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Abstract

The focus of this thesis is on developing new methods for the analysis of multi­

variate data with mixtures of multinomial, ordinal, and continuous variables. 

A model-based approach is taken that relies on specifying a model for the joint 

distribution of the variables. This approach provides a systematic and non-ad 

hoc way of analyzing mixed data, as opposed to those currently available.

By adopting a general location model (Olkin and Tate, 1961) for mixed 

data, exact global likelihood ratio tests of the so-called location hypotheses are 

obtained, both in one-sample and multi-sample settings. For the one-sample 

case, it is shown that the likelihood ratio test is consistent and unbiased. In 

addition, simulation studies show that it performs quite competitively relative 

to the approach that carries out separate but simultaneous tests of the location 

parameters. Extensions to the multi-sample case are also studied, and an 

attempt is made to incorporate heterogeneity in the tests.

As another alternative to maximum likelihood estimation, the pairwise 

likelihood approach is adapted to the grouped continuous and conditional 

grouped continuous m odels. U nlike m axim um  likelihood  estim ation , th e  pro­

posed method is computationally simple, and unlike partition maximum like­

lihood methods (Bedrick et al., 2000; Poon and Lee, 1987), there is no need
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to deal with multiple sets of estimates. The estimators based on the proposed 

method are shown to be consistent and asymptotically normally distributed, 

and tend to have minimal bias and mean-squared errors.

A general model for mixed multinomial, ordinal and continuous data, 

called the general mixed-data model, is also developed. In contrast to existing 

models for mixed data, the proposed model not only accounts for the different 

measurement levels in the data but also incorporates associations between the 

three variable types. Maximum likelihood and maximum pairwise likelihood 

methods are outlined for the model, with the latter providing a more compu­

tationally feasible alternative to the former. The asymptotic distributions of 

the corresponding estimators are also derived.

Finally, a generalized Mahalanobis distance for mixed data from several 

populations is proposed, by applying the Kullback-Leibler divergence to the 

general mixed-data model. Asymptotic distributions of the distance under 

the hypothesis of non-distinct groups are derived, and large-sample tests of 

hypotheses are constructed. Simulation studies suggest the tests to be well- 

behaved in finite samples.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgements

Prof. K. C. Carriere has been a constant source of energy and inspiration for 
me. I thank her for nudging me over the edge, for her concern and patience 
that go over and beyond the call of duty. Special thanks go to Profs. E. J. 
Bedrick, R. J. Karunamuni, and S. C. Newman, for kindly agreeing to serve 
on my examination committee, and to Prof. N. G. N. Prasad, for chairing it. 
Thanks as well to Prof. P. M. Hooper, for chairing my candidacy committee. 
My utang na loob is especially great to Profs. R. J. Karunamuni, N. G. N. 
Prasad, D. P. Wiens, and Y. Wu, who taught me statistics and helped me in 
more ways than they can imagine.

My thanks and gratitude to the Department of Mathematical and Statisti­
cal Sciences, for providing me with financial assistance at various stages of 
my studies, and the Alberta Heritage Foundation for Medical Research, for 
awarding me a generous studentship that enabled me to work full-time on my 
research.

Due thanks to the following people who fed me, bought me coffee, told me 
a lot of stories, statistical and otherwise, lent me their books, edited me, cor­
rected me—and thus, taught me—throughout my years in Edmonton:

Febe and Sam, for their words and laughter of pure joy, and for always toler­
ating my excesses with good humour;

Caetano, for his kindness and friendship;

Manuela, for the innumerable Portuguese dinners of bacalhau and batata frita 
I enjoyed at her place, for teaching me sueca, but most of all, for her caring 
and generosity;

Abdul—who knows everything but does not blink—for all his help, techni­
cal and otherwise;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ella, of course;

My university friends and classmates: Eshetu A., Eshetu W., Eunha, Giseon, 
Julie, Melody, Rong, Victor, William and Christine, and Xiaoming, for the 
company;

My Pinoy barkada: Allan, Alex, Chito, and Jesser—life being what it is these 
days, I think it’d be wiser to be discreet;

Ate Thess, Nonie, Mommy Celi, Simone, and Vince, with whom I spent two 
memorable summers spreading mayhem in Japan;

My aunts, uncles and cousins in Canada and the U. S., for always taking 
care of me during the few times I visited Toronto and Florida;

And my family: Mama and Papa, Kiyad,Ate Nene, Kuya Eric and Leng, 
Kuya Freddie and Jindra, Tetet, and my nieces and nephews, who show me 
that even if we are all becoming weirder as the years pass, there will always 
be home.

Alex de Leon 
Edmonton, AB 
July 2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents

1 Introduction 1
1.1 Background of the Thesis ...........................................................  1
1.2 Issues in the Analysis of Mixed D a t a ........................................  3

1.2.1 Global Testing of Mixed Data H y p o th eses ....................  4
1.2.2 Computationally Efficient Estimation M ethods..............  8
1.2.3 Models for Mixed Nominal, Ordinal and Continuous Data 11
1.2.4 Multivariate Methods for Mixed D a ta .............................. 13

1.3 Overview of the T h e s is .................................................................. 16

2 Location H ypothesis Tests for M ixed D ata 18
2.1 In troduction....................................................................................  18
2.2 General Location M o d e l ..............................................................  21

2.2.1 Likelihood Function.............................................................  23
2.2.2 Maximum Likelihood E s tim a tio n ....................................  24

2.3 One-Sample Location Hypotheses in the Mixed Data Case . . 27
2.3.1 Case of Known Covariance M atrix ................................... 28
2.3.2 Case of Unknown Covariance M a t r ix .............................. 32
2.3.3 Properties of the Likelihood Ratio T e s t ........................... 37
2.3.4 Simulation R e s u l ts .............................................................  38

2.4 Extension to G-Sample C a se ........................................................  41
2.4.1 Case of Complete H om ogeneity.......................................  43
2.4.2 Heterogeneous C a s e s ..........................................................  55

2.5 D iscussion........................................................................................ 58

3 Pairwise Likelihood Approach to Grouped Continuous M odel 
and Its Extension 65
3.1 In troduction....................................................................................  65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2 Grouped Continuous M o d e l ........................................................ 69
3.3 Maximum Likelihood E s tim a tio n ..............................................  70
3.4 Maximum Pairwise Likelihood E s tim a tio n ............................... 72
3.5 Asymptotic R esu lts .......................................................................  75
3.6 Simulation S tu d y ........................................................................... 78
3.7 Conditional Grouped Continuous Model: Extension to Mixed

Ordinal and Continuous D a t a ...................................................... 81
3.8 D iscussion.......................................................................................  88

4 General M ixed-Data Model: Extension of General Location  
and Grouped Continuous M odels 94
4.1 Introduction....................................................................................  94
4.2 General Mixed-Data Model ........................................................  99

4.2.1 Case with C — L =  Q =  1 and 5  =  2: An Example . . 105
4.3 Maximum Likelihood E s tim a tio n ..............................................  107

4.3.1 Case of a Single Ordinal Variable (Q = 1) ...................  108
4.3.2 General Case (Q > 2 ) ......................................................... I l l

4.4 Maximum Pairwise Likelihood E s tim a tio n ...............................  114
~  —P L

4.5 Asymptotic Distributions of 6 and 6 ........................................  117
4.6 Statistical Inference........................................................................ 120
4.7 Appendicitis Data E x a m p le ........................................................  122
4.8 D iscussion.......................................................................................  125

5 A Generalization o f M ahalanobis D istance to Mixed Qualita­
tive and Quantitative D ata 130
5.1 Introduction....................................................................................  130
5.2 A Generalized Mahalanobis D is ta n c e ........................................  132
5.3 Asymptotic R esu lts ........................................................................ 137
5.4 Simulation S tu d y ...........................................................................  140
5.5 E xam ple ........................................................................................... 142
5.6 D iscussion.......................................................................................  143

6 Concluding Remarks 148
6.1 S u m m a ry ........................................................................................ 148
6.2 Future Research..............................................................................  153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography 156

A Review  of Optim ization M ethods 171
A .l Determining the D irec tio n ...........................................................  171
A.2 Choosing a Step S iz e ..................................................................... 172
A.3 Survey of Basic M eth o d s..............................................................  172

B S-PLUS Programs Used in the Thesis 174
B.l Calculation of Critical Values in Table 2 . 1 ................................  174
B.2 Calculation of Power Values in Tables 2.2 and 2 . 3 ..................... 175
B.3 Calculation of Bias and RMSE in Tables 3.1 to 3.4 ................  178
B.4 Calculation of Power Values in Table 5 . 1 ...................................  185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Tables

2.1 Critical Values ca for the LRT with C  =  1, S  — 2 and unknown

2.2 Power Comparison of the LRT with C =  1, S  = 2 and unknown 
a2 against the Separate Test Approach, for H : 6 =  (.3,50,25)T 
based on 10,000 Monte Carlo samples of sizes N  — 15 and 25.

2.3 Power Comparison of the LRT with C =  1, S  =  2 and unknown 
a2 against the Separate Test Approach, for H  :6 =  (.5,50,45)T 
based on 10,000 Monte Carlo samples of sizes N  — 15 and 25.

3.1 Maximum Pairwise Likelihood Estimates based on 50 Random 
Samples of Size N  = 50 from the Grouped Continuous Model 
with Q =  3 and Parameters given by Case (I).............................

3.2 Maximum Pairwise Likelihood Estimates based on 50 Random 
Samples of Size N  = 100 from the Grouped Continuous Model 
with Q = 3 and Parameters given by Case (I).............................

3.3 Maximum Pairwise Likelihood Estimates based on 50 Random 
Samples o f Size N  = 50 from the Grouped Continuous Model 
with Q =  3 and Parameters given by Case (II)...........................

3.4 Maximum Pairwise Likelihood Estimates based on 50 Random 
Samples of Size N  = 100 from the Grouped Continuous Model 
with Q = 3 and Parameters given by Case (II)...........................

4.1 Three-Dimensional Array for the Appendicitis Data (Koepsel et 
al, 1981)............................................................................................

4.2 Maximum Likelihood Estimates of Parameters o f General Mixed- 
Data Model for the Appendicitis Data...........................................

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.1 Empirical Size and Power of x 2 Test in Theorem 5.2 for C =
L =  Q =  1 and 5  =  2 based on 1,000 Monte Carlo Samples. . 145

5.2 Three-Dimensional Array for the Appendicitis Data (Koepsel et
a l, 1981) classified by Sex......................................................  146

5.3 Maximum Likelihood Estimates of Parameters of General Mixed-
Data Model for the Appendicitis Data classified by Sex..... 147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Figures

2.1 Plots of the Power Function of LRT with C =  1, S  =  2 and 
unknown a2, for pQ — 0.5 and fixed State Means.........................  60

2.2 Contour Plots of the Power Function o/LRT with C  =  1, S  =  2
and unknown a2, for N  — 25 and p =  0.5....................................  61

4.1 Taxonomy of Models and Analytical Approaches in Mixed Mul­
tivariate Data Analysis....................................................................  126

4.2 Two Levels of Data Layout for the General Mixed-Data Model
with Q = S  =  2, Li =  L2 — 1 and C > 1 ................................... 127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Notations

a  a vector of thresholds (= (ctqq, £q =  1, • • • , Lq, q =  1, • • • , Q)T)
a  the level of significance of a test

£
a q the £,th threshold for the qth ordinal variable Z q, i q =  1, • • • ,L qi

<1 =  ,Q
B a Q x C matrix of regression parameters (= (P1, ■ ■ ■ ,(3q)t )
0  a stacked vector of regression coefficients (= vec(B))
/3q the qth vector of regression coefficients for the conditional grouped

continuous and general mixed-data models, q — 1, • • • , Q 
C  the total number of continuous variables
Xdf a chi-square random variable with df degrees of freedom
Xjj a  a noncentral chi-square random variable with df degrees of freedom

and noncentrality parameter A 
D the diagonal matrix of (conditional) standard deviations of y
D  the total number of nominal categorical variables
A gig" the Kullback-Leibler divergence between populations and V (g")
d s the vector equal to y s — fis, s =  1, • • • , S
Fdfudf2 an F  random variable with degrees of freedom dfx and df2
Fyl df2 a noncentral F  random variable with degrees of freedom dfi and df2

with noncentrality parameter A 
<Ph(- | E) the /?,-dimensional multivariate normal density function with mean 0 and

covariance matrix E
| E) the /?,-dimensional multivariate normal distribution function with mean 0

and covariance matrix E 
G the total number of mixed-variate populations
r  the covariance matrix of y and y*

£
7  a vector of standardized thresholds (= lq =  1, • • • , Lq; q — 1, • • • , Q) )
j I" standardized a f  equal to a f  / dq

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



GLM(ir,p,  E) the general location model with parameters 7r,//, and E
H the null hypothesis
H the between-groups SSP matrix
H(0) the Hessian matrix with respect to 6
Ifc the h x h identity matrix
1 P(0) the P  x P  Fisher information matrix with respect to 6
J  p the P  x P  pairwise information matrix
K the alternative hypothesis
K P the P  x P  matrix equal to Efl \(dpti/dd)(dp£i/dd)r ]
C the likelihood function
£ denotes ‘convergence in distribution’
i a possible value for the ordinal vector z (= (^i, • • • J q V )

a possible value for Zq (= 1, • • • , Lq)
Hc) the log-likelihood function of the continuous data
m the log-likelihood function of 6
L q the total number of ordinal scores for Z q, q — 1, ■ • ■ , Q
A the likelihood ratio test statistic

^dh,df2,dh a random variable with Wilks’ A-distribution with degrees of
freedom d f i , d/2 , and df:i

M -1 the inverse of the matrix M
M T the transpose of the matrix M
M ® N the Kronecker product of matrices M  and N

the C 5 x 1 stacked vector of state means ( =  (pj , ■
Ps the sth state mean of y, s — 1, • • • , S

/*: the sth state mean of y*, s =  1, • • • ,S

Vgs the sth state mean for population g  =  1, • • • , G
N the total number of observations (= n s)

ns the total number of observations belonging to state s = 1, • • • , S
ngs the total number of observations belonging to state s in population

g = 1,• • • , G
JV(p, E) the multivariate normal distribution with mean p  and covariance

matrix E 
0 the zero matrix
p the probability of x =  x^) for the general location model with

C = 1 , S  = 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



p the total number of independent parameters in the model
p denotes ‘convergence in probability’

7T the S' X 1 vector of state probabilities (= (7Ti, ■ * - , 7Ts)t )

*9 the S  x 1 vector of state probabilities for population g
Vs the probability corresponding to the .sth state (X)f=i =  1)

p m the pairwise log-likelihood function

q the probability of x  =  X(p for the general location model with 
C = l , S  = 2 ( = l - p )

Q the total number of ordinal variables
R the Q x Q matrix of conditional polychoric correlations, given y 

(and x (s))
R* the Q x Q matrix of polychoric correlations
rqq' the (conditional) polychoric correlation between Zq and Zqi

Px.,Y the polyserial correlation between x  and Y
S the total number of states
s the sample covariance matrix (uncorrected for bias)

Sd the number of categories for the dth categorical variable Ud
m the score vector with respect to 0
spl(0) the pairwise score vector with respect to 0
s 9S the sample covariance matrix (uncorrected for bias) of the continuous 

observations belonging to state s in population g
Spooled the pooled sample covariance matrix (uncorrected for bias)
E the common covariance matrix of the continuous data
E* the common covariance matrix of the latent variables
<72 the variance of Y  in the general location model with C = 1, S = 2
r a QS  x 1 vector of state-specific effects (= ( r1; • • • , t s ) t )
r s a Q x 1 vector of effects of state s on z (= D -1p* — B/is)
Tsq the effect of state s on the qth ordinal variable Zq
0 the parameter space
0 the location parameter of the general location model (= (7rT,/iT)T); 

also the unknown parameter of a model

o9 the unknown parameter for population g
0 the maximum likelihood estimator (MLE) of 0
0PL the maximum pairwise likelihood (MPL) estimator of 0
tr(M ) the trace of the matrix M

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



u a O x l  vector of nominal categorical variables (= (Uy, • • • , Ud)t )
ud the dth. categorical variable, d =  1, • • • , D
JJ(M) Hotelling’s generalized T 2 statistic
T the asymptotic covariance matrix of vech(S)
V

■̂PL
the asymptotic covariance matrix of 6

vec(M) the vector obtained by stacking the rows of M
vech(M) the vector containing the upper diagonal elements of M
H U E  ,df) the h-dimensional Wishart distribution with scale matrix S  and

degrees of freedom df
X a S  x 1 vector of binary variables such that Yls=i =  1 (= (-Xi, • • • , -Xs)T)
XW the vector x with X s =  1

y a C  x 1 vector of continuous variables (= (Yi, • • • , Yc)J )
y* a Q  x 1 vector of latent variables (=  (Y"*, • • • , Yq)t )

y s the sample mean vector of the observations belonging to state ,s

y gs the sample mean vector of the observations belonging to state s
in population g

z a Q  x 1 vector of ordinal variables (— ( Z L, ■ ■ ■ , Z q ) t )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1 

Introduction

1.1 Background of the Thesis

Multivariate data containing mixtures of quantitative and qualitative variables 

arise frequently in practice. Catalano (1997) gives an example from develop­

mental toxicology where fetal data from laboratory animals include binary, 

ordered categorical and continuous outcomes. Schafer (1997) describes a data 

set consisting of a variety of variable types used to investigate the validity 

of the Foreign Language Attitude Scale (FLAS), an instrument for predicting 

success in the study of foreign languages.

A number of simple, albeit ad-hoc, approaches to the analysis of such 

data have been used in applications. If, for example, the qualitative vari­

ables can be subjected to some scoring scheme, then all the variables can be 

treated as quantitative. On the other hand, all the variables can be treated 

as qualitative if the quantitative variables can be categorized through some 

grouping criteria. Another approach would be to analyze the quantitative and 

qualitative variables separately, and then to synthesize the two sets of results. 

However, as Krzanowski (1983) states, “all these options involve some element

1
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of subjectivity, with possible loss of information, and do not appear very satis­

factory in general. ” The first approach introduces considerable subjectivity in 

the numerical scoring scheme adopted and the second results in information 

loss due to categorization of the quantitative variables, while the third ignores 

any associations existing between the quantitative and qualitative variables.

The ideal general approach is to first specify a model for the joint dis­

tribution of the quantitative and qualitative variables, then to fit the model 

to the data at hand, and finally to use the parameter estimates to draw in­

ferences. One way to specify the joint distribution of a number of variables is 

to express it as the product of the conditional distribution of a subset of the 

variables multiplied by the marginal distribution of the remaining variables. 

This suggests two routes that can be taken to formulate the joint distribu­

tion in the mixed case: (1) specify the marginal distribution of the qualitative 

variables and the conditional distribution of the quantitative variables, given 

the qualitative variables, or (2) specify the marginal distribution of the quan­

titative variables and the conditional distribution of the qualitative variables, 

given the quantitative variables.

The second approach was first mentioned by Cox (1972), who suggested 

that the joint distribution of a mixture of binary and continuous variables 

could be written as a logistic conditional distribution for the binary variables 

given the continuous variables multiplied by a marginal multivariate normal 

distribution for the latter. Cox and Wermuth (1992) pursued this idea further 

and pointed out its connection to probit-style and latent variable models. Such

2
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models are now known as conditional Gaussian regression models. Recent 

works by Catalano and Ryan (1992), Moustaki (1996) and Sammel et al. (1997) 

have since generalized the model in several directions.

The first approach has received much attention in the literature in the 

context of the analysis of data with mixtures of categorical and continuous 

variables. Here it is assumed that the continuous variables have a different 

multivariate normal distribution for each possible setting of the categorical 

variable values, while the categorical variables have an arbitrary marginal 

multinomial distribution. This model has been termed the conditional Gaus­

sian distribution (CGD), and it forms the central plank of graphical associ­

ation models for the analysis of mixed categorical and continuous variables 

(Edwards, 1995; Whittaker, 1990; Lauritzen and Wermuth, 1989).

In the subsequent section, a number of issues that remain to be resolved 

concerning the analysis of data with mixtures of variable types are discussed. 

These issues concern the specification of models for mixed data as well as 

the ensuing inference, both estimation and tests of hypotheses, based on such 

models. The chapter concludes with a brief description and overview of the 

thesis.

1.2 Issues in the Analysis of Mixed Data

Despite the attention that mixed data analysis has recently received in the 

literature, a number of important methodological issues still remain to be 

addressed. These issues are identified and grouped into four general areas.

3
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These are as follows.

(a) Construction of global tests of hypotheses on parameters of models for 

mixed data, with particular focus on the so-called location hypotheses 

that arise from Olkin and Tate’s (1961) general location model.

(b) Implementation of computationally feasible methods of estimation for 

the grouped continuous model (Anderson and Pemberton, 1985), a latent 

variable model for multivariate ordinal data, and its extensions.

(c) Analysis of the most general case of mixed data consisting of nominal, 

ordinal and quantitative variables, a situation that, although common­

place in practice, has not been adequately treated in the literature.

(d) Extensions of conventional multivariate methods of calculating a distance 

measure to mixed-variable data settings.

1.2 .1  G lob a l T estin g  o f  M ix ed  D a ta  H y p o th ese s

The models for mixed data mentioned in the previous section were originally 

developed as a device for testing hypotheses of independence or conditional 

independence. Lauritzen and Wermuth (1989) provided an all-encompassing 

treatment of multivariate dependencies in mixed data with the introduction 

of conditional Gaussian (CG) families.

Denote D categorical and C  continuous variables as u =  (U\ , • • • ,Ud )T 

and y =  (Yi, • • • ,Yc)T. Suppose that the dth categorical variable Ud has sd 

categories, so that there are a total of S  — Wd=l sd possible patterns of discrete

4
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response, or states, for u. A full CGD for (uT,y T)T assumes that the joint 

probability density of observing state s of u  and y is

That is, it assumes that if u  falls in the sth state (or discrete response pat­

tern), then y  ~  J\fc(na, Ea), while the probability that u falls in state s is 7rs

The triple (7rs,/zs,E a) comprising, respectively, the sth state probability, 

the sth state mean and the sth state dispersion matrix, in (1.1) are called 

the moment parameters of the CGD, while the parameters in (1.2) are the 

canonical parameters of the CGD. Here the 4>s are discrete canonical param­

eters and the ij)s are C x i  vectors of linear canonical parameters. Technical 

aspects concerned with fitting these models and likelihood-based estimation 

and hypothesis-testing are covered in the references cited earlier.

Although this thesis is not concerned specifically with graphical mod­

elling, it is pertinent to note that the CGD model has appeared previously in 

the literature in various contexts. Moustafa (1957) was the first to consider the 

full CGD model in the analysis of multi-way tables. Another CGD model was 

introduced by Olkin and Tate (1961) for mixed binary and continuous data, 

and has since been known as the general location model (Schafer, 1997; Little 

and Rubin, 1987; Little and Schluchter, 1985). This particular model assumes 

a uniform dispersion matrix E across the states and is called a homogeneous

tts x (2tt) c/2 |E s | 1/2e x p | - ^ ( y - / x s)TE s 1( y - / i s) |  . (1.1)

(X)f=i Ts =  !)• The density in (1.1) can be rewritten in the form

( 1 .2 )

5
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CGD in the graphical modelling literature. Olkin and Tate (1961), while con­

sidering canonical correlations between the binary and continuous variables, 

established results connecting these canonical correlations and the state means, 

and investigated the distribution theory of their estimators. Krzanowski (1983) 

used the general location model in the calculation of distance between two 

populations with mixtures of binary and continuous variables, and applied the 

resulting distance in discriminant analysis.

One particular aspect of mixed data inference that has received little 

attention so far are the so-called location hypotheses, for which the construction 

of reasonable statistical tests remains an important and so far unaddressed 

problem in such applications as quality control (de Leon and Carriere, 2000) 

and clinical studies (Afifi and Elashoff, 1969). The problem of interest is to 

test

H  : 6 — 0q against K  : 0 B0, (1-3)

for some specified 60, where 0T = (irT, p T), with /xT =  (f i j , --- , f i j )  the 

C 5 x 1 vector of state means. Hypothesis H  in (1.3) is referred to in the 

literature as the one-sample location hypothesis, and much work has been done 

for the case with continuous data. Afifi and Elashoff (1969) tackled the two- 

sample mixed data problem and obtained two tests, one based on the Kullback- 

Leibler divergence (Kullback, 1968, pp. 6-7) and another on the likelihood ratio 

approach.

The simple hypothesis in (1.3) is of particular interest in such appli­

cations as quality control charting situations, where a process is monitored

6
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through time via control charts to evaluate whether the process is performing 

according to certain industrial specifications (see, e.g., Montgomery, 1985). 

Here, the control limits of a multivariate control chart are to be set up to 

simultaneously and more effectively chart both the discrete and continuous 

characteristics, as opposed to charting them separately with univariate con­

trol charts. In this context, the alternative hypothesis may correspond to a 

signal for the process being out of control. The absence of a signal in the 

multivariate chart precludes the presence of signals in the univariate charts.

In practice, the analytic strategy with mixed data has been to perform 

tests on the parameters separately. This approach entails the problem of 

multiple significance testing, to which the simplest solution is to adjust the 

level of each test to control the overall level. Such an approach may lose 

power quite substantially because the correlations between the variables are 

not utilized explicitly in constructing the test statistic (Pocock et al., 1987). 

An alternative approach is to treat the problem in a multivariate setting to 

come up with a single test based on all the variables. O’Brien (1984) and 

Pocock et al. (1987) studied one such global test statistic in the context of 

clinical trials.

The likelihood ratio approach is of central importance in the construction 

of global tests of location hypotheses for mixed data. This approach allows the 

problem to be treated from a multivariate perspective to simultaneously test 

both the discrete and continuous parameters of the general location model. 

In addition to the hypothesis (1.3), its natural extension to the multi-sample

7
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situation is also of interest, which involves testing whether the respective pa­

rameters 01, • • • ,0g of G mixed-variate populations, distributed according to 

the general location model, are all equal. That is, it is desired to construct a 

test of

H : 6\ =  • • • =  0G against K  : 6g 0g/, (1.4)

for some g /  g'. Note that (1.4) generalizes the classical multivariate analysis 

of variance (MANOVA) problem to the mixed data setting. Despite extensive 

results available on the classical MANOVA problem, they could not be readily 

applied to the mixed data case. Besides the earlier works of Moustafa (1957), 

Ogawa et al. (1957), Afifi and Elashoff (1969), Morales et al. (1998), and 

de Leon and Carriere (2000) recently, this problem remains and needs to be 

addressed further.

1.2 .2  C o m p u ta tio n a lly  E fficien t E stim a tio n  M eth o d s

Many authors have considered the analysis of multivariate ordinal data, es­

pecially as they occur in many studies in the social sciences. Although no 

consensus exists about the manner by which the analysis should proceed, one 

of the more common approaches has been to postulate the existence of contin­

uous latent variables underlying the observed data, and to assume that these 

latent variables follow some continuous multivariate distribution, a partition­

ing of which gives rise to the levels of the (observed) ordinal data. Models for 

ordinal data specified this way were first suggested by Pearson (1904), and they 

have been further developed over the years (Anderson and Philips, 1981; Mc-

8
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Cullagh, 1980).

One such model, called the grouped continuous model (Anderson and 

Pemberton, 1985), considers the multivariate normal distribution as the dis­

tribution for the latent variables. In it, an ordinal vector z =  ( Z i ,  • • • , Z q ) t  

is observed, where Zq has I < • • ■ <  Lq ordered levels, q = 1, • •• ,Q, and 

corresponding to z is a vector of unobservable continuous latent variables 

y* =  (YiV • ’ , !q )T, distributed according to the multivariate normal dis­

tribution M q {0 , R*) with mean vector 0  and correlation matrix R*, such that 

Zq — £q if and only if < Y* < a qq, i q — 1, • • • ,L q, with {o^ =  —oo < 

aq < - - - <  aq" < aqq+1 = + 00} the unknown outpoints or thresholds for Zq, 

q — 1, • • • , Q. The correlations in R* are usually called polychoric correlations. 

This model is a generalization of the univariate grouped continuous model dis­

cussed earlier by Anderson and Philips (1981) and McCullagh (1980), and is 

closely linked to pro bit models in latent variable theory.

Maximum likelihood estimation for the grouped continuous model in 

the bivariate case (i.e., Q — 2) has been considered by a number of authors 

in the past (see, e.g., Drasgow, 1986; Olsson, 1979). Although the extension 

to higher dimensions is straightforward (see, e.g., Lee, 1985; Lee et al., 1989), 

likelihood estimation is computationally impractical, as it involves the evalu­

ation of high-dimensional normal integrals, which require a large amount of 

time to evahiate especially when the dimension is high. A computationally 

more efficient approach is thus desired.

Several alternative estimation methods that all rely on partitioning the

9
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model into its sub-models have been proposed in the literature. Anderson 

and Pemberton (1985) developed a computationally feasible two-step approach 

that consists in first estimating the thresholds marginally, and then estimating 

the polychoric correlations by maximizing the pairwise marginal likelihoods 

with the thresholds replaced by their estimates. Lee and Poon (1987) and Lee 

and Lau (1986) studied the generalized least squares method and a two-step 

variant, and compared them with the maximum likelihood approach. Poon et 

al. (1990) applied the partition maximum likelihood (PML) method (Poon and 

Lee, 1987; 1986) in the multi-sample case. The method partitions the model 

into its univariate and bivariate sub-models, and estimates the parameters 

from these sub-models, then averages them in the end to obtain the final 

estimates. Bedrick et al. (2000) recently modified the method by working 

exclusively with the bivariate sub-models.

The appeal of the above methods lies in the fact that the computational 

burden of the maximum likelihood method is reduced to a considerable extent. 

As well, limited simulation studies (Poon et al., 1990; Lee and Poon, 1987) 

appear to show that they are comparable with maximum likelihood estima­

tion. However, concern remains regarding the efficiency of the estimates. By 

estimating parameters for individual Zq’ s and pairs {Zq,Zq>} separately, the 

ordinal variables are treated as though they are independent. Aside from 

yielding multiple sets of estimates with no clear criterion for combining them, 

the efficiency of the final estimates may be compromised. A simultaneous es­

timation of the parameters that is not as computationally expensive as the

10
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maximum likelihood method is preferred, as it yields a single set of estimates 

and may lead to significant gains in efficiency.

The extension of the grouped continuous model to the case of mixed 

ordinal and quantitative data has been studied by Anderson and Pemberton 

(1985), Poon and Lee (1987; 1986). This is accomplished by assuming that the 

continuous variables share a joint multivariate normal distribution with the la­

tent variables, and the thresholds and polychoric correlations are defined in 

terms of the conditional distribution of the latent variables (or the ordinal 

data) given the continuous data. In addition to these parameters, additional 

parameters representing the polyserial correlations, or the correlations between 

the ordinal and continuous variables, are introduced in the model. Poon and 

Lee (1992), Poon et al. (1990), and Lee et al. (1989) also extended the model 

to the analysis of several independent samples. In all this work, maximum like­

lihood and PML became the basis of the estimation methods used. As in the 

single-sample case, computationally more efficient alternatives to maximum 

likelihood that do not suffer from the same shortcomings as do the partition 

methods need to be explored in the context of multi-sample analysis.

1 .2 .3  M o d e ls  for M ix ed  N o m in a l, O rdinal and  C o n tin ­
u ou s D a ta

The most general case of mixed data encountered in practice are those which 

include mixtures of nominal, ordinal and continuous variables. Suppose that, 

in addition to the vectors U£>xi and ycxi of nominal and continuous variables, 

a vector zqx1 of ordinal variables is observed. One way to go about the

11
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analysis of such data is to use the grouped continuous model in modelling the 

joint distribution of u,  y  and z ,  thus implicitly assuming an underlying latent 

variable structure for the nominal variables. Although this approach has been 

previously used for dichotomous nominal variables (see, e.g., Bock, 1972), it 

is, in general, inappropriate in the polytomous nominal case.

A better alternative is to model the joint distribution of u,  y and z  by 

the general location model by considering the (D + Q) X 1 vector ( u T , z T)T as 

a categorical vector with S  x Lq states- Little and Schluchter (1985) have 

used this approach for the St. Louis Risk Research Project data. It has also 

been used in producing multiply-imputed public-use data files (Schafer, 1997; 

Rubin, 1996). While the general location model may, in principle, be used 

in this case, it may be inadequate, and hence, inappropriate, for two reasons. 

Firstly, there is no clear-cut manner of accounting for ordinal information, 

and secondly, there is no explicit way of incorporating correlations between 

the nominal vector u  and the ordinal vector z, and between the ordinal vector 

z  and the continuous vector y.

There is therefore a need to define appropriate models for mixed data 

with ordinal variables that can better describe the interrelationships between 

the different variable types as well as better account for the information arising 

from the variables’ different levels of measurement. A possible approach, and 

the one adopted in this thesis, is a compromise between the two approaches 

mentioned above. That is, the joint distribution of u, y  and z  is specified 

by breaking it up in terms of a general location model for u  and y ,  and a

12
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conditional grouped continuous model for z, conditional on u  and y. This 

approach accounts for the ordinal information in the ordinal variables as well 

as incorporates, both explicitly or implicitly, correlations among the three 

groups of variables. As well, such formulation of the joint distribution neces­

sarily assumes a hierarchical structure, which allows for easier incorporation 

of covariate effects when extended to the regression setting. Note also that 

the approach basically unifies the two models for mixed data that have been 

studied previously in the literature.

The approach, however, gives rise to a number of problems related to 

model inference. Estimation of the model parameters becomes more involved, 

especially for those associated with the conditional grouped continuous model, 

as it involves regression (representing polyserial correlations between y and z) 

and state-effect parameters induced by y and u, respectively, in addition to 

the polychoric correlations and threshold parameters. Maximum likelihood es­

timation is possible for this model, although it may be impractical. A simpler, 

more computationally feasible alternative is needed for estimating the ordinal 

data model parameters.

Tests of hypotheses concerning comparisons of state means, the poly­

choric and polyserial parameters among the ordinal and continuous variables 

across and within states also need to be constructed.

1 .2 .4  M u ltiv a r ia te  M e th o d s  for M ix ed  D a ta

Methods for the analysis of multivariate continuous data are well documented 

(e.g., Seber, 1984; Mardia et al., 1979). So are those for multivariate discrete
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data (Bishop et al., 1975). Methods for multivariate mixed data, however, 

are not as well developed as the two cases. In view of the ubiquitousness of 

data with mixed variable types in practice, appropriate analytical methods are 

needed that will account for the different measurement levels and associations 

in the data efficiently and effectively. In particular, there is the need to define 

a distance measure among groups that may be used for mixed data.

