, e.g.

numerical entity types, can be filtered out.

3.5.4 Entity Annotations

Table 3.7 shows a small evaluation of a subset of the main entity annota-

tions from WEXEA (apart from NER annotations) for 20 randomly selected

42

Annotation type Accuracy Number
Article entities 0.97 98
Popular entities 0.96 56
Candidate entities (single) 0.91 44
Candidate entities (multi) 0.67 3
Co-reference entities 0.69 67

Table 3.7: Accuracy and number of annotations for four different annotation
types and 20 randomly selected articles from the English WEXEA corpus.

Wikipedia articles. Overall, the annotation quality for article entities, popular

entities and single candidate entities is excellent. Multi-candidate entities do

not appear often, a large number of articles needs to be evaluated to achieve

a higher confidence level. The CR system of WEXEA is sometimes mislead,

carrying an incorrect entity through a number of sentences.

3.5.5 Baseline Comparison

We compare the output of WEXEA to WiNER [34], which was described in

Section 3.2. Unfortunately, the source code of WiNER is not available and

furthermore, even though the resulting dataset can be downloaded, it is based

on a 2013 Wikipedia dump with NER annotations only, i.e. actual entity

annotations cannot be reconstructed anymore.

In order to fairly compare the rule-set of WEXEA and WiNER, we re-

implemented WiNER’s rules, although we had to make a few assumptions due

to missing resources and missing explanations in [34]:

• We used an intermediate dataset from WEXEA’s pipeline, which con-

tains raw Wikipedia articles without irrelevant Wikipedia markup, such

as templates and infoboxes, only existing annotations of Named Entities

can be found here. Therefore, we ensure that both approaches start from

the same source of text data.

• WiNER relies on an alias dictionary of articles of interest from [33]. As

this dictionary is out-dated (again, based on a 2013 Wikipedia dump),

we re-use WEXEA’s alias dictionary as it is independently collected from

the rule-set both approaches use for further annotations.

43

• In addition, WiNER claims to only annotate Named Entities, i.e. proper

nouns. Therefore, we cleaned the alias dictionary so that co-references

(such as pronouns and other non-proper noun aliases) are removed as

they cannot be detected by WiNER, i.e. only aliases starting with a

capital letter are kept.

• When aliases of article names are searched for in the article at hand,

they are sorted in reverse order by length and exact matches considering

word boundaries are kept. It is unclear how WiNER originally handled

this, but we found that longer aliases lead to better annotations as this

avoids recognizing the shorter nested entities, which both approaches are

not necessarily aiming to recognize. For example, the longer mention of

New York Yankees should be linked as a whole without considering just

the first shorter part New York for annotation.

• We only consider the English dataset in this evaluation since WiNER

was developed for English text only.

In this comparison we ensure that both approaches start from the same

text source and alias dictionary. Differences are solely based on the rule-set

used for further annotations (original ones matching the assumptions regarding

proper nouns are kept), the core of both approaches.

We randomly chose 100 articles annotated by WiNER and WEXEA and

kept the abstract of each article for evaluation. Wikipedia articles can be

long and we aimed to evaluate a wide range of articles as one approach may

work better on certain kinds of articles or topics than the other. This re-

sulted in 100 abstracts with 462 additional annotations from WiNER and 312

from WEXEA. We considered these rules in order to consider annotations as

correct/incorrect or missing:

• We only considered the union of annotations of both approaches as po-

tential annotations, i.e. articles that were not mentioned by both ap-

proaches were not considered. The reason for this is that it is not al-

ways clear for the annotator whether the actual entity can be found

44

in Wikipedia, which is often not the case. In this case, WiNER and

WEXEA typically annotate a nested entity, which may be correct or

incorrect and is counted as such. Therefore, if both approaches missed

an annotation, we ignore it.

• If one approach annotates a certain mention of an entity correctly, but

the other one missed the annotation or used an incorrect entity, we

counted a missing or an incorrect annotation, respectively, for the latter

approach, and a correct one for the former.

Table 3.8 shows the result of the manual evaluation. WiNER has a notably

lower precision than WEXEA, i.e. instead of missing certain annotations,

WiNER prefers to add an annotation, even if it is incorrect, hence the higher

recall. We found many annotations of commonly used words, such as The for

the article The New York Times or It for the article Italy. WiNER was de-

veloped based on a 2013 Wikipedia dump. Today’s Wikipedia consists of over

50% more articles40 and presumably many more aliases per article as articles

grew as well. This seems to result in more incorrect annotations than origi-

nally anticipated by the authors, considering WiNER’s rule set. In addition,

WiNER was developed to provide NER tags, instead of Wikipedia articles, as

annotations. A later step converts article annotations to NER tags. Therefore,

for WiNER there is no distinction between articles with the same aliases, such

as New York (state) and New York City, as they are both locations.

WEXEA, on the other hand, achieved an F1-score of 0.82, compared to 0.65

for WiNER. Even though WEXEA missed more annotations than WiNER, the

added annotations are better, leading to a much higher precision.

Approach P R F1
WiNER 0.54 0.81 0.65
WEXEA 0.91 0.75 0.82

Table 3.8: Results on WEXEA vs. WiNER, based on the abstracts of 100
articles.

40https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

45

https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

The source code of WiNER (using WEXEA dictionaries) and the set of

articles considered for evaluation, is publicly available41.

3.5.6 Dataset Creation

WEXEA corpora can be used for multiple NLP tasks, such as NER, EL,

CR and RE, and here we describe how datasets can be extracted or how

these corpora can be used without modification. Since WEXEA does not

provide gold-standard annotations, these datasets can be used as a starting

point to pre-train models or manually annotate data, especially if high-quality

training data is very limited or unavailable (specifically for languages other

than English).

Named Entity Recognition

Models for NER are typically trained for token classification, e.g. see [49], i.e.

every token in the training set needs to be properly annotated. Wikipedia

cannot be used due to many missing annotations and partially annotated

datasets for NER can significantly reduce model performance, e.g. see [44]

or [59]. WEXEA can fill these annotation gaps and therefore the resulting

corpora can be used for NER, if an article-type mapping can be provided.

DBpedia, which contains type-relationships for each entity42, or the system

NECKAr [32] for typing Wikidata entities can be used here.

Entity Linking

Similar to the dataset created by [36], large datasets for EL can be extracted

from WEXEA corpora without modification. Annotations linking entities to

an article in Wikipedia can be used to train such systems. Furthermore, EL

systems rely on alias dictionaries in order to create a set of candidates for each

entity found in text. These alias dictionaries should be updated frequently

since the set of articles/entities of interest increases constantly and WEXEA

can be used to provide these dictionaries.

41https://github.com/mjstrobl/WEXEA
42For example, see Barack Obama’s DBpedia article: https://dbpedia.org/page/

Barack_Obama

46

https://github.com/mjstrobl/WEXEA
https://dbpedia.org/page/Barack_Obama
https://dbpedia.org/page/Barack_Obama

Co-reference Resolution

CR systems aim to detect clusters of co-references for each mentioned en-

tity, e.g. see [51]. Therefore, datasets for CR need to contain spans of text

corresponding to entity annotations and a unique identifier for each entity

mentioned to link co-references to a unique entity. WEXEA does contain

additional entity annotations and unique identifiers for many annotations (ex-

cept NER tagged annotations without articles attached). For example, the

article entity is in average mentioned over seven times per article in the En-

glish WEXEA corpora (see Table 3.5 and 3.6), which corresponds to one entity

cluster, which can be used for CR model training.

Relation Extraction

Many relations and corresponding entity pairs can be extracted from DBpe-

dia43. These pairs of entities can be found in Wikipedia and WEXEA corpora,

and datasets for RE based on Distant Supervision can then be created. Table

3.9 shows the amount of data (sentences), which can be extracted from these

corpora, i.e. sentences that contain annotations of entities, which are linked

with a certain relation in DBpedia. This is done for all relations for which at

least 100 sentences each can be extracted44. Using WEXEA, many more rela-

tions, sentences and unique pairs of entities per relation can be found, when

compared to Wikipedia. When a large number of sentences can be extracted

for a low number of unique pairs, an RE model may memorize relations for

certain pairs rather than recognizing relations in text. WEXEA is able to

extract a more significant number of unique pairs than Wikipedia contains.

In the following, we show the sentence distribution of each dataset, one

43It is important to know that DBpedia is based on Wikipedia, i.e. DBpedia mainly
contains information from Wikipedia infoboxes. Therefore, each entity in DBpedia con-
tains a direct link to its Wikipedia article name, which can be used to link entities in
Wikipedia/WEXEA articles to their corresponding DBpedia entity. Since relations in DB-
pedia have a subject and an object, pairs of entities, which are linked in DBpedia, are of
interest here.

44This was mainly done to avoid obscure relations in DBpedia. In addition, datasets
for RE created with Distant Supervision are typically more noisy than manually annotated
datasets as described in Chapter 7. Therefore, small datasets with less than 100 sentences
per relation do not seem to be useful.

47

Language English German
Type Wikipedia WEXEA Wikipedia WEXEA
Relations 1,458 2,322 616 928
Sentences (total) 6,3sec23,758 20,970,686 1,702,887 5,399,588
Unique pairs (avg) 1,017 1,540 709 1,935
Sentences (avg) 4,337 9,031 2,764 5,819

Language French Spanish
Type Wikipedia WEXEA Wikipedia WEXEA
Relations 746 1,048 640 893
Sentences (total) 3,392,807 6,577,523 1,862,071 4,689,909
Unique pairs (avg) 971 1,289 651 1112
Sentences (avg) 4,548 6,276 2,909 5,252

Table 3.9: Statistics for datasets based on Distant Supervision created using
Wikipedia and WEXEA corpora with DBpedia: Number of relations for which
at least 100 sentences can be extracted, extracted sentences total, unique pairs
of entities averaged per relation and average number of sentences per relation.

for each relation, extracted from both corpora for all four languages. More

specifically, if a sentence contains a pair of entities, which are linked with a

certain relation in DBpedia, this sentence can be extracted and added to the

Distant Supervision dataset for this relation.

Figure 3.2 shows the distribution of sentences for the top 50 relations (based

on the number of sentences extracted from WEXEA) for all four Wikipedias

(orange) and WEXEA (blue). Again, many more sentences can be extracted

from WEXEA for each of these relations.

48

(a) English Wikipedia and WEXEA.

(b) German Wikipedia and WEXEA.

Figure 3.2: Number of sentences per relation (top 50) for Wikipedia (orange)
and WEXEA (blue; in addition to Wikipedia).

49

(c) French Wikipedia and WEXEA.

(d) Spanish Wikipedia and WEXEA.

Figure 3.2: Number of sentences per relation (top 50) for Wikipedia (orange)
and WEXEA (blue; in addition to Wikipedia) (cont.).

Figure 3.3 similarly shows the distribution for all relations and number of

sentences (note the log scale on the y-axis in this case).

50

(a) English Wikipedia and WEXEA.

(b) German Wikipedia and WEXEA.

Figure 3.3: Number of sentences per relation (log scale) for Wikipedia (orange)
and WEXEA (blue; in addition to Wikipedia).

51

(c) French Wikipedia and WEXEA.

(d) Spanish Wikipedia and WEXEA.

Figure 3.3: Number of sentences per relation (log scale) for Wikipedia (orange)
and WEXEA (blue; in addition to Wikipedia) (cont.).

3.6 Conclusion

We created WEXEA, in order to annotate additional mentions of named en-

tities in Wikipedia, resulting in a large corpora and many more annotations

52

than the original Wikipedia dump contains. The code is publicly available45

(including the implementation of WiNER [34] and the set of articles used for

evaluation in Section 3.5.5) and can be applied to the latest Wikipedia dump,

which is free to download, by everyone. Furthermore, we showed how this

can be useful for Relation Extraction datasets based on such a corpus, DBpe-

dia and Distant Supervision. Again, many more sentences can be extracted

for more relations than using a Wikipedia-based corpus without additional

annotations.

So far we were only concerned with creating a corpus using the English,

German, French and Spanish versions of Wikipedia. However, Wikipedia is

available for 325 languages and although the number of articles per language

varies significantly, we believe that our approach can be used for other versions

as well in order to create similar corpora, especially since we are only using

minimal language-dependent resources.

Chapter 4, 6 and 7 show how datasets created through WEXEA can be

used to train models and potentially refined.

45https://github.com/mjstrobl/WEXEA

53

https://github.com/mjstrobl/WEXEA

Chapter 4

Flexible Relation Extraction
Data Annotation

In order to train accurate models for many NLP tasks, such as Named Entity

Recognition (NER), Entity Linking (EL), Co-reference Resolution (CR) or

Relation Extraction (RE), sufficient and properly labeled data is required.

Adequately labeled data is difficult to obtain and annotating such data is

a tricky undertaking and, typically, either efficiency or effectiveness has to

be sacrificed. Therefore, this chapter presents our tool for Flexible Relation

Extraction Data Annotation (FREDA) to manually annotate data as quickly

and accurately as possible, mainly shown for the task of RE, as it is a more

complex task to annotate data for, at least compared to ER and CR.

4.1 Introduction

The main goal for the task of RE is to recognize relations, which are expressed

between two entities mentioned in the same sentence or document. At present,

this is usually achieved by a model based on neural networks, which is trained

on, ideally, large amounts of labeled data. However, there are very few publicly

available labeled datasets. When available, these are usually limited to specific

relations, and often lack the relations that one is interested in. Therefore,

depending on the application, the creation of new datasets may be necessary.

For other tasks, such as NER, similar issues can arise. The most com-

monly used dataset for NER is the CoNLL 2003 dataset [72] from newswire

54

text data, annotated for the classes Person, Location, Organization, Miscel-

laneous1. However, other datasets may use a different set of entity classes,

e.g. the ACE 2005 dataset2 [41] for the types Person, Organization, Loca-

tion, Facility, Weapon, Vehicle and Geo-Political Entity. In addition, there

may be a mismatch between the type of text used for training versus testing,

e.g. newswire and social media text. This could lead to decreasing model

performance, as can be seen in [34].

Even though manual data creation may be time-consuming, the use of

crowd-sourcing may lower the time overall needed to produce large amounts

of required data. The TAC Relation Extraction Dataset (TACRED) [97] was

created using Mechanical Turk crowd annotation, although recently Alt et al.

[3] gave some insights on TACRED, suggesting that more than 50% of the

challenging examples, i.e. trained models make mistakes on, may need to be

relabeled. On the other hand, carefully manually annotated datasets for RE

with multiple annotators (which can lower the chance of incorrect annotations

ending up in the dataset), such as KnowledgeNet [60], are extremely time-

consuming to create and therefore often not feasible.

In this chapter, we propose a tool that makes it possible to create high-

quality datasets for various NLP tasks with a moderate amount of time and

effort. An evaluation is provided in Section 4.4 comparing annotation times

with our tool and a baseline.

4.2 Related Work

There is a variety of web-based annotation tools available, open-source tools,

such as BRAT [81], as well as proprietary ones, such as Prodigy3, which can

be used for RE data annotation, among a variety of other NLP tasks.

We used BRAT as open-source example of such tools and Figure 4.1 shows

its annotation interface. A span of text can be selected with a computer

1TheMiscellaneous class contains names which do not fit one of the other classes, without
further specification.

2https://catalog.ldc.upenn.edu/LDC2006T06
3https://prodi.gy/

55

https://catalog.ldc.upenn.edu/LDC2006T06
https://prodi.gy/

F
ig

u
re

4.
1:

A
n

n
ot

at
io

n
in

te
rf

ac
e

of
B

R
A

T
,

in
cl

u
d

in
g

an
n

ot
at

io
n

s
fo

r
th

e
sp
ou

se
-r

el
at

io
n

.

56

F
ig

u
re

4.
2:

P
op

u
p

fo
r

re
la

ti
on

an
n

ot
at

io
n

s
w

it
h

B
R

A
T

,
si

m
il

ar
fo

r
en

ti
ty

ty
p

e
se

le
ct

io
n

.

57

mouse, triggering a popup which is used to select a type of entity (mainly

for NER annotations) and adding the entity annotation to the interface. In

addition, entities can be connected through dragging an arrow from one entity

to another to add a directed relation, again, through triggering a popup (see

Figure 4.2) where the relation can be selected. In order to add co-references,

this functionality can also be used to add these as aliases. While it is possible

for a second or third annotator to double-check previous annotations, there

may be a bias (the subsequent annotator can either see no or all previous

annotations). Therefore, without additional data processing, an independent

or partially independent annotation scheme for multiple annotators cannot

be realized with BRAT. Apart from such annotations, BRAT maintains a

collection of datasets and their annotations and multiple users can be added.

However, data annotation with BRAT turns out to be a tedious and time-

consuming task, similar to what was reported in [60], where annotations of a

single sentence took 3.9 minutes in average4.

4.3 Flexible Relation Extraction Data Anno-

tation

In this section we describe the general architecture of our annotation tool for

Flexible Relation Extraction Data Annotation (FREDA).

4.3.1 General Architecture

Figure 4.3 shows the architecture of FREDA, involving the following subsys-

tems:

1. WEXEA as data source: Pre-annotated data, even if not perfect, can

reduce the workload per annotated sentence significantly. Therefore, our

approach utilizes data from WEXEA, which contains large amounts of

4This includes two or three annotators (third only in case the previous two disagree),
although an EL step was included, which accounted for 28% of the time.

58

text from multiple languages for a wide variety of topics and entities and

can be used for various annotation tasks.

2. Pre-processing: Depending on the task at hand, the data needs to be

preprocessed. This involves a filtering step, e.g. for sentences to be

annotated for a specific relation for RE. In addition, sentences need to

be prepared for display.

3. The database contains all data subject to annotation and keeps track of

the annotation progress.

4. The server serves data to the user and, therefore, communicates with

the database and the user application. Also it ensures that multiple an-

notators can work on the same dataset and a third annotator is asked

whenever the previous two disagreed. The measurement of “disagree-

ment” has to be implemented for each task individually.

5. The tablet application used for the actual data annotation task.

Figure 4.3: General architecture.

59

4.3.2 WEXEA as Data Source

A major part of various NLP data annotation tasks is selecting entities and

their co-references. Therefore, in the ideal case, a corpus should be used

with entities already labeled. For example, a corpus for NER, such as the

CONLL 2003 dataset [72], could be used. However, manually labeled corpora

are usually limited in size and variety of topics and types of text, therefore it

is unlikely that they contain enough data that could be “interesting” or even

relevant for a specific task. To avoid this issue of potentially running out of

text data, we are using sentences from WEXEA (see Chapter 3), which are

semi-automatically pre-annotated and WEXEA contains millions of processed

Wikipedia articles for four languages: English, German, French and Spanish.

Since WEXEA is sentence-based, only a small amount of data is displayed to

the user at once since the goal is to transform the tedious tasks of annotating

large amounts of data into a better flowing task, which can be paused and

picked up again without much effort.

4.3.3 Adding Data from WEXEA

If all available sentences are considered for annotation for each relation, the

percentage of relevant sentences5 is expected to be very low. This is an issue

since the number of relevant sentences for each relation is presumably very

imbalanced for a corpus without pre-selection, as it is the case for TACRED,

for example. The by far most common relation in this dataset is per:title with

3,862 examples, whereas 37 out of 41 relations have less than 1,000 examples

with 4 relations having even less than 100. This lead to the development of a

more challenging and balanced RE dataset and models trained on TACRED

can be evaluated on it [71]. Therefore, sentence filtering ensures that each

relation has enough relevant examples to make sure a model can be trained

on all relations properly. We are using a similar approach as used by [60]:

• Keywords: We define a set of keywords relevant to each relation, which

5It is somewhat subjective what a relevant sentence is for a specific relation. It could
be a sentence which contains entities of both entity types participating in the relation or a
sentence being somehow related to the relation topic-wise.

60

are used to filter sentences. This is done for each relation separately. We

chose relevant words for each relation including WordNet synonyms [61].

The keywords used by [60] were not reported. We also used keywords

related to entities for specific relations, e.g. company or university.

