
Curious Actor-Critic Reinforcement Learning With the Dynamixel-bot

Nadia M. Ady
Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada

nmady@ualberta.ca

Abstract
Curiosity is a crucial, but not yet well-understood
component of intelligence and a better understand-
ing of existing models may lead to a better un-
derstanding of curiosity as a whole. In this work,
we present a physical robot implementation of the
basic curiosity loop introduced by Gordon and
Ahissar in 2012. In the same way that Gordon
and Ahissar produced a rough simulation of a rat’s
whiskers, this work presents a physical model using
two servos to create the whisking actions.

1 Introduction
The term computational curiosity is used to refer to compu-
tational methods attempting to create curiosity, a “desire to
know”, in machines. Curiosity has the potential to benefit
many systems. For example, in any setting where we want a
system to continue training long-term with a large or chang-
ing environment, curiosity is valuable for developing (hope-
fully useful) knowledge of that environment.

2 Conceptual Goals
This project extends actor-critic reinforcement learning in a
frontier direction: implementation of computationally curi-
ous control. In particular, I have implemented an adaptation
of Gordon and Ahissar’s [Gordon and Ahissar, 2012b] ba-
sic curiosity loop architecture on the Dynamixel-bot [Ady,
2017c].

Over 2011 and 2012, Gordon and Ahissar presented their
simulation of a rat’s whiskers, movements which they con-
jecture are mainly controlled based on curiosity [Gordon and
Ahissar, 2011; 2012b]. Their method for control used three
parts: a learner to develop knowledge of the environment, a
critic to develop knowledge of the state’s value for curiosity,
and an actor to parameterize a policy based on the critic’s
knowledge. This structure is suggested in figure 1.

I am conceptually interested in implementing an adaptation
of the curiosity loop supported nearly exclusively with RL ar-
chitectures. While Gordon and Ahissar used RL architectures
for their actor and critic components, they implemented their
learner component using a neural network with multiple lay-
ers. They noted that the running time for their system was

Figure 1: This figure shows the structure of the basic curiosity
loop and the relationship between its components.

long, attributing the slowness to averaging multiple trials of
the system. However, with a simpler architecture using a gen-
eral value functions to fulfill the role of supervised learner, I
hope we might be able to improve on the original efficiency.

2.1 The Original Implementation
For more detail on Gordon and Ahissar’s original architec-
ture, we can look at their original choices for each component
of the loop.

The basic loop includes at least one learner component, but
could include multiple learner components making different
predictions. The learner component I have chosen to focus on
and implement is the one they refer to as the forward model
(FM). Given a state and an action, the forward model learner
component is learning what next state it would end up in if it
took the given action from the given state (st, at 7→ st+1). To
implement this kind of predictive model, they used “a feed-
forward neural network with two input neurons, two hidden
layers and one output neuron, with linear, hyperbolic tan-
gent and symmetric saturated linear transfer functions, re-
spectively” [Gordon and Ahissar, 2012b, p. 122]).

The important part of the learner’s computation that is
passed on to the critic component is its prediction error. In



the original implementation, this prediction error is squared
(and summed if there are multiple learner components), then
used as the reward for the actor-critic component.

The actor and critic components are implemented us-
ing Incremental Natural Actor-Critic [Gordon and Ahissar,
2012b, p. 121], as described by Bhatnagar et al. [Bhatna-
gar et al., 2009]. For their function approximators, Gordon
and Ahissar used radial-basis-functions (RBFs) [Gordon and
Ahissar, 2012b, p. 121].

3 Technical Goals
Prior to beginning this project, I already had a suitable phys-
ical platform as a starting point: my Dynamixel-bot, as de-
scribed in [Ady, 2017a]. In terms of software, the useful
components of the software developed for Robot Modules 1
and 2 include those which which allow me to observe the
load, velocity, and position and to use Kanerva coding for
function approximation and a horde architecture [Ady, 2017a;
2017b]. The Horde architecture allows off-policy and on-
policy predictions about different values, using either con-
stant or state-conditional continuation probabilities.

The first chunk of this project was composed of completing
Robot Module 4. In Robot Module 4, I implemented the nec-
essary learning and control algorithms for continuous-action
actor-critic, which formed the basis of two of the three com-
ponents of the curiosity loop. The main implementation de-
tails are available in the report [Ady, 2017c].

This section focuses on the details of how I was able to use
existing RL architectures to form a functioning basic curiosity
loop.