Bedrick et al. (2000) and Lapidus (1998) recently studied methods for 

the analysis of mixed continuous and ordinal data. Specifically, they proposed 

a generalization of the Mahalanobis distance (Mardia et al., 1979, p. 31) to 

populations of mixed continuous and ordinal variables and used the generalized 

distance in discriminant analysis. Bedrick et al. (2000) and Lapidus (1998) 

used the conditional grouped continuous model to model the joint distribution 

of the variables, and showed that the Mahalanobis distance can be decomposed 

as a sum of two components, one based on the continuous variables, and the 

other on the ordinal variables. Large-sample results on maximum likelihood 

estimators and tests of hypotheses were derived, as well as on a modified PML 

procedure. The generalized Mahalanobis distance follows along the same lines 

as that proposed by Bar-Hen and Daudin (1995). Bar-Hen and Daudin (1995) 

applied the Kullback-Leibler divergence (Kullback, 1968, pp. 6-7) to the general 

location model to derive a generalization of the Mahalanobis distance to data 

with mixed nominal and continuous data. Bar-Hen and Daudin (1995) and 

Daudin and Bar-Hen (1999) investigated its use in discriminant analysis, with 

the latter investigating variable selection in particular.

14
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Another generalized distance for mixed-variate populations was previ­

ously studied by Krzanowski (1984). Instead of the Kullback-Leibler diver­

gence, Krzanowski (1984) used Matusita’s distance (Matusita, 1956) to derive 

a distance between populations consisting of nominal and continuous vari­

ables defined by the general location model. Nakanishi (1996) proposed an­

other mixed-data distance that includes Bar-Hen and Daudin’s (1995) and 

Krzanowski’s (1984) distances. More recently, Bar-Hen and Daudin (1998) 

obtained the asymptotic distribution of Krzanowski’s (1984) generalized Ma­

tusita’s distance.

A direct extension of the above to mixed data with nominal, ordinal and 

continuous variables is possible by considering the approach described earlier 

for modelling the joint distribution of such mixed data. In this approach, 

the joint distribution of the nominal and continuous variables is modelled by 

the general location model while that of the ordinal variables, conditional on 

the nominal and continuous variables, is modelled by the grouped continuous 

model with regression effects due to the continuous variables and state-effects 

due to the nominal variables, in addition to the ordinal level-effects and the 

polychoric correlations. Such an approach for specifying the joint distribution 

accounts for the ordinal information in the data and the associations among 

the various types of variables.

15
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1.3 Overview of the Thesis

The objective of this thesis is to address the issues raised in the previous 

section concerning the analysis of mixed-variable data.

Chapter 2 begins with a formal definition of the general location model 

and develops the framework for simultaneously testing its parameters. A like­

lihood ratio approach is adopted and several tests are obtained that allow for 

globally testing the discrete and continuous parameters of the general location 

model in the one-sample and multi-sample settings. The performance of the 

proposed one-sample tests is also compared, in terms of power and the ability 

to maintain the nominal level, with the one that carries out separate tests of 

the discrete and continuous parameters.

Chapter 3 gives a general introduction to the grouped continuous model 

for mixed continuous and ordinal data. This chapter briefly reviews conven­

tional methods, including maximum likelihood, of parameter estimation pro­

posed by researchers in the past, and proposes a new estimation method based 

on the pairwise likelihood approach (e.g., Kuk and Nott, 2000). The latter is 

less computationally demanding than the former, and is conceptually more 

appealing than the partition methods. An investigation, via simulation, of the 

efficiency and bias of the estimates obtained using maximum pairwise likelihood 

estimation is reported as well. This chapter also derives the asymptotic dis­

tribution of the maximum pairwise likelihood estimator and discusses related 

large-sample tests of hypotheses.

In Chapter 4, the general mixed-data model for mixed continuous, ordi-
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nal and nominal data is developed and is linked to the general location and 

grouped continuous models. Besides maximum likelihood estimation, a more 

computationally efficient alternative based on the pairwise likelihood approach, 

which is an extension of the methods proposed in Chapter 3, is outlined for 

the model. The asymptotic distributions of the estimates are also obtained for 

use in the construction of large-sample tests of hypotheses.

Chapter 5 proposes a generalization of the Mahalanobis distance to 

mixed data with nominal, ordinal and continuous variables. Applying the 

Kullback-Leibler divergence to the general mixed-data model of Chapter 4, 

a generalization of the Mahalanobis distance is derived that further extends 

those previously proposed by Bedrick et al. (2000) and Lapidus (1998), and 

by Bar-Hen and Daudin (1995). Asymptotic properties are obtained for the 

generalized distance and the results of a simulation study on the performance 

of tests of hypotheses are reported. An example is also presented to illustrate 

its application.

Finally, a summary of the results of the thesis is provided in Chapter 6 . 

Promising areas for future research are identified as well.
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Chapter 2

Location H ypothesis Tests for 
M ixed Data

2.1 Introduction

In this chapter, a hypothesis-testing problem that arises with multivariate data 

having both continuous and discrete variables is studied. In the one-sample 

case, the problem concerns the construction of statistical tests for the null hy­

pothesis that the location parameters are equal to some specified value. In the 

multi-sample case, it entails testing whether the location parameters are the 

same in two or more distinct populations. The former arises in quality control 

applications where a manufacturing process is monitored with respect to prod­

uct characteristics which may involve both continuous and discrete variables. 

The latter is often encountered in medical and health studies when several 

treatments for some disease or disorder are compared in terms of outcomes 

that include both continuous and discrete characteristics of the patients.

In these applications, the hypotheses concerning the parameters of the 

mixed-variable data are tested separately by applying conventional methods
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for discrete and continuous variables (see, e.g., Birdsall et al, 1997). Alterna­

tively, one can consider the use of global tests (Pocock et al., 1987) based on an 

appropriate multivariate model for the data to compare the parameters of a 

mixed-variate population against some target value or the parameters of sev­

eral (two or more) such populations. Global tests combine information from 

all the variables by fully exploiting the multivariate nature of the data thus 

resulting in increased power for the tests (de Leon and Carriere, 2000; Pocock 

et al., 1987; O’Brien, 1984). Unfortunately, standard multivariate approaches 

do not directly apply, and suitable methods have not been widely studied.

The goal of this chapter is two-fold. First, global one-sample location 

tests for mixed multivariate data are constructed. This is accomplished by 

adopting the general location model for mixed continuous and discrete data 

and using the likelihood ratio approach to derive the tests. Second, these tests 

are generalized to the multi-sample setting and in so doing, previous work on 

multi-sample location tests are extended to allow for the case of data with 

mixed continuous and discrete variables.

Despite the recent interest on mixed data analysis, only a few papers have 

considered similar problems. Moustafa (1957) studied a multi-factor experi­

ment where the response variables consist of continuous and discrete variables 

jointly distributed according to the full CGD. He considered hypotheses con­

cerning the independence and conditional independence of the responses, and 

proceeded to construct asymptotic likelihood ratio tests, the theory for which 

was previously studied in Ogawa et al. (1957). A related problem was ad-
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dressed by Olkin and Tate (1961), who introduced the general location model 

and derived tests of independence between continuous and discrete variables 

via canonical correlation theory.

Afifi and Elashoff (1969) were the first to address location hypothesis- 

testing in mixed data situations. They considered the problem in the two- 

sample case, for which they derived likelihood ratio and informat ion-theoretic 

tests. The exact sampling distributions of the test statistics were also obtained; 

however, no comparison was undertaken of their small-sample performance. 

Additionally, they showed that the Hotelling T 2 statistic (Mardia et al., 1979, 

pp. 76-77) is not consistent against the location hypothesis considered.

A more recent paper by Morales et al. (1998) introduced a general class 

of dissimilarity or entropy-type measures to obtain test statistics for various 

hypotheses, including those considered here, involving mixed continuous and 

categorical data and used the asymptotic theory of these statistics to construct 

the tests.

This chapter introduces the general notation and framework for mod­

elling and testing with mixed multivariate data. The general location model, 

which is adopted as the model for the mixed data, is formally defined in § 2.2 . 

The one-sample problem for both the known and unknown covariance matrix 

cases is then discussed in § 2.3. While a general multivariate situation is dis­

cussed, a detailed study of the bivariate case is provided. The multi-sample 

problem is investigated in § 2.4. The chapter concludes with a discussion in § 

2.5 of the performance of the tests and other related issues.
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2.2 General Location Model

Definition 2.1 Suppose x =  (Xi ,  • • • , X S)T and y =  (Yi, • • • , YC)T are vec­

tors of binary and continuous variables, respectively, such that X s is either 1 

or 0 and ]T)f=i X s — 1. (xT,y T)T is said to be distributed according to the 

general location model if  and only if  x has a multinomial distribution given by

s
p ( x ) = n ^ ’

5 = 1

and y has, given X s =  1, a multivariate normal distribution with mean pts =  

(fiis, ■ ■ • , gcs)T and covariance matrix E. The model is denoted by GLM (ir, / 1 , E), 

where irT =  ( ^ , • • • , 7rs ) is the vector of state probabilities and p T =  ( p j , ■ ■ ■ ,p j)  

is C S  x 1 vector of state means. Here, ns =  Pr(X s =  1) > 0 and ]Cf=i =  1-

The above definition was originally given by Olkin and Tate (1961). 

Note, however, that Olkin and Tate (1961) referred to the above model as the 

location model. The term general location model was first used by Krzanowski 

(1980) to refer to its extension allowing for general categorical—not necessarily 

dichotomous—discrete variables. As these variables can always be defined in 

terms of binary variables, no distinction between the two terminologies shall 

be made. Further remarks on the model are given below.

Remark 2.2.1 The model above arises for a vector u = (Ui, ■ ■ ■ , UD)J con­

sisting of categorical variables where the dth variable Ud has sd categories, so 

that there are a total of S  = fldLi sd possible states for u. In this case, we can 

define x  a,s X s =  1 if u falls in state s and 0 otherwise, and X s — 1.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For notational convenience, the vector x for which X s =  1 is denoted by X(s).

Remark 2.2.2 Note that the discrete vector u defines an si x • • ■ x s D contin­

gency table with S  cells (or states). For each given state, the model assumes 

a multivariate normal distribution for y with mean fj.s, s = 1, ,5 , and

covariance matrix E, written as (y | X(s)) ~  J\fc (jis,Tl).

Remark 2.2.3 Observe that fix = ■ ■ ■ = fis if  and only i f x  and y are inde­

pendent. See Olkin and Tate (1961) for details.

Note that there are a total of (S — 1) +  C S + C(C + l) /2  independent 

parameters in the model. To reduce the number of parameters, it is suggested 

to impose log-linear restrictions on ir and a (linear) hierarchical structure for fi 

(Schafer, 1997; Raghunathan and Grizzle, 1995; Little and Rubin, 1987; Little 

and Schluchter, 1985).

Recent extensions of the general location model were given by Barnard 

et al. (2000), Liu and Rubin (1998) and Fitzmaurice and Laird (1997, 1995). 

The first two papers attempted to relax the homogeneity assumption in the 

model—the former by factorizing the covariance matrix in terms of correla­

tions and standard deviations and allowing for the standard deviations to vary 

across states, and the latter by considering ellipsoidally elliptic distributions, 

including the multivariate t distribution, as alternative distributions for the 

continuous vector y. Fitzmaurice and Laird (1997, 1995) generalized the model 

to the regression setting by allowing for auxiliary variables to be incorporated 

in the model for mixed binary and continuous outcomes.
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2 .2 .1  L ik elih ood  F u n ction

Suppose (x7 ,y7 )T>’ •' , (xX,yT)T are a random sample from GLM(tt,/x, E). 

Without loss of generality, assume x ^ + i =  ••• =  xjy.+1 =  x^+i) so that 

YNj+i , • • • ,yjvi+i are independently and identically distributed as A/c(/iJ+1,E), 

j  = 0,1, • • • , 5  -  1, where iV0 =  n0 = 0, Nj =  ]T)Lo n» for .7 =  1, • • • , S -  1, 

Ns — N  =  n si nnd ns is the number of observations in state s — 1, • • • , S. 

Then,

£  =  n  x “ P

1 5 - 1  N j + l

ol2 12 (yi-Mi+1)TE'1(yi-/ii+1)2
j = 0  i = N j + 1

, (2 .1)

as the likelihood function of the whole sample. Note that £  consists of two 

parts, £ ^  and Cl'C), the first corresponding to the usual multinomial sample 

likelihood and the second to that of a multivariate normal sample. Equiva­

lently, the log-likelihood function can be written as follows (Mardia et al., 1979, 

p. 97):

s s
e = 12 Us loĝ  ~ y  lo& I 2?rS I ~  12 y tr  [s_ 1  (s * +  d *d I ) ]  > (2-2)

s=  1 s = l

where tr(A ) is the trace of A, ds =  y s — fis, y s and Ss are the sample mean 

and sample covariance matrix (uncorrected for bias), respectively, of the ob­

servations in state s =  1, • • • , S.

Exam ple 2.1  Consider the simplest general location model where S  = 2 and 

( 7 = 1 .  Suppose x  =  X(i) and x =  X(2) have respective probabilities p and 

q =  1 — p, and the conditional distributions o fY  for X(p and X(2) are assumed 

to be M {pi, a2) and J\f (p2,<72), respectively. Given a random sample of size
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N , the likelihood function  in (2 .1) is given by

£  =  pnqN- n(2Tra2) - N/2 exp Q(Ml>/*2)
2(72

(2.3)

where Q{pi, _  Ab)2 +  Hi=„+i(**' ~ A^)2, and it is assumed that

the first n observations have x  = x (1).

The model in Example 2.1 is studied in de Leon and Carriere (2000), 

where x is replaced by a Bernoulli random variable. It can be formulated 

as a latent variable model by supposing an unobservable continuous variable 

Y* underlying the binary variable. This approach is pursued in the following 

example.

Example 2.2 Assume (Y*, Y)T has a bivariate normal distribution with E(Y) : 

p, E(Y*) =  0, var(Y) =  r 2, var(Y*) =  1, and cov(Y * ,Y )  =  pr, such 

that x  =  X(i) whenever Y* < a and x =  X(2) otherwise. Since Y  \ Y* ~  

Af(p  +  prY*,T2( 1 — p2)) and Y* ~  Afifi, 1), then p = Pr(x =  x (1)) = $ (a ), 

Pi — p +  pr, p2 =  p , and o2 — t2{ 1 — p2), with $  the standard normal 

distribution function. The same model in Example 2.1 is thus obtained by a 

reparametrization of the latent variable model, and the same likelihood function 

as in (2.3) is obtained.

The model in Example 2.2 is studied in detail by Tate (1955); an exten­

sion is given by Hannan and Tate (1965).

2 .2 .2  M ax im u m  L ik elih ood  E stim a tio n

Maximum likelihood estimators (MLEs) of unknown parameters of the model 

are obtained by maximizing either (2.1) or (2.2). Because the parameter space
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is simply the product of the individual spaces of the discrete and continuous 

parameters, MLEs are obtained by maximizing and CiC) separately.

The MLEs of tt, fi and E are easily found to be

N

7TT =  ^ x J / N
2 =  1

=  (%/jV, ••• ,n s /N )\

n i  N

= C52yJ/nu---, 12 yJ/ns)
2= 1  i = N s ~ i  +  l

=  { y j , - - - , y  s)

=  y T; (2.4)

S - 1 Nj+i

= 12 12 (y -̂yj+i)(yi-yj+i)T
j —0 i = N j  + 1

S

=  J > aS,/W
s =  1

— N  Spooled ,

using standard results on multinomial (Bishop e£ al., 1975) and multivariate 

normal distributions (Mardia et al., 1979). Here it is assumed that ns > 0 

Vs; otherwise, parameters corresponding to states with zero counts become 

inestimable. Note that the MLE of fi remains unchanged, regardless of whether 

E is known or not, or whether homogeneity is assumed or not. However, the 

same is not true of E when fi =  fj,0 is known. In this case, it can be shown 

that the MLE of E becomes E0 =  <[ E & )+ i(y<  - /* 0j+ i) (y i~l*oj+i)r /N

(e.g., Seber, 1984, p. 67).

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



As detailed in Schafer (1997, pp. 334-337), the MLEs of \i and E are also 

the least-squares estimates in the standard multivariate regression of y on x.

E xam ple 2.3 Consider again Example 2.1. The MLEs are then given by 

p = n /N  (0 < n < N ), f t  =  £ ? =1 Y j n  =  Y u  f t  -  £ £ n+1 Y / ( N  -  n) =  Y 2, 

and a2 = Q (Y 1, Y 2) /N . These estimates are unchanged except when p.y and 

p.2 are known, in which case the MLE of a2 becomes a2 = Q(pi, p,2) /N .

P ro p e r ty  2 .1  E(ir) =  ir, E(y) =  fi and E(Spooled) = (N  -  S)H /N .

Proof. The first two follow immediately from the unbiasedness of if and y 

while the third is obtained from the fact that E(Ss | n s) =  (ns — l)E /n s Vs.

□

P ro p e r ty  2 .2  Given (nu , ns )T, y  ~  A/’c s '( /i,P 0 E), where 0  denotes the 

Kronecker product operator and I* =  diag(l/n j, • • • , l / n s ).

Proof. Given (ni,-- - , ns )T, y 1, • • • , y s are independently distributed as 

J\fc(Pi,Yl/ni), ■ ■ ■ ,J\fc{fis ,Yl/ns), and the result follows.

□

P ro p e r ty  2.3 E0 =  Spooied + £ f =1 nsd 0sd^s/N , where d0s =  y s -  (J.0s, s = 

1, • • • ,S . Also, E(E0) =  E.

Proof. The proof follows in a straightforward manner.

□
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P ro p e r ty  2.4 I f  ns > 0  Vs, then NSpooied ~  W c(S, N — 5) independently 

of (ni, • • • , r?,s )T, w/tere Wc(E, N — S) is the Wishart distribution with scale 

matrix E and N — S degrees of freedom.

Proof. Prom standard results in normal distribution theory, n iS i, • • • , ngSg 

are independent Wc(E, n i~  1), • • • , W c(£, ng — 1), conditional on (rai, • • • , Ji-s)T 

such that ns > 0 Vs. Using Theorem 3.4.3 of Mardia et al. (1979, p. 67), 

NSpooied, given (n1; ■ • • ,n s )T, has the given distribution. Since this is inde­

pendent of (ni, • • • , ng)T, the result follows.

□

Restrictions may be imposed on the model to reduce the number of 

unknown parameters in cases where S is far greater than N. One way to 

do this is to impose a log-linear structure for it and a linear model for fi 

(Schafer, 1997).

2.3 One-Sample Location Hypotheses in the 
Mixed Data Case

Let 6r  — (7tt ,/i T) be the vector of location parameters for GLM{ir,p.,T,). The 

one-sample location problem

H : 0 = 00 against K  : 0 7  ̂0O, (2.5)

is considered, with =  (jTq ,/Aq ) completely specified.
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The likelihood ratio test (LRT) statistic as defined below (Mardia et al., 

1979, pp. 123-124) is adopted in the subsequent sections to construct statistical 

tests of (2.5) under various situations.

D efin ition  2 .2  Let the parameter space be 0  =  0 #  U 0K. The likelihood ratio 

statistic A for testing H  : 6 <E QH against K  : 6 G QK is defined as

for some critical value c, where (s =  (—2IV/5) log N  -  2ns \og(ir0s/n s) +

max

A Qh C
max

(2 .6 )

Equivalently, one may use the statistic log A =  log CH — log d K.

2.3 .1  C ase  o f  K n ow n  C ovariance M atr ix

Consider a general location model with location parameter 9r  =  (irT,/iT) and 

known covariance matrix E.

T heorem  2.1  Consider the hypotheses in (2.5).

(i) The LRT is of the form:

s
Reject H  iff (s > c.

(ii) For a level a test, the critical value ca is obtained from

a (2.7)
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where

E ni,-,n s ( n . - l  ^Os/ ris=l ns!j 

with the summations taken over all {rei,• ■ ■ , ns } such that ns > 0 Vs 

and Y^a=i n s — N , x l, ts a X2 random variable with dx — C S degrees of

freedom, and c(nu ■ ■ ■ , ns ) = ca/[ -2 N  log ./V — 2 £ f =1 log^os/rc*)] •

(in) A t any 9 ^  0Q) the power of the LR T is

Pr I =  P(ni,--- ,r is \n )  (2.9)
\ s = l  /  n i , — ,n s

x P r [4 ,A(n,..,ns) > c(ni,--- ,n s )] ,

where the summation is the same as in (ii), p(n , , • • ■ , ns \ tt) is (2.8)  

with 7r0 =  it, and x \  A(m ■■■ «,) ls a noncentral x 2 random variable with 

di = C S degrees of freedom and noncentrality parameter M ji i , ■ • • ,n s ) = 

E f= i ns(»s ~ Ros)TS _1(/is -  fios)-

Proof. When E is known, the maximized log-likelihood under H  is

s s
log t H = ^ 2 n s log7t05 -  y  log I 2ttE | -  y t r  [E-1 (Ss +  d 0sd ^ )] ,

S— 1 s ~  1

where d 0s =  y s — /i0s- Also, since K  places no constraints on 0, 0 is as given 

in (2.4) and

s s
log CK = ] T n s log ( y )  -  y  log I 2ttE I -  X I y t r  (E_1Ss) .

s=l S=1

Therefore, using (2.6), H  is rejected if and only if - 2  log A =  X)f=i C > C for 

some c, which proves (i).
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Noting that r^ d ^ E ^ d o i, • • • ,n sdQSE _1d0s are independent and iden­

tically distributed y 2 random variables each with C degrees of freedom, (2.7) 

in (ii) is obtained by using Theorem 2.5.2 of Mardia et al. (1979, p. 39) and 

the fact that (ni, • • • , n s)T has a truncated multinomial distribution with pa­

rameters N  and tt0 under H, subject to the condition 0 < ns < TV Vs, as given 

in (2 .8).

Part (Hi) is proved by noting that ri^d^E Moi,• • • , nsd^ .E _1d os are 

independently distributed noncentral y 2 random variables each with C degrees 

of freedom and respective noncentrality parameters n1(fil — /z01)TE _1(/i1 — 

/ % ) , ' ' '  > ™s(A*s-Atos)T s ” 1(/% -/ios)> and that for some givens, (nu -- - , ns )J 

has a truncated multinomial distribution with parameters N  and tt, as shown 

in (2.9).

□

R em ark  2.3.1 The condition n s > 0 Vs (i.e., each state has at least 1 ob­

servation) is necessary so that all unknown parameters will be estimable. This 

results in a truncated multinomial distribution for  (n1; • • • , ns )T given by (2.8) 

under H.

R em ark  2.3.2 For the case where the states have different but known covari­

ance matrices E 1? • • • , £ 5 , Theorem 2.1 still applies except that Q becomes 

Cs = ( - 2 N /S ) logN  -  2n s log(7r0s/n s) +  n ^ E ^ d ^ .

R em ark  2.3.3 For a given level a, the critical value ca in (2.7) can be com­

puted quite easily using conventional methods (see, e.g., Faires and Burden, 

1998).
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R em ark  2.3.4 7 /5  =  1, the LRT statistic in Theorem 2.1 becomes N (y  -- 

Mo)T s_ 1(y-Mo); i-e-> the LRT in Theorem 2.1 reduces to the one-sample LRT

et al., 1979, p. 124). Thus, Theorem 2.1 generalizes the latter to the case of 

mixed binary and continuous data.

The following corollary is obtained for the case C  =  1 and S' =  2 by 

applying Theorem 2.1 to the model considered in Example 2.1.

C orollary  2 .1.1  Consider the model in Example 2.1. Suppose a2 is known. 

The LRT of H  : (p ,p i,p 2)J = (po, hoi, ho2 )J against K  : (p,fiu fi2)T + 

(p0, p.0i, hofy in this case is of the form:

where c(n) =  ca/[—2 N \ogN  — 2n\og(p0/n ) — 2(N  — n ) hg{q0/(N  — n)}]. 

The power of the test at {p, / /j, p,2)T 7  ̂ {p,hoi,ho2 )r is

where A (n) = [n(p.i -  hoi)2 +  {N -  n)(p2 -  ho2 )2]/<J2-

Proof. T h e p roof follow s im m ed iate ly  from T heorem  2.1 by tak in g  C =  1 

and 5  =  2.

for the multivariate normal distribution with known covariance matrix (Mardia

Reject H  iff — 2N  log N  — 2n log ( — 2(N — n) log
V n /

+  [n(Y i -  p,oi)2 +  (N  -  n )(Y 2 -  p,02)2] jo 2 > ca , (2.10)

for some a-critical value ca obtained from

1 — pN — qN
1

'N "Pr [X22A (U) > C(«)] , (2 -12)

□
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2 .3 .2  C ase o f  U n k n ow n  C ovariance M atr ix

Consider a general location model with location parameter QT — (irT ,fir ) and 

unknown covariance matrix S. This is usually the case in many applied studies 

where knowledge about S  is not available.

T heorem  2 .2  Consider the hypotheses in (2.5).

(?:) The LRT is of the form:

s
Reject H  iff ^  (s > c, 

for some critical value c, where 

Cs a{ri\ , • • • , n§ , 7 T q )  

and a{ni, ■ ■ ■ , n S]ir0) =  N~ 2 I lL iK /^ o s ) 2”8̂ -

S =  1

—  a .  A
g  j y  0 pooled

(ii) For a level a test, the critical value ca is obtained from.

a Pr ] T C s > c q \0o (2.13)
S =  1

=  X  P(ni> ' “  ,n s I 7To)Pr[C/(M) >c(nu --- , ns )] ,
111 ,71 g

where the summation is taken over all {n1; • • • ,n s } such that n3 > 0 Vs 

and X)f=i ns = N , p(n l5 • • • , ns 17r0) is defined in (2.8), c{ni, • • • , ns ) = 

a(ni, • • • ,ns',irQ)ca — 1, and has the same distribution as that, un­

der H  and conditional on (ni, • ■ • , n s )T, of  the sum of non-zero roots 

£i, • • • , of the following determinantal equation:

 ̂ £ S pooled
s ~  1

=  o.
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Proof. From § 2.2.2, the MLEs of fi and E are, respectively, fi0 and E 0 under 

H , and y  and Spooied under K . Now from (2.1), it can be deduced that

c H = n < s  127r̂ °  \~N/2 exp ( ~ e t )  ’

Ck = II { j f )  I ^Spooled V N/2 exp ■

Thus,

\ ~ 2/N = a(nu ••• , n g ;7r0) x  L
| Spooled j

=  £ C „  (2-14)
S — 1

using Property 2.3 and A2.3m of Mardia et al. (1979, p. 458), and H  is rejected 

for large values of (2.14). This proves (i).

Now consider (ii), and assume H  holds and (rai, ■ • • , n s)T is fixed. It fol­

lows that ^/n^dos ~  JVc(0,E) (Property 2.2), so that M i =  E f= i re«d0sdos ~  

yVc(H, S'), independently of M 2 =  N S pooied ~  W c(E, jN — S) (Property 2.4). 

Write (2.14) as

A~2/jv =  a(ra!,--- ,715; jt0) [l +  t^ M iM a 1)]

=  a(nx,- • • , n s ;ir0) (l +  U(M)) .

Using the fact that the trace of a matrix is equal to the sum of its eigenvalues 

(Mardia et al., 1979, p. 467), it is clear that has the same distribution 

as Em=i where fi ^  0 , • • • , #  0 satisfy

0 =  | M XM 2 1 -  £Ic|
s

~  ^  ' ^ d 0sd0s — £Spooled ■
s =  1
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Finally, the expression in (2.13) is obtained by noting that (ni, ■ ■ • , n s)T 

has a tnmcated multinomial distribution with parameters N  and tt0 under H , 

subject to the condition that 0 < ns < N  Vs.

□

R em ark  2.3.5 Remarks 2.3.1 and 2.3.3 for Theorem 2.1 also apply to this 

case.

R em ark  2.3.6 It is assumed that the Wishart distribution is nonsingular, 

i.e., N  > S  + C, so that S~foled exists with probability 1 (Dykstra, 1970). 

This holds if  Vs, ns > C so that nsSs has a nonsingular Wishart distribution, 

s =  1, • • • , S. In this case, M  =  minimum (S, N  — S ).

R em ark  2.3.7 The statistic U{M'> is known in the literature as Hotelling’s 

generalized T 2 statistic (Hotelling, 1951). Its null, or central, distribution 

was derived by Hotelling (1951) for C — 2 and by Krishnaiah and Chang 

(1972), Pillai and Young (1971), and Davis (1970) f o r C  > 2. Mijares (1990), 

McKeon (1974), Hughes and Saw (1972), and Pillai and Sampson (1959) 

provide various approximations to this distribution. A noncentral distribution 

arises under K , since ]Cf=i ^ sd 0sd (](, has a noncentral Wishart distribution in 

this case.

R em ark  2.3.8 I f  S  = 1, the LRT statistic in Theorem 2.2 becomes (1 + 

d o Spoiled1do), i-e-, the LRT in Theorem 2.2 reduces to the one-sample LRT  

for a multivariate normal distribution with unknown £  (Mardia et al., 1979, 

p. 125).
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The following corollary for the case C  =  1 and 5  =  2 is a special case of 

Theorem 2.2 as applied to the model considered in Example 2.1.

Corollary 2.2.1 Consider the model in Example 2.1. Suppose a2 is unknown. 

The LRT of H  : (p,pi, /r2)T =  (po, Poi, Mo2)T against K  : (p,fiu p2)r ^  

(po, Poi, P02)1" in this case is of the form:

Reject H  iff a(n;p0)
j  n(Y  1 -  ppi)2 +  (N  -  n ) ( y 2 -  p02)2'

g ( y a , r 2)

for some a-critical value ca obtained from

> (2.15)

a
1 ^  1 /  N \

, „„ „„ E  „  k«b"-"Pr [n.„-2 > c(n )] , (2.16)
1 — Po ~  "0 n=1 V71/

where F2,n - 2 an F  random variable with (2, iV — 2) degrees of freedom, 

a{n-,p0) =  (l/iV 2)(n/p0)2”/JV[(iV-n)/<3-0]2‘“2”/iV andc(n) = (N~2)[ca/a(n-,p0)~ 

l ] /2 .

77ie power of the test at (p, /x 1, p-2)T 7̂  (Po, M01, P02)1" given by

1
X I ( „ J p V  "Pr *££*-2 > C(™) (2.17)

where F^jfl} 2 is a noncentral F2,n - 2  random variable with noncentrality pa­

rameter A (re) =  [n(/xi -  poi)2 +  (N  -  n)(/x2 -  Z ^)2]/^ 2-

Proof. The test statistic in (2.15) is easily obtained from Theorem 2.2 by 

taking 5  =  2 and C — 1.

The null distribution in (2.16) is derived by noting that, under H  and

conditional on n, n (Y  1 -  /x01)2/er2, (N  -  n) (Y2 -  fi02)2/cr2, and Q ( Y i , Y 2) / o2
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are independent x h x i  and Xn - 2  random variables, respectively. Hence,

N - 2  n {Y1 -  fi01)2 + {N - n ) ( Y  2 -  fi02)2 = x l /2
2 Q ( Y u Y 2) l 2/ ( i V - 2 )

~  F2,N-2,

under H  and conditional on n. The rest of (2.16) follows from the fact that n 

has a binomial distribution with parameters (IV, p0) under H, truncated at 0 

and N.

Expression (2.17) follows from the non-null distribution, which is ob­

tained in a similar fashion, except that the F  variable now becomes a noncen­

tral F  variable with the same degrees of freedom and noncentrality parameter 

A(n) =  [n(fii — Moi)2 +  (N — ra)(/x2 — t e )2] / 0"2 (Johnson and Kotz, 1970, 

pp. 189-190).

□

Critical values for the LRT in Corollary 2.2.1 were computed in S-PLUS 

and are displayed in Table 2.1 (de Leon and Carriere, 2000) for various values 

of N  and po at levels a — 0.01,0.05. Note that Table 2.1 may be used as well 

for 1 — p0 =  0.75, 0.9, and 0.95, as the critical values ca are the same for these 

cases. For example, the critical value at a = 0.01 when p0 =  0.05 with N  = 30 

(i.e., ca = 1.453) is exactly the same as that when p0 =  0.95.

Figure 2.1 displays several plots of the power function in (2.17) for various 

fixed true values p i , p 2 and null values //.qi: M02 of the state means, with p0 = 

0.5. Plots (a) — (6) have N  = 25 while (c) — (d) have N  = 50. It is clear from
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Figure 2.1 that the power of the LRT increases with N  as well as with the 

distance between the null and true values of the state means.

Similarly, contour plots of (2.17) for a range of values of (pi, p2) are 

shown in Figure 2.2, with p =  0.5, a2 =  1 and N  =  25. The null values 

considered are /j0i =  0, poa =  0.5 and p0 =  0.25,0.5. The contour levels are 

generally high (especially for the top plot in Figure 2.2) around, but decreasing 

as they approach, the point (pi ,p2) =  (0,0.5). This indicates a funnel-like 

shape for the power surface, with saddle point at (py,p2) =  (0,0.5).

2.3.3 Properties of the Likelihood Ratio Test

In what follows, two optimal properties, namely, consistency and unbiasedness, 

are proved for the LRTs derived in § 2.3.1-2.3.2.

P ro p e r ty  2.5 The LRT in Theorem 2.1 is consistent. The same holds for 

that in Theorem 2.2, provided p  ^  p 0.

Proof. For Theorem 2.1, note that — 2,/VlogiV — 2 X)f=1 ns log(7r0s/ n s) —» 0 

almost surely as N  —»■ oo. Therefore it follows that c(ni, • • • , ns) —*■ oo, and 

consistency follows.

For Theorem 2.2, ca satisfies Pr ( jT Ss=i C > ca I =  «• Because 

Xd2/d2 * 1 an(i a(nh ' "  )ns!7ro) -► 1 almost surely, it follows that d2(ca —

1) —> c0 such that P r(y^ < c0) =  1—a, where di =  C S  and d2 — N  — S —C+l .

T hus, c a  — > 1 as ./V —> oo. B y  th e  strong law  o f large num bers,

d S S
J y f f  n-.sd o .s S nonff,fjd 0s — > ^ ^ ( / i s — / i 0 s ) t E  ( p s — f i 0 s ) ,

1 s = l  a = l
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almost surely. For n  ±  n 0, (Ps ~ PosV^ Hp., ~ PoJ  > 0 and the LRT is 

consistent.

□

P ro p e r ty  2.6 The LRTs in Theorems 2.1 and 2.2 are both unbiased.

P roof. Because the distribution functions of A(ni ••• n,) and ^di dl' are

decreasing in A(rii, • • • , ns) Vrai, • • • ,n s  (Johnson and Kotz, 1970, pp. 135,193), 

it follows that Pr[Xdl>A(nii...,„s) < c] < Pr[x3, < c], and P r 'ns) < c] < 

Pr[Frfi,t£2 < c], f°r anY constant c. Therefore,

E«r{p r[xSi,A(n1>-,n s) > c(n i>' ' '  >n s)]} > E.{Pr[x21 > c(n1; • • • , n s )}}, 

E - l P r ^ A 1’'" ’"81 > c(n i, • • • , n s )]} >  E ,{P r[FdlA > c(nu ■ ■ ■ ,n s )]},

where the expectations are taken with respect to the truncated multinomial 

distributions with parameters it and ttq. This implies that the power achieves 

its minimum at 60, and the LRTs are unbiased (Anderson, 1984, p. 362).

□

The above proofs include as special cases those for the case C — 1 and 

5  =  2, details of which are found in de Leon and Carriere (2000).