• Distant Supervision (DS): Since it is difficult to define an exhaustive

set of keywords, a DS approach is used to find sentences not matching

these keywords, but still containing entities, which are known to be re-

lated to each other with a relation of interest. DS is typically used to

add positive examples before training. In our case, we use DS to add

candidate sentences for annotation, i.e. the actual DS annotations are

not presented to the user, it is only used to filter sentences for a specific

relation DS-datasets are available for. We are using DBpedia [6] as KB

and extracted all entity pairs for each relation, which can be found in

DBpedia. Elsahar et al. [26] pointed out that Wikipedia itself often

does not contain entity links, even though a specific entity is mentioned

in a sentence through a pronoun or other co-references. This is due to

the aforementioned Wikipedia guidelines, which ask authors not to link

entities multiple times and not to link an entity the article is about in

the same article. However, WEXEA is supposed to fix this and contains

links to these entities. Depending on the number of distinct entity-pairs,

which can be found in DBpedia, this should lead to a higher number

of extracted sentences compared to using a raw Wikipedia dump, as

described in chapter 3.

DS for a specific relation can only be used if this relation is part of the

KB (DBpedia in our case), which is not the case for all relations we annotated

sentences for. But if it was the case, up to 50% of the relevant sentences are

extracted this way.

4.3.4 Data Annotation

The application for data annotation contains a dataset overview for each task

(corresponding to a single relation for RE) from which a user can select, shown

61

in Figure 4.4. The overall progress is shown for each available dataset. The

columns for Annotator 1/2/3 show the number of sentences annotated by the

user of this device as Annotator 1 (first one to see a sentence), 2 (second one

to double-check whether first annotator was correct) or 3 (in case of disagree-

ment; see below for an explanation of how this is measured in this case). In

addition, the last three columns show the overall progress on each dataset

with Once counting sentences with one or more annotators, Twice counting

sentences with at least two annotators and Full counting sentences with two

(no disagreement) or three annotators (disagreement resolved by third anno-

tator).

Figure 4.5 provides an overview of the annotation interface. The objective

of the tool is to facilitate the annotation task and reduce the cognitive load

for its users. This would lead to collecting annotations of decent quantities

and high quality in a relatively short amount of time.

Given a particular relation, the tool initially provides a sentence with en-

tity annotations highlighted in different colours in the Sentence View. These

initial entity annotations are extracted and loaded by leveraging the WEXEA

dataset. The Entity View contains distinct entity buttons which are unique

labels representing each entity annotated in the Sentence View. Thus, if mul-

tiple different mentions or co-references to the same entity occur in a sentence

(Sentence View), they would all be represented by one entity button in the

Entity View. The colour of that entity button and all corresponding mentions

in the Sentence View would be the same. This would help reduce ambiguity

and facilitate the decision making.

Another practical advantage of the tool consists of reducing the indication

of the subject (SUBJ) and the object (OBJ) entities in the relation to just a

simple press of the corresponding entity buttons in the Entity View. In other

words, it is not necessary to look through every single mention of an entity

and indicate the role. Annotating only the representative entity button in the

Entity View is sufficient.

The Word View contains buttons representing every single token in the

sentence at hand. By using this view, conducting different editing operations

62

F
ig

u
re

4.
4:

O
ve

rv
ie

w
of

av
ai

la
b

le
d

at
as

et
s

fo
r

R
E

d
at

a
an

n
ot

at
io

n
.

63

F
ig

u
re

4.
5:

In
te

rf
ac

e
fo

r
R

E
d

at
a

an
n

ot
at

io
n

.
T

h
e

re
la

ti
on

co
n

si
d

er
ed

h
er

e
is
ed
u
ca
te
d
at

w
it

h
M
ar
ti
n

as
su

b
je

ct
an

d
C
en

te
n
n
ia
l

H
ig
h
S
ch
oo
l

as
ob

je
ct

.
T

h
e

lo
ca

ti
on

s
B
ak
er
sfi
el
d

an
d
C
al
if
or
n
ia

ar
e

n
ot

p
ar

ti
ci

p
at

in
g

in
th

e
re

la
ti

on
,
b

u
t

ca
n

b
e

u
se

d
fo

r
cr

ea
ti

n
g

n
eg

at
iv

e
ex

am
p

le
s.

64

becomes straightforward. For instance, new entities can be easily created

through dragging and dropping one of the word buttons in the Word View

up into the Entity View. Similarly, entities can be removed or fixed (e.g.

adding a missing word) by just dragging and dropping. Web-based tools, e.g.

BRAT[81], require the user to select spans of text using a computer mouse to

create entities, requiring very precise (i.e. slow) moves.

In most sentences, editing operations using FREDA require a very minimal

amount of time. Once done with editing, a user indicates whether the relation

holds or not, i.e. a simple binary decision is made at the end. An annotator

can also remove the sentence from the database (e.g. sentence is broken in

some ways) or ignore it to use it in the context of other relations (e.g., the

sentence looks good, but not relevant for the current relation, but could be for

other relations).

Note that since a sentence may be relevant for multiple relations and po-

tentially also for other tasks such as co-reference resolution, NER, or similar

tasks, we do not instruct annotators to remove already highlighted entities

that are irrelevant to the relation at hand, but still potentially useful for other

relations. Removing them would indeed take additional time and is not nec-

essary. Actually, our models, which are trained on these datasets, are able to

accurately distinguish between subjects, objects, and the rest of the entities

in a sentence, because all entities are considered for training.

For such a complex task it is expected that a single annotator is not able

to be accurate and consistent over hundreds of sentences. Alt et al. [3] show

a detailed analysis of all the mistakes that are possible, especially for crowd-

sourced annotation tasks, where presumably time matters more than accuracy.

Therefore, similar to Mesquita et al. [60], our system relies on at least two

annotators per sentence with a third annotator to break ties if the previous

two disagree in their decision. The second annotator gets to see the entity

annotations from the first annotator (and the third from the second). Note

that only the entity annotations are carried over in this way. Thus, the final

decision as well as indicating the subject and object entities is still every anno-

tator’s independent decision. But carrying over entity annotations saves time

65

for subsequent annotators (also deleted sentences are not shown to annotators

thereafter). Therefore, the time spent for subsequent annotators is likely to be

lower than for the first. More on the datasets we created and models trained

on them for the task of RE in chapter 7.

4.3.5 More Annotation Tasks

The interface for data annotation is very flexible and we adapted it to a few

more common NLP tasks, which is described thereafter.

Named Entity Recognition

NER data annotation can be mainly seen as a subtask of data annotation for

RE, although entity types have to be included. Unlike relations for RE, Named

Entities are very common for text data from all sorts of sources, e.g Wikipedia,

newswire or social media text. Therefore, there is no obvious need to filter

sentences for NER data annotation. Although under certain circumstances,

e.g. an (expected) imbalance of types, sentences can be filtered beforehand.

Figure 4.6 shows the annotation interface for the task of NER. The interface

is similar to the RE annotation interface with some adjustments: (1) Once the

sentence is perfectly annotated, the user has to press the Done-Button (apart

from Remove and ignore), decision making as done for RE is not necessary

here. (2) The main change is the Type View right below the Entity View, which

shows all types the current dataset can be annotated for (each dataset can

include its own type-set). In order to add a type to an entity, the corresponding

entity button can be dragged and dropped on the appropriate type button.

Co-references for each entity can be included as well, similar to the RE

task, even though this may not always be desirable as not all mentions of an

entity can be considered as Named Entities.

Entity Linking

Data annotation for EL largely follows the scheme of the previous two tasks

with finding entities and co-references, although, in addition, the correspond-

ing KB-entity can be selected from a set of candidate entities, if applicable.

66

F
ig

u
re

4.
6:

D
at

a
an

n
ot

at
io

n
fo

r
th

e
ta

sk
of

N
E

R
.

67

As previously mentioned for the NER task, sentence filtering is in general

not necessary for this tasks since entities appear frequently for all kinds of

text types and topics. However, there may be an over-representation of very

popular entities, such as countries and cities, which could lead to the necessity

to filter based on the frequency of all entities (WEXEA contains the actual

Wikipedia entity annotations).

The annotation scheme for EL is mainly the same as for RE, except that,

again, the decision buttons are replaced by a single Done-Button and a dialog

is opened whenever an entity button is pressed, for which at least one candidate

can be found in Wikipedia, as shown in Figure 4.7. If none of the suggested

entities is correct, No Entity can be selected. Each entity in the candidate

dialog has the first 100 characters of its abstract in Wikipedia attached, more

text is usually not necessary and would be overwhelming, and therefore time-

consuming, for the user.

Co-reference Resolution

CR annotation is included in all previously mentioned tasks. However, in order

to simplify the task for users who are solely interested in CR, it is added to

the framework.

Similar to previous tasks, sentence filtering may not be needed. Since the

Sentence View contains a relatively large amount of space, it is possible to

display more than one sentence to capture inter-sentence co-references, which

can be included in this step.

Using the CR interface for CR annotation can speed up the task since no

type or candidate or subject/object selection has to be done. Using a simple

Done-button finishes the current sentence(s) and moves to the next example.

4.4 Evaluation

Data annotation for the aforementioned tasks can be prohibitively time-consuming.

Therefore, approaches for quick dataset construction are essential in order to

be able to easily extend existing datasets with more entity types, relations or

68

F
ig

u
re

4.
7:

C
an

d
id

at
e

se
le

ct
io

n
fo

r
E

L
d

at
a

an
n

ot
at

io
n

.
T

h
e

en
ti

ty
V
ie
tn
am

w
as

se
le

ct
ed

in
th

e
te

x
t

v
ie

w
an

d
al

l
re

la
te

d
en

ti
ti

es
in

W
ik

ip
ed

ia
ar

e
ar

e
sh

ow
n

,
ra

n
ke

d
in

d
es

ce
n

d
in

g
or

d
er

b
y

th
e

n
u

m
b

er
of

h
y
p

er
li

n
k
s

of
th

e
an

ch
or

te
x
t
V
ie
tn
am

to
th

os
e

ar
ti

cl
es

.

69

co-references or create entirely new datasets.

4.4.1 Baseline

We compared FREDA to the open-source tool BRAT [81]. BRAT is a web-

based tool for data annotation for a variety of NLP tasks6:

• NER: Entities of different types can be annotated through selecting spans

of text (types are given to the tool in advance, we use the commonly

used types Person, Location, Organization and Miscellaneous). After

selecting an entity, a window appears in which the type can be selected.

FREDA represents each entity as its own entity button, which can be

typed. There is no need to find co-references for this task and since

WEXEA is able to provide annotations, such as dates, which are not

compatible with this type set, we remove all annotations for both ap-

proaches, i.e. the annotator starts from scratch.

• CR: After annotating entities and their co-references, an alias-relation is

used to connect clusters of co-referent entities, i.e. can be added through

dragging an arrow from one entity to the other. FREDA represents each

entity and their co-references as its own entity button.

• RE: Starting with the task CR. Afterwards, entities can be connected

with specific relations given to the tool (we used the spouse-relation for

comparison; if an entity has multiple co-references, a single one of them

is sufficient to connect with a relation). FREDA asks the user whether

the relation of interest (spouse in this case) is expressed between two

selected entities (subject and object) in the sentence at hand.

.

4.4.2 Comparison

A single annotator labelled 100 sentences from the spouse-relation-dataset (see

Section 4.3.3 for an explanation how this dataset was created). A new dataset

6Only NER, CR and RE are considered here since BRAT is not designed to be used for
EL data annotation.

70

of unseen sentences was used each time. In order to keep the workload as

consistent as possible, each sentence consists of 25 words.

Table 4.1 shows the result of comparing BRAT and FREDA for the tasks

NER, CR and RE. FREDA out-performs BRAT consistently, even though the

difference for NER can be considered as minor. For this task pre-annotated

entities from WEXEA were removed as they often do not correspond to Named

Entities. The more words an entity consists of, the easier it is to add such an

annotation with BRAT, since long text can be simply selected with a mouse,

whereas the user of FREDA has to drag and drop every single word of an entity

to its entity-button. However, the rest of the annotation with FREDA, such

as selecting entity types, seems to counterbalance this disadvantage. For CR

and RE in this evaluation, the user of BRAT needs 62% and 44%, respectively,

more time to annotate these datasets, compared to FREDA.

BRAT FREDA
NER 22.6s 21.9s
CR 14.9s 9.2s
RE 14.8s 10.3s

Table 4.1: Number of seconds (average per sentence) to annotated 100 sen-
tences per task for both approaches.

Criticism may be raised due to the fact that the annotator may have been

biased towards one or the other approach and adjusting annotation speed cor-

respondingly. Therefore, we made videos of the annotations for this evaluation

publicly available7.

4.5 Conclusion

We presented our tool for Flexible Relation Extraction Data Annotation (FREDA)

for a variety of NLP tasks. The interface is simple to use and can also be easily

extended or adjusted, depending on the data annotation task. The evaluation

shows its competitiveness when compared to the open-source tool BRAT. We

7Links can be found here: https://github.com/mjstrobl/FREDA

71

https://github.com/mjstrobl/FREDA

hope that releasing FREDA to the public8 will encourage the community to

quickly create more annotated data for NLP tasks.

For Future Work, it may be possible to include more tasks, such as Word

Sense Disambiguation or the creation of evaluation data for Dialogue Systems.

8https://github.com/mjstrobl/FREDA

72

https://github.com/mjstrobl/FREDA

Chapter 5

A Knowledge Graph Population
System for Conversations

In this chapter we provide a more detailed description of our system for Knowl-

edge Graph Population (KGP) from conversations.

5.1 Introduction

Building a KG from text is often done using a pipeline-based approach, such

as the one proposed by [96]. In our case, the pipeline consists of three parts:

Entity Recognition (ER), Entity Linking (EL) and Relation Extraction (RE):

1. ER: Typically a Named Entity Recognition system (NER) is used (e.g.

see [72] or [49]), which only detects Named Entities (NEs). However,

sometimes noun phrases in general may correspond to entities of interest,

e.g. my sister, which refers to an NE without a specific mention of the

name. Therefore a similar system has to be used that is able to detect

all kinds of entity mentions or at least it has to be flexible enough to be

extended.

2. EL: EL systems are popular in Natural Language Processing (NLP) re-

cently, e.g. see [78] or [48]. Typically these systems link an already

detected entity (through the ER system) to an entity in a KB (e.g.

Wikipedia). However, although entities mentioned in news text, i.e. the

kind of data these systems are usually trained on, can mostly be found

in KBs, this is typically not the case in a conversation. In case one

73

wants to talk about uncle George, current EL systems would link him

to an existing entity, although he does not exist in the KB. Therefore,

the challenge is to decide whether an entity already exists in the KG or

refers to a new entity, which can be added.

3. RE: We argue that the kind of relations we typically find in conversations

are very different from what can be found in RE datasets, e.g. TACRED

[97]. Therefore, we need to define a new set of relations that have to be

detected.

In order to illustrate the task of KGP, consider the following sentence,

which could be part of a conversation:

“John’s sister is married to Christopher and she lives in Edmon-

ton.”

The output of each pipeline part that can be extracted from this sentence is

shown in Figure 5.1. The relationships spouse and sibling require two entities

as subject and object, whereas the name-relation points to a Literal (a string

in this case). Although John’s sister was not explicitly mentioned by a name,

we can still create a node for her and link her to Christopher with the spouse-

relation.

Previous RE systems for dialogues do no explicitly deal with cases like

this where entities are referenced through a relationship, e.g. John’s sister,

without mentioning a name. This results in a low recall due to missing either

the relation between John and his sister or the relation between his sister and

Christopher, e.g. see [93]. Therefore, these nouns phrases should be detected

and added to the KG. In [93], John’s sister would be extracted as an entity,

if she was referenced somewhere else in the conversation, which the authors

consider as cross-sentence relation, even though relationships are still expressed

in a single sentence or utterance.

While ER, EL and RE are popular research topics in the field of NLP, the

combination of all subtasks aiming to create a KG is often neglected and in

74

Figure 5.1: Output of each pipeline part from the example sentence. e1, e2
and e3 correspond to nodes in the graph, arrows denote relations between two
nodes or a node (subject) and a Literal (object). The EL system further adds
(not shown here) all entities to the KG through merging or keeping nodes.
Although not shown here as well, it is also possible to add the gender, as it is
encoded in the schema.org ontology1.

order to test or demonstrate a system, a framework with graphical user inter-

face is necessary, which is typically not available. Therefore, in this chapter,

we describe a system with a graphical user-interface showing a conversation

with a chatbot and the resulting KG. Basic rule-based components for ER,

RE and EL are included, which can be further extended (see Chapter 6 and

7).

The remainder of this chapter is structured as follows. Section 5.2 provides

information about Related Work. The proposed system is described in Section

5.3 with a discussion of the approach used in Section 5.4. The chapter is

concluded in Section 5.5.

1https://schema.org/gender

75

https://schema.org/gender

5.2 Related Work

There are a variety of works related to ours, although they are typically missing

at least one key component.

The CoreNLP toolkit [58] is a popular tool for multiple common NLP tasks

and loosely implements the pipeline described in the Stanford 2016 TAC KBP

submission [96]. While the user-interface of CoreNLP2 consists of visualiza-

tions of all its subtasks, including RE, no KG is created, only entities and

their relations in the current sentence are analyzed and shown, which is not

suitable for KGP since it is not keeping track of extractions and does not

link entities to their corresponding node in the KG. Furthermore, extending

CoreNLP with more relations to detect (RE) or new entity types (NER) is not

straightforward.

Sanh et al. [74] proposed a multi-task learning approach, aiming to detect

entities and relations jointly. A user interface is provided3, which shows the

output of the system for each provided sentence independently, similarly to

CoreNLP. Again, no KG is maintained.

There is also work on dialogues available, e.g. [94], which focuses on the

extraction of relations from dialogues and provides a human-annotated dataset

(DialogRE) for Information Extraction from dialogues. However, even though

baseline models are provided, a user interface is missing and it was only tested

on RE, ignoring ER and EL.

5.3 KGP from Conversations

We are considering a pipelined approach with the following individual sub-

modules:

1. Entity Recognition (ER): The ER module recognizes entity mentions.

2. Entity Linking (EL): Entities found by the ER sub-module can poten-

tially be linked to existing nodes in the KG or a new node is created in

2https://corenlp.run/
3https://huggingface.co/hmtl/

76

https://corenlp.run/
https://huggingface.co/hmtl/

case no match was found.

3. Relation Extraction (RE): A sentence can contain several entities and

the RE module can detect relations expressed between entities, if not

already recognized by the ER module4. Existing datasets (and therefore

resulting models trained on them), such as TACRED, may not always

contain appropriate relations for conversations. Therefore our system

includes a rule-based RE system, which can be easily extended with

models trained on RE dataset, and tested.

5.3.1 Entity Recognition

Commonly used ER approaches do not consider noun phrases, such as my

brother as entities. However, especially in conversations these noun phrases

containing expressions of relations are very common since mentioning only

names of entities is too ambiguous. We propose an approach including rule-

based noun phrase detection as well as NER with the CoreNLP toolkit. In

addition, since the CoreNLP NER may not be flexible enough regarding the

type of models used, a custom NER in order to recognize other types of en-

tities is added5, while still being able to use the rule-based entity detection

of CoreNLP with Tokensregex [16]. Tokensregex is a framework for recogniz-

ing and typing entities based on regular expressions, e.g. entities such as my

sister can be detected this way, if the relation sister or sibling is part of the

pre-defined set of relations to be recognized.

Entities can consist of three parts:

• Named Entities (NE): Names referring to unique entities by name, e.g.

John, Sarah or Christopher, are detected by the NER.

• Personal Pronouns (PRP): Same function in text as NEs, recognized by

CoreNLP’s Part of Speech tagger.

4Some entities itself can contain information about relationships as described in the
remainder of this section.

5This custom NER can be easily used to completely replace the model-based part of the
CoreNLP NER, while still using the regular-expression-based NER.

77

• Entity Mentions (EM): Noun phrases; typically roles of a specific entity

(with or without a name mentioned in text), from the perspective of

another entity, e.g. John’s sister may not be the same as Sarah’s sister.