3.1 Positions and Actions
The action space, A, was set to the set of feasible angular
velocities. This was of course limited by the robot, which
had speeds representable by numbers between 0 and 2047.
Essentially, these were really numbers between 0 and 1023
which represented ‘0.111 rpm’s with an additional sign bit for
direction. When I needed to represent the velocity dimension
(in sction 3.2) I only considered the range[

−1023 · 0.111 · 2π
60

,
1023 · 0.111 · 2π

60

]
I limited the position space, by placing soft safety limits

around the range [550, 810], to only utilize a range making
reasonable whisker motions. When the Dynamixel takes an
action, if the current position reading θt is outside the safe
range and setting its velocity to the value of the action would
send it further outside the safe range, the action instead sets
the velocity to a small value (±0.0115) in the opposite direc-
tion, so the robot cannot get stuck outside its safe range. Oth-
erwise (either its position reading is safe or its action takes it
from outside the safe range to inside) the velocity is set to the
value of its action. Therefore, the set of positions that could
possibly be observed is slightly larger than [550, 810].

3.2 Learner Component
Our adaptation of the learner component is implemented with
an on-policy general value function (GVF) using TD(λ).

In both [Ady, 2017b] and [Ady, 2017c], we used a sin-
gle observation space for each work. In the earlier work,
[Ady, 2017b], we used a complex observation space taking
into account the position, velocity, and load, while in the lat-
ter, [Ady, 2017c], we simplified the observation space to only
include position. However, in this latter work, we also hinted
that a general value function might be adapted to map not
states to values, but state-action pairs to values and used such
an adaptation for our discrete-action actor-critic learner.

For the learner component’s observation space, we trans-
formed the current observed angular position (subtracting 550
and dividing by 810-550) and paired the transformed value
with the action (similar to the the observation space for the
actor in discrete-action actor critic RL). The expected upper
and lower bounds for that dimension are therefore −0.25 and
1.25 (accounting for the occasions when the robot exceeds its
safety limits.

O = [−0.25, 1.25]×A

We used Kanerva coding as our function approximator, simi-
lar to what we used for Robot Modules 2 and 4 [Ady, 2017b;
2017c]. However, in this case, instead of using Hamming
distance, we rescaled each dimension to approximately [0, 1],
and took the Euclidean distance. In the case of any reading
from the obersation space or prototype for the Kanerva cod-
ing, (θ, ω), this meant performing the following transforma-
tion before computing the Euclidean distance:

(θ, ω)−
(
−0.25, −0.111·1023·2π

60

)(
1.25, 0.111·1023·2π60

)
−

(
−0.25, −0.111·1023·2π

60

) (1)

We used TD(λ) exactly as described and implemented for
Robot Module 2 [Ady, 2017b]. For the cumulant Z, we used
the value of the state. We used a continuation probability γ
of zero to only consider the next step. In short form, our
question is formed by:

π = µ, our behaviour policy, (2)
Z(st) = θt (3)

γ = 0 (4)

3.3 Actor and Critic Components
In my adaptation, I used nearly exactly the implementation
of continuous actor-critic as implemented and described for
Robot Module 4 [Ady, 2017c]. The only difference is that
instead of using the angular position in encoder ticks for the
observation space, in this work I used the transformed po-
sition as described in section 3.2, so the observation space
represented is O = [−0.25, 1.25]. The parameter settings,
however, are all identical to those in the previous work.

By using the continuous-action actor critic implementation
from Robot Module 4, I am using an adaptation quite differ-
ent from Gordon and Ahissar’s implementation. Where they
used radial basis functions to describe the parameterization of
their policy, the Dynamixel-bot simply uses a normal distri-
bution. At the beginning of learning, they say that the policy
starts “from a random-like behavior, i.e. their parameters are
set such that a random action will be produced” [Gordon and
Ahissar, 2012b, p. 123]. To simplify, the Dynamixel-bot’s



starting parameters were set so that the normal distribution
had mean µ = 0 and standard deviation σ = 1.

However, the reward observed by the actor-critic is not a
goal position. It is instead computed as follows:

rt =
(
δ
(`)
t

)2

3.4 Rat-like Physicality
As a finishing touch on the existing Dynamixel-bot configu-
ration, I added a paper face with ears and whiskers to provide
a rat-like semblance to the Dynamixel-bot. This addtion is
shown in Figure 5. This addition should not have significant
effect on the function the robot, since it was designed to allow
free motion of the hinges acting as whiskers.

4 Learning Process
In this section, I would like to discuss my observations as the
Dynamixel-bot learns over time and provide commentary on
the behaviour.

First of all, the GVF component of the learner appears to
work appropriately. In early learning, there is high TD-error,
and it takes little time for the learner’s predictions to follow
the same approximate trajectory (one step early) as its posi-
tions. The learning slows rapidly, and there is consistently
remaining error.