2.3.4 Simulation Results

In this section, the power of the LRT derived in Corollary 2.2.1 is investigated 

and its performance compared against that of the separate test approach, 

which treats the binary and continuous variables individually and tests their
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parameters separately. The relative power superiority of the LRT developed 

in this chapter compared to that of the separate test may be anticipated as the 

former utilizes the information about the dependency between the variables 

x  =  {Xi, X 2)T and Y  in the general location model considered in Example 2.1. 

The actual power values of LRT are presented here to confirm this conjecture 

as well as to show the relative merits of LRT over the separate test.

The separate test approach entails carrying out simultaneous tests of the 

following hypotheses:

//o : p =  Po against K 0 : p ±  p0,

H x : ^  =  pox against K x : px ±  Poi, (2.18)

H2 : P2 = P02 against K 2 : p2 /  p02.

Note that H  — Dj=o ^ i-  The first pair above is tested using the exact binomial 

test while the latter two are tested using the standard one-sample f-test, using 

the pooled sample variance to estimate a2. If at least one null hypothesis in

(2.18) is rejected, then the null hypothesis H  in (2.5) is rejected. To control 

the overall level of the tests, a Bonferroni adjustment (Pocock et al., 1987) of 

the level of each test is made by dividing the nominal level a  by 3.

Because the power function for the separate test is not known analyti­

cally, power values are directly calculated only for LRT using the power func­

tion given in (2.17), and Monte Carlo simulation is used for the separate test. 

In the first simulation experiment, samples of moderate sizes IV =  15 and 25 

were generated from the general location models with scale parameter a2 =  25 

and the following values for the location parameter 0 = {p, Pi, p2)J ■ (a)
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(0.35,50, 25)t , (b) (0.35,52.5,22.5)T, (c) (0.4, 55,22.5)T, and (d) (0.4,55,20)T. 

In each case, the null parameter 0O was taken to be (0.3, 50,25)T. To maxi­

mize the advantage of using LRT, the difference in the two mean values should 

be quite large and this influenced the choice of the parameters above. From 

Olkin and Tate (1961) and Tate (1954), the correlation (also referred to as 

point-biserial correlation) between x and Y  is given by

Px,y  {pi /k>)y- a2 +pq^ 1 _  /i2)2 ’

Therefore, under the location model, x and Y  become uncorrelated (in fact, 

independent) if the two state means are equal. Conversely, the dependency 

becomes stronger when they are far from each other, and it is precisely where 

LRT is expected to outperform the separate test. The performance of LRT will 

be equivalent to that of the separate test as the dependency between x and Y  

becomes negligible. Note that the values of px<Y for the general location models 

considered are generally high, ranging from 0.922 to 0.96 in cases (a)-(d). It 

is equal to 0.916 in case (0).

In the second simulation experiment, the null model is taken as the 

general location model with 60 =  (0.5,50,45)T and a2 =  25. For power 

comparisons, samples of the same sizes IV =  15 and 25 were generated from 

the general location models with a2 = 25 and location parameters 6 equal to 

(a)’ (0.45, 50, 42.5)t , (b)’ (0.45, 52.5,42.5)T, (c)’ (0.55,52.5,42.5)T, and (d)’ 

(0.55, 55,47.5)T. Note that unlike in the first experiment where the values of 

Px.,y were generally very high, those for the second experiment range from a 

low of 0.447 (for the null model) to a high of 0.705.
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Tables 2.2 and 2.3 present the powers and the empirical sizes. All samples 

were generated using S-PLUS, with 10,000 repetitions in each case. The entries 

in Cases (0) and (0)’ correspond to the situation when the null hypothesis is 

true, and hence give the levels (empirical in the case of the separate test) of 

the tests. They indicate that the actual level of LRT is exactly at the nominal 

level, while that for the separate test tended to be slightly conservative.

It is clear from Tables 2.2 and 2.3 that the performance of LRT is superior 

to that of the separate test, as the power values are generally much higher 

for the former compared with those of the latter. This is true even in the 

case of a slight departure from the true value as in (a) and (b) in the first 

experiment, and (a)’ in the second. The comparison is most favorable to LRT 

when a  =  0.01, and especially when N  = 15. This can be explained mainly by 

the fact that the separate test is a conservative method and becomes especially 

so for small sample sizes and high correlation between x  and Y. The findings 

reported here are in general agreement with those reported by Pocock et al. 

(1987) for continuous variables.

2.4 Extension to G-Sample Case

The multi-sample location problem

H  : 0i = ■•■ = 0G against K  : at least 1 inequality. (2.19)

is the focus of this section. The interest is on constructing statistical tests of

(2.19) based on G > 2 independent random samples from G LM (ng,fig,Hg), 

g = 1, • • • , G. Note that (2.19) is the one-way multivariate analysis of variance
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(MANOVA) problem involving mixed binary and continuous populations. For 

convenience, denote by (xjsi,y V )T the Ah observation belonging to state s in 

population g, and put 6Jg =  (irJ

Previous works on mixed MANOVA problems include those of Afifi and 

Elashoff (1969), Pocock et al. (1987), and more recently, that of Morales et 

al. (1998). Pocock et al. (1987) obtained global tests for comparing treatment 

effects in clinical trials. They extended O’Brien’s (1984) work to binary and 

survival data and established the asymptotic normality of the test statistics. 

Morales et al. (1998) proposed a class of dissimilarity measures among several 

independent populations each described by the general location model, and 

applied it to hypothesis-testing problems similar to (2.19).

The approach adopted here is most similar to that of Afifi and Elashoff 

(1969), who considered the two-sample (i.e., G =  2) location problem and 

derived an information-theoretic test, in addition to the LRT, for the problem. 

Here, as in § 2.3 and Afifi and Elashoff (1969), the likelihood ratio approach 

is adopted to derive global statistical tests of (2.19). The case of complete 

homogeneity of the populations where S i =  • • • =  S G, is discussed first. This 

can be viewed as a generalization of the classical MANOVA problem to the 

mixed-data setting.

As well, two scenarios where heterogeneity can arise are also considered. 

In the first, it is assumed that the covariance matrix is the same across popu­

lations but varies across states. In the second, intra-population but not inter­

population homogeneity is assumed. This latter case can be viewed as a more
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general case of the Behrens-Fisher problem (Mardia et al., 1979, p. 142-144) 

involving mixed data.

2 .4 .1  C ase o f  C o m p le te  H o m o g en eity

Given G independent random samples from the general location models with 

location parameters 6 1, • • • ,Oq and common covariance matrix E, the likeli­

hood function can be written as

where d5S =  ygs~ figs, Sgs and y gs are the sample mean and sample covariance 

matrix (uncorrected for bias), respectively, of the continuous observations be-

in population g. Note that (2.20) corresponds to C k, the likelihood under K  

in (2.19), where no constraints are imposed on 6 1, ■ • • ,0g.

Derivation of the (unrestricted) MLEs of &i, • • • , Og and E follows from 

standard results on multinomial (Bishop et al., 1975) and multivariate normal 

distributions (Mardia et al., 1979), and are given by

G S

C
3=1 «=1

longing to state s in population g, N  = Y^=i ng- = Z)f=i n-s, ng. =  n8*>

and n.s =  n3«> with ngs the number of observations belonging to state s

s = l  3 s ’

G

For population g, rrTg, = (ngl/n g.,--- ,n gS/n g.), y g. = ngsy gs/n g., and

ng.Sg. = Y lt= ingsSgs, similar to (2.4). The matrix N'S is analogous to the
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within-group sum  o f squares and product (SSP ) m atrix  (Mardia et al., 1979,

p. 138) in MANOVA.

Under the hypothesis H  of complete homogeneity, the G samples can 

be treated as constituting one sample from GLM(ic,pL,Y.). Therefore, the 

likelihood function CH is exactly as given in (2.1) and the MLEs are then 

given by

v  = (n.i/V , • • • ,n .s /N);

2  =  i J 2 nssy]s /n -s)
g=1 g= 1

=  ( y L - - - , y Ts) (2-22)

=  y T;

G  S  n g

N ^  =  5 Z 5 Z 5 I ( y 9"  _ y-»)(yfl« ~ y s)T
g = l  s = l  i=  1

=  N S.

The matrix N S  is called the total SSP  matrix (Mardia et al., 1979, p. 138) in 

MANOVA.

T heorem  2.3 Consider the hypotheses in (2.19). 

(i) The LRT statistic is given by

\ 2/N _  b(nn , • ■ ■ , n c s ) Ic  + N

where

b(nn , • • • , ncs) —
G  S  Tt g. Tlqgrig? n jnn, , iV"p-n'lr
= 1 s = l  a

2 / N

(2.23)
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and

g s
H = XX nss{ygs -  y.s)(y5S -  y.s'T

= 1 s = l

The null hypothesis H  is then rejected if and only if X2/N < c, for some 

critical value c.

{ii) For a level a test, the critical value cais obtained from

a = Pr (X2/N < Ca 11, H)

= X  p(n n , - "  , ncs  I t ,H )  (2.24)
nn jtoGS
xP r ^  c {nn , • • • , n^g)] >

where

S  G  /  S  \

p{nn ,--- ,n GS | t ,H )  =  n ^ n k ' / n v l  /  (2-25)
s =  1 < ?=  1 \  s ' — 1 /

x  n ^ n f ^ n ^ V
n n ,u q s  5 = 1  \  s ' = l  /

with the summations taken over all {nu ,--- , nGS} such that ngs > 0 

Vg,s and Ylg=i ng« = n-s ^ s> A„,1iU,2jU,3 has the Wilks’ X-distribution with 

parameters wi = C, W2 — N  — GS, and w3 = S{G — 1) provided N  > 

C + SG, and t T =  {n.u --- ,n .s ), c(nn ,••• ,n GS) = cQ/&(nn ,--- ,n GS).

Proof. The LRT is easily derived from previous discussions. The MLEs under 

H  are given in (2.22), since the data can be viewed under H  as a single random 

sample whereas those under the alternative K  are given in (2.21). Using (2.20),
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the LRT statistic is thus

A2/iV =  &(«!!,••• ,n GS) x —

=  b(nn ,--- ,n GS) x
~-i

Ic  +
E H

A/'

-1

since N S  =  1VE +  H, where H =  EfLi nfl8(yflB - y.s)(yffs -  y.s)T- The 

LRT thus rejects H  for small values of A2/JV. This proves (*).

Part (ii) is proved in two steps. First, the conditional distribution of 

II c +  E H/JVj \  given {nn , • • • , nc ,5}, is obtained. Following Mardia et al. 

(1979, pp. 138-139), let

(  w ls
W . =

\ W G,

for s = 1, • • • , S, where W gs represents the ngs observations belonging to state

s from population g, g =  1,- • • ,G. From Mardia et al. (1979, p. 139), it can

be shown that

G  G

E  = Wjc.w,, E  - y-.)(y*. - y..)T = W.Tc*w.>
9=1 9=1

where C i =  £®=i[diag(l9) -  l gl j / n gs] and C2 =

with l ff denoting the n.s X 1 vector with 1 in the positions corresponding to 

the gth sample and 0 elsewhere, and 1 =  Eg=i -̂g-

Now under H , W s is a sample from A/"c(/is,E) whence, by Theorems

3.4.4 and 3.4.5 of Mardia et al. (1979, pp. 68-70),

W jC rW . ~  W c(E, n.s — G)

W jC 2W s ~  W c(E, G — 1),
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and, moreover, W jC jW ., and W jC 2W S are independent. Since W b • • • , Wg 

are independent given {nn, • • • , ncs}> it follows from Theorem 3.4.4 of Mardia 

et al. (1979, p. 67) that

JVS ~  W c & N - S G )

H  ~  Wc p ,5 ( G - l ) ] .

Given {nu , • ■ • , nGg}, it follows from Definition 3.7.1 of Mardia et al. (1979, 

p. 81) that \Ic +  E H /A j-1 ~  A.WltW2jW3 under H, where A.Wi<W2jW3 has the 

Wilks’ A-distribution with parameters w\ =  C,w2 — N  — GS, and w3 = 

S(G -  1), provided N  > C  +  GS.

Next, the conditional joint distribution of n i, • • ■ , nG given t  =  X^=i ng 

is derived under H, where n j  — (nffl, • • • ,n gs). To do this, observe that ng is 

multinomial with parameters ng. and irg and, under H, t  is also multinomial 

with parameters N  and 7Ti =  • • • =  ttg =  7r. Thus, under H,

JV!/nf=i n j

The expression in (2.25) now follows, and the joint distribution of n i, • • • , n G 

and |IG + E  H /iV |_1 leads to (2.24). This completes the proof.

□

R em ark  2.4.1 I f  S  — I, (2.23) reduces to the LRT statistic for MANOVA 

(Mardia e ta b , 1979, pp. 138-139). Hence, Theorem 2.3 generalizes MANOVA 

to the case of mixed binary and continuous data.

P*(ni, • • • ,n G \ t ,H )  = ------------—g------- ;----------------------------- - (2.26)
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Remark 2.4.2 Conditioning the joint distribution of ni, • • ■ , nG on t  follows 

the usual way of eliminating the dependence of the joint distribution on rr (see, 

e. g., Read and Cressie, 1988; Koehler and Wilson, 1986). The same approach 

was adopted by Afifi and Elashoff (1969) in the two-sample case.

Remark 2.4.3 The condition ngs > 0 Vg, s (i.e., each state in each population 

has at least 1 observation) is necessary so that all unknown parameters will 

be estimable. This results in a truncated conditional joint distribution for 

ni, • • • , nG given t.

Remark 2.4.4 Note that (2.26) can be viewed as a generalization of the mul­

tivariate hypergeometric distribution (Bishop et al., 1975, pp. 450-4.52), as it 

reduces to the latter in the case 5  =  2.

Remark 2.4.5 Properties and special cases of the Wilks’ X-distribution are 

discussed in Mardia et al. (1979, pp. 81-84). Approximations are found in 

Mardia and Zemroch (1978) and Pearson and Hartley (1972).

Remark 2.4.6 Under K , the conditional distribution of |IG +  E H / i v r  

becomes a noncentral Wilks’ X-distribution (Seber, 1984, P■ 4®)- Also, the 

matrix H is usually referred to as the between-groups SSP in MANOVA.

The following corollary is obtained from Theorem 2.3 for the two-sample 

mixed-data case (i.e., G =  2).

Corollary 2.3.1 Consider the two-sample case (i.e., G = 2). The LRT statis-
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tic in (2.23) becomes

X - 2 / N

X

(2.27)

8 = 1
n.sN (yis - y 2s)T s (yis - y 2s)

where b{nn , • • • , n2S) =  /N n ) n f= i(n is +  n2s)nu+n2s/(n ^ /n ^ 2/ )

and, H  is rejected if and only i f  \~ 2/N > ca, where ca is obtained from

2 / N

a =  ]C P(nn > '”  >"2S I t ^H )
n n , — ,«2S

xP r [U(M) > c(nn ,--- ,n 2S)] ,

(2.28)

where

p(nl u ■■■ ,n 2S | t ,H ) ni,\n2.\ n f= i [(«is +  n2sy./nga\\ (2.29)
E„n,.,„2S n.=i [(ni* + n2.)!/«,.!]

with the summations taken over all {nn, • • • , n2s} such that ngs > 0 Vg, s and

nis +  ri2s =  n.s Vs, c(nu , • • • , n2S) =  6(nn , ■ • • , n2S)ca -  1, and /jas f/ie

same distribution as that, under H  and conditional on {nn , • ■ ■ , n2s }, of the

sum of non-zero roots £ i,• ■ • , ( m of the following determinantal equation: 
s

E
S = 1

n..N (yis - y 2,)(yi. - y 2s)T = o.

P roof. First, note that

E H
N =  1 + Y1  _ y 2S)T̂  V i .  -  y2a), ( 2 .30)

s = l
n.sN

by A2.3m of Mardia et al. (1979, p. 458) and since H  can be written as

H = -  y 2S)(yis -  y2s)T
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Next, assume that H  holds and {nu , • • • , n2S} is fixed. It follows that 

^ n lsn2s(y ls -  y 2s) /^ /tTs ~  .A/c(0,E) Vs, so that M x =  £ f= i n lsn2s(yls -  

y 2s)(yis -  y 2J T/ n -s ~  Vyc (S, 5), independently of M 2 =  N S  ~  WC(E, N  -  

SG). The rest of the proof parallels that of Theorem 2.2, with £1,• • • ,£m the 

non-zero roots of

0 =

E ^,ls '̂2s
n..N (yls - y 2s)(yis - y 2.)T

□

The following corollary for the case G > 2, C = 1 and S  — 2 is obtained 

by applying Theorem 2.3 to the model considered in Example 2.1.

C oro llary  2.3.2 Consider the model in Example 2.1. The LRT statistic in 

the case where G > 2 is given by

A 2/JV =  b 1(ni, ■ • • ,n G) (2.31)

1 + EI
ff=i N o 2

2 / N
where b f a , • • • , nG) =  [pTq* " /  Tg9^ 9 "9)

N a 2 =  [ngS 2gl + (Ng -  ng)Sg2] , (2.32)
3=1

p — n /N , pg = ng/N g, q =  1 — p, qg =  1 — pg, Y gs and Sgs are the respective 

sample state mean and variance (uncorrected for bias) of observations belong­

ing to state s from population g, n = J2g=i ng> N  = £ j= i  Ng, with ng and 

Ng — ng the numbers of observations belonging to states 1 and 2, respectively,
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from population g =  1, • • • , G. Note that it is assumed in (2.32) that, without 

loss of generality, the first ng observations from population g belong to state 1. 

The a-critical value ca is obtained from

a =  p(nu --- ,n G \ n,H )Pr[Fdud2 > ,n G)\, (2.33)
n l  >*“  >n G

where

n 0 . (Ng)
p(nu  • • • , nG | n, H) =   /jV x , (2.34)

v  r r G ’Z—m i,- - -  , t i q  l l o = l  \ n a ‘'71 ,71Q AXgr=

with the summations taken over all \n t , • • • , nG} such that 1 < ng < Ng -  1 

Vp and Y)^=ing = n, di = 2(G — I), d2 = N  — 2G, and c{ni, ••• ,n G) = 

di [&(«!,••• ,n G)ca -  1 \ /d 2.

The power of the test at (pi, Pm  Pi2)t , • • * , (Pg, Pgi,Pg2 )T is given by

p (n !’ n )Pr K X 1’"',ns) > c(n u ■■■ ,n G) , (2.35)
■fti , no

where

n G  n g , Ng\
llg^iPg \ n )

p(n i , • • • , nG | n) =   ---------  ^  (2.36)
Z^ni,...,nG Ilg=l P<7 \ns /

A ( n n - - -  , n G )  =  £ G= 1 [ n g ( / i ffl “  M- i ) 2 +  ( N g  ~  n g ) ( P g 2 “  M .a)2 ] / ^ 2 , P -s =  

Y)g=:ingsPgs/n.s, and pg = Spg/(  1 +  4pg), with the scale factor 5 adjusted so 

that E g =l NgPg = U.

P roof. The test statistic in (2.31) follows immediately from Theorem 2.3 by 

taking C — 1 and 5  =  2.

The null distribution in (2.33) is derived by noting that Eg=i ng(Yg 1 — 

Y .i)2/o 2, E g= i(Ng ~  iig)(^g2 -  T',2)2 jo 1, and N a 2/a 2 are independent Xg-d
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Xg- d  and X%-2Gi respectively. Hence, 

G

E
5 = 1

N o 2
2(G -  1) 
N  - 2 G

,2

X
X 2(G -l)/(^  2)
X2v- 2G/ ( ^  -  2G)

d lF ~  T^di,d2i<h

under H  and conditional on {rai, • • • , ng}. The rest of (2.33) uses the fact that 

n i> ■ • • , nG, conditional on Y^=i ng =  n, is multivariate hypergeometric with 

parameters n, N  and (Ni, • • • , JVg ) ,  under H  (Bishop et al, 1975, p. 452).

The power of the test immediately follows from the fact that Ylg=i ng(Ygi ~ 

Y .i)2/o 2 and Yl^=i(Ng ~ ng)(Xg2 ~ Y .2)2jo 2 are independent noncentral Xg-i 

with noncentrality parameters Y^=i ng(llgi “’P i ) 2/ 0'2 and ng){llg2 ~

JI.2)2/ o2, respectively, and (ni, • • • , nG)r , given ng = n > has a multivari­

ate extended hypergeometric distribution with parameters n , G, (Ni, • • • , Ng) ,  

and (/?!, • • • ,pG) (Harkness, 1965). This completes the proof.

□

The following corollary is obtained from Corollary 2.3.2 with G =  2.

C orollary  2.3.3 Consider the model in Example 2.1. The LRT statistic in 

the case where G =  2 is given by

X~2,N b (n i,n 2) 

nxn 2
1 + n N o 2

^7 i2 , (N i ~ n i) (N 2 - n 2)
11 -  I  2 1J 4-------7—-----------------(N  — n )N o 1

(2.37)

(F 12 -  y 22)2
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where b{ni,n2) and a2 are as defined in Corollary 2.3.2. The a-critical value

ca is obtained from

J V i- l  ( N i \  ( N - N ! \

“  =  E  (»-«,■>Pr . (2-38)
r t i ~ l  U /  I n - i V i  /  \  n /

where c (n i,n 2) = (TV —4)[6(ra1,n 2)ca —1]/2, provided n + Ni > TV andn > TVt . 

77?,e power of the test at ( p i , / in ,p i2)T ^  (P2 , P2 1 , P22)T *5 5 wen by

N i - l

P ( n u n 2 | n ,p !,p2)Pr F ^ l ’̂  > c(na,n 2) , (2.39)
n i  =1

where

f r i (Nl) ( NZNl)
p(nu n2 | n ,p i,p 2) -  — ^  /ata/jv-jva _  a^/at-ata _  /jv-(va> (2-40)

\ n i /  I n - n i  /  • \ n —iVi /  \  n  /

w f/i p =  Piq2/(P2gi) and A (n i,n 2) =  [n!n2(pn  -  p2i)2/ n +  (TVi -  ni)(TV2 -  

™2)(Pi2 ~  A*22)2ln ]/a2.

Proof. The proofs of (2.37)-(2.38) follow immediately from Corollary 2.3.2 by 

taking G =  2, and by noting that n 1? under H  and conditional on n i+ n 2 = n, 

is hypergeometric with parameters TVi and TV2 =  TV — TVi (Bishop et al., 1975, 

p. 450), so that the normalizing constant is 1 — [(^ v * )  +  (N~nNl) /(„)■

Expression (2.39) is proved using the fact that ni, under K  and con­

ditional on rij +  ra2 =  n, has a noncentral (or extended) hypergeometric dis­

tribution with noncentrality parameter p =  Pi<?2/(P2<?i) (Johnson et al., 1992, 

pp. 279-282), so that the normalizing constant becomes

T Nl oni(Nl) ( N~Nl)'£ - * n i= 0  < V n i / V n —n \  )

□
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Remark 2.4.7 I fS  =  1 in Corollary 2.3.1, the LRT reduces to that for testing 

equality of the means of two independent multivariate normal samples (Mardia 

et al., 1979, pp. 139-140), or equivalently, the two-sample Hotelling T 2 test 

statistic given by

77j 772^2 \  711712^2 (— — \ T o  — 1 / — — \
 ~~2~j (yi ~ y2 ) E ( y i - y 2) = — ^ r ( y i - y 2) s « ( y i - y 2)Trai n[n — 2)d, i

under H, where di =  C, d2 — n — C — 1, and Su = (n — 2)S /ti (Mardia et 

al., 1979, p. 76-77). Thus, Corollary 2.3.1 generalizes the multivariate two- 

sample location problem to the case of mixed binary and continuous data.

Remark 2.4.8 The LRT in Corollary 2.3.1 appears in Afifi and Elashoff 

(1969) and is analogous to a test derived by Bar-Hen and Daudin (1995) based 

on a generalization of the Mahalanobis distance via the Kullback-Leibler diver­

gence (Kullback, 1968, pp. 6-7).

Remark 2.4.9 I fS  =  1 in Corollary 2.3.2, the LRT reduces to that for testing 

equality of the means of several independent normal samples, or equivalently, 

the analysis of variance (ANOVA) F-ratio test (Mood et al., 1974, PP- 435- 

438). Thus, Corollary 2.3.2 generalizes the univariate ANOVA problem to the 

case of mixed binary and continuous data.

Remark 2.4.10 If S  = 1 in Corollary 2.3.3, the LRT reduces to that for test­

ing equality of the means of two independent normal samples, or equivalently, 

the two-sample t-test (Mood et al., 1974, PP- 432-435). Thus, Corollary 2.3.3
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generalizes the univariate two-sam ple location problem  to the case o f mixed

binary and continuous data.

2.4.2 H eterogeneous Cases

The Behrens-Fisher problem originally arose in the test of equality of means 

of two independent univariate normal samples (G — 2) when the variances are 

not equal. It has since been used to refer to the analogous problem in the case 

of G > 2 multivariate normal samples. Two situations where such problem can 

arise in the mixed-data setting are now briefly studied. The first only assumes 

within-population homogeneity, i.e., £ gi =  • • • =  Y,gS =  £ 9 for g =  1, • • • , G. 

The second, on the other hand, only assumes within-state homogeneity, i.e., 

Eis =  • ■ • =  E Gs =  £ .s for s =  1, • • • , S. Note that complete homogeneity in § 

2.4.1 is simply a special case of these.

Consider the situation where within-state homogeneity holds. The log- 

likelihood tfc ') of the continuous data can then be written, in this case, as

G  S

f (C) =  - E E { !y l o g l 2 ^ . . | + ^ t r [E:.1 (Ss. +  d , .d J . ) ] }  (2.41)
3 = 1  s = l  

S'

log I 27rS s I +  Jtr
s = l

S.s n9s
3=1

where n.s =  £ g=1 ngs. That for the binary part, f.{D\  follows from (2.20).

Under the alternative hypothesis K, the MLE Qg of 0g, g =  1, • • • , G, is 

as given in (2.21) and that for E.s can be shown as

G

n.gE.s ^  ' ‘O’gs^gsi 
3=1

for s — 1, • • • ,5 .
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Similarly, under the null hypothesis H  where fly =  • • • =  kq — *  and 

fiu = ■ ■ ■ — n Gs =  fi s) the (restricted) MLEs of nr and /z.s are as given in 

(2.22), and that for is given by

These MLEs can be explained by viewing the problem as consisting of S  G- 

sample homogeneous tests as in § 2.4.1.

The LRT statistic is then

where 6(nn , • ■ • , nos) is as defined in Theorem 2.3. Equivalently,

s
- 2  log A =  -jVlog&(rau , • • • ,n GS) +  ^  n.s logV(n.s), (2.43)

3 —  1

where, conditional on n n , • • • ,n GS, V (n4), • • • ,V (n .s ) are independent such 

that

The same approach as before can then be employed to get the exact distribu­

tion of (2.43), except that it now involves neither the y 2 nor F  distributions but 

rather the distribution of a sum of transformations of independent F  random 

variables.

G  Tigs

n.sE.s =  ^ 2  -  y J T-
9=1 i=l

££ ii
feiY/ 2( n n ,  • • • , nGs)

-n.,/2

(2.42)

n.s — G — C + 1 
CG [V(n.g) — 1] ~  F C G , n . s - G - C + 1 -
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It should be mentioned that an analogous situation in MANOVA arose 

in an earlier paper by Geisser (1963), where a uniform or compound symmetric 

structure for the covariance matrix (i.e., equal variances and equal covariances) 

is assumed for the data. In the one-sample multivariate normal case, the 

LRT leads to a test statistic very similar to (2.42) and (2.43) (see Eq. (1.5) 

of Geisser, 1963). Approximations to distributions of linear combinations of 

independent F  (and beta) random variables are given by Johannesson and 

Giri (1995), Dyer (1982) and Morrison (1971).

The case of within-population homogeneity is where the Behrens-Fisher 

problem arises. In what follows, it is assumed that G =  2 for simplicity. In 

this case, the same MLEs under K  as those derived previously for the case of 

within-state homogeneity still obtains except for

for g = 1,2. Derivation of the (restricted) MLEs of fi.s and E i ,E 2 follows from 

standard results (Mardia et al, 1979, pp. 103-105) and are given by

for g =  1, 2; s =  1, • • • , C. These estimators need to be calculated iteratively as 

suggested in Mardia et al. (1979, pp. 142-143). The asymptotic distribution 

of the LRT statistic (Ogawa et al., 1957) may then be used to carry out a 

test of (2.19). It is an open question whether solutions to the Behrens-Fisher

s

Ms — n isHi + n2s'S2 ™isEiyls +  n2sE 2y 2s

n A  =  n g ^ g + ^ n gs{ y g s - J i . s ) { y g s - f i . s ) J ,

8— 1
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problem (Hussein and Carriere, 2001; Jordan and Krishnamoorthy, 1995) can 

be adapted to the mixed-data setting.

2.5 Discussion

This chapter was concerned with tests of location hypotheses for mixed mul­

tivariate data distributed according to the general location model. Likelihood 

ratio tests for the one-sample and multi-sample problems were obtained and 

their exact distributions were derived. These LRTs provide global tests of 

location hypotheses and thus avoid the problem of multiple testing. The test 

statistics are similar to their continuous case counterparts and are simple and 

easy to calculate. In addition, critical values of the tests can be easily calcu­

lated by conventional methods (see Table 2.1).

The likelihood ratio approach was employed to construct global tests of 

mixed data location hypotheses because it allows for a general non-ad hoc ap­

proach of simultaneously accounting for both the discrete (i.e., multinomial) 

and continuous variables in the data. The approach parallels that of Afifi and 

Elashoff (1969) and is an alternative to the dissimilarity-based tests proposed 

by Morales et al. (1998). These tests, it should be noted, are all asymptotic, 

unlike the exact LRTs derived in this chapter. By modelling the joint distri­

bution of the mixed variables as a general location model, the resulting LRTs 

can be viewed as extensions of classical LRTs in the one-sample and multi­

sample problems based on normal distributions. The power functions of the 

LRTs were also obtained and investigated, in particular, for the one-sample
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case with one binary and one continuous variable. The simulations indicate 

that the LRT outperforms the separate test approach to a considerable extent.

Finally, the Behrens-Fisher problem as it arises in the mixed-data set­

ting was briefly discussed. The same complications that it engenders in the 

(strictly) continuous case were also identified in the mixed-data case. The 

dissimilarity-based tests proposed by Morales et al. (1998) could be applied 

to this case, as the tests were derived without the assumption of complete 

homogeneity. However, they rely on the asymptotic distributions of the test 

statistics and their performance, especially in small samples, has yet to be 

studied. It is still an open question whether solutions (see, e.g., Hussein and 

Carriere, 2001, for a recent survey) to the Behrens-Fisher problem can be 

adapted to the case of mixed binary and continuous data.
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Figure 2.1: P lots o f the P ow er Function o f  LRT with C  =  1 ,5  =  2 and
unknown a 1, fo r  p Q =  0.5 and fixed S ta te Means.
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NOTE: Displayed are plots o f the power function in Corollary 2.2.1 at a  ~  0.05, a 2 =  1. 
For (a) and (c), the solid lines correspond to p \  — //0i  — 0,/i2 =  2 =  0-5; dotted lines
to p i  — 0 ,//o i =  0.5, p 2 =  tM)2 — 0-5; dashed lines to  p \  =  p 02 — 0,P2 =  /io2 =  0.5. 
For (b) and (d)} the solid lines correspond to p \  — /i0i =  0, p 2 — Ak)2 — 1/ dotted lines to 
p i  =  0 ,/io i — 1 ,P 2 — M0 2  — 1; dashed lines to p± =  po2 =  0 ,P 2 ~  PQ2 =  1.
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Figure 2.2: Contour P lots o f the Pow er Function  o /L R T  with C  =  1, S  =  2
and unknown a 2, fo r  N  — 25 and p  — 0.5.
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NOTE: D i s p l a y e d  a r e  c o n t o u r  p l o t s  o f  t h e  p o w e r  f u n c t i o n  i n  C o r o l l a r y  2 . 2 . 1  a t  a  =  0.05; 
w i t h  (/^oi)^0 2 ) =  (0,0.5), a 2 =  1 , N  =  25, a n d  p 0  =  0.25 ( t o p ) ,  0.5 ( b o t t o m ) .  N o t e  t h a t  H  

i s  f a l s e  f o r  p o  =  0.25 ( t o p )  w h i l e  i t  i s  t r u e  f o r p Q =  0.5 ( b o t t o m )  a t  ( p , 1 ,^ 2 ) =  (0,0.5).
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Table 2.1: C ritical Values ca fo r  the LRT with C  =  1, S  =  2 and unknown a 2.

N
Po a 10 15 20 25 30 50

0.05 0.01
0.05

3.798619
2.496786

2.2596
1.741778

1.791351
1.483547

1.576424
1.360345

1.453066
1.286645

1.246445
1.161088

0.1 0.01
0.05

3.611616
2.381277

2.211619
1.708373

1.781555
1.477761

1.577642
1.362857

1.459268
1.294167

1.255812
1.171379

0.25 0.01
0.05

3.626509
2.40079

2.260955
1.752161

1.825464
1.518428

1.614376
1.397828

1.489984
1.316231

1.264061
1.175092

0.5 0.01
0.05

3.744688
2.504224

2.327917
1.791348

1.848998
1.527104

1.622168
1.394488

1.490199
1.315474

1.263739
1.175038

NOTE: S h o w n  a r e  c r i t i c a l  v a l u e s  f o r  t h e  l i k e l i h o o d  r a t i o  t e s t  i n  C o r o l l a r y  2 . 2 . 1  ( u n k n o w n  

a 1 )  a t  l e v e l  a  =  .01, .05, w i t h  p o  —  .05, .1, .25, .5.
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Table 2.2: Power Comparison of the LRT with C =  1, S  =  2 and unknown a2 
against the Separate Test Approach, for H  : 0 =  (.3,50,25)T based on 10,000 
Monte Carlo samples of sizes N  = 15 and 25.

N==15 N==25
Case a LRT ST LRT ST

(0) 0.05
0.01

0.05
0.01

0.0362
0.0093

0.05
0.01

0.0429
0.0071

(a) 0.05
0.01

0.0626
0.0138

0.0443
0.0089

0.0656
0.0149

0.0555
0.0096

(b) 0.05
0.01

0.3005
0.1142

0.2358
0.0805

0.5001
0.2484

0.4258
0.1822

(c) 0.05
0.01

0.5974
0.3377

0.4947
0.2384

0.8499
0.6469

0.7824
0.5243

(d) 0.05
0.01

0.8578
0.6199

0.7533
0.4543

0.9872
0.9306

0.9664
0.8322

NOTE: S h o w n  a r e  t h e  p o w e r s  o f  t h e  l i k e l i h o o d  r a t i o  t e s t  (LRT) i n  C o r o l l a r y  2 . 2 . 1  a g a i n s t  

t h o s e  ( e m p i r i c a l )  o f  t h e  s e p a r a t e  t e s t  (ST) f o r  (0): 0  =  (.3 ,50 ,25)T; (a): 9  -  (,35,50,25)T;
(b): 0  =  (.35,52.5,22.5)T; (c): 0  =  (.4 ,55 ,22.5)T; a n d  (d): 9  =  (.4 ,55,20)T, w i t h  a 2  =  25. 
N o t e  t h a t  p X ty  i s  .916 i n  (0), .922 i n  (a), .944 i n  (b), .954 i n  (c), a n d  .96 i n  (d).
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Table 2.3: Power Comparison of the LRT with C = 1, S — 2 and unknown a2 
against the Separate Test Approach, for H  : 6 =  (.5,50,45)T based on 10,000 
Monte Carlo samples of sizes N  — 15 and 25.