Therefore, we consider EMs only if they were mentioned as a possessive

property of an NE or PRP. These can be recognized by Tokensregex

using the pre-defined set of relations.

Although EMs can already contain relations, we do not consider these

for the RE module since they are considered to be either subject or object

of a sentence, whereas the RE module aims to find relations expressed in the

sentence between the subject and object, often with multiple words in between.

A custom NER can be used as well. We implemented a regex-based

entity recognizer for the type Food, considering a dictionary compiled from

Wikipedia’s food-related categories. It can be used within CoreNLP.

5.3.2 Entity Linking

Once entities are detected, Entity Graphs (EG) can be created by the EL

system, which in turn can be translated to RDF6 expressions (can be directly

added to the KG). Since these entities usually follow a very specific scheme,

we propose a rule-based approach to break them down into single entities and

their links. Figure 5.2 shows examples of EGs from entities commonly found

in conversations.

The second goal of EL for KGP is to link each entity in the EGs to its

corresponding node in the KG or a new node is created, in case there is no

suitable match. Especially if a lot of personal information is shared in a

conversation, conventional EL systems, such as [78] or [48], are not suitable

since they cannot link out-of-KB-entities, i.e. entities that cannot be found

in the reference Knowledge Base (typically the set of articles in Wikipedia).

We propose a partially rule-based system that finds candidates for entities the

following way:

• NEs: Perfect match with entity names in the KG, or new node.

6https://www.w3.org/RDF/

78

https://www.w3.org/RDF/

(a) my sister : Two
nodes, the relation sister
in between and the pro-
noun attached to the first
node.

(b) John’s sister Sarah:
Two nodes, both with
names attached and the
sister relation in be-
tween.

(c) Christopher : A single
name without any other
relations or pronouns is
translated into a node
and the name attached as
RDF Literal.

Figure 5.2: Examples of detected entities and corresponding EGs.

• PRP: CoreNLP’s CR system is used for linking these pronouns to their

corresponding entity in text.

• EMs: Considering NEs and PRPs are already linked, relations can be

linked through perfect matches as well, e.g. if John’s sister is already

stored in the KG, she can be retrieved and linked if mentioned again,

even though a name is not present.

In case a model-based EL system, which is capable of EL for all entities

(in- as well as out-of-KB), it can be added in order to replace the rule-based

system.

5.3.3 Relation Extraction

This module basically extends the ER module through adding binary rela-

tionships as edges expressed in text between a subject and an object, which

are already detected and linked. We added a rules-based matcher detecting

the most common expressions of each relation. Neural-network-based RE ap-

proaches are often used today and can be added as well. This follows a similar

scheme as already done by Stanford’s TAC-KBP submission [96].

Table 5.1 shows the currently detectable relations and their type signa-

tures. For each relation, a number of synonyms exist in order to be able to

79

detect them through the ER system. In addition, each relation has a set

of Tokensregex as well as Semgrex [14]7 rules attached, detected by the RE

system.

Relation Types
sibling Person ↔ Person
child of Person →Person
relative Person →Person
spouse Person ↔ Person
lives in Person →Location
born in Person →Location
date of birth Person →Date
family doctor Person →Person
likes Person →Food

Table 5.1: Detectable relations and corresponding type signatures.

5.3.4 User Interface

Figure 5.3 shows the user interface for KGP from conversations. On the left,

chat messages are shown, on the right the KG as graph8 and as printed subject-

property-object triples is shown. In order to restart from a previous check-

point, the graph can be stored to a file and reloaded later. Chat messages

from the user are show in green and responses from sub-modules are shown in

red.

5.4 Discussion

The proposed KGP approach is able to extract entities and relations from text

and add corresponding facts to a KG. However, such facts are never corrected

(belief revision) and there is no interaction with the user, which, for example,

could resolve ambiguity. This is discussed hereafter, including the reason for

a the lack of a scientific comparison with existing approaches as baselines.

7Similar to Tokensregex, except that rules can be written for dependency parses.
8Visualizations are re-created dynamically using D3: https://d3js.org/

80

https://d3js.org/

5.4.1 Belief Revision

The task of Belief Revision, e.g. see [31], aims to revise a KB in case it would

otherwise contain inconsistencies. In our case, such inconsistencies could arise

if facts are added to the KG, which contradict existing facts. For example,

the place of residence relation typically exists only once per person, but it

can be updated over time. Other relations, such as parent, do not change

over time, but facts involving this relation could be erroneously added if the

corresponding utterance is incorrect.

This could be partially resolved through considering the latest added fact

as correct and earlier facts as invalid. Depending on the relation, this does not

mean older facts are incorrect, they may still have been correct in the past. A

reasoning system or conversational agent using the resulting KG needs to be

aware of this issue.

5.4.2 Interactivity

The proposed systems is adding facts to a KG. These facts could be ambiguous

or miss interesting information, such as names, or even be incorrect, if the

system made mistakes. An interactive system, which is able to ask the user to

provide certain pieces of information or ask for missing facts or simply clarify

previous extractions, could use the KG to improve completeness and quality

of the extracted entities and relations.

In [20] as well as the STEP project (Schema Tuple Expression Processor)

[62], the goal was to provide an NLI (Natural Language Interface) that allows

the user to use natural language to query a database. This was done in an

interactive fashion in order to be able to ask the user for clarifications through

paraphrasing the questions or asking for specific fields that can be found in

the database.

Even though it is beyond the scope of this work, a Response Generation

system could consider these ideas and potentially do Belief Revision through

asking the casual user for clarifications in order to avoid inconsistencies in the

KG.

81

5.4.3 Missing Baseline Comparison

The main reason for developing this system is the lack of tools to test KGP

approaches as a whole. CoreNLP, for example, is capable of all subtasks of

KGP, but is not able to continuously add facts the the KG, specifically as

it is not able to connect entity mentions over time, add models for RE, or

answer questions based on a KG. Therefore, a scientific comparison is not pos-

sible. However, in order to attempt to clarify its usefulness for KGP, examples

are added to the following chapters, which should also help visualizing and,

therefore, understanding those approaches.

5.4.4 Example

The resulting KG from the piece of a conversation in Figure 1.2a using the

described system can be seen in Figure 5.4. The entity of type Food (“Pan-

cakes”)9 as well as the relations child of cannot be detected yet as rules match-

ing these specific cases are missing.

9Although, the relation likes can actually be detected. It is considered as missing here
as the object of this relation is not detected yet.

82

Figure 5.4: KG extracted from the conversation in Figure 1.2a by the proposed
system. Light grey relations and entities cannot be detected yet.

5.5 Conclusion

We proposed a system for Knowledge Graph Population from Conversations

with baseline approaches for each sub-module for Entity Recognition, En-

tity Linking and Relation Extraction. It can be easily extended with neural-

network-based models and is suitable for testing and demonstrating Infor-

mation Extraction capabilities of newly developed or existing approaches for

conversations. The codebase is publicly available10.

For Future Work, we are planning to add a variety of state-of-the-art mod-

els for each submodule as well as a Response Generation module taking the

Knowledge Graph into account, automatically replying to chat messages con-

sidering the current Knowledge Graph.

10https://github.com/mjstrobl/KGP_from_Conversations

83

https://github.com/mjstrobl/KGP_from_Conversations

F
ig

u
re

5.
3:

K
n

ow
le

d
ge

G
ra

p
h

P
op

u
la

ti
on

u
se

r
in

te
rf

ac
e.

M
es

sa
ge

s
ca

n
b

e
se

n
t

an
d

gr
ap

h
s

ca
n

b
e

st
or

ed
an

d
lo

ad
ed

.

84

Chapter 6

Entity Recognition

We focus on KGP from conversations for elderly people, including the topics

Nutrition and Health. However, common NER models are not able to recognize

related entity types, such as Food and Drugs, due to missing training data.

Even if datasets with annotations for new types would be available, it is not

straightforward to include them in the training procedure. All datasets used

for training need to be exhaustively annotated with all entity types, the model

is supposed to recognize. This chapter describes an approach on how to create

partially annotated datasets for new entity types, semi-automatically, and

investigates training procedures for such datasets.

6.1 Introduction

Named Entity Recognition (NER) is one of the most popular tasks in NLP. The

goal for NER is to classify each token (usually corresponding to a word) in a

sequence of tokens according to a scheme and a set of classes. The BIO scheme

(Beginning, Inside, Outside) is typically used and each entity label starts with

B-<class> (first word) and continues with I-<class> (all subsequent words).

This way multiple entities in a row can be annotated/detected, even if there

is no separator. The set of classes a model can recognize is dependent on the

dataset it is trained on, e.g. Person, Organization, Location and Miscellaneous

for the popular CoNLL 2003 NER dataset [72]. Typically a sequence tagging

model (e.g. [49] or [21]) is used to achieve this task, which takes a sentence as

a sequence of tokens as input and outputs a sequence of classes all at once.

85

In order to train such a model, high-quality manually annotated data is

necessary with each entity in the dataset assigned its correct class. Datasets

with partial annotations, mainly without all entities being annotated, are noisy

and lead to worse model performance. This is due to the fact that entities in

the dataset, which are not annotated as such, are automatically considered as

belonging to the Outside class. Therefore, the model is trained not to recognize

these, even though it should, leading to a model which may be tempted to

ignore a certain number of entities when used for making predictions.

However, partially annotated data is often easier to come by, e.g. through

using hyperlinks from Wikipedia1 as entities. This is especially useful if classes

other than the ones seen in common NER datasets are of interest. Further-

more, intuitively, why should it be necessary to annotate every single entity

in a dataset to make a model learn this task? Humans are perfectly able to

recognize mentions of an entity consistently after having it “classified” once.

Consider the following sentence with partial links for animals from Wikipedia2:

”Stauffer’s animal crackers include bear, bison, camel, cow, cat,

donkey, elephant, hippopotamus, horse, lion, mountain goat,

rhinoceros, and tiger.”

This sentence originally contains four links to animals, while the other nine

animals are not linked. Wikipedia often contains partially annotated sentences

due to a Wikipedia policy discouraging editors either from linking the same

article more than once or linking popular articles all together since they would

not provide any new information to the reader. However, if the goal is to train

a model, which is capable of recognizing the class Animal, being able to use

such data without manual annotations would significantly simplify the task.

Therefore, the work presented in this chapter aims to describe how it is pos-

sible to train commonly used models for NER on partially annotated datasets

for new classes, without a significant manual effort for data annotation.

These are our main contributions:

1https://www.wikipedia.org/
2https://en.wikipedia.org/wiki/Animal_cracker

86

https://www.wikipedia.org/
https://en.wikipedia.org/wiki/Animal_cracker

• Describing a procedure on how we can create partially annotated datasets

for new classes derived from Wikipedia categories semi-automatically.

• Providing and comparing training strategies for NER models on partially

annotated datasets.

• Releasing two manually annotated dataset of 500 sentences each for the

classes Food and Drugs in order to test how generalizable our data ex-

traction techniques are.

The remainder of this chapter is outlined as follows: Section 6.2 shows

some related work on how the problem of training models on partially an-

notated datasets has been approached before. We propose our method for

data extraction from Wikipedia and model training strategies in Section 6.3.

The experimental evaluation can be found in Section 6.4 with a conclusion in

Section 6.5.

6.2 Related Work

Jie et al. [44] proposed an approach to train a BiLSTM-CRF model on par-

tially annotated datasets. Their iterative approach tried to find the most likely

labelling sequence that is compatible with the existing partial annotation se-

quence, i.e. the model is supposed to learn to assign the highest weight to the

most likely (ideally correct) labelling sequence.

The CoNLL 2003 dataset for English was used for the evaluation (in ad-

dition to the CoNLL 2002 dataset for Spanish NER [86]). 50% of the labelled

entities were removed for testing their model, effectively lowering the recall

when trained on this dataset. The best model achieved a 1.4% F1-score re-

duction on CoNLL 2003 (compared to the same model architecture trained

on the complete dataset without any entities removed). Only fully annotated

(yet artificially perturbed) datasets were considered for the evaluation. While

it would be technically possible to use partially annotated datasets with non-

entity annotations3 through ruling out some potential labelling sequences, this

3These are annotations indicating that this is knowingly not an entity, which is possible

87

was not tested.

A different approach was proposed by Mayhew et al. [59] for training

BiLSTM-CRF models on existing datasets for a variety of languages, e.g. the

popular CoNLL 2003 dataset for English NER [72]. They used an iterative

approach in order to learn a weight of 1.0 or 0.0 for each token, depending on

whether it should be included for training, i.e. considered in the loss function,

or not. Whenever a span of tokens representing an entity is considered as

non-entity, the weight should be close to 0.0, and in case of a proper entity

annotation, the weight should be 1.0. The dataset was artificially perturbed to

reduce precision as well as recall, i.e. to lower recall some entity annotations

were removed and to lower precision some random spans of tokens were anno-

tated as entities. Therefore, instead of trying to label the training sequence

correctly, they tried to figure out which tokens are of class Outside with high

confidence (weight = 1.0) and which ones are probably entities (weight = 0.0)

that the model should not use for training.

Their best model still suffered from an F1-score reduction of 5.7% and in

the same experiments the models from [44] had an 8% reduction. Note that

the dataset also contained random spans of tokens added as entities, which

was not tested by [44]. Although it is not known which mistakes can be

attributed to lowering recall or precision in the training dataset. The obvious

drawback of their approach is that false negatives (entities in the dataset

without annotations) are not supposed to be considered for training, effectively

reducing the set of entities the model can be trained on. Only the weights

for each token are adjusted, but not the labels. Furthermore, assuming a

partially annotated dataset contains entities of some class as well as non-

entity annotations of this class, i.e. entities that are known not to belong to

this class (but it may not be known which class they actually belong to), their

model cannot take advantage of this kind of information, it simply tries not

to use these annotations for training.

In addition, both aforementioned model architectures seem to be outdated

for partially annotated datasets derived from Wikipedia, which is described in more detail
in the next section.

88

for today’s standards as models based on the Transformer architecture [88],

specifically the pre-trained BERT model [21], achieve a significantly higher

F1-score than BiLSTM-CRF models when trained on unperturbed datasets,

e.g. see the results on CoNLL 2003 from [21] compared to the popular LSTM-

based approach from [49], which was specifically developed for NER. Also,

both models are not tested on new datasets with new entity classes.

6.3 Method

This section proposes our approach to create partially annotated NER datasets

from Wikipedia for new classes and strategies to train models on these datasets

without sacrificing prediction performance on entities from existing classes.

6.3.1 Data creation

When creating datasets for new classes for NER there are two problems to

solve:

1. Where can we get text data from? Entities of the class of interest maybe

less abundant than common classes, such as Person, Location or Orga-

nization. If simply random sentences, e.g. from the web, are included,

the fraction of useful token spans maybe quite low4.

2. How can we annotate relevant token spans? Manual data annotation is a

time-consuming task, even if done partially, which should be avoided. In

addition, if a token span looks like a relevant entity, does it make sense

to annotate it as well as non-entity for the class of interest? This mainly

depends on whether a model can take advantage of that, i.e. whether

the model can be told not to predict this class. The approach proposed

by [59] would not be able to.

Wikipedia as a whole can be considered as a partially annotated dataset.

Hyperlinks in articles correspond to entities and the hierarchical category sys-

4Mainly those token spans are useful that could potentially be part of the current class
of interest, but are not always, e.g. “Tomato” could refer to the class Food or it could be a
musician: https://en.wikipedia.org/wiki/Tomato_(musician)

89

https://en.wikipedia.org/wiki/Tomato_(musician)

tem can be considered as a class hierarchy, which can be used to classify

entities. Each article can have several categories attached by editors, although

not all of them refer to a class in an NER-sense. For example, the article

“Salt”5 has the following categories attached: “Edible Salt”, “Food additives”,

“Sodium minerals” and “Objects believed to protect from evil”. In case the

class of interest is “Food”, we can consider articles in the first two categories

as relevant, whereas the latter two categories do not necessarily refer to food-

related articles. Therefore, we only need to know which categories are relevant

for this class in order to extract a set of articles and sentences they are linked

to create a partially annotated dataset.

Algorithm 1 outlines a simple procedure to extract categories and articles

from the Wikipedia category hierarchy using Breadth-first-search. We start

at a base-category, e.g. “Category:Food and Drink”6 for the class Food. At

each iteration of the loop in line 3 a category and 10 articles in this category

(if available) are presented to the user and they have to decide whether to

keep the category (and potentially the articles as well7). If it is kept, all sub-

categories (if available) are added to the queue. Ultimately, all categories the

user wants to keep including all articles in these categories (if not explicitly

excluded) are considered for the class of interest and text from Wikipedia can

be extracted.

These categories were added by the editors of Wikipedia and are often

redundant, therefore it may be necessary to restart the procedure to avoid

adding too many categories. However, in our experience it seems to be possible

to finish it within 1 to 2 hours, at least for our test classes.

Since the training corpus for the new class C should be somewhat difficult

for a model to be trained on, it is also necessary to consider articles, which

share aliases with articles in C (many entity mentions can refer to entities

of different types). This can be done with an alias dictionary derived from

Wikipedia hyperlinks. We used the parser from WEXEA including its alias

5https://en.wikipedia.org/wiki/Salt
6https://en.wikipedia.org/wiki/Category:Food_and_drink
7Sometimes intermediate categories, the user wants to keep, contain uninteresting articles

in which case these articles can be ignored.

90

https://en.wikipedia.org/wiki/Salt
https://en.wikipedia.org/wiki/Category:Food_and_drink

Algorithm 1 Extract articles and sub-categories

Input Wikipedia type hierarchy.
Output Partial hierarchy corresponding to entity class of interest.

1: procedure Bfs(catstart)
2: queue = [catstart]
3: while queue not empty do
4: catcurrent = queue.pop(0)
5: print catcurrent and 10 articles
6: inputuser = input()
7: if inputuser =′ y′ or inputusern =′ s′ then
8: for catsub in catcurrent do
9: queue.append(catsub)
10: if inputuser =′ y′ then
11: Keep all articles in catcurrent

dictionary in order to extract sentences from Wikipedia, which contain hy-

perlinks of articles in C (annotated as entities of class C) or hyperlinks of

other articles that share aliases with those in C (annotated as non-entities).

This will result in a partially annotated corpus of entities and non-entities of

class C, i.e. a set of sentences can be extracted from Wikipedia that contain

relevant entities identified through their hyperlinks.

In addition, the alias dictionary is used to annotate potential entities with

an unknown type since, as we pointed out, not all entities are annotated in

Wikipedia. Depending on the model, these entities would be excluded from

training since the type is unknown. This is applied to all datasets used for

training, e.g. CoNLL 2003 may contain entities of type Food, which can be

found and potentially excluded this way. And since an NER model should

be trained on this kind of dataset as well as other datasets, such as CoNLL

2003, the CoreNLP NER [58] is used to find all other entities of type Person,

Location, Organization and Miscellaneous. These additional entities are also

considered as non-entities, although since they are not gold-standard entities,

we do not use their types otherwise for training, i.e. if a Location was found

this way, the model is only trained not to recognize it as one of the new classes

(if applicable), but it is not trained to recognize it as Location.

91

6.3.2 Model training strategies

When partially annotated data is introduced, the main goals for model training

are:

1. Classification accuracy for entities of existing classes should not suffer

from the introduction of new data: We still rely on the CoNLL 2003

dataset for NER with classes Person, Location, Organization and Mis-

cellaneous. Entities of these classes will very likely appear in the new

datasets, but it is unknown where they are mentioned. A sequence tag-

ger used for NER considers all tokens outside of the spans of entities

as token of class Outside. Therefore, these unlabeled mentions could

mislead the classifier if trained on, leading to a decreased classification

accuracy for existing classes.