However, it also becomes clear quite immediately that this
setup has its problems. The first clear issue is the develop-
ment of a clear upward bias in the policy. The parameters for
both the critic’s estimated value of each state and the learner’s
predictions result in both being equal to the zero function.
Therefore, transformed position readings around 0 result in
little error, while transformed position readings around 1 pro-
duce relatively more TD-error and quickly increase the esti-
mated value of the higher positions. This results in the policy
developing a bias towards positive velocities, rather than neg-
ative ones.

The value of higher positions decreases very slowly over
time. Given the speed at which the learner’s error decreases,
this may be reasonable, but I worry that the error may never
get small enough to remove this bias, given the noise in the
physical system and the nature of approximation. A good
solution to this might be utilizing a different reward measure,
like decrease in error [Oudeyer et al., 2007].

For the purposes of this initial project, I was unable to run
the Dynamixel-bot long enough to decide if the described
bias ever disappears or if the state-value estimations every
become more reasonable. For around 30,000 timesteps, the
standard deviation remained around 1. However, as the num-
ber of timesteps approached 40,000, the standard deviation
increased to around 2. In terms of physical observations, this
lead to faster, wider motions as time went on.

To get a sense of the first 50,000 timesteps, consider figure
3. We can see the bias in the average of the mean, and how
the bias decreases over time as the variation increases. The
standard deviation generally increases, but its variation also
increases dramatically. This figure also allows us to see the
spiky profile of the reward, as large errors are encountered

once, but cause immediate improvement in the learner com-
ponent’s predictions.

Lastly, there may be a problem with simply using position
as the observation for the actor-critic. While in some cases
it is useful to generalize about all actions from a particular
state, the action has a critical impact on the amount of reward
achieved, not just the next state. Though this is not abnor-
mal for a reinforcement learning problem (consider bandits)
I wondered what would happen if all three components of the
system used both position and velocity as their observation
space.

5 Measures of Success
It is challenging to use data to prove success, since ‘success-
ful curiosity’ is poorly defined and the behaviour may not
mimic the empirical results provided by Gordon and Ahissar
because my methods are based on theirs, but substantially
adapted.

My success in this project is best demonstrated partially
by the previous section, which shows both that the robot ap-
pears to be learning as expected based on its implementation
and a basic understanding of the learning process. In this
section, I will discuss future work, which I was only able to
determine through developing an understanding of Gordon
and Ahissar’s idea via its implementation. Both understand-
ing the behaviour of my current system and understanding
how to move forward to fulfill my goals for the future of this
project.

The performance of the existing implementation could
probably be substantially improved by tuning the parame-
ters. A ‘faster’ critic, which moves the state-value estima-
tions more quickly, might reduce the bias in the policy more
quickly. While I could also shift the bias created by the start-
ing position, I believe that the policy would still develop bias
towards positions farthest from the learner’s initial “guesses”.
Similarly, optimistic initialization of the critic might change
the bias.

However, I think that rather than spending time on tun-
ing parameters, I would prefer to tune the system design. In
future work, it would be useful to implement the RBF pol-
icy parameterization to compare how that impacts the be-
haviour and learning of the agent. However, I would first
like to replace the standard normal distribution continuous-
action actor-critic with Shariff and Dick’s truncated normal
distribution [Shariff and Dick, 2013]. I believe that a trun-
cated normal distribution would make it easier to aquire the
desired almost uniformly random behaviour at the beginning
of learning, and make it safer to set the parameters to make
the actor’s initial variance higher.

For better comparison, it would also be useful to plot a re-
creation of Figures 1(b) and (d) from Gordon and Ahissar’s
paper [Gordon and Ahissar, 2012b]. These figures are
reprinted in Figure 4. Given that my adaptation considers
the problem as a continuing task while they have made their
episodic, I may need to adapt their figure 1(b). The closest
comparison might be done after 10,000,000 timesteps (since
they do 10.000 episodes of 1000 timesteps). Even prior to
such a large run, it would be helpful to see how the learner’s



Figure 2: This image depicts the clear bias towards positive velocities. Note that in the bottom plot, the red line (the mean)
is typically above zero whenever the position is lower than 1. This bias results in the agent rarely trying negative velocities
from positions near 0, and therefore learning those position-action pairs poorly in comparison to other pairs including higher
positions. All plots on the left use the same bottom axis showing the most recent 100 timesteps. The vertical axis for the first
plot from the top shows tick labels in transformed position ((encoder ticks - 550)/(810-550)
. The bottom plot shows action (a velocity) in green, mean µ for the actor’s normally distributed policy in red, and its standard
deviation in aqua. The top plot on the right show the Kanerva representation (active features in white, observation in blue) for
the learner, with the vertical axis as action and the horizonal axis as transformed position.