IV==15 N=:25
Case a LRT ST LRT ST

(0)’ 0.05
0.01

0.05
0.01

0.042
0.008

0.05
0.01

0.0395
0.0077

(a)’ 0.05
0.01

0.179
0.0579

0.1507
0.0482

0.2989
0.1215

0.2747
0.1161

(b)’ 0.05
0.01

0.2862
0.1044

0.228
0.0748

0.4982
0.2467

0.412
0.1844

(c)’ 0.05
0.01

0.2862
0.1044

0.2338
0.0762

0.4982
0.2467

0.4163
0.1804

(d)’ 0.05
0.01

0.6365
0.3547

0.5982
0.3207

0.898
0.7144

0.873
0.6766

NOTE: S h o w n  a r e  t h e  p o w e r s  o f  t h e  l i k e l i h o o d  r a t i o  t e s t  (LRT) i n  C o r o l l a r y  2 . 2 . 1  

a g a i n s t  t h o s e  ( e m p i r i c a l )  o f  t h e  s e p a r a t e  t e s t  (ST) f o r  (0)’: 6  =  (.5,50,45)T; (a)’: 
9  =  (.45,50, 42.5)t ; (b)’: 9  =  (,45,52.5,42.5)T; (c)’: 9  =  (,55,52.5,42.5)T; a n d  (d)’: 
9  =  (.55,55,47.5)T, w i t h  a 2 =  25. N o t e  t h a t  p x . y  i s  .447 i n  (0)’, .598 i n  (a)’ a n d  (d)’, a n d  

.705 i n  (b)’ a n d  (c)\
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Chapter 3

Pairwise Likelihood Approach 
to Grouped Continuous Model 
and Its Extension

3.1 Introduction

Precise measurement of study variables is not always possible in practice. 

Because of this limitation, researchers, especially in the medical and social 

sciences, rely on using ordinal instead of interval (or scale) variables in their 

studies, as when a patient’s state of health is evaluated as, say, very poor, 

poor, average, good, or very good, in the absence of a more precise measure 

of the patient’s condition.

A common approach to handling ordinal data is to assume that the ordi­

nal variables are coarsely measured versions of unobservable continuous vari­

ables called latent variables, and are obtained by partitioning or thresholding 

the space of the latent variables into non-overlapping intervals. Pearson (1904) 

was the first to adopt this approach, and his work has since been extended in 

several directions (Anderson and Philips, 1981; McCullagh, 1980).
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This chapter is concerned with the grouped continuous model, a model 

for multivariate ordinal data that assumes a multivariate normal distribution 

for the latent variables, leading to a probit model for the ordinal variables. 

It was introduced by Anderson and Pemberton (1985) as a generalization of 

the corresponding univariate model developed earlier by Anderson and Philips 

(1981) and McCullagh (1980). It relies on the so-called polychoric correlation 

(Drasgow, 1986) to model the covariance structure of the data, in contrast to 

a log-linear model (Agresti 1990; 1984) that relies on odds ratio (also called 

cross-product ratio) or the Pearson’s correlation as a measure of ordinal data 

association (Bishop et al., 1975, pp. 376-393). Unlike the Pearson’s correla­

tion, polychoric correlation does not restrict the correlation parameter space. 

Moreover, the number of polychoric correlations does not increase with the 

number of levels that the ordinal data can assume, a common problem with 

using odds ratios.

Another advantage of the grouped continuous model is that it can eas­

ily be extended to mixed data with ordinal and continuous variables. Such 

extension of the model, called the conditional grouped continuous model, was 

introduced by Anderson and Pemberton (1985) in the context of regression 

analysis of multivariate ordinal outcomes, where the continuous variables were 

treated as covariates. It was later studied by Poon and Lee (1987; 1986) as a 

model for mixed data, with both continuous and ordinal variables considered 

as outcomes. They investigated maximum likelihood estimation of polychoric 

and polyserial correlations, with the latter representing the correlations be-
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tween the continuous and ordinal variables (Drasgow, 1986). The extension of 

the model to the multi-sample case was investigated by Poon and Lee (1992). 

See also Ronning and Kukuk (1996).

Maximum likelihood estimation of the polychoric correlations and the 

outpoints (or thresholds) in the grouped continuous model has been previously 

studied by Tallis (1962) and Martinson and Hamdan (1971). The first tackled 

the problem of maximum likelihood estimation in the special case of two or­

dinal variables, each with three levels. The second generalized Tallis’s (1962) 

approach to bivariate ordinal data with arbitrary number of levels and devel­

oped a two-step estimation method for the parameters (see also Lee, 1985; Ols- 

son, 1979). Anderson and Pemberton (1985) proposed a computationally feasi­

ble method in the general case, which consists in first estimating the cutpoints 

marginally, and then estimating the polychoric correlations based on the likeli­

hood with the cutpoints replaced by their estimates. For a survey of estimation 

methods for polychoric correlations and algorithms for implementing them, see 

Drasgow (1986). More recent references include Poon et al. (1990), Lee et al. 

(1989), and Lee and Lau (1986).

The corresponding estimation problem for polyserial correlations was 

first studied by Tate (1955; 1954) in the case of a single dichotomous variable, 

where the polyserial correlation is known as the point-biserial correlation. His 

results were later extended in various ways by Lee and Poon (1986), Olsson et 

al. (1982), Cox (1974), and Hannan and Tate (1965).

The combined problem of estimating polychoric and polyserial correla-
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tions arising from the conditional grouped continuous model was discussed 

by Poon and Lee (1987). Besides maximum likelihood estimation, they pro­

posed an alternative, now known as the partition maximum likelihood (PML) 

method, which entails partitioning the model into sub-models and then averag­

ing the estimates obtained from these sub-models. Poon et al. (1990) applied 

this method to the multi-sample case and derived the asymptotic distribution 

of the PML estimates. The pairwise PML method, which only considers pair­

wise (or bivariate) sub-models, was recently proposed by Bedrick et al. (2000) 

and Lapidus (1998). Although these PML methods are less computationally 

demanding than the maximum likelihood approach, estimation of the parame­

ters is done separately for several models with common parameters, and hence, 

the efficiency of the estimates may be compromised. As well, because they are 

non-simultaneous, they yield multiple sets of estimates with no clear prescrip­

tion for combining them to obtain the final estimates. Poon and Lee (1987) 

and others have suggested simply averaging the estimates, clearly an ad-hoc 

solution. There is thus a need for a more systematic estimation method for 

the model than the PML methods.

The grouped continuous model is formally introduced in the next section. 

In § 3.3, maximum likelihood estimation for the model is briefly reviewed. 

An alternative method based on the pairwise likelihood approach (Kuk and 

Nott, 2000; Nott and Ryden, 1999) is detailed in § 3.4. Consistency and 

asymptotic normality of the estimates are proved in § 3.5 and are used to 

construct large-sample tests of hypotheses. A simulation study of the efficiency
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and bias of maximum pairwise likelihood estimates is reported in § 3.6. The 

corresponding development for the conditional grouped continuous model is 

given in § 3.7. Finally, the chapter concludes with a discussion in § 3.8.

3.2 Grouped Continuous Model

Suppose z =  (Zi, ■ ■ • , Z q ) t  is a vector of ordinal variables such that Zq

has Lq +  1 levels a* < ••• < aq,+1, q — 1 ,Q. Underlying z is y* =

(Yj*, • • • , Y q ) t , a vector of continuous latent variables whose relationship with 

z is defined by the following threshold model:

Zq = a\ <*=*• -o o  < Y* < a\,

Zq = aeq" <=> e f i - 1 < Y ; < a lq\  (£q = 2,- • ■ , Lq) (3.1)

Zq = a^"+1 aqq < Y* < +oo,

where {a° =  —oo, o j, • • • , aq"} aq"+1 = + 00} are the unknown cutpoints or 

thresholds. Without loss of generality, it is assumed that a\q =  £q, £q =  

1, • • • , Lq +1. Note that z defines a {L\ +1) x • • • x ( L q +1) contingency table.

Assuming that y* ~  Mq(0, R), with R  a correlation matrix, the grouped 

continuous model for z may be defined as follows.

Definition 3.1 The vector z is said to be distributed according to the grouped 

continuous model if  and only if

Pr(z =  £) =  Pr & = £ ! , - ■ ■  , Z q = £q)

= f </>q(v I R)dv, (3.2)
Js
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where S  = {(vi,--- ,vQ) : aq"~1 < vq < ag",q =  1, • • • ,Q } and <j)Q(- \ 

R) is the Q-dimensional normal distribution function with mean 0 and co- 

variance matrix R . The parameters of the model are represented by 8r  =  

(orT, {vech(R)}1"), with a Lxl = {aq\ i q =  1 , - - - , L q,q = L =

\ L q, and vech(R) is the Q(Q — l) /2  x 1 vector containing the unique 

elements of R .

Definition 3.1 is due to Anderson and Pemberton (1985). Further re­

marks concerning the model are given below.

R em ark  3.2.1 Suppose E(F?*) =  p,*, var(F?*) =  aqq =  aq, and cov(Yf,Yf,) = 

aqq/. Then D -1(y* — p*) ~  A/q(0, R ), where D =  diag^j*, • • • , Oq) and p* — 

(pi, ■ ■ ■ ,Pq)t ■ Hence, without loss of generality, it can be assumed that p* — 0 

and aq = 1 \/q.

£
R em ark  3.2.2 The cutpoints aqq account for the ordinal information in the 

data while the polychoric correlations rqq> represent the associations between 

the ordinal variables, for t q — 1, • • • , Lq +  1; q =  1, • • • , Q.

R em ark  3.2.3 There are a total of P  = Q{Q — l) /2  +  L parameters in the 

model.

Maximum likelihood estimation for the grouped continuous model is re­

viewed in the next section.

3.3 Maximum Likelihood Estimation

Let zi, • • • , Zjv be a random sample from the grouped continuous model with 

parameter 8, and let the number of observations such that z* =  (£x, • • • , £q ')t
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be denoted by The likelihood function C  of the parameter 0 is then

Li + l Lq +1

£  = n  n
*1 = 1 tQ = 1

5 Z - - * x ^ ( - i )E ’=ie,+0 $ Q (••• ’a lq v -  - 1R )
£ 1 = 0  £ Q = 0

1 "  Q

where <E>q(- | R ) is the Q-dimensional normal distribution function with mean 

0 and covariance matrix R. It is clear that the above expression holds in the 

case <2 =  2, and it can be seen to hold for general Q by induction. First, 

assume it is true for Q — 1. Then by standard results on multivariate normal 

distributions (Anderson, 1984, p. 35), (3.2) can be shown to be

Vq , R . q (t>{vQ) d v Q

Pr(z =  £) = ( - l ^ ^ + W - 1)
£ 1 = 0  £ Q — 1 = 0

x r ?
J° r  v

£ 1 = 0  £ Q = 0

where rQq is the correlation between Yq and Y*, q = 1, • • • , <2 — 1, and R.q 

is the partial correlation matrix given Y q .  This shows that the expression is 

true for Q.

The likelihood (or log-likelihood) function above is maximized to obtain 

the MLE 6 of 0. As this involves evaluation of high dimensional normal inte­

grals, which can be computationally demanding in practice, most early work 

on maximum likelihood estimation for the grouped continuous model has been 

limited to the case <2 =  2 or 3 (e.g., Lee, 1985; Olsson, 1979). Lee and Lau 

(1986) looked into a generalized least squares method for the bivariate case 

and compared it with maximum likelihood and minimum chi-squares methods. 

See also Lee et al. (1989).
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Anderson and Pemberton (1985) proposed a two-step approach to es­

timate 9 that relies on first marginally estimating the cutpoints, and then

cutpoints replaced by their estimates. Because the second step involves maxi­

mizing the likelihood with respect only to the correlations rqq,, it is somewhat 

less computationally demanding than maximum likelihood estimation.

In the next section, another alternative method, which is more concep­

tually appealing than the PML methods, is developed. The new method is 

based on the pairwise likelihood approach (Kuk and Nott, 2000).

3.4 Maximum Pairwise Likelihood Estimation

In view of the computational inconvenience arising from the use of the full 

likelihood, a natural alternative approach, motivated by the current interest 

in estimating equations, is to work with pseudo-likelihoods. The approach 

adopted in this section employs pairwise likelihoods in constructing a pseudo­

likelihood function from which an estimating function is constructed.

Specifically, consider a pair of ordinal variables Zq and Zqi. The log- 

likelihood for (Zq,Z q,)T is

estimating the polychoric correlations from the bivariate likelihoods with the

log Pr(Z9 =  £q, Zq, =  i q,) =  log
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where I rqq') is the standard bivariate normal density with correlation

rqq> and 4>2(-,' | rqq>) is the corresponding distribution function. Denoting by 

f iqq, — logPr(Ziq — £q,Z iqi = £q>) for the ith observation, an overall pairwise 

log-likelihood function for 0 may then be constructed as

N

i = l  q < q '

L„ +1 V  + 1
= E  E  E  (3-3)

q<q' V =1

where nfq̂ , is the number of observations such that Zq = £q, Zq> =  £q>. Note 

that (3.3) arises from factorizing the joint density [Zi, • • • , Zq -,6] of Z\, ■ ■ ■ ,Z q 

into

[Zu Z2-e}---[ZQ̂ , Z Q]0] = n  [Zq,Z q)]0], (3.4)
q<q'

where [Zq, Zq<] is the bivariate normal joint density of Z q and Zq>. Since (3.4) 

is not a proper joint density, (3.3) is not a proper log-likelihood function.

Analogous to maximum likelihood estimation, the pairwise score vector 

spl{0) =  d£p(0)/dB can be similarly defined. For the pairwise log-likelihood 

in (3.3), SpL(d) has elements

d a 0 q>,q><q t q, =  l  L

for l q =  1, • • • , Lq +  1; q =  1, • • • , Q, and 

d£p(6) ^  nt„eqi J q,iq>-i J q-U q> , j q-i,t„,-i
-& T 7  = ^  ^  ~ e ~ ? "  ^ qq' ~ ^ qq' ~ ^  +qq eq=i eq,=i B  q-1’ i ' - 1

for q < q', where afj*"  =  (a f '  -  rqq,a f ) / ^ J l  -  r2qq,, -

4>q’/ — $ qq, ’ +  <Pqq, ’ , ^ qqf q' and <f>qf!q' are the distribution function
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and density, respectively, of the standard bivariate normal with correlation

The maximum pairwise likelihood (MPL) estimate 9 of 9 is defined 

as the maximizer of £p(9). It can be obtained by solving the pairwise score 

equation spl{0) — 0 via a modified Fisher scoring algorithm (Kuk and Nott, 

2000) as follows:

rqq/ is the sample correlation coefficient of Zq and Zqi, with np the number 

of observations such that Zq =  i ' . Boos (1992) also refers to sPL($) as a 

generalized score vector.

R em ark  3.4.1 The pairwise likelihood approach to the grouped continuous 

model is attractive because it allows for a log-likelihood involving high dimen­

sional normal integrals to be approximated by a sum of bivariate normal inte­

grals, which can be easily evaluated. Although the pairwise likelihood approach 

is very similar to Poon et al. ’s (1990) PML and Bedrick et al. ’s (2000) pairwise 

PML, it is more conceptually appealing than the partition method because it 

entails maximizing a single objective function, the pairwise log-likelihood func­

tion, to obtain a single set of parameter estimates. Hence, there is no need to 

average several estimates as is done in the partition methods.

rqqi, evaluated at (a I", otf,') (see Plackett, 1954).

- i

X S P £ , ( 0 )  # = y P l , ( t )  ,

~ P L ,( t )
where 0 is the MPL estimate at iteration t =  0,1, • • •. The following 

are suggested for the initial estimates: =  $ _1(5Z^=i nt'q/N )  and r^l =
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R em ark  3.4.2 Since the pairwise log-likelihoods £?qq, are proper log-likelihoods, 

it follows thatE (—d2£?qql/dOdOT) = E (dPiqq, /86 ■ dtpiqq,/<90 T), so that there is no 

need to calculate second-order derivatives of f iqq,; hence, estimation of standard 

errors is simplified.

R em ark  3.4.3 Note that the pairwise likelihood approach reduces to maxi­

mum likelihood estimation in the case Q =  2.

It should be noted that the pairwise likelihood approach derives from 

Lindsay’s (1988) composite likelihood approach, who suggested simply pool­

ing marginal (univariate, bivariate or otherwise) or conditional log-likelihoods 

additively in situations where the full likelihood is either computationally im­

practical to evaluate or too complicated to construct. Liang and Zeger’s (1986) 

GEE based on an independent working covariance matrix is a notable special 

case. Recent examples of its applications in practice are discussed by Parner 

(2001), Kuk and Nott (2000), Nott and Ryden (1999), and Heagerty and Lele 

(1998).

3.5 Asymptotic Results

Theorem 3.1 below proves the consistency and asymptotic normality of the
~-PL

MPL estimator 6 in § 3.4, using standard results on generalized score equa­

tions in Boos (1992) and under the following regularity conditions given by 

H eagerty and Lele (1998), based on  th ose  provided by G uyon (1995) and Crow­

der (1986). In what follows, let dS(6,s) denote the boundary of a sphere of 

radius e > 0 centered at 6.
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Al sp l ( 0 )  is continuous.

A2 infa5(0Oi£)(0o ~ ^)TEfln [spl(^)] > $ for some <5 > 0 and N  sufficiently large. 

A3 supas(fln e) ||spL(0) -  Eon[sFL(d)]|| —> 0.

A4 There exists an open neighborhood N$0 of 0O G 3f?p over which sPL

is continuously differentiable, and there exists an integrable random

variable h such that for all elements of dsPL(d)/dd  and all K G 

| dsPL(K,'w)/dd |<  h(w ) .

A5 There exists a limiting covariance matrix such that V j^ =  N  x 

E[sPL(0)sJ,L(0)}, where

(i) V »  > 0 and for N  > rn for some m, and

(it) V N f r w y 1 sp l ± M (0 ,1 ) .

A6 There exists a sequence v j^  =  Y lq<q> E [JjCjt,'W] of non-stochastic 

matrices such that

(i) there exists such that V j^ > for N  > m  for some m, and 

(it) limjv-^oo -  V ^ )  =  0 in probability.

Conditions Al — A3 pertain to consistency and A4 — A6 to asymptotic 

normality. A discussion of them is found in Heagerty and Lele (1998).

•'“'jP l
T heorem  3.1 Under regularity conditions A l — A6 , the MPL estimator 9 

of 6 is consistent and satisfies

ePL - 9 ^  Mp (0, J ^ K p J - 1) ,
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as N  oo, where J P =  J p(8) — Eo[—dsPL(0)/d0T] and

K P =  K P(6)
N

= I >
i = 1

P roof. First, consistency of 6 follows from results of Crowder (1986), as­

suming conditions A l — A3 hold.

Next, using results given in Boos (1992), note that E#(spL) =  0, with 

Spl = spi(6), so that

cov(sFL) =  Eg {sPLsrPL)

=  K P.

From Boos (1992) and assuming conditions A4 — A6 hold, it can be shown 

that

^ P L

0 — 0 =  Jp spl  + op(N),

where op(N ) —> 0 as N  —> oo. The result is now immediate.

□

Theorem 3.1 may be used to construct large-sample tests of hypotheses 

concerning 6. For example, a common inferential question concerns whether 

or not the polychoric correlations rqq, , q < q', are all equal. That is, it is of 

interest to test

H : r 12 =  r 13 — • • • — against K  : at least 1 inequality.
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Hypothesis H  is also known as the hypothesis of uniform polychoric correla­

tion structure. Note that H  is equivalent to H' : CO = 0, where C q>xP = 

(0,Iq<, — 1q')j with 1 qi the Q' x 1 vector of ones and Q' =  Q(Q — l) /2  — 1. 

Because rank(C) =  Q', it follows by Theorem 3.1 that the Wald-type statistic

Xlf =  (copl)t ( c v p lc t ) -1 (Cof l )

is asymptotically Xq>, under H, where V PL =  (Jp-£')“ 1K PL(JPZ')_1, with

^ - e ( e ^ ) ( e % ) T L s-  (3-5)
i = 1 \g< g ' /  \g < g ' /

and J PL =  E i l i  Eq<q' (d^ qq'/d0) (d iliq,/d 0 )T, the observed pairwise infor-
Li

mation matrix evaluated at 0 . The test rejects H  if and only if > Xq> a,

the (1 — a)th  percentile of Xqi-

The finite-sample performance of the MPL estimators is investigated in 

the next section.

3.6 Simulation Study

To assess the performance of the MPL estimators, a series of simulation exper­

iments were conducted using the grouped continuous model with Q =  3. Ran­

dom samples were generated from a 3-dimensional multivariate normal latent 

distribution with correlation matrix R*, and the data y*, • • • , y*N were then 

transformed into Zi, • • • , z N with the following sets of pre-assigned thresholds:

(I) a\ = 0; a\ =  —0.4, a\ =  0.4;

c k j  =  — 0 . 6 , 0 : 3  =  0 ,  o |  =  0 . 6 ,
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(II) a j -  0.5; a \  =  -0.75, a\ =  0.1; 

al = —0.25, a\ =  0.3, af =  1.

The following correlation matrices Rj and Rj”, for cases (I) and (II), respec­

tively, are assumed:

The correlation matrix Rj is called the uniform polychoric correlation matrix. 

Note also that case (I) corresponds to symmetric marginal distributions for 

Zi, Z2, and Z3, while case (II) implies that their marginal distributions are 

skewed. These cases are similar to those considered by Poon and Lee (1987).

For each case, samples of sizes N  — 50 and 100 were generated and the 

thresholds a \ ,a l ,a l ,a l ,a l ,  and al, and the polychoric correlations r l2, r ^ ,  

and r 23, were estimated using the maximum pairwise likelihood method out­

lined in § 3.4. This was replicated a total of R  =  50 times, and the mean of 

the MPL estimates calculated. As a measure of the accuracy of the estimates, 

the approach of Poon and Lee (1987) and Lee and Poon (1986) was adopted 

and the root mean-squared error

was calculated, where 9 is as defined in Definition 3.1 and 9r is the MPL 

estimate of 9 for the rth  replicate, r =  1, • • • , R.

Tables 3.1 and 3.2 report the simulation results for case (I). Those for 

case (II) are displayed in Tables 3.3 and 3.4. These results indicate that the

RMSE

'PL
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pairwise likelihood approach can estimate both polychoric correlations and 

threshold parameters quite well. Specifically, the following observations may 

be made.

(1) The MPL estimates yielded generally small bias, which decreased with 

increasing sample size. In addition, the bias of the MPL estimates in 

case (I) was, in general, smaller than the bias of those in case (II). 

This suggests that MPL estimation for grouped continuous model per­

forms better when the threshold model results in symmetric, rather than 

skewed, distributions for the ordinal variables.

(2) The RMSEs of the MPL estimates were generally small. As expected, 

increasing the sample size decreased the RMSE. Prom Tables 3.3 and 

3.4, it appears that RMSE is smaller for large than for small polychoric 

correlations, which was similarly noted by Lee and Poon (1986). Further­

more, MPL estimates for case (I), which gives a symmetric distribution 

for the ordinal vector, yielded generally smaller RMSEs than those for 

the skewed ordinal distribution in case (II).

(3) Although the MPL estimates of the polychoric correlations yielded small 

bias, the bias were generally positive. This implies that the pairwise 

likelihood approach for the grouped continuous model tends to underes­

timate the polychoric correlations. This confirms a similar observation 

made by Heagerty and Lele (1998) regarding composite likelihood esti­

mation.
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The above observations are in general agreement with those made by 

Poon and Lee (1987) and Lee and Poon (1986) in connection with the PML 

method, and by Heagerty and Lele (1998) concerning the composite likelihood 

approach. The latter is expected since the pairwise likelihood method is a 

special case of composite likelihood estimation.

3.7 Conditional Grouped Continuous Model: 
Extension to Mixed Ordinal and Continu­
ous Data

Consider a vector y =  (Ti,--- , Yc)J of continuous variables in addition to 

z. As in the grouped continuous model, a latent vector y* jVq(0 ,R*) 

is assumed for z, such that y  and y* are jointly normally distributed with 

E(y) =  fi, var(y) =  E, and cov(y,y*) =  Eyy*. If E is the correlation matrix 

of y, Eyy. becomes the matrix containing the polyserial correlations of y and

y*.

Conditional on y, y* is multivariate normal with mean Ey ,E _1(y — /a)

and covariance matrix

R* E t  „E 1Evv.yy yy
(  dx 0 • •

0 ^ (  1 rn  • • rlQ ^
0 d2 •• 0 r-n 1 • ’ r2Q

\ 0 0 •• dQ ) \  rQi TQ2 • ' 1 /
(  dl 0 0 \

X

... 
o

 

... 
a. to •• 0

(

 ̂ 0 0 • • dQ 1

(3 -6 )

0 dQ )
= D RD ,

where D is the diagonal matrix of conditional standard deviations and R  is the
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symmetric matrix of conditional polychoric correlations of z. The factorization 

in (3.6) follows from Seber (1984, p. 10). The conditionally standardized latent 

vector

D " 1 [y* -  E ^ E - 1 (y -  fx)} = D - y  -  B (y -  /z)

is multivariate normal with mean 0 and covariance matrix R , where B =  

D ”1Ejy*E_1. Assuming the threshold model (3.1) for y* and z, the cutpoints 

aq are similarly standardized as Uq" =  —/5jy, where j qq =  a f  / dq, and

is the gth row of B, i q — 1, • • • , Lg, with 7 ° =  —00 and 7q"+1 — + 00 . For 

some £ = (4 , • • • , £ q ) T , the conditional distribution [z | y] of z given y is then

[z =  t  I y] =  f  4>q (v  1 R) dv, (3.7)
Js

where S  =  {(wi, • • • , vq) : uqq < vq < Uq", q = 1, • • • , Q}. The joint density 

[y, z] of y and z is then

[y, z = £] = 4> (y-fx\'E ) f  tj>Q (v | R) dv.
Js

It is now possible to define the conditional grouped continuous model as 

follows.

D efinition 3.2 The vectors y and z are said to be jointly distributed according 

to the conditional grouped continuous model if  and only if  y  ~  A/c(/x,E) and

P r ( z  =  ^ | y )  =  P r ( ^ i  =  4 , • • • ,  Z Q  =  £ q  | y )

=  f  <t>Q (v  I R ) d v - Js
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The parameters of the model are represented by 0T — (dj ,6%), where

e j  = (fiT, (vech(S)}T),

& 2 = (7 T,{vech(R)}T,^ T),

~r £where 7  =  (7^ , £q = 1, • • • , Lq\ q = 1, • • • , Q), vech(R) is the vector contain­

ing the upper diagonal elements of R , and 0  = vec(B) is the vector obtained 

by stacking the rows of B.

The conditional grouped continuous model is an extension of the grouped 

continuous model which applies to data with a mixture of ordinal and contin­

uous variables. Further remarks about the model are given below.

R em ark  3.7.1 The regression parameters 0 q, q = 1 ,■■■ ,Q, represent the 

polyserial correlations between y and z. I f  0 q = 0 Mq, then y and z are 

independent and separate analyses suffice. In this case, the conditional probit 

model in (3.7) reduces to the grouped continuous model.

R em ark  3.7.2 There are a total of P  — C + C {C —l)/2-\-Q(Q—l)/2+ C Q + L  

parameters in the model, C(Q +  1) +  C(C — l) /2  parameters more than those 

in the grouped continuous model.

R em ark  3.7.3 The conditional grouped continuous model was originally de­

fined by Anderson and Pemberton (1985). It was also described by Poon and 

Lee (1987) in the context of polychoric and polyserial correlation estimation. 

Special cases were earlier studied by Tate (1955; 1954) for C = L = Q = 1, 

Hannan and Tate (1965) for L  =  Q — 1, and by Lee and Poon (1986) and
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Cox (1974) for Q =  1,L  > 1. See also the discussion in Drasgow (1986) on 

polychoric and polyserial correlations.

Maximum likelihood estimation for the conditional grouped continuous

elusion of the regression parameters (3q, q = 1, • • • , Q. For a sample ( y j  ,z J )T, 

* =  !,••• ,N , the likelihood is given by

“i(£)n refers to the ith  unit in the cell of the ( L i  + 1) x • • • x ( L q + 1) contingency 

table for which Z \  =  £\,  • • • , Z q =  £q .

Maximization of (3.8) is discussed by Poon and Lee (1987), who also 

described a more computationally efficient PML method. See also Bedrick et 

al. (2000), Lapidus (1998) and Poon et al. (1990) for extension and further 

details.

As an alternative, the maximum pairwise likelihood approach in § 3.4 is 

now extended to the conditional grouped continuous model. With

model is similar to that for the grouped continuous model, except for the in-

Li+l Lq + 1
£ = 4>c(yir- ,yn 10i) n  n (3.8)

<1 = 1 <0 = 1
1 1

i(<) 61=0 eQ=0

where (f)Q (■ | 6 1) is the usual multivariate normal likelihood and the index

log Pr(Zq = £q,Z q> = £,
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and after factorizing [y, z] as

[T ,01}[Z1,Z 2]02}---[Zq. 1,Z q-,02] = [y; 0\\ ] J [ Z q, Zqr,02], (3.9)
q<q'

the pairwise log-likelihood function can then be defined as

m  = ? « + E E  E  E
q<q' eq= i eq,= i  i(eq,eq!)

= e1{e1) + ^ ($ 2), (3.io)

where £\{6i) is the usual multivariate normal log-likelihood function and the 

index ui{£q,£q>)n refers to the zth unit in the cell of the (Lq +  1) x (Lqt +  1) 

contingency table for which Zg =  £q,Z q> = £qi. Maximizing (3.10) yields the
-PL

MPL estimate 6 . The usual MLEs y and vech(S) (Mardia et al, 1979,

pp. 103-105) are obtained for Q\ while that for 02 entails an iterative method 

as in § 3.4.

The elements of the pairwise score vector sPL(02) =  d£?2(62)/d62 are 

given by the following:

9£p2(02 )
±£q
<P,

9lqq

de2(Q2)
qq!

oe2{e2)

V7i ( lq,lq,)q  [  J . , < ,  ..
L - ,  p  p '  ~  i{ lq,lq,)qq’ )

Lq + l 1

E E  E
eq=i v = i i(tq,eq>) B,

•(*q Aq/)qq‘ 

1

t q -  1>V-1
9 i ( t q,tq:)qq' , tqi)qq'

,eq,eql- i
P i(eq,eq,)qq' +  <P i(iq,eqi)qq' J ’

Lq + 1 V  + 1

E  E  E  E
q>,q'<qiq = 1 t q, = t i((.q,f. i) i(tq,lqr)qq'

i&q rf\fT~^q, ,^<i \ jĴq~~̂- *f\{—̂q* $ q ~  ̂  \
^ i ( & q i£qt ) q  ( i ( £ q £ qt ) q f q }  ^ i i i q / q ^ q  ^ J / i ( i q i l qf ) q , q ^

j&q j. /— \ . i. /—£qf ~ ̂ î q~ 1 \
~ ^ i ( l q , t q> ) q ^ Ui(eq,f.q/)q'q) +  ^ i ( t qM q ^ Ui(£q,tq,)q'q  )
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, X i A . j  - lq,ev, xJi’1*'-1 , -i.u
where Bi{t^ i)qql -  ^ „ V  )</</' +  > Wlth

t i l  t i l
^»(« "f. ,)qq' and ,)qq' are the distribution and density functions, respec­

tively, of the standard bivariate normal with correlation rqqt evaluated at

Ui(tqJ.ql)q'} and vi(lq,iq,)q'q =  ^Vi(lq,tq,)q' ~ rt ^ Vi(lqtlq,)q)I\A  _  T°
P L

get 02 , the same modified Fisher scoring algorithm recommended for the 

grouped continuous model may be used. In addition to the initial estimates 

in § 3.4, ftq * =  S - ^ g / \ j  1 — cr^S ^&q is suggested, where d q is the sample 

covariance vector between y  and Z q, the cth element of which is given by 

aqc =  f qcAfs fc, with the cth diagonal element of S.

T heorem  3.2 Assuming the regularity conditions A l — A6 hold, the MPL
~ P L

estimator 9 of 9 is consistent and satisfies

0PL - 0 ^ M p {0 ,V ),

as N  —> oo, where

\  o

2 p̂ (9i) =  A diag(E/A ,T) w ith t(p x-c)y.(Pi-c) containing the asymptotic vari­

ances and covariances of the unique elements of S, Jp2 =  Eg[—dspiX02)/dO2},

N

Kp2 = J ^ E d
i =  1

t iqq, is the pairwise log-likelihood of Zq and Zq> for the ith observation, Pi = 

C  +  C(C -  l) /2  and P2 = P - P 1.

Proof. The proof of consistency follows in the same way as that in Theorem 

3.1. Following Boos (1992), define the pairwise information matrix J P = 3p(9)
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as follows:

82^ ( 0 i)
8686T 

NTPl{Qx) 0 

0 J  p2

Eg
d2e2(62) 1 
8686r

where the last equality follows from the fact that Jp2 = Ee [—dsPL (62) / 862
-> P  L

and 6X —6\. Also, define K p =  K.p(6) as

N

£ e » (e K q
862

i — 1 _  \q<q’
(  N I Pl{0i) 0

V 0 Kp2

d^iqq‘
\ q < q '

862

where the last equality follows from the fact that KP, (0t) =  N 2 Pl (6X) (Mardia 

et al., 1979, p. 98), with t- =  Y lq<q' ^iqq'■ The elements of T  can be obtained 

by applying Theorem 3.4.4 of Anderson (1984, pp. 81-82), making note of the 

fact that S is uncorrected for bias.

From Theorem 3.1, it follows that since

e -  0 = j - 1 a ^ M ^ i) j + 0 (jv) 
s p l (62)

p  ' ' P Lwhere op(N ) --> 0 as #  ^  oo, 6 —6 is asymptotically multivariate normal

with asymptotic mean 0 and asymptotic covariance matrix

V  =

o
0 3~PlK p 2J~Pl

□

Note that Theorem 3.2 extends Theorem 3.1 to the conditional grouped 

continuous model.
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Similar to § 3.5, generalized Wald-type tests can be constructed to test 

hypotheses concerning 8. Further discussion on hypothesis-testing is deferred 

until Chapter 4.

3.8 Discussion

In this chapter, an alternative method to maximum likelihood estimation was 

proposed for the grouped continuous model and its extension, the conditional 

grouped continuous model. By working with pairwise likelihoods instead of the 

full likelihood of the model, high dimensional numerical integration is avoided. 

The pairwise likelihood method is thus computationally simple, and properties 

such as consistency and asymptotic normality of the estimators readily follow 

from standard theory.

Moreover, the pairwise likelihood method provides a viable alternative 

to the PML methods of Poon and Lee (1987) and Bedrick et al. (2000). Un­

like the latter, the former simultaneously estimates the parameters yielding 

a single set of estimates. Thus, the problem of having to deal with several 

estimates required in PML methods is avoided. This is accomplished by spec­

ifying a single objective function, the pairwise log-likelihood function, which 

is maximized to obtain the estimates. In this respect, the pairwise likelihood 

method is more conceptually appealing than PML methods.