2. Similarly, a new entity class is introduced through partially annotated

data and predictions by a model trained on such data should still be

of high quality: A common multi-label single-class classifier, as used for

NER in [21] or [49], needs a label for each token. But in some cases

such a label can either not be provided at all or it contains only partial

information about the class, i.e. that it is not part of a specific class, but

the class membership is unknown otherwise (a non-entity for a certain

class). If in doubt, the Outside class could be used here, leading to the

aforementioned problem, or the tokens within the span of these entities

should be excluded from training. But since this should be valuable

information for the classifier, a model, that can take advantage of these

mentions, is desirable.

Figure 6.1 shows examples of sentences, which could occur in a partially

annotated dataset for NER.

In the following, we are proposing multiple strategies for NER with par-

tially annotated data with an evaluation in Section 6.4 showing how well they

meet these goals. The BIO scheme was used in all models to encode entity

spans.

92

(a) A partially annotated dataset for the class Food may not contain annotations
for other classes, such as Location. When trained on such data, a model may not
be able to recognize, for example, entities of type Location appropriately.

(b) Partially annotated datasets derived from Wikipedia can contain information
about certain entities and a class they are not part of, e.g. not Food in this case.

Figure 6.1: Examples of sentences and their annotation, which can occur
in a partially annotated dataset for NER and new classes, extracted from
Wikipedia.

Ordinary sequence tagger

The model described here is used as a starting point for all subsequent models.

We are using the NER model proposed in [21], which was published with the

ubiquitous BERT model and shown in Figure 6.2. An output layer with a

softmax activation is used for token classification. The Categorical Cross-

Entropy is used as loss function:

J1(Θ) = − 1

N

N∑︂
n=1

M∑︂
i=1

y
(n)
i log ŷ

(n)
i (6.1)

with N as the number of tokens, M the number of classes, y
(n)
i = 1 if token

n belongs to class i, 0 otherwise, and ŷ
(n)
i the predicted probability for token n

and class i. It is straightforward that this loss function is not capable of taking

advantage of non-entities as well as entities of unknown type in the training

dataset. Therefore, these entities are considered to belong to the Outside class

for this model, which is denoted as Softmax -model.

93

Figure 6.2: NER with BERT. Each token is embedded with the BERT model,
which is used as input for the final classification layer.

Sequence tagger ignoring entities

If a span of tokens was annotated as non-entity or an entity of unknown

type, it is probably detrimental for the model to simply classify it as Outside.

Therefore, through adjusting the loss function to ignore these tokens when

training, we do not harm the model. This can be done with the following loss:

J2(Θ) = − 1

N

N∑︂
n=1

w(n)

M∑︂
i=1

y
(n)
i log ŷ

(n)
i (6.2)

A weight w is added for each token with w = 0 for non-entity tokens and

tokens of unknown type, the model should not be trained on, and w = 1 for

all other tokens. This model is denoted as Softmax (weighted).

Sequence tagger trained on non-entities

So far the problem of taking advantage of the fact that some spans of tokens

are known to be entities not belonging to the new class C, but unknown

which is the true class, has not been solved yet. In order to do so, our model

can be slightly adapted through using a multi-class multi-label approach with

a sigmoid activation for each class in the output layer. The following loss

94

function based on binary cross-entropy can be used here:

J3(Θ) = − 1

N

N∑︂
n=1

M∑︂
i=1

w
(n)
i (y

(n)
i log ŷ

(n)
i + (1 − y

(n)
i) log(1 − ŷ

(n)
i)) (6.3)

Now the model is able to specifically learn that an entity is not part of a

particular class i, i.e. w
(n)
i = 1 and y

(n)
i = 0 for a token t(n) known not to

belong to class i. This model is denoted as Sigmoid (weighted) and is able to

take advantage of all available information in the partially annotated datasets.

While this would be out-of-scope for this chapter, such a model can also

be used for assigning multiple labels to a single entity, in case of overlapping

entity classes, or detecting nested entities8.

6.4 Evaluation

In this Section, we provide an evaluation of all three training strategies. This

includes details about the datasets we created from Wikipedia semi-automatically.

6.4.1 Datasets derived from Wikipedia

We created two datasets, for the classes Food and Drugs, referring to the

Wikipedia categories “Food and Drink”9 and “Drugs”10, respectively. Ta-

ble 6.1 shows statistics about these datasets. Positive Entities11 refer to the

number of entities of the corresponding new class, detected through matching

the set of class-related articles and hyperlinks in Wikipedia. Non-Entities12

denote entities that are linked to other articles in Wikipedia. Excluded En-

tities13 are entities that could potentially refer to an entity of the type of

interest, e.g. through matching an alias of a corresponding article, but a hy-

perlink is missing. Entities correspond to the number of entities, i.e. distinct

8At least if the nested entity is of a different type than the entity containing it, otherwise
the annotation could be ambiguous.

9https://en.wikipedia.org/wiki/Category:Food_and_drink
10https://en.wikipedia.org/wiki/Category:Drugs
11All three models can be trained on these.
12Only Sigmoid (weighted) can properly use these, excluded from training for Softmax

(weighted), considered as Outside for the Softmax model.
13Excluded from training for the weighted models, Outside for the Softmax model.

95

https://en.wikipedia.org/wiki/Category:Food_and_drink
https://en.wikipedia.org/wiki/Category:Drugs

Wikipedia articles, for each type and Sentence to the number of sentences in

each dataset.

Entity Type Pos. Entities Non-Entities Excl. Mentions Entities Sentences
Food 246,292 139,825 293,926 17,164 283,635
Drugs 93,439 16,772 65,350 27,863 82,498

Table 6.1: Statistics for datasets derived from Wikipedia for the types Food
and Drugs.

It is worth mentioning that it seems like Wikipedia knows many more

drugs than food items (see column Entities), but still, the food-related dataset

contains many more sentences (see column Sentences). However, this is not

necessarily an issue for model training, as we show in the remainder of this

section.

Some of the sentences were left out for manual annotation, resulting in

datasets with 280,000 and 80,000 sentences for Food and Drugs, respectively.

500 of each of these sets of sentences were manually annotated by an annotator

familiar with the task. These datasets are referred to as Food and Drugs gold

in the following.

6.4.2 Model parameters

We trained all models with the following settings:

• Batch size: 32

• Optimizer: Adam [46] with lr = 5e−5 and ε = 1e−8 without weight

decay.

• 1-10 epochs, model with best F1-score on the dev dataset was selected.

• Train-dev-test split: 80%-10%-10% with corresponding Wikipedia and

CoNLL datasets merged and shuffled.14

14Since the CoNLL datasets could potentially contain mentions of Food and Drugs, the
alias dictionary for each dataset was used to exclude those from training for the weighted
models.

96

The CoNLL 2003 NER dataset is split into three parts: Train, Test A (dev)

and Test B (test). While Train and Test A are similar, i.e. they were extracted

from news data from the same years, Test B was extracted from news articles

from different years resulting in a more challenging dataset. We simply added

our train, dev and test data to the appropriate CoNLL datasets.

6.4.3 Baselines

We compare our approaches to the following baselines:

• Mayhew et al. [59]: BiLSTM-CRF model architecture for partially an-

notated datasets (similar to Jie et al. [44], although performing better),

focusing on learning weights for each token. High weights indicate a

high confidence that such tokens can be learned from using the known

annotation, low weights indicate that such tokens should be ignored in

the loss of the model.

• Dictionary : We collected a dictionary of Wikipedia articles for each

dataset (see Table 6.1 for the sizes), which can be used to detect entities

of these classes through exact string matching.

Due to long training times for Mayhew et al., we had to reduce the amount

of words from the new datasets used for the evaluation to 1,000,000 tokens

from each dataset (in addition to CoNLL 2003 data). The resulting datasets

represent ≈11% and ≈40% of the available words for the Food and Drugs

datasets, respectively. Results for our models trained on the full datasets can

be found in [85].

6.4.4 CoNLL + Wikipedia

The overall task for such a model is to learn to fully annotate a dataset with all

available entity types, i.e. Person, Location, Organization and Miscellaneous

from CoNLL and Food or Drugs from our new datasets15. However, there are

15There are two separate evaluations for CoNLL and Food or Drugs as the latter types are
based on partially annotated datasets and we found it more interesting to distinguish here
as there could be difference between those two datasets, which may be missed if combined.

97

no fully annotated datasets, fulfilling these requirements, available. Therefore,

the evaluation of trained models is done separately, for CoNLL as well as for

the partially annotated and manually annotated datasets for Food and Drugs,

even though we trained two models for CoNLL types plus Food or Drugs.

Table 6.2 shows results (Precision, Recall and F1-score) of the trained

models when tested on all available datasets. The results for CoNLL test A/B

can be seen as a sanity check whether the newly added data is too noisy and the

output layer and loss function may or may not be able to compensate for this.

In order to compare, Softmax (no food) and Mayhew et al. (no food) denote

models, which were trained on CoNLL only, without any new Wikipedia-based

datasets and entity classes16.

Dataset CoNLL test A CoNLL test B
Model P R F1 P R F1
Softmax (no food) 0.95 0.96 0.95 0.90 0.92 0.91
Mayhew et al. (no food) – – – – – 0.90
Softmax 0.94 0.92 0.93 0.90 0.89 0.90
Softmax (weighted) 0.95 0.94 0.95 0.91 0.92 0.91
Sigmoid (weighted) 0.94 0.94 0.94 0.89 0.90 0.90
Mayhew et al. 0.89 0.92 0.91 0.83 0.89 0.86
Dataset Food test A Food test B Food gold
Model P R F1 P R F1 P R F1
Softmax 0.69 0.72 0.70 0.68 0.73 0.70 0.71 0.42 0.53
Softmax (weighted) 0.85 0.88 0.86 0.84 0.88 0.86 0.53 0.67 0.59
Sigmoid (weighted) 0.84 0.85 0.84 0.82 0.84 0.83 0.66 0.62 0.64
Mayhew et al. 0.25 0.85 0.39 0.25 0.86 0.39 0.44 0.52 0.48
Dictionary – – – – – – 0.28 0.51 0.36

Table 6.2: Results for CoNLL 2003 mixed with the Wikipedia dataset for Food.
Best F1-score for each dataset in bold.

All three approaches (Softmax, Softmax (weighted) and Sigmoid (weighted))

are able to produce reasonable results for CoNLL. Our experience was that

the Wikipedia dataset for Food did not contain a lot of entities of class Per-

son, Location, Organization or Miscellaneous. Therefore, it is not surprising

that our Wikipedia-based Food dataset did not add too much noise harming

the ability of the model to still recognize the original entity classes. Whereas

16In [59], only the F1-score for the CoNLL test B dataset was provided.

98

Mayhew et al. was not able to keep up with the original result without new

data (0.90 vs. 0.86 F1-score). This approach assumes a certain amount of

entities of the original types in the whole dataset used for training (CoNLL

2003 and Food data), inevitably leading to misclassifications, hence the lower

precision.

Results for Food test A/B show the ability of the model to adapt to pre-

sumably noisy data added. The weighted approaches clearly outperform the

Softmax approach. This shows the necessity of at least excluding mentions that

are known to be ambiguous from training. The Sigmoid (weighted) approach

does not seem to add any benefit in this setting. Mayhew et al. performs very

poorly on both datasets. While it is able to recognize many Food entities,

leading to a high recall, it recognizes many entities as Food incorrectly, i.e.

leading to a low precision.

The results on the Food gold dataset are slightly more diverse. Sigmoid

(weighted) approach returned the best results with almost balanced Precision

and Recall. Both, Softmax and Softmax(weighted) result in a much larger

gap. The dictionary-based baseline approach performs poorly. Mayhew et al.

is able to outperform this baseline, while still achieving a significantly worse

classification result than the weighted approaches.

Softmax on the one hand produces a high Precision and low Recall, i.e. it

is capable of recognizing very few entities relatively consistently. It is possible

that these entities are also often linked in Wikipedia, while others are not or at

least not very often, explaining why the results on Food test A/B do not show

this phenomenon. In addition, it seems like this model pays more attention to

the surface form of the mention, mainly recognizing entities it has seen before

and not necessarily considering the context.

Softmax (weighted) on the other hand produces a high Recall and low

Precision. This indicates that this model learned to recognize Food entities,

but since it was not trained to not recognize certain mentions that could be

Food items as well, but are for sure not (either they are linked to non-Food

Wikipedia articles or they are tagged by the CoreNLP NER), it never learned

to appropriately label ambiguous spans of text. This is not an issue for Food

99

test A/B, presumably since (as previously mentioned), certain Food entities are

more consistently linked through hyperlinks in Wikipedia than others, while

these other entities are annotated in the Food gold dataset.

Table 6.3 shows results for all models when trained on CoNLL 2003 and

the partially annotated dataset for the class Drugs. Overall, the results look

similar to Table 6.2 with similar conclusions. Test results on CoNLL test A/B

are very close to the results of the model without new data added, achieving

the goal of not harming the prediction quality for those classes. Mayhew et al.

performs slightly better than previously, when Food data is added.

For Drugs test A/B, again, the weighted approaches adapt a lot better

to the new class than the Softmax approach. While still performing poorly,

Mayhew et al. is able to narrow the gap to these approaches slightly.

However, the distinction between Softmax (weighted) and Sigmoid (weighted)

is less clear for the dataset Drugs gold. The latter approach has, again, a more

balanced Precision and Recall, while the final F1-score is the same. We assume

that drug names in general are less ambiguous and therefore less non-entities

are found (in fact only ≈10% of all found entities from Wikipedia in the Drugs-

dataset are non-entities, compared to ≈20% for the Food -dataset). In addition,

we noticed that, while manually annotating sentences for the dataset Drugs

gold, this dataset is less noisy than the Food dataset. The Softmax model

is even able to outperform the other approaches at least on the Drugs gold

dataset, while still under-performing on Drugs test A/B. Again, Mayhew et

al. is able to narrow the gap and achieving only a slightly worse result, while

having a large gap between precision and recall.

6.4.5 Example

The proposed system is able to detect entities of the types Food and Drugs.

In addition to what has been extracted by the system described in Chapter 5,

we can now detect such entities and extract ”Pancakes“ from the conversation

in Figure 1.2a, which can be seen in Figure 6.3.

100

Dataset CoNLL test A CoNLL test B
Model P R F1 P R F1
Softmax (no drugs) 0.95 0.96 0.95 0.90 0.92 0.91
Mayhew et al. – – – – – 0.90
Softmax 0.95 0.94 0.95 0.90 0.91 0.90
Softmax (weighted) 0.95 0.95 0.95 0.91 0.92 0.91
Sigmoid (weighted) 0.94 0.94 0.94 0.89 0.91 0.90
Mayhew et al. 0.92 0.91 0.92 0.86 0.89 0.87
Dataset Drugs test A Drugs test B Drugs gold
Model P R F1 P R F1 P R F1
Softmax 0.84 0.88 0.86 0.85 0.88 0.87 0.73 0.63 0.68
Softmax (weighted) 0.93 0.95 0.94 0.93 0.96 0.94 0.59 0.80 0.68
Sigmoid (weighted) 0.93 0.94 0.93 0.93 0.93 0.93 0.62 0.74 0.67
Mayhew et al. 0.42 0.94 0.58 0.41 0.94 0.57 0.50 0.88 0.64
Dictionary – – – – – – 0.28 0.44 0.34

Table 6.3: Results for CoNLL 2003 mixed with the Wikipedia dataset for
Drugs. Best F1-score for each dataset in bold.

Figure 6.3: KG extracted from the conversation in Figure 1.2a by the proposed
systems. The entity ”Pancakes“ is newly extracted. Light grey relations can-
not be detected yet.

101

6.5 Conclusion

We proposed an approach to extract partially annotated datasets for Named

Entity Recognition semi-automatically from Wikipedia. In addition, three

model architectures, based on the commonly used BERT model, differing only

in the activation function of the output layer as well as the loss function, were

compared. A state-of-the-art model [59] was used as a baseline in addition to

a simple dictionary-based approach. Two of the tested models, introducing

simple changes to the base model, show promising results when trained on

partially annotated Wikipedia-based data and tested on similar data as well as

on a small amount of manually annotated data for the classes Food and Drugs.

Performance on the CoNLL 2003 NER dataset is not harmed significantly

through adding data for the tested new entity classes. The two baselines

can be outperformed by a very large margin. Datasets and code are publicly

available17.

For future work, it would be worth investigating how to narrow the gap

between test results on semi-automatically and manually annotated data. This

could include a classification approach for Wikipedia articles in order to rule

out articles, which do not fit a certain category very well.

17https://github.com/mjstrobl/NER_for_partially_annotated_data

102

https://github.com/mjstrobl/NER_for_partially_annotated_data

Chapter 7

Relation Extraction

In this chapter we provide more details on how to create datasets for the

task of Relation Extraction (RE) with our Flexible Relation Extraction Data

Annotation (FREDA) framework.

7.1 Introduction

The task of Relation Extraction (RE) is one of the major parts of Knowledge

Base Population (KBP) [43], i.e. the augmentation of an existing Knowledge

Base (KB). The main goal is to recognize relations, which are expressed be-

tween two entities mentioned in the same sentence or document. At present,

this is usually achieved by a model based on neural networks, which is trained

on, ideally, large amounts of labeled data. However, there are very few pub-

licly available labeled datasets. When available, these are usually limited to

specific relations, and often lack the relations that one is interested in.

To illustrate the difficulty of the annotation task for RE, consider the fol-

lowing example1:

“Melinda began dating Microsoft CEO Bill Gates in 1987, after

meeting him at a trade fair in New York.”

Four entities are mentioned (Melinda, Microsoft, Bill Gates with his

co-reference him, and finally New York). If the task is detecting the ceo of -

relation, the fact is explicit in the sentence. However, if the task is detecting

1From Melinda Gates’ Wikipedia article https://en.wikipedia.org/wiki/Melinda_

Gates

103

https://en.wikipedia.org/wiki/Melinda_Gates
https://en.wikipedia.org/wiki/Melinda_Gates

the spouse-relation, one may indicate such relationship between Melinda and

Bill Gates. While this might be true, it is only based on the annotator’s

knowledge and such annotation could improperly mislead a classifier and train

it to perhaps associate “dating” with the spouse-relation.

Another possible annotation error can be illustrated by this example:

“Bill Gates has received an honorary Doctorate from Cambridge

University.”

An annotator confused about the meaning of alma mater could erro-

neously tag the alma mater -relation between Gates and the university while

Bill Gates never attended Cambridge. Although not always done (see TA-

CRED [97]), this problem could be mitigated by using multiple annotators, as

suggested by [3].

This leads to the question, how is it possible to create RE datasets, which:

(1) are of high enough quality and validated; (2) are large enough to train

effective models; (3) can be relatively easily extended with more relations; (4)

can be quick to annotate and construct;

We believe these four conditions are essential for the creation of useful RE

datasets.

Previous work encountered some difficulties to fulfill these conditions. [3]

suggest that generating high quality and validated data (condition (1)) may

not be met through crowd-sourcing or at least not if there are no measures

in place that ensure data quality. Therefore, ideally, multiple annotators per

example are necessary to ensure consistency. In addition, [71] suggested that

all entities in a sentence need to be annotated in order to train models that

generalize properly, which is not always done.

Creating large enough datasets (condition (2)) is not a trivial task and the

required size of labeled datasets is usually unknown in advance. Indeed, label-

ing entities, co-references, and their relations to each other, even in a single

sentence, can be complicated, depending on the relation in question, as well

as time-consuming [60]. Moreover, existing datasets often contain a predeter-

mined rigid set of common annotated relations like located in, founded and

104

spouse. Therefore, an easily extendable and flexible framework (condition (3))

is practical to gather data for new specific or uncommon relations. Enabling a

quick construction (condition (4)) is not about the haste in annotation, which

in turn could lead to errors, but more about the ease of annotation to avoid a

repetitious tedious task. This ease of annotation is conducive to the collection

of larger datasets (condition (2)).

We provide a dataset with 10,022 sentences annotated for 19 relations (15

used by [60] and 4 new relations) with at least two annotators per sentence

(third annotator for tie-breaking in case the first two disagree). Our FREDA

framework was used for data annotation, as described in Chapter 4. Models

trained on these sentences and their labels show a significant performance

gain in F1 scores than previously reported results on common RE datasets,

demonstrating that it is possible to obtain significantly better results when

the annotations are of high quality.