Figure 3: In this plot, we show how position (purple), reward (blue), mean (red), and standard deviation (aqua) vary over the
first 50,000 timesteps (note the differing axes).



Figure 4: Figures 1(b) and (d), as reprinted from Gordon and
Ahiisar 20112 p. 124. For the forward model curiosity loop,
(b) shows the forward model mapping, with the position in-
tensity coded. (d) Upper panel: a typical trajectory of the
learned (black) and random (gray) actors. Lower panel: ac-
cumulated reward of the same trajectory.

predictions for all possible observations improves over time.
After the policy parameterization is improved, the next step

should be to implement the second learner, which learns the
inverse model (st, st+1 7→ at) to compare how this impacts
the process. Gordon and Ahissar consider both individual
systems using a single learner (either forward model or in-
verse model) and a combined system where the sum of the
squared error from each is used.

Following from the addition of the inverse model, I would
like to continue onto the active-sensing components of Gor-
don and Ahissar’s work. For this component of their work,
they added a binary touch signal and predictions of its value.
This could likely be mimicked using the load sensor of the
Dynamixel-bot.

After including these components suggested in the original
work, I would also be interested in expanding their work to
include predictions over longer time periods, with non-zero
continuation probabilities.

6 Conclusions and Future Work
Studying computational curiosity targets multiple areas of
RL. We have high hopes that it will help us make progress
in the way we do exploration, but different approaches both
pull from and modify aspects of RL from the reward function
to representation to the chosen algorithm.

As described in section 5, the next step I would like to take
is the implementation of a “truncated normal distribution”-
actor. After that, I hope to explore the deeper ideas suggested
by Gordon and Ahissar and experiment using predictions that
they dis not try.

Thus far, there is only one prior robotic implementation
of Gordon and Ahissar’s hierarchical curiosity loops [Gordon
and Ahissar, 2012a]. That project implemented the curiosity
loops on a robot arm, so there has never before been a phys-
ical implementation of the whisker simulation from Gordon
and Ahissar’s original introduction to the concept (see Figure
5). This project has shown that a curiosity loop can be imple-
mented using only RL architectures. In this, this work pro-
vides the initial results for an RL-centred extension of actor-
critic into the frontier domain of curiosity.

References
[Ady, 2017a] Nadia Ady. Building Nadia’s first dynamixel-

bot. Technical Report CMPUT 607 Robot Module 1, De-
partment of Computer Science, University of Alberta, Ed-
monton, Alberta, January 2017.

[Ady, 2017b] Nadia Ady. Forecasting Nadia’s dynamixel-
bot: First general value functions. Technical Report CM-
PUT 607 Robot Module 2, Department of Computer Sci-
ence, University of Alberta, Edmonton, Alberta, February
2017.

[Ady, 2017c] Nadia Ady. Nadia’s Dynamixel-bot as actor-
critic reinforcement learner. Technical Report CMPUT
607 Robot Module 4, Department of Computer Science,
University of Alberta, Edmonton, Alberta, March 2017.



Figure 5: The final physical configuration of the Dynamixel-
bot.

[Bhatnagar et al., 2009] Shalabh Bhatnagar, Richard Sutton,
Mohammad Ghavamzadeh, and Mark Lee. Natural actor-
critic algorithms. Automatica, 45(11), 2009.

[Gordon and Ahissar, 2011] Goren Gordon and Ehud
Ahissar. Reinforcement active learning hierarchical loops.
In Neural Networks (IJCNN), The 2011 International
Joint Conference on, pages 3008–3015. IEEE, 2011.

[Gordon and Ahissar, 2012a] Goren Gordon and Ehud
Ahissar. A curious emergence of reaching. In Conference
Towards Autonomous Robotic Systems, pages 1–12.
Springer, 2012.

[Gordon and Ahissar, 2012b] Goren Gordon and Ehud
Ahissar. Hierarchical curiosity loops and active sensing.
Neural Networks, 32:119 – 129, 2012. Selected Papers
from {IJCNN} 2011.

[Oudeyer et al., 2007] Pierre-Yves Oudeyer, Frdric Kaplan,
and Verena V Hafner. Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions on evo-
lutionary computation, 11(2):265–286, 2007.

[Shariff and Dick, 2013] Roshan Shariff and Travis Dick.
Lunar lander: A continuous-action case study for policy-
gradient actor-critic algorithms. In Reinforcement Learn-
ing & Decision Making (RLDM) Princeton, NJ, USA,
2013.