Finally, maximum pairwise likelihood estimates of the parameters of the 

grouped continuous model appear to perform quite well, as indicated by the 

simulation results. Bias was minimal and the root mean-squared errors were
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generally small.
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Table 3.1: M axim um  P airw ise Likelihood E stim ates based on 50 R andom  Sam ­
ples o f  S ize N  =  50 from  the Grouped Continuous Model w ith Q  =  3 and
Param eters given  by Case (I).

Parameter True
Ave. MPL 
Estimate Bias

Relative 
Bias (%) RMSE

Polychoric Correlations
ri2 0.5 0.468 0.032 6.4 0.067
riz 0.5 0.489 0.011 2.204 0.081
V2Z 0.5 0.482 0.018 3.559 0.13

Thresholds
a\ 0 -0.052 0.052 — 0.107
a x2 -0.4 -0.344 -0.056 14.068 0.209
a\ 0.4 0.418 -0.018 -4.528 0.219

-0.6 -0.612 0.012 2.043 0.122

0 0.186 -0.186 — 0.156
a\ 0.6 0.591 0.009 1.433 0.182

NOTE: S h o w n  a r e  t h e  b i a s ,  r e l a t i v e  b i a s ,  a n d  r o o t  m e a n - s q u a r e d  e r r o r  o f  t h e  m a x i m u m  

p a i r w i s e  l i k e l i h o o d  e s t i m a t e s  f o r  t h e  g r o u p e d  c o n t i n u o u s  m o d e l  w i t h  Q  =  3 a n d  p o l y c h o r i c  

c o r r e l a t i o n  m a t r i x  R j . N o t e  t h a t  r e l a t i v e  b i a s = ( b i a s / t r u e )  x  1 0 0 .
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Table 3.2: M axim um  P airw ise Likelihood E stim ates based on 50 R andom  Sam ­
ples o f Size N  =  100 from  the Grouped Continuous M odel w ith Q  =  3 and
P aram eters given by Case ( I) .

Parameter True
Ave. MPL 
Estimate Bias

Relative 
Bias (%) RMSE

Polychoric Correlations
r\2 0.5 0.473 0.027 5.323 0.09
ri3 0.5 0.495 0.005 1.031 0.137
r23 0.5 0.486 0.014 2.893 0.069

Thresholds
a{ 0 -0.023 0.023 — 0.093
a\ -0.4 -0.416 0.016 -4.135 0.096
a\ 0.4 0.397 0.003 0.69 0.123
ol\ -0.6 -0.59 -0.01 1.597 0.131
ol\ 0 -0.051 0.051 — 0.099
a\ 0.6 0.601 -0.001 -0.022 0.098

NOTE: S h o w n  a r e  t h e  b i a s ,  r e l a t i v e  b i a s ,  a n d  r o o t  m e a n - s q u a r e d  e r r o r  o f  t h e  m a x i m u m  

p a i r w i s e  l i k e l i h o o d  e s t i m a t e s  f o r  t h e  g r o u p e d  c o n t i n u o u s  m o d e l  w i t h  Q  =  3 a n d  p o l y c h o r i c  

c o r r e l a t i o n  m a t r i x  R |.  N o t e  t h a t  r e l a t i v e  b i a s = ( b i a s / t r u e )  x 1 0 0 .
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Table 3.3: M axim um  P airw ise Likelihood E stim ates based on 50  Random  Sam ­
ples o f  S ize N  =  50 from  the Grouped Continuous Model w ith  Q =  3 and
P aram eters given by Case ( I I ) .

Parameter True
Ave. MPL 
Estimate Bias

Relative 
Bias (%) RMSE

Polychoric Correlations
rn 0.8 0.775 0.025 3.108 0.041
ria 0.3 0.265 0.035 11.59 0.257
2̂3 0.4 0.371 0.029 7.214 0.223

Thresholds
Q1 0.5 0.485 0.015 3.018 0.196
Ot\ -0.75 -0.814 0.064 -8.514 0.205
a\ 0.1 0.075 0.025 5.185 0.193
*5 -0.25 -0.238 -0.012 4.782 0.196
a \ 0.3 0.282 0.018 6.108 0.184
a \ 1 0.98 0.02 2.024 0.212

NOTE: S h o w n  a r e  t h e  b i a s ,  r e l a t i v e  b i a s ,  a n d  r o o t  m e a n - s q u a r e d  e r r o r  o f  t h e  m a x i m u m  

p a i r w i s e  l i k e l i h o o d  e s t i m a t e s  f o r  t h e  g r o u p e d  c o n t i n u o u s  m o d e l  w i t h  Q  =  3 a n d  p o l y c h o r i c  

c o r r e l a t i o n  m a t r i x  Rjj. N o t e  t h a t  r e l a t i v e  b i a s = ( b i a s / t r u e )  x  1 0 0 .
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Table 3.4: M axim um  P airw ise Likelihood E stim ates based on 50 R andom  Sam ­
ples o f  Size N  =  100 from  the Grouped Continuous M odel w ith Q  =  3 and
P aram eters given by Case ( I I ) .

Parameter True
Ave. MPL 
Estimate Bias

Relative 
Bias (%) RMSE

T\2 0.8

Polychoric Correlations 
0.793 0.007 0.854 0.022

ri3 0.3 0.332 -0.032 -10.537 0.1

T23 0.4 0.419 -0.019 -4.869 0.024

a\ 0.5
Thresholds 

0.502 -0.002 -0.365 0.078
a\ -0.75 -0.776 0.026 -3.474 0.135
a\ 0.1 0.097 0.003 3.314 0.139
o l \ -0.25 -0.276 0.026 -10.212 0.063
Ct\ 0.3 0.314 -0.014 -4.703 0.084
a\ 1 1.049 -0.049 -4.902 0.183

NOTE: S h o w n  a r e  t h e  b i a s ,  r e l a t i v e  b i a s ,  a n d  r o o t  m e a n - s q u a r e d  e r r o r  o f  t h e  m a x i m u m  

p a i r w i s e  l i k e l i h o o d  e s t i m a t e s  f o r  t h e  g r o u p e d  c o n t i n u o u s  m o d e l  w i t h  Q  =  3 a n d  p o l y c h o r i c  

c o r r e l a t i o n  m a t r i x  Rjj. N o t e  t h a t  r e l a t i v e  b i a s = ( b i a s / t r u e )x  1 0 0 .
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Chapter 4

General M ixed-Data Model: 
Extension of General Location 
and Grouped Continuous 
M odels

4.1 Introduction

The previous chapters introduced two models that have been used in prac­

tice to analyze multivariate data consisting of mixtures of qualitative and 

quantitative variables. Chapter 2 introduced the general location model (e.g., 

Krzanowski, 1993; Olkin and Tate, 1961) for mixed binary (i.e., nominal) and 

continuous data while Chapter 3 studied the conditional grouped continuous 

model (Poon and Lee, 1987; Anderson and Pemberton, 1985), a latent variable 

model for mixed ordinal and continuous data. In this chapter, these models 

are unified into a single general model that can be used in the analysis of mul­

tivariate mixed data that include nominal, ordinal and continuous variables. 

The model can be viewed as extensions of the general location model to mixed 

data with ordinal variables in addition to binary and continuous variables and
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of the conditional grouped continuous model to mixed nominal, ordinal and 

continuous data.

Examples of mixed multivariate data with variables measured on an 

ordinal scale, along with nominal and continuous outcomes, abound in the 

health and social sciences. Little and Schluchter (1985) present data from 

the St. Louis Risk Research Project. This is an observational study to as­

sess the effects of parental psychological disorders on various aspects of child 

development. Variables in the study include parental risk group (nominal), 

high or low frequency of adverse symptoms in each child (ordinal), and the 

child’s standardized reading and verbal test scores (continuous). The data 

have been analyzed in various contexts by Schafer (1997), Fitzmaurice and 

Laird (1997), and Little and Rubin (1987). As another example, Koepsel et 

al. (1981), also cited in Fisher and Van Bell (1993, pp. 680-683), analyzed data 

from 281 patients who underwent appendectomies and considered a variety of 

nominal, ordinal and continuous risk factors as they relate to the occurrence 

(or absence) of perforation of the appendix.

An obvious, but often very inefficient, approach to handling mixed data 

is to convert one type of variable to another, as discussed by Anderberg (1973, 

Chapter 3), and then to employ appropriate standard methods. Two ap­

proaches have been taken. The first transforms qualitative into quantitative 

variables via some scoring scheme, and then employs standard methods for the 

analysis of quantitative data (see, e.g., Cox and Wermuth, 1996, pp. 81-86). 

The second categorizes quantitative variables and the analysis then proceeds
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as if the data were qualitative. Although these two approaches are simple 

enough and appear to work in practice (e.g., Truett et al., 1967), the crude 

approach of coding qualitative variables in the former and categorizing quanti­

tative variables in the latter make them conceptually unattractive, less mean­

ingful and unsatisfactory in many applications (Krzanowski, 1993; Olsson et 

al., 1979; Bishop et al, 1975, pp. 358-361).

A model-based alternative is possible by specifying a model for the joint 

distribution of qualitative and quantitative variables. However, specifying a 

model for the joint distribution which can simultaneously deal with the dif­

ferent measurement levels of the variables is not straightforward. Possible 

models include the general location and conditional grouped continuous mod­

els, with the former treating ordinal variables as nominal variables and the 

latter treating nominal variables as ordinal variables (see Figure 4.1). These 

models, however, are inadequate, and hence, inappropriate, for two reasons. 

First, they fail to account for the different levels of measurement in the data— 

neither assigning ordinal scores to nominal variables nor treating ordinal scores 

without regard to their position on some scale makes full and correct use of 

the information contained in the data. Second, they do not provide a mech­

anism for explicitly incorporating correlations between nominal and ordinal 

variables, and thus fail to distinguish correlations between nominal and con­

tinuous variables from those between ordinal and continuous variables.

There is thus a need for a model that can be used for the case of 

mixed data with nominal, ordinal and continuous variables, which addresses
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the shortcomings of the general location and conditional grouped continuous 

models. The development of such a general model is precisely the focus of this 

chapter.

Suppose that x ,y , and z denote vectors of binary (i.e., nominal), con­

tinuous, and ordinal variables, respectively. The joint distribution [x, y, z] can 

then be factorized as follows:

[x,y,z] =  [x][y | x][z | x ,y], (4.1)

where [x], [y | x], and [z | x, y] denote, respectively, the marginal distribution 

of x, the conditional distribution of y given x, and the conditional distribution 

of z given x  and y. The expression in (4.1) is exactly the same factorization 

used for the general location model, only taken one step further in view of 

the inclusion of the ordinal vector z. By supposing the existence of a continu­

ous latent vector y* underlying z, a multivariate normal distribution may be 

assumed for the conditional distribution [y,y* | x]. A threshold model as in 

Chapter 3 can then be postulated for z and its corresponding latent vector 

y*, so that [z | x, y] is specified through [y* | x, y]. Besides taking into ac­

count the various measurement levels of x, y, and z, this approach allows for 

correlations between x  and y, between x  and z, and between y and z to be 

incorporated, implicitly and explicitly, into the model.

Similar models have previously appeared in the literature. Catalano 

(1997) proposed a regression model for mixed bivariate data made up of con­

tinuous and ordinal outcomes arising in developmental toxicology. His model 

is based on an underlying latent variable for the ordinal outcome, and assumes
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a joint bivariate normal distribution for the latent variable and the continuous 

outcome. Sammel et al. (1997) also introduced a general class of latent vari­

able models that accommodates a mixture of discrete and continuous variables 

from an exponential family. However, these models do not apply to the more 

general situation of mixed data being considered in this chapter.

Recently, Bedrick et al. (2000) and Lapidus (1998), building on earlier 

work by Poon and Lee (1987; 1986), considered the conditional grouped contin­

uous model for mixed continuous and ordinal data from several populations to 

estimate the Mahalanobis distance (Mardia et al., 1979, p. 31) between them. 

They proposed a modification of the partition maximum likelihood (PML) 

method (Lee and Poon, 1986) by considering pairwise (or bivariate) likeli­

hoods in the estimation of the ordinal data parameters.

In the absence of nominal data, the model developed in this chapter 

reduces to the conditional grouped continuous model. Likewise, it specializes 

into the general location model in the case of mixed data with only binary and 

continuous variables. In this respect, the model may be viewed as generalizing 

these two models to data with mixtures of nominal, ordinal and continuous 

variables.

The chapter is organized as follows. The proposed model is developed in 

§ 4.2. The model is further explored by considering a special case in § 4.2.1. 

Estimation of the model parameters is considered in § 4.3 and § 4.4. A full 

likelihood-based approach as well as an alternative based on pairwise likeli­

hoods (Kuk and Nott, 2000), considered earlier in Chapter 3, are explored and
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algorithms for implementing them are presented. Further statistical inference 

based on asymptotic results on the estimators are presented in § 4.6. Finally, 

the chapter concludes with a discussion in § 4.7.

4.2 General Mixed-Data Model

In this section, a general model that includes the general location and (con­

ditional) grouped continuous models as special cases is developed. Notations 

due to Bedrick et al. (2000), Lapidus (1998), and Poon and Lee (1987) are 

adopted with slight modifications. The development of the model parallels 

those of the general location and grouped continuous models in Chapters 2 

and 3.

Let u  denote the D  x 1 vector of nominal variables, with the dth compo­

nent of u  having sd possible states (d =  1, • • • , D). The vector u  then defines 

a contingency table with S  =  IldLi sd states, one for each possible value of u. 

As in Chapter 2, the index s — 1 , . . . ,  S  is used to refer to the states. From 

Remark 2.2.1, an S  x 1 vector x  =  (Xi, • • • , X s)T can be defined such that X s 

is either 0 or 1 depending on whether u falls in state s or not (X)f=i X 3 =  1). 

Following the notation in Chapter 2, the index “(s)” is used to mean that the 

observation falls in state s, as in X(s), the vector x with X s =  1.

By Definition 2.1 of the general location model, x is modelled by a prod­

uct multinomial distribution [ x ; t t ]  =  n f = i 7rs<s> > where f f  =  ( 7̂ ,  • • • , 7T s ) t  is 

the vector of state probabilities QZf=i 71 s =  1)-

Define the vector ( y T , y * T ) T , where y  is the C x i  vector of continuous
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variables and y* the Q x 1 vector of unobservable latent variables. By the 

general location model, (yT,y*T)T is modelled as conditionally multivariate 

normal with mean T)s and common covariance matrix T > 0 , given x  =  X(a), 

with r]s and T partitioned accordingly as

The C S x  1 stacked vector of state means of y is denoted as /i.

In lieu of the vector y*, suppose a vector of ordinal variables z = 

(Z i , • • • ,Z q )t  is observed. The latent relationship between y* and z is defined 

by the threshold model in Chapter 3:

=  aq <—>■ —oo < Y* < a j,

Zq = a% *=> a f t - l < Y q'< a f i ,  {£q = 2, • • • , Lq) (4.3)

Zq =  aqq+1 aqq < Y* < +oo,

where Y* is the qth element of y*, {a® =  —oo, aq, • • • , nqq, atqq+1 =  + 00} are 

the unknown cutpoints, and aq < aq <■■■ < a,qq+1 are the ordinal scores for 

Zq, q =  1, • • • , Q. Note that the set of thresholds as well as the scores may

vary for each ordinal variable in z but is constant across states. As in Chapter
£

3, it is assumed that aq =  £q, l q — 1, • • • , Lq + 1.

Now suppose x  =  X(s). Then, under the general location model, the 

conditional distribution of y*, given X(a) and y, is multivariate normal with
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mean //* +  E J .E  1 (y — fis) and covariance matrix

E* -  T & T i-'V ry. =

/  di 0 o \ (  1 n  2 • ■ r 1Q
0 d2 0 ^21 l  • ' r 2Q

V 0 0 dQ ) \  rQi rep  ■ ■ 1

/  di 0 •• 0 \

X
0 d2 •• 0

• 
o

* 
o

•• dQ j

(4.4)

D R D ,

where D  is the diagonal matrix of conditional standard deviations and R  is 

the symmetric matrix of conditional correlations of z (referred to earlier as 

polychoric correlations), given X(s) and y.

Note that the factorization (4.4) is the usual factorization of the disper­

sion matrix in terms of the correlation matrix (Seber, 1984, p. 10), as was 

previously done in Chapter 3. To avoid overparameterizing the model, state 

S  is fixed as a reference state and /is and fi*s (s ^  5) are defined as p s =  £ + £ s 

and /i* =  i* +  C , where p s =  £ and fi*s = £*, the means of y and y *, re­

spectively, for state 5, and £s and are the effects of state s =  1, • • • ,5  — 1, 

relative to that of state 5.

Similar to Chapter 3, it follows that

D _1 [v * — u* — Et  S - W v - n l l ^ l  D " V - O - T . - B ( y - 0  s ? S[y V s  y y * (y V s )J  ̂D-l(y* — — B(y — 0 S  = s
is m ultivariate norm al w ith  m ean 0  and covariance m atrix  R , g iven X(s) and  

y. Here, r s =  — B£g and B =  D _1E jy»E~1. From the above pa­

rameterization and similar to the usual development of latent variable models
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(Wiley, 1973), it may be assumed without loss of generality that XT = R*, the 

correlation matrix of y*. Note that fi*s was not assumed to be 0 so that the 

effect of x  does not vanish with that for y.

Similarly, the (conditional) cutpoints [a lq) ■ ■ ■ , a ,"} , q =  1, • • • , Q, may 

be standardized as 7^  — rsq — /3q y, where 7q" = a qq/d q -  {£*/dq -  £* is

the qth element of f  *, Tsq is the qth element of t s, and 0 ^  is the qth row of B, 

£q = 1, • • • ,L q. Here, rSq =  0 Vq, 7“ =  - 00 , and j q q + 1 =  + 00 .

Let £ = {ii, • • • , £q)t be a possible value of z. Here, for example, £\ can 

be any one of 1, • • • , L\. Clearly,

[z = £ | x  =  x (s),y] =  f  (t>Q (v | R) dv, (4.5)
Js

where 4>q (- j R) is the Q-dimensional normal density with mean 0 and covari­

ance matrix R , and

5  = {(vi,-- - ,vQ) - v lsf l < v q <v%,q = l,--- ,Q},

with utq = 7 ,’ — rsq — Pqy. The joint density [x, y,z] of x, y and z can thus 

be written as

[x =  xw ,y ,z  =  4  =  [x =  x (s);ir][y | x w ;/i„£][z =  £ | x w ,y ;r„ B ,R ]

=  x <t>c  (y -  fi3 | E) f  <j>Q (v | R) dv. (4.6)
Js

It is now possible to formally define the general mixed-data model as 

follows.

D efinition 4.1 The vectors x, y and z are said to be jointly distributed ac­

cording to the general mixed-data model if  and only if
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(*) x  and  y follow the general location model GLM{rc,p.,T,), and,

(■ii) y  and z  follow the conditional grouped continuous model given x  =  X(s) 

(s = 1, • • • ,S )  with parameters given by fis, vech(E), 7 , vech(R), /3 = 

vec(B), as previously defined in Definition 3.2, and, in addition, r T =

( r J V -  - . t ^ ) .

The parameters of the model are represented by 0T = (d j,0 ^ ,0 ^), where

Oj — (ifir  "  1 ffs-i)  >

= (/lT, {vech(E)}T) ,

#3 =  (Vr ,{ve<:h(R)}T,0 T,T r)  .

Further remarks concerning the general mixed-data model are given be­

low.

Remark 4.2.1 The multivariate probit model in (4-5) is the probit component 

of the conditional grouped continuous model for state s. It is different from  

that in the conditional grouped continuous model studied earlier in Chapter 3 

because of the presence of the state-specific effects Ti, • • • , t S-\ ■ I f r  1 =  • • • = 

T s-i =  0 (i.e., =  DB£sj, then (4-5) reduces to (3.2).

Remark 4.2.2 In the case of a single ordinal variable (Q = 1), (4-6) reduces 

to

[x =  x (s), y, Z  = £] = tts x f a  (y -  Hs \ E) , (4.7)
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where $  is the univariate standard normal distribution function. Further, if  a  

is the covariance vector between y and the latent variable underlying Z, it is 

easy to see thatfi =  S~1<r/ ( l  — o,TS “‘1<r) andrs =  (£*—<rTE _1£s)/ ( l  — <rTE - 1<r), 

s =  1, • • • ,5  — 1. This model includes those studied by Lee and Poon (1986) 

and Hannan and Tate (1965) as special cases.

Remark 4.2.3 There are a total of P  =  (5 — 1) +  (C +  Q)(2S +  l) /2  +  (C +

Q)2/2  + L — Q independent parameters in the general mixed-data model, L — Q 

more parameters than in the general location model.

Remark 4.2.4 From a block diagonal covariance matrix T (i.e., £ yy. =  0), 

it follows that B =  0 and the probit model in (4-5) reduces to a multi-state 

grouped continuous model. Anderson and Pemberton’s (1985) model is ob­

tained by taking C — 0 and 5  =  1.

Remark 4.2.5 The general location model is obtained from the general mixed- 

data model by setting Q =  0, and hence, the former may be viewed as a 

special case o f the latter. Similarly, the general mixed-data model reduces to 

the conditional grouped continuous model when 5  =  1. Therefore, Definition 

4 - 1  unifies these two mixed-data models into a general model.

Remark 4.2.6 The state-specific effects r s induce the association between x 

and z. The regression effects f3q represent the polyserial correlations between 

y and z. The standardized cutpoints 'yqq account for the ordinal information 

contained in z. The associations between the ordinal variables are captured
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by their polychoric correlations rqq>. Hence, the general mixed-data model ad­

dresses the shortcomings of both the general location and conditional grouped 

continuous models.

It should be noted that the general mixed-data model was first developed 

in de Leon and Carriere (2001) to allow for ordinal variables to be incorporated 

into the general location model.

4 .2 .1  C ase w ith  C = L — Q — 1 an d  5  =  2: A n  E xam p le

In this section, the general mixed-data model with two nominal categories 

(5 =  2) represented by x =  (X \ , X2)T, one ordinal variable Z  (Q = 1) with 

two levels so that L = 1, and one continuous variable Y  (C =  1), is explored.

Suppose x =  X(!) and x =  X(2) have respective probabilities p and q = 

1 — p, and the conditional joint distributions of (Y, Y*)T for X(j) and X(2) are 

assumed to be bivariate normal with respective mean vectors (/i!,0)T and 

(/i2, 0)T and common covariance matrix

Instead of observing Y*, a dichotomized variable Z  is observed such that

where a  is an unknown cutpoint. In this case, the model parameter vec-

Direct calculations (see also Tallis, 1961) show that E(Y* | x  =  x^j, Z  = 

2) =  E{Y* | x  =  x (2), Z =  2) =  <t>(a)/$(-a) and E(Y* | x =  x (1), Z  = 1) =
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1 if Y* < a
2 otherwise

tor becomes 0 T =  (p, iiu /i2, a2, 7 , /?, r) , where 7 =  a f  \J  1 -  p2 -  /5/i2, (5

-  p2), and t  — —fit, where £ =  pi -  p 2-
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E(y* | x  =  X(2), Z  = 1) — -~(j)(a)/$(a). Similarly, it can be shown that the 

following hold as well:

var(y* | x  =  X(i), Z  =  1) =  1
a<j>(a)
$ ( a ) _$(«)

=  var(y* | x  =  X(2),Z  =  1),

var(y* | x  =  X(i) ,Z  =  2) =  1 4-
acj)(a.)
$ ( - a ) M-<*)

=  var(y* | x  =  X(2), Z  =  2).

Noting that, given x  =  X(a), Y  = ps + paY* +  £, with E(£r) =  0, var(e) 

er2(l -  p2) and cov(y*, e) =  0 , it is easy to see that

pad)(a)
E(y | z = i )  = +

= E(F |x  =  x m ,Z  =  2),

pad(a)
E (y  i x =  Jt(2) , z  =  i) =

= E(y | x  =  x (2), Z  =  2),

and

var(y | x  =  x (1), Z  = 1) =  c r( l  -  p ) +  p a < 1 -
a<j)(a) 
$ ( a )

=  var(y | x  =  x (2),Z  =  1),

var(y | x  =  X ( i ) , Z  =  2) =  <r (1 — p ) + p a l  \ +
cx<j)(a)
$ ( - a )

=  var(y | x  =  X(2), Z  =  2).

Suppose now that the binary variable Z  is taken as nominal and a general 

location model is assumed for the distribution of (xT, Y, Z )T . In this case, the 

following remarks apply.
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Remark 4.2.7 The vector (xT, Z )T defines a 2x2 contingency table for which 

Y  is assumed to have a normal distribution whose mean varies across states but 

with constant variance. This is certainly not the case with the general mixed- 

data model described above, where the means o fY  for states (x =  x (1), Z  =  1) 

and (x =  X(i), Z  = 2) are the same, and so are those for states (x =  x (2), Z  = 

1) and (x = X(2), Z  — 2).

Remark 4.2.8 While the general location model assumes homogeneity of the 

state variances, the general mixed-data model does not. As exhibited above, the 

variance for states (x =  X(i), Z  = 1) and (x =  X(2), Z  = 1) is different from  

that for (x =  x^), Z  =  2) and (x =  X(2), Z  =  2).

Remark 4.2.9 It should be noted that the general mixed-data model reduces to 

the general location model with two states for a  =  0, as states (x =  X(s), Z = 1) 

and (x =  X(s), Z  =  2), s =  1,2, are collapsed. This is so because it was assumed 

in the model above that E(Y*) =  0 and var(Y*) — 1, which do not depend on 

x.

The next section discusses maximum likelihood estimation for the general 

mixed-data model developed above.

4.3 Maximum Likelihood Estimation

Suppose a mixed-variable random sample ( x j , y j , z J ) T , i =  1, • • • , N, is ob­

served. For convenience of development, the cases (i) Q = 1 and (ii) Q > 2 

are considered separately. An example of the data layout is given in Figure 

4.2 for the case Q =  S  = 2 , Li = L2 =  1 and C > 1.
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4.3.1 Case o f a Single Ordinal Variable (Q — 1)

Define the sets -4,(s) =  {* | x, =  X(s)} and B{Z) =  {i \ Zi =  Z}, s = 1, • • • , S, 

Z =  1, • • • ,L  + 1. Using (4.7) and § 3.3, it follows that

(1 -  7rx

s L+1

TS-1

s - 1

r n < -
5=1

</>c >y* 102)

xn n n (4.8)

where

<t>c (yi»--' ,Y n | 02) =  (27r)“iV/2 | £  |_JV/2

x exp
s —l  i(s)

ns =  and the indices “*(s)” and “i(s,£)” come from «A(s) and

.A(s) fl B(Z), respectively, s = 1, • • • ,5 ; Z = 1, • • • ,L  +  1. Note that y^,,) G 

{yi,--- ,yjv} and y i M  G (yi(a) , -- -  , y n,(s)}- Here, 7 0 =  - 0 0  and 7 L+1 = 

+ 00. The log-likelihood is given by

log£ — Z\ (0i) +  4  (02) +  4  (03)» (4.9)

where

M 0 i) =  ^ nslog7rs>
8~ 1

g
4  (02) =  - y  log2tt -  y  log | E I - ? £ £ ( * < • > -* .> Ts r 1(y<(. , - / 0 ,

5 - 1

2

S L + l

s =  l  i(s)

4(03) =
8=1 i = l  *(«,<)

Noting that the space for 0 is simply the product of the individual spaces 

for 0i, 02 and 03, the MLE 0 =  (01 ,02 ,03 ) is found by maximizing Z\ (0i),
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£2 (02) and £3 (03) separately. The result for 0\ is the usual MLE for a multi­

nomial model given by 7rs =  ns/ N , while that for d2 is given by fis =  y a = 

E i (s) y<(.)/»«. and the unique elements of E  =  S = £ f= i  Ei(»)(y<(»)-y.)(y<(«)- 

y s)T/N ,  where y s is the sth state mean, s =  1, - ■ • ,S . See § 2.2.2.

The MLE 03 of 03 is obtained using an iterative technique such as the 

Newton-Raphson method. Let s(03) =  <9£3(03)/9 0 3 and H (03) =  d2 i 2 (92 )/dd^ddj 

be the score vector and the Hessian matrix of 03, respectively.

L em m a 4.1 Consider the general mixed-data model with Q = 1. Then, the 

elements of the score vector s(03) are given by the following:

d£z(Ps) ~y*(s^)^j(s,q
dft ~  2 - j  1 ^, 2 _̂  a 1 ’
o p  .= 1  /=i i(8,e) <̂(».«)

^£3(03) _  ^ (s’̂  V '  V  f7> -  1 n
a< 2—, a i+i > ^  ’ ' ■' > ^

s = l  * (“>*) 8 = 1  i ( s , * + l )  « (»> *+ !)

^£3(03) 1 o 1\

w/iere A((M) =  4>f(s,} and 8 {(s/) =  with ¥ i(s/) =  $ ( ^ (s/))

In addition, the elements of the Hessian matrix H(03) are given by the 

following:

a2£3(03)
d je'd Y

E S  ^ (,,0^ 0 ,0  pi — f _  1

V^s (̂,.<) / < A( _ ai \
Z - , s = l  ( A e, „ . y y Ui { s , e ) ^ i ( s , i )  **1(8,£)/

£
— V s V  (̂..<+1) f . /  A^+l _  A* A /■/ _  />2Ls=l Ẑ »(s,<+1) '' i(s,̂ +l) *(«,«+!) î(8,<+l)/

E s  y i ( . , (+ i ) y i(i ,<+i) «/ _  « , 1j=iLi(s/+i) /â 1 >2 t — t-ri,
0 otherwise,
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d 2 £3 {B3) _  y«(».<)y<(8,<) , st Kt A e \
F>Rf)RT ~  2— 1 Z -' (Ae 'I2 v’its’c> *(«.*)'>°P°P 8=i e=i i(s,i) ^H*A>

K,i(s,i) (  î(s,£)d 2£3 (6 3) 
<92r s

d% (03) 
d(3Td y

L+l

E E
/=1 i(3>0 

S

A*t (s ,£)

î{â yJ(s,£) (st t . t \
Z_/ Z_/ ('a^ 2̂ v *(«><) »(».<) »(».<)/
S= 1  i(s,f) *(s^ )'

E 'O  ^ + I ) y < ( 8̂ +1) / c£
Z-/ fA +̂1 I2 »(».*+!)

s = l  i(s ,£ + l) V ^ i(s ,£+1) ;

L + l _  T
■’bW L. ^  a^ 1

i(s,<p

i  A*+i 'I
i ( s , £ + l )  /  5

d2 £3 (B3) _  yj(8,f)
^ Ta r . “

^ ^ 3(^3) _  y  y  $(8,1) (st _  1  Af \
f l T  f j r y t  2—1 2 — 1 ( \ t  ^ 2  V0 i ( s , ^ )  i ( s , £ ) ^ i ( S/ ) )
O T s U ’ g=l i(St£) ^ i ( M F

0 j(s,e+i) f  o/+i _  / A<+i \
^ < + 1  p  \  ifs^+ l) ^«W +1) «(s,i+l)^ ’

where

a 6l
E Y '  i( s , l+ l)

(At+l 'I2
»=1 i( s , i+ l)   ̂ i ( s , £ + V j )

K , i ( s , e )  =  ^ m ^ h . ,£ )  ~  u i d ) ^ ( s / y  N o t e  a L s o  t h a t  d 2 e 3 ( 0 3 ) / d T s d T s , =  0 ,t'jtfl tfjVI »1  ̂\  5 /  fil t l d tA  1

d2i 3 {e3 ) /d 1 0 d1 l = 0 , and d24 (03) /d 7 i+ 13 7L =  0 .

P roof. The proof is straightforward and hence, is omitted. See also Lee and 

Poon (1986).

□

From Lemma 4.1, 6 3 can be estimated by the Newton-Raphson method 

via the updating formula

*3=*;(*) (4.10)

"*-(t)
where it is assumed that H(03 ) > 0, with 03 the estimate at the ith  iteration.

—-(t-i-1) ^(t)
Iterations continue until convergence is attained, i.e., | l 3 (03 ) — £3(03 ) |<  e,
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-(0)
where e > 0 is a pre-specified tolerance. For the initial estimate 03 , the 

following are suggested:

7«°> =
\ s = i  e = \  )

r  = . S: T  . (4 .1D
v l  -  a  S_1<7

\ / l  - ^ s - 1?

where Y*s is an estimate of the sth latent mean based on frequency data, 

Y*s and y s are the reference state means, nst is the number of observations 

in state s such that =  £, and the cth element of cov(y, Z) = a  is given 

by ac = rc^fs^, the sample covariance between the cth element of y and the 

latent variable underlying Z. Here, rc is the sample point polyserial correlation 

(Drasgow, 1986; Lee and Poon, 1986) and sffi is the cth diagonal element of S.

4.3.2 General Case (Q >  2)

The case when Q > 2 is now considered. Define B(£,\, ■ • • , £ q )  = {i \ Ziq =  

£q, £q =  1, • • • , Lq +  1; q — 1, • • • , Q}. Following the approach used for the 

grouped continuous model in Chapter 3 (see also Poon and Lee, 1987), it can

be shown that (03) is given by

S  Li +  l  L q  +  1

4(03) = E E  ••• E  E los
s=i tx=\ eQ=ii(s,t) E -

£ 1 = 0

E  (-i)E?=i eq+Q*Q (• • •, ■ iR)
£ Q = 0

where <E>q(- | R) is the Q-dimensional normal distribution function with mean 

0 and covariance matrix R , and =  7q — r3q -  f i ^ y The index
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“i(s,£)” comes from »4(s) D B{£i ,  • • • , £ q ) ,  and refers to the ith  unit in state s 

such that Z x =  l \ ,  ■ • ■ , ZQ — l Q. Note that v°i{at)q =  -oo  and =  + 00 ,

9 =  ! , • • •  ,Q-

As in the case Q =  1, the MLE 6 3  can be obtained via the updating 

formula (4.10), using a different score vector and Hessian matrix, or by the 

Fletcher-Powell algorithm (Fletcher and Powell, 1964) suggested by Drasgow 

(1986) and advocated by Poon and Lee (1987). The advantage of the Fletcher- 

Powell algorithm is that it only requires the score vector and an initial positive 

definite matrix, usually taken as the identity matrix.