The remainder of this chapter is structured as follows: Section 7.2 presents

related work on RE datasets and their construction. Section 7.3 delineates

the model architecture used for training models for RE on data created with

our FREDA framework. Section 7.4 details the evaluation procedure with our

conclusions in Section 7.6.

7.2 Related Work

The TAC Relation Extraction Dataset (TACRED) [97] is a large dataset which

used Mechanical Turk crowd annotation with 41 relations and 106,264 exam-

ples. However, each example was only annotated by a single annotator and,

as pointed out by [3], there is a large number of labeling errors misleading

trained models. Although TACRED is still a popular dataset and widely

used, e.g. by [45] or [4], presumably since previous semi-automatic labelling

approaches, such as text annotations with Distant Supervision (see [70]), i.e.

aligning sentences with facts from KBs only through matching entities, are

even more error-prone. It seems to be important to double check annotations

with more annotators, even though less text can be annotated that way in a

105

specific time-frame.

In addition, [71] investigated the heuristics that a model trained on TA-

CRED may learn to score high on the test set without solving the underlying

problem: (1) Only 17.2% of the sentences in TACRED have more than a sin-

gle pair of entities annotated. Therefore, in most sentences a model will only

encounter a single pair of entities, for which it is asked to predict a relation.

Instead of predicting a relation for this pair, it may rather learn to predict

whether a sentence expresses a certain relation, ignoring the potential subject

and object. This would lead to a high recall, but may also result in many

false positives, leading to a low precision when tested. (2) A classifier may

predict a relation solely based on whether the types of entities in that relation

are present in a sentence, especially for relations, which have a unique entity-

type-pair, such as per:religion with Person as subject and Religion as object.

The authors did a manual investigation of this relation with models trained

on TACRED, often leading to false positives, if entities of type Person and

Religion were present in sentences from Wikipedia, but the relation actually

not expressed. One of their conclusions was that all entities in a sentence need

to be annotated to lower the impact of these problems on the trained model,

i.e. a model may generalize better to unseen data in this case.

A similar approach to Distant Supervision is T-REx [26]. In this case, the

text-KB-fact-alignment is done more carefully using keyword matching, re-

sulting in a significantly higher annotation quality. However, these approaches

suffer from a restriction problem: only relations found in existing KBs can be

considered. Therefore, if new relations or relations with a very low coverage

in these KBs are of interest, such an approach cannot be used.

KnowledgeNet [60] is a project aiming to manually annotate 100,000 facts

for 100 properties, although at the time of publication 13,425 facts for 15

relations were available. Their annotation pipeline consists of the following

steps:

1. Fetch sentences: Using T-REx to find sentences that could describe facts

106

from Wikidata2 and, in addition, sentences that contain certain key-

words, chosen for each property, and therefore potentially expressing a

fact of interest.

2. Mention Detection: Annotators are asked to highlight entity names.

3. Fact Classification: Pairs of mentions are classified as positive or negative

examples for a relation.

4. Entity Linking: Linking mentions to their corresponding Wikidata en-

tity.

Each sentence is labeled by at least two annotators to ensure high data

quality. The authors report an average of 3.9 minutes to annotate a single

sentence by up to 3 annotators. In our approach, Entity Linking is not ex-

plicitly done. However, this step is only responsible for 28% of the time spent

according to their study, and therefore a significant amount of time (about 2.8

minutes) is still needed to annotate a sentence.

In addition, it is important to note that there has been work conducted on

few- or even zero-shot learning for RE in order to avoid the necessity of creating

new datasets for relations, which do not appear in existing datasets. Han et

al. [38] described a framework for few-shot RE and published the FewRel

1.0 dataset. It consists of 700 examples from Wikipedia for each of the 100

relations considered and was annotated by crowd workers. In contrast to our

problem, the task for a model trained on FewRel 1.0 is to match an example,

a sentence with two entities annotated, to a reference example from the set of

examples of the true relation. Effectively, the goal is to rank relations and their

reference examples. The relation corresponding to the best fitting example is

selected. This allows the model to be trained on an arbitrary number of

sentences (or even zero) and, hopefully, still select the correct relation through

ranking it the highest. Based on FewRel 1.0, the FewRel 2.0 dataset [30] aims

to fix two issues: (1) Adapt models to select relations from new domains and

(2) avoid selecting a relation, if none of the available ones fit.

2https://www.wikidata.org/wiki/Wikidata:Main_Page

107

https://www.wikidata.org/wiki/Wikidata:Main_Page

Even though the models used in [38] and [30] show promising results, Brody

et al. [12] revealed similar issues with the FewRel framework to the ones found

for TACRED by Rosenman et al. [71]. In particular, they found that models

trained on FewRel 1.0 seem to heavily rely on entity types and adding training

data for relations with similar entity types may mitigate this issue. Further-

more, the evaluation metrics used in FewRel ignores the fact that models may

perform much better on some relations than others (in fact, they found a large

gap between best and worst), potentially due to the aforementioned entity

type issue. This, again, leads to the question how to annotate more data for

more relations quickly and accurately.

7.3 Model Architecture

Figure 7.1: Binary classification model used for Relation Extraction from a
sentence with annotated subject and object, similar to the one proposed by
[79]. Both entities are encapsulated in special tokens and the embeddings of
the begin tokens of both are used for classification.

We adapted the best model architecture from [79], which is based on the

BERT Transformer model [21] and showed good results on TACRED. Al-

though instead of a multi-class classifier, as commonly used for models trained

on TACRED, we altered the model to do binary classification. It is depicted in

Figure 7.1. Apart from BERT’s special tokens, two new tokens are introduced

for the subject (entity start token [ES] and entity end token [/ES]) and for

the object (entity start token [EO] and entity end token [/EO]), which are

108

referred to as entity markers. All new tokens are fine-tuned during model train-

ing. The BERT embeddings of the start tokens of both entities concatenated

are used as input of a classification layer with a sigmoid activation function,

which makes a binary decision whether the relation of interest is expressed

between the marked entities. Since sentences can express multiple relations,

even between the same entity-pair, independent classification decisions have

to be made and one model per relation can be trained. Therefore, the input of

the model for a given relation is a sentence with one entity mention marked as

subject (with [ES] and [/ES]) and one entity mention marked as object (with

[EO] and [/EO]).

This model architecture aims to solely recognize and decide whether or not

the context of two entities suggests that the relation, the model was trained

for, is expressed. There are no additional tasks such as NER or CR involved,

which have to be learned and may influence the quality of the predictions.

Therefore, this architecture should be suitable for finding out what perfor-

mance is possible for the task of RE if accurately annotated and large enough

datasets are available for training.

7.4 Evaluation

In this Section, we provide a detailed evaluation of how models trained on

datasets created with FREDA perform, how much data is required to reach a

certain performance level for selected relations and how fast these annotations

can be acquired.

7.4.1 Model Training and Dataset Statistics

We are using the previously mentioned model architecture outlined in Figure

7.1 with the cased large model of BERT. Learning rate of 5 ∗ 10−6 (linear

decay), Adam optimizer [46], batch size 32, 1-10 epochs (varies per relation;

determined using 5-fold cross-validation). Test sets contain 10% of the whole

dataset, one per relation.

Table 7.1 shows statistics of our datasets for each relation and all together.

109

7 annotators annotated in total 10,022 sentences with >500 examples for each

relation. The first 15 relations can be found in the KnowledgeNet dataset as

well. In addition, we annotated 4 more common relations, which are also part

of the schema.org ontology for persons3. From all sentences with a positive

response (a sentence is deemed to express the relation at hand), a number

of positive facts can be extracted with a positive label, which can be used

for model training. Often it is possible to extract multiple such facts for

a single sentence since subjects and objects can be mentioned several times

in the sentence and we may have different subjects or objects in the same

sentence. All other potential facts, which can be extracted from a sentence,

are considered as Negative Facts.

For instance, consider the following sentence:

“Princess Alberta was the fourth daughter of Queen Victoria

and Prince Albert.”

Two positive facts can be extracted for the child of relation:

• Princess Alberta child of Queen Victoria

• Princess Alberta child of Prince Albert

Facts with a negative label can be easily created by considering all other

pairs of entities, which do not express the relation at hand. Therefore, four

negative facts can be extracted from the previous sentence for the same rela-

tion4:

• Queen Victoria child of Princess Alberta

• Prince Albert child of Princess Alberta

• Prince Albert child of Queen Victoria

• Queen Victoria child of Prince Albert

3https://schema.org/Person
4It is possible that these negative facts still express another relation, e.g. parent or

spouse. But since the corresponding model is trained to do binary classification, they are
considered as negative facts in this case.

110

https://schema.org/Person

Since there are typically more negative facts than positive ones, each train-

ing example is weighted in the loss function (binary cross-entropy loss) accord-

ingly, in order to account for the class imbalance.

We calculated the inter-annotator agreement for the first and second an-

notator with Cohen’s Kappa. Two annotators agree when they both consider

that the relation in question is expressed (or inexistent) in the sentence at

hand. Overall, the results can be considered as excellent with κ = 0.85 for all

relations together. Although it ranges between 0.48 (place of residence and

0.96 (date of birth). Some relations require more discussion between annota-

tors are therefore more difficult and time-consuming to annotate for humans,

leading to more disagreement.

Relation Sentences Positive Negative Inter-
facts facts annotator

kappa
date of birth 555 683 11,447 0.96
date of death 523 721 13,739 0.89
place of residence 510 624 12,256 0.48
place of birth 508 541 14,915 0.94
nationality 518 595 12,319 0.93
employee or member of 501 604 12,114 0.73
educated at 544 500 11,892 0.92
political affiliation 504 638 16,218 0.95
child of 504 522 12,312 0.93
spouse 550 1,524 14,672 0.88
date founded 533 265 10,303 0.93
headquarters 506 1,022 9,070 0.69
subsidiary of 544 320 10,664 0.64
founded 561 317 12,665 0.89
ceo of 541 604 7,374 0.84
award 521 366 8,494 0.74
alma mater 528 278 12,850 0.65
place of death 517 366 18,898 0.93
sibling 554 670 10,476 0.90
Total 10,022 11,160 232,678 0.85

Table 7.1: Data statistics (Total and per relation): Number of sentences,
number of positive and negative facts extracted from these and inter-annotator
kappa (between the first two annotators).

111

7.4.2 Baselines

We conducted multiple experiments to gain insights on the quality of the

datasets created with FREDA for the task of RE5:

• KnowledgeNet [60]: While the annotation framework is not publicly

available, a portion of the datasets annotated by the authors using their

tool are available to download and use here. Data annotation with the

KnowledgeNet interface presumably leads to high-quality dataset for RE,

even though very time-consuming. Therefore, this dataset can be used to

evaluate models, which were trained on dataset annotated with FREDA

(see Section 7.4.3).

• Challenge RE [71]: A manually annotated and balanced (relation-wise)

dataset for RE closely related to TACRED (hence a similar set of rela-

tions), which we used for evaluating models trained on datasets anno-

tated with FREDA and a state-of-the-art model trained on TACRED,

i.e. the KnowBert+W+W model [69] (see Section 7.4.4).

• BRAT [81]: A tool to manually annotate sentences with entities, co-

references, and relations. We conducted a comparison of FREDA and

BRAT, measured the time to annotate sentences for both approaches

for the spouse-relation and compared models trained on the resulting

datasets.

7.4.3 Test Results

We trained models on all datasets created with FREDA and tested them on the

corresponding test sets as well as on unseen data provided by KnowledgeNet,

which can be considered as high-quality.

The KnowledgeNet training data can be downloaded from their repository6,

which can be used for testing models trained on our datasets. Since this dataset

does not contain exhaustive entity annotations (only entities participating in

5The main goal was to evaluate the quality of the resulting datasets, not the comparison
of approaches using or trained on these datasets.

6https://github.com/diffbot/knowledge-net

112

https://github.com/diffbot/knowledge-net

a specific relation are annotated), negative examples for testing can only be

generated from sentences expressing a relation. These are presumably the

more challenging sentences since the model needs to figure out which entity is

subject, which is object and which entities are neither. Also, entity-pairs for

negative examples can be extracted through considering mentions of the same

entity, which cannot be related to each other. For all relations, this results

in 10,895 positive and 46,347 negative examples, compared to 11,160 positive

and 232,678 negative examples for our datasets.

We are reporting Precision, Recall and F1 score on the FREDA and Knowl-

edgeNet test sets in Table 7.2, broken down for each relation as well as Interim

results for relations which can be found in the datasets from both approaches,

and the Total which includes the four additional relations we annotated with

FREDA.

The Interim F1 score of 0.86 on the FREDA test sets is relatively high

overall. Even though it is not possible to directly compare this result against

results of state-of-the-art models trained on the commonly used TACRED

dataset, these latter usually achieve a significantly lower F1 score on TA-

CRED7. Models trained on these datasets created with FREDA also show a

similarly high F1 score on the KnowledgeNet dataset with 0.87. The latter

dataset was created by different annotators and presumably similar, but still,

in detail, different approaches for sentence filtering.

It is often not reported, but we can gain some insights on how such mod-

els perform on different relations. While relations, which do not leave a

lot of room for interpretation, such as date of birth, place of birth, child of,

spouse or sibling, show a very high F1 score, others, such as subsidiary of or

place of residence, show significantly worse results. Cohen’s Kappa for inter-

annotator agreement for these two relations is quite low with 0.64 and 0.48,

respectively, compared to the average of 0.85. Therefore, the datasets corre-

sponding to these two relations can be considered as more challenging to train

on, and thus more sentences may need to be annotated.

7https://paperswithcode.com/sota/relation-extraction-on-tacred

113

https://paperswithcode.com/sota/relation-extraction-on-tacred

Datasets
FREDA (test) KnowledgeNet

Relation P R F1 P R F1
date of birth (PER →DATE) 0.96 0.97 0.96 0.90 1.00 0.94
date of death (PER →DATE) 0.93 0.96 0.94 0.93 0.92 0.93
place of residence (PER →LOC) 0.71 0.76 0.73 0.86 0.74 0.79
place of birth (PER →LOC) 0.85 1.00 0.92 0.95 0.81 0.87
nationality (PER →LOC) 0.84 0.95 0.89 0.92 0.92 0.92
employee or member of (PER →ORG) 0.68 0.91 0.78 0.95 0.82 0.88
educated at (PER →ORG) 0.87 0.94 0.90 0.98 0.90 0.94
political affiliation (PER →ORG) 0.96 1.00 0.98 0.90 0.90 0.90
child of (PER →PER) 0.75 0.83 0.79 0.91 0.89 0.90
spouse (PER ↔ PER) 0.93 0.91 0.92 0.95 0.89 0.92
date founded (PER →DATE) 0.83 0.95 0.89 0.94 0.88 0.91
headquarters (ORG →LOC) 0.80 0.84 0.82 0.94 0.86 0.90
subsidiary of (ORG →ORG) 0.51 0.71 0.59 0.87 0.74 0.80
founded (PER →ORG) 0.72 0.94 0.82 0.49 0.82 0.61
ceo of (PER →ORG) 0.81 0.89 0.85 0.94 0.91 0.93
Interim 0.83 0.90 0.86 0.88 0.86 0.87
award (PER →AWARD) 0.78 0.83 0.80 – – –
alma mater (PER →ORG) 0.70 0.62 0.65 – – –
place of death (PER →LOC) 0.79 0.90 0.84 – – –
sibling (PER ↔ PER) 0.77 0.79 0.78 – – –
Total 0.82 0.89 0.85 – – –

Table 7.2: Test set results of the models trained on the FREDA training sets for
each relation and both approaches. The last 4 relations are not part of Knowl-
edgeNet’s dataset, therefore the results are missing. Interim corresponds to
the overall results for all 15 relations in both datasets. Total includes results
on all relations in FREDA’s test set.

7.4.4 Challenge RE dataset

Rosenman et al. [71] created a more challenging dataset based on 30 out of 41

TACRED relations, called Challenge RE (CRE). It is relatively balanced, i.e.

the number of positive examples is similar to the number of negative exam-

ples, whereas TACRED is highly imbalanced. Furthermore, each annotated

sentence contains at least two entity pairs that are compatible with the relation

the sentence is annotated for, aiming to reveal models that learned to classify

sentences rather than classifying entity pairs in a sentence, which would lead

to high recall but low precision. Therefore, this dataset is considered to be

114

Models
FREDA KnowBert-W+W

Relation P R F1 P R F1
date of birth 0.96 0.93 0.95 0.67 0.99 0.80
date of death 0.74 0.78 0.76 0.61 0.74 0.67
educated at 0.85 0.72 0.78 0.68 0.93 0.79
sibling 0.76 0.87 0.81 0.53 0.89 0.67
spouse 0.84 0.87 0.85 0.56 0.86 0.68
founded 0.86 0.53 0.66 0.82 0.76 0.79
date founded 0.86 0.60 0.71 0.60 0.89 0.72
Total 0.83 0.76 0.79 0.63 0.87 0.73

Table 7.3: Challenge RE dataset test results. The previously trained models
from FREDA were used as well as the KnowBERT-W+W model, trained on
TACRED and showing state-of-the-art performance on the TACRED test set.
The best F1 scores per relation and overall are in bold.

more challenging than the TACRED test set. CRE was specifically created as

a challenging dataset in order to test the generalization capabilities of models,

for example, trained on TACRED.

We identified 7 relations in CRE that are fully compatible with 7 of FREDA’s

relations8, therefore the previously trained models on FREDA datasets can be

used to be tested on the CRE dataset for these relations. In order to compare,

we chose the KnowBert-W+W model from [69], a knowledge-enhanced version

of BERT through the integration of WordNet [61] and a subset of Wikipedia.

It also uses entity markers for relation prediction and is trained on TACRED

and shows state-of-the-art results on the TACRED test set.

Table 7.3 shows the results on the CRE dataset for both approaches. Over-

all, the F1 scores show that models based on FREDA often perform signifi-

cantly better than KnowBERT-W+W, resulting in a higher total average.

Another observation is that KnowBERT-W+W shows a very high recall com-

pared to precision, which is expected due to the nature of TACRED and the

resulting lack of generalization when tested on a more challenging dataset,

such as CRE. FREDA’s models, on the other hand, show a more balanced

8CRE and TACRED also contain partially overlapping relations with ours, such as
per:children, per:parents (inverse of the previous), per:city of birth or per:country of birth.
However, these relations can be seen as subsets of some of our relations and can therefore
not be used for testing.

115

precision and recall, indicating that they pay more attention to which entity

is subject and which is object, i.e. our datasets may lead to better general-

ization properties for models when trained on them, compared to TACRED.

This also indicates that our sentence pre-selection step with keywords and

Distant Supervision, which is important to end up with balanced datasets, is

relatively general and does not necessarily only pre-select easy sentences, while

still leading to a high F1 score when trained and tested on (see Table 7.2).

7.4.5 How many sentences do we need per relation?

TACRED contains a variety of relations with a high variance in the number

of examples per relation (3,862 for per:title and only 33 for org:dissolved).

However, typically only the overall performance of a model trained and tested

on TACRED is reported in the literature, i.e. it is unknown how well these

models perform on each relation and how many examples or sentences per

relation are needed to reach a certain performance level.

We want to shed some light into the question of how many sentences have to

be annotated per relation and how is it possible to find out whether more anno-

tated sentences may be beneficial. Figure 7.2 shows the model performance on

the FREDA test sets (same as used for the experiments reported in Table 7.2)

for five different relations (date of birth, spouse, educated at, place of residence

and subsidiary of), when trained on 100, 200, 300, 400 or all available sen-

tences we annotated using FREDA and shuffled before sampling. These re-

lations were selected since the models trained on the corresponding datasets

show different performance levels (Table 7.2) as well as the inter-annotator

agreement varies widely (Table 7.1).

The model corresponding to the least controversial relation among annota-

tors (date of birth), i.e. the one with the highest Kappa, already shows stable

performance after being trained on only 100 sentences. Models for the spouse

and educated at relations need slightly more sentences, but barely improve af-

ter being trained on more than 300. Whereas for the place of residence and

subsidiary of relations, even close to 500 sentences9 seem to be insufficient to

9As previously mentioned, we annotated at least 500 sentences per relation. However,

116

possibly get to a similarly high performance than the models for the other

relations.

The Pearson Correlation Coefficient between model performance for each

relation and the inter-annotator agreement is 0.75, i.e. both values are highly

correlated. It can be concluded that if annotators often do not agree on an-

notations for certain relations, models have more difficulties to predict these

relations as well, indicating that more data is needed. Whereas, if annotators

barely ever disagree a relatively small amount of data is necessary.

100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of sentences for training

F
1

sc
or

e
on

te
st

se
t

date of birth
spouse

educated at
place of residence

subsidiary of

Figure 7.2: F1-score on FREDA (test) for different training set sizes and a
selection of relations.

7.4.6 Annotation Speed

Data annotation for RE can be prohibitively time-consuming. Therefore, ap-

proaches for quick dataset construction are essential in order to be able to easily

extend existing datasets with more relations or create entirely new datasets.

We asked two annotators, familiar with the task, to annotate sentences for the

spouse-relation using the following approaches:

• BRAT [81]: BRAT is an open-source web-based tool for data annota-

tion. Entities of different types can be annotated through selecting spans

10% of these sentences are kept aside as test sets, i.e. the rest of the training sets may
contain slightly less than 500 sentences.

117

of text. Relations are annotated through connecting these entities.

• FREDA (plain): In order to solely and fairly compare FREDA’s anno-

tation interface with BRAT, WEXEA entity annotations were removed

for this approach.

• FREDA: Full framework, including annotations from WEXEA.

Sentences were randomly selected from WEXEA. In order to keep the work-

load as similar as possible for each annotator and approach, all sentences con-

tain exactly 25 words and a new unseen set of 100 sentences was used every

time. In addition, the annotators were asked to only select entities of relevant

types (Person in this case), which reduces the workload and the spouse-relation

is not supposed to be applied to other types. However, WEXEA itself contains

entity annotations of other types in which case annotators were not asked to

remove entities for the approach FREDA.

BRAT FREDA (plain) FREDA
sec. F1 sec. F1 sec. F1

Annotator A 23.3 0.53 17.7 0.55 9.2 0.69
Annotator B 33.1 0.48 25.3 0.43 12.4 0.56

Table 7.4: Average annotation speed in seconds per sentence for each annota-
tor, lower is better. A model was trained for each dataset and the F1 score on
the CRE dataset for the spouse-relation as test set is reported. Best results
per annotator are in bold.

Table 7.4 shows the average annotation speeds in seconds per sentence

for both annotators and all three approaches. In general, annotation speeds

vary significantly for each annotator since multiple steps are required and the

speeds of each of them depend on individual abilities. The resulting datasets

were used to train models, which were tested on the CRE dataset for the

spouse-relation. Annotations with FREDA show the best F1 score for both

annotators. Note that entities of other types are annotated as well using

FREDA, while still keeping the average time to annotate a sentence low.

This resulted in more examples for training and therefore better models when

118

tested on CRE. Results for datasets from the other approaches are similar,

suggesting annotation quality is similar10.

For both annotators, the FREDA interface, represented through the ap-

proach FREDA (plain), lead to a 24% increase in annotation speed compared

to BRAT and another 48% to 51% increase for pre-annotated sentences from

WEXEA, i.e. for the approach FREDA compared to FREDA (plain), even

though more entity types were annotated with FREDA. This should give an

order of magnitude for the time required to annotated a sentence for a rela-

tion and how FREDA can help reduce the workload for annotators through

its easy-to-use interface as well as using pre-annotated sentences.

7.4.7 Example

The trained models can now be used to detect relations in text, independent

of any rules, which has been described in Chapter 5. In addition to what

has been extracted by the systems described in Chapter 5 and 6, we can now

detect all child of -relations from the conversation in Figure 1.2a, which can

be seen in Figure 7.3.

10All F1 scores in Table 7.4 are lower than reported in Table 7.3 since significantly less
data was used for training.

119

Figure 7.3: KG extracted from the conversation in Figure 1.2a by the proposed
systems. All child of -relations are newly added. Now the extractions are
complete.

7.5 Acknowledgements

We would like to thank the annotators of the datasets described in this chapter

for their hard work towards creating these datasets.

7.6 Conclusion

Previous works on data annotation indicated either that large amounts of data

are necessary in order to achieve moderate model performance (see TACRED

[97]) or data annotation, if done carefully, is extremely time-consuming (see

KnowledgeNet [60] or BRAT [81]). We showed that it is possible to create high-

quality datasets for RE for a variety of relations, with a moderate amount of

time and effort, using freely available text data from Wikipedia. The resulting

models trained on these datasets showed state-of-the-art results for RE and

are robust when tested on datasets from different annotators than they were

120

trained on.

Annotated datasets are made publicly available for future research11.

11https://github.com/mjstrobl/FREDA

121

https://github.com/mjstrobl/FREDA

Chapter 8

Knowledge Graph Question
Answering

So far, we were mainly concerned with KGP and its subtasks, i.e. how to

construct a KG. In order to access knowledge in our KG, a KG Question

Answering (KGQA) system is suitable to retrieve such data. Figure 8.1 shows

the workflow for answering a question from the user. The KGP system extracts

and links the entity Adam and passes the question to the KGQA system1. The

goal of the KGQA system is to extract a relation for the detected entity as

subject or object and constructs a SPARQL query, selecting the missing entity,

which can be used, in combination with the KG, to answer the question.

Therefore, in this chapter, we propose a method for KGQA in order to

answer natural language questions from our KG.

8.1 Introduction

A Knowledge Graph (KG) provides a structured representation of textual

knowledge. Facts in a KG are commonly stored using the Resource Descrip-

tion Framework (RDF)2 as subject-relation-object triples. There are existing

KGs, such as Wikidata [91] (maintained by humans) and DBpedia [52] (mainly

derived from Wikipedia infoboxes), as well as approaches in order to automat-

ically create a KG, denoted as Knowledge Graph Population (KGP), e.g. see

1In order to distinguish questions and statements, the system assumes questions to end
with a question mark.

2https://www.w3.org/RDF/

122

https://www.w3.org/RDF/

Figure 8.1: Workflow for answering questions using the Knowledge Graph
extracted by our KGP system.

submissions to the TAC Cold Start KB/SF challenge3, such as [13].

One advantage of knowledge representation in a KG using RDF over text

is to be able to use SQL-like query languages, such as SPARQL4. Using

SPARQL, one can retrieve information stored in the KG, i.e. finding an-

swers for SPARQL-encoded questions, denoted as Knowledge Graph Question

Answering (KGQA), e.g. see [90] or [22]. Figure 8.2 shows a sub-KG of DB-

pedia for the entity Barack Obama5, including its RDF representation and a

SPARQL query to answer the question: Who is Barack Obama’s spouse?

Being able to query a KG with SPARQL provides a structured way to access

knowledge from the KG, but may not be intuitive for users without domain

knowledge. Therefore, approaches and datasets exist in order to translate

natural language questions into SPARQL queries (or train models to do so),

e.g. see [10]. However, these approaches only work on a specific KG they

were developed/trained for. Specifically, the set of relations in one KG may

not match the set of relations of another. While the overlap may be large

for existing KGs, such Wikidata and DBpedia, a KG created from scratch

3https://tac.nist.gov/2017/KBP/ColdStart/index.html
4https://www.w3.org/TR/rdf-sparql-query/
5https://dbpedia.org/page/Barack_Obama

123

https://tac.nist.gov/2017/KBP/ColdStart/index.html
https://www.w3.org/TR/rdf-sparql-query/
https://dbpedia.org/page/Barack_Obama

Figure 8.2: Sub-KG of DBpedia for the entity Barack Obama, including RDF
representation and SPARQL query. DBpedia namespace prefixes are omitted.

through a KGP system, such as ours, may be domain-specific and may contain

an entirely different set of relations. This really reduces the effectiveness of

such approaches on newly created KGs.

Creating new manually labeled datasets for KGQA is a tedious task. An-

notators have to come up either with a question to start with, for which a

SPARQL query has to be written as well, or, in order to save time, they have

to write questions for existing SPARQL queries, an approach followed by [24],

which may or may not be meaningful. However, KGP approaches typically

take advantage of existing Relation Extraction (RE) datasets, such as the TAC

Relation Extraction Dataset (TACRED) [97] or our FREDA-derived datasets

(see Chapter 7), to train models that are able to recognize relations in text.

Now the question arises, whether it is possible to use the exact same datasets

to recognize relations in questions as well, potentially with a minimum or no

dedicated KGQA data, i.e. few-shot or zero-shot learning, respectively. Since

such a KGQA system only needs to be aware of the relations that can be

extracted by the KGP system, other datasets, even if containing questions for

124

more relations, are not needed. In this chapter, we investigate the possibility

to use these existing RE datasets for KGQA.

Our contributions are the following:

• Since creating new KGQA datasets for a specific KG and its relations,

populated by a KGP system, may not be feasible, we propose an ap-

proach to use existing RE datasets to extract entity-relation pairs, which

can be combined to SPARQL queries, used for KGQA.

• A suitable model architecture as well as an evaluation based on an exist-

ing RE dataset, showing that such a model can effectively detect entity-

relation pairs in natural language questions, even if no dedicated KGQA

data (zero-shot learning) or small amounts of such data is included in

the training procedure (few-shot learning).

The remainder of this chapter is structured as follows: Section 8.2 provides

information about related work on KGQA. In Section 8.3 we show how to

train models on KGP data and prepare them for KGQA with an evaluation

in Section 8.4. The chapter is concluded in Section 8.5.

8.2 Related Work

There is a number of datasets available related to the problem of KGQA, which

are presented in this section.

8.2.1 Simple Questions

The SimpleQuestions dataset [10] consists of 108,442 questions paired with

a fact (subject-relation-object triple) from the Freebase KG [9]. A simple

question is considered to contain either subject or object and a relation as

supporting fact. For this dataset, objects are always considered to be the an-

swer, i.e. subject and a mention of the relation can be found in each sample

question. Table 8.1 shows four examples from SimpleQuestions. The corre-

sponding SPARQL query would use the template SELECT ?object WHERE

125

{ <subject> <relation> ?object . }. Therefore, if subject and relation can be

retrieved from a simple question, such a SPARQL query is trivial to construct.

Where was Guy Pnini born?
What is the nationality of Chris Gwynn?
Who was the founder of Honeywell?
What’s the name of a child of Frank Gibney?

Table 8.1: Examples from SimpleQuestions for the relations born in, nation-
ality, founded and parent. The subject is highlighted in bold.

The dataset was introduced due to a lack of large-scale datasets for Ques-

tion Answering. The collection of the dataset involved two phases: (1) Se-

lecting facts from Freebase with defined relation types, i.e. not containing the

word freebase, and removing subject-relation pairs with more than 10 distinct

objects, which could lead to uninformative questions. (2) Selected facts were

presented to human annotators to write questions in natural language, which

are as diverse as possible.

Each sample in the dataset consists of a question and a supporting fact from

Freebase. Unfortunately, the subject is not annotated in the question itself.

The dataset contains questions for 1,629 relations, although only 133 relations

are represented more than 100 times and 563 relations are only mentioned once.

A variety of commonly used relations was not considered at all: spouse, date of

birth/death, educated at, ceo of, sibling and many more. In addition, Freebase

is outdated as it is not developed anymore. It was merged into Wikidata [65].

8.2.2 Large Complex Question Answering Dataset

The Large-Scale Complex Question Answering Dataset (LC-QuAD) in its sec-

ond revision (2.0 [24]; see [87] for the first one) is a dataset with 30,000 simple

as well as complex questions (up from 5,000), their corresponding SPARQL

queries and paraphrases. Queries for the Wikidata as well as DBpedia KG are

attached6. Figure 8.2 shows four examples of questions involving more than a

single fact from the KG.

6Wikidata was added to DBpedia and even though the relation scheme is slightly different
for DBpedia, SPARQL queries can be automatically rewritten using known templates for

126

What is a cause of death that begins with the letter ”p” and can be found
on a CT scan?
Former champion Francisco Alarcon gave what award to Art Spiegelaman?
Located in the Central District, what is the county seat whose twin cities
include Feodosiya?
What kind of career does Grigori Kozintsev have in the screenwriting field?

Table 8.2: Examples from LC-QuAD 2.0 involving more than a single fact
from the KG.

The annotation process starts with vital Wikipedia articles7, i.e. Wikipedia’s

most important articles from a variety of topics. Then, question templates for

the corresponding Wikidata/DBpedia entities are created manually consider-

ing multiple types of questions, simple as well as complex ones, e.g. involving

multiple facts or temporal information for a relation. Entities and SPARQL

templates are used to create SPARQL queries, which are presented to Amazon

Mechanical Turk annotators, who are asked to write questions and paraphrases

of those questions in a later step.

The LC-QuAD 2.0 dataset covers 22,792 entities and 3,627 relations. 2,374

of these relations are mentioned just once and only 76 are mentioned more than

100 times. Due to the fact that it relies on Wikidata/DBpedia KGs, similar

issues with relation coverage exist as in the aforementioned datasets.

8.3 Method

In this section, we present our approach on how to construct SPARQL queries

from entity-relation pairs and a model architecture to detect these pairs in

natural language questions.

8.3.1 SPARQL Query Construction

Approaches aiming to translate natural language questions to SPARQL queries

for a given KG, such as [90] or [22], consider specific SPARQL templates and a

Slot Filling approach is used to fill the missing variables, i.e. find relations and

each relation.
7https://en.wikipedia.org/wiki/Wikipedia:Vital_articles/Level/5

127

https://en.wikipedia.org/wiki/Wikipedia:Vital_articles/Level/5

Figure 8.3: Relation Extraction and query translation for the simple question
“Where was Barack Obama born?”. DBpedia namespace prefixes are omitted.

link entities in the questions to their corresponding identifiers in the KG. In our

case, we do not aim for linking entities to a KG. Instead, we assume the linking

step has already occurred since this is part of the KGP pipeline. Existing

datasets for KGQA, whether simple or complex questions are considered, may

also include relations the KGP system is not able to extract. In order to still

be able to test whether datasets for RE can be helpful for model training, we

aim to predict parts of SPARQL queries, which contain relations that can be

extracted by our KGP system. This way, even more complex queries can be

written as no templates are used.

Figure 8.3 shows an example of a SPARQL query, which can potentially

appear in a dataset, and the corresponding subject-relation tuple, which can

be extracted by the KGQA system and used for translating the question into

SPARQL. In advance, the entity Barack Obama is detected by the KGP system

and linked to its node in the KG. In order to detect a relation, we consider each

relation in the dataset, that can be extracted, as a unique class (including a no-

relation class) and one entity in text as subject or object. If classified correctly,

both, the KG identifier for the entity Barack Obama as well as the detected

relation, can be added to the query. For more complex queries, involving

multiple facts, a system like this would be able to add more subject-relation-

object triples8 to a SPARQL query. Finally, all missing subjects/objects are

variables to be selected, e.g. Barack Obama’s birthplace in Figure 8.3.

This approach is able to produce SELECT as well as ASK 9 SPARQL

queries, the latter ones in case no subject or object is missing in the query

triples. However, some simplifications have to be made: Queries containing

8Either subject or object would be considered as a variable, if not detected in a later
step. All entities are considered as subject as well as object in order to predict relations and
only positive, i.e. relations other than the no-relation class, are added to the query.

9ASK queries aim to answer yes/no-questions, e.g if two people are married.

128

Figure 8.4: Model for extracting a relation for a marked entity as subject
or object (see entity markers). Therefore, this models extracts an entity as
subject or object for a detected relation (or no extraction, if no relation is
detected). This entity-relation double can be plugged into a SPARQL query.

LIMIT, COUNT10 and FILTER11 are not producible this way, as well as Blank

Nodes12 cannot be considered. Although, it is still possible to test how RE

datasets can help this way, which we show in Section 8.4.

8.3.2 Model Architecture

The problem at hand can be considered as a sentence classification problem.

The model we considered is depicted in Figure 8.4, similar to what was con-

sidered in [79] for RE.

The subject or object of the question is marked with entity markers,

[e1]/[/e1] and [e2]/[/e2], respectively, to let the model know where the entity

is, mainly relevant for complex questions, which could potentially contain more

than one entity. But also the question may not always ask for the object of a

relation, in which case the object itself would appear. The transformer-based

[89] BERT model [21] is used to embed the question and a softmax-layer is

used for relation classification considering the BERT’s CLS-token as question

embedding.

10LIMIT and COUNT are similar to the corresponding operators in SQL queries.
11FILTERs can be used to filter literals, i.e. strings, dates or numbers.
12Blank Nodes can be used to represent n-ary relations, e.g. if a marriage

date is attached to a spouse-relation, see https://www.w3.org/TR/rdf11-concepts/

#section-blank-nodes

129

https://www.w3.org/TR/rdf11-concepts/#section-blank-nodes
https://www.w3.org/TR/rdf11-concepts/#section-blank-nodes

8.4 Evaluation

In this section, we present the results when the aforementioned model archi-

tecture is trained on an RE dataset with various amounts of KGQA data, i.e.

questions from two existing KGQA datasets, SimpleQuestions and LC-QuAD

2.0, their annotated subjects/objects and attached relations.

8.4.1 Baselines

Similar to the evaluation in Chapter 7, we focus on the comparison of datasets

or, more specifically, the augmentation of existing datasets for KGQA using

RE datasets annotated with our FREDA tool.

We use portions of various sizes of existing KGQA datasets, namely Sim-

pleQuestions [10] and LC-QuAD 2.0 [24], to train models as baselines (see the

architecture in Section 8.3.2) and test them on the corresponding test sets.

These datasets are time-consuming to annotate for with the additional diffi-

culty of how to achieve a large variety of questions from the same annotators.

Therefore, we compare the baseline models and models additionally trained on

data from existing non-KGQA sources, namely RE datasets manually anno-

tated using our FREDA framework (see Chapter 7). Such datasets are simpler

to annotate for and since they are already used to detect relations added to

the KG, they already contain data for all relations of interest.

We use various amounts of questions from SimpleQuestions and LC-QuAD

2.0 in order to test how many questions per relation are really necessary. As-

suming these datasets do not contain certain relations of interest, one needs to

manually annotate questions for KGQA. The less manually annotated ques-

tions are needed to train models achieving good results, the less time is needed

to produce these.

Therefore, these existing KGQA datasets are considered as baselines and

adding RE datasets annotated with FREDA are used for augmenting these

baseline dataset in order to train models that are better at predicting relations

for KGQA.

130

8.4.2 Dataset Preparation

Even though TACRED is a commonly used dataset for RE, we consider our

FREDA datasets, which we denote as FREDA, as multiple issues with TA-

CRED were pointed out by [3] and [71], and FREDA datasets are used by our

KGP system.

In addition, we consider the datasets SimpleQuestions, for simple ques-

tions with just a single fact involved, and the LC-QuAD 2.0 dataset for more

complex questions with potentially multiple facts involved. However, both

datasets have to be preprocessed in order to feed them into the model, which

is described thereafter.

SimpleQuestions

Each sample in the SimpleQuestions dataset consists of a fact from Freebase

(subject-relation-object) and a question in natural language asking for the

object. Therefore, subject and relation are mentioned in the question. This

already fits our models input of a question with a marked entity. However, the

exact position of the entity is unknown and only a Freebase ID is attached.

We used a Freebase-Wikidata mapping from Wikidata and an alias dictionary

for Wikipedia entities, as provided by [84], in order to find alternative names

of all such entities, which could appear in a question. This way we were able

to annotate the actual entities in these questions. Four relations in Simple-

Questions are matching FREDA relations, namely place of birth, nationality,

child of and founded. All but nationality also appear as inverse relation in

SimpleQuestions, which can be used as well.