In what follows, define A^ (s/)jQ_ 1 =  ~

and I »w)> where and &(•>■ I

rqqi) is the standard bivariate normal density with correlation coefficient rqqi, 

and

^ q f Cq — €.q
~ Tqq'Vuftiq) _  ^  , | R

® i ( s , t ) , Q - 1  -  )---------------—  >■ ^  9  I I >

V v 1 - ^ '  /

^ i ( V ) , Q - 2  =  ^ 0 - 2  ( "  ‘ > V i ( s , l ) q "  ~  ‘ ‘ * 5 9  #  9 ;  9  7 ^  9  I R g q ' )  >

are the (Q — 1)- and (Q — 2)-dimensional normal distribution functions with 

0  means and covariance matrices equal, respectively, to the partial correlation 

matrix R.,, given Y*, and the partial correlation matrix R.qq', given Y* and 

Y*,, with

u _ rqq" ~  rq'q"rqq> lq q̂>q" ~  Tqq"Tqq' _ /,/
q" ~  — FT  2“  — / 7 — T

V 1 - ^ '  v 1 _ r ^
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Finally, let

a <m > =  E  ■ • ■ E  ( - i )e ?- ,+^ o (• • • .  • • • i R ) ■
*1=0 CQ=0

Lem m a 4.2 Consider the general mixed-data model with Q > 2. Then, the 

elements o f the score vector s(03) are given by the following:
r\/J //) \ S  / / l  +  l  L q —1 +  1 Z/g-fl +  l  L q -\~ 1

drqq>

d l 3(fl3)

dPa

t t  -  E E -  E E -"EE
S=1 «1 =  1 f ,_ l  =  l  <,+ 1 =  1 ^Q==l i(s,<)

E -  E E
C] —■ 0 6q_i=0 €9-)_i=̂0 eQ—0

5  Li +  1 L Q + l  1 1

= EE---E EAmE-'-E
s = l  l x =  1 £q=1 i ( s , t )  e i= 0  cq=0

/  1 \ E ® » =1 t q " + Q  j f o t q '  * ( 9 .9')

5  L i  +  l  L q - l + 1  £ /q + l+ 1  i'Q +  l

= EE--- E E - E E ^ i ,
5— 1 £l =  l  l q-  1 =  1 ^ + 1 = 1  i(s£)

- E  E E ■■•E(-i)E-'wV+0+Iy<w)<’,«.,
£1=0 e , - i  =0 e ,+ i= 0  £Q=0

Li +  1 L g - i  +  1 L q + i +  1 L q  +  1

" ■ ]C X! ■" X]
de3(03)

Qr  Z—J Z_/ Z_  ̂ Z-j
Sq «1 = 1  ^ , - 1 = 1  t q + 1 =  1 (̂3 =  1 j(s,/)

E -  E  E  ---E(-oE,'''v+e+1<:iw>,«->-
£1=0 £,-i=Oe,+i=0 £Q=0

Proof. From properties of the multivariate normal distribution (Anderson, 

1984, p. 35), it can be shown that
Jq-'q

* 0  ( • • • > < & » • • •  i r )  =
j  — CO

f . . .  I .. R I Hu
i(s,/),Q  — l  |  1 /----------—  1 I V q i t l ' q  | a v qi

1 -  rw

v ~ v
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for q =  1, • • • , Q, where q ^  q', so that

0

r\ tq  — tq  ^  \ ' l\u,Z)<j' > j  ' " i(s,£),Q—1*

The rest of the proof is now straightforward and follows from standard results 

on vector differentiation (see, e.g., McDonald and Swaminathan, 1973) and 

the reduction formula of Plackett (1954). See also Poon and Lee (1987).

□

The following initial values are suggested for the Fletcher-Powell algo­

rithm:

\ s = l  «',=!

- ( o )  =  S ~ lgg- — , (4 .12)

^ l - d q S - l<Tq

- to i  -  Y*sq) ~  -  7 s)
Tsq  / -------------- Z t -------------- “  ’

where Y*sq and Y Sq are estimates of the latent means of the sth and 5 th  

states, nsei is the number of observations in state s such that Zq =  £'q, a q is 

the sample covariance vector between y  and Zq, the cth element of which is 

given by aqc = rqcy/ s l where rqc is the sample point polyserial correlation 

between the cth element of y  and Zq.

4.4 Maximum Pairwise Likelihood Estimation

An alternative to maximum likelihood estimation of 0 is presented in this 

section. The pairwise likelihood approach (Kuk and Nott, 2000; Nott and
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Ryden, 1999), adopted in Chapter 3, entails specifying a pseudo-likelihood 

based on

[x;0i][y I x ;02] m  I (4.13)
q<q'

Given a sample, the pairwise likelihood function is taken as the product of 

(4.13) (or sum, in the case of pairwise log-likelihoods) over the sample. Lindsay 

(1988) refers to this pseudo-likelihood function as a composite likelihood and 

lays down its theory in a very general framework (for an application, see, 

e.g., Heagerty and Lele, 1998). In general, the composite likelihood approach 

provides a pseudo-likelihood function from which an estimating equation can 

be obtained. In the present context, the estimating equation is obtained by 

maximizing the pairwise log-likelihood function

0 > ^e 1 (e1) + e2 (e2) + e3 (d3), (4.i4)

where £f(0 i) =  G(0 i), ^ 2) =  (2 ^ 2 ), and

«*> = E E E E  £  '■*
3=1 g<g' l q = 1 1 i (s, tq,tql)

_L 1 (4151
^ i ( s , l q,lq,)qq' +  V i(s, iq,eq,)qq>J » V4 ' i 0 I

l i twhere <&.?’ I 9 w  is the standard bivariate normal distribution function with

correlation rqq, evaluated at (u^s ^ g ,)qi vils tqi ,)q>)- Expression (4.15) is then

~PLmaximized with respect to 0 and its maximizer 0 is called the maximum
•",vJP£j ._P [j

pairwise likelihood (MPL) estimator. Note that 8 l — Q\ and 02 =  02. Note
n P Las well that 03 is a solution of the pairwise score equation sPP(03) = 0 , where 

sPz,(03) =  (03) /dO% is the pairwise score vector. The elements of sP i(03)

are given in the following lemma.
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Lem m a 4.3 The elements of the pairwise score vector sPL(03) are given by 

the following:

d m  ^  ^  ^  ^  A

H q

o m

-  EE EE EE EE B i{s ,P q ,iq, ) q q ' ^ i ( s , l q,Pq,)q
s = 1 q ' ,q '< g  t qi =  1 i { s , l q , t qi )

X

dr,qq

s Lq+\Lq,+\

E E  E  E  B i(s,P.q ,(.qi)qq'
s = l  eq =  l  i q,=  1 i ( s , t q , l qt )

^,Pq ,Pqt — 1 , r / q ^ - P qf ~  ̂
(P i ( s , i q ,f.q,)qq'  +  <f>i(s,f.q,e.q,)qq'

A , / , , ’ j f q  l £ q l
r ^ s / q /  ,)qq> (P i (a . /q ,P.qi )q q l

d _ m
d fiq

s  L ,+ l  V + 1

= E  E  E  E  EE Bi(EA')M'y<{*
s ~ l  q f , q f < q £ q ~ l  £ q , ~ l  i ( s , £ q , £q t )

>̂q vO)

X FA ifj/— \ A^q~  ̂  ̂ ^[^(s A , t q/ ) q ^ i t / i( s , iq  , i Q,)q 'q  > ~  Q i f r l q  , l q, ) q ^ \ V  i { s , l q / q , ) q 'q )

^ i ( s , P q , tq l) q ^ { V i l s , l q , t q l) q 'q )  +  (t> i l s , lq , iq>) q ® ( 1' i ( s U l q,)q< q )
Mo-i

0 r,«g E.y EE EE EE B i ( s , l q , l qi ) q q '
q',q’ < q  t q= 1 £q/ =  l  i { s , l q , l ql )

, î q —1 jk/—&qf $ q ~  1 \ jt/—̂ q ' ^ Q

^ V i i s A f q ’ t e ^ ^ s M q ’ W * } )  ~  V i i s U t q ’ ) *  ^  i { * U L q >

rk̂ q 9 ^
V i ( s , ^  / ) g V

(e i ( s , i q , e  , ) q  V t(s,Pq , i  , ) q ' q '

where Bi(sj qtiq,)qq> — ®i(sf qtt ,)qq' ®i(s,eqJ  Aqq1 ®
PqAq1 1 . xfq  ̂-Pq' ^
i(s ,e .q ,i , )qq'  ' i(s , lq ,( .  , ) q q ‘,, and

I V(iv %(V i ( s , l q , t  , )q 'q  \ V i(s, tq,e,  , ) q '  r q q 'V i (s )q

P roof. The proof is straightforward. See also § 3.4 and 3.7.

□

The pairwise score equation may be solved iteratively using the Fletcher- 

Powell algorithm or a modified Fisher scoring method presented in § 3.4 (Kuk
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and Nott, 2000). The same initial estimates given in (4.12) may be used to 

start the algorithm. Note that the pairwise approach results in a considerable 

reduction in computing time as only univariate and bivariate normal distribu­

tions are considered.

Unlike PML methods, the maximum pairwise likelihood method outlined 

above estimates the ordinal data parameters simultaneously, which results in 

a single set of parameter estimates. This avoids the problem of combining 

several sets of estimates, which is done in the PML methods. Note, however, 

that MPL estimation is very similar to the pairwise PML method of Bedrick et 

al. (2000) and Lapidus (1998) in that the probit model is similarly broken down 

into its bivariate sub-models by the former from which the pseudo-likelihood 

function is constructed. For additional details as well as its performance in 

terms of efficiency and bias, see Chapter 3.

4.5 Asymptotic Distributions of 0 and 6

Standard large-sample results on maximum likelihood estimation (Lehmann, 

2000; Rao, 1973) and generalized score equations (Boos, 1992) are employed
xv wp L

below to derive the asymptotic distributions of 6  in § 4.3 and 0 in § 4.4. 

T heorem  4.4 The MLE 6  of 8  is consistent and satisfies

as N  —> oc, with

0

0 (4.16)
0 0
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where I P^(8i)  =  d i a g ^ ,  ■ ■ • , n s - i )  -  & i6 j , TP^(02) is given by

? ) ,  ( « 7 )

T(p2_cs)x(p2-cs) contains the asymptotic variances and covariances of the 

unique elements of S,

F m  (  i - ( i v  +  i K ( i - 7rs)iV+1 \) diag [■ • • , (iV +  1)7rs[i _  ^  _  (1 _  ^ )iV], J  ,

N lp .f 6 ) =  Efl[—H(03)] with H(03) as defined in § 4-3, Pi = S  — 1, P2 =  

CS +  C(C +  l)/2, and P3 = P - P 1 - P 2.

P roof. Consistency and normality of 0 follow from Theorem 7.5.2 of Lehmann 

(2000, p. 501), since the general mixed-data model can be easily shown to sat­

isfy regularity conditions (M l) — (M5), (M 6)", and (M 7) — (MS) in Lehmann 

(2000, pp. 499-501). Expression (4.16) is obtained by direct calculation.

The elements of Efl[--H(03)] can be obtained from Lemma 4.1 in the 

case Q — 1, and from Lemma 4.2 in the general case Q > 2 by noting that 

E$[—H(03)] =  Efl[s(03)sT(03)] (Mardia et al., 1979, p. 98). The elements of 

Efl(F) are obtained by noting that E^(lfn s) =  \/['k3(N  + 1)] Vs. Those of A 

in (4.17) are given in Theorem 3.2 in Chapter 3.

□

R em ark  4.5.1 Since £3 (6 3 ) is a conditional log-likelihood given rai,-- - , ns 

and {• • • , yi(s), • • • ,y ns(s), • • • }, note that the information matrix 1 p3 (0 ) asso­

ciated with d3  is obtained by taking the expectation of H(03) with respect to
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[x,-,yj,Zj]. This results in an expression that depends not only on 6 3  but on 

{6 1 , 6 2 } as well.

Theorem 4.5 extends Theorem 3.2 to the general mixed-data model. 

T heorem  4.5 Under the regularity conditions A1 — A6 given in Chapter 3,
^ P L

the MPL estimator 0 of 6  is consistent and satisfies

J p3 =  J p3 (6 ) = Efl[—dsPL(6 3 )/d 6 j], and K Ps = K Pfi 6 ) is defined as

with is the pairwise log-likelihood contribution of {Zq, Zq/} from the

ith observation in the sth state.

Proof. The proof follows along the same lines as that of Theorem 3.2 and 

similarly relies on results in Guyon (1995), Boos (1992), and Crowder (1986). 

To show asymptotic normality, define the pairwise information matrix J P = 

J P(6 ) as follows:

6 PL - 6 ^  MP (0, V)

as N  —»• 00, where
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where the last equality follows from the fact tha t 61 =  0 \ and 02 =  02, and

K P2 (02) =  N Ip 2 {6 2) (Mardia et al., 1979, p. 98).

Observing that Efl[sp/,(03)] =  0 and assuming A l  — A 6  hold, it can be 

shown (Boos, 1992) that

7} *where op(N) —> 0 as IV —> oo. Thus, 6  — 0 is asymptotically multivariate

normal with asymptotic mean 0 and asymptotic covariance matrix

Theorems 4.4 and 4.5 are used in the subsequent section to construct 

asymptotic tests of hypotheses concerning 0 .

4.6 Statistical Inference

Typical inferential questions of interest involve comparisons of the different 

state means fis of the continuous variables, the level- and state-specific effects

Jp3 =  Efl[—d 2£l(03 )/d0sd0j]. Also, define K P = K P(0) as

where the last equality follows from the fact that K ^  (0 () =  N J Pl(01) and

V =  J p ' K p J - 1

□
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rsq, the regression coefficients (3q, and the polychoric correlations rqq<. For 

example, the following hypotheses may be of particular interest:

Hi : =  =

H2 : Tn =  • • • =  Ts-i,q — 0 (q = 1, - ■ ■ ,Q),

H3 : Tsi =  ••• =  t s Q  = 0 (s =  1,- • • ,5  -  1),

Ha : 0 1 = - - - = 0 Q = 0 ,

H5 : rqqt — 0 (q< q ';q ,q ' = ,Q).

Hypothesis H% tests the independence of the nominal and continuous variables.

Hypothesis H2 tests the absence of level-specific effect while H3 corresponds to

that for state-specific effect. Hypothesis HA is equivalent to H2 D H3, the test

of independence of the continuous and ordinal variables. Finally, H5 concerns

the independence of the ordinal variables.

Note that hypothesis Hi is easily tested using the statistics given by

Olkin and Tate (1961, Theorems 4.1 and 5.1) and Morales et al. (1998).

To construct tests of hypotheses such as those above, likelihood ratio,

Wald and score test statistics can be constructed based on usual asymptotic

theory. For the MLE 0, Ip  (6 ) must be estimated by a consistent estimator

lp ( 0 ), which may be obtained by replacing Ip l (6 i), Ip 2 (6 1,02), and I P,(0)

w ith , respectively , 2 P l (9 i ) ,  I p 2( 6 u 62), and s (0 3) s t (?3) =  s(03)sT(03)|fl:i=?i,

the observed Fisher information matrix evaluated at 03. Note that s(03)sT(03)

is independent of {0 i , 6 2}.
~pL

If 6 is used instead, the so-called information sandwich estimate may
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be used for V. Note that in the present case, the first two block matrices along 

the diagonal of V  are estimated as in the MLE case, while ( 3 ^ ‘)~1K.p3 (Jp/ ' ) -1 

is used for the third block diagonal, where J i s  as defined in Chapter 3, and

^ = e e (e
«=1 i(s) \q<qr  ̂ /  \.q< q' ® J

' - P L

again evaluated at 03 .

Theorems 4.4 and 4.5 may now be used to construct generalized Wald 

and likelihood ratio tests of hypotheses concerning 6 . For instance, suppose 

it is desired to test H  : Pi = =  the hypothesis of uniform polyserial
' - P L

correlation structure, using the MPL estimate 6  . Note that H  is equivalent

to the hypothesis H' : CQ =  0, where C =  (0, Cp, 0), and Cp is a C{Q — 1) x 

CQ matrix defined by

C p

(  Ic 0  • • • 0  - I c  \

0 I a • • • 0 —In

\  0 0  ••• Ic - I c

Since rank(C) =  C(Q — 1), a Wald-type large-sample y2 statistic can then be

constructed as

x2w = (CpfL)r (cvPLcT)_1 (CpfL),
- P L

and by Theorem 4.5, X \\ Xc(q- i) under H. Here, (3 and V PL are

obtained using the MPL estimates.

4.7 Appendicitis Data Example

In this section, real data are considered to illustrate the general mixed-data 

model. The data come from Koepsel et al. (1981) (also found on pp. 680-683
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of Fisher and Van Bell, 1993) and concern the occurrence and non-occurrence 

of perforation of the appendix. Data from a total of 181 surgery patients 

are included in the analysis, and three variables are considered. The same 

data were analyzed by Nakanishi (1996) in the context of variable selection 

in mixed-data discriminant analysis. For the purposes of this example, only 

those subjects with waiting times to surgery exceeding 0 but not exceeding 60 

hours were included in the analysis. In addition, the waiting times to surgery 

were transformed using their natural logarithms. Normal probability plots of 

the transformed waiting times indicate that the assumption of normality is 

satisfied.

In what follows, the variable X3 as defined in Fisher and Van Bell (1993, 

p. 680) is transformed into an ordinal variable Z  with 2 levels (long or short 

duration). The states of x T =  (X1; X 2) correspond with the patient’s perfo­

ration status, with x  =  X(2) if perforation is present and x  =  xp) otherwise. 

The following variables are included:

Y  := time in hours from physician contact to surgery,

Z  := duration of symptoms prior to physician contact

_  J  2 no. of hours > 24 
^ 1 otherwise

A general mixed-data model with C  =  L — Q =  1 and S  =  2 is fit to these 

data. The parameter is then dT = (TC,fJ,T, cr2, 7 , (3, r) , where fiT = (/i1? /i2) with 

fia the sth state mean of Y , 7  is the standardized cutpoint a  for the latent 

variable Y* underlying Z, and r  is the effect of state 1 on Z relative to that of 

state 2. Note that 7  =  a / y / l  — p2 — ( /4 / \A  — p2 ~  (3fa), (3 =  p /io y jx  — p2),
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and r  =  £ * / \ / l  -  P 2 ~  w here £ =  ^  -  f i 2 , C  =  / 4  _  /4> witE  K  =  E (E * I 

x  = x (s)), for s =  1, 2 .

The MLEs (which are also the MPLEs in this case) of the parameters 

were calculated using S-PLUS, and are presented in Table 4.2, along with 

their corresponding standard errors. From the estimates in Table 4.2, the esti­

mated point-biserial correlation between perforation status and the logarithm 

of waiting time to surgery is found to be -0.1374, indicating a weak nega­

tive association. This agrees with the conclusions of Koepsel et al. (1981), 

who found that perforation status is only strongly related to the length of the 

pre-admission phase, the period prior to physician contact. In addition, the 

correlation between duration of symptoms and logarithm of waiting time to 

surgery is estimated as -0.2236.

Wald test statistics for testing Hr : r  =  0 and H@ : (3 =  0 yielded 

X ‘l  — 44.76 and Xp =  9.07, respectively. Upon comparison with the critical 

value X1005 =  3.8414, it can be concluded that r  (p-value<0.05) and j3 (p- 

value=0.0026) are both significantly different from 0. The conclusion regarding 

the parameter r  confirms Koepsel et aL's (1981) finding regarding the positive 

association between perforation status and duration of symptoms.

Modelling the data via the general mixed-data model makes these de­

tailed information possible while maintaining the levels of measurement of the 

variables.
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4.8 Discussion

In this chapter, a general model for multivariate data with mixtures of nomi­

nal, ordinal and continuous variables called the general mixed-data model was 

proposed. The approach adopted in developing the model is motivated by the 

need to account for the various levels of measurement, and hence, the different 

types of information, in the data, which many conventional approaches fail to 

incorporate in the analysis. The general mixed-data model in Definition 4.1 

includes as special cases the general location model of Olkin and Tate (1961) 

and the mixed-data models studied by Bedrick et al. (2000), Lapidus (1998), 

Poon and Lee (1987; 1986), and Anderson and Pemberton (1985).

A full likelihood-based approach that yields maximum likelihood esti­

mates of the model parameters was outlined, and algorithms to implement it 

were provided. The methods generalize earlier works of Bedrick et al. (2000), 

Lapidus (1998), and Poon and Lee (1987; 1986). An alternative based on 

the pairwise likelihood approach was also presented. Statistical inference for 

various hypotheses on comparisons of the means, polychoric and polyserial 

parameters among the variables across and within states based on both ap­

proaches was also discussed.
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Figure 4.1: Taxonomy of Models and Analytical Approaches in Mixed Multi­
variate Data Analysis.

C O N D I T I O N A L  G R O U P E D  
C O N T I N U O U S  M O D E L  
(o r d i n a l  C o n t i n u o u s )

U S E  G E N E R A L  
L O C A T I O N  M O D E L  
( o r d i n a l  a s  n o m i n a l )

G E N E R A L  M I X E D  DATA 
C A S E

( n o m i n a l ,  o r d i n a l  C o n t i n u o u s )

U S E  C O N D I T I O N A L  G R O U P E D  
C O N T I N U O U S  M O D E L  

( n o m i n a l  a s  o rd i n a l )

G E N E R A L  
L O C A T I O N  M O D E L  

( b i n a r y  & c o n t i n u o u s )

R E G R E S S I O N  
S E T T I N G  

( F i t z m a u r i c e &  Lai rd  1 9 9 7 )

N 0 N - H 0 M 0 G E N E 0 U S  
D A T A  

(Liu & R u b i n  1 9 9 8 )

M U L T I V A R IA T E
C A S E

( A n d e r s o n  8  P e m b e r t o n  1 9 8 5 )

NOTE: D i s p l a y e d  i s  a  t r e e  c h a r t  o f  t h e  v a r i o u s  m o d e l s  a n d  a p p r o a c h e s  a d o p t e d  i n  m i x e d - d a t a  

a n a l y s i s ,  i n c l u d i n g  t h e i r  e x t e n s i o n s  a n d  t h e i r  r e f e r e n c e s .
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Figure 4.2: Two Levels of Data Layout for the General Mixed-Data Model with 
Q =  S  = 2, Lx =  L 2 =  1 and C > 1

Layout at the State Level

State 1 State 2

{yi(i),zi(i)} {y 1(2), Zl(2) }

{y«i(l)» zm(l)l {y«2(2), zn2(2) }

Layout at the Level of the Ordinal Vector

State 1 State 2

eT= (1. 1) : yi(l,l,l),- ■ ■ , yrini(l,l,l) yi(2.1,l), • • • ,yn2n(2,l,l)

f =  (1, 2) : yi(l,l,2), • • • ,ynn2(l,l,2) yi(2,l,2), • ■ • ,yn212(2,l12)

f =  (2 , 1) : yi(l,2,l). • ' ■ , yn12i(l,2,l) yi(2,2,i). ■ ■ ■ ,y»22i (2,2,1)

eT=  (2 , 2) : yi(i,2,2), • • • , y«i22(i,2,2) yi(2,2,2), • • • ,y n222(2,2,2)

NOTE: T h e  v e c t o r  I  i s  a  r e a l i z e d  v a l u e  o f  t h e  o r d i n a l  v e c t o r  z =  (•£.;(<,)], Zi(<<)2 ) -

N o t e  t h a t  n s  =  X)i>a=t n s t 1e i , s =  1,2, a n d  n i  +  n2 =  N .  A l s o ,  n o t e ,  f o r  i n ­

s t a n c e ,  t h a t  {y i(i,i,i), ■ • • ,y nui(i,i,i), ••• ,yi(l.2,2), ••• ,yn 1M(i,2,2)} w Sim ply a  r e l a b e l l i n g

° f  {y i(i),-- • ,y»i(i)}-

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4.1: Three-Dimensional Array for the Appendicitis Data (Koepsel et al., 
1981).

Perforation
Duration Yes No Total

> 24 hrs. 28 40 68

< 24 hrs. 10 103 113

Total 38 143 181

NOTE: S h o w n  a r e  t h e  n u m b e r s  o f  s u r g e r y  p a t i e n t s  c l a s s i f i e d  a c c o r d i n g  t o  p o p u l a t i o n  ( m a l e  

o r  f e m a l e ) ,  p e r f o r a t i o n  s t a t e  ( s = l  i f  p e r f o r a t i o n  i s  p r e s e n t  a n d  s = 2  o t h e r w i s e ) ,  a n d  d u r a t i o n  

( Z = 2  i f  d u r a t i o n  e x c e e d s  2 4  h r s .  a n d  Z = 1  o t h e r w i s e ) .  T h e  a c t u a l  v a l u e s  o f  t h e  t i m e  Y  f r o m  

d i a g n o s i s  t o  s u r g e r y  a r e  f o u n d  i n  F i s h e r  a n d  V a n  B e l l  ( 1 9 9 3 ,  p .  6 8 0 ) .
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Table 4.2: Maximum Likelihood Estimates of Parameters of General Mixed- 
Data Model for the Appendicitis Data.

Parameter Estimate
Standard

Error

P 0.2099 0.0302

Mi 1.2032 0.1544

M2 1.5622 0.0796

7 0.9585 0.1454

P 0.2404 0.0798

T 1.2912 0.1929

a 0.9542 0.0954

NOTE: S h o w n  a r e  t h e  m a x i m u m  l i k e l i h o o d  e s t i m a t e s  o f  t h e  g e n e r a l  m i x e d - d a t a  m o d e l  p a ­

r a m e t e r s  f o r  t h e  a p p e n d i c i t i s  d a t a .
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Chapter 5

A Generalization of 
Mahalanobis Distance to M ixed  
Qualitative and Quantitative 
Data

5.1 Introduction

The estimation of a statistical distance between populations arises in many 

multivariate analysis techniques. In cluster analysis, for example, a dissimilar­

ity measure, defined by a distance metric, is needed to evaluate the proximity of 

two observations (Seber, 1984, pp. 351-355). The same scenario may be found 

in some discrimination problems (Dillon and Goldstein, 1978). Whereas dis­

tance measures for use with continuous data are well developed (Seber, 1984), 

those for mixed discrete and continuous data are less so because of the lack of 

a standard model for such data.

Krzanowski (1984; 1983) was the first to consider the development of 

mixed data distances. After applying Matusita’s distance (Matusita, 1956) 

to the general location model, Krzanowski (1983) derived a distance measure
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between two groups based on mixed nominal and continuous data. The exact 

and asymptotic distributions of its sample estimates under the null hypothesis 

of non-distinct groups were later studied by Krzanowski (1984) and Bar-Hen 

and Daudin (1998), respectively. Bar-Hen and Daudin (1995), in contrast, ap­

plied the Kullback-Leibler divergence (Kullback, 1968, pp. 6-7) to the general 

location model and obtained a distance that specializes to the Mahalanobis 

distance in the absence of nominal variables. Krusinska (1987) proposed a 

weighted Mahalanobis distance for mixed data as the weighted sum of the 

Mahalanobis distance for continuous variables and a Mahalanobis-type dis­

tance for discrete variables introduced by Kurczynski (1970). Krusinska and 

Liebhart (1988) later applied the weighted distance in outlier detection prob­

lems.

Besides the distances introduced by Bedrick et al. (2000), Bar-Hen and 

Daudin (1995), and Krzanowski (1983), no distance measure has yet been 

developed for mixed data with nominal, ordinal and continuous variables. Such 

a distance must account for not only the different levels of measurement in the 

variables but also the various types of associations among the variables.

The aim of this chapter is to develop a statistical distance that can 

be used for data consisting of a mixture of variable types. Specifically, the 

problem of generalizing the Mahalanobis distance (Mardia et al., 1979, p. 31) 

to mixed data with nominal, ordinal and continuous variables is considered. 

The approach adopted in the chapter unifies previous work on the problem by 

Bedrick et al. (2000), Lapidus (1998), and Bar-Hen and Daudin (1995). The
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latter extended the Mahalanobis distance to mixed nominal and continuous 

data via the general location model while the former used the grouped contin­

uous model for mixed ordinal and continuous data and derived a Mahalanobis 

distance for the data.

The chapter is organized as follows. A general distance measure for 

mixed nominal, ordinal and continuous data is developed in § 5.2, and the 

asymptotic distribution of its MLE is obtained. In addition, large-sample 

tests of hypothesis concerning two mixed-variate populations are also derived. 

The finite-sample performance of these tests are investigated via simulations 

in § 5.4. A real-data example is presented in § 5.5 to illustrate the utility of 

the distance measure. Finally, the chapter concludes with a discussion in § 

5.6.

5.2 A Generalized Mahalanobis Distance

In this section, a distance for mixed nominal, ordinal and continuous data 

as modelled by the general mixed-data model in Chapter 4, is derived. The 

distance includes as special cases previous generalizations of the Mahalanobis 

distance to mixed data proposed by Bedrick et al. (2000) and Bar-Hen and 

Daudin (1995).

Adopting the notations in § 2.4, suppose (x j, y j ,  z J)T is a random vector 

from the mixed-variate population V (a} defined by the general mixed-data 

model with parameter 6g containing irg, (ig and r ff, for g =  1, • • • , G, and 7 , /?, 

vech(E), and vech(R). Note that this implies that the populations only differ
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in their locations. As well, it is assumed that the reference states in each of 

the populations are the same with £* =  £* and £g = £ Vg. This approach is 

similar to that adopted earlier by Poon and Lee (1992) and Lee et al. (1989).

The following formal definition of the Kullback-Leibler divergence given 

by Kullback (1968, p. 6) is presented for later use.

D efinition 5.1 Let ipg>, ipg" and A be three probability measures absolutely 

continuous with respect to each other, and assume there exist generalized prob­

ability densities f g> and f g,,, the respective Radon-Nikodym derivatives of ipg> 

and ip git with respect to A. The divergence measure between f gt and f gn defined 

as

f  Lffl'(w) -  / fl"(w)] log f c 'K  dA,
J V ( w)

is called the Kullback-Leibler divergence.

R em ark  5.2.1 A g,g„ possesses all the properties o f a distance except for the 

triangle inequality, and is therefore not considered a distance (Kullback, 1968, 

Chapter 2).

R em ark  5.2.2 When f g> is Af(fig,,YI) and f ^  is N (fig„,S), then A gig" = 

(fig, — fig„)TY,~l (fig, — fig,,), the Mahalanobis distance between two multivariate 

normal populations. In this respect, A g,g„ can be considered as a generalization 

of the Mahalanobis distance.

R em ark  5.2.3 Bar-Hen and Daudin (1995) used A g,g„ to generalize the Ma­

halanobis distance to mixed binary and continuous data modelled by the general 

location model, and derived the asymptotic distribution of its MLE.
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Theorem 5.1 below is obtained by applying Definition 5.1 to the general 

mixed-data models for V 9̂^ and

T heorem  5.1 The Kullback-Leibler divergence between and V ('9") is given

by

\ 'g "  — Ao'a" +  ^ I’a" +  ", (5.1)

where

A l'g" =  ^g's ~ 7rs"s)log:
1 'Rgn B3= 1 *

5

AI'g" ~  ^ 2  9 * 2 9 * ^ 9>s ~  S  1 ~ fJ’9" ^  ’
5=1
■s- 1A3 _  V a + Kg"* t _  _  _  _  x

g'g" ~  /  , n (Ts'» T g " s )  « .  (Tp's T g " s )  ■

Proof. Suppose y* is the latent variable underlying zg, and that (x j, y j ,  y*T) 

follows the GLM(icg, (p j ,p*gJ )T ,T), where fi*/ = (p*gJ , • • • ,/x*J) is the QS x  1 

stacked vector of state means of y* and T is as defined in (4.2). Using results 

in Kullback (1968, Chapter 6) and Proposition 2.1 in Bar-Hen and Daudin 

(1995), it follows that

S  7T

^ g'g"  ~  ^  ] (k g's ~  K g" s )  log
i ^ g "S =  1 y

^  K g 'S  +  7Tg » S /  P g , s -  f l g „ s \

But by the decomposition of the Mahalanobis distance (Mardia et al, 1979,
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( f tg ' s  Mg"a) ^  (^ g 's  Mg"s)

+ (AV*.3/ ~ AV's-y) (D R D )_1

x  { P g 's  y ~~ (J,g"s y ) >

where /J,gs.y =  ^*g — DB/tJS, with D and B as defined in § 4.2, <7 =  <7', 5". Since 

»*gs =  r  +  C  and /isg =  £ +  £ss for s ^  5, it follows that =

£*,, — DB^S,S — (£*„s — DB£g»s). Expression (5.1) is now immediate by noting 

from § 4.2 that r gs =  *s -  B£gs for g = g', g".

□

C orollary  5.1.1 I f  ftgs — \ig and n*gs =  fi* Vs, then 

s
\ ' g "  =  ~  n g”s )  lo g  —  +  (AV “  Mg»)T E " ’ ( f i g, -  f i g„ )

8= 1 »"S
+  C v -  V ') T R 1 ( v  -  Tff") •

pp. 78-79),

a*:
Mg"
Mg  s

■.-I Mg;s Mp"s 
Mg"sm;g ■

Proof. By noting that /x*s =  ji* implies £*s =  £*, it is clear that r ffS =  r g 

Vs,g = g',g", and the proof is straightforward.

□

Further remarks concerning Theorem 5.1 and Corollary 5.1.1 are given 

below.
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Remark 5.2.4 With Q = 0, Agy / = Aglg// +  Agy , ts i/&e distance proposed 

by Bar-Hen and Daudin (1995) while with <S =  1, Ag/g» =  A 2, „ +  A®, „ cor- 

responds to that by Bedrick et al. (2000) and Lapidus (1998). Thus, Theorem 

5.1 generalizes these two previous Mahalanobis-type distances for mixed data.

Remark 5.2.5 Agy< can be considered an extension of the Mahalanobis dis­

tance since it reduces to it for Q =  0, S  =  1. Note also that Agy< =  Ag/y  for 

any g', g".

Remark 5.2.6 Corollary 5.1.1 states that when the nominal variables are in­

dependent of the continuous and ordinal variables, Ag/g» is simply the sum of 

the distances corresponding to each variable type.

Remark 5.2.7 As noted by Bedrick et al. (2000), the Mahalanobis distance

(  f tg ' s  f^g"s  p—1 (  f tg ' s  t^gfls

V Vi's ~  / £ ' .  /  V ^g's -  P*g». )  ’
for fixed state s, remains estimable even though y*s is unobservable.

Given random samples (xJi,yJi ,zJi)T, i = !,-■• ,ng.,g  =  l , --  - ,G, the 

MLE of A gig" is given by Agy> -  A g,g„ + A g,g„ +  A 3glgll, where

K ' g "  = ^ 9 's ~ ^ g " s )  log
S=1

5

8 — 1

5 - 1

2

^I'g" =  7:9,3 2 'Kg"S (?9's ~ ?9"3̂  ^  1 ^ 9 ’9 ~ ?3"^  ’
8— 1

with the unknown parameters simply replaced by their MLEs from Chapter 

4. The asymptotic distribution of A g<g" is derived in the following section.
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5.3 Asymptotic Results

Consider the problem of constructing a statistical test of

H  : 6 gi =  Qg'i against K  : 0 gi /  8 gn .  (5.2)

The following theorem derives a large-sample test of (5.2) using Theorem 4.4 

in Chapter 4. Note that H  is equivalent to H' : Agy< =  0.

T heorem  5.2 Suppose rP ^9>'1 and V i'9") are mixed-variate populations defined 

by the general mixed-data models with respective parameters 6 g> and 8  g». Under 

H  : 0g> =  Bgit, then

Ag'g" ^  X2P, (5-3)

when —> 8  as na/. —► oo, n an. —> oo, where 8  < oo and P  = P\ + P2 + P3Tlqft, y &

is the total number of unknown parameters as defined in Theorem 4-4-

Proof. The proof is very similar to that of Proposition 3.1 of Bar-Hen and 

Daudin (1995). Let 0 be the common value of 8 g> and 8 gn under H. Similar 

to Bar-Hen and Daudin (1995), a first-order Taylor series expansion of A g>g» 

at a neighborhood of (8 gi,6 g") yields

Agl g” = Aglg» + V  {6g ~  6 g ) T + ~  V  (8g ~  8g ) T (fig ~  dg )
9 9  9  9 6 9  2  9 r , '' " g t * .

+ $ 9 ' - 0 9 ' ? ? ^ & ' < - O 9")+  Edeg'd8 g„ g=glgll

= (0g l- 8 g»)Tl P(8)(Bg' - 6 g„),

under H, where o(||0g — 6 g\\) -A 0 as 6 g —> 0g for g = g',g", and lp (0) is 

the expected Fisher information matrix based on all the observations. By
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Theorem 4.4, it follows tha t

T l g f . T l g f t .

T i g / .  ~ j~ T l g t f .

ng>. +  v -

Hence,

f i g i . r i g " .  1 /2

1 l  g '  ■ “ f-  T i g " .

and the result follows immediately.

Z ^ ( 0g, - 0g,,) AA/-p(0 , I P),

□

C orollary  5.2.1 I f  Q =  0, £/ien under the null hypothesis o f no difference 

between V ^  and V fg" \

T l g t . T l g f / .

Tifjt7. “1“ Tig".

when —> <5 as n at. —>• oo, n 0//. —► oo, where S < oo.•n. »» 2/ 7 2/ 7

Proof. If Q =  0, then the general mixed data model reduces to the general 

location model, so that this result is equivalent to Proposition 3.1 of Bar-Hen 

and Daudin (1995).

□

Corollary 5.2.2 I fC  — Q = 0, then under the null hypothesis of no difference 

between and V^9" f

Thfjt .Tbfjff, ^  i  /*  n  .  .

g g A*v , 5.5
ng/. + ngii. 3 9  1

when —> 8  as n a>. —>• oo, n a». —> oo, where 6  < oo.y 7 y 7
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P ro o f. This is equivalent to  Corollary 3.1.1 of Bar-Hen and Daudin (1995).

□

T heorem  5.3 I f  S  =  1, then under the null hypothesis of no difference be­

tween andV^9”\

n
n, + (5.6)

when — > 8  as n„». —> oo, —> oo, where 5 < oo.

P roof. The proof is similar to that of Theorem 5.2; hence, the details are

omitted.

□

C orollary  5.3.1 Under the null hypothesis of no difference between V <y9') and 

V i9" \  which are both defined by the grouped continuous model, it follows that

^ - A 3 V, 4  (5.7)
ng>. +  ng».

when — > 8  as n a>. —> oo, nan. —> oo, where 8  < oo.
n g n .  *  7 9  7

Proof. The corollary is obtained directly from Theorem 5.3 by setting C — 0.

□

R em ark  5.3.1 Theorem 5.2 generalizes Proposition 3.1 of Bar-Hen and Daudin 

(1995) to the general mixed-data model. In fact, Proposition 3.1 is stated above 

as Corollary 5.2.1.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R em ark  5.3.2 Theorem 5.3 is a two-sample test for mixed data distributed 

according to the conditional grouped continuous model. Similar tests based on 

likelihood ratio and generalized Wald statistics are discussed by Lapidus (1998, 

Chapter 4)■

R em ark  5.3.3 Corollary 5.3.1 is a two-sample test for the grouped continuous 

model.

The level and power of the test described in Theorem 5.2 are evaluated 

through simulations in the next section.

5.4 Simulation Study

In the simulations, general mixed-data models with C  =  L =  Q =  1 and 5  =  2 

are considered. The parameter is then 6g =  (7rg, , er2, 7 ,  /?, rg), where / i j  =

(pgi , pg2 ) with figs the sth state mean of Yg, 7  is the standardized cutpoint a  

for the latent variable Y* underlying Zg, and rg is the effect of state 1 on Zg 

relative to that of state 2. Note that 7  = a / y / l  — p1 — (p2/y/1 — P2 —

P = P/ ia ^Jl -  P2), and Tg =  C g N l - p 2 ~  where (g = p gl -  p2, =

P*g 1 -  P*2 , with p 2 = pg2, p* = p*g2, and p*gs =  E (Yg* \ xg =  x w ), for g = 1,2, 

and s =  1,2. Note also that Zg — 2 if Y* > a  and Zg =  1 if Y f < a. Similar 

to Bar-Hen and Daudin (1995), the following five cases are considered:

(0 ) no differences between populations with respect to all three variable 

types;

(a) there is difference between populations only with respect to nominal
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vector x;

(b) there is difference between populations only with respect to continuous 

variable Y ;

(c) there is difference between populations only with respect to ordinal vari­

able Z]

(d) populations are different with respect to all three variable types.

To assess the size and power of the y2 test in Theorem 5.2, random 

samples of sizes (n i , n2) =  (50,25), (50,100), and (100,100) were generated 

from the general mixed-data models with (a2, p, O')1" =  (1, .5 ,1)T and location 

parameters (pgj ngl, fig2, fi*gV fi*g2)r , g = 1,2, given by (0) (.5,0, .5,0, .5)T for 

both populations, (a) (.5,0, .5,0, .5)T for population 1 and (.75,0, .5,0, .5)T 

for population 2, (b) (.5,0, .5,0, .5)T for population 1 and (.5, .5, .5,0, .5)T 

for population 2, (c) (.5,0, .5,0, .5)T for population 1 and (.5,0, .5, .5, .5)T for 

population 2, and (d) (.5,0, .5,0, .5)T for population 1 and (.75, .5, .5, .5, .5)T 

for population 2.

Observe that case (0) is taken as giving the true parameter configurations 

for both populations under the null hypothesis H  ■ Ai2 — 0. For each combi­

nation of case and (ni, n2) above, 1000 replications were generated in S-PLUS. 

Hypothesis H  is then rejected if and only if n in2A i2/(rii + n2) > X? 05 ~  14.1, 

the 95th percentile of the y 2 distribution with 7 degrees of freedom. Results 

of the simulated levels and powers of the test are displayed in Table 5.1.
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Three observations are apparent from the table. First, the power of the 

test increases with the total sample size ni + n2. Second, the test tends to 

be liberal when the total sample size is small, confirming an earlier finding re­

ported by Bar-Hen and Daudin (1995). However, given large enough samples, 

the test is able to attain the nominal level. Finally, as was similarly reported 

by Bar-Hen and Daudin (1995), the power of the test is higher when differ­

ences exist with respect to all three variables than when the difference is only 

with respect to just one variable.

5.5 Example

In this section, the appendicitis data in Chapter 4 are revisited to illustrate the 

distance developed in previous sections. The data come from Koepsel et al. 

(1981) (also found on pp. 680-683 of Fisher and Van Bell, 1993) and concern 

the occurrence and non-occurrence of perforation of the appendix. Data from 

a total of 181 surgery patients are included in the analysis, and four variables 

are considered. The same data were analyzed by Nakanishi (1996) in the 

context of variable selection in mixed-data discriminant analysis.

For the purpose of this example, the same three variables studied in 

Chapter 4 are considered: the nominal vector x T =  ( XUX 2) correspond with 

the patient’s perforation status, with x =  X(2) if perforation is present and 

x =  X(i) otherwise, the continuous variable Y  representing the time in hours 

from physician contact to surgery, and the ordinal variable Z  corresponding to 

the duration (long or short) of symptoms prior to physician contact. Patients
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were grouped according to sex (i.e., male of female), and the interest is to 

see whether there is a difference between these two groups. As was done in 

Chapter 4, the waiting times to surgery were transformed using their natural 

logarithms. In addition, subjects with waiting times to surgery equal to 0 or 

exceeding 60 hours were not considered for the analysis.

The data set is summarized with respect to the discrete variables x and 

Z  in Table 5.2. The values of the continuous variable Y  are not shown in 

the table but can be obtained from Fisher and Van Bell (1993, p. 680). The 

general mixed-data model was fit to this data set and MLEs of the parameters 

were calculated using S-PLUS. These estimates are presented in Table 5.3.

From Table 5.3, A 12 is found to be equal to 0.0396, and upon comparison 

with the 5% level critical value 14.1 obtained from the y2 distribution with 

7 degrees of freedom, the test fails to reject the null hypothesis H  that there 

is no difference due to sex. This conclusion agrees with Nakanishi’s (1996) 

observations.

5.6 Discussion

In this chapter, a distance for mixed nominal, ordinal and continuous data was 

developed by applying the Kullback-Leibler divergence to the general mixed- 

data model. The distance so obtained can be considered as a generalization of 

the Mahalanobis distance to data with a mixture of nominal, ordinal and con­

tinuous variables. Moreover, it includes previous Mahalanobis-type distances 

developed by Bedrick et al. (2000) and Bar-Hen and Daudin (1995) as special
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cases.

Asymptotic results regarding the maximum likelihood estimator of the 

distance were also discussed. Specifically, its asymptotic distribution when the 

populations are identical was derived, and large-sample tests were constructed 

based on it. The results of a simulation study on the level and power of the 

tests were reported as well. These results indicate that asymptotic tests were 

powerful enough to detect differences between populations and are able to 

maintain the nominal level given large enough samples. Finally, a real-data 

example was discussed to illustrate the method.
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Table 5.1: Empirical Size and Power of x 2 Test in Theorem 5.2 for C =  L — 
Q — 1 and S  — 2 based on 1,000 Monte Carlo Samples.

Source of Difference Sample
nominal continuous ordinal Size

X Y Z n 1 n2 Power

(0) A 12 =  A2i == 0

No No No 50 25 0.112

No No No 50 100 0.109
No No No 100 100 0.054

(a) pi == 0.5 ,p2 = 0.75
Yes No No 50 25 0.201

Yes No No 50 100 0.3
Yes No No 100 100 0.481

(b) Mu 11CNo'II = 0.5
No Yes No 50 25 0.146
No Yes No 50 100 0.193
No Yes No 100 100 0.275

(c ) Mil = 0, M21 =■ 0.5
No No Yes 50 25 0.126
No No Yes 50 100 0.217
No No Yes 100 100 0.324

(d) differences in all 3 variables
Yes Yes Yes 50 25 0.287
Yes Yes Yes 50 100 0.483
Yes Yes Yes 100 100 0.733

NOTE: T h e  p a r a m e t e r s  u n d e r  H  : A 1 2  =  A 2 1  =  0 ( i . e . ,  u n d e r  c a s e  ( 0 ) )  a r e  P i  =  P 2 =  

■ 5 , p u  =  M2 2  —  n h  =  M21 =  0 , n i 2  =  M2 2  =  M1 2  =  M2 2  =  -5 v f t t h  a  =  l , p  =  .5. N o t e  t h a t  

(a) c o r r e s p o n d s  t o  t h e  c a s e  w h e r e  d i f f e r e n c e  i s  o n l y  i n  x ,  (b) t o  d i f f e r e n c e  i n  Y  o n l y ,  (c) t o  

d i f f e r e n c e  i n  Z  o n l y ,  a n d  (d) t o  d i f f e r e n c e s  i n  a l l  t h r e e .
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Table 5.2: Three-Dimensional Array for the Appendicitis Data (Koepsel et al., 
1981) classified by Sex.

Males Females
Perforation Perforation

Duration Yes No Yes No Total

> 24 hrs. 20 26 8 14 68

< 24 hrs. 5 61 5 42 113

Total 25 87 13 56 181

NOTE: S h o w n  a r e  t h e  n u m b e r s  o f  s u r g e r y  p a t i e n t s  c l a s s i f i e d  a c c o r d i n g  t o  p o p u l a t i o n  ( m a l e  

o r  f e m a l e ) ,  p e r f o r a t i o n  s t a t e  ( s = l  i f  p e r f o r a t i o n  i s  p r e s e n t  a n d  s = 2  o t h e r w i s e ) ,  a n d  d u r a t i o n  

( Z = 2  i f  d u r a t i o n  e x c e e d s  2 4  h r s .  a n d  Z = 1  o t h e r w i s e ) .  T h e  a c t u a l  v a l u e s  o f  t h e  t i m e  Y  f r o m  

d i a g n o s i s  t o  s u r g e r y  a r e  f o u n d  i n  F i s h e r  a n d  V a n  B e l l  ( 1 9 9 3 ,  p .  6 8 0 ) .
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Table 5.3: M axim um  Likelihood E stim ates o f P aram eters o f General M ixed-
D ata M odel fo r  the A ppendicitis D ata  classified by Sex.

Male Female
Parameter Population Population

P 0.2232 (0.039) 0.1884 (0.047)

Mi 1.2154 (0 .211) 1.1908 (0.292)

M2 1.5513 (0.113) 1.5972 (0.106)

7 0.9022 (0.174) 1.0555 (0.276)

P 0.2448 (0.099) 0.2379 (0.144)

T 1.4365 (0.271) 1.0512 (0.237)

<7 = 1..0535 (0. 116)

A 12 — A21 — 0.0396

NOTE: S h o w n  a r e  t h e  m a x i m u m  l i k e l i h o o d  e s t i m a t e s  o f  t h e  g e n e r a l  m i x e d - d a t a  m o d e l  p a ­

r a m e t e r s  f o r  t h e  m a l e  a n d  f e m a l e  p o p u l a t i o n s .  T h e  n u m b e r s  i n  p a r e n t h e s e s  a r e  t h e  s t a n d a r d  

e r r o r s  o f  t h e  e s t i m a t e s .  A l s o  s h o w n  i s  t h e  e s t i m a t e d  g e n e r a l i z e d  M a h a l a n o b i s  d i s t a n c e  b e ­

t w e e n  t h e  t w o  g r o u p s .
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Chapter 6 

Concluding Remarks

6.1 Summary

The analysis of mixed data is not straightforward because of a lack of standard 

models for the joint distribution of the variables. Besides the ad-hoc approach 

of carrying out separate analyses for the discrete and continuous variables in 

the data, which are clearly deficient in many applications, a number of model- 

based alternatives have been previously proposed. These include the general 

location model for mixed nominal and continuous data and the conditional 

grouped continuous model for mixed data with ordinal and continuous vari­

ables. A number of issues concerning these models, in particular, and mixed 

data analyses, in general, were identified and addressed in the thesis.

This thesis focused on four main issues arising in mixed data analysis. 

The general approach taken in this thesis was a model-based one that relies 

on specifying a model for the joint distribution of the variables. Inferences are 

then developed for the parameters of the model. The approach is motivated 

by the need to account for the different measurement levels of the variables as 

well as the various associations among them. This approach is also preferable
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to those that carry out separate analyses for discrete and continuous variables, 

in that it provides a systematic and non-ad hoc way of analyzing mixed data.

Chapter 2 tackled the problem of constructing global tests of location 

hypotheses in the context of mixed multinomial and continuous data. The 

likelihood ratio approach was used to derive tests in the one-sample and multi­

sample settings after specifying a general location model for the joint distri­

bution of the mixed-variable data. The approach allowed the problem to be 

treated from a multivariate perspective to simultaneously test both the dis­

crete and continuous parameters of the model. One advantage of this approach 

is that it avoids the problem of multiple significance testing. Moreover, asso­

ciations among the variables are accounted for, resulting in improved power 

performance of the tests (Pocock et al., 1987). Unlike the tests previously pro­

posed by Morales et al. (1998) which rely on asymptotic theory, the proposed 

likelihood ratio tests are all exact.

For the one-sample case, it was shown that the likelihood ratio test is 

both consistent and unbiased. A simulation study also showed that it performs 

quite competitively relative to the separate test approach, which carries out 

separate but simultaneous tests of the location parameters. The latter was 

shown to be not very powerful, especially in small samples.

The likelihood ratio tests in the multi-sample situation extend previous 

work by Afifi and Elashoff (1969) on the two-sample case. An attempt was 

made to relax the homogeneity assumption in the general location model, in 

the process extending the so-called Behrens-Fisher problem to the mixed data
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case. Two situations where heterogeneity could arise in the general location 

model were considered. The same complications encountered in the case of 

continuous data were also identified in the mixed data case. It is an open 

question whether Behrens-Fisher solutions (Hussein and Carriere, 2001) can 

be adapted to the mixed data problem.

The proposed tests can be viewed as extensions to the mixed data setting 

of common likelihood ratio tests for continuous data in the one-sample case and 

of the classical multivariate analysis of variance problem in the multi-sample 

case (Seber, 1984; Mardia et al., 1979).

In Chapter 3, an alternative estimation method was proposed for the 

grouped continuous model and its extension to mixed ordinal and continu­

ous data, the so-called conditional grouped continuous model. The goal in 

this chapter is not to supplant the standard maximum likelihood approach 

but rather to devise an alternative practical method that strikes a balance 

between computational feasibility and statistical efficiency. The proposed 

method, based on the pairwise likelihood approach (Kuk and Nott, 2000), 

derives from Lindsay’s (1988) concept of composite likelihood, which advo­

cates simply pooling (or compositing) marginal (bivariate, in the case of pair­

wise likelihood approach) likelihoods to approximate the full likelihood. The 

composite likelihood function provides a single objective function, which is 

then maximized to obtain the estimates. Unlike maximum likelihood esti­

mation, the maximum pairwise likelihood method is computationally simple, 

and unlike partition maximum likelihood methods (Bedrick et al., 2000; Poon
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and Lee, 1987), there is no need to combine multiple sets of estimates since it 

yields a single set of estimates. Like maximum likelihood estimators, maximum 

pairwise likelihood estimators were shown to be consistent and asymptotically 

normally distributed. This provides a route to constructing large-sample tests 

of hypotheses concerning the parameters of the model. Simulations showed 

that the estimates are quite accurate, yielding minimal bias and small root 

mean-squared errors.

A general model for mixed nominal, ordinal and continuous data called 

the general mixed-data model, was developed in Chapter 4. Despite the ubiq­

uitousness of such data in practice, no model for the joint distribution of 

nominal, ordinal and continuous variables has yet been proposed. The new 

model is made up of two components: (1) a general location model for the 

joint distribution of the nominal and continuous variables, and (2) a condi­

tional grouped continuous model for the joint distribution of the ordinal and 

continuous variables, given the nominal data. The hybrid model not only 

accounts for the ordinal information in the data but also incorporates asso­

ciations between nominal and ordinal, nominal and continuous, and ordinal 

and continuous variables. It is flexible enough to be applicable to various 

types of mixed data and includes the general location and grouped continuous 

models as special cases. In this respect, the model provides a unified treat­

ment of these two conventional mixed data models. Maximum likelihood and 

maximum pairwise likelihood methods were outlined for the model, and the 

asymptotic distributions of the corresponding estimators were derived. The
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latter provides a more computationally feasible estimation method than the 

former, with only a minimal loss in efficiency. The asymptotic distributions 

of the maximum likelihood and maximum pairwise likelihood estimators were 

used to construct large-sample tests concerning the model parameters.

Finally, the general mixed-data model was used in Chapter 5 to develop a 

generalized Mahalanobis distance for mixed data. Because distance measures 

are common ingredients in many multivariate methods (e.g., cluster analysis, 

discrimination problems), developing one that can be used for mixed data has 

received a lot of attention in the literature (e.g., Krzanowski, 1993). However, 

none has yet been proposed for mixed data with ordinal, in addition to nominal 

and continuous, variables. The development of such a distance was the goal 

of Chapter 5. Following Bar-Hen and Daudin (1995), the Kullback-Leibler 

divergence was applied to the general mixed-data model to derive a distance 

measure for mixed nominal, ordinal and continuous data. The distance so 

obtained can be considered an extension of the Mahalanobis distance to mixed 

data. Moreover, previous generalizations of the Mahalanobis distance given 

by Bar-Hen and Daudin (1995) and Bedrick et al. (2000) were shown to be 

special cases of the new distance. Asymptotic distributions of the distance 

under the hypothesis of non-distinct groups were derived, and large-sample 

tests of hypotheses were constructed. Previous theoretical results due to Bar- 

Hen and Daudin (1995) were shown to be special cases of the new results. A 

simulation study was also undertaken to assess the performance of the tests in 

finite samples. The results of the simulations confirmed Bar-Hen and Daudin’s
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(1995) observations regarding the size and power of their tests.

6.2 Future Research

There are a number of important issues concerning mixed data analysis that 

can be pursued further from this thesis.

First, there is a need to relax the homogeneity assumption in the general 

location model. Although an attempt was made to incorporate heterogeneity 

for the multi-sample case in Chapter 2, no clear solution was found. Several 

approaches to incorporating heterogeneity in the state covariance matrices 

of the general location model have been previously proposed by Barnard et 

al. (2000) and Liu and Rubin (1998), among others. Such modifications to 

the general location model could be adopted in the construction of likelihood 

ratio tests for the multi-sample case as a possible solution to the Behrens- 

Fisher problem. With regard to the general mixed-data model, relaxing the 

homogeneity assumption will give more flexibility to the model in applications.

Second, the robustness of the grouped continuous model against the 

normality assumption for the latent variable distribution needs further study. 

Lee and Lam (1988) investigated this problem in the bivariate case, where 

they considered elliptical distributions for the latent variables, in general, and 

the bivariate t and contaminated normal distributions, in particular. A sim­

ilar investigation was undertaken by Tan et al. (1999). Investigation in the 

general multivariate case needs to be pursued for a comprehensive study of 

the problem. As well, the family of elliptical distributions, which include the
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multivariate t distribution, provides a way of handling heterogeneous state co- 

variance structures in the general mixed-data model. Liu and Rubin’s (1998) 

paper outlines a general approach of estimation for such model.

Third, although maximum pairwise likelihood estimates have been shown 

to have reasonably good performance in finite samples (Kuk and Nott, 2000; 

Heagerty and Lele, 1998), more extensive simulation studies still need to be 

undertaken to assess further their bias and efficiency for the grouped con­

tinuous model, especially in comparison with maximum likelihood and other 

competing estimates.

Fourth, it will be worthwhile to investigate how the general mixed-data 

model developed in this thesis can be applied in mixed data regression analysis. 

Regression analysis of mixed data has received rather sparse attention in the 

literature, with most of the developments having been done only recently (for 

example, Gueorguieva and Agresti, 2001; Geys et al., 2001; Fitzmaurice and 

Laird, 1997; Catalano and Ryan, 1992). Further development in the more 

general mixed data case considered in this thesis will be a timely contribution 

to the literature.

Finally, there is a need to device theoretically sound methods of deal­

ing with missing value problems in mixed data. Simply performing separate 

analyses on the quantitative and qualitative variables will not work because 

different sets of observations may be used in each analysis, and interpreting 

the results then becomes difficult. Little and Schluchter (1985), along with Be- 

lin et al. (1999), Fitzmaurice and Laird (1997), and Schafer (1997) addressed
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this issue in the case of the general location model, where the missing data 

are assumed to be missing at random (MAR) (Little and Rubin, 1987). Lee 

and Chiu (1990) and Lee and Leung (1992) also studied the problem for the 

grouped continuous model. It may be possible to extend their methods to 

mixed nominal, ordinal, and continuous data. An approach that can deal with 

non-monotone and non-MAR missing data in this context should be consid­

ered.
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Appendix A 

Review of Optimization  
M ethods

Numerical optimization methods used in the thesis for maximizing the likeli­

hood or log-likelihood functions are briefly reviewed in this appendix.

Consider maximizing a log-likelihood or pseudo log-likelihood function 

£(0) =  £ with respect to 6 . The general form of the updating formula is given 

by

~{t)
for t =  0,1, • • •, where 0  is the estimate of the parameter QP/_i at iteration 

t, is the step size at iteration t, and d^) is the P  x 1 directional vector.

A . l  Determining the Direction

The estimate 1 is said to be acceptable if ̂ t+v> > , with the function

I  evaluated at $  \  The vector d^) is generally chosen to be d (b =  — G_1s(V *), 

where G is a negative definite matrix and s (8 ) is the score vector s(0) —
•^(t)

dt/dO , evaluated at 6 . For minimization problems, G must be positive
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definite.

A.2 Choosing a Step Size

There are three ways to choose the step size The easiest is to fix it at 

some value a  for all t. Another is to undertake a linear search as follows:

(i) find an acceptable d ^ ;

(ii) find a* such that a* =  argmaxa£(8 +  ad (i)), by, say, approximating 

e f t 1' 1 +  a d ^ )  with a polynomial in a.

Still another method is the so-called step halving. If £(6 ) < £(B ), the

method halves until (.($ > (.{$

A.3 Survey of Basic Methods

The steepest ascent method takes G =  —I, d ^  =  s(0 ), so that the updating 

formula becomes

0  = 0  +  a w s(0 ).

This method approaches the true 0 = limt__>00 0 quite quickly but slows down 

as it gets closer to 6 .

A better alternative is the Newton-Raphson method, which uses the fol­

lowing updating formula:

W t+l) Wt) , Wt) Wi)
0 = 0  — H )s(0 ),
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^ t) •'"'(0 ,
where H(0 ) is the Hessian matrix evaluated at 0 , also referred to as the 

observed information matrix. The main drawback of this method is that it 

needs very good initial estimates to converge.

Modifications to the Newton-Raphson method have been proposed in 

cases where the Hessian matrix is not available or is not negative definite. 

These variants of the method include the Levenberg-Marquardt and quasi- 

Newton methods. The latter method falls under the general heading of variable 

metric or secant methods.

Another closely related method is the Fisher scoring method, which uses
'-it)

the expected information matrix 1(0) =  E[—H(0)], evaluated at 0 , in place 

of -H (0  ).

Finally, a method that estimates the Hessian matrix adaptively is given 

by the Fletcher-Powell algorithm (also known as Davidson-Fletcher-Powell 

method). It estimates the Hessian matrix =  H(0 ) as follows:

SIM ) =  fid) . a<‘>(a<‘>)T _  H«>b<‘>(b<‘>)TH<‘>
(a(*))Ta(t) (b<‘))TH<‘)b<0 ’

where =  0  ̂ -  0̂   ̂ and =  s(0  ̂*) — s(0  ̂ \  The initial estimate is

usually taken to be =  I.

For optimization problems, crude estimates of H(0) (e.g., I) often suffice, 

but may result in extremely poor estimates of the covariance matrix of 0. More 

details regarding these methods are found in Faires and Burden (1998).
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Appendix B

S-PLUS Programs Used in the 
Thesis

B .l Calculation of Critical Values in Table 2.1
pnu l l -*— . 3  

s s i z e - * — 15  

alpha-*—0 . 0 1
pva lue -* —f u n c t  i  o n  ( n , p , c  )

{
prob-*—0

f o r  ( i  i n  l : ( n - l ) )

{
A<— ( ( ( ( i / n ) A i ) * ( ( l - ( i / n ) )  A ( n - i ) ) ) /  ( ( p A i ) * ( ( l - p )  A ( n - i ) ) ) ) A ( 2 / n )  

c o n s t  <— 1 - p  A n -  ( 1 - p )  A n

pro b <—p r o b + ( 1 - p f ( ( ( n - 2 ) * ( c / A - 1 ) / 2 ) , 2 , ( n - 2 ) ) ) * d b i n o m ( i , n , p ) / c o n s t

}
p va l ue -* —p r o b  

p v a l u e

}
c r i t i c a l l - * —q f  ( 0 . 9 5 , 2 ,  ( s s i z e - 2 )  ) 

c r i t i c a l 2 < —q f ( 0 . 5 , 2 , ( s s i z e - 2 ) ) 

margin-*—0 . 5

w h i l e  ( m a r g i n > 0 . 0 0 0 0 0 0 0 0 1 )

{
c r i t i c a l - * — ( c r i t i c a l l + c r i t i c a l 2 ) / 2  
p t a i l - * —p v a l u e  ( s s i z e  , p n u l l , c r i t i c a l )  

error -*—p t a i l - a l p h a  

margin-*—a b s  ( e r r o r )  

i f  ( e r r o r < 0 )
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{
c r i t i c a l l y —c r i t i c a l  

}
e l s e

{
c r i t i c a l 2 < —c r i t i c a l  

}
}
c r i t i c a l

B.2 Calculation of Power Values in Tables 2.2 
and 2.3

p n u l l < — . 3  

m e a n l n u l l y —5 0  

m e a n 2 n u l l - s —2 5  

s i g m a y —5

s i g m a . s q y —s i g m a A 2  

s i z e . v e c y —c ( 1 5 , 2 5 )  

a l p h a y —0 . 0 1  

a l p h a l  y—a l p h a / 3  

p v a l u e y —f u n c t i o n ( n , p , c )

{
p r o b y —0
f o r  ( i  i n  l : ( n - l ) )

{
Ay— ( ( ( ( i / n ) A i ) * ( ( l - ( i / n ) ) A ( n - i ) ) ) / ( ( p A i ) * ( ( l - p ) A ( n - i ) ) ) ) A ( 2 / n )  

c o n s t y — 1 - p  A n -  ( 1 - p )  An

p r o b y —p r o b + ( l - p f ( ( ( n - 2 ) * ( c / A - l ) / 2 ) , 2 , ( n - 2 ) ) ) * d b i n o m ( i , n , p ) / c o n s t

}
p v a l u e y —p r o b  

p v a l u e

}
p v a l u e 1 y—f u n c t  i  o n ( n , p , p r , c , s  c  a l e , mu1 , m u 2 , m u l n u l l , m u 2 n u l 1 )

{
p r o b y —0

f o r  ( i  i n  1 : ( n - 1 ) )

{
Ay— ( ( ( ( i / n ) A i ) * ( ( l - ( i / n ) ) A ( n - i ) ) ) /  ( ( p r A i ) * ( ( l - p r ) A ( n - i ) ) ) ) A ( 2 / n )  
c o n s t y — 1 - p A n -  ( 1 - p )  A n

ncy— ( i *  ( m u l - m u l n u l l )  A 2 +  ( n - i  )  *  ( m u 2 - m u 2 n u l l )  A 2 )  /  s c a l e
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prob-*—prob+( 1 -p f( ( (n -2)* (c /A -1 ) /2 ) , 2 , (n -2 ) ,nc) ) *dbinom(i ,n ,p)/const
}
p v a l u e 1-*—p r o b  

p v a l u e 1

}
p a r I * — c ( . 3 , 5 0 , 2 5 )  

p ar2 <—c ( . 3 5 , 5 0 , 2 5 )  

par3-*— c ( . 3 5 , 5 2 . 5 , 2 2 . 5 )  

par4-*—c ( . 4 , 5 5 , 2 2 . 5 )  

p ar5 <— c ( . 4 , 5 5 , 2 0 )

param-*—r b i n d ( p a r i , p a r 2 , p a r 3 , p a r 4 , p a r 5 )  

p o w e r 1 . l r t - *—m a t r i x ( 0 , 5 , 2 )  

p o w e r  1 .mt-*—m a t r i x  ( 0 , 5 , 2 )  

f o r  ( i  i n  1 : 5 )

{
p t r u e < —p a r a m [ i , 1 ]  

t r u e m e a n l - * —p a r a m  [ i , 2 ]  

t r u e m e a n 2 < —p a r a m [ i , 3 ]  

f o r  ( j  i n  1 : 2 )

{
s s i z e < —s i z e . v e c  [ j ]  

c r i t i c a l l y —q f ( 0 . 9 5 , 2 , ( s s i z e - 2 ) ) 

c r i t i c a l 2 - * —q f  ( 0 . 5 , 2 , ( s s i z e - 2 ) )  

margin-*— 0 . 5

w h i l e  ( m a r g i n > 0 . 0 0 0 0 0 0 0 0 1 )

{
c r i t i c a l - * — ( c r i t i c a l l + c r i t i c a l 2 ) / 2  

p t a i l - * —p v a l u e  ( s s i z e  , p n u l l , c r i t i c a l )  

e r r  or-*—p t  a i  1 - a l p h a  

margin-*—a b s  ( e r r o r )  

i f  ( e r r o r < 0 )

{
c r i t i c a l l y —c r i t i c a l

}
e l s e

{
c r i t i c a l 2 - * — c r i t i c a l

}
}
p o w e r l . l r t [ i , j ] < —p o w e r 1 . l r t [ i , j ] + p v a l u e l ( s s i z e , p t r u e . p n u l l , c r i t i c a l ,  

s i g m a . s q . t r u e m e a n l , t r u e m e a n 2 . m e a n l n u l l , m e a n 2 n u l l )  

c o u n t  1-*—0
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c o u n t  2<r—0  

s e t . s e e d ( 4 9 3 )

N<—1 0 0 0 0  

f o r  ( k  i n  1 : N )

{
n l< —r b i n o m ( l , s s i z e , p t r u e )  

w h i l e ( n l < l  || n l > ( s s i z e - l ) )

{
n l< —r b i n o m ( 1 , s s i z e , p t r u e )

}
n2<—s s i z e - n l
x l < — r n o r m ( n l , m e a n = t r u e m e a n l , s d = s i g m a )  

x2<—r n o r m  ( n 2 , m e a n = t r u e m e a n 2 , s d = s  i g m a )  

x b a r 1 <—m e a n ( x 1 )  

x b a r 2 < —m e a n ( x 2 )  

i f  ( n l = = l )

{
v a r x l < —0  

varx2-«—v a r ( x 2 )

}
e l s e  i f  ( n l = = ( s s i z e - l ) )

{
v a r x l - e - v a r ( x l )  

varx2 - f—0

}
e l s e

{
v a x x l < —v a r ( x l )  

v a r x 2 < —v a r ( x 2 )

}
p o o l e d . va r< — ( ( n l - 1 ) * v a r x l + ( n 2 - l ) * v a r x 2 ) / ( s s i z e - 2 )  

t e s t 3 < —b i n o m . t e s t ( n l , s s i z e , p = p n u l l , a l t e r n a t i v e = " t w o . s i d e d " ) 

s t a t . t e s t 1 < — ( x b a r l - m e a n l n u l l ) * s q r t ( n l ) / s q r t ( p o o l e d . v a r )  

s t a t . t e s t 2 < — ( x b a r 2 - m e a n 2 n u l l ) * s q r t ( n 2 ) / s q r t ( p o o l e d . v a r )  

i f  ( a b s ( s t a t . t e s t l ) > q t ( ( l - ( a l p h a l / 2 ) )  , ( s s i z e - 2 ) )

|| a b s  ( s t a t .  t e s t 2 ) > q t ( ( l - ( a l p h a l / 2 ) )  , ( s s i z e - 2 ) )

|| t e s t 3 $ p . v a l u e < ( a l p h a l / 2 ) )

{
c o u n t 1 <— c o u n t 1+1

}
e l s e

{
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c o u n t 1 *— c o u n t 1

}
}
p o w e r 1 . m t [ i , j ] *—p o w e r 1 . m t [ i , j ] + c o u n t 1 / N

}
}
p o w e r 1 .mat*—c b i n d ( p o w e r 1 . l r t . p o w e r 1 . m t )

B.3 Calculation of Bias and RMSE in Tables 
3.1 to 3.4

dim*— 3  

s s i z e * —5 0  

c u t  1 . 1  *— . 5  

c u t 2 . 1*— . 7 5  

c u t 2 .2*— . 1  

c u t 3 . 1*—- .  2 5  

c u t 3 . 2 < — . 3  

c u t 3 . 3 * —1
SIG*—m a t r i x ( d a t a = c ( l , . 8 , . 3 , . 8 , 1 , . 4 , . 3 , . 4 , 1 ) , b y r o w = T , n r o w = 3 , n c o l = 3 )  

r e p s * — 5 0

m p l e s t . v e c * —m a t r i x ( 0 , n r o w = r e p s , n c o l = 9 )  

f o r  ( j  i n  l : r e p s )