In addition, a number of samples can be linked to the no-relation class for

questions, which cannot be answered. The construction of a fully specified

SPARQL query is trivial for SimpleQuestions. From the training set, we were

able to extract 4,995 questions with annotated entities and relations attached

as well as one no-relation example for each of these questions through labelling

the detected entity opposite, i.e. subjects for a specific relation are labelled as

objects and no-relation, and vice versa. From the SimpleQuestions test set,

131

we extracted 2,728 questions in total and 5,570 questions from FREDA for the

aforementioned 4 relations.

LC-QuAD 2.0

This dataset mostly contains complex questions involving more than one fact

from the KG. SPARQL queries as well as DBpedia queries are attached to

each sample. We cannot claim to produce a full SPARQL query for each of

them since some questions mention relations, which cannot be detected by our

KGP system. In order to still take advantage of these samples, we only aim

to predict those facts mentioned in the query, which contain a relation that

can be predicted as well as at least one entity, either subject or object. Even

though full SPARQL queries may not be written this way, it is still possible

to test whether an RE dataset for KGP can help answering questions.

Again, entities in the question (multiple are possible) are not annotated,

they have to be retrieved through string matching (Wikidata IDs leading to

entity names are attached). This was not possible for all question, but we ex-

tracted 10,107 questions and paraphrased questions for 12 relations, which can

be found in FREDA as well: place of residence, place of birth, place of death,

nationality, educated at, child of, spouse, headquarters, subsidiary of, founded,

ceo of, sibling and award. 7,067 no-relation questions are included through

adding the opposite entity annotation, where applicable13. From the LC-

QuAD 2.0 test set, we were able to extract 4,290 questions in total for all 12

relations and 21,550 questions from FREDA for the same relation set, used

for training.

8.4.3 Model training

We use the model architecture depicted in Figure 8.4 and the BERT large

cased model to embed questions. The hyperparameters were set as follows:

Learning rate of 5 ∗ 10−5 (linear decay), Adam optimizer [46], batch size 8,

1-5 epochs (varies per relation; determined using 5-fold cross-validation). The

13The relations spouse and sibling are bidirectional, therefore the opposite annotation is
added as annotation with the same relation.

132

test sets of both KGQA datasets, SimpleQuestions and LC-QuAD 2.0, were

used for testing models.

8.4.4 Test results

Table 8.3 shows test results for models trained on FREDA plus various amounts

of dedicated questions from the preprocessed KGQA datasets SimpleQuestions

and LC-QuAD 2.0. This was compared to training solely on these various

amounts of questions from KGQA datasets. The corresponding preprocessed

test sets were used to report Precision, Recall and F1.

In both cases, all extracted sentences from FREDA were used for model

training and 0, 10, 25, 50, 100 (per relation) or all questions were added

from KGQA datasets (4,995 questions from SimpleQuestions and 10,107 from

LC-QuAD 2.0). The point of this experiment is to see whether any dedicated

KGQA data is needed at all and how model performance is affected if a minimal

amount is added. Ideally, no KGQA data should be necessary to add, since

for some relations, depending on the underlying KGP system, there may be no

annotated data available. However, it may be possible to annotate/write a few

questions per relation relatively quickly and it would be interesting to know

how model performance can be improved through adding a certain number of

annotated questions per relation.

SimpleQuestions

Even if no questions from the SimpleQuestions training set were added to

FREDA data, an F1 of 0.74 clearly indicates that an RE dataset can be used

to detect an entity-relation pair from a natural language question relatively

well. Adding questions to the training data, even just 10 per relation, increases

model performance by a large margin, but it seems that adding more questions

than 10 per relation, may not result in large improvements anymore. Training

on questions only (no FREDA datasets; see SimpleQuestions column in Table

8.3), model performance is always significantly lower than when FREDA data

is added or used solely. Except, FREDA data does not help anymore if all

questions from SimpleQuestions are used.

133

SimpleQuestions + FREDA
Questions P R F1 P R F1
0 – – – 0.93 0.62 0.74
10 0.39 0.77 0.52 0.95 1.0 0.97
25 0.32 0.85 0.46 0.95 1.0 0.97
50 0.50 0.97 0.66 0.95 1.0 0.97
100 0.52 0.95 0.67 0.94 1.0 0.97
All 0.98 1.0 0.99 0.98 1.0 0.99

LC-QuaD 2.0 + FREDA
Questions P R F1 P R F1
0 – – – 0.86 0.86 0.86
10 0.25 1.0 0.39 0.82 0.95 0.88
25 0.47 1.0 0.64 0.83 0.96 0.89
50 0.54 1.0 0.70 0.82 0.97 0.89
100 0.56 0.96 0.70 0.83 0.98 0.90
All 0.93 0.96 0.94 0.94 0.97 0.95

Table 8.3: Test results for models trained on FREDA including no or various
amounts of questions from SimpleQuestions and LC-QuAD 2.0 as well as re-
sults for models trained without FREDA data. Precision, Recall and F1 are
reported for models tested on the corresponding KGQA datasets test sets.

LC-QuAD 2.0

For LC-QuAD 2.0, results are very similar (see LC-QuAD 2.0 and the following

column in Table 8.3). When trained on questions data only, satisfying model

performance can only be achieved through training on all questions. Whereas

training solely on FREDA data already achieves and F1 of 0.86 with minor

improvements when questions from LC-QuAD 2.0 are added. The more com-

plex questions from LC-QuAD 2.0 are longer than in SimpleQuestions and

are, presumably, syntactically more similar to sentences found in FREDA,

therefore adding questions data does not result in improvements as large as in

the SimpleQuestions case. In this case, FREDA slightly improves test results

when all questions are used for training.

For both KGQA datasets, these results indicate that it is indeed possible

to use RE datasets, used for creating a KG, to train a model that can predict

entity-relation pairs in order to construct SPARQL queries.

134

8.4.5 Examples

Consider the conversation and resulting KG from Figure 1.2, which has been

created by the systems described in the Chapters 5, 6 and 7. Using the ap-

proach proposed in this chapter, the model trained with the aforementioned

LC-QuAD 2.0+FREDA (all) dataset and the Entity Recognition capabilities

of the approaches described in Chapters 5 and 6, we can answer the questions

in Table 8.4 based on the given KG.

The described KGQA system uses KGP (see Chapter 5) in order to detect

entities, for which relations are predicted. The entity in the questions is then

added as subject or object (both are tested14) for the model and a relation (or

no relation) is predicted and converted into a SPARQL query (see Figure 8.1

for the actual workflow). This query was then applied to the KG at hand in

order to retrieve the answers.

Question KGQA Answer
Who are Irene’s children? ? child of Irene Allan, Philip, David
Who are Irene’s parents? Irene child of ? George, Mary
Who is Irene married to? Irene spouse ? John
Where was Irene born? Irene place of birth ? Calgary
Where does Irene live? Irene place of residence ? Fort Saskatchewan

Table 8.4: Questions, corresponding KGQA extractions (that lead to SPARQL
queries), and answers from the KG extracted from the conversation in Figure
1.2a.

8.5 Conclusion

In this chapter, we showed how our FREDA datasets, not dedicated to predict

relations in questions, can be used to write SPARQL queries, which can be

applied to an RDF-based KG. While it is possible to use existing KGQA

datasets, e.g. SimpleQuestions and LC-QuAD 2.0, to train models to do so on

large KGs, such as Wikidata and DBpedia, it may not be possible to find such

datasets for other KGs. Specifically, if a KGP system to create a KG from

scratch is used, the set of relations found in existing datasets may not match

14This is irrelevant for the spouse-relation as it is bidirectional; the model predicted the
relation for Irene as subject as well as object, both leading to the correct result.

135

the ones extracted by the system. Therefore, either potentially large amounts

of questions have to be written and labelled with a corresponding SPARQL

query, which may not be feasible, or the proposed techniques can be used to

take advantage of RE datasets, which are already used by the KGP system to

extract relations to add to the KG. We showed examples of questions which are

converted into SPARQL queries and answered for the KG created in previous

chapters.

The SPARQL queries, which can be created through the entity-relations

pairs predicted by our models, are still limited as the proposed approach is

not able to add blank nodes, filters, counts or limits. For future work, we

would like to adjust the model to be able to predict these missing SPARQL

functionalities.

136

Chapter 9

Conclusion

This chapter aims to summarize the key findings and main contributions of

this thesis regarding the research questions, as described in Chapter 1, followed

by a discussion and opportunities for future work.

9.1 Key Findings

We presented a general KGP system for conversations. It follows a pipelined

approach with the subtasks NER, EL and RE. A KGQA system is added in

order to be able to translate natural language questions into SPARQL queries,

which can be applied to the resulting KG. The focus of the subtasks NER,

with its classes, and RE, with its set of relations, lays on the interest of elderly

people, mainly in the areas of Family/Friends, Health, and Nutrition. In the

following, we present the key findings of this thesis.

We described the necessity of approaches that are able to provide mean-

ingful text data, which can be manually annotated, and reduce the cognitive

load for the annotator as much as possible. Our tool FREDA and, specifically,

the datasets we manually annotated for the task of RE provide a possibility

to create manually annotated datasets for the NLP tasks of interest in a less

time-consuming way than before. The models trained on the resulting RE

datasets for 19 relations with at least 500 fully annotated sentences per rela-

tion show good performance on the corresponding test sets as well as on other

datasets, namely KnowledgeNet and CRE.

NER models typically only detect the classes of entities that can be found

137

in the datasets they were trained on. Whenever a new class should be added,

a completely new dataset needs to be acquired with exhaustive annotations of

all entities and all classes, since the models commonly used for NER would not

necessarily work well on, for example, partially annotated datasets. However,

these partially annotated datasets are much easier to come by and we showed

an approach to derive these kind of datasets for classes of interest from the

Wikipedia category hierarchy with a limited amount of time and effort. In ad-

dition, we showed three approaches to train models on existing NER datasets,

namely CoNLL 2003, combined with datasets derived from Wikipedia for the

classes Food and Drugs. In order to test our approach, we manually annotated

500 sentences per class.

Due to the lack of complete systems for demonstration and testing purposes

for KGP, we developed a web-based system, which is capable of all KGP

subtasks and keeping track of the state of the conversation in a KG. Each

module can be replaced or extended, e.g. through adding rules for NER or

RE. It is suitable for accepting utterances by the user and display the current

state of the KG.

One way of retrieving information from the KG, e.g. for validation pur-

poses, is to ask questions in natural language and use the KG to retrieve an

answer, which is done using SPARQL queries. There are existing datasets for

translating such questions into SPARQL queries for the Wikidata, DBpedia

or Freebase KGs, which are not suitable for our KG due to the different set

of relations stored. In order to avoid the manual creation of a new datasets

matching our KG, we developed an approach, which is capable of re-using the

aforementioned RE datasets, to help translate natural language questions into

SPARQL queries.

9.2 Main Contributions

These are the main contributions of this thesis, including the corresponding

codebases, which are publicly available:

138

• KGP from Conversations1: A proposal of a complete KGP system, in-

cluding NER, EL and RE.

• Wikipedia EXhaustive Entity Annotations (WEXEA)2: WEXEA is an

approach aiming to add additional annotations to Wikipedia dumps for

the languages English, German, French, and Spanish. We showed how

datasets for the tasks NER, EL, CR and RE (using Distant Supervision)

can be extracted.

• Flexible Relation Extraction Data Annotation (FREDA)3: This tool al-

lows the users to create manually annotated datasets for a variety NLP

tasks, quickly and accurately. Specifically, for the task of RE, we showed

that text data from WEXEA can help significantly speeding up manual

data annotations.

• NER for Partially Annotated Datasets4: We described a procedure on

how to create partially annotated datasets for new classes derived from

Wikipedia categories semi-automatically. Training strategies for NER

models on such datasets were compared and we released two manually

annotated datasets of 500 sentences each for the classes Food and Drugs

in order to test how generalizable our data extraction techniques are.

• Knowledge Graph Question Answering (KGQA)5: This is an approach,

which is capable of taking advantage of ordinary RE datasets, used for

KGP, in order to translate natural language questions into SPARQL

queries, which can be applied to a KG. A suitable model architecture

to achieve this task as well as an evaluation based on an existing RE

dataset, showing the effectiveness, is included.

1https://github.com/mjstrobl/KGP_from_Conversations
2Codebase as well as multilingual datasets: https://github.com/mjstrobl/WEXEA
3Codebases and datasets for FREDA are available at https://github.com/mjstrobl/

FREDA.
4Codebase and datasets: https://github.com/mjstrobl/NER_for_partially_

annotated_data
5https://github.com/mjstrobl/KGQA_using_KG_Construction_Data

139

https://github.com/mjstrobl/KGP_from_Conversations
https://github.com/mjstrobl/WEXEA
https://github.com/mjstrobl/FREDA
https://github.com/mjstrobl/FREDA
https://github.com/mjstrobl/NER_for_partially_annotated_data
https://github.com/mjstrobl/NER_for_partially_annotated_data
https://github.com/mjstrobl/KGQA_using_KG_Construction_Data

9.3 Future Work

For future work, we identified a number of potential improvements to the

aforementioned contributions as well as the usefulness of a KGP system for

downstream NLP tasks:

• Even though WEXEA can be applied to the English, German, French,

and Spanish Wikipedia, many other languages are currently not sup-

ported. This is due to the fact that certain Wikipedia keywords are

language-specific, i.e. they have to be translated, as well as the CoreNLP

NER used by WEXEA does not support all of these languages. There-

fore, the barrier of language-dependent keywords has to be removed and

a more universal NER model, which can be trained on more languages

should be used instead of CoreNLP.

• Similarly, through adding more partially annotated datasets for the NER

subtask, more entity classes can be detected. In addition, there is an

obvious gap between model performance on these partially annotated

datasets and the corresponding manually annotated ones. This gap has

to be further investigated and narrowed, if possible.

• We are using a fixed set of relations of our KGP system, therefore more

relations with rules and models trained on datasets created using our

FREDA framework would be beneficial.

• Our KGQA system is currently not able to process certain SPARQL

queries, such as COUNT, LIMIT or queries including FILTERs. It needs

to be adapted to be able to return general SPARQL queries including

these.

• People with dementia, which especially elderly people are affected by,

may often mention similar or the same facts. If such facts can be detected

by the KGP system, it may be able to contribute detecting signs of

dementia.

140

• As mentioned in Chapter 1, a Response Generation system could take

advantage of the extracted KG. Typically sequence-to-sequence models

are used for such systems, which read previous utterances and generate

a new one. However, the older an utterance is, important to generate

the next one, the less likely it is to be taken into account. Therefore,

a structured KG could provide this information continuously and help

producing more interesting responses.

9.4 Limitations

Our approach for KGP has a number of known limitations, which are addressed

in this section.

9.4.1 Triple-based Storage of Facts

The triple-based, yet commonly used approach, of storing facts in a KG based

on RDF has the limitation that only a single object per relation can be ex-

tracted. This can be illustrated by the following example:

“John lives in Vancouver since Jun 8, 2022.”

From this sentence our KGP approach is able to extract the relation

place of residence with John as subject and Vancouver as object. However,

the date as second object is ignored in this case. This issue is caused by

the fact that our RE approach is limited to extracting only two arguments per

relation, i.e. it can be considered as binary RE, whereas an n-ary RE approach

would be able to additionally cover cases where the relation has less or more

than two arguments. In addition, RDF itself is triple-based, even though so-

called Blank Nodes could be used to represent relations with various numbers

of objects, i.e. multiple triples can be added for a single relation, which is

shown by Figure 9.1.

There is existing work on n-ary RE, e.g. shown in [66] for a medical dataset

based on Distant Supervision. The models our system uses, see Figure 7.1,

could be adjusted to accept more entity markers as well. However, the lack of

141

Figure 9.1: Corresponding RDF representation with a Blank Node.

high-quality datasets for RE remains. This is even more challenging to address

in case of n-ary relations.

9.4.2 Maintenance of Existing Facts

As mentioned in Section 5.4, existing facts in the KG are not revised by the

proposed approaches. This could lead to inconsistencies if the entirety of

extracted facts, i.e. the current KG, is considered as the truth at any given

moment. There are two ways to handle this: (1) Replace facts in case they are

not compatible with existing facts. (2) Adding a timestamp for each relation,

which can be realized through Blank Nodes.

In the latter case, a system using the resulting KG needs to be able to

understand that certain facts can be seen as updates of older facts, either

because relations of a person, e.g. place of residence, can change over time or

the KG may contain incorrect facts that were corrected later on. A Response

Generation or Dialogue System, which is able to actively asking the user, i.e.

adding interactivity to the system, in case a contradiction is detected, can

resolve these facts and help revising the KG.

9.4.3 Downstream Tasks

In the context of this work, the ultimate goal is a chatbot capable of chitchat-

ting. We provided approaches, which lead to the extraction of facts from

utterances, or text data in general, in order to build a KG. This KG can be

considered as a long-term memory, which can, for example, be used for down-

stream tasks, such as a Dialogue System. Typically, these systems follow a

142

sequence-to-sequence modelling approach, reading the history of the dialogue

and producing new utterances, e.g. as described in [76]. Such a KG can

provide important information of related entities to such a system without

forgetting as there is no guarantee that the model’s encoder6 captures this

information from the history of utterances. It is beyond the scope of this work

to show the usefulness of such a KG for downstream tasks other than KGQA,

e.g. Dialogue Systems.

6The encoder of a sequence-to-sequence model encodes the history of utterances, which
is fed into the decoder, producing a new utterance.

143

References

[1] A. Akbik, T. Bergmann, and R. Vollgraf, “Pooled contextualized em-
beddings for named entity recognition,” in Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), 2019, pp. 724–728.

[2] A. Akbik, D. Blythe, and R. Vollgraf, “Contextual string embeddings for
sequence labeling,” in Proceedings of the 27th International Conference
on Computational Linguistics, 2018, pp. 1638–1649.

[3] C. Alt, A. Gabryszak, and L. Hennig, “TACRED revisited: A thorough
evaluation of the TACRED relation extraction task,” in Proceedings
of the 58th Annual Meeting of the Association for Computational Lin-
guistics, Online: Association for Computational Linguistics, Jul. 2020,
pp. 1558–1569. doi: 10 . 18653 / v1 / 2020 . acl - main . 142. [Online].
Available: https://www.aclweb.org/anthology/2020.acl-main.142.

[4] C. Alt, M. Hübner, and L. Hennig, “Improving relation extraction by
pre-trained language representations,” in Automated Knowledge Base
Construction (AKBC), 2018.

[5] G. Angeli, M. J. J. Premkumar, and C. D. Manning, “Leveraging lin-
guistic structure for open domain information extraction,” in Proceedings
of the 53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), 2015, pp. 344–354.

[6] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z.
Ives, “Dbpedia: A nucleus for a web of open data,” in Proceedings of
the 6th International The Semantic Web and 2nd Asian Conference on
Asian Semantic Web Conference, ser. ISWC’07/ASWC’07, Busan, Ko-
rea: Springer-Verlag, 2007, pp. 722–735, isbn: 3540762973.

[7] ——, “Dbpedia: A nucleus for a web of open data,” in The semantic
web, Springer, 2007, pp. 722–735.

[8] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak,
and S. Hellmann, “Dbpedia-a crystallization point for the web of data,”
Web Semantics: science, services and agents on the world wide web,
vol. 7, no. 3, pp. 154–165, 2009.

144

https://doi.org/10.18653/v1/2020.acl-main.142
https://www.aclweb.org/anthology/2020.acl-main.142

[9] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Free-
base: A collaboratively created graph database for structuring human
knowledge,” in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, AcM, 2008, pp. 1247–1250.

[10] A. Bordes, N. Usunier, S. Chopra, and J. Weston, “Large-scale simple
question answering with memory networks,” arXiv preprint arXiv:1506.02075,
2015.

[11] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer networks and ISDN systems, vol. 30, no. 1-7,
pp. 107–117, 1998.

[12] S. Brody, S. Wu, and A. Benton, “Towards realistic few-shot relation
extraction,” in Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, 2021, pp. 5338–5345.