{
s e t . s e e d ( j * 9 )

l a t e n t  . d a t * —m a t r i x ( r n o r m ( s s i z e * d i m )  , n c o l = d i m ) ,/0* ,/0c h o l ( S I G l )  

z . m a t  <—m a t r i x ( O , n r o w = s s i z e , n c o l = d i m )  

f o r  ( i  i n  1 : s s i z e )

{
i f  ( l a t e n t  . d a t  [ i , 1]  < = c u t l . 1 )

{
z  . m a t  [ i , 1]  *— 1

}
e l s e  i f  ( l a t e n t  . d a t  [ i ,  1]  > c u t l . 1 )

{
z . m a t [ i , l ] < —2

}
i f  ( l a t e n t  . d a t  [ i  , 2 ]  < = c u t 2 . 1 )

{
z . m a t  [ i , 2 ]  *— 1
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e l s e  i f  ( l a t e n t . d a t [ i , 2 ] < = c u t 2 . 2 )  

{
z . m a t [ i , 2 ]  <—2

}
e l s e  i f  ( l a t e n t . d a t [ i , 2 ] > c u t 2 . 2 )

{
z . m a t [ i , 2 ] < —3

}
i f  ( l a t e n t . d a t [ i , 3 ] < = c u t 3 . 1 )

{
z . m a t [ i , 3 ] < — 1

}
e l s e  i f  ( l a t e n t ,  d a t  [ i , 3 j < = c u t 3 . 2 )  

{
z .  m a t  [ i ,  3 ]  <— 2

}
e l s e  i f  ( l a t e n t . d a t [ i , 3 ] < = c u t 3 . 3 )  

{
z . m a t [ i , 3 ] < —3

}
e l s e  i f  ( l a t e n t . d a t [ i , 3 ] > c u t 3 . 3 )

{
z . m a t [ i , 3 ]  <—4

}
}
n l . 1.1-6—0  

n l . 1 . 2<—0  

n l . 1 . 3 < —0  

n l . 1 .  4<—0  

n l . 2 . 1<—0  

n l . 2 . 2 < —0  

n l . 2 . 3-e—0  

n l . 2 . 4 < —0  

n l . 3 . 1<—0  

n l . 3 . 2<—0  

n l . 3 . 3 < —0  

n l . 3 . 4 < —0  

n 2 . 1 . 1 < - 0  
n 2 . 1 .2<—0  

n 2 . 1 . 3 < - 0  

n 2 . 1 .4<—0  

n 2 . 2 .  1<—0
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n 2 . 2 . 2 < —0  

n 2 . 2 . 3 < —0  

n 2 . 2 . 4 < —0  

n 2 . 3 . 1 < —0  

n 2 . 3 . 2 < - 0  

n 2 . 3 . 3<—0  

n 2 . 3 . 4 < —0  

f o r  ( i  i n  1 : s s i z e )

{
i f  ( z . m a t [ i , l ] = = l )

{
i f  ( z . m a t [ i , 2 ] = = l )

{
i f  ( z . m a t [ i , 3 ] = = l )

{
n l . 1 . 1<—n l . 1 . 1 + 1

}
e l s e  i f  ( z . m a t [ i , 3 ] = = 2 )  

{
n l . 1 . 2<—n l . 1 . 2 + 1

}
e l s e  i f  ( z . m a t [ i , 3 ] = = 3 )  

{
n l . 1 ,3<—n l . 1 . 3 + 1

}
e l s e  i f  ( z . m a t [ i , 3 ] = = 4 )  

{
n l . l . 4 < - n l . 1.4+1

}
}
e l s e  i f  ( z . m a t [ i , 2 ] = = 2 )

{
i f  ( z . m a t [ i , 3 ] = = l )

{
n l . 2 . 1<—n l . 2 . 1 + 1

}
e l s e  i f  ( z . m a t [ i , 3 ] = = 2 )  

{
n l . 2 . 2«—n l . 2 . 2 + 1

}
e l s e  i f  ( z . m a t [ i , 3 ] = = 3 )  

{
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n l.2 .3 < -n l .2 .3 + i
}
e l s e  i f  ( z . m a t [ i , 3 ] = = 4 )  

{
n l . 2 .4<—n l . 2 . 4 + 1

}
}
e l s e  i f  ( z . m a t [ i , 2 ] = = 3 )

{
i f  ( z . m a t [ i , 3 ] = = 1 )

{
n l . 3 . 1<—n l . 3 . 1 + 1

}
e l s e  i f  ( z . m a t [ i , 3 ] = = 2 )

{
n l . 3 . 2 « - n l . 3 . 2 + l

}
e l s e  i f  ( z . m a t [ i , 3 ] = = 3 )  

{
n l . 3 . 3 < —n l . 3 . 3 + 1

}
e l s e  i f  ( z . m a t [ i , 3 ] = = 4 )  

{
n l . 3 . 4 < —n l . 3 . 4 + 1

}
}

}
e l s e  i f  ( z . m a t [ i , 1 ] = = 2 )

{
i f  ( z . m a t [ i , 2 ] = = 1 )

{
i f  ( z . m a t [ i , 3 ] = = l )

{
n 2 . 1 . 1 < - n 2 . 1 . 1 + 1

}
e l s e  i f  ( z . m a t [ i , 3 ] = = 2 )  

{
n 2 . 1 .  2<—n 2 . 1 . 2 + 1

}
e l s e  i f  ( z . m a t [ i , 3 ] = = 3 )  

{
n 2 . 1 . 3<—n 2 . 1 . 3 + 1
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}
e l s e  i f  ( z . m a t [ i , 3 ] = = 4 )  

{
n 2 . 1 . 4<—n 2 . 1 . 4 + 1

}
}
e l s e  i f  ( z . m a t [ i , 2 ] = = 2 )

{
i f  ( z . m a t [ i , 3 ] = = l )

I
n 2 . 2 . 1 < —n 2 . 2 . 1+1

}
e l s e  i f  ( z . m a t [ i , 3 ] = = 2 )  

{
n 2 . 2 . 2<—n 2 . 2 . 2 + 1

}
e l s e  i f  ( z . m a t [ i , 3 ] = = 3 )  

{
n 2 . 2 . 3<—n 2 . 2 . 3 + 1

}
e l s e  i f  ( z . m a t [ i , 3 ] = = 4 )

{
n 2 . 2 . 4<—n 2 . 2 . 4 + 1

}
}
e l s e  i f  ( z . m a t [ i , 2 ] = = 3 )

{
i f  ( z . m a t [ i , 3 ] = = 1 )

{
n 2 . 3 . 1 < —n 2 . 3 . 1+1

}
e l s e  i f  ( z . m a t [ i , 3 ] = = 2 )  

{
n 2 . 3 . 2<—n 2 . 3 . 2 + 1

}
e l s e  i f  ( z . m a t [ i , 3 ] = = 3 )  

{
n 2 . 3 . 3 < —n 2 . 3 . 3 + l

}
e l s e  i f  ( z . m a t [ i , 3 ] = = 4 )  

{
n 2 . 3 . 4<—n 2 . 3 . 4 + 1
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}
}

}
}
minuspairwiseloglike*—function(par)
{

i f  ( p a r [ l ] < - l  || p a r [ l ] > l )

{
p a r  [ 1 ]  <— i n i t  [ 1 ]

}
e l s e

{
p a r [ l ] * —p a r  [1 ]

}
i f  ( p a r [ 2 ] < - l  || p a r [ 2 ] > l )

{
p a r [2 ] * — i n i t [ 2 ]

}
e l s e

{
p a r [ 2 ] « —p a r [ 2 ]

}
i f  ( p a r [ 3 ] < - l  || p a r [ 3 ] > l )

{
p a r [ 3 ] < — i n i t [ 3 ]

}
e l s e

{
p a r [ 3 ]  <—p a r [ 3 ]

}
t e r m . a*— ( n l . 1 . 1 + n l . 1 . 2 + n l . 1 . 3 + n l . 1 . 4 )

* l o g ( p m v n o r m ( c ( p a r [ 4 ] , p a r [ 5 ]  ) , r h o = p a r [ 1 ]  ) )  

t e r m . b<— ( n l . 2 . 1 + n l . 2 . 2 + n l . 2 . 3 + n l . 2 . 4 )

* l o g ( p m v n o r m ( c ( p a r [ 4 ] , p a r [ 6 ] ) , r h o = p a r [ l ] )

- p m v n o r m ( c ( p a r [ 4 ] , p a r [ 5 ] ) , r h o = p a r [ 1 ] ) )

t e r m . c * — ( n l . 3 . 1 + n l . 3 . 2 + n l . 3 . 3 + n l . 3 . 4 ) * l o g ( p n o r m ( p a r [ 4 ] )

- p m v n o r m ( c ( p a r [ 4 ] , p a r [ 6 ] ) , r h o = p a r [ 1 ] ) )

t e r m . d<— ( n 2 . 1 . l + n 2 . 1 . 2 + n 2 . 1 . 3 + n 2 . 1 . 4 ) * l o g ( p n o r m ( p a r [ 5 ]  )
- p m v n o r m ( c ( p a r [ 4 ] , p a r [ 5 ] ) , r h o = p a r [ 1 ]  ) )

t e r m . e<—  ( n 2 . 2 . l + n 2 . 2 . 2 + n 2 . 2 . 3 + n 2 . 2 . 4 ) * l o g ( p n o r m ( p a r [ 6 ] )

- p n o r m ( p a r [ 5 ] ) - p m v n o r m ( c ( p a r [ 4 ] , p a r [ 6 ] ) , r h o = p a r [ 1 ] )

+ p m v n o r m ( c ( p a r [ 4 ] , p a r [ 5 ] ) , r h o = p a r [ 1 ] ) )
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t e r m . f  <— ( n 2 . 3 . l + n 2 . 3 . 2 + n 2 . 3 . 3 + n 2 . 3 . 4 ) * l o g ( 1 - p n o r m ( p a r [ 6 ] )

- p n o r m ( p a x [ 4 ] ) + p m v n o r m ( c ( p a r [ 4 ] , p a r [ 6 ] ) , r h o = p a r [ 1 ] ) )  

t e r m . g<— ( n l . 1 . 1 + n l . 2 . 1 + n l . 3 . 1 )

* l o g ( p m v n o r m ( c ( p a r [ 4 ] , p a r [ 7 ]  ) , r h o = p a r [ 2 ]  ) )  

t e r m . h<— ( n l . 1 . 2 + n l . 2 . 2 + n l . 3 . 2 )

* l o g ( p m v n o r m ( c ( p a r [ 4 ] , p a r [ 8 ] ) , r h o = p a r [ 2 ] )

- p m v n o r m ( c ( p a r [ 4 ] , p a r [ 7 ] ) , r h o = p a r [ 2 ] ) )  

t e r m . i<— ( n l . 1 . 3 + n l . 2 . 3 + n l . 3 . 3 )

* l o g ( p m v n o r m ( c ( p a r [ 4 ] , p a r [ 9 ] ) , r h o = p a r [ 2 ] )

- p m v n o r m ( c ( p a r [ 4 ] , p a r [ 8 ] ) , r h o = p a r [ 2 ]  ) )

t e r m . j < — ( n l . 1 . 4 + n l . 2 . 4 + n l . 3 . 4 ) * l o g ( p n o r m ( p a r [ 4 ] )

- p m v n o r m ( c ( p a r [ 4 ] , p a r [ 9 ] ) , r h o = p a r [ 2 ] ) )  

t e r m . k < — ( n 2 . 1 . l + n 2 . 2 . l + n 2 . 3 . l ) * l o g ( p n o r m ( p a r [ 7 ] )

- p m v n o r m ( c ( p a r [ 4 ] , p a r [ 7 ] ) , r h o = p a r [ 2 ] ) )  

t e r m . l + - ( n 2 . 1 . 2 + n 2 . 2 . 2 + n 2 . 3 . 2 ) * l o g ( p n o r m ( p a r [ 8 ]  )

- p n o r m ( p a r [ 7 ] ) - p m v n o r m ( c ( p a r [ 4 ] , p a r [ 8 ] ) , r h o = p a r [ 2 ] )

+ p m v n o r m ( c ( p a r [ 4 ] , p a r [ 7 ] ) , r h o = p a r [ 2 ] ) )

t e r m . m<— ( n 2 . 1 . 3 + n 2 . 2 . 3 + n 2 . 3 . 3 ) * l o g ( p n o r m ( p a r [ 9 ] )

- p n o r m ( p a r [ 8 ] ) - p m v n o r m ( c ( p a r [ 4 ] , p a r [ 9 ] ) , r h o = p a r [ 2 ] )

+ p m v n o r m ( c ( p a r [ 4 ] , p a r [ 8 ] ) , r h o = p a r [ 2 ] ) )
t e r m . n < — ( n 2 . 1 . 4 + n 2 . 2 . 4 + n 2 . 3 . 4 ) * l o g ( l - p n o r m ( p a r [ 9 ] )

- p n o r m ( p a r [ 4 ] ) + p m v n o r m ( c ( p a x  [ 4 ] , p a x [ 9 ] ) , r h o = p a r [ 2 ] ) )  

t e x m . o < — ( n l . 1 . l + n 2 . 1 . l ) * l o g ( p m v n o r m ( c ( p a r [ 5 ]  , p a r [ 7 ] ) , x h o = p a r [ 3 ] ) )  

t e r m . p < — ( n l . 1 . 2 + n 2 . 1 . 2 ) * l o g ( p m v n o r m ( c ( p a r [ 5 ] , p a x [ 8 ] ) , r h o = p a r [ 3 ] )  

- p m v n o r m ( c ( p a r [ 5 ] , p a r [ 7 ] ) , r h o = p a r [ 3 ]  ) )
t e r m . q * — ( n l . 1 . 3 + n 2 . 1 . 3 ) * l o g ( p m v n o r m ( c ( p a r [ 5 ]  , p a r [ 9 ]  ) , r h o = p a r [ 3 ] )  

- p m v n o r m ( c ( p a r [ 5 ] , p a r [ 8 ] ) , r h o = p a r [ 3 ] ) )  

t e r m . r < — ( n l . 1 . 4 + n 2 . 1 . 4 ) * l o g ( p n o r m ( p a r [ 5 ] )

- p m v n o r m ( c ( p a r [ 5 ] , p a r [ 9 ] ) , r h o = p a r [ 3 ] ) )

t e r m . s < — ( n l . 2 . l + n 2 . 2 . l ) * l o g ( p m v n o r m ( c ( p a r [ 6 ]  , p a r [ 7 ] ) , r h o = p a r [ 3 ] )  

- p m v n o r m ( c ( p a r [ 5 ] , p a r [ 7 ] ) , r h o = p a r [ 3 ] ) )

t e r m . t * — ( n l . 2 . 2 + n 2 . 2 . 2 ) * l o g ( p m v n o r m ( c ( p a r [ 6 ] , p a r [ 8 ] ) , r h o = p a r  [ 3 ] )  

- p m v n o r m ( c ( p a r [ 6 ] , p a r [ 7 ] ) , r h o = p a r [ 3 ] )
- p m v n o r m ( c ( p a r [ 5 ] , p a r [ 8 ] ) , r h o = p a r [ 3 ] )

+ p m v n o r m ( c ( p a r [ 5 ] , p a r [ 7 ] ) , r h o = p a r [ 3 ] ) )
t e r m . u + - ( n l . 2 . 3 + n 2 . 2 . 3 ) * l o g ( p m v n o r m ( c ( p a r [ 6 ] , p a r [ 9 ] ) , r h o = p a r  [ 3 ] )  

- p m v n o r m ( c ( p a r [ 6 ] , p a r [ 8 ] ) , r h o = p a r [ 3 ]  )

- p m v n o r m ( c ( p a r [ 5 ] , p a r [ 9 ] ) , r h o = p a r [ 3 ]  )
+ p m v n o r m ( c ( p a r [ 5 ] , p a r [ 8 ] ) , r h o = p a r [ 3 ] ) )  

t e r m . v < — ( n l . 2 . 4 + n 2 . 2 . 4 ) * l o g ( p n o r m ( p a r [ 6 ] )

- p m v n o r m ( c ( p a r [ 6 ] , p a r [ 9 ] ) , r h o = p a r [ 3 ]  )

- p n o r m ( p a r [ 5 ] ) + p m v n o r m ( c ( p a r [ 5 ] , p a r [ 9 ] ) , r h o = p a r [ 3 ] ) )
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t e r m ,  w-i— ( n l  . 3 .  l + n 2 . 3 .  l ) * l o g ( p n o r m ( p a r  [ 7 ]  )

- p m v n o r m ( c ( p a r [ 6 ] , p a r [ 7 ] ) , r h o = p a r [ 3 ] ) )  

t e r m . x<— ( n l . 3 . 2 + n 2 . 3 . 2 ) * l o g ( p n o r m ( p a r [ 8 ] )

- p n o r m ( p a r [ 7 ] ) - p m v n o r m ( c ( p a r [ 6 ] , p a r [ 8 ] ) , r h o = p a r [ 3 ] )  

+ p m v n o r m ( c ( p a r [ 6 ] , p a r [ 7 ] ) , r h o = p a r [ 3 ] ) )  

t e r m . y «— ( n l . 3 . 3 + n 2 . 3 . 3 ) * l o g ( p n o r m ( p a r [ 9 ] )

- p n o r m ( p a r [ 8 ] ) - p m v n o r m ( c ( p a r [ 6 ] , p a r [ 9 ] ) , r h o = p a r [ 3 ] )  

+ p m v n o r m ( c ( p a r [ 6 ] , p a r [ 8 ] ) , r h o = p a r [ 3 ] ) )  

t e r m . z<— ( n l . 3 . 4 + n 2 . 3 . 4 ) * l o g ( l - p n o r m ( p a r [ 9 ] )

- p n o r m ( p a r [ 6 ] ) +p m v n o r m ( c ( p a r  [ 6 ] , p a r [ 9 ] ) , r h o = p a r [ 3 ] ) )  

m i n u s p a i r w i s e l o g l i k e < —  ( t e r m . a + t e r m . b + t e r m . c + t e r m . d + t e r m . e  

+ t e r m . f + t e r m . g + t e r m . h + t e r m . i + t e r m . j  + t e r m . k + t e r m . 1 + t e r m . m 

+ t e r m . n + t e r m . o + t e r m . p + t e r m . q + t e r m . r + t e r m . s + t e r m . t + t e r m . u  

+ t e r m . v + t e r m . w + t e r m . x + t e r m . y + t e r m . z )

}
g e m . m p l e s t  <—n l m i n ( f = m i n u s p a i r w i s e l o g l i k e , 

x = i n i t , m a x . i t e r = 1 0 0 , m a x . f c a l = 1 0 0 )  

m p l e s t . v e c [ j , ]  *—g e m . m p l e s t $ x

}
t r u e . p a r s < - c ( S I G [ 1 , 2 ] , S I G [ 1 , 3 ]  , S I G [ 2 , 3 ]  . c u t l . l ,  

c u t 2 . 1 , c u t 2 . 2 , c u t 3 . 1 , c u t 3 . 2 , c u t 3 . 3 )
a v e . m p l e s t  <—c ( m e a n ( m p l e s t . v e c  [ , 1 ] ) , m e a n ( m p l e s t . v e c [ , 2 ] ) ,

m e a n ( m p l e s t . v e c [ , 3 ] ) , m e a n ( m p l e s t . v e c [ , 4 ] ) , m e a n ( m p l e s t . v e c [ , 5 ] ) ,

m e a n ( m p l e s t . v e c [ , 6 ] ) , m e a n ( m p l e s t . v e c [ , 7 ] ) ,

m e a n ( m p l e s t . v e c [ , 8 ] ) , m e a n ( m p l e s t . v e c [ , 9 ] ) )

r m s e . v e c < — s q r t ( c ( v a r ( m p l e s t . v e c [ , 1 ] , u n b i a s e d = F ) ,

v a r ( m p l e s t . v e c [ , 2 ] , u n b i a s e d = F ) , v a r ( m p l e s t . v e c [ , 3 ] , u n b i a s e d = F ) ,

v a r ( m p l e s t . v e c [ , 4 ] , u n b i a s e d = F ) , v a r ( m p l e s t . v e c [ , 5 ] , u n b i a s e d = F ) ,
v a r ( m p l e s t . v e c [ , 6 ] , u n b i a s e d = F ) , v a r ( m p l e s t . v e c [ , 7 ] , u n b i a s e d = F ) ,

v a r ( m p l e s t . v e c [ , 8 ] , u n b i a s e d = F ) , v a r ( m p l e s t . v e c [ , 9 ] , u n b i a s e d = F ) ) )

b i a s . m p l e s t < —t r u e . p a r s - a v e . m p l e s t

r e l . b i a s < — ( b i a s . m p l e s t / t r u e . p a r s ) * 1 0 0

B.4 Calculation of Power Values in Table 5.1
s s i z e l < —5 0  

s s i z e 2 < —1 0 0  
p i * - .  5 

p2<— . 7 5  

m u l . 1<—0  

m u 2 . 1<— . 5  

m u . 2<— . 5
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mul.1 . star<—0
m u 2 . 1 . s t a r < — . 5  

m u . 2 . s t a r * — . 5

x i i . s t a r < —m u l . 1 . s t a r - m u . 2 . s t a r

x i 2 . s t a r < —m u 2 . 1 . s t a r - m u . 2 . s t a r

x i l < —m u l . 1 - m u . 2

x i 2 < —m u 2 . 1 - m u . 2

s i gm a< — 1

rho<— . 5

a l p h a < — 1

b e t a < —r h o / ( s i g m a * s q r t ( l - r h o A 2 ) )

gamma<— a l p h a /  s q r t  ( 1 - r h o  A 2 )  - m u . 2 .  s t a r / s q r t  ( 1 - r h o  A 2 )  + b e t  a * m u . 2

t a u l < —x i l  . s t a r / s q r t  ( 1 - r h o  A 2 ) - b e t a * x i l

t a u 2 < — x i 2 . s t a r / s q r t  ( 1 - r h o  A 2 )  - b e t a * x i 2

l e v e l s — . 0 5

c o u n t  <—0

rep<— 1 0 0 0

f o r  ( i  i n  l : r e p )

n 2 . 2<r- s s i z e 2 - n 2 . 1  

p i  .hat-e—n l . 1 / s s i z e l  

q l . h a t  <— 1- p  1 .  h a t  

p 2 . h a t * —n 2 . l / s s i z e 2  

q 2 . h a t  <— 1 - p 2 . h a t

y l . 1«— r n o r m ( n l . 1 . m e a ^ m u l . 1 ,  s d = s i g m a )  

y l . 2<— r n o r m ( n l . 2 , m e a n = m u l . 2 , s d = s i g m a )  

y 2 . 1<—r n o r m ( n 2 . 1 , m e a n = m u 2 . 1 , s d = s i g m a )  
y 2 . 2<—r n o r m ( n 2 . 2 , m e a n = m u 2 . 2 , s d = s i g m a )  

m u l . 1 , h a t < —m e a n ( y l . 1 )  
m u l . 2 . h a t < —m e a n ( y l . 2 )  

m u 2 . 1 .  hat- t—m e a n ( y 2 . 1 )

{
n l . 1<—r b i n o m ( l . s s i z e l , p l )  

w h i l e ( n l . l < l  || n l . 1 > ( s s i z e l - 1 ) ) 

{
n l . 1<—r b i n o m ( l , s s i z e l , p l )

}
n l . 2-s—s s i z e l - n l . 1 

n 2 . i < — r b i n o m ( l , s s i z e 2 , p 2 )  

w h i l e ( n 2 . 1 < l  || n 2 . 1 > ( s s i z e 2 - l ) ) 

{
n 2 . 1 < — r b i n o m ( l , s s i z e 2 , p 2 )
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m u 2 . 2 .  hat-s—m ea n  ( y 2 . 2 )

s i g m a s q . h a t * — ( ( n l . l - l ) * v a r ( y l . l ) + ( n l . 2 - l ) * v a r ( y l . 2 )

+ ( n 2 . 1 - I ) * v a r ( y 2 . l ) + ( n 2 . 2 - l ) * v a r ( y 2 . 2 ) ) / ( s s i z e l + s s i z e 2 )  

y l . 1 .  s tar -*— ( r n o r m ( n l . 1 , m e a n = 0 , s d = l )  +m u . 2 .  s t a r / s q r t  ( 1 - r h o  A 2 )  

- b e t a * m u . 2 + t a u l + b e t a * y l . l ) * s q r t ( 1 - r h o  A 2 )

y 1 . 2 . s t a r < — ( r n o r m ( n l . 2 , m e a n = 0 , s d = l ) + m u . 2 . s t a r / s q r t ( l - r h o A 2 )  

- b e t a * m u . 2 + b e t a * y l . 2 ) * s q r t  ( 1 - r h o  A 2 )

y 2 . 1 . s t a r < — ( r n o r m ( n 2 . 1 , m e a n = 0 , s d = l ) + m u . 2 . s t a r / s q r t ( l - r h o A 2 )  

- b e t a * m u . 2 + t a u 2 + b e t a * y 2 . l ) * s q r t ( 1 - r h o  A 2 )

y 2 . 2 . s t a r < — ( r n o r m ( n 2 . 2 , m e a n = 0 , s d = l ) + m u . 2 . s t a r / s q r t ( l - r h o A 2 )  

- b e t a * m u . 2 + b e t a * y 2 . 2 ) * s q r t ( l - r h o A 2 )  

z l . 1<—c ( r e p ( 0 , n l . 1 ) )  

z l . 2 < —c ( r e p ( 0 , n l . 2 ) )  

f o r  ( i  i n  l : n l . l )

{
i f  ( y l . l . s t a r [ i ] > a l p h a )

{
z l . 1 [ i ]  <—2

}
e l s e

{
z l . 1 [ i ]  <—1

}
}
f o r  ( i  i n  l : n l . 2 )

{
i f  ( y l  . 2 . s t a r  [ i ]  > a l p h a )

{
z l . 2 [ i ] < —2

}
e l s e

{
z l . 2  [ i ]  4—1

}
}
z 2 . 1 - f — c ( r e p ( 0 , n 2 . 1 ) )  

z 2 . 2 < — c ( r e p ( 0 , n 2 . 2 ) )  

f o r  ( i  i n  l : n 2 . 1 )

{
i f  ( y 2 . 1 . s t a r [ i ] > a l p h a )

{
z 2 . 1 [ i ] < — 2
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}
e l s e

{
z 2 . 1 [ i ]  <— 1

}
}
f o r  ( i  i n  i : n 2 . 2 )

{
i f  ( y 2 . 2 . s t a r  [ i ]  > a l p h a )

{
z 2 . 2 [ i ] + - 2

}
e l s e

{
z 2 . 2 [ i ] < — 1

}
}
c o u n t  1 . 1 . 1«— 0

c o u n t 1 . 1 . 2 + - 0

n o t y l . 1 . 1<—c ( r e p ( 0 , n l . 1 ) )

n o t y l . 1 .2<—c ( r e p ( 0 , n l . 1 ) )

f o r  ( i  i n  l : n l . l )

{
i f  ( z l . l [ i ] = = i )

{
c o u n t 1 . 1 . 1<—c o u n t 1 . 1 . 1 + 1  

n o t y l . 1 . 1 [ c o u n t l . 1 . 1 ]  <— y l . 1  [ i ]

}
e l s e

{
c o u n t l . 1 . 2  <—c o u n t l . 1 . 2 + 1  

n o t y l . 1 . 2 [ c o u n t l . 1 . 2 ]  <— y l . 1  [ i ]

}
}
c o u n t l . 2 . 1<— 0

c o u n t l . 2 . 2 < — 0

n o t y l . 2 . 1<— c ( r e p ( 0 , n l . 2 ) )

n o t y l . 2 . 2<— c ( r e p ( 0 , n l . 2 ) )
f o r  ( i  i n  l : n l . 2 )

{
i f  ( z l . 2 [ i ] = = l )

{
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c o u n t l . 2 . 1<— c o u n t l . 2 . 1 + 1  

n o t y l . 2 . 1 [ c o u n t l . 2 . 1 ]  <—y l . 2 [ i ]

}
e l s e

{
c o u n t l . 2 . 2<— c o u n t l . 2 . 2 + 1  

n o t y l . 2 . 2 [ c o u n t 1 . 2 . 2 ]  <—y 1 . 2 [ i ]

}
}
y l . 1 . 1<—n o t y l . 1 . 1  [ 1 : c o u n t l . 1 . 1 ]  

y 1 . 1 . 2  <—n o t y l . 1 . 2 [ 1 : c o u n t  1 . 1 . 2 ]  

y l . 2 . 1  <—n o t y l . 2 . 1 [ 1 : c o u n t  1 . 2 . 1 ]  

y l . 2 . 2<—n o t y l . 2 . 2 [ 1 : c o u n t  1 . 2 . 2 ]  

c o u n t 2 . 1 . 1 + - 0  

c o u n t 2 . 1 . 2<—0  

n o t y 2 . 1 . 1<— c ( r e p ( 0 , n 2 . 1 ) )  

n o t y 2 . 1 .2<—  c ( r e p ( 0 , n 2 . 1 ) )  

f o r  ( i  i n  l : n 2 . 1 )

{
i f  ( z 2 . 1 [ i ] = = l )

{
c o u n t 2 . 1 . 1<—c o u n t 2 . 1 . 1 + 1  

n o t y 2 . 1 . 1  [ c o u n t 2 . 1 . 1 ]  <—  y 2 . 1 [ i ]

}
e l s e

{
c o u n t 2 . 1 . 2<—c o u n t 2 . 1 . 2 + 1  

n o t y 2 . 1 . 2 [ c o u n t 2 . 1 . 2 ]  y 2 . 1 [ i ]

}
}
c o u n t 2 . 2 . 1<— 0  

c o u n t 2 . 2 . 2<—0  

n o t y 2 . 2 . 1 < —c ( r e p ( 0 , n 2 . 2 ) )  

n o t y 2 . 2 . 2 < —c ( r e p ( 0 , n 2 . 2 ) )  

f o r  ( i  i n  l : n 2 . 2 )

{
i f  ( z 2 . 2 [ i ] = = l )

{
c o u n t 2 . 2 . 1<— c o u n t 2 . 2 . 1 + 1  

n o t y 2 . 2 . 1 [ c o u n t 2 . 2 . 1 ]  <—y 2 . 2 [ i ]

}
e l s e
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{
c o u n t 2 . 2 .  2<—c o u n t 2 . 2 . 2 + 1  

n o t y 2 . 2 . 2 [ c o u n t 2 . 2 . 2 ]  <— y 2 . 2 [ i ]

}
}
y 2 . 1 . 1<—n o t y 2 . 1 . 1 [ 1 : c o u n t 2 . 1 . 1 ]  

y 2 . 1 . 2<—n o t y 2 . 1 . 2 [ 1 : c o u n t 2 . 1 . 2 ]  

y 2 . 2 .  1<—n o t y 2 . 2 . 1  [ 1 :  c o u n t 2 . 2 . 1 ]  

y 2 . 2 . 2<—n o t y 2 . 2 . 2 [ 1 : c o u n t 2 . 2 . 2 ]  

m i n u s l o g l i k e 1 < —f u n c t i o n ( p a r )

{
s u m l . 1 . 1<— s u m ( l o g ( p n o r m ( p a r [ l ] - p a r [ 3 ] - p a r [ 2 ] * y l . 1 . 1 ) ) )  

s u m l . 1 . 2 + - s u m ( l o g ( l - p n o r m ( p a r [ l ] - p a r [ 3 ] - p a r [ 2 ] * y l . 1 . 2 ) ) )  

s u m l . 2 . 1 + - s u m ( l o g ( p n o r m ( p a r [ 1 ] - p a r [ 2 ] * y l . 2 . 1 ) ) )  

s u m l . 2 . 2<— s u m ( l o g ( l - p n o r m ( p a r [ 1 ] - p a r [ 2 ] * y l . 2 . 2 ) ) )  

m i n u s l o g l i k e l < —  ( s u m l . 1 . 1 + s u m l . 1 . 2 + s u m i . 2 . 1 + s u m l . 2 . 2 )

}
m i n u s l o g l i k e 2 - t —f u n c t i o n ( p a r )

{
s u m 2 . 1 . 1<— s u m ( l o g ( p n o r m ( p a r [ l ] - p a r [ 3 ] - p a r [ 2 ] * y 2 . 1 . 1 ) ) )  

s u m 2 . 1 .2<— s u m ( l o g ( 1 - p n o r m ( p a r [ 1 ] - p a r [ 3 ] - p a x  [ 2 ]  * y 2 . 1 . 2 ) ) )  

s u m 2 . 2 . l + - s u m ( l o g ( p n o r m ( p a r [ l ] - p a r [ 2 ] * y 2 . 2 . 1 ) ) )  

s u m 2 . 2 .  2<— s u m ( 1 o g ( 1 - p n o r m ( p a r [ l ] - p a r [ 2 ] * y 2 . 2 . 2 ) ) )  

m i n u s l o g l i k e 2 < —- ( s u m 2 . 1 . l + s u m 2 . 1 . 2 + s u m 2 . 2 . l + s u m 2 . 2 . 2 )

}
m l e l  <—n l m i n ( f = m i n u s l o g l i k e 1 , x = i n i t 1 , m a x . i t e r = 1 0 0 , m a x . f  c a l = 1 0 0 )  

e s t l . v e c < —m l e l $ x

m l e 2 * - n l m i n ( f = m i n u s l o g l i k e 2 , x = i n i t 2 , m a x . i t e r = 1 0 0 , m a x . f c a l = 1 0 0 )  

e s t 2 . v e c < —m l e 2 $ x

d e l t a i c — ( p i . h a t - p 2 . b a t ) * l o g ( p i . h a t / p 2 . h a t )

+ ( q l . h a t - q 2 . h a t ) * l o g ( q l . h a t / q 2 . h a t )
d e l t a 2 < — ( p i  . h a t + p 2 . h a t ) * ( m u l . 1 . h a t - m u 2 . 1 . h a t )  A 2 / ( 2 * s i g m a s q . h a t )  

+ ( q l . h a t + q 2 . h a t )  *  ( m u l . 2 .  h a t - m u 2 . 2 .  h a t )  A 2 /  ( 2 * s i g m a s q .  h a t )  

d e l t a 3 < — ( p i . h a t + p 2 . h a t ) * ( e s t l . v e c [ 3 ] - e s t 2 . v e c [ 3 ] ) A 2 / 2  

d e l t a < — d e l t a l + d e l t a 2 + d e l t a 3

t e s t . s t a t < — ( s s i z e l * s s i z e 2 * d e l t a ) / ( s s i z e l + s s i z e 2 )  

c r i t i c a l < —q c h i s q ( 1 - l e v e l , d f = 7 )  

i f  ( t e s t . s t a t > c r i t i c a l )

{
count-*—c o u n t + 1

}
e l s e
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{
c o u n t < —c o u n t

}
}
e m p i r i c a l . p o w e r  c o u n t / r e p
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