[13] A. T. Chaganty, A. Paranjape, J. Bolton, M. Lamm, J. Lei, A. See, K.
Clark, Y. Zhang, P. Qi, and C. D. Manning, “Stanford at tac kbp 2017:
Building a trilingual relational knowledge graph,” in TAC, 2017.

[14] N. Chambers, D. Cer, T. Grenager, D. Hall, C. Kiddon, B. MacCartney,
M.-C. De Marneffe, D. Ramage, E. Yeh, and C. D. Manning, “Learning
alignments and leveraging natural logic,” in Proceedings of the ACL-
PASCAL Workshop on Textual Entailment and Paraphrasing, Associa-
tion for Computational Linguistics, 2007, pp. 165–170.

[15] A. X. Chang and C. D. Manning, “Sutime: A library for recognizing and
normalizing time expressions.,” in Lrec, vol. 2012, 2012, pp. 3735–3740.

[16] ——, “TokensRegex: Defining cascaded regular expressions over tokens,”
Department of Computer Science, Stanford University, Tech. Rep. CSTR
2014-02, 2014.

[17] J. P. Chiu and E. Nichols, “Named entity recognition with bidirectional
lstm-cnns,” Transactions of the association for computational linguistics,
vol. 4, pp. 357–370, 2016.

[18] K. Clark and C. D. Manning, “Entity-centric coreference resolution with
model stacking,” in Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers),
2015, pp. 1405–1415.

[19] ——, “Deep reinforcement learning for mention-ranking coreference mod-
els,” in Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, 2016, pp. 2256–2262.

[20] E. F. Codd, “Seven steps to rendezvous with the casual user,” in IFIP
Working Conference Data Base Management, 1974.

145

[21] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in Pro-
ceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), 2019, pp. 4171–4186.

[22] D. Diomedi and A. Hogan, Question answering over knowledge graphs
with neural machine translation and entity linking, 2021. doi: 10.48550/
ARXIV.2107.02865.

[23] G. R. Doddington, A. Mitchell, M. A. Przybocki, L. A. Ramshaw, S. M.
Strassel, and R. M. Weischedel, “The automatic content extraction (ace)
program-tasks, data, and evaluation.,” in Lrec, Lisbon, vol. 2, 2004, p. 1.

[24] M. Dubey, D. Banerjee, A. Abdelkawi, and J. Lehmann, “Lc-quad 2.0:
A large dataset for complex question answering over wikidata and dbpe-
dia,” in Proceedings of the 18th International Semantic Web Conference
(ISWC), Springer, 2019.

[25] N. Dziri, E. Kamalloo, K. Mathewson, and O. R. Zaiane, “Augment-
ing neural response generation with context-aware topical attention,” in
Proceedings of the First Workshop on NLP for Conversational AI, 2019,
pp. 18–31.

[26] H. Elsahar, P. Vougiouklis, A. Remaci, C. Gravier, J. Hare, F. Laforest,
and E. Simperl, “T-rex: A large scale alignment of natural language with
knowledge base triples,” in Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC 2018), 2018.

[27] A. Fader, S. Soderland, and O. Etzioni, “Identifying relations for open
information extraction,” in Proceedings of the conference on empirical
methods in natural language processing, Association for Computational
Linguistics, 2011, pp. 1535–1545.

[28] J. R. Finkel, T. Grenager, and C. Manning, “Incorporating non-local
information into information extraction systems by gibbs sampling,” in
Proceedings of the 43rd annual meeting on association for computational
linguistics, Association for Computational Linguistics, 2005, pp. 363–
370.

[29] O.-E. Ganea, M. Ganea, A. Lucchi, C. Eickhoff, and T. Hofmann, “Prob-
abilistic bag-of-hyperlinks model for entity linking,” in Proceedings of the
25th International Conference on World Wide Web, 2016, pp. 927–938.

[30] T. Gao, X. Han, H. Zhu, Z. Liu, P. Li, M. Sun, and J. Zhou, “Fewrel 2.0:
Towards more challenging few-shot relation classification,” in Proceed-
ings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), 2019, pp. 6250–6255.

[31] P. Gärdenfors, Belief revision, 29. Cambridge University Press, 2003.

146

https://doi.org/10.48550/ARXIV.2107.02865
https://doi.org/10.48550/ARXIV.2107.02865

[32] J. Geiß, A. Spitz, and M. Gertz, “Neckar: A named entity classifier
for wikidata,” in International Conference of the German Society for
Computational Linguistics and Language Technology, Springer, 2017,
pp. 115–129.

[33] A. Ghaddar and P. Langlais, “Coreference in wikipedia: Main concept
resolution,” in Proceedings of The 20th SIGNLL Conference on Compu-
tational Natural Language Learning, 2016, pp. 229–238.

[34] ——, “Winer: A wikipedia annotated corpus for named entity recogni-
tion,” in Proceedings of the Eighth International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), 2017, pp. 413–
422.

[35] ——, “Transforming wikipedia into a large-scale fine-grained entity type
corpus,” in Proceedings of the eleventh international conference on lan-
guage resources and evaluation (LREC 2018), 2018.

[36] Z. Guo and D. Barbosa, “Robust named entity disambiguation with
random walks,” Semantic Web, vol. 9, no. 4, pp. 459–479, 2018.

[37] N. Gupta, S. Singh, and D. Roth, “Entity linking via joint encoding of
types, descriptions, and context,” in Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, 2017, pp. 2681–
2690.

[38] X. Han, H. Zhu, P. Yu, Z. Wang, Y. Yao, Z. Liu, and M. Sun, “Fewrel: A
large-scale supervised few-shot relation classification dataset with state-
of-the-art evaluation,” in Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, 2018, pp. 4803–4809.

[39] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum, “Yago2:
A spatially and temporally enhanced knowledge base from wikipedia,”
Artificial Intelligence, vol. 194, pp. 28–61, 2013.

[40] J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau, M. Pinkal, M. Span-
iol, B. Taneva, S. Thater, and G. Weikum, “Robust disambiguation of
named entities in text,” in Proceedings of the Conference on Empirical
Methods in Natural Language Processing, Association for Computational
Linguistics, 2011, pp. 782–792.

[41] S. Huang, S. Strassel, A. Mitchell, and Z. Song, “Shared resources for
multilingual information extraction and challenges in named entity an-
notation,” in Proceedings of the IJCNLP-04 Workshop on Named Entity
Recognition for NLP Applications, 2004, pp. 112–119.

[42] Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for sequence
tagging,” arXiv preprint arXiv:1508.01991, 2015.

[43] H. Ji, R. Grishman, and H. T. Dang, “Overview of the tac2011 knowledge
base population track,” in Third text analysis conference, 2010.

147

[44] Z. Jie, P. Xie, W. Lu, R. Ding, and L. Li, “Better modeling of incomplete
annotations for named entity recognition,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), 2019, pp. 729–734.

[45] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy,
“Spanbert: Improving pre-training by representing and predicting spans,”
Transactions of the Association for Computational Linguistics, vol. 8,
pp. 64–77, 2020.

[46] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[47] M. Klang and P. Nugues, “Linking, searching, and visualizing entities in
wikipedia,” in Proceedings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018), 2018.

[48] N. Kolitsas, O.-E. Ganea, and T. Hofmann, “End-to-end neural entity
linking,” in Proceedings of the 22nd Conference on Computational Nat-
ural Language Learning, 2018, pp. 519–529.

[49] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,
“Neural architectures for named entity recognition,” arXiv preprint arXiv:1603.01360,
2016.

[50] H. Lee, A. Chang, Y. Peirsman, N. Chambers, M. Surdeanu, and D.
Jurafsky, “Deterministic coreference resolution based on entity-centric,
precision-ranked rules,” Computational linguistics, vol. 39, no. 4, pp. 885–
916, 2013.

[51] K. Lee, L. He, and L. Zettlemoyer, “Higher-order coreference resolution
with coarse-to-fine inference,” arXiv preprint arXiv:1804.05392, 2018.

[52] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.
Mendes, S. Hellmann, M. Morsey, P. Van Kleef, S. Auer, et al., “Dbpedia–
a large-scale, multilingual knowledge base extracted from wikipedia,”
Semantic web, vol. 6, no. 2, pp. 167–195, 2015.

[53] X. Ling and D. S. Weld, “Fine-grained entity recognition,” in Proceedings
of the Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012,
pp. 94–100.

[54] R. Logan, N. F. Liu, M. E. Peters, M. Gardner, and S. Singh, “Barack’s
wife hillary: Using knowledge graphs for fact-aware language modeling,”
in Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics, 2019, pp. 5962–5971.

[55] X. Ma, N. Fauceglia, Y.-c. Lin, and E. Hovy, “Cmu system for entity
discovery and linking at tac-kbp 2017,” in TAC, 2017.

148

[56] F. Mahdisoltani, J. Biega, and F. M. Suchanek, “Yago3: A knowledge
base from multilingual wikipedias,” in Conference on Innovative Data
Systems Research, 2015.

[57] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D.
McClosky, “The stanford corenlp natural language processing toolkit,”
in Proceedings of 52nd annual meeting of the association for computa-
tional linguistics: system demonstrations, 2014, pp. 55–60.

[58] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D.
McClosky, “The Stanford CoreNLP natural language processing toolkit,”
in Association for Computational Linguistics (ACL) System Demonstra-
tions, 2014, pp. 55–60. [Online]. Available: http://www.aclweb.org/
anthology/P/P14/P14-5010.

[59] S. Mayhew, S. Chaturvedi, C.-T. Tsai, and D. Roth, “Named entity
recognition with partially annotated training data,” in Proceedings of the
23rd Conference on Computational Natural Language Learning (CoNLL),
2019, pp. 645–655.

[60] F. Mesquita, M. Cannaviccio, J. Schmidek, P. Mirza, and D. Barbosa,
“Knowledgenet: A benchmark dataset for knowledge base population,”
in Proceedings of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 749–758.

[61] G. A. Miller, “Wordnet: A lexical database for english,” Communications
of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[62] M. J. Minock, “A step towards realizing codd’s vision of rendezvous with
the casual user,” in VLDB, 2007.

[63] M. Mintz, S. Bills, R. Snow, and D. Jurafsky, “Distant supervision for
relation extraction without labeled data,” in Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Processing of the AFNLP:
Volume 2-Volume 2, Association for Computational Linguistics, 2009,
pp. 1003–1011.

[64] J. Nothman, J. R. Curran, and T. Murphy, “Transforming wikipedia into
named entity training data,” in Proceedings of the Australasian Language
Technology Association Workshop 2008, 2008, pp. 124–132.

[65] T. Pellissier Tanon, D. Vrandečić, S. Schaffert, T. Steiner, and L. Pintscher,
“From freebase to wikidata: The great migration,” in Proceedings of the
25th international conference on world wide web, 2016, pp. 1419–1428.

[66] N. Peng, H. Poon, C. Quirk, K. Toutanova, and W.-t. Yih, “Cross-
sentence n-ary relation extraction with graph lstms,” Transactions of the
Association for Computational Linguistics, vol. 5, pp. 101–115, 2017.

149

http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010

[67] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), 2014, pp. 1532–1543.

[68] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” in Proceed-
ings of NAACL-HLT, 2018, pp. 2227–2237.

[69] M. E. Peters, M. Neumann, R. Logan, R. Schwartz, V. Joshi, S. Singh,
and N. A. Smith, “Knowledge enhanced contextual word representa-
tions,” in Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 43–54.

[70] S. Riedel, L. Yao, and A. McCallum, “Modeling relations and their
mentions without labeled text,” in Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases, Springer, 2010,
pp. 148–163.

[71] S. Rosenman, A. Jacovi, and Y. Goldberg, “Exposing shallow heuristics
of relation extraction models with challenge data,” in Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2020, pp. 3702–3710.

[72] E. F. Sang and F. De Meulder, “Introduction to the conll-2003 shared
task: Language-independent named entity recognition,” arXiv preprint
cs/0306050, 2003.

[73] V. Sanh, T. Wolf, and S. Ruder, “A hierarchical multi-task approach for
learning embeddings from semantic tasks,” arXiv preprint arXiv:1811.06031,
2018.

[74] ——, “A hierarchical multi-task approach for learning embeddings from
semantic tasks,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, 2019, pp. 6949–6956.

[75] M. Schmitz, R. Bart, S. Soderland, O. Etzioni, et al., “Open language
learning for information extraction,” in Proceedings of the 2012 joint con-
ference on empirical methods in natural language processing and compu-
tational natural language learning, Association for Computational Lin-
guistics, 2012, pp. 523–534.

[76] I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau, “Build-
ing end-to-end dialogue systems using generative hierarchical neural net-
work models,” in Thirtieth AAAI Conference on Artificial Intelligence,
2016.

[77] Y. Shao, S. Gouws, D. Britz, A. Goldie, B. Strope, and R. Kurzweil,
“Generating high-quality and informative conversation responses with
sequence-to-sequence models,” in Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, 2017, pp. 2210–2219.

150

[78] A. Sil, G. Kundu, R. Florian, and W. Hamza, “Neural cross-lingual entity
linking,” in Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[79] L. B. Soares, N. FitzGerald, J. Ling, and T. Kwiatkowski, “Matching
the blanks: Distributional similarity for relation learning,” in Proceed-
ings of the 57th Annual Meeting of the Association for Computational
Linguistics, 2019, pp. 2895–2905.

[80] V. I. Spitkovsky and A. X. Chang, “A cross-lingual dictionary for english
wikipedia concepts,” 2012.

[81] P. Stenetorp, S. Pyysalo, G. Topić, T. Ohta, S. Ananiadou, and J. Tsujii,
“Brat: A web-based tool for nlp-assisted text annotation,” in Proceedings
of the Demonstrations at the 13th Conference of the European Chapter
of the Association for Computational Linguistics, 2012, pp. 102–107.

[82] M. Strobl, A. Trabelsi, and O. Zaiane, “Enhanced entity annotations
for multilingual corpora,” in Proceedings of the Language Resources and
Evaluation Conference, Marseille, France: European Language Resources
Association, Jun. 2022, pp. 3732–3740. [Online]. Available: https://
aclanthology.org/2022.lrec-1.398.

[83] ——, “Freda: Flexible relation extraction data annotation,” arXiv preprint
arXiv:2204.07150, 2022.

[84] M. Strobl, A. Trabelsi, and O. R. Zaiane, “Wexea: Wikipedia exhaustive
entity annotation,” in Proceedings of The 12th Language Resources and
Evaluation Conference, 2020, pp. 1951–1958.

[85] M. Strobl, A. Trabelsi, and O. Zäıane, “Named entity recognition for par-
tially annotated datasets,” in Natural Language Processing and Infor-
mation Systems, P. Rosso, V. Basile, R. Mart́ınez, E. Métais, and F.
Meziane, Eds., Cham: Springer International Publishing, 2022, pp. 299–
306, isbn: 978-3-031-08473-7.

[86] E. F. Tjong Kim Sang, “Introduction to the CoNLL-2002 shared task:
Language-independent named entity recognition,” in COLING-02: The
6th Conference on Natural Language Learning 2002 (CoNLL-2002), 2002.
[Online]. Available: https://www.aclweb.org/anthology/W02-2024.

[87] P. Trivedi, G. Maheshwari, M. Dubey, and J. Lehmann, “Lc-quad: A
corpus for complex question answering over knowledge graphs,” in In-
ternational Semantic Web Conference, Springer, 2017, pp. 210–218.

[88] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S.
Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.,
vol. 30, Curran Associates, Inc., 2017. [Online]. Available: https://

proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-

Paper.pdf.

151

https://aclanthology.org/2022.lrec-1.398
https://aclanthology.org/2022.lrec-1.398
https://www.aclweb.org/anthology/W02-2024
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[89] ——, “Attention is all you need,” in Advances in neural information
processing systems, 2017, pp. 5998–6008.

[90] D. Vollmers, R. Jalota, D. Moussallem, H. Topiwala, A.-C. Ngonga
Ngomo, and R. Usbeck, “Knowledge graph question answering using
graph-pattern isomorphism,” in Further with Knowledge Graphs, IOS
Press, 2021, pp. 103–117.

[91] D. Vrandečić, “Wikidata: A new platform for collaborative data collec-
tion,” in Proceedings of the 21st international conference on world wide
web, 2012, pp. 1063–1064.

[92] T. Winograd, “Understanding natural language,” Cognitive psychology,
vol. 3, no. 1, pp. 1–191, 1972.

[93] D. Yu, K. Sun, C. Cardie, and D. Yu, “Dialogue-based relation extrac-
tion,” arXiv preprint arXiv:2004.08056, 2020.

[94] ——, “Dialogue-based relation extraction,” in Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, On-
line: Association for Computational Linguistics, Jul. 2020, pp. 4927–
4940. doi: 10.18653/v1/2020.acl- main.444. [Online]. Available:
https://www.aclweb.org/anthology/2020.acl-main.444.

[95] X. Zeng, D. Zeng, S. He, K. Liu, and J. Zhao, “Extracting relational
facts by an end-to-end neural model with copy mechanism,” in Proceed-
ings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2018, pp. 506–514.

[96] Y. Zhang, A. T. Chaganty, A. Paranjape, D. Chen, J. Bolton, P. Qi, and
C. D. Manning, “Stanford at TAC KBP 2016: Sealing pipeline leaks and
understanding chinese.,” in TAC, 2016.

[97] Y. Zhang, V. Zhong, D. Chen, G. Angeli, and C. D. Manning, “Position-
aware attention and supervised data improve slot filling,” in Proceedings
of the 2017 Conference on Empirical Methods in Natural Language Pro-
cessing, 2017, pp. 35–45.

152

https://doi.org/10.18653/v1/2020.acl-main.444
https://www.aclweb.org/anthology/2020.acl-main.444

	Introduction
	Motivation
	Examples
	Initial Assumptions
	Problem Statement
	Research Questions and Contributions
	RE Dataset Creation
	ER for Partially Annotated Datasets
	Interactive System for KGP
	KGQA

	Organization

	Related Work
	Related work for KGP
	Entity Recognition
	Entity Linking
	Relation Extraction

	Other Approaches
	CoreNLP
	Hierarchical Multi-Task Learning model

	Datasets derived from Wikipedia
	Introduction
	Related Work
	Wikipedia Annotated Corpora for NER
	Distant Supervision

	Wikipedia
	Method
	Dictionary Creation
	Direct Mention Annotations
	Candidate Conflict Resolution
	Co-reference Resolution
	Multi-Language

	Evaluation
	Dataset Creation
	Visualization
	WEXEA Statistics
	Entity Annotations
	Baseline Comparison
	Dataset Creation

	Conclusion

	Flexible Relation Extraction Data Annotation
	Introduction
	Related Work
	Flexible Relation Extraction Data Annotation
	General Architecture
	WEXEA as Data Source
	Adding Data from WEXEA
	Data Annotation
	More Annotation Tasks

	Evaluation
	Baseline
	Comparison

	Conclusion

	A Knowledge Graph Population System for Conversations
	Introduction
	Related Work
	KGP from Conversations
	Entity Recognition
	Entity Linking
	Relation Extraction
	User Interface

	Discussion
	Belief Revision
	Interactivity
	Missing Baseline Comparison
	Example

	Conclusion

	Entity Recognition
	Introduction
	Related Work
	Method
	Data creation
	Model training strategies

	Evaluation
	Datasets derived from Wikipedia
	Model parameters
	Baselines
	CoNLL + Wikipedia
	Example

	Conclusion

	Relation Extraction
	Introduction
	Related Work
	Model Architecture
	Evaluation
	Model Training and Dataset Statistics
	Baselines
	Test Results
	Challenge RE dataset
	How many sentences do we need per relation?
	Annotation Speed
	Example

	Acknowledgements
	Conclusion

	Knowledge Graph Question Answering
	Introduction
	Related Work
	Simple Questions
	Large Complex Question Answering Dataset

	Method
	SPARQL Query Construction
	Model Architecture

	Evaluation
	Baselines
	Dataset Preparation
	Model training
	Test results
	Examples

	Conclusion

	Conclusion
	Key Findings
	Main Contributions
	Future Work
	Limitations
	Triple-based Storage of Facts
	Maintenance of Existing Facts
	Downstream Tasks

	References